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Abstract 

  
Landuse and Landcover (LULC) is the common aspect that influences several ecological 

issues, environmental degradations, changes in Land Surface Temperature (LST), 

hydrological changes and ecosystem function at regional to global level. Research on the 

drivers and progressions of LULC change has been key to developing models that can project 

and predict future LULC extent, level and patterns under different assumptions of 

socioeconomic, ecological and environmental situations. Rapid and extensive urbanization 

and Urban Sprawl (US), propelled by rapid population growth leads to the shrinkage of 

productive agricultural lands, boosting mining, decrease in surface permeability and the 

emergence of Urban Heat Islands (UHI), and in turn, adversely affects the provision of 

ecosystem services. Mining for resources extraction may lead to geological and associated 

environmental changes due to ground movements, collision with mining cavities, and 

deformation of aquifers. Geological changes may continue in a reclaimed mine area, and the 

deformed aquifers may entail a breakdown of substrates and an increase in ground water 

tables, which may cause surface area inundation. Consequently, a reclaimed mine area may 

experience surface area collapse, i.e., subsidence, and degradation of vegetation 

productivity. 

 

The greater changes in LULC, US, LST and vegetation dynamics due to increasing human 

population not only affects inland forest and wetland, it also directly influences coastal forest 

lands such as mangroves, peat swamps and riparian forest and threats to ecosystem services. 

Mangroves provide valuable provisioning (e.g. aquaculture, fisheries, fuel, medicine, 

textiles), regulation (e.g. shoreline protection, erosion control, climate regulation), 

supporting (nutrient cycling, nursery habitat), and cultural (recreation and tourism) 

ecosystem services with an important impact on human well-being. However, the mangrove 

forest is highly threatened due to climate changes, and human activities which ignore the 

ecological and economic value of these habitats, contributing to its degradation. There is an 

increasing number of studies about mangrove distribution, changes and re-establishment 

activities, denoting a growing attentiveness on the value of these coastal wetland ecosystems. 

Most of these studies address mangrove degradation drivers at regional or local levels. 
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However, there has not been yet enough assessment on the drivers of mangrove degradation 

at global level. Thus, complexity of inland and coastal landscape degradation should be 

addressed using multidisciplinary methodology and conditions. Therefore, this dissertation 

aimed to assess the impact of LULC associated with vegetation, temperature and wetland 

changes. To understand the relation among three different types of landscape changes 

associated with anthropogenic activities: Urbanization, Geological changes and Forest 

degradation at local to global level, we have selected thirty-three global regions.  

 

In chapter 2, We employed the Random Forest (RF) classification on Landsat imageries from 

1991, 2003, and 2016, and computed six landscape metrics to delineate the extent of urban 

areas within a 10km suburban buffer of Chennai city, Tamilnadu, India. The level of US was 

then quantified using Renyi’s entropy. A land change model was subsequently used to 

project land cover for 2027. A 70.35% expansion in urban areas was observed mainly towards 

the suburban periphery of Chennai between 1991 and 2016. The Renyi’s entropy value for 

year 2016 was 0.9, exhibiting a two-fold level of US when compared to 1991. The spatial 

metrics values indicate that the existing urban areas became denser and the suburban 

agricultural, forests and particularly barren lands were transformed into fragmented urban 

settlements. The forecasted land cover for 2027 indicates a conversion of 13,670.33 ha (16.57% 

of the total landscape) of existing forests and agricultural lands into urban areas with an 

associated increase in the entropy value to 1.7, indicating a tremendous level of US. Our 

study provides useful metrics for urban planning authorities to address the social-ecological 

consequences of US and to protect ecosystem services. 

 

In chapter 3, We studied landscape dynamics in Kirchheller Heide, Germany, which 

experienced extensive soil movement due to longwall mining without stowing, using 

Landsat imageries between 2013 and 2016. A Random Forest image classification technique 

was applied to analyse landuse and landcover dynamics, and the growth of wetland areas 

was assessed using a Spectral Mixture Analysis (SMA). We also analyzed the changes in 

vegetation productivity using a Normalized Difference Vegetation Index (NDVI). We 

observed a 19.9% growth of wetland area within four years, with 87.2% growth in the 

coverage of two major waterbodies in the reclaimed mine area. NDVI values indicate that 

the productivity of 66.5% of vegetation of the Kirchheller Heide was degraded due to 
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changes in ground water tables and surface flooding. Our results inform environmental 

management and mining reclamation authorities about the subsidence spots and priority 

mitigation areas from land surface and vegetation degradation in Kirchheller Heide. 

 

In chapter 4, We demonstrated the advantage of fusing imageries from multiple sensors for 

LULC change assessments as well as for assessing surface permeability and temperature and 

UHI emergence in a fast-growing city, i.e. Tirunelveli, Tamilnadu, India. IRS-LISSIII and 

Landsat-7 ETM+ imageries were fused for 2007 and 2017, and classified using a Rotation 

Forest (RF) algorithm. Surface permeability and temperature were then quantified using 

Soil-Adjusted Vegetation Index (SAVI) and Land Surface Temperature (LST) index, 

respectively. Finally, we assessed the relationship between SAVI and LST for entire 

Tirunelveli as well as for each LULC zone, and also detected UHI emergence hot spots using 

a SAVI-LST combined metric. Our fused images exhibited higher classification accuracies, 

i.e. overall kappa coefficient values, than non-fused images. We observed an overall increase 

in the coverage of urban (dry, real estate plots and built-up) areas, while a decrease for 

vegetated (cropland and forest) areas in Tirunelveli between 2007 and 2017. The SAVI values 

indicated an extensive decrease in surface permeability for Tirunelveli overall and also for 

almost all LULC zones. The LST values showed an overall increase of surface temperature 

in Tirunelveli with the highest increase for urban built-up areas between 2007 and 2017. LST 

also exhibited a strong negative association with SAVI. South-eastern built-up areas in 

Tirunelveli were depicted as a potential UHI hotspot, with a caution for the Western riparian 

zone for UHI emergence in 2017. Our results provide important metrics for surface 

permeability, temperature and UHI monitoring, and inform urban and zonal planning 

authorities about the advantages of satellite image fusion.  

 

In chapter 5, We identified mangrove degradation drivers at regional and global levels 

resulted from decades of research data (from 1981 to present) of climate variations (seal-level 

rising, storms, precipitation, extremely high water events and temperature), and human 

activities (pollution, wood extraction, aquaculture, agriculture and urban expansion). This 

information can be useful for future research on mangroves, and to help delineating global 

planning strategies which consider the correct ecological and economic value of mangroves 

protecting them from further loss. 
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Resumo (Abstract in Portuguese) 

 
O uso e a cobertura da Terra (UCT) são o aspeto comum que influencia várias questões 

ecológicas, degradações ambientais, mudanças na temperatura da superfície terrestre, 

mudanças hidrológicas, e de funções dos ecossistemas a nível regional e global. A 

investigação sobre os determinantes e progressão da mudança de UCT tem sido 

fundamental para o desenvolvimento de modelos que podem projetar e prever a extensão, 

o nível e os padrões futuros de UCT sob diferentes hipóteses de situações socioeconómicas, 

ecológicas e ambientais. A rápida e extensa urbanização e expansão urbana impulsionada 

pelo rápido crescimento populacional, levou ao encolhimento de terras agrícolas produtivas, 

impulsionando a mineração, a diminuição da permeabilidade da superfície e o surgimento 

de ilhas urbanas. Por outro lado, tem afetado negativamente a produção de serviços de 

ecossistemas. A mineração para extração de recursos pode levar a mudanças geológicas e 

ambientais devido a movimentos do solo, colisão com cavidades de mineração e deformação 

de aquíferos. As mudanças geológicas podem continuar numa área de mina recuperada, e 

os aquíferos deformados podem acarretar uma quebra de substratos e um aumento nos 

lençóis freáticos, causando a inundação na superfície. Consequentemente, uma área de mina 

recuperada pode sofrer um colapso à superfície, provocando o afundamento e a degradação 

da produtividade da vegetação. 

 

As mudanças na UCT, no crescimento urbano rápido, na temperatura da superfície terrestre 

e na dinâmica da vegetação devido ao aumento da população humana não afetam apenas a 

floresta interior e as zonas húmidas. Estas também influenciam diretamente as terras 

florestais costeiras, tais como mangais, pântanos e florestas ribeirinhas, ameaçando os 

serviços de ecossistemas. Os mangais proporcionam um aprovisionamento valioso (por 

exemplo, aquacultura, pesca, combustível, medicamentos, têxteis), a regulação (por 

exemplo, proteção da linha de costa, controlo da erosão, regulação do clima), os serviços de 

ecossistema de apoio (ciclo de nutrientes, habitats) e culturais (recreação e turismo) com um 

impacto importante no bem-estar humano. No entanto, a floresta de mangal é altamente 

ameaçada devido às mudanças climáticas e às atividades humanas que ignoram o valor 

ecológico e económico desses habitats, contribuindo para a sua degradação. Há um número 
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crescente de estudos sobre distribuição, mudança e atividades de restabelecimento de 

mangais, denotando uma crescente atenção sobre o valor desses ecossistemas costeiros de 

zonas húmidas. A maioria desses estudos aborda os fatores de degradação dos mangais a 

nível regional ou local. No entanto, ainda não há avaliação suficiente sobre os determinantes 

da degradação dos mangais a nível global. Assim, a complexidade da degradação da 

paisagem interior e costeira deve ser abordada usando uma metodologia multidisciplinar. 

Portanto, esta dissertação teve, também, como objetivo avaliar o impacto do UCT associado 

à vegetação, temperatura e mudanças de zonas húmidas. Para compreender a relação entre 

a dinâmica da paisagem associada às atividades antrópicas a nível local e global, 

selecionámos quatro áreas de estudo, duas da Ásia, uma da Europa e outro estudo a nível 

global. 

 

No capítulo 2, empregamos a classificação Random Forest (RF) nas imagens Landsat de 1991, 

2003 e 2016, e computamos seis métricas de paisagem para delinear a extensão das áreas 

urbanas numa área de influência suburbana de 10 km da cidade de Chennai, Tamil Nadu, 

Índia. O nível de crescimento urbano rápido foi quantificado usando a entropia de Renyi. 

Um modelo de UCT foi posteriormente usado para projetar a cobertura de terra para 2027. 

