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1 Introduction

Supersymmetry is still a very active and promising research area in modern theoretical

physics with many applications in quantum field theory, mathematical physics, string the-

ory, phenomenology of elementary particles and cosmology (see e.g. the books [1–9] and

the references therein). Another actively developing area of modern theoretical physics is

higher spin field theory (see e.g. the reviews [10–17] and the references therein1). In this pa-

per we begin a systematic formulation of a generic approach to construct the Lagrangian for

supersymmetric higher spin theories. It is clear that constructing supersymmetric higher

spin models, one has to face problems from the side of supersymmetry and from the side

of higher spins. In particular, we can expect that off-shell Lagrangian formulation of the

supersymmetric higher spin models will require finding the auxiliary fields both to closure a

supersymmetry algebra off shell and for consistent higher spin field Lagrangian description.

1A brief review of the Lagrangian formulation for 4D massless higher spins is given in [5] as well.

– 1 –



J
H
E
P
1
2
(
2
0
1
5
)
1
0
6

Four-dimensional N = 1 supersymmetric massless higher spin field models have been

proposed in [18]. These models included the necessary sets of auxiliary fields to provide

the Lagrangian formulation of the higher spin theory but they were on-shell theories from

supersymmetric point of view. It is generally accepted that the off-shell supersymmetric

models can be realized in the framework of the superfield approach where the set of the

auxiliary fields relevant to off-shell supersymmetry is part of the appropriate superfield.

Massless superfield models in 4D Minkowski space have been constructed in [19, 20] and

in AdS4 have been found in [21] (see a brief review in [5]). This approach was further

developed in [22, 23] and some aspect were later studied in [24].

Lagrangian construction for the massive on-shell 4D,N = 1 higher superspin multiplets

in flat space was realized in [25] and for the massive 3D supermultiplets in flat space in [26].2

Some examples of the 4D, N = 1 superfield dynamical models in flat space-time have been

constructed in [27–30]. General superfield Lagrangian formulation for arbitrary massive

higher spin supermultiplets is undeveloped until now.

The generic approach to develop the Lagrangian formulation for higher spin field the-

ories is realized in the framework of the BRST-BFV construction [31–34] (see also the

reviews [35, 36]). BRST construction allows us to derive the Lagrangians for bosonic and

fermionic, massless and massive, free and interacting higher spin fields in the flat and AdS

spaces of various dimensions (see e.g. [37–58] and the references therein). In this paper

we will focus on the BRST construction for deriving the Lagrangian formulation of the 4D

massless higher spin N = 1 supersymmetric field models.

The first step of the higher spin BRST approach, is to convert all constraints required

for the definition of an irreducible representations of the Poincare or AdS group, into

operators acting on a Fock space. These operators should form a first class algebra in

terms of commutators, therefore one can treat them as the generators of some still unknown

gauge theory. The second step is the construction of the BRST charge on the base of the

above constraints. The third step is deriving the equations of motion as the annihilation

of the physical state by the BRST charge and finding the corresponding free Lagrangian.

Interaction in such a framework means a deformation of the BRST charge. However,

in many cases the above approach faces the annoying feature of second class constraints,

usually related with the trace and γ-trace constraints of higher spins. The typical method of

resolving this issue is to expand the Fock space by introducing extra ghost oscillators which

allow the conversion of the second class constraints to first class and preserve the algebra

at the same time (see e.g. [59, 60] for conversion procedure in general gauge theories). In

this work, we demonstrate an alternate method to avoid the second class constraints in

the higher spin field theories by using fields with two-component spinorial indices instead

of vector indices. The advantage of this description is that the definition of the irreducible

representations does not lead to second class constraints at all. Therefore, in this case the

BRST approach to free, massless, integer and half-integer higher spins becomes very simple

and straight forward.

2In this paper the Lagrangian formulation of 3D massless supermultiplets was considered as well.
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The motivation for the usage of the spinorial index notations comes from the desire to

apply the BRST approach to 4D N = 1 superspace and describe supersymmetric higher

spin theories. The natural space were these representation live is the tensor product of

left and right representation of sl(2, R). We will see that the BRST approach is powerful

enough tool for deriving the Lagrangian description that not only provides the appropriate

compensating fields for the description of higher spin, but also naturally gives rise to part

of the auxiliary states required for by supersymmetry.

Moreover, we demonstrate how supersymmetry transformations emerge in the Fock

space states and we derive the exact on-shell supersymmetry transformations laws for the

components of massless integer and half-integer superspin irreducible representations.

The paper is organized as follows. In section 2 we briefly review the constraints re-

quired for the description of the irreducible representations, the Lagrangian formulation

and equations of motion for both integer and half-integer, massless spins. In section 3 we

present the algebra of all operators involved and construct the most general BRST charge

Q. In sections 4 and 5 we take limits of Q in order to define QF and QB, the BRST charges

that describe the half-integer and integer irreducible systems. In section 6 we present, the

higher spin supersymmetric Lagrangian and the supersymmetry transformations between

the bosonic and fermionic theory. In sections 7 and 8 we discuss generalizations for the

massive case and superspace.

2 Massless irreducible representations of the Poincaré group

2.1 Half-integer spin

The irreducible representations of the Poincaré group for massless, half-integer spin (s+1/2)

are defined by the following list of constraints:3

∂ββ̇ψβα(s)β̇α̇(s−1) = 0 , i∂β
(β̇ψβα(s)α̇(s)) = 0 , �ψα(s+1)α̇(s) = 0 (2.1)

In order to generate these constraints from the variation of a Lagrangian, we have to intro-

duce two more compensators ψ̄α(s−1)α̇(s) and ψα(s−1)α̇(s−2) which also make the Lagrangian

to have a gauge symmetry. This Lagrangian (up to an overall sign) has the following form

LF = iψ̄α(s)α̇(s+1)∂αs+1
α̇s+1ψα(s+1)α̇(s)

+ i

[

s

s+ 1

]

ψα(s+1)α̇(s)∂αs+1α̇s
ψα(s)α̇(s−1) + c.c.

− i

[

2s+ 1

(s+ 1)2

]

ψ̄α(s−1)α̇(s)∂αs
α̇s
ψα(s)α̇(s−1)

+ iψα(s)α̇(s−1)∂αsα̇s−1ψα(s−1)α̇(s−2) + c.c.

− iψ̄α(s−2)α̇(s−1)∂αs−1
α̇s−1ψα(s−1)α̇(s−2) (2.2)

3The notation φα(k)α̇(l) means that the field φ has k undotted indices α1α2 . . . αk that are symmetrized

and similarly for l dotted indices.
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and is invariant under the transformations.

δGψα(s+1)α̇(s) =
1

s!(s+ 1)!
∂(αs+1(α̇s

λα(s))α̇(s−1)) ,

δGψ̄α(s−1)α̇(s) =
1

s!
∂αs

(α̇s
λα(s)α̇(s−1)) ,

δGψα(s−1)α̇(s−2) =
s− 1

s
∂αsα̇s−1λα(s)α̇(s−1) . (2.3)

where λα(s)α̇(s−1) are the unconstrained gauge parameters. The equations of motion corre-

sponding to the Lagrangian are

i∂αs+1
(α̇s+1

ψα(s+1)α̇(s)) − i
s

(s+ 1)s!
∂(αs(α̇s+1

ψ̄α(s−1))α̇(s)) = 0 , (2.4a)

i
2s+ 1

s!
∂(αs

α̇sψ̄α(s−1)α̇(s) + is(s+ 1)∂α̇s+1α̇sψα(s+1)α̇(s)

−i
(s+ 1)2

s!(s− 1)!
∂(αs(α̇s−1

ψα(s−1))α̇(s−2)) = 0 , (2.4b)

i

(s− 1)!
∂αs−1

(α̇s−1
ψα(s−1)α̇(s−2)) − i∂αs−1α̇sψ̄α(s−1)α̇(s) = 0 . (2.4c)

It is easy to verify that the constraints (2.1) can be derived from (2.4) once we use the

gauge freedom (2.3) to gauge away ψ̄α(s−1)α̇(s) and ψα(s−1)α̇(s−2).

