86 research outputs found

    Monitoring active open-pit mine stability in the Rhenish coalfields of Germany using a coherence-based SBAS method

    Get PDF
    With the recent progress in synthetic aperture radar (SAR) technology, especially the new generation of SAR satellites (Sentinel-1 and TerraSAR-X), our ability to assess slope stability in open-pit mines has significantly improved. The main objective of this work is to map ground displacement and slope instability over three open-pit mines, namely, Hambach, Garzweiler and Inden, in the Rhenish coalfields of Germany to provide long-term monitoring solutions for open-pit mining operations and their surroundings. Three SAR datasets, including Sentinel-1A data in ascending and descending orbits and TerraSAR-X data in a descending orbit, were processed by a modified small baseline subset (SBAS) algorithm, called coherence-based SBAS, to retrieve ground displacement related to the three open-pit mines and their surroundings. Despite the continuously changing topography over these active open-pit mines, the small perpendicular baselines of both Sentinel-1A and TerraSAR-X data were not affected by DEM errors and hence could yield accurate estimates of surface displacement. Significant land subsidence was observed over reclaimed areas, with rates exceeding 500 mm/yr, 380 mm/yr, and 310 mm/yr for the Hambach, Garzweiler and Inden mine, respectively. The compaction process of waste materials is the main contributor to land subsidence. Land uplift was found over the areas near the active working parts of the mines, which was probably due to excavation activities. Horizontal displacement retrieved from the combination of ascending and descending data was analysed, revealing an eastward movement with a maximum rate of ∼120 mm/yr on the western flank and a westward movement with a maximum rate of ∼ 60 mm/yr on the eastern flank of the pit. Former open-pit mines Fortuna-Garsdorf and Berghein in the eastern part of Rhenish coalfields, already reclaimed for agriculture, also show subsidence, at locations reaching 150 mm/yr. The interferometric results were compared, whenever possible, with groundwater information to analyse the possible reasons for ground deformation over the mines and their surroundings

    Ground motion in areas of abandoned mining: application of the intermittent SBAS (ISBAS) to the Northumberland and Durham coalfield, UK

    Get PDF
    In this paper, we investigate land motion and groundwater level change phenomena using differential interferometric synthetic aperture radar (DInSAR) over the Northumberland and Durham coalfield in the United Kingdom. The study re-visits earlier research that applied a persistent scatterers interferometry (PSI) technique to ERS (European Remote Sensing) and ENVISAT (Environmental Satellite) data. Here, the Intermittent Small Baseline Subset (ISBAS) DInSAR technique is applied to ERS, ENVISAT and Sentinel-1 SAR datasets covering the late 1990s, the 2000s and the mid-2010s, respectively to increase spatial coverage, aid the geological interpretation and consider the latest Sentinel-1 data. The ERS data identify surface depressions in proximity to former collieries, while all three data sets ascertain broad areas are experiencing regional scale uplift, often occurring in previously mined areas. Uplift is attributed to increases in pore pressure in the overburden following the cessation of groundwater pumping after mine closure. Rising groundwater levels are found to correlate to ground motion measurements at selected monitoring sites, most notably in the surrounding area of Ashington. The area is divided by an impermeable EW fault; to the south, surface heave was identified as groundwater levels rose in the 1990s, whereas to the north, this phenomenon occurred two decades later in the 2010s. The data emphasize the complexity of the post-mining surface and subsurface environment and highlight the benefit that InSAR, utlizing the ISBAS technique, can provide in its charaterization

    Study of Ground Movement in a Mining Area with Geological Faults Using FDM Analysis and a Stacking InSAR Method