Uma expansão de 70,35% nas áreas urbanas foi observada principalmente para a periferia 

suburbana de Chennai entre 1991 e 2016. O valor de entropia do Renyi para 2016 foi de 0,9, 

exibindo uma duplicação do nível de crescimento urbano rápido quando comparado com 

1991. Os valores das métricas espaciais indicam que as áreas urbanas existentes se tornaram 

mais densas e as terras agrícolas, florestas e terras particularmente áridas foram 

transformadas em assentamentos urbanos fragmentados. A previsão de cobertura da Terra 

para 2027 indica uma conversão de 13.670,33 ha (16,57% da paisagem total) de florestas e 

terras agrícolas existentes em áreas urbanas, com um aumento associado no valor de 

entropia para 1,7, indicando um tremendo nível de crescimento urbano rápido. O nosso 

estudo fornece métricas úteis para as autoridades de planeamento urbano para lidarem com 

as consequências socio-ecológicas do crescimento urbano rápido e para proteger os serviços 

de ecossistemas. 
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No capítulo 3, estudamos a dinâmica da paisagem em Kirchheller Heide, Alemanha, que 

experimentou um movimento extensivo do solo devido à mineração, usando imagens 

Landsat entre 2013 e 2016. Uma técnica de classificação de imagem Random Forest foi aplicada 

para analisar dinâmicas de UCT e o crescimento das áreas de zonas húmidas foi avaliado 

usando uma Análise de Mistura Espectral. Também analisámos as mudanças na 

produtividade da vegetação usando um Índice de Vegetação por Diferença Normalizada 

(NDVI). Observámos um crescimento de 19,9% da área húmida em quatro anos, com um 

crescimento de 87,2% de dois principais corpos de água na área de mina recuperada. Valores 

de NDVI indicam que a produtividade de 66,5% da vegetação de Kirchheller Heide foi 

degradada devido a mudanças nos lençóis freáticos e inundações superficiais. Os resultados 

informam as autoridades de gestão ambiental e recuperação de mineração sobre os pontos 

de subsidência e áreas de mitigação prioritárias da degradação da superfície e da vegetação 

da terra em Kirchheller Heide. 

 

No capítulo 4, demonstramos a vantagem de fusionar imagens de múltiplos sensores para 

avaliações de mudanças de UCT, bem como para avaliar a permeabilidade, temperatura da 

superfície e a emergência do ilhas de calor numa cidade em rápido crescimento, Tirunelveli, 

Tamilnadu, Índia. As imagens IRS-LISSIII e Landsat-7 ETM + foram fusionadas para 2007 e 

2017, e classificadas usando um algoritmo de Random Forest (RF). A permeabilidade de 

superfície e a temperatura foram então quantificadas usando-se o Índice de Vegetação 

Ajustada pelo Solo (SAVI) e o Índice de Temperatura da Superfície Terrestre (LST), 

respectivamente. Finalmente, avaliamos a relação entre SAVI e LST para Tirunelveli, bem 

como para cada zona de UCT, e também detetamos a emergência de pontos quentes de 

emergência usando uma métrica combinada de SAVI-LST. As nossas imagens fusionadas 

exibiram precisões de classificação mais altas, ou seja, valores globais do coeficiente kappa, 

do que as imagens não fusionadas. Observámos um aumento geral na cobertura de áreas 

urbanas (áreas de terrenos secos e construídas), e uma diminuição de áreas com vegetação 

(plantações e florestas) em Tirunelveli entre 2007 e 2017. Os valores de SAVI indicaram uma 

extensa diminuição na superfície de permeabilidade para Tirunelveli e também para quase 

todas as classes de UCT. Os valores de LST mostraram um aumento global da temperatura 

da superfície em Tirunelveli, sendo o maior aumento para as áreas urbanas entre 2007 e 2017. 
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O LST também apresentou uma forte associação negativa com o SAVI. As áreas urbanas do 

Sudeste de Tirunelveli foram representadas como um potencial ponto quente, com uma 

chamada de atenção para a zona ribeirinha ocidental onde foi verificada a emergência de 

uma ilha de calor em 2017. Os nossos resultados fornecem métricas importantes sobre a 

permeabilidade da superfície, temperatura e monitoramento de ilhas de calor e informam as 

autoridades de planeamento sobre as vantagens da fusão de imagens de satélite. 

 

No capítulo 5, identificamos os fatores de degradação dos mangais a nível regional e global 

resultantes de décadas de dados de investigação (de 1981 até o presente) de variações 

climáticas (aumento do nível das águas do mar, tempestades, precipitação, eventos extremos 

de água e temperatura) e atividades humanas (poluição, extração de madeira, aquacultura, 

agricultura e expansão urbana). Estas informações podem ser úteis para investigações 

futuras sobre mangais e para ajudar a delinear estratégias de planeamento global que 

considerem o valor ecológico e económico dos mangais, protegendo-os de novas perdas. 
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CHAPTER 1  

Introduction 

 
1.1 Global Anthropogenic Landscape Changes   

Everything that has developed modern human society  is delivered by nature and, 

progressively, research determines the natural world’s incalculable significance to our health, 

wealth, food and security [1]. The worldwide economic movement eventually depends on 

different services provided by the environment and nature, assessed to be valued around 

US$125 trillion a year [1]. Mounting human population and exploding human consumption 

has substantially degraded 75% of Earth’s land areas [2]. These lands that have either become 

wastelands, are contaminated, or have been deforested and transformed to agricultural land 

are also the main driving force behind the unparalleled environmental transformation we are 

witnessing today, through  the augmented demand for water, land, and energy [2]. If this 

unsustainable growth continues, 95% of Earth’s productive land areas might become 

degraded by 2050, which will force millions of people to migrate, as food production will 

break down in many places [3]. 

 

Productive land degradation, loss of biodiversity, and climate alteration are diverse aspects 

of the same principal challenge: the increasingly hazardous influence of our choices on the 

health of our natural environment and ecosystem [2]. There are three different types of 

landscape changes that have extensive impacts on the global climate and are interconnected 

with ecological and biophysical processes: Urbanization, geological changes, and forest 

degradation [4–7].  The growing threat of climate change rapidly increases due to the decline 

of biodiversity by overexploitation of species, deforestation, agriculture, and land 

transformation [8]. Climate change is distressing in all parts of the world: disrupting 

economies, affecting lives, altering the dynamics of entire species on the earth [9]. The Paris 

agreement in 2015 disclosed the importance of the global participation to reduce the rise in 

global temperature by 2 degrees Celsius [10]. Greenhouse gases are found to be one of the 

major reasons for the rising temperature and climate change [11]. Research evidenced that the 

forests including wetland forests help to reduce the emission of greenhouse gases [12].  
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Researchers are developing sophisticated new tracking and systematic tools to match 

commodities and their supply chains to certain influences on the ecosystem. Improving the 

transparency around these complex relationships may help to stop global climate change and 

biodiversity loss [1,8,13,14]. By 2020, ensure the conservation, restoration and sustainable use 

of terrestrial and inland freshwater ecosystems and their services, in particular forests, 

wetlands, mountains, and drylands, in line with obligations under international Paris 

agreements [15]. In order to achieve these targets, it is important to find the existing 

techniques and understand the gaps in analyzing urbanization process, geological changes, 

and forest degradation, which can help in landscape and climate change related planning.  

 

1.2 Landscape Change and the Urbanization Process 

 

Urbanization is a dynamic and complex progression playing out over various scales of space 

and time. Globally, in 2008 the urban human population outstripped the non-rural (villages 

and towns) population for the first time in history and it is projected that 70% of the global 

population will live in an urban region by 2050, with more than 50% of them intense in Asia 

[16]. The United Nations (UN) also predicts that the urban population will broaden upsurge 

from 3.3 billion to 4.9 billion worldwide by 2030 [17]. Almost all future population growth 

will take place in cities of the developing countries like India, in which the proportion of 

urbanization and peri-urbanization is faster than in developed countries [18]. Apparently, the 

area of urban landscape around the world is increasing on average twofold as fast as their 

populaces, principally in India and China [18].  Almost one-quarter of the global population 

resides within 100km of the coast and dwells less than 10m above mean sea level [19]. Even 

though urban landscape cover is comparatively small in the ratio of the total Earth surface, 

urban landscape modifications drive global environmental change [20]. Increasing physical 

changes in urban landscape is predominantly categorized by peri-urbanization, the 

development whereby outskirts both distant or near from the center of cities are converted 

into cosmopolitan regions [21]. This drives the conversion of productive land, wetland, forest  

and pastures to urban land includes industrialization and encroachments [22].  

 

An understanding of the development of urbanization and peri-urbanization could support 

us in coping with evolving environmental problems associated with mounting urban living 
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[23]. Urban landscape changes have been investigated and examined from several social, 

cultural, economic and environmental perspective, extending from population density, to 

urban-rural disparities, to the loss of ecosystem and natural habitats, to bio-diversity, and 

accumulating emission of greenhouse gas [24–26]. The landscape changes in urban areas have 

extensive impacts on the global climate which are interconnected with ecological and 

biophysical processes [4]. The changes in climate induced desertification, deforestation, 

drought, and loss in biodiversity [27]. 

 

Urbanization in developing countries like India is predominantly taking place in an 

unplanned way, driving low-density growth and improvident use of environmental resources 

[28,29]. Thus, time series analysis on urban landscape changes has been considerably 

recognized as data needed in order to comprehend the interaction amongst humans, climate 

and environmental systems (Figure 1.1). 

 

Figure 1.1. Interaction amongst humans, climate and environmental systems in urban 

landscape 

 

In the last four decades, the development on Remote Sensing (RS)1 technologies has evolved 

intensely to comprise a suite of sensors at a broad range and high-resolution imaging scales 

with probable interest and significance to urban planners and land administrators [30]. RS 
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data has been extensively used to measure urban growth, Urban Sprawl (US)2, geological 

movement and vegetation degradation with majority research using one or more geospatial 

images to deliver single portraits of landscape changes between different epochs [31]. Easy 

accessible RS data, the lessening in the price of data and increased 1spectral, 2spatial, 

3radiometric and 4temporal resolution from 5spaceborne-satellites and 6airborne-platforms, 

have increased the impact of RS technology on urban management [31]. 

1. Remote Sensing (RS) — Remote sensing is the process of recording and monitoring earth 

objects or occurrence at far-away places. The sensors deployed in RS are not in physical 

contact with features on the earth while measuring its emitted and reflected radiation [32]. 

The RS process involves: i) Energy source of illumination, ii) Radiation energy interact with 

the atmosphere, iii) Radiation energy interact with the earth features/target, iv) Recording 

of energy by the sensor, v) Digital communication, reception, and processing, vi) 

Interpretation and investigation, vii) Applications. In RS, electromagnetic radiation acts as 

information carrier between a sensor at satellite or aircraft to the target, that collects 

information about features shape, size, and characteristics [32]. The two main categories of 

sensors that can be distinguished are active and passive sensors. The active sensor uses its 

own source of light energy, i.e., sensors emit radiation that is directed towards earth 

features to be researched. But in the case of a passive sensor relay, there are other sources 

of energy, e.g. sunlight [32]. RS facilitates to attain a wide-ranging area at a time, detect the 

area for a long dwelling time, receive time series information and enables to discover 

invisible information. This advantages support several applications, including vegetation 

monitoring, soil mapping, land cover change detection, disaster management, urban 

modelling, transport network analysis, ecosystem monitoring, and water resource 

management [32]. 