2.2 Integer spin

The constraints for the description of a massless, integer spin (s) are

∂ββ̇hβα(s−1)β̇α̇(s−1) = 0 , �hα(s)α̇(s) = 0 (2.5)

The corresponding Lagrangian includes one real compensator hα(s−2)α̇(s−2) and has the form

LB =hα(s)α̇(s)�hα(s)α̇(s)

−
s

2
hα(s)α̇(s)∂αsα̇s

∂γγ̇hγα(s−1)γ̇α̇(s−1)

+ s(s− 1) hα(s)α̇(s)∂αsα̇s
∂αs−1α̇s−1hα(s−2)α̇(s−2)

− s(2s− 1) hα(s−2)α̇(s−2)
�hα(s−2)α̇(s−2)

−

[

s(s− 2)2

2

]

hα(s−2)α̇(s−2)∂αs−2α̇s−2∂
γγ̇hγα(s−3)γ̇α̇(s−3) . (2.6)

It is invariant under the following gauge transformations

δGhα(s)α̇(s) =
1

s!s!
∂(αs(α̇s

ζα(s−1))α̇(s−1)) ,

δGhα(s−2)α̇(s−2) =
s− 1

s2
∂αs−1α̇s−1ζα(s−1)α̇(s−1) . (2.7)
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where ζα(s−1)α̇(s−1) are the unconstrained gauge parameters. The equations of motion

corresponding to the Lagrangian are

�hα(s)α̇(s) −
s

2s!2
∂(αs(α̇s

∂γγ̇hγα(s−1))γ̇α̇(s−1))

+
s(s− 1)

2s!2
∂(αs(α̇s

∂αs−1α̇s−1hα(s−2))α̇(s−2)) = 0 , (2.8a)

�hα(s−2)α̇(s−2) +
(s− 2)2

2(2s− 1)(s− 2)!2
∂(αs−2(α̇s−2

∂γγ̇hγα(s−3))γ̇α̇(s−3))

−
(s− 1)

2(2s− 1)
∂ββ̇∂γγ̇hβγα(s−2)β̇γ̇α̇(s−2) = 0 . (2.8b)

Using the symmetry freedom (2.7) and the above equations of motion we can generate the

constraints (2.5).

3 Algebra of operators and BRST charge

First of all we construct the Fock space by introducing two commuting pairs of creation

and annihilation operators, one for the left space (undotted indices) and one for the right

space (dotted indices).

[aα, aβ] = 0 , [aα, a
†β ] = δα

β , [a†α, a†β ] = 0 ,

[āα̇, āβ̇] = 0 , [āα̇, ā
†β̇ ] = δα̇

β̇ , [ā†α̇, ā†β̇ ] = 0 ,

[aα, āβ̇] = 0 , [aα, ā
†β̇ ] = 0 , [a†α, ā†β̇ ] = 0 , [a†α, āβ̇] = 0 . (3.1)

For each one of them, we can define a vacuum state:

aα|0〉 = 0 , āα̇|0̄〉 = 0 (3.2)

hence, the general vector states are of the form

|Φ〉 =
∞
∑

k=0

∞
∑

l=0

Φα(k)α̇(l)a
†α(k)ā†α̇(l)|0, 0̄〉 (3.3)

and due to the commuting properties of a†αs and ā†α̇s the field Φα(k)α̇(l), which is defined as

the coefficient in the expansion of the state vector, will have the correct index symmetries

for the description of higher spins (see appendix A).

The set of operators that act upon the general state vectors includes the two number

operators (one for left and one for right space)

N = a†αaα , N̄ = ā†α̇āα̇ (3.4)

the derivative operator (there are four combinations)

L1 = ∂αα̇aαāα̇ , L−1 = −∂αα̇a
†αā†α̇ ,

T0 = i∂α
α̇aαā

†α̇ , T ′
0 = i∂α

α̇a†αāα̇ (3.5)
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and of course, the L0 = � operator. The coefficients and sings in the definitions (3.5) have

been chosen so under complex conjugation we get [T0]
∗ = T ′

0 , [L1]
∗ = L1 , [L−1]

∗ = L−1

and under Hermitian conjugation we get [T0]
† = T0 , [T

′
0]
† = T ′

0 , [L1]
† = L−1. The algebra

of these operators is

[L0, L1] = [L0, L−1] = [L0, T0] =
[

L0, T
′
0

]

= [L0, N ] =
[

L0, N̄
]

= 0 ,

[T0, L1] = [T0, L−1] = [T0, L1] =
[

T ′
0, L1

]

=
[

T ′
0, L−1

]

= 0 ,

[L1, L−1] = −(N + N̄ + 2)L0 ,
[

T0, T
′
0

]

= (N̄ −N)L0 ,

T ′
0T0 = L−1L1 +N(N̄ + 1)L0 , T0T

′
0 = L−1L1 + (N + 1)N̄L0

[L1, N ] = L1 , [L−1, N ] = −L−1 , [T0, N ] = T0 ,
[

T ′
0, N

]

= −T ′
0 ,

[

L1, N̄
]

= L1 ,
[

L−1, N̄
]

= −L−1 ,
[

T0, N̄
]

= −T0 ,
[

T ′
0, N̄

]

= T ′
0 . (3.6)

Using the above algebra it is possible to construct a nilpotent operator Q (Q2 = 0).4

For the case of massless theories (there are no dimension-full parameters) Q must be of

the form

Q = Q(0) +Q(1) +Q(2) (3.7)

where Q(n) includes terms with exactly n derivatives.5 Therefore, Q(0) will be a function

of N and N̄

Q(0) = f(N, N̄) (3.8)

Q(1) will be a linear combination of L1, L−1, T0, T ′
0

Q(1) = ηT0 + ρT ′
0 + σL1 + ζL−1 (3.9)

and Q(2) will include L0 plus all possible pair products of the one derivative operators

Q(2) = ξL0 + φ1L−1L1 + φ2L1T0 + . . . (3.10)

Furthermore due to nilpotency they must be such that
[

Q(0)
]2

, {Q(0), Q(1)} = 0 , {Q(0), Q(2)}+
[

Q(1)
]2

= 0 ,

{Q(1), Q(2)} = 0 ,
[

Q(2)
]2

= 0 . (3.11)

It is straight forward to prove that (3.11) are satisfied if

φ1 = φ2 = · · · = 0 ,

η2 = ρ2 = σ2 = ζ2 = ξ2 = P 2
ξ = 0 ,

{η, ρ} = {σ, ζ} = {η, σ} = {ρ, σ} = {η, ζ} = 0 ,

{ξ, η} = {ξ, ρ} = {ξ, σ} = {ξ, ζ} = {ρ, ζ} = 0 ,

{Pξ, η} = {Pξ, ρ} = {Pξ, σ} = {Pξ, ζ} = 0, {ξ, Pξ} = 1 ,

f(N, N̄) =
[

ηρ(N − N̄) + σζ(N + N̄ + 2)
]

Pξ . (3.12)

4In principle nilpotency means that there is a positive number k such that Qk = 0. For this case k will

be 2 because of the g× g → g structure of the algebra, but in principle for more complicated cases we may

have to allow for higher values.
5For a more abstract discussion n does not have to stop at 2, but since we want to generate equations

with up to two derivatives, it is obvious that n ≤ 2.
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We conclude that

1. Based on (3.12) the objects η, ρ , σ , ζ, ξ must be interpreted as anti-commuting

oscillators that expand our Fock space. These are the usual BRST ghosts and we

assign them a ghost number +1.