    Get PDF
    Underground coal mining activities and ground movement are directly correlated, and coal mining-induced ground movement can cause damage to property and resources, thus its monitoring is essential for the safety and economics of a city. Fangezhuang coal mine is one of the largest coalfields in operation in Tangshan, China. The enormous amount of coal extraction has resulted in significant ground movement over the years. These phenomena have produced severe damages to the local infrastructure. This paper uses the finite difference method (FDM) 3D model and the stacking interferometric synthetic aperture radar (InSAR) method to monitor the ground movement in Fangezhuang coalfield during 2016. The FDM 3D model used calibrated Fangezhuang geological parameters and the satellite InSAR analysis involved the use of ascending C-band Sentinel-1A interferometric wide (IW) data for 2016. The results show that the most prominent subsidence signal occurs in mining panel 2553N and the area between panel 2553N and fault F0 with subsidence up to 57 cm. The subsidence observed for the FDM 3D model and stacking InSAR to monitor land deformation under the influence of fault are in close agreement and were verified using a two-sample t-test. It was observed that the maximum subsidence point shifted towards the fault location from the centre of the mining panel. The tectonic fault F0 was found to be reactivated by the coal mining and controls the spatial extent of the observed ground movement. The impact of dominant geological faults on local subsidence boundaries is investigated in details. It is concluded that ground movement in the study area was mainly induced by mining activities, with its spatial pattern being controlled by geological faults. These results highlight that the two methods are capable of measuring mining induced ground movement in fault dominated areas. The study will improve the understanding of subsidence control, and aid in developing preventive measures in Fangezhuang coalfield with fault reactivation

    Investigating the potential of radar interferometry for monitoring rural artisanal cobalt mines in the democratic republic of the congo

    Get PDF
    © 2020 by the authors. Licensee MDPI, Basel, Switzerland. Greater awareness of the serious human rights abuses associated with the extraction and trade of cobalt in the Democratic Republic of the Congo (DRC) has applied increasing pressure for businesses to move towards more responsible and sustainable mineral sourcing. Artisanal and small-scale mining (ASM) activities in rural and remote locations may provide heightened opportunities to conceal the alleged human rights violations associated with mining, such as: hazardous working conditions, health impacts, child labour, child trafficking, and debt bondage. In this study, we investigate the feasibility of the Intermittent Small Baseline Subset (ISBAS) interferometric synthetic aperture radar (InSAR) method, teamed with high temporal frequency Sentinel-1 imagery, for monitoring ASM activity in rural locations of the “Copperbelt”, the DRC. The results show that the ISBAS descriptive variables (mean, standard deviation, minimum, and maximum) were significantly different (p-value = ≤ 0.05) between mining and non-mining areas. Additionally, a significant difference was found for the ISBAS descriptive variables mean, standard deviation, and minimum between the different mine types (industrial, surface, and tunnels). As expected, a high level of subsidence (i.e., negative ISBAS pixel value) was a clear indicator of mine activity. Trial activity thresholds were set for the descriptive variables mean (-2.43 mm/yr) and minimum (-5.36 mm/yr) to explore an ISBAS approach to active mine identification. The study concluded that the ISBAS method has great potential as a monitoring tool for ASM, with the ability to separate mining and non-mining areas based on surface motion values, and further distinguish the different mine types (industrial, surface, and tunnel). Ground data collection and further development of ISBAS analysis needs to be made to fully understand the value of an ISBAS-based ASM monitoring system. In particular, surrounding the impact of seasonality relative to longer-term trends in ASM activity

    Remote Sensing of Natural Hazards

    Get PDF
    Each year, natural hazards such as earthquakes, cyclones, flooding, landslides, wildfires, avalanches, volcanic eruption, extreme temperatures, storm surges, drought, etc., result in widespread loss of life, livelihood, and critical infrastructure globally. With the unprecedented growth of the human population, largescale development activities, and changes to the natural environment, the frequency and intensity of extreme natural events and consequent impacts are expected to increase in the future.Technological interventions provide essential provisions for the prevention and mitigation of natural hazards. The data obtained through remote sensing systems with varied spatial, spectral, and temporal resolutions particularly provide prospects for furthering knowledge on spatiotemporal patterns and forecasting of natural hazards. The collection of data using earth observation systems has been valuable for alleviating the adverse effects of natural hazards, especially with their near real-time capabilities for tracking extreme natural events. Remote sensing systems from different platforms also serve as an important decision-support tool for devising response strategies, coordinating rescue operations, and making damage and loss estimations.With these in mind, this book seeks original contributions to the advanced applications of remote sensing and geographic information systems (GIS) techniques in understanding various dimensions of natural hazards through new theory, data products, and robust approaches

    Environmental monitoring : phase 4 final report (April 2018 - March 2019)