 

Current RS delivers combination and investigation of spatial data from ground-based, aerial 

and space-borne platforms, with an association to Geographic Information System (GIS)3 data 

layers and functions, and evolving urban modeling competencies [33]. This has made RS a 

valuable data source of urban landscape information.  

 

1Spectral resolution – Spectral resolution explains the ability of a sensor to define fine wavelength intervals [34]. 
2Spatial resolution – Spatial resolution defines how much detail in a photographic image is visible to the human eye [34]. 
3Radiometric resolution – Radiometric resolution of image defines the ability of the sensor to distinguish different grey-

scale values [35]. 
4Temporal resolution – Temporal resolution of image defines the exact same area at the same viewing angle a second time is 

equal to this period [35]. 
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2.  Urban Sprawl (US) — The term Urban Sprawl describes the growth of urban population 

away from central city area into low-density sub-urban. It also refers to the movement of a 

human population from highly dense and occupied metropolises and towns to low dense 

housing development over further and further rural land [33]. This state triggers 

distribution of a city and its suburbs over the nearest and surrounding rural and 

undeveloped land. This process is also called sub-urbanization and relates to the 

environmental and social significances associated with this expansion [33]. In the European 

continent, the term “peri-urbanization” is frequently used to explain similar dynamics and 

occurrences. Urban areas and their suburbs are now reaching overcrowding associated with 

increasing human population, which makes it urgent to research the causes and the 

consequences on the environment. Some of the foremost environmental glitches related to 

sprawl are the loss of productive land, deforestation, habitat loss, and reduction in 

ecosystem services [33].  

 

The available 7Landsat satellite imagery from more than three decades and advanced 

modeling technologies open up new opportunities to map the spatial-temporal information 

about urban landscape [36]. New computational methods are also developed to attain urban 

landscape features and its characteristics from RS data such as urban growth, US, informal 

settlements, Urban Heat Island (UHI)4, surface permeability and other urban geographic 

features [36].   

3. Geographic Information System (GIS) — A geographic information system is a 

computer-based system designed to digitally capture, collect, store, process, analyze, 

retrieve and manage large datasets that have location information on the earth surface 

elements [32]. The key word to this computer-system is Geography i.e., some part of the 

data used in this system is spatial. These advantages allow to map the spatial location and 

characteristics of real earth features and visualize the spatial connections among them, 

including political, topographic, physical, climatic, resource and network elements. And 

another part of GIS data is generally tabular known as attribute data that provides 

supplementary information about each of the earth spatial features [32]. These two 

combinations of data types enable to map the world features exact location, mapping 

quantities, mapping densities e.g. population densities, finding what is nearby, short route 

distance, mapping change (past, present and future condition of an area) [32].  

 

 
5Spaceborne satellite – The satellite which are operating or travelling in space to obtain images of the earth's surface and 

atmosphere are called space borne satellite [37].  
6Airborne platforms – Airborne platforms, downward or sideward looking sensors are mounted on an aircraft to obtain 

images of the earth's surface [38]. 

7Landsat – The Landsat program is the longest-running enterprise for acquisition of satellite imagery of Earth. There are 

several earth observation satellites launched includes Landsat 1, 2, 3, 4, 5, 6 and 7, and the recent one is Landsat 8 [36]. 
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While existing research and models are focused on the targeted urban landscape changes in 

the developed part of the world, developing nations under severe landscape changes in urban 

regions associated with US, UHI, and vegetation degradation are still lacking due to economic 

constraints, comprising of large areas and scarce availability of spatial data on urban 

landscape degradation [33,39,40].  The dangers to whole ecosystems are still unidentified 

[31,41,42]. Thus, the implementation of urban management frameworks in rapid urban 

growth countries naturally depends on the large-scale evaluation of human and 

environmental stress of landscapes by filling data gaps. A novel method in monitoring urban 

landscape changes accounting for data scarcity is thus required that can also find new 

methods or platforms to handle large scale data and use them to analyze urban landscape 

changes and prediction of urban landscape degradation. 

 

4. Urban Heat Island (UHI) — An Urban Heat Island is an urban area or town that is 

significantly warmer than its adjacent rural land due to anthropogenic activities. The main 

reason for the UHI consequence is from the changes in land surfaces for various human 

purposes [43]. The heat energy is produced from all the places that have heaps of human 

activity and lots of people.  There are many reasons were identified for UHIs, e.g. when 

homes, factories, industries, shops, and other buildings are constructed close together [43]. 

The fabrication materials used for building construction are typically good at shielding or 

holding in heat [43]. These materials make the areas around settlements warmer, and these 

changes in heat waves decrease air quality by swelling the production of pollutants such as 

ozone, and reduces water quality as warmer waters run into watercourses and stimulate 

pressure on their local species that have adapted to sustain only in the cooler aquatic 

ecosystem [43].  

 

1.3 Geological Changes Induced by Mining  

 

Urbanization and Industrialization, together with demographic development, are driving 

mining activities. Mining products play a vital role in the global economy and are a 

considerable source of the prospering economy of the country by providing the raw materials 

including metals and coal for a wide spectrum of industrial and domestic purposes [44]. 

However, mining is essential to the development of industry and prompting energetic 

economy, also responsible for variety of environmental impacts such as landscape damage, 

vegetation degradation, land desertification, soil erosion, surface subsidence, surface and   
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groundwater pollution, futile water-body existence, sinkholes formation, and ecosystem 

degradation [45–47]. These landscape changes may directly or indirectly cause vegetation 

failure in the mining area. This can lead to unhealthy vegetation extensively discharging 

carbon to the atmosphere, which deteriorates the overall carbon sink effect of the vegetation, 

including coastal and inland forest [48].  

 

Regular studies and examining of geological changes in mining areas including subsidence is 

always needed to prevent related disasters and to support sustainable development [49]. 

Several studies on mining activities only focus on the consequences resulting from the 

removal of minerals from the ground, which means they only observed the transformation 

and ground movement present and post mining activity [49,50].  

 

The extraction process and machines used to access the galleries produce irreversible 

variations of cohesion and compressing of the substrate above and kilometers around the 

mining surface even during and after the reclamation process [51,52]. These surface 

modifications result in changes in groundwater table dynamics, slow sinking of a ground 

surface and unexpected collapse of the ground [53]. The changes in ground water reach 

surfaces and form new waterbodies, these wetland changes directly affect the vegetation 

health, hydrological conditions, and ecological situation [54]. So, an extensive range of mining 

studies associated with landscape changes is always needed. The several subsidence 

surveying techniques such as electronic surveying and ground leveling is limited on high risk 

and vast area [49]. These types of field surveys are time consuming, expensive and labor-

intensive.  

 

It is significant to evaluate the health of vegetation and monitor the improvement of 

rehabilitation until the underground mines are refilled and reclaimed [55,56]. In addition to 

conventional field and laboratory measurements, which include sampling sites for analysis of 

soil surface condition, wetland changes, landscape integrity, vegetation health; RS and GIS 

have been widely used to understand and analyze the landcover changes relevant to 

hydrological dynamics and vegetation health and cover [57–59]. Particularly, these studies are 

useful for detecting transformation of forestland (deforestation), vegetation cover changes in  
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agriculture and farmland using several parameters. Similar to that, there are urban studies on 

nature and changes of hydrological dynamics and variations in flood dynamics derived from 

the landuse and landcover, maps of urbanization and watersheds models [60]. RS technology 

has intensive attention on monitoring the planted species and wetland during and after 

reclamation of mining areas [49]. Classifying and monitoring the condition of vegetation 

health on land surfaces in remote-sensing images is achieved by tonal signatures of vegetation 

on multispectral images [61]. Thus, time series analysis on mining landscape changes has been 

considerably recognized as data needed in order to comprehend the interaction amongst 

geological changes and environmental systems (Figure 1.2).  

 

 

Figure 1.2. Interaction amongst geological changes and environmental systems in mining 

landscape 

 
Comparatively, very few studies have systematically examined the implementation of RS and 

GIS to map and analyze the extent of post-mining surface through the different periods 
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[46,51,62]. The most successful studies on mining surface changes were obtained from LASER,  

SAR interferometry and LIDAR mapping [62–64]. But regional assessment of mining 

landscape degradation is inaccessible and dangers to whole ecosystems are still unidentified. 

Thus, the implementation of novel methods in monitoring mining landscape changes 

accounting for LIDAR, SAR and LASER data scarcity is thus required that can also find new 

methods to handle large scale data and use them to analyze geological changes in areas 

influenced by mining.  

 

1.4 Forest Landscape Degradation 

 

Forest degradation is a complex process in which the biological and natural prosperity of 

forests is permanently or temporarily weakened by some factor including climate and 

anthropogenic activities [65]. It has been estimated that globally some 2-billion-hectare area 

of forests are degraded with about half occurring in tropical countries [66]. While some 350 

million ha of former tropical forests have been converted to other land uses, the remaining 

forests, owing to poor logging practices, have become severely degraded and are not in a good 

condition to deliver timber and other ecological services anytime in the foreseeable future 

[65].  

 

Indeed, planted forests now make up 7 percent of the world’s forest area and contribute over 

40 percent of the global industrial wood and fiber supply [67]. To cut the forest degradation 

on a large scale, mangrove forests are the highly valued solutions for threatening climate 

changes [68]. They have valued at least 1,6 billion dollars in ecosystems services and sustain 

communities in many regions of the world by providing food, fire wood, shelter and 

sustainable tourism opportunities to local people [65]. Mangrove forests act as natural 

protection in case of storms and decrease erosion on coastal areas [69]. The huge volume of 

mangrove biomass disperses the energy of incoming waves and may greatly decrease the 

impact of hurricanes and tsunamis in coastal areas [70]. But global mangrove forest is 

undergoing an extensive deterioration of ecosystem health and loss of canopy cover has 

indicated that the degradation may be driven by:  
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(i) anthropogenic activities, e.g. in situ encroachment, coastal LULC changes, US, 

exploitation of forest resources, water withdrawal and pollution in upstreams [71],  

(ii) climatic and associated geological changes, e.g. increased salinity driven by 

increasing temperatures [72] and  

(iii) natural disasters, e.g. tropical cyclones. Among them, tropical cyclones entail 

disruptive damages, whereas climatic changes and anthropogenic activities cause 

incremental degradation of the global mangrove forest [73].  

The mangrove species in tropical environments are facing a major habitat degradation at an 

alarming rate, possibly even more rapidly than non-coastal tropical forests [74,75]. About 35% 

of the mangrove forest area has vanished during the past 20 years, and much of the leftovers 

is in a degraded state [76,77]. This is mainly due to climatic changes and human activities, 

which cause major alterations over the coastal ecosystem, mostly through deforestation, 

agriculture, aquaculture, and urban development [78–83]. Globally, there are many mangrove 

species identified at risk of extinction, which leads to a tremendous loss of several ecosystem 

functions, especially in Asia where over-exploitation of mangrove is reported [84,85].  