2. For each one of them, there is a conjugate oscillator Pη, Pρ, Pσ, Pζ , Pξ which has a

ghost number of −1.

3. We can define a vacuum state |0gh〉 for the ghost sector, as the state that is being

annihilated by a subset of the above oscillators. Different choices for the vacuum

state (or equivalently different choices of oscillators that annihilate the vacuum) will

lead to the description of different systems.

4. The BRST charge Q for algebra (3.6) is:

Q = ηT0 + ρT ′
0 + σL1 + ζL−1 + ξL0 +

[

ηρ(N − N̄) + σζ(N + N̄ + 2)
]

Pξ (3.13)

5. By choosing σ to be the hermitian conjugate of ζ and η, ρ, ξ to be self hermitian

then Q becomes hermitian.

For both integer and half-integer spins T ′
0, L−1 are not constraints, therefore a rea-

sonable choice for the vacuum state is

Pη|0gh〉 = ρ|0gh〉 = Pσ|0gh〉 = ζ|0gh〉 = Pξ|0gh〉 = 0 . (3.14)

With this choice, the most general state |Φ〉 allowed, is of the form

|Φ〉 =
∑

k1,k2,k3
l1,l2

ηk1σk2ξk3Pζ
l1P l2

ξ |Φk1,k2,K3,l1,l2〉 (3.15)

where the ks and the ls can take two values, zero or one and we sum over them. The ghost

number value for the general term in the sum is (we choose the vacuum to have zero ghost

number)

gh(|Φ〉) = k1 + k2 + k3 − l1 − l2 . (3.16)

Therefore the zero ghost state, which will play the role of the physical state (Q|Ψ〉 = 0) is

|Ψ〉 = |S〉+ ηPζ |A〉+ σPζ |B〉+ ξPζ |Γ〉

+ηPρ|U〉+ σPρ|V 〉+ ξPρ|∆〉

+ησPζPρ|W 〉+ ηξPζPρ|Z〉+ σξPζPρ|H〉 (3.17)

the -1 ghost state, which will play the role of the gauge parameter for the transformation

of the physical state (δG|Ψ〉 = Q|Λ〉) is

rl|Λ〉 = Pζ |λ〉+ Pρ|κ〉+ ηPζPρ|π〉+ σPζPρ|τ〉+ ξPζPρ|Υ〉 (3.18)

– 7 –
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and the -2 ghost state which will play the role of a gauge parameter for a second level

gauge transformation (δG|Λ〉 = Q|Ξ〉) is

rl|Ξ〉 = PζPρ|ω〉 (3.19)

Now we can find the equations of motion for the components as defined above:

T0|S〉 − L−1|A〉 − T ′
0|U〉+ (N − N̄)|∆〉 = 0 , (3.20a)

T ′
0|V 〉 − L1|S〉+ L−1|B〉+ (N + N̄ + 2)|Γ〉 = 0 , (3.20b)

T0|B〉 − L1|A〉 − T ′
0|W 〉 − (N − N̄)|H〉 = 0 , (3.20c)

T0|V 〉 − L1|U〉+ L−1|W 〉 − (N + N̄ + 2)|Z〉 = 0 , (3.20d)

L0|S〉 − L−1|Γ〉 − T ′
0|∆〉 = 0 , (3.20e)

L0|A〉 − T0|Γ〉+ T ′
0|Z〉 = 0 , (3.20f)

L0|B〉 − L1|Γ〉+ T ′
0|H〉 = 0 , (3.20g)

L0|U〉 − L−1|Z〉 − T0|∆〉 = 0 , (3.20h)

L0|V 〉 − L1|∆〉 − L−1|H〉 = 0 , (3.20i)

L0|W 〉 − L1|Z〉+ T0|H〉 = 0 , (3.20j)

and they are invariant under the following transformations

δG|S〉 = L−1|λ〉+ T ′
0|κ〉 , δG|V 〉 = L1|κ〉 − L−1|τ〉+

(

N + N̄ + 2
)

|Υ〉,

δG|A〉 = T0|λ〉+ T ′
0|π〉 −

(

N − N̄
)

|Υ〉 , δG|∆〉 = L0|κ〉 − L−1|Υ〉,

δG|B〉 = L1|λ〉+ T ′
0|τ〉 , δG|W 〉 = T0|τ〉 − L1|π〉,

δG|Γ〉 = L0|λ〉+ T ′
0|Υ〉 , δG|Z〉 = −L0|π〉+ T0|Υ〉,

δG|U〉 = T0|κ〉 − L−1|π〉 , δG|H〉 = −L0|τ〉+ L1|Υ〉, (3.21)

δG|λ〉 = −T ′
0|ω〉 , δG|τ〉 = L1|ω〉,

δG|κ〉 = L−1|ω〉 , δG|Υ〉 = L0|ω〉,

δG|π〉 = T0|ω〉 . (3.22)

It is obvious, that the above construction does not describe an irreducible representa-

tion but gives the most general BRST charge that can be constructed out of the specific

set of operators. Therefore, the BRST charges responsible for the irreducible representa-

tions must be able to be derived out of it. We observe that the algebra (3.6) has three

subalgebras

1. {T0 , L1 , L−1 , L0 , N , N̄}

2. {T ′
0 , L1 , L−1 , L0 , N , N̄}

3. {L1 , L−1 , L0 , N , N̄}

The first one includes the constraints required for the description of massless half-integer

spins. The second set is related to the first one via a complex conjugation. Therefore, it

– 8 –
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describes the same representation as seen from the complex conjugated viewpoint. Finally,

the third subalgebra includes the constraints for the description of massless integer spins.

In this case all the operators involved are real therefore we can have a real representation.

4 BRST description for half-integer spins

To construction the BRST charge generated by the subalgebra of {T0, L1, L−1, L0, N, N̄}

all we have to do is start with the general BRST charge (3.13) and freeze out the ρ, Pρ

pair of oscillators from the Fock space. We can do that by ignoring all terms in Q that

include ρ (naive ρ → 0 limit). Hence, the BRST charge for the description of massless,

half-integer spin, fermions is

QF = ηT0 + σL1 + ζL−1 + ξL0 + σζ(N + N̄ + 2)Pξ . (4.1)

By taking the same limit in equations (3.17), (3.18), (3.19), (3.20) we find the physical

state (zero ghost state) to be

rl|ΨF 〉 = |SF 〉+ ηPζ |AF 〉+ σPζ |BF 〉+ ξPζ |ΓF 〉 (4.2)

the gauge parameter state (-1 ghost state)

rl|ΛF 〉 = Pζ |λF 〉 (4.3)

and there is no second level gauge parameter (-2 ghost state). The equations of motion are

T0|SF 〉 − L−1|AF 〉 = 0 (4.4a)

L1|SF 〉 − L−1|BF 〉+ (N + N̄ + 2)|ΓF 〉 = 0 (4.4b)