    Get PDF
    This report describes the results of activities carried out as part of the Environmental Monitoring Project (EMP) led by the British Geological Survey (BGS) in areas around two shale gas sites in England – Kirby Misperton (Vale of Pickering, North Yorkshire) and Preston New Road (Fylde, Lancashire). It focuses on the monitoring undertaken during the period April 2018–March 2019 but also considers this in the context of earlier monitoring results that have been covered in reports for earlier phases of the project (Phases I–IV) 2 . The EMP project is a multi-partner project involving BGS together with Public Health England (PHE), University of Birmingham, University of Bristol, University of Manchester, Royal Holloway University of London (RHUL) and University of York. The work has been enabled by funding from a combination of the BGS National Capability programme, a grant awarded by the UK Government’s Department for Business Energy & Industrial Strategy (BEIS) and additional benefit-in-kind contributions from all partners. The project comprises the comprehensive monitoring of different environment compartments and properties at and around the two shale-gas sites. The component parts of the EMP are all of significance when considering environmental and human health risks associated with shale gas development. Included are seismicity, ground motion, water (groundwater and surface water), soil gas, greenhouse gases, air quality, and radon. The monitoring started before hydraulic fracturing had taken place at the two locations, and so the results obtained before the initiation of operations at the shale-gas sites represent baseline conditions. It is important to characterise adequately the baseline conditions so that any future changes caused by shale gas operations, including hydraulic fracturing, can be identified. This is also the case for any other new activities that may impact those compartments of the environment being monitored as part of the project. In the period October 2018–December 2018, an initial phase of hydraulic fracturing took place at the Preston New Road (PNR) shale-gas site (shale gas well PNR1-z) in Lancashire. This was followed by a period of flow testing of the well to assess its performance (to end of January 2019). The project team continued monitoring during these various activities and several environmental effects were observed. These are summarised below and described in more detail within the report. The initiation of operations at the shale-gas site signified the end of baseline monitoring. At the Kirby Misperton site (KMA), approval has not yet been granted for hydraulic fracturing of the shale gas well (KM8), and so no associated operations have taken place during the period covered by this report. The effects on air quality arising from the mobilisation of equipment in anticipation of hydraulic fracturing operations starting was reported in the Phase III report, and in a recently published paper3 . Following demobilisation of the equipment and its removal from the site, conditions returned to baseline and the on-going monitoring (reported in this report) is effectively a continuation of baseline monitoring

    A remote sensing approach to the quantification of local to global scale social-ecological impacts of anthropogenic landscape changes