 
The monitoring of the distribution and changes in mangrove populations at global and 

regional scales has been carried out with Remote Sensing (RS) methods [86–90] using different 

types of data, varying from airborne data to space borne images. These studies enabled the 

investigation of the human interference on mangroves through the analysis of landuse 

landcover changes (LULCC), at regional and global scales [91]. Additionally, research has 

been employed to identify several drivers on a regional level, which is geographically limited 

to small case studies [92–98]. However, such LULCC studies do not allow to detect the drivers 

of mangrove degradation at the global scale [99]. Identifying the global drivers of mangrove 

habitat loss is still challenging [100]. Thus, time series analysis on coastal landscape changes 

has been considerably recognized as data needed in order to comprehend the interaction 

amongst forest changes and environmental systems (Figure 1.3). 
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Figure 1.3. Interaction amongst forest changes and environmental systems in coastal 

landscape 

 

1.5 Motivation  

The pace, magnitude and spatial spread of human modifications of the Earth’s land surface 

and its features are unprecedented. The modification of wetlands and vegetation are among 

the most important [101]. The key aspect of Earth system functioning and Ecosystem Services 

(ES)5 are directly influenced by the alteration of biophysical attributes of the earth’s surface 

(Landcover) and human purpose (Landuse) [102]. This influences the worldwide  bio-

diversity, local and regional climate and ecosystem transformation, as well as to global climate 

warming [41]. The fluctuations in climate drives degradation of wetlands, inland and coastal 

vegetation and sea-level rise [103]. 
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5.  Ecosystem Services (ES) — Humans and other living beings have benefitted from the 

nature and environment in different ways for several millennia. But the modern science 

theory developed in the 1970s as ‘Environmental services’ was only further researched and 

renamed ‘Ecosystem Services’ in the mid-1980s [104]. Ecosystem services (ES) are benefits 

that living being generously gain from the biological nature and its environment without 

disturbing properly functioning ecology [104]. These ecosystems incorporate forest, 

aquatic, grassland and agroecosystems. The ecosystem provides valuable provisioning (e.g. 

aquaculture, food, fisheries, fuel, clean water, medicine, and textiles), regulation (e.g. 

shoreline protection, erosion control, and climate regulation), supporting (nutrient cycling, 

oxygen production, and nursery habitat), and cultural (recreation and tourism) ecosystem 

services with an important impact on human well-being [104]. Nowadays the policy makers 

and environmental scientist focused on assessing ecosystem services to study how the loss 

on ES drives degradation of human health, climate, carbon sequestration, atmosphere and 

environment [104].  

Landuse and Landcover (LULC)6 change is a locally pervasive and globally important 

biological trend. In the last three centuries, worldwide nearly 5.6 million km2 of pasture, 

savanna and 1.2 million km2 of timberland and forest have been converted to other land-uses 

[105]. Concurrently agriculture and fertile land has swelled by 1.2 million km2 to uphold the 

food security of the world population [106]. The growth of human population as a driving 

force of biodiversity and environmental transformation because of the natural resources 

necessitated to endure the demand of 7.6 billion [107]. Much relative research offer statistical 

and spatial evidence which supports the claim that growth in population pushes to inland 

and coastal forest, and productive vegetation land clearance [31,101,108]. The destruction of 

90% of the productive land aims to alleviate the scarcity of urban land to accommodate city 

population [109].  

6.  Landuse and Landcover (LULC) — The term Landuse and Landcover are frequently 

being used interchangeably but their real meanings are reasonably distinct. Landuse 

signifies how the land serves, i.e., how humans exploit the land, and of socio-economic 

action [102]. The most general classes in landuse are settlement and agriculture. The 

application of landuse include both baseline mapping and succeeding monitoring, 

subsequently periodic information is a prerequisite to estimate and measure the present 

and past amount of land utilization [102]. The year to year study understanding will aid in 

developing policies to balance land allocation, inconsistent uses, and urban progressive 

pressures. Problems driving Landuse research involve urban encroachment, removal of 

productive land, deforestation and pollution [102].   
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Landcover signifies the surface cover on the earth, i.e., physical material of the land surface 

[110]. According to the FAO, there are 14 landcover classes including manmade structures, 

woody crops, tree-covered area, herbaceous crops, shrubs, barren land, grassland, multiple 

or layered crops, sparsely natural green areas, mangroves, brackish water vegetation, 

coastal and inland waterbodies, permanent snow and glaciers [110]. This landcover 

monitoring is important for global climate studies, environmental monitoring, natural 

resource management, and other development plannings [110].  

The destruction of productive land mostly proceeds in the outskirts of urban landscape to 

accommodate immigrants as well as to create employments by strengthening the industries 

[40]. This finally leads to US and the uneven development, through the conversion of 

suburban lands to built-up settlements [111]. US has influenced several environmental 

impacts, which include loss of productive urban and sub-urban land, aggregate soil, water 

and air pollution, abridged open spaces, greater energy and water consumption, damage to 

fragile land, cut-rate the diversity of species, ecosystem fragmentation, amputation of native 

vegetation, amplified runoff storm water and flooding [58,111,112]. In addition to that US 

triggers environmental injustice, whereby minority and poor immigrant groups suffer 

disproportionately from urban disinvestment or/and harmful land uses [105]. These results in 

removal/transfer of poor people and resources from inner city and inner-ring suburbs to more 

unsociable suburbs, and such handovers is implemented with unlawful control over land uses 

[33]. This directly threatens human health due to landfilling the toxic hazardous waste from 

city and inner suburbs to brownfields and least required areas, and draining the sewage and 

industrial waste into the watercourse environment [58].  

The consequences of LULC and US not only prime landscape degradation but also affect 

several aspects of local, regional, and global environments, including changes in climatic 

parameters such as land and surface temperature, humidity and precipitation [113]. A 

primary impact of upsurge of built-up area and anthropogenic activities of urbanization 

decreases agriculturally fertile land, forest area and coastal wetlands, and upsurge of barren 

and impermeable surface area [58]. This leads to the secondary impact of shrinkage in 

wetlands and rise in Land Surface Temperature (LST) and UHI  in and around cities [114]. So, 

the LULC data is needed in the analysis of environmental processes and associated problems 
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that must be understood if living conditions and standards are to be improved or maintained 

at sustainable conditions.  

Information on the rate of change in the use of land resources and its impacts on temperature 

and vegetation are essential for proper planning, management and regularizing the use of 

such resources [115]. For estimating these spatiotemporal changes on LULC, UHI and US, 

traditional methods of monitoring spatio-temporal changes are based on field study 

combined with large scale aerial photography, which is time consuming and expensive [116]. 

RS has become an important tool applicable to developing and understanding the global, 

physical processes affecting the earth [117]. Recent development in the use of satellite data 

helps to take advantage of increasing amounts of geographical data available in conjunction 

with GIS to assist in interpretation of  LULC, US, UHI and LST [118].  

LST is disturbed due to changes in LULC and vegetation changes [119]. It is measurable 

continuously over space using RS methods which, in contrast to the conventional non-

contiguous meteorological temperature measurements requires extrapolation [120]. Further 

RS enables the detection and analysis of the state of vegetation of the same area. However, 

with a few exceptions like LULC, such findings are scarce. The Soil Adjusted Vegetation Index 

(SAVI) and Normalized Differentiate Vegetation Index (NDVI)  provide a fine estimate of 

vegetative cover and vegetative health conditions [121]. It has been widely used as an early 

warming on food security and ecological conditions [106]. SAVI can therefore be used as an 

indicator of climate change, and especially the rate of increase in LST which is one of the major 

components of LULC [121]. 

Human population plausibility boosts the extraction, production and consumption of 

industrial and domestic raw materials from mining and other natural resources to fabricate 

garments and produce sustenance, lumber, fuels, metals and medicinal good [49].  

 

 

8European Union (EU) – EU is a political and economic union of 28 member states that are located primarily in Europe [55]. 
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Mining is an important source of raw materials and minerals, e.g., metals, salt, and coal, for 

industrial and domestic usage [55,64]. Countries in the European Union 8(EU) and Asia 

produce about 7% and 35% of the industrial and domestic commodities from mine-extracted 

resources respectively [53,122]. Mining industries also play a vital role in global to regional 

economies, e.g., in energy production and fuel supply [49]. 

Mining activities may lead to several geological changes, i.e., ground movements, collision 

with mining cavities, and deformation of aquifers. These changes may constitute an increase 

in the groundwater table, and thus a slow sinking of subsurface soils and an unexpected 

collapse, i.e., subsidence [55]. The extraction processes and machines used to access mine 

galleries may produce irreversible damage in soil cohesion and eventually compress soil 

substrates [47,49]. Consequently, groundwater may intrude the surface level, form new 

waterbodies, and cause inundation. This, in turn, leads to several adverse long-term 

environmental impacts from regional to global, such as vegetation degradation, soil erosion, 

flooding, sinkhole formation, and soil and water contamination [51,63], as well as to the 

damage of infrastructures [45].  

 

The geological changes and associated environmental impacts may continue even after 

reclamations, if mines are not properly backfilled [53]. The greater changes in LULC, US, LST 

and vegetation dynamics due to increasing human population not only affect inland forest 

and wetland, but also directly influences coastal forest lands such as mangroves, peat swamps 

and riparian forest and threatens to ecosystem services [55,71,90,123] (Figure 1.4).  Mangrove 

forests are among the greatest productive and biologically important ecosystems of the world 

because they provide significant and unique ecosystem properties and services to human 

society and marine and coastal systems [124]. Global mangrove forest is undergoing an 

extensive deterioration of ecosystem health and loss of canopy cover has indicated that the 

degradation may be driven anthropogenic activities or climate changes.  
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Figure 1.4. The relationship between increasing human population and different landscape 

changes and its consequences. 

 

LULC is the common aspect that influences several ecological issues, environmental 

degradations, changes in land-atmosphere temperature, hydrological changes and ecosystem 

function at the global level [125,126]. Research on the drivers and progressions of LULC 

change has been key to developing models that can project and predict future LULC extent, 

level and patterns under different assumptions of socioeconomic, ecological and 

environmental situations. Figure 1.5 shows the regional to global scale social-ecological 

impacts of anthropogenic landscape associated with different aspects, which threatens 

ecosystems and biodiversity. 

Thus, complexity of inland and coastal landscape degradation should be addressed using 

multidisciplinary methodology and conditions. Therefore, this dissertation aims to assess the 

impact of LULC associated with vegetation, temperature and wetland changes. To 

understand the relation among the landscape dynamics associated with anthropogenic 

activities at local to global level, we have selected thirty-three global study areas (Figure 1.5).  
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Figure 1.5. Regional to global scale social-ecological impacts of anthropogenic landscape 

associated with different aspects, which threats to ecosystem and biodiversity. 