T0|BF 〉 − L1|AF 〉 = 0 (4.4c)

L0|SF 〉 − L−1|ΓF 〉 = 0 (4.4d)

L0|AF 〉 − T0|ΓF 〉 = 0 (4.4e)

L0|BF 〉 − L1|ΓF 〉 = 0 (4.4f)

and they are invariant under the following transformations

δG|SF 〉 = L−1|λF 〉 , δG|BF 〉 = L1|λF 〉 ,

δG|AF 〉 = T0|λF 〉 , δG|ΓF 〉 = L0|λF 〉 . (4.5)

At this point, it is obvious that this system indeed describes a massless half-integer

irreducible representation, because the gauge transformations of the three components

|SF 〉, |AF 〉, |BF 〉 match gauge transformations (2.3) of the three components required for

the description of the irreducible representation and the forth component |ΓF 〉 is auxiliary

since its equation of motion (4.4b) is algebraic. As a consequence the dynamics of the two

systems must be the same.
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However, we can demonstrate that further. |ΓF 〉 component is auxiliary due to the

fact that it has higher mass dimension, because the oscillator ξ is the coefficient of the �

operator in the BRST charge QF . Therefore, we are allowed to do a redefinition of it in

terms of the other states |SF 〉, |AF 〉, |BF 〉. Of course, this redefinition must be compatible

with the gauge transformation of |ΓF 〉. Not only that, but we should be able to use this

redefinition to make |ΓF 〉 1) vanish on-shell and 2) make it gauge invariant. With that in

mind, consider the ansatz

|ΓF 〉 = g1T
′
0|AF 〉+ g2L1|SF 〉+ g3L−1|BF 〉+ |β〉 (4.6)

In order the left hand side to be compatible with the right hand side and our demand for

δG|β〉 = 0, we must have

g1 + g2 + g3 = 0 , g1N(N̄ + 1)− g2(N + N̄ + 2) = 1 . (4.7)

The solution of the above gives the redefinition

|ΓF 〉 =
g

N + N̄ + 2

{

(N + N̄ + 2)T ′
0|AF 〉+N(N̄ + 1)L1|SF 〉

−(N + 1)(N̄ + 2)L−1|BF 〉
}

−
1

N + N̄ + 2

{

L1|SF 〉 − L−1|BF 〉
}

+ |β〉 , ∀g (4.8)

and the substitution of this expression to (4.4) gives the following equations

|E1〉 = T0|SF 〉 − L−1|AF 〉 = 0 ,

|E2〉 = (N + N̄ + 2)T ′
0|AF 〉+N(N̄ + 1)L1|SF 〉 − (N + 1)(N̄ + 2)L−1|BF 〉 = 0 ,

|E3〉 = T0|BF 〉 − L1|AF 〉 = 0 , (4.9)

|E4〉 = L0|SF 〉+
1

N + N̄
L−1L1|SF 〉 −

1

N + N̄
L−1L−1|BF 〉 = 0 , (4.10)

|E5〉 =
2(N + N̄ + 3)

N + N̄ + 4
L0|BF 〉 −

1

N + N̄ + 4
L−1L1|BF 〉+

1

N + N̄ + 4
L1L1|SF 〉 = 0 ,

|E6〉 = |β〉 = 0 . (4.11)

Equations (4.9) are exactly the equations of motion for a massless half-integer spin (2.4).

Equations (4.10) are quadratic in derivatives and have the structure of integer spin equa-

tions (2.8). However, these equations are not extra constraints because they are automat-

ically satisfied if |E1〉, |E2〉, |E3〉 hold. This is due to the following identities

T ′
0|E1〉+

1

N + N̄
L−1|E3〉 = N(N̄ + 1)|E4〉 , (4.12a)

T ′
0|E2〉+

1

N + N̄ + 4
L1|E3〉 = (N + 1)(N̄ + 2)|E5〉 . (4.12b)

Equation (4.11) is the statement that the theory has a gauge invariant auxiliary component.

Exactly this type of components appear in the off-shell supersymmetric spectrum of the
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irreducible representations of the super-Poincaré group and it is very interesting that BRST

is powerful enough to signal about their presence.

Equations (4.9), (4.11) and can be deduced from the Lagrangian6

L = 〈SF |T0|SF 〉

−〈SF |L−1|AF 〉 − 〈AF |L1|SF 〉

−〈AF |
N + N̄ + 2

N(N̄ + 1)
T ′
0|AF 〉

+〈AF |
(N + 1)(N̄ + 2)

N(N̄ + 1)
L−1|BF 〉+ 〈BF |

(N + 3)(N̄ + 2)

(N + 2)(N̄ + 1)
L1|AF 〉

−〈BF |
(N + 3)(N̄ + 2)

(N + 2)(N̄ + 1)
T0|BF 〉

+〈ρ|β〉+ 〈β|ρ〉 (4.13)

where |ρ〉 is a lagrange multiplier that is required in order to generate the algebraic equation

of |β〉, since the mass dimensions of |β〉 do not allow it to appear in a quadratic way in

the lagrangian. A very intriguing observation is that the above Lagrangian corresponds to

the fermionic part of the superspace action that describes massless integer and half-integer

superspin theories. The fields ψα(s+1)α̇(s), ψ̄α(s−1)α̇(s), ψα(s−1)α̇(s−2) in (2.4) correspond to

the states |SF 〉, |AF 〉, |BF 〉 in (4.9) and the auxiliary states |β〉, |ρ〉 will correspond to the

auxiliary field βα(s)α̇(s−1), ρα(s)α̇(s−1) respectively.

5 BRST description of integer spin

For the massless integer spin representations, we focus at the subalgebra generated by the

set {L1, L−1, L0, N, N̄}. In this case we have to freeze both η and ρ oscillators. Hence,

the expression for the integer spin BRST charge, QB is

QB = σL1 + ζL−1 + ξL0 + σζ(N + N̄ + 2)Pξ . (5.1)

The physical state (zero ghost state) is

|ΨB〉 = |SB〉+ σPζ |BB〉+ ξPζ |ΓB〉 (5.2)

and the gauge parameter state (-1 ghost state) is

|ΛB〉 = Pζ |λB〉 . (5.3)

Immediatly we get the following equation of motion

L1|SB〉 − L−1|BB〉+ (N + N̄ + 2)|ΓB〉 = 0 , (5.4a)

L0|SB〉 − L−1|ΓB〉 = 0 , (5.4b)

L0|BB〉 − L1|ΓB〉 = 0 . (5.4c)

6Up to an overall factor.
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which are invariant under the following gauge transformations

δG|SB〉 = L−1|λB〉 , δG|ΓB〉 = L0|λB〉 , (5.5)

δG|BB〉 = L1|λB〉 .