    Get PDF
    A thesis submitted in partial fulfillment of the requirements for the degree of Doctor in Information Management, specialization in Geographic Information SystemsLanduse and Landcover (LULC) is the common aspect that influences several ecological issues, environmental degradations, changes in Land Surface Temperature (LST), hydrological changes and ecosystem function at regional to global level. Research on the drivers and progressions of LULC change has been key to developing models that can project and predict future LULC extent, level and patterns under different assumptions of socioeconomic, ecological and environmental situations. Rapid and extensive urbanization and Urban Sprawl (US), propelled by rapid population growth leads to the shrinkage of productive agricultural lands, boosting mining, decrease in surface permeability and the emergence of Urban Heat Islands (UHI), and in turn, adversely affects the provision of ecosystem services. Mining for resources extraction may lead to geological and associated environmental changes due to ground movements, collision with mining cavities, and deformation of aquifers. Geological changes may continue in a reclaimed mine area, and the deformed aquifers may entail a breakdown of substrates and an increase in ground water tables, which may cause surface area inundation. Consequently, a reclaimed mine area may experience surface area collapse, i.e., subsidence, and degradation of vegetation productivity. The greater changes in LULC, US, LST and vegetation dynamics due to increasing human population not only affects inland forest and wetland, it also directly influences coastal forest lands such as mangroves, peat swamps and riparian forest and threats to ecosystem services. Mangroves provide valuable provisioning (e.g. aquaculture, fisheries, fuel, medicine, textiles), regulation (e.g. shoreline protection, erosion control, climate regulation), supporting (nutrient cycling, nursery habitat), and cultural (recreation and tourism) ecosystem services with an important impact on human well-being. However, the mangrove forest is highly threatened due to climate changes, and human activities which ignore the ecological and economic value of these habitats, contributing to its degradation. There is an increasing number of studies about mangrove distribution, changes and re-establishment activities, denoting a growing attentiveness on the value of these coastal wetland ecosystems. Most of these studies address mangrove degradation drivers at regional or local levels. However, there has not been yet enough assessment on the drivers of mangrove degradation at global level. Thus, complexity of inland and coastal landscape degradation should be addressed using multidisciplinary methodology and conditions. Therefore, this dissertation aimed to assess the impact of LULC associated with vegetation, temperature and wetland changes. To understand the relation among three different types of landscape changes associated with anthropogenic activities: Urbanization, Geological changes and Forest degradation at local to global level, we have selected thirty-three global regions. In chapter 2, We employed the Random Forest (RF) classification on Landsat imageries from 1991, 2003, and 2016, and computed six landscape metrics to delineate the extent of urban areas within a 10km suburban buffer of Chennai city, Tamilnadu, India. The level of US was then quantified using Renyi’s entropy. A land change model was subsequently used to project land cover for 2027. A 70.35% expansion in urban areas was observed mainly towards the suburban periphery of Chennai between 1991 and 2016. The Renyi’s entropy value for year 2016 was 0.9, exhibiting a two-fold level of US when compared to 1991. The spatial metrics values indicate that the existing urban areas became denser and the suburban agricultural, forests and particularly barren lands were transformed into fragmented urban settlements. The forecasted land cover for 2027 indicates a conversion of 13,670.33 ha (16.57% of the total landscape) of existing forests and agricultural lands into urban areas with an associated increase in the entropy value to 1.7, indicating a tremendous level of US. Our study provides useful metrics for urban planning authorities to address the social-ecological consequences of US and to protect ecosystem services. In chapter 3, We studied landscape dynamics in Kirchheller Heide, Germany, which experienced extensive soil movement due to longwall mining without stowing, using Landsat imageries between 2013 and 2016. A Random Forest image classification technique was applied to analyse landuse and landcover dynamics, and the growth of wetland areas was assessed using a Spectral Mixture Analysis (SMA). We also analyzed the changes in vegetation productivity using a Normalized Difference Vegetation Index (NDVI). We observed a 19.9% growth of wetland area within four years, with 87.2% growth in the coverage of two major waterbodies in the reclaimed mine area. NDVI values indicate that the productivity of 66.5% of vegetation of the Kirchheller Heide was degraded due to changes in ground water tables and surface flooding. Our results inform environmental management and mining reclamation authorities about the subsidence spots and priority mitigation areas