1.6 Research Hypotheses  

Thus, it is fundamental to understand the connection between three different types of 

landscape changes: Urbanization, Geological changes and Forest degradation due to 

anthropogenic activities and climate changes. In order to understand the regional to global 

scale social-ecological impacts of anthropogenic landscape changes, this study used a RS 

approach. In this dissertation, there are four main motivating research questions (RQ):   

RQ1: Can we estimate the extent and level, and model future extent and impact of urban 

growth and urban sprawl for congested fast growing urban landscape remotely? 
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RQ2: Do we quantify vegetation productivity dynamics and potential subsidence spots in the 

mining-influenced landscape by estimating the growth of wetlands? 

RQ3: Do we identify the potential zones for Urban Heat Island emergence in fast growing 

sparse urban landscape associated with vegetation dynamics and Land Surface Temperature? 

RQ4: How do the anthropogenic activities associated with environmental changes in different 

landscape drive global mangrove forest degradation?  

1.7 Research objectives 

The objectives of this dissertation are to understand the impact of different types of landscape 

changes: Urbanization, Geological changes and Forest degradation. We are interested in the 

quantification of regional to global scale social-ecological impacts of anthropogenic landscape 

changes by connecting the different aspects, which threats to ecosystem and biodiversity. 

Thus, four studies have been conducted using small and large scale dataset covering thirty-

three global regions (Figure 1.6). The specific objectives are:   

1. To quantify the changes in US extent, level and patterns using entropy and landscape     

metrics and predict the US extent and level using a land change model; 

 

2. To examine LULC dynamics and identify the potential zones for UHI emergence using a 

SAVI-LST combined metric; 

 

3. To examine the short-term LULC dynamics in the reclaimed mine area and quantify the 

emergence and growth of wetlands in the mining-influenced area and thus identify 

potential subsidence spots, i.e., spots exhibiting abrupt growth of waterbodies;  

 

4. To examine the vegetation productivity dynamics as a surrogate of the ground water table 

fluctuation and ecological stress; 

 

  5. To identify the local and global drivers for degrading mangrove forest. 



Doctoral Programme in Information Management                                             Rajchandar Padmanaban 

          

 

 57 

 

Figure 1.6. Thirty-Three global regions covered by the studies in this thesis to understand 

the impact of different types of landscape changes: Urbanization, Geological changes and 

Forest degradation. 
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1.8 Outline of the dissertation  

We expect this dissertation will contribute to a better understanding of the impact and 

consequences of anthropogenic activities on different kinds of landscape changes: 

Urbanization, Geological changes and Forest degradation. Figure 1.7 shows the different 

topics covered in this dissertation. We developed four studies: an urban landscape dynamics 

associated with LULC and US in India, Asia context, a second identifying the consequences 

of mining associated with geological changes in Germany, Europe context, a third one relation 

between LULC and UHI emergence in growing towns, India circumstance and a fourth 

identifying the climatic and anthropogenic drivers caused mangrove degradation in global 

perspective. 

Chapter 1 presents a brief introduction and the motivation behind this dissertation, research 

hypothesis, research objective and methodology outline of the thesis. 

Chapter 2 addresses and quantifies the extent and level of US within a 10km suburban buffer 

of an Indian megacity, i.e., Chennai, Tamilnadu, using Landsat imageries from 1991, 2003 and 

2016. We quantified: (1) the changes in US extent between 1991 and 2016; (2) the US level and 

patterns using entropy and landscape metrics; and (3) predicted the US extent and level for 

2027 using a land change model. 

Chapter 3 identifies the subsidence zones and vegetation productivity degradation in a 

reclaimed mine area through the analyses of short-term landscape dynamics using RS and 

GIS techniques. We examined: (1) the short-term, i.e., during 4 years, LULC dynamics in the 

reclaimed mine area; (2) the emergence and growth of wetlands in the mining-influenced area 

and thus identify potential subsidence spots, i.e., spots exhibiting abrupt growth of 

waterbodies; (3) examine the vegetation productivity dynamics as a surrogate of the ground 

water table fluctuation and ecological stress. 
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Figure 1.7. Different topics covered in this dissertation. 

Chapter 4 quantified the LULC, SAVI and LST changes, as well as the relationship between 

SAVI and LST changes, in a fast-growing city, i.e. Tirunelveli, Tamilnadu, India, during a 11 

years period, i.e. between 2007 and 2017. We fused satellite imageries from two different 

sensors, i.e. IRS-LISSIII and Landsat-7 ETM+, to arrive at a combined high spatial resolution 

(23.5m of IRS P6-LISSIII) and high thermal band (30m of Landsat-7 ETM+) imageries for 

Tirunelveli. The objectives of our study are twofold: (1) To demonstrate the advantage of 

using fused imageries over non-fused single images through a comparison of image 

classification accuracies and (2) to identify the potential zones for UHI emergence using a 

SAVI-LST combined metric for Tirunelveli in 2017. 

In Chapter 5 we addressed up-to-date information on anthropogenic and environmental 

drivers of the mangrove degradation, and the causes of disturbance over its ecosystems. First 

we discussed the global spatial distribution and changes in the mangrove forest. Subsequently 

we discussed the different global and regional drivers on mangrove degradation.   

Chapter 6 presents the main research findings and conclusions corresponding to each 

research objective. The main contributions and innovation of methodical output of this 
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dissertation are deliberated followed by recommendations for future research to additional 

progress to the quantification of regional to global scale social-ecological impacts of 

anthropogenic landscape. 

1.9 Research Methodology  
 

The current dissertation is included in the GIS research body, and is centred on the landscape, 

wetland and vegetation spatial dynamics value literature. This study utilized RS spatial data 

to understand the local to global scale social-ecological impacts of anthropogenic landscapes 

(Figure 1.8). Since, RS techniques and GIS have shown clear advantages over conventional 

field monitoring and laboratory measurements for assessing long- to short-term landscape 

dynamics [15–17]. Particularly for large areas, where surveying using Global Positioning 

System (GPS), field surveying and ground levelling are time-consuming, expensive, and 

labor-intensive, RS and GIS provide prompt and efficient information on landscape changes, 

US and geological movement [4]. These techniques are also useful for detecting changes in 

vegetation productivity and cover and LST changes through LULC maps [17,18].  

Multispectral satellite images allow for detecting gradual as well as abrupt changes in 

landscapes [19]. However, besides widespread application in monitoring general landscape 

dynamics, the application of RS and GIS in monitoring and assessing anthropogenic effects 

on landscapes and environment and in associated climate changes and vegetation 

productivity dynamics is limited [10–14,20]. Although high-resolution Light Amplification by 

Stimulated Emission of Radiation (LASER), Interferometric Synthetic Aperture Radar 

(InSAR), and Light Detection and Ranging (LIDAR) mapping have been sparsely applied in 

small areas, environmental impacts in large areas have rarely been investigated using RS and 

GIS techniques [21–27]. 

We used Landsat Thematic Mapper (TM) images with a 30m spatial resolution covering the 

temporal scenes from 1991 and Enhanced Thematic Mapper (ETM+) images with a 30m spatial 

resolution covering the temporal scenes from 2003, 2007, 2013, 2014, 2015, 2016 and 2017 and 

Indian Remote Sensing Satellite Resourcesat-1 - Linear Imaging Self-Scanning Sensor -3 (IRS 

LISS-III) images with 23.5 m spatial resolutions from June 2007 and June 2017.  
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In order to handle the huge volume of spatial data to delineate LULC classifications and other 

indices calculation, we have introduced R programming with geospatial data throughout this 

research. We have applied Random Forest (RF) and Rotation Forest (ROF) machine learning 

algorithm on the pre-processed TM and ETM+ images for several LULC classification to 

analyze landscape dynamics of different study area. We also presented Renyi’s Entropy (RE) 

instead of common Shannon’s entropy method to estimate the level, pattern and dynamics of 

US. 

 

Figure 1.8. Schematic diagram of the work-flow of this dissertation 

The practices of fused and non-fused imageries are not new; though they have rarely been 

compared for image classification accuracies in complex urban settings. Moreover, 

application of fused imageries for identifying UHIs in fast growing cities in developing 

countries is inadequate and scarce. So, we demonstrated the advantage of using fused 

imageries over non-fused single images through a comparison of image classification 
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accuracies and to understand the UHI emergence associated with SAVI-LST. The several 

Indices calculation such as Spectral Mixture Analysis (SMA), Soil-Adjusted Vegetation Index 

(SAVI), Normalized Difference Vegetation Index (NDVI) and Land Surface Temperature 

(LST) used in this research were obtained in the R environment. We also identified mangrove 

degradation drivers at regional and global levels resulted from decades of research data to 

understand the local to global scale social-ecological impacts of anthropogenic landscapes 

includes forest degradation (Figure 1.5).  

1.10 Path of Research  

 
This dissertation folds the findings of several research studies, reported in this dissertation 

separately by four chapters, including international journals and conferences with double 

blind review process, indexed in Institute for Scientific Information (IISI), Web of Science 

(WOS). The beginning of the research started at the NOVAIMS, Portugal, an initial literature 

review and proposal of a thesis framed here.  

 

The chapter 2, Modelling Urban Sprawl Using Remotely Sensed Data was carried out with 

the help of delegates from the NOVA IMS – Universidade NOVA de Lisboa, Campus de 

Campolide, 1070-312, Lisbon, Portugal,  Stockholm Resilience Centre, Stockholm University, 

Kraftriket 2B, SE-104 05 Stockholm, Sweden, Institute for Geoinformatics (IFGI), Westfälische 

Wilhelms-Universität, Heisenbergstraße 2, 48149 Münster, Germany, School of Humanities 

and Social Sciences, Nanyang Technological University, 14 Nanyang Drive Singapore 637332 

and Tomsk State University, Lenin Avenue 36, 634050 Tomsk, Russia. The field survey and 

groud-truthing were carried out by visiting the study area during 2016-2017. Rajchandar 

Padmanaban (R.P)., and Dr. Pedro Cabral (P.C) have conceived the study. To maintain the 

high accuracy in classification, we employed third party to conduct accuracy assessment, thus 

Oraib Almegdadi (O.A)., and Wang Shunago (W.S) together with R.P conducted accuracy 

assessment and R.P conducted image processing and classification under the supervision of 

Avit.K.Bhowmik (A.K.B)., and P.C. R.P., and A.K.B. wrote the paper, P.C., Alexander 

Zamyatin (A.Z)., O.A., and W.S. revised the paper. The chapter 2 then published in the 

Entropy journal-ISSN 1099-4300 on 7th April, 2017. Entropy is an International and Peer-

reviewed open access journal from Molecular Diversity Preservation International and 
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Multidisciplinary Digital Publishing (MDPI), Switzerland with an impact factor 2.305 (2017). 

The chapter later issued in the Stockholm Resilience Centre Newsletter as an article named 

“Swallowing valuable land - Rapid urban expansion leaves India mega city Chennai without 

essential ecosystem services” on May 10, 2017.  