As in the previous case, the state |ΓB〉 is auxiliary and therefore can be redefined in

order to make it vanish on-shell and gauge invariant at the same time. Since there is no

state |A〉 this time, we can get the expression for the redefinition of |ΓB〉 by taking the g →

0 limit of (4.8)

|ΓB〉 = −
1

N + N̄ + 2

{

L1|SB〉 − L−1|BB〉
}

+ |γ〉 . (5.6)

Plugging in this redefinition into (5.4) we get the equation of motion

|Z1〉 = L0|SB〉+
1

N + N̄
L−1L1|SB〉 −

1

N + N̄
L−1L−1|BB〉 = 0 , (5.7)

|Z2〉 =
2(N + N̄ + 3)

N + N̄ + 4
L0|BB〉 −

1

N + N̄ + 4
L−1L1|BB〉+

1

N + N̄ + 4
L1L1|SB〉 = 0 ,

|Z3〉 = |γ〉 = 0 . (5.8)

Equations (5.7) match exactly the equation for the description of massless integer

spin (2.8) and as in the previous case, equation (5.8) declares that the theory has a bosonic

gauge invariant, auxiliary state. The corresponding Lagrangian is

L = 〈SB|L0|SB〉 − 〈SB|
1

N + N̄
L−1L1|SB〉

−〈SB|
1

N + N̄
L−1L−1|BB〉 − 〈BB|

1

N + N̄ + 4
L1L1|SB〉

−2〈BB|
N + N̄ + 3

N + N̄ + 4
L0|BB〉+ 〈BB|

1

N + N̄ + 4
L−1L1|BB〉

+〈γ|γ〉 . (5.9)

The fields hα(s)α̇(s), hα(s−2)α̇(s−2) correspond to the states |SB〉, |BB〉 and state |γ〉 will

correspond to one of the supersymmetry auxiliary component. Unlike the previous case

where we got the full spectrum of supersymmetric auxiliary components, this is no longer

true in this case. In principle, we can allow |γ〉 to acquire some internal structure that

can reveal the full set of bosonic auxiliary components, but at this approximation we can

see them. That can happen if we demand from the very beginning for the theory to be

off-shell supersymmetric and encode this information to the BRST charge by introducing

the corresponding constraints that relate the bosonic and fermionic degrees of freedom.

Of course, this will be automatic if we manage to repeat these type of construction in

superspace. Finally, the most traditional way to detect the missing bosonic auxiliary

components is to talk about the closure of the on-shell supersymmetry transformations.
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6 Supersymmetric invariant theory

In the previous two sections we have derived the spinorial BRST description of free massless

higher spins. We noticed that the field that describes the s+1/2 spin satisfies the equations

of motion of the field that describes the s spin. Of course this was to be expected because

the constraints that describe the integer spin s are subset of the constraints that describe

the half-integer spin s+1/2, but nevertheless it provides some reasoning to why one should

expect the combination of these two systems to have supersymmetry. Also we have seen

that the BRST approach is powerful enough, that even though we have not mentioned

anything about supersymmetry, it naturally gives rise to components that will play the

role of supersymmetric auxiliary fields, once we introduce supersymmetry.

6.1 On-shell formulation

The above observations, force us to discuss the supersymmetric theory. In this part, we

will focus on the on-shell discussion. For that we consider the lagrangian

LS = LB|+ LF | (6.1)

where by LB| we mean the bosonic lagrangian (5.9) with the auxiliary component (|γ〉) in-

tegrated out. Similarly, LF | is the fermionic lagrangian (4.13) without components |β〉 , |ρ〉.

It would be interesting to see how this formulation accommodates on-shell supersymmetry.

First of all, since we have to be able to map bosons to fermions and backwards, we

must be able to change the parity of a state |Φ〉 = Φα(k)α̇(l)a
†α(k)ā†α̇(l)|0, 0̄〉. The parity

of such a state is controlled by the total number of creation operators (free indices) it

includes. States with N + N̄ = even, have zero parity and states with N + N̄ = odd, have

parity one.7 Therefore, to convert a state from one parity to the other we have to change

the value of N + N̄ by a step of one. There is no object that can do this, therefore we

introduce a parameter with an undotted index ǫα (ǫαa
†α, ǫβaβ) and its complex conjugate

ǭα̇ (ǭα̇ā
†α̇, ǭβ̇ āβ̇).

For the case of global supersymmetry these parameters are constants and we can prove

that they satisfy the following identities

L1ǫαa
†α =(N + 2)ǫαa

†αL1 +
i

N + 1
ǫβaβT

′
0 , L−1ǫαa

†α =ǫαa
†αL−1 ,

T0ǫαa
†α =(N + 2)ǫαa

†αT0 +
i

N + 1
ǫβaβL−1 , T ′

0ǫαa
†α =ǫαa

†αT ′
0 ,

L−1ǫ
βaβ =

N

(N + 1)2
ǫβaβL−1 +

i

N + 1
ǫαa

†αT0 , L1ǫ
βaβ =ǫβaβL1 ,

T ′
0ǫ

βaβ =
N

(N + 1)2
ǫβaβT

′
0 +

i

N + 1
ǫαa

†αL1 , T0ǫ
βaβ =ǫβaβT0 (6.2)

7A definition of parity in this context can be ε = N + N̄ (mod 2).
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L1ǭα̇ā
†α̇ =(N̄ + 2)ǭα̇ā

†α̇L1 +
i

N̄ + 1
ǭβ̇ āβ̇T0 , L−1ǭα̇ā

†α̇ =ǭα̇ā
†α̇L−1 ,

T ′
0ǭα̇ā

†α̇ =(N̄ + 2)ǭα̇ā
†α̇T ′

0 +
i

N̄ + 1
ǭβ̇ āβ̇L−1 , T0ǭα̇ā

†α̇ =ǭα̇ā
†α̇T0 ,

L−1ǭ
β̇ āβ̇ =

N̄

(N̄ + 1)2
ǭβ̇ āβ̇L−1 +

i

N̄ + 1
ǭα̇ā

†α̇T ′
0 , L1ǭ

β̇ āβ̇ =ǭβ̇ āβ̇L1 ,

T0ǭ
β̇ āβ̇ =

N̄

(N̄ + 1)2
ǭβ̇ āβ̇T0 +

i

N̄ + 1
ǭα̇ā

†α̇L1 , T ′
0ǭ

β̇ āβ̇ =ǭβ̇ āβ̇T
′
0 . (6.3)

Now using (6.2) with the fermionic equations (4.9) we can prove the following

|Ẽ1〉 ≡ ǫβaβ|E1〉 = T0|S̃B〉 − L−1|ÃB〉 , (6.4a)

|Ẽ2〉 ≡
N

N + 1
ǫβaβ|E2〉 − i(N + 2)(N̄ + 2)ǫαa

†α|E3〉

= (N + N̄ + 2)T ′
0|ÃB〉+N(N̄ + 1)L1|S̃B〉 − (N + 1)(N̄ + 2)L−1|B̃B〉, (6.4b)

|Ẽ3〉 ≡ (N + 4)ǫβaβ|E3〉 = T0|B̃B〉 − L1|ÃB〉 (6.4c)

with

|S̃B〉 = ǫβaβ |SF 〉+
i

N
ǫαa

†α|AF 〉 ,

|ÃB〉 = (N + 3)ǫβaβ|AF 〉 , (6.5)

|B̃B〉 = (N + 3)ǫβaβ|BF 〉 .