from land surface and vegetation degradation in Kirchheller Heide. In chapter 4, We demonstrated the advantage of fusing imageries from multiple sensors for LULC change assessments as well as for assessing surface permeability and temperature and UHI emergence in a fast-growing city, i.e. Tirunelveli, Tamilnadu, India. IRS-LISSIII and Landsat-7 ETM+ imageries were fused for 2007 and 2017, and classified using a Rotation Forest (RF) algorithm. Surface permeability and temperature were then quantified using Soil-Adjusted Vegetation Index (SAVI) and Land Surface Temperature (LST) index, respectively. Finally, we assessed the relationship between SAVI and LST for entire Tirunelveli as well as for each LULC zone, and also detected UHI emergence hot spots using a SAVI-LST combined metric. Our fused images exhibited higher classification accuracies, i.e. overall kappa coefficient values, than non-fused images. We observed an overall increase in the coverage of urban (dry, real estate plots and built-up) areas, while a decrease for vegetated (cropland and forest) areas in Tirunelveli between 2007 and 2017. The SAVI values indicated an extensive decrease in surface permeability for Tirunelveli overall and also for almost all LULC zones. The LST values showed an overall increase of surface temperature in Tirunelveli with the highest increase for urban built-up areas between 2007 and 2017. LST also exhibited a strong negative association with SAVI. South-eastern built-up areas in Tirunelveli were depicted as a potential UHI hotspot, with a caution for the Western riparian zone for UHI emergence in 2017. Our results provide important metrics for surface permeability, temperature and UHI monitoring, and inform urban and zonal planning authorities about the advantages of satellite image fusion. In chapter 5, We identified mangrove degradation drivers at regional and global levels resulted from decades of research data (from 1981 to present) of climate variations (seal-level rising, storms, precipitation, extremely high water events and temperature), and human activities (pollution, wood extraction, aquaculture, agriculture and urban expansion). This information can be useful for future research on mangroves, and to help delineating global planning strategies which consider the correct ecological and economic value of mangroves protecting them from further loss.O uso e a cobertura da Terra (UCT) são o aspeto comum que influencia várias questões ecológicas, degradações ambientais, mudanças na temperatura da superfície terrestre, mudanças hidrológicas, e de funções dos ecossistemas a nível regional e global. A investigação sobre os determinantes e progressão da mudança de UCT tem sido fundamental para o desenvolvimento de modelos que podem projetar e prever a extensão, o nível e os padrões futuros de UCT sob diferentes hipóteses de situações socioeconómicas, ecológicas e ambientais. A rápida e extensa urbanização e expansão urbana impulsionada pelo rápido crescimento populacional, levou ao encolhimento de terras agrícolas produtivas, impulsionando a mineração, a diminuição da permeabilidade da superfície e o surgimento de ilhas urbanas. Por outro lado, tem afetado negativamente a produção de serviços de ecossistemas. A mineração para extração de recursos pode levar a mudanças geológicas e ambientais devido a movimentos do solo, colisão com cavidades de mineração e deformação de aquíferos. As mudanças geológicas podem continuar numa área de mina recuperada, e os aquíferos deformados podem acarretar uma quebra de substratos e um aumento nos lençóis freáticos, causando a inundação na superfície. Consequentemente, uma área de mina recuperada pode sofrer um colapso à superfície, provocando o afundamento e a degradação da produtividade da vegetação. As mudanças na UCT, no crescimento urbano rápido, na temperatura da superfície terrestre e na dinâmica da vegetação devido ao aumento da população humana não afetam apenas a floresta interior e as zonas húmidas. Estas também influenciam diretamente as terras florestais costeiras, tais como mangais, pântanos e florestas ribeirinhas, ameaçando os serviços de ecossistemas. Os mangais proporcionam um aprovisionamento valioso (por exemplo, aquacultura, pesca, combustível, medicamentos, têxteis), a regulação (por exemplo, proteção da linha de costa, controlo da erosão, regulação do clima), os serviços de ecossistema de apoio (ciclo de nutrientes, habitats) e culturais (recreação e turismo) com um impacto importante no bem-estar humano. No entanto, a floresta de mangal é altamente ameaçada devido às mudanças climáticas e às atividades humanas que ignoram o valor ecológico e económico desses habitats, contribuindo para a sua degradação. Há um número crescente de estudos sobre distribuição, mudança e atividades de restabelecimento de mangais, denotando uma crescente atenção sobre o valor desses ecossistemas costeiros de zonas húmidas. A maioria desses estudos aborda os fatores de degradação dos mangais a nível regional ou local. No entanto, ainda não há avaliação suficiente sobre os determinantes da degradação dos mangais a nível global. Assim, a complexidade da degradação da paisagem interior e costeira deve ser abordada usando uma metodologia multidisciplinar. Portanto, esta dissertação teve, também, como objetivo avaliar o impacto do UCT