 

The chapter 3, A Remote Sensing approach to Environmental monitoring in a Reclaimed area 

was carried out during 2017 from NOVAIMS with the supervision of P.C and A.K.B. The field 

survey and groud-truthing carried out by visiting study area during 2017. R.P. and P.C. 

conceived the study. R.P. conducted image processing, classification accuracy assessment, 

and indices calculation under the supervision of A.K.B. and P.C. R.P. and A.K.B. wrote the 

paper, P.C. revised the paper. The chapter 3 was published in the International Journal of Geo-

Information (IJG) - ISSN 2220-9964 on 8th December, 2017. IJG is an International and Peer-

reviewed open access journal from the International Society for Photogrammetry and Remote 

Sensing (ISPRS), MDPI with an impact factor 1.723 (2017).  

 

The chapter 4, Satellite image fusion to detect changing surface permeability and emerging 

urban heat islands in a fast-growing city was carried out during 2018 from NOVAIMS, with 

the supervision of P.C and A.K.B. The field survey and groud-truthing carried out by visiting 

the study area during 2018. R.P. and P.C. conceived the study. R.P. conducted image 

processing, fusion, classification, accuracy assessment, and indices calculation under the 

supervision of A.K.B. and P.C. R.P. and A.K.B. wrote the paper. A.K.B. and P.C. revised the 

paper. The chapter 4 was then published in Public Library of Science one (PLOSone) journal 

on January, 2019. PLOSone is a multidisciplinary open access journal from the Public Library 

of Science, United States with an impact factor 2.766 (2017). The chapter later issued in the 

Hindu Newsletter, a national daily in India as an article named “Urbanization of Tirunelveli 

city might warm it up” on January 20, 2019. The following chapter later published in the 

Stockholm Resilience Centre Newsletter as an article named “Hot in the City” on February 1, 

2019. 

 

The chapter 5, What drives mangrove degradation? was carried out during 2018 from 

NOVAIMS with the supervision of P.C and A.K.B. R.P. wrote the paper. A.K.B. and P.C. 
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revised the paper. The paper was presented in the National conference on Recent Innovations 

in Engineering, Science and Management (RJEM) 2018 sponsored by Indian Space Research 

Organization and organized by Department of Civil Engineering, Dr. N.G.P Institute of 

Technology, Coimbatore on September 28, 2018. 
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“Will urban sprawl spread so far that most people lose all touch with nature? Will the day 

come when the only bird a typical American child ever sees is a canary in a pet shop window? 

When the only wild animal he knows is a rat – glimpsed on a night drive through some city 

slum? When the only tree he touches is the cleverly fabricated plastic evergreen that shades 

his gifts on Christmas morning”. 

                   Frank N. Ikard 
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Chapter 2  

Modelling Urban Sprawl Using Remotely Sensed Data 

 

2.1 Introduction  

 

A rapid global increase in human population has triggered the migration of rural poor 

towards the cities for a better standard of living, education and income [115]. By 2030 the 

world’s population is expected to increase by 72% with a 175% upsurge in urban areas 

(>100,000 inhabitants) [126]. The migrant rural poor often encroach the cheap suburban 

peripheries [61,127] and, consequently, the cities expand to accommodate immigrants as well 

as to create employments by intensification of industries [61]. This eventually leads to urban 

sprawl (US) and the uneven development, through the conversion of suburban lands to built-

up settlements [33].  

 

US entails adverse impacts on ecosystem services by diminishing agricultural lands, water 

bodies and forests [128]. US has also been associated with increasing risks from environmental 

externalities, such as energy crisis, biodiversity loss and floods [109]. Particularly, in 

developing countries like India, where 60% of the total population (approximately 70 million) 

are predicted to live in urban areas by 2030, US may entail disastrous impacts on ecosystem 

and biodiversity [16]. The quantification of the extent and level of US are thus essential for 

Indian cities to support sustainable planning, policies and efficient design of cities [42]. 

However, with a few exceptions, such studies are scarce for India [21,78,113,129–131]. 

 

Globally, remote sensing imageries and techniques showed considerable potentials for urban 

growth and US analysis [21,78,129–131]. Landuse and landcover classes (LULC) are important 

indicators for understanding the connections between environment and human activities 

[57,111], which can be efficiently obtained from satellite imageries through image 

classification. These are particularly useful for countries like India, where ground monitoring 

data are scarce and inaccessible [111]. Moreover, the availability of remotely sensed data from 

multiple dates enables to carry out studies on multitemporal urban modeling [57,101,111,132–
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138]. The extent of urban areas can be automatically identified from satellite imagery using 

machine learning algorithms [139]. Change detection analysis can be carried out through the 

use of transition matrices, which measure the changes between two LULC maps from 

different periods of time. They, in turn, help to quantify the extent of US through the 

differences between urban extent across multiple temporal periods [57]. In addition, the 

spatial and physical characteristics of urban features, urban patterns and their forms may be 

quantified using several landscape metrics [135]. These metrics can be derived from thematic 

maps computed from remotely sensed data [136]. Furthermore, Entropy values, includes 

Shannon’s Entropy, which are widely used to characterize and identify the degree of spatial 

dispersion and concentration of urban areas [22,140–146], can also be computed from 

remotely sensed images and effectively used to quantify the level of US [143]. 

 

In this study, we quantified the extent and level of US within a 10 km suburban buffer of an 

Indian megacity, i.e., Chennai, Tamilnadu, using Landsat imageries from 1991, 2003 and 2016. 

We quantified: (1) the changes in US extent between 1991 and 2016; (2) the US level and 

patterns using entropy and landscape metrics; and (3) predicted the US extent and level for 

2027 using a land change model. 

2.2 Study Area 

Chennai is the capital city of Tamilnadu state, India, and the gateway of south India (Figure 

2.1). The geographical location of Chennai spans between 13.04° N 80.17° E with an elevation 

between 6 m and 60 m above the mean sea level. It covers an area of about 42,600 ha [137]. 

This is India’s fourth largest city, with a total population of 8,233,084 according to the 2011 

India census [137], which has doubled during in the last two decades [131]. Chennai is also 

one of the principal business hubs of India with an unprecedented expansion of industries 

and infrastructures [147]. With several United Nations Educational, Scientific and Cultural 

Organization 9(UNESCO) world heritage sites, Chennai is one of the main tourist hubs [131].  

 

 

 
9UNESCO – UNESCO is an International collaboration agency of the United Nations 10(UN) based in Place de Fontenoy, 

Paris, purpose is to contribute to security and peace by through scientific, educational, and cultural reforms in order to spread 

world-wide respect for the rule of law, human rights, and justice [148].  
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The suburban periphery of the city represents a unique biodiversity hotspot. The coastal area 

(Marina beach) at the East represents a unique mangrove ecosystem [149], whereas the dense 

forest at the West represents a rare composition of tropical flora and fauna [150]. 

 

The city of Chennai is one of the fastest growing urban areas in the world during the last three 

decades [131]. This has resulted in an uncontrolled US with negative consequences regarding 

air pollution, housing scarcity, overcrowding, encroachment, slums, unregulated disposal of 

waste, increasing water scarcity and pollution [151]. The US has also lead to various adverse 

environmental impacts, such as higher energy exploitations, disturbance of species diversity, 

increasing flood risk, and ecosystem fragmentation [152]. 

 

The spatial trend of US in Chennai is towards two peripheral districts, i.e., Tiruvallur 

(Northwest Chennai) and Kanchipuram (Southwest Chennai) [21]. Consequently, we selected 

an area constituting 82,488.16 ha, which covers the geographic extent of the Chennai city and 

a 10 km suburban buffer, i.e., Tiruvallur and Kanchipuram districts, to study US. 

 

Figure 2.1. The study area covering Chennai city and 10 km sub-urban buffer. 

 

 

10United Nation (UN) – UN is an intergovernmental organization located at Manhattan, New York, United States of 

America purpose to uphold intercontinental amity, security and well-being among nations, accomplish world-wide 

cooperation and be a centre for harmonizing the action of nations [148]. 
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2.3 Materials and Methods 

2.3.1 Data and Pre-Processing 

We used Landsat Thematic Mapper 11(TM) and Enhanced Thematic Mapper plus 12(ETM+) 

images with a 30-m spatial resolution covering the temporal scenes from 1991, 2003, and 2016 

(Table 2.1). The images were freely downloaded from the Unites States Geological Survey 

13(USGS) portal [153] in 14GeoTIFF format and georeferenced using the World Geodetic System 

15(WGS) 1984 coordinate reference system. The data were initially geo-corrected and rectified, 

and cropped to the study area (Figure 2.1). The image pre-processing was performed using 

ENvironment for Visualizing Images 16(ENVI) software package (5.1) [154,155]. 

Table 2.1. A technical description of the Landsat TM and ETM+ imageries used in 

this study. 

Date Sensor Path/Row 

25 August 1991 Landsat-5 TM 142/51 

9 May 2003 Landsat-7 ETM+ 142/51 

4 July 2016 Landsat-7 ETM+ 142/51 

 

2.3.2 Landuse and Landcover (LULC) Mapping, and Accuracy Assessment 

We applied a Random Forest (RF) machine learning algorithm on the pre-processed TM and 

ETM+ images for LULC classification [156] (Figure 2.2). The RF algorithm in 17R involves the 

following steps: 

 

 

 

11Thematic Mapper (TM) – The Thematic Mapper is a progressive, multispectral scanning, Earth resources satellite sensor 

designed to attain higher spatial resolution, sharper spectral separation, enhanced geometric fidelity and greater radiometric 

accuracy in satellite images [157].  

 
12Enhanced Thematic Mapper Plus (ETM+) – The Enhanced Thematic Mapper Plus (ETM+) is multispectral scanning 

radiometer capable of providing high-resolution imaging information of the Earth’s surface. It detects spectrally-filtered 

radiation in the visible and near-infrared (VNIR), Short-wavelength infrared (SWIR), Long-wavelength Infrared (LWIR) and 

panchromatic bands (Black and White) [157]. 
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1. Create the stack for the available raster data; 

2. Create n-tree bootstrap samples from the raster data; 

3. Apply an unpruned classification grown for each of the bootstrap samples according to 

the Digital Number 18(DN) values of the raster data;  

4. Create N number of polygons according to the DN raster values; 

5. Assign different color bands to the several classes; 

6. Display the unsupervised classification. 

In a next step, the spatially-cohesive features of the classified images were homogenized using 

a segmentation algorithm and the regions with the maximum homogeneity were delineated 

[20]. The regions with five distinct LULC classes (Table 2.2) were delineated for 1991, 2003 

and 2016 by providing the minimum and maximum threshold values of pixels obtained from 

the RF, and the population thresholds for pixels corresponding to a LULC class [101]. We used 

the RF package in R for the classifications of LULC [158]. The classified image homogenization 

and delineation of LULC regions were performed using the ENVI (5.1) feature extraction tool 

[60,155]. 

Table 2.2. Landuse and landcover (LULC) nomenclature. 