The conclusion is that, the tilded equations are satisfied once the untilded equations are sat-

isfied and also both sets have exactly the same structure. Therefore, states |S̃B〉, |ÃB〉, |B̃B〉

on-shell satisfy the same equations as in (4.9) and therefore due to (4.12), the states

|S̃B〉, |B̃B〉 satisfy exactly the integer spin equations (5.7). Hence, we can not distinguish

between (|SB〉, |BB〉) and (|SB〉 + |S̃B〉 + c.c., |BB〉 + |B̃B〉 + c.c.). Therefore, the integer

spin theory is invariant under the transformation

δS |SB〉 = ǫβaβ |SF 〉+
i

N
ǫαa

†α|AF 〉+ c.c. ,

δS |BB〉 = (N + 3)ǫβaβ|BF 〉+ c.c. . (6.6)

Furthermore, if we start from the bosonic equations (5.7) and use (6.3) we can

show that,

|Z̃1〉 ≡ ǭα̇ā
†α̇|Z1〉 = T0|S̃F 〉 − L−1|ÃF 〉 , (6.7a)

|Z̃2〉 ≡
(N + 2)(N̄ + 1)

N + 3
ǭα̇ā

†α̇|Z2〉 = T0|B̃F 〉 − L1|ÃF 〉 , (6.7b)

|Z̃3〉 ≡ iNǭβ̇ āβ̇|Z1〉

= (N + N̄ + 2)T ′
0|ÃF 〉+N(N̄ + 1)L1|S̃F 〉 − (N + 1)(N̄ + 2)L−1|B̃F 〉 (6.7c)
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where

|S̃F 〉 =
1

NN̄
ǭα̇ā

†α̇T ′
0|SB〉 ,

|ÃF 〉 = −
(N + 1)(N̄ − 1)

(N + N̄ + 1)(N + 2)N̄
ǭα̇ā

†α̇L1|SB〉+
1

N + N̄ + 1
ǭα̇ā

†α̇L−1|BB〉 ,

|B̃F 〉 =
N̄ + 2

(N + 2)(N̄ + 1)
ǭα̇ā

†α̇T ′
0|BB〉+ i

N̄ + 2

(N̄ + 1)(N + N̄ + 3)
ǭβ̇ āβ̇L−1|BB〉

−i
N + 1

(N + 2)(N + N̄ + 3)
ǭβ̇ āβ̇L1|SB〉 . (6.8)

The result is that states |S̃F 〉, |ÃF 〉, |B̃F 〉 on-shell satisfy equations (4.9) and the theory

of half-integer spins is invariant under the transformations

δS |SF 〉 =
1

NN̄
ǭα̇ā

†α̇T ′
0|SB〉 ,

δS |AF 〉 = −
(N + 1)(N̄ − 1)

(N + N̄ + 1)(N + 2)N̄
ǭα̇ā

†α̇L1|SB〉+
1

N + N̄ + 1
ǭα̇ā

†α̇L−1|BB〉 ,

δS |BF 〉 =
N̄ + 2

(N + 2)(N̄ + 1)
ǭα̇ā

†α̇T ′
0|BB〉+ i

N̄ + 2

(N̄ + 1)(N + N̄ + 3)
ǭβ̇ āβ̇L−1|BB〉

−i
N + 1

(N + 2)(N + N̄ + 3)
ǭβ̇ āβ̇L1|SB〉 . (6.9)

Transformations (6.6), (6.9) are exactly the on-shell supersymmetry transformations

for massless integer superspin [19, 20]. Similar calculations can be done to demonstrate

that there is another transformation

δ|SB〉 = ǭα̇ā
†α̇|SF 〉 ,

δ|BB〉 =
(N̄ + 2)2

N̄ + 1
ǭα̇ā

†α̇|BF 〉+ i
N̄ + 2

N̄ + 1
ǭβ̇ āβ̇|AF 〉 , (6.10)

δ|SF 〉 =
1

(N + 1)(N̄ + 1)
ǫβaβT

′
0|SB〉 − i

N̄

(N + N̄ + 1)(N + 1)(N̄ + 1)
ǫαa

†αL1|SB〉

+
i

(N + N̄ + 1)N
ǫαa

†αL−1|BB〉 ,

δ|AF 〉 = −
(N + 2)N̄

(N + N̄ + 3)(N̄ + 1)
ǫβaβL1|SB〉+

N + 3

N + N̄ + 3
ǫβaβL−1|BB〉 ,

δ|BF 〉 =
1

N̄ + 3
ǫβaβT

′
0|BB〉 . (6.11)

which corresponds to the on-shell supersymmetry transformations for massless half-integer

superspin.

6.2 Off-shell formulation

In this subsection we discuss a possibility to construct off-shell supersymmetric Lagrangian

formulation in the framework of the BRST construction. First of all, one updates the

information of the BRST charge regarding supersymmetry. We have seen that for N=0,
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BRST can give us part of the off-shell supersymmetric spectrum. However, we can see that

in principle there is room for the extra supersymmetric auxiliary components to appear.

In the case of half-ineger spin, the auxiliary component |ρ〉 appeared in the la-

grangian (4.13) as the lagrange multiplier in order to generate the equation |β〉 = 0. But

we could have seen the existance of |ρ〉 as a redefinition of state |AF 〉 to |AF 〉+ |ρ〉 in (4.2).

The equation of motion and the gauge transformation of |AF 〉 would remain the same if

|ρ〉 = 0 and δG|ρ〉 = 0, exactly as predicted by lagrangian (4.13).

For the integer spin case, the N=0 BRST construction gives rise to one auxiliary

component |γ〉. It is gauge invariant and has mass dimensions two. Therefore, all the

bosonic auxiliary components in the various supersymmetric theories will reside in it and

can be viewed as components of

|γ〉 ∼ |A〉+ |u〉+ |v〉+ |S〉+ |P 〉+ |U〉

a deeper internal structure that has knowledge of supersymmetry. For consistency, they

must be gauge invariant and vanish on-shell, i.e exactly as they behave in the supersym-

metric theory. At the lagrangian description, the 〈γ|γ〉 in (5.9) will be replaced by the

sum of the diagonal terms ηA〈A|A〉 + ηu〈u|u〉 + ηv〈v|v〉 + ηS〈S|S〉 + ηP 〈P |P 〉 + ηU 〈U |U〉.

The phases η will have to be chosen such that they match their correct relative signs. For

example in the integer superspin case the corresponding bosonic part of the lagrangian

will be

LB = 〈SB|L0|SB〉 − 〈SB|
1

N + N̄
L−1L1|SB〉

−〈SB|
1

N + N̄
L−1L−1|BB〉 − 〈BB|

1

N + N̄ + 4
L1L1|SB〉

−2〈BB|
N + N̄ + 3

N + N̄ + 4
L0|BB〉+ 〈BB|

1

N + N̄ + 4
L−1L1|BB〉

−〈A|A〉+ 〈u|u〉+ 〈v|v〉 − 〈S|S〉 − 〈P |P 〉 − 〈U |U〉

and for the two half-integer superspins

L⊥
B = 〈SB|L0|SB〉 − 〈SB|

1

N + N̄
L−1L1|SB〉

−〈SB|
1

N + N̄
L−1L−1|BB〉 − 〈BB|

1

N + N̄ + 4
L1L1|SB〉

−2〈BB|
N + N̄ + 3

N + N̄ + 4
L0|BB〉+ 〈BB|

1

N + N̄ + 4
L−1L1|BB〉

+〈A|A〉+ 〈u|u〉 − 〈v|v〉 − 〈S|S〉 − 〈P |P 〉+ 〈U |U〉

L
‖
B = 〈SB|L0|SB〉 − 〈SB|

1

N + N̄
L−1L1|SB〉

−〈SB|
1

N + N̄
L−1L−1|BB〉 − 〈BB|

1

N + N̄ + 4
L1L1|SB〉

−2〈BB|
N + N̄ + 3

N + N̄ + 4
L0|BB〉+ 〈BB|

1

N + N̄ + 4
L−1L1|BB〉

+〈A|A〉 − 〈u|u〉 − 〈v|v〉 − 〈S|S〉+ 〈P |P 〉 − 〈U |U〉 .
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Also keep in mind that the value of the counting operators N, N̄ as they act on these

states will be different, meaning that they have different index structure depending the

system we describe. But this piece of information is encoded in the oscillators expansion

of the Fock state.