associado à vegetação, temperatura e mudanças de zonas húmidas. Para compreender a relação entre a dinâmica da paisagem associada às atividades antrópicas a nível local e global, selecionámos quatro áreas de estudo, duas da Ásia, uma da Europa e outro estudo a nível global. No capítulo 2, empregamos a classificação Random Forest (RF) nas imagens Landsat de 1991, 2003 e 2016, e computamos seis métricas de paisagem para delinear a extensão das áreas urbanas numa área de influência suburbana de 10 km da cidade de Chennai, Tamil Nadu, Índia. O nível de crescimento urbano rápido foi quantificado usando a entropia de Renyi. Um modelo de UCT foi posteriormente usado para projetar a cobertura de terra para 2027. Uma expansão de 70,35% nas áreas urbanas foi observada principalmente para a periferia suburbana de Chennai entre 1991 e 2016. O valor de entropia do Renyi para 2016 foi de 0,9, exibindo uma duplicação do nível de crescimento urbano rápido quando comparado com 1991. Os valores das métricas espaciais indicam que as áreas urbanas existentes se tornaram mais densas e as terras agrícolas, florestas e terras particularmente áridas foram transformadas em assentamentos urbanos fragmentados. A previsão de cobertura da Terra para 2027 indica uma conversão de 13.670,33 ha (16,57% da paisagem total) de florestas e terras agrícolas existentes em áreas urbanas, com um aumento associado no valor de entropia para 1,7, indicando um tremendo nível de crescimento urbano rápido. O nosso estudo fornece métricas úteis para as autoridades de planeamento urbano para lidarem com as consequências socio-ecológicas do crescimento urbano rápido e para proteger os serviços de ecossistemas. No capítulo 3, estudamos a dinâmica da paisagem em Kirchheller Heide, Alemanha, que experimentou um movimento extensivo do solo devido à mineração, usando imagens Landsat entre 2013 e 2016. Uma técnica de classificação de imagem Random Forest foi aplicada para analisar dinâmicas de UCT e o crescimento das áreas de zonas húmidas foi avaliado usando uma Análise de Mistura Espectral. Também analisámos as mudanças na produtividade da vegetação usando um Índice de Vegetação por Diferença Normalizada (NDVI). Observámos um crescimento de 19,9% da área húmida em quatro anos, com um crescimento de 87,2% de dois principais corpos de água na área de mina recuperada. Valores de NDVI indicam que a produtividade de 66,5% da vegetação de Kirchheller Heide foi degradada devido a mudanças nos lençóis freáticos e inundações superficiais. Os resultados informam as autoridades de gestão ambiental e recuperação de mineração sobre os pontos de subsidência e áreas de mitigação prioritárias da degradação da superfície e da vegetação da terra em Kirchheller Heide. No capítulo 4, demonstramos a vantagem de fusionar imagens de múltiplos sensores para avaliações de mudanças de UCT, bem como para avaliar a permeabilidade, temperatura da superfície e a emergência do ilhas de calor numa cidade em rápido crescimento, Tirunelveli, Tamilnadu, Índia. As imagens IRS-LISSIII e Landsat-7 ETM + foram fusionadas para 2007 e 2017, e classificadas usando um algoritmo de Random Forest (RF). A permeabilidade de superfície e a temperatura foram então quantificadas usando-se o Índice de Vegetação Ajustada pelo Solo (SAVI) e o Índice de Temperatura da Superfície Terrestre (LST), respectivamente. Finalmente, avaliamos a relação entre SAVI e LST para Tirunelveli, bem como para cada zona de UCT, e também detetamos a emergência de pontos quentes de emergência usando uma métrica combinada de SAVI-LST. As nossas imagens fusionadas exibiram precisões de classificação mais altas, ou seja, valores globais do coeficiente kappa, do que as imagens não fusionadas. Observámos um aumento geral na cobertura de áreas urbanas (áreas de terrenos secos e construídas), e uma diminuição de áreas com vegetação (plantações e florestas) em Tirunelveli entre 2007 e 2017. Os valores de SAVI indicaram uma extensa diminuição na superfície de permeabilidade para Tirunelveli e também para quase todas as classes de UCT. Os valores de LST mostraram um aumento global da temperatura da superfície em Tirunelveli, sendo o maior aumento para as áreas urbanas entre 2007 e 2017. O LST também apresentou uma forte associação negativa com o SAVI. As áreas urbanas do Sudeste de Tirunelveli foram representadas como um potencial ponto quente, com uma chamada de atenção para a zona ribeirinha ocidental onde foi verificada a emergência de uma ilha de calor em 2017. Os nossos resultados fornecem métricas importantes sobre a permeabilidade da superfície, temperatura e monitoramento de ilhas de calor e informam as autoridades de planeamento sobre as vantagens da fusão de imagens de satélite. No capítulo 5, identificamos os fatores de degradação dos mangais a nível regional e global resultantes de décadas de dados de investigação (de 1981 até o presente) de variações climáticas (aumento do nível das águas do mar, tempestades, precipitação, eventos extremos de água e temperatura) e atividades humanas (poluição, extração de madeira, aquacultura, agricultura e expansão urbana). Estas informações podem ser úteis para investigações futuras sobre mangais e para ajudar a delinear estratégias de planeamento global que considerem o valor ecológico e económico dos mangais, protegendo-os de novas perdas