No 
LULC 

Classes 
Land Uses Included in the Class 

1 Water bodies Rivers, reservoir, lakes, streams, open water, and ponds 

2 Urban Roads, airports, and built-up areas 

3 Agriculture  Agriculture lands and plantations  

4 Bare land 
Dry lands, non-irrigated lands, ready for construction, and real 

estate plots 

5 Vegetation Forests and shrubs 

 

 

13United States Geological Survey (USGS) – USGS is a fact-finding scientific organization of the Federal Government of 

the United states has four main science disciplines concerning geology, hydrology, biology and geography. USGS researchers 

publish their work and make the data available from the different satellite and airborne sensors in the web portal 

(https://earthexplorer.usgs.gov.) [159]. 

 

https://earthexplorer.usgs.gov.)/
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Figure 2.2. Flow-chart for image processing, classification and accuracy assessment. 

The accuracy of the image classification was assessed using the kappa coefficient 19(KC) 

[143,145]. We compared the classified images with the ground truth data obtained from 

20Google-Earth image of 2016 and the landuse and landcover map of 2005 from the                                 

Indian Geo-platform of Indian Space Research Organization 21(ISRO) - 22Bhuvan 

(http://bhuvan.nrsc.gov.in) [21]. Subsequently, a 23confusion-matrix and KC were calculated 

using 24eCognition-Developer (8.7) for each of the classified images of the three years [160]. 

 

14GeoTIFF – GeoTIFF is one of the image format public domain metadata (a set of data that defines and gives info about other 

data) standard which allows georeferencing (Georeferencing is the procedure of assigning real-world coordinates to each pixel 

of the raster) information to be embedded within a TIFF (Image) file [161]. 
 

15World Geodetic System (WGS) – World Geodetic System a reference frame for the earth for use in geodesy and navigation. 

It includes a standard coordinate system for the world [162]. 

16ENvironment for Visualizing Images (ENVI) –  ENVI is image analysis software tool is used by remote sensing scientists, 

GIS specialists, and image analysts to obtain meaningful information from satellite or aerial imagery to make better decisions 

[163]. 

http://bhuvan.nrsc.gov.in)/
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2.3.3 Quantification of Extent and Level of Urban Sprawl (US)  

2.3.3.1 Extent of US 

We calculated six landscape metrics to quantify the extent of US between 1991 and 2027 in the 

Chennai city (see Table 2.3 for details on the landscape metrics) [160]. These metrics quantify 

the spatial characteristics and pattern of the classified LULC areas using three levels, i.e., the 

patch level, class-area level and landscape level. The landscape metrics were computed in the 

freely available 25FRAGSTATS software package (4.2) [164]. 

Table 2.3. Description and formulae for spatial metrics computation.  

Landscape 

Metrics 
Formula Description Range 

Class Area 

Metrics 

(CA) 

𝐶𝐴 = ∑ 𝑎𝑖𝑗 (
1

10000
)

𝑛

𝑗=1

 

aij = area in m2 of patch ij. 

Total amount of 

class area in the 

landscape 

CA > 0, without 

limit 

Number of 

Patches 

(NP) 

𝑁𝑃 = 𝑛𝑖  

ni = total number of patches in 

the area of patch type i (class). 

Number of patches 

of landscape 

classes (Built up 

and non-built-up) 

NP ≥ 1, without 

limit 

Largest 

patch Index 

(LPI) 

𝐿𝑃𝐼 =
𝑚𝑎𝑥𝑗=1 

𝑛 (𝑎𝑗𝑖 )

𝐴
(100) 

aij = area in m2 of patch ij and A = 

landscape area in total (m2) 

Percentage of the 

landscape included 

by the largest patch 

0 < LPI ≤ 100 

Clumpiness 

Index 

(CLUMPY) 

𝐶𝑙𝑢𝑚𝑝𝑦 = [(𝐺𝑖 − 𝑃𝑖  )/𝑃𝑖 𝑓𝑜𝑟 𝐺𝑖 <

 𝑃𝑖& 𝑃𝑖< 5, else 

𝐺𝑖 − 𝑃𝑖  / 1 −  𝑃𝐼  ] 

gii = number of like joins among 

pixels of patch type, i based 

double-count process and gik = 

number of like joins among 

pixels of patch type, k based 

double-count process, Pi = 

Measure the 

clumpiness of 

patches in urban 

areas 

−1 ≤ CLUMPY ≤ 1 
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amount of the landscape 

occupied by patch type 

Fractal 

Index 

Distribution 

(FRAC_A) 

𝐴𝑀 = ∑[𝑥𝑖𝑗 (𝑎𝑖𝑗

𝑛

𝑗=1

 /  ∑ 𝑎𝑖𝑗

𝑛

𝑗=1

) ] 

aij = area in m2 of patch ij. 

To measure area 

weighted mean 

patch fractal 

dimension 

1 ≤ FRAC_AM ≤ 2 

Contagion 

𝐶𝑜𝑛𝑡𝑎𝑔

= [1

+ ∑ ∑[(𝑝𝑖 ){𝑔𝑖𝑘

𝑚

𝑘=1

𝑚

𝑖=1

/ ∑ 𝑔𝑖𝑘}{ln (𝑝𝑖)

𝑚

𝑘=1

[𝑔𝑖𝑘

/ ∑ 𝑔𝑖𝑘]/2 ln(𝑚)]100

𝑚

𝑘=1

 

pi = amount of the landscape 

employed by patch type (i) class 

and gik = number of like joins 

among pixels of patch type, i 

and k based double-count 

process,  

m = number of patch classes 

(types) existing in the landscape 

Defines the 

heterogeneity of a 

landscape 

Percent < Contagion 

≤ 100 
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2.3.3.2 Level of US 

Renyi’s Entropy (RE) [165,166] was calculated to estimate the level of US between 1991 and 

2016. First, we aggregated the classified LULC map into two classes, i.e., built-up and non-

built-up. Then, the total number of patches (N) for the built-up and non-built-up areas and 

their corresponding perimeters (Pi) were computed. Finally, a H order entropy value H as 

calculated using (1), where  ≥ 0 and  ≠ 0: 

 𝐻𝛼 =
1

1−𝛼
𝑙𝑛 ∑ 𝑃𝑖

𝛼𝑁
𝑖=1   (1) 

The RE values (H) varied from 0 (indicating very dense distribution of aggregated classes) 

to 1 (indicating dispersed distribution across the study area) [166]. The changes in RE values 

for the built-up patches during three decades, i.e., 1991–2016, represented the change in the 

US level (i.e., dispersion of urban areas) for the Chennai city, Tamilnadu. 

2.3.4 Prediction of Urban Extent for 2027 

The prediction of future urban extent was performed using the Land Change Modeler 

available in the 26TerrSet (formerly IDRISI) software (18.3) [103]. The land change model was 

calibrated to predict the extent of Chennai for 2016 using a four-step procedure: (1) 

quantification of urban change between 1991 and 2003; (2) transition modelling between 1991 

and 2003; (3) urban extent prediction for 2016; and (4) validation using the classified LULC 

for 2016 as reference data (Figure 2.3).  

 

 

 

 

 

17R – R is a programming language and free software environment for statistical computing and graphics supported by the R 

Foundation for Statistical Computing. The R language is widely used among statisticians and spatial and non-spatial data 

miners for developing statistical software, spatial model, forecasting and data analysis [167]. 

18Digital number (DN) – Digital number in remote sensing arrangements, a variable assigned to a pixel, regularly in the 

form of a binary integer in the range of 0–255 (i.e. a byte). A single pixel may have several digital number variables 

corresponding to different bands recorded in the satellite or aiborne images [168]. 
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Figure 2.3. Methodology applied for the prediction of urban sprawl extent and level 

for 2027.  

LULC change analysis was conducted using the LULC maps for 1991 and 2003 as primary 

inputs [103]. The land changes between 1991 and 2003 were quantified and the losses and 

gains among the LULC classes were obtained. 

 

19Kappa coefficient - Kappa coefficient in Remote Sensing is frequently used to test interrater reliability (accuracy) of two 

or more raster data set [169]. 

20Google Earth – Google earth is a digital application that renders a 3Dimension (3D) representation of Earth based 

on satellite imagery[170]. 

21Indian Space Research Organisation (ISRO) – The Indian Space Research Organisation is the space agency of 

the Government of India mission of bringing space to the service of the common man, to the service of the Nation. ISRO 

provides various applications and services: broadcasting, weather forecasting, communications, disaster management, and 

navigation [171]. 

. 
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Then, a change map between 1991 and 2003 using a multilayer perception neural network 

algorithm was computed. This included constraints and factors used in the urban extent 

prediction. Next, a change map was generated for the period 2003–2016 using the computed 

changes between 1991 and 2003. Subsequently, a change probability grid for the 2003–2016 

period was obtained. In a final step, we calibrated the urban extent prediction model (UEPM) 

using a Markov Chain, which combined the change map with a change probability grid for 

the period 2003–2016.  

 

The urban extent of Chennai was predicted for 2016 applying the UEPM. The predicted urban 

extent was compared with observed LULC map for 2016 using Kappa variations, i.e., Klocation 

and Kquantity [172–176]. If acceptable values for these kappa variations are obtained, then we 

proceed to 2027 simulation [177]. The calibrated and validated UEPM was applied to predict 

the urban extent of Chennai for 2027 using the urban extent for 2016 as baseline and 

combining the change map and change probability grid between 2016 and 2027 computed 

using the procedure described above. The year 2027 was selected for our prediction because 

we wanted to use a 10-year horizon for this study. The transition probabilities used in the 

modeling process were obtained using the period 1991–2003 which is very similar to the 

period from 2016–2027 used in the prediction. 

 

 

 

 

 

22Bhuvan – Bhuvan, is a web mapping service provided by ISRO which permits researches and students to explore a 2 

Dimension (2D) and 3 Dimension (3D) representation of the surface of the Earth. It also provides free satellite data, Landuse 

and Landcover map of India, climate and environment data products, disaster management support and services, ocean 

services and online map creation platform [178]. 

23Confusion matrix –  Confusion matrix is a table that is regularly used to define the performance of a classification model 

(LULC) on a set of test data for which the true values are known [179]. 

24eCognition Developer – eCognition is the image analysis software tool used in the geology, geography and earth science 

discipline to develop rules sets for the programmed and automatic analysis of remote sensing data [180].  

 



Doctoral Programme in Information Management                                             Rajchandar Padmanaban 
 

          

 

 78 

2.4 Results and Discussion 

2.4.1 The Extent and Patterns of US  between 1991 and 2016 

The LULC maps of three different periods show that the study area has experienced a 

remarkable land cover change between 1991 and 2016 (Figure 2.4). From 1991 to 2016 the 

growth of urban, i.e., built-up, areas were more than three-fold, i.e., an increase of about 

37,919.81 ha (Table 2.4). This transformation influenced several classes, especially the 

agriculture and vegetation land, which decreased by about 3802.70 ha (4.61%) and 9923.32 ha 

(12.03%), respectively.  