7 Generalization for massive higher spin supersymmetric theories

Here we briefly describe a possible way to generalized the BRST construction, described

above, for massive supersymmetric higher spin theories.

For the massive case, the set of constraints that define the irreducible representations

are modified in the following way:

• For half integer spin (s+ 1/2) we must have

∂ββ̇ψβα(s)β̇α̇(s−1) = 0, i∂β
α̇s+1ψβα(s)α̇(s) +mψ̄α(s)α̇(s+1) = 0 . (7.1)

• For integer spin (s) we must have

∂ββ̇hβα(s−1)β̇α̇(s−1) = 0 , (�−m2)hα(s)α̇(s) = 0 . (7.2)

It is known that Lagrangians that describe the two these systems are more complicate

and involve a tower of real tensors of increasing rank {h, haα̇, hα(2)α̇(2), . . . , hα(s−2)α̇(s−2),

hα(s)α̇(s)} for the integer spin case and a similar tower of tensors of increasing rank

{(ψα, χα), (ψα(2)α̇, χα(2)α̇), . . . , (ψα(s−1)α̇(s−2), χα(s−1)α̇(s−2)), ψα(s)α̇(s−1), ψα(s+1)α̇(s)}

for the half integer case. A physical way to understand why this is the case is to view the

2s + 1 states of spin s as a collection of massless spin states with helicity 0 up to helicity

s and similarly the 2s + 2 states of massive spin s + 1/2 as a collection of massless spin

states with helicity 1/2 up to s+ 1/2.

To get the BRST description for the massive theory we have to follow similar steps

as before, like converting all the above constraints into Fock space operators and calculate

their algebra. Such a procedure could be done for integer spin, but for the half inte-

ger spin there is an obstacle. The Dirac equation, in this notation involves two states

(|ψ〉 and |ψ̄〉), therefore it can not be expressed as a single Fock operator acting on one

Fock state. It looks like, we have to involve both subalgebras {T0 , L1 , L−1 , L0 , N , N̄},

{T ′
0 , L1 , L−1 , L0 , N , N̄} and construct their direct sum. A possible way of doing that is

to define a fermionic BRST charge in the following way

Q ∼

(

QF

Q̄F

)

, |ψ〉 ∼

(

|ψF 〉

|ψ̄F 〉

)

. (7.3)

If that is the case, then the extension to the massive case would correspond to the existence

of off-diagonal elements proportional to mass m.

Following this idea, we see that (7.1) and its complex conjugate can be written in the

following way
(

∂ββ̇ 0

0 ∂ββ̇

)(

ψβα(s)β̇α̇(s−1)

ψ̄βα(s−1)β̇α̇(s)

)

= 0,

(

i∂αs+1
α̇s+1 m

m i∂αs+1
α̇s+1

)(

ψα(s+1)α̇(s)

ψ̄α(s)α̇(s+1)

)

= 0
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and therefore we define,

T̂0 =

(

T0 m

m T ′
0

)

, L̂0 =

(

L0 −m2 0

0 L0 −m2

)

L̂1 =

(

L1 0

0 L1

)

, L̂−1 =

(

L−1 0

0 L−1

)

The rest of the procedure will follow the method developed earlier for BRST construc-

tion in massive higher spin theories [42–44]. It means that we have to get an extension of

the algebra (3.6) with mass terms playing the role of central charges and therefore second

class constraints. The conversion of the second class constraints due to mass, to first class

will be done in the usual way by expanding our Fock space with more oscillators that will

lead to the presence of the extra states required by the Lagrangian description. The exact

construction will be investigated in another letter.

8 Problem of superfield BRST construction

Here we briefly describe a possible way to formulate the BRST construction for N = 1

supersymmetric higher spin theories in superfield form and discuss the difficulties of such

an approach.

The irreducible representations of Super-Poincare group have been are defined by the

following constraints

DβHβα(s−1)α̇(s) = 0 , D̄β̇Hα(s)β̇α̇(s−1) = 0 , DγD̄2DγHα(s)α̇(s) = 0 (8.1)

for massless, half-integer superspin where Hα(s)α̇(s) is a real bosonic superfield and

DβΨβα(s)α̇(s−1) = 0 , D̄β̇Ψα(s+1)β̇α̇(s−1) , DβD̄(α̇s+1
Ψβα(s)α̇(s)) = 0 (8.2)

for massless, integer superspin. The extension of these for the massive irreps can be done

by simply adding the mass term to the appropriate equations. In the same spirit, we should

define the corresponding Fock space operators

L1 = Dβaβ , L2 = D̄β̇ āβ̇ , L−2 = Dαa
†α , L−1 = D̄α̇ā

†α̇ , . . . (8.3)

calculate the algebra and attempt to build a BRST charge. However, it is not obvious

if the algebra closes or keeps generating increasing powers of � and whether it must be

interpreted as a nonlinear algebra or not. Furthermore, it is not obvious how to choose

the vacuum state such that, we generate exactly the desired equations of motion. Also, we

have to consider the possibility to introduce matrix like operators in order to match the

component discussion.

The simplest gauge invariant theory in superspace is the massless vector multiplet.

The equation of motion is

DγD̄2DγH = 0 (8.4)
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and it is invariant under the transformation

δH = D2L̄− D̄2L . (8.5)

Therefore, the BRST charge must include the operators D2, D̄2, DγD̄2Dγ which have the

algebra

[DγD̄2Dγ ,D
2] = [DγD̄2Dγ , D̄

2] = 0, [D2,D2] = −
i

2
∂αα̇[Dα, D̄α̇] . (8.6)

To close the algebra, without introducing operators with higher rank or make it non-linear,

we add to our list of operators ∆ = [D2,D2] and we attempt the construction of a BRST

charge Q = ηDγD̄2Dγ + ζD2 + ξD̄2 + ρ[D2, D̄2] + c. In order Q to be nilpotent we must

satisfy the following:

η2 = c2 = ρ2 = 0 ,

{η, c} = {ζ, c} = {ξ, c} = {ζ, ξ} = 0 ,

[ρ, ζ] = [ρ, ξ] = 0 ,

ζξ + {ρ, c} = 0 . (8.7)

Notice that ζ and ξ do not have to be nilpotent and also ρ has to commute with them. A

solution of them is to have ρ = −ζξPc where {c, Pc} = 1, but we can not find a choice of

vacuum that will generate equation (8.4).

An observation is that various superspace operators (like D2 and D̄2) have by them-

selves the nilpotent property hence, they do not require the existence of a nilpotent ghost

in the corresponding BRST charge. Another observation is that, unlike the spacetime con-

structions where the nature of the constraints is always the same, in superspace depending

on the number of covariant derivatives we will have even or odd parity operators therefore

we need to have both fermionic and bosonic ghost like oscillators.

The construction of a BRST charge for superspace, is unclear yet. A possible direction

is to look for a different but equivalent set of constraints to define the irreducible repre-

sentations in a way that allows a direct application of the known methods. Another way,

is to consider the possibility of generalized charges where the kernel of Q does not include

the image of Q. This will relax the nilpotent condition to a more general requirement for

gauge invariance Q ·Q′ = 0, where Q is responsible for the equations of motion and Q′ for

the gauge transformations.