    Assessment of landslide susceptibility in Structurally Complex Formations by integration of different A-DInSAR techniques

    Get PDF
    Instability events are recurring phenomena in Southern Italy due to its geological history and tectonic-geomorphological evolution leading to the occurrence of several formations identified as Structurally Complex Formations (SCFs; Esu, 1977) in a territory mainly composed of densely populated areas also in mountainous and hilly regions. SCFs are clay-dominant terrains that, usually, give origin from very-slow to extremely-slow phenomena (Cruden and Varnes, 1996) with a long evolutionary history made up of multiple reactivations that makes difficult their identification, monitoring and susceptibility evaluation. The study has been carried out from point-wise (Bisaccia, Costa della Gaveta and Nerano cases) to wide areas (Palermo province case) where crops out SCFs as the Termini sandstones Formation (CARG, 2011), the Varicoloured Clays of Calaggio Formation (Ciaranfi et al., 1973), the Varicoloured Clays Unit (Mattioni et al., 2006) the Sicilide Unit (Vitale and Ciarcia, 2013 and references therein), the Numidian Flysch (Johansson et al., 1998) and the Corleone Calcarenites (Catalano R. et al., 2002). The aim of this thesis is to produce updated Landslide Inventory Maps and, whenever possible, Landslide Susceptibility Maps following a new approach during the landslide mapping and landslide monitoring stages. The Landslide Inventory Maps have taken into account the combination of geological, geomorphological, and stereoscopic surveys, as well as engineering geological investigations, namely conventional techniques. In addition innovative Advanced-Differential Interferometry Synthetic Aperture Radar (A-DInSAR) techniques have been used: the Coherent Pixels Technique – CPT (Mora et al., 2003; Blanco et al., 2008), the Intermittent Small BAseline Subset – ISBAS (Sowter et al., 2013) and the Ground-Based Synthetic Aperture Radar. Finally, the Weight of Evidence method (van Westen, 1993) has been chosen to generate the Landslide Susceptibility Maps only for the point-wise studies. In the case of Nerano (Province of Naples), the ISBAS analysis on ENVISAT images (for the period 2003-2010) has been carried out and compared with inclinometric and rainfall data. These have revealed several reactivations of a rotational slide + earth flow (Cruden and Varnes, 1996) that involves reworked clay olistostromes and limestone olistoliths inside the Termini sandstones Formation; even in recent years the landslide, despite many engineering works, has given evidence of a continuing activity. The results highlight a very slow movement in the detachment zone (<1 mm/yr), which assumes slightly higher values in the accumulation area (5 mm/yr). The Landslide Susceptibility Map confirms the high levels in the flow track and the accumulation area. In Bisaccia (Province of Avellino), a conglomeratic slab undergoes a Deep Seated Gravitational Slope Deformation (DSGSD; Pasuto and Soldati, 2013 and references therein) due to the bedrock consolidation, made of the Varicoloured Clays of Calaggio Formation. Here the CPT processing on ENVISAT images (covering the period between 2002 and 2010), displays a vertical displacement for the town center, suffering a progressively increasing velocity from the southern (4.2 mm/yr) to the northern (15.5 mm/yr) portion of the slab that localizes four different sectors. The pattern is confirmed from the building damage map. The landslides susceptibility reaches the highest values in the adjacent valleys and at the edges of each sector. Multiple datasets have been employed for the Costa della Gaveta case-study (Province of Potenza), these encompass: ENVISAT, TerraSAR-X and COSMO-SkyMed constellations together with Ground Based Synthetic Aperture Radar (GBSAR). The A-DInSAR data have been compared with stereoscopic analysis and the available rainfall and inclinometric data. The analysis allows for the identification of 16 landslides (complexes and earth flows; Cruden and Varnes, 1996) developed in the Varicoloured Clays Unit that show, according to all the existing instruments, velocities between 1.5 and 30 mm/yr. The western side of Costa della Gaveta slope is the portion which suffers the highest landslides susceptibility levels. In the Province of Palermo (northwestern Sicily) information deriving from A-DInSAR processing, specifically the ISBAS technique, have been focused on three subareas (Piana degli Albanesi, Marineo and Ventimiglia di Sicilia) for a total extension of 182 Km2 where standard A-DInSAR algorithms showed limitations due to the widespread presence of densely vegetated areas. The radar-detected landslides have been validated through field geomorphological mapping and stereoscopic analysis proving to be highly consistent especially with slow phenomena. The outcome has allowed to confirm 152 preexisting landslides, to detect 81 new events and to change 133 previously mapped landslides, modifying their typology, boundary and/or state of activity. The study demonstrates how a better knowledge of landslide development and their cause-effect mechanisms provided by new Earth Observation techniques is useful for Landslide Inventory and Susceptibility Maps. The research project has been carried out at the University of Naples "Federico II", including nine months (September 2013 – May 2014) spent in the United Kingdom, at the British Geological Survey under the supervision of Dr. Francesca Cigna and Dr. Jordan Colm and at the University of Nottingham (Department of Civil Engineering), under the supervision of Dr. Andrew Sowter where the ISBAS technique has been recently developed