9 Summary

We have presented the BRST approach to Lagrangian description of 4D, N = 1 supersym-

metric free massless higher spin theories using the spinorial index notation. Generalization

of the BRST construction for the supersymmetric higher spin models was given and the

supersymmetric higher spin field Lagrangian was obtained.

We have demonstrated that the BRST description of massless free higher spins in the 2-

component spinor notation is preferable because it circumvents the second class constraints

related with the trace and γ-trace conditions in the definition of higher spins.
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Furthermore, we have shown that the BRST procedure not only provides all the nec-

essary auxiliary fields for the higher spin description but also give rise to extra auxiliary

components that play the role of off-shell supersymmetric auxiliary components. In the

other words, one can expect that the BRST approach will give a possibility of complete

off-shell Lagrangian formulation of higher spin supersymmetric models. A hint for that is

lagrangian (4.13) which matches exactly the fermionic part of the corresponding superspace

lagrangians that describe integer and half-integer superspin irreducible representations of

the super-Poincaré group.

Finally, we have illustrated how, on-shell supersymmetry transformations emerge just

because, the algebra of the bosonic constraints is included in the algebra of the fermionic

constraints.

All the above results motivates us to carry out a similar analysis for the massive higher

spin supersymmetric models and also for superspace formulated theories. In the first case,

it seems that we have to expend our Fock space, so that for every state we introduce its

complex conjugate. That forces us to redefine the various operators of the massless theory

in terms of matrices acting on a complex conjugated enhanced Fock vector. Afterwards,

we have to calculate the algebra of these objects and check a) if the usual BRST procedure

can apply and b) if there is a vacuum state that will give the desired equations of motion.

Also, we can apply the methods developed earlier for BRST construction in massive higher

spin theories [42–44]. For the superspace case, the picture is not so clear regarding the

closure of the algebra of the constraints and its peculiarities like the fact that it already

includes nilpotent objects. We plan to study all these aspects in the forthcoming works.

When all the above are understood and we have a good understanding of the free

supersymmetric theories viewed from the BRST point of view, we can start asking questions

about interactions. This will correspond to deforming the BRST charge by adding vertex

operators that result into interactions among the various Fock space vectors. This will be

an even more challenging problem because not only we will have to face the difficulties of

interacting higher spins but we want to do it in a supersymmetric way.
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A Two-component spinor notation

Consider the 4D Minkowski, Clifford algebra

{em, en} = 2ηmn . (A.1)
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It is well know, that the objects

Jmn = −
i

4
[em, en], Pm = em (A.2)

satisfy the Poincaré algebra and therefore the representations of the Poincaré algebra can

be generated by the representations of the Clifford algebra. Also, it is well known that in

4D we can have Weyl spinors, thus the smallest representations of Clifford algebra are the

left ψα and right χα̇ spinors. Under the action of the Poincare algebra they transform in

the following way:

[Jmn, ψα] = i(σmn)α
βψβ , [Jmn, χ

α̇] = i(σ̄mn)
α̇
β̇χ

β̇ (A.3)

where

(σmn)α
β =

1

4
(σm)αα̇(σ̄n)

α̇β −
1

4
(σn)αα̇(σ̄m)α̇β ,

(σ̄mn)
α̇
β̇ =

1

4
(σ̄m)α̇α(σn)αβ̇ −

1

4
(σ̄n)

α̇α(σm)αβ̇ . (A.4)

The σm = (1, ~σ) and σ̄m = (−1, ~σ),8 satisfy a list of very useful properties

(σm)αα̇(σ̄n)
α̇β + (σn)αα̇(σ̄m)α̇β = 2ηmnδα

β ,

(σ̄m)α̇α(σn)αβ̇ + (σ̄n)
α̇α(σm)αβ̇ = 2ηmnδ

α̇
β̇ ,

(σm)αα̇(σ̄m)β̇β = 2δα
βδα̇

β̇ ,
1
2ǫ

klmnσmn = −iσkl , 1
2ǫ

klmnσ̄mn = iσ̄kl ,

σkσ̄ln = 1
2η

lkσn − 1
2η

nkσl − i
2ǫ

klnmσm ,

σ̄kσln = 1
2η

lkσ̄n − 1
2η

nkσ̄l + i
2ǫ

klnmσ̄m ,

σlnσk = −1
2η

lkσn + 1
2η

nkσl − i
2ǫ

klnmσm ,

σ̄lnσ̄k = −1
2η

lkσ̄n + 1
2η

nkσ̄l + i
2ǫ

klnmσ̄m . (A.5)

The (σm)αα̇, (σ̄m)α̇α are the only objects that have all three kinds of indices. For this

reason they are used for converting vector indices to left-right indices and vice versa. For

example:

Am = (σ̄m)α̇αAαα̇ , Aαα̇ =
1

2
(σm)αα̇Am . (A.6)

An example of that would be the partial derivative, ∂m. So let’s define

∂αα̇ = (σm)αα̇∂m . (A.7)

We can show that it has the properties

∂αα̇∂αβ̇ = δα̇β̇� , ∂α̇α∂αβ̇ = δα̇β̇� ,

∂α
β̇∂β

α̇ − ∂αα̇∂ββ̇ = δαβδ
α̇
β̇ .� (A.8)

8~σ are the three Pauli matrices.
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The conversion of vector indices to spinorial ones, doesn’t work just for vectors but for

higher rank tensors as well. For example consider the case of a rank two tensor

Amn = (σ̄m)α̇α(σ̄n)
β̇βAαβα̇β̇ (A.9)

Aαβα̇β̇ can be further decomposed by symmetrizing and anti-symmetrizing the undotted

and dotted pair of indices.

Aαβα̇β̇ = A
(S,S)

αβα̇β̇
+ CαβA

(A,S)

α̇β̇
+ Cα̇β̇A

(S,A)
αβ + CαβCα̇β̇A

(A,A) (A.10)

and we get that

A
(S,S)

αβα̇β̇
= 1

16(σ
m)(α(α̇(σ

n)β)β̇)Amn ,

A
(A,S)

α̇β̇
= −1

4(σ̄
mn)α̇β̇Amn ,

A
(S,A)
αβ = 1

4(σ
mn)αβAmn ,

A(A,A) = 1
8η

mnAmn . (A.11)

From the above we can see that for a rank two antisymmetric tensor (like the generators of

the Lorentz group, Jmn) the completely symmetric and the scalar terms vanish (A
(S,S)

αβα̇β̇
=

0, A(A,A) = 0) and we get

Jmn = 2(σmn)
αβJαβ − 2(σ̄mn)

α̇β̇Jα̇β̇ (A.12)

The Cαβ and Cα̇β̇ are antisymmetric objects defined in the following way

Cαβ =

(

0 i

−i 0

)

= Cα̇β̇ , Cαβ =

(

0 −i

i 0

)

= Cα̇β̇ (A.13)

and they are also used as a metric to raise and lower the spinorial indices. They have the

property

CαβCγρ = δαγδ
β
ρ − δαρδ

β
γ ,

Cα̇β̇Cγ̇ρ̇ = δα̇γ̇δ
β̇
ρ̇ − δα̇ρ̇δ

β̇
γ̇ . (A.14)

For the description of higher spins we will use fields φ with k number of undotted indices

and l number of dotted indices and have the property that are independently symmetrized

in both of them. We will denote that by writing φα(k)α̇(l). Then from (A.5), (A.10), (A.11)

follows that the trace and γ-trace of these fields vanish identically. That is very useful

because in this formulation of higher spins, the trace constraints that usually introduce

second class constraints in the BRST approach are not present any more.
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