    Rising groundwater levels in the Neapolitan area and its impacts on civil engineering structures, agricultural soils and archaeological sites

    Get PDF
    The rise of groundwater levels (GWLr) is a worldwide phenomenon with several consequences for urban and rural environment, cultural heritage and human health. In this thesis the phenomenon and its effects are analysed in two sectors of the Metropolitan City of Naples (southern Italy). These areas are the central sector of the eastern plain of Naples and the Cumae archaeological site in the western coastal sector of Phlegraean Fields. The triggering mechanism of GWLr is attributed to anthropogenic and natural causes, as the groundwater rebound (GR) process and the relative sea level rise due to volcano-tectonic subsidence of coastal areas. In the eastern plain of Naples, the interruption of pumping for public and private purposes occurred in 1990, leading to a progressive increase of piezometric levels with values up to 16.54 m. Since the end of 2000s, episodes of groundwater flooding (GF) have been registered on underground structures and agricultural soils. The historical piezometric levels and a comprehensive conceptual model of the aquifer have been reconstructed, as well as a first inventory of GF episodes and the hydrogeological controlling factors of GF occurrence have been detected. The economic consequences of GF have been analysed for an experimental building of study area, in which a sharp increment of expenditures has been registered. These costs include technical and legal support, construction and maintenance of GF mitigation measures and electricity consumption. Others GWLr-induced phenomena have been recognised, as ground vertical deformation and variations of the groundwater contamination. A relationship between GWLr and ground uplift emerges from the coupled analysis of piezometric and interferometric data, referred to the 1989-2013 period. The ground deformation occurs in response to the recovery of pore-pressure in the aquifer system, reaching an uplift magnitude up to 40-50 mm. In the 1989-2017 period, the piezometric levels and the concentrations of some natural contaminants in groundwater (Fe, Mn, fluorides) show opposite trends, conversely the same rising trend has been observed with nitrates. These different responses to piezometric rise are related to the lack of mobilization of deep fluids due to the interruption of pumping and to the reduction of the surficial contaminants' time travel caused by a shorter thickness of the vadose zone. In the western sector of Phlegraean Fields, the naturally triggered GWLr has caused GF in the Cumae archaeological site for the last decade, threatening safeguard and conservation of the archaeological heritage. From an integrated hydrogeological, hydrochemical and isotopic survey, a considerable contamination of groundwater resulted, due to the presence of rising highly mineralized fluids, mobilized during pumping periods, and others anthropogenic sources of contamination. Lastly, a novel methodology for groundwater flooding susceptibility (GFS) assessment has been developed by using machine learning techniques and tested in the eastern plain of Naples. Points of GF occurrence have been connected to environmental predisposing factors through Spatial Distribution Models' algorithms to estimate the most prone areas' distribution. Ensemble Models have been carried out to reduce the uncertainty associated with each algorithm and increase its reliability. Mapping of GFS has been realized by dividing occurrence probability values into five classes of susceptibility. Results show an optimal correspondence between GF points' location and the highest classes (93% of GF points falls into high and very high classes). The results of this research provide new knowledge on the GWLr phenomenon that has impacted a large territory of the Metropolitan City of Naples. The methodological approach used can be exported in others hydrogeological contexts to characterize GWLr and its impacts. In addition, the implemented GFS methodology represents a new tool to assist local government authorities, planners and water decision-makers in addressing the problems deriving from GF, and a first step for the evaluation of GF risk as required by Italian and European legislation
    corecore