 

The bare land exhibited the highest amount of decrease, i.e., 30.3% and thus indicate that the 

growth of urban areas were accommodated mostly by diminishing bare lands. The water 

bodies increased by 1451.79 ha between 1991 and 2003, but decreased slightly between 2003 

and 2016 (about 651.65 ha).  

 

These results confirm that the urban areas in Chennai are extending toward the peripheral 

region of Kanchipuram (South Chennai) and to the Thiruvalluvar (North Chennai) district 

area, and thus a substantial US. Although, the US was mostly accommodated by the loss of 

bare lands, this growth has greatly impacted the landscapes with the loss of valuable 

vegetation and agriculture lands.  

 

 

 

 

 

 

 

25FRAGSTATS – FRAGSTATS is a computer software program designed to compute a wide variety of landscape metrics for 

categorical map patterns [164]. 
26TerrSet –  TerrSet (formerly IDRISI) is an incorporated remote sensing and geographic information system (GIS) 

software developed by Clark Labs at Clark University for the investigation and presentation of digital geospatial information 

for efficient and responsible decision making for equitable resource allocation, sustainable resource development and 

environmental management [181]. 
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Figure 2.4. Landuse and landcover (LULC) maps for 1991, 2003, and 2016 in 

Chennai.  
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Table 2.4. Landscape indices, entropy values and their changes in percent.  

Metrics 

Year Changes in Urban Structure  

1991 2003 2016 
% = 1991–

2003 

% = 2003–

2016 

% = 1991–

2016 

CA 
20,110.6

1 

39,965.5

1 

58,030.4

2 
98.72 45.20 188.5 

NP 289 354 477 22.49 34.74 65 

LPI 2.14 4.87 6.78 127.57 39.21 216.8 

Clumpy −1 0.6 0.8 160 33.33 180 

FRAC_A

M 
1.12 1.27 1.83 13.39 44.09 63.3 

CONTAG 72.32 68.43 71.24 6.66 4.10 1.4 

Renyi’s 0.4 0.5 0.9 24.9 80 125 

The Chennai coastline has also experienced a remarkable urban growth between 1991 and 

2016 (Figure 2.4). Almost all the coastline of the study region was covered by urban 

settlements by 2016 by an alarming rate of conversion of the mangrove forest area (Figure 2.4). 

These results are in line with [182,183], which demonstrated negatively impacted mangrove 

forests and the Savukku plantations in the periphery of Chennai. This vegetation provides 

important ecosystem services, such as protection from Tsunami, cyclones, and other 

ecological disasters [77]. As a result, we anticipate environmental externalities and 

biodiversity loss for Chennai, such as habitat loss for native species including the Great Indian 

Horned Owl, spotted deer, mongooses, bonnet monkeys, and golden jackals [151].  

Additionally, the degradation of forest may lead to an increase in city temperature and air 

pollution levels [120,184], e.g., recent studies have revealed Chennai as one of the highly air 

polluted cities in India [185]. 

The obtained KC for the LULC maps of 1991, 2003, and 2016 were 0.92, 0.97, and 0.92, respectively. 

These values indicate a high accuracy level for landuse and landcover classification [39,101]. 



Doctoral Programme in Information Management                                             Rajchandar Padmanaban 
 

          

 

 81 

The landscape metrics indicate that the urban class area (CA) has increased by 98.72% and 

45.20% between 1991 and 2003, and 2003 and 2016, respectively (Table 2.4). The NP for urban 

settlements has shown an associated increase of 22.49% and 37.74% between 1991 and 2003 

and 2003 and 2016, respectively. These values indicate a high level of land fragmentation.  

The LPI increased by 127% between 1991 and 2003. This high value due to the large urban 

patches indicates a compact urban growth for the centre, but fragmented and dispersed urban 

growth in the fringe areas, i.e., US. LPI continued to increase from 2003 to 2016 (39.21%), 

confirming the continuation of US process for Chennai. 

The CLUMPY in 1991 was −1, showing a maximally disaggregated urban patch. However, 

these values were 0.6 and 0.8 in 2003 and 2016, respectively, indicating an aggregation or 

clumpiness of urban patches. Likewise, FRAC_AM increased between 1991 and 2003 as a 

result of contained urban growth with reasonable shape complexity (the values for this metric 

were marginally greater than 1). Nevertheless, the FRAC_AM value between 2003 and 2016 

was 1.83 (increased by 44.09%), indicating that the landscape had a higher range of urban 

growth and more dispersed urban sprawl than the 1991–2003 period. The decrease in the 

CONTAG value between 1991 and 2003 indicates a high fragmentation of the landscape. 

However, this value increased slightly between 2003 and 2016 (4.10%) showing that the 

fragmented urban area has become denser than the 1991–2003 period.  

2.4.2 Change in US Level  

The Renyi’s entropy value for the Chennai was 0.4 in 1991, indicating rather moderately 

aggregated urban settlements, i.e., negligible US level. However, in 2003 the entropy value 

reached the threshold value of 0.5, indicating the initiation of dispersion, i.e., US, in Chennai 

[143,174]. In 2016, the entropy value was 0.9, which indicates a very high level of US in the 

periphery of Chennai. This high level of US in 2016 may directly relate to the haphazard 

encroachment of the urban fringe. This, in further, relates to the rapid population growth and 

land scarcity in the city centre, which were claimed to be the major reasons behind the US in 

the peripheral districts of Chennai [128]. 
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The high level of US adds strain to urban infrastructure, such as sewage water disposal and 

waste management, and directly lead to urban water and soil pollution [78]. Recent studies 

showed that the threat of pollution of the Cooum river [78] and the coastal zones in Chennai 

have been increased towards 2016 due to the uncontrolled discharge of untreated sewage 

wastes from domestic and commercial activities, which may be linked to the high level of US 

observed in our study [146]. Moreover, the high level of US hampers waste management, e.g., 

0.71 kg of daily garbage per capita in Chennai are currently incinerated at Perungudi and 

Kodungaiyu dump yards [146]. This creates severe soil and air pollution, and causes several 

health hazards, including respiratory disorders and cancers, for the city residents [147]. 

2.4.3 US Extent and Level Prediction for 2027 

The obtained Klocation and Kquantity for comparison between the modelled and classified LULC for 

2016 were 84% and 81%, respectively. These values indicate a high level of accuracy for the 

calibrated UEPM for urban extent prediction for 2016 in Chennai [22,175,176,186]. 

 

The predicted LULC for 2027 is shown in Figure 2.5. It shows an increase in the projected 

urban area of 12,805.58 ha (22.06%) from 2016 (Table 2.5). The vegetation and agriculture 

classes are predicted to decrease to 3961.66 ha (66.29%) and 701.35 ha (87.44%), respectively. 

This is associated with a transition of 4883.09 ha agricultural lands and 7792.9 ha vegetation 

areas to urban areas, between 2016 and 2027 (Figure 2.6 and Table 2.5). The increase of bare 

land i.e., 1570.12 ha (57.31%) will occur as a consequence of the transitions from vegetation, 

water bodies, and agriculture land (Table 2.5). Thus, the bare land will increase at the expense 

of vegetation and agricultural lands and will potentially lead to the loss of important 

ecosystem services. 
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Figure 2.5. Simulated LULC map for the year 2027. 

Table 2.5. Comparison of the LULC areas of three study periods, i.e., 1991, 2003 and 

2016, with the predicted LULC areas of Chennai for 2027. 

Land-Use 

Class 
1991 2003 2016 2027 

Forecasted LULC in 

2027 

ha % 

Built-up/urban 20,110.61 39,965.51 58,030.42 70,836.76 12,805.58 22.06 

Agriculture 9387.15 22,857.47 5584.44 701.35 −4883.09 −87.44 

Vegetation 21,677.89 9296.41 11,754.56 3961.66 −7792.9 −66.29 

Water bodies 5320.48 6772.27 6120.62 5420.62 −700 −11.43 

Bare land 25,992.02 3596.48 998.10 1570.12 572.02 57.31 

Total 82,488.16 82,488.16 82,488.16 82,488.16 - - 
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The urban areas covered 70.35% of the total landscape in 2016, which is predicted to increase 

to 85.87% in 2027 (Figure 2.6). The Renyi’s entropy value of the predicted urban area in 2027 

is expected to be 1.7, which is above the range value of 1 [143], indicating a tremendous level 

of US. Overall, the extent and level of US for the coming 12 years is expected to increase at an 

alarming rate and cause degradation of urban ecosystem services. 

 

Figure 2.6. Urban sprawl, i.e., changes in urban extents between 1991–2027.  

2.5 Concluding Remarks 

We found fragmented urban growth in the outskirts of Chennai city, with the transformation 

of vegetation cover and agriculture land into built-up settlements. This alarming extent and 

level of US will have adverse impacts on the natural resources and land of Chennai. The 

combined application of geographic information systems, remote sensing, urban change 

modelling, landscape metrics and entropy measures proved to be a useful and efficient 
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approach for our assessment and modelling US for the Chennai city. Consequently, this study 

contributes with indicators and metrics to monitor this US in Chennai. It also provides 

relevant information for sustainable urban growth and efficient urban planning as well as for 

mitigation of environmental impacts in Chennai. To conclude, our study provides 

quantitative measures for urban planning and management authorities for mitigating social-

ecological consequences of US and preventing loss of urban ecosystem services. 
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A Remote Sensing Approach to Environmental 

Monitoring in a Reclaimed Mine Area 
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“The mining industry might make wealth and power for a few men and women, but the 

many would always be smashed and battered beneath its giant treads”. 

                         Katharine Susannah Prichard  
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Chapter 3  

A Remote Sensing Approach to Environmental Monitoring in a Reclaimed 

Mine Area 

 

3.1 Introduction 

Mining is an important source of raw materials and minerals, e.g., metals, salt, and coal, for 

industrial and domestic usage [44,53]. Countries in the European Union I(EU) produce about 

7% of the industrial and domestic commodities from mine-extracted resources [53]. Mining 

industries also play a vital role in global to regional economies, e.g., in energy production and 

fuel supply [44]. 

 

Mining activities may lead to several geological changes, i.e., ground movements, collision 

with mining cavities, and deformation of aquifers (Figure 3.1). These changes may constitute 

an increase in the groundwater table, and thus a slow sinking of subsurface soils and an 

unexpected collapse, i.e., subsidence [53]. The extraction processes and machines used to 

access mine galleries may produce irreversible damage in soil cohesion and eventually 

compress soil substrates [46,53]. Consequently, groundwater may intrude the surface level, 

form new waterbodies, and cause inundation. This, in turn, leads to several adverse long-term 

environmental impacts, such as vegetation degradation, soil erosion, flooding, sinkhole 

formation, and soil and water contamination [45,53,187], as well as to the damage of 

infrastructures [47,53]. The geological changes and associated environmental impacts may 

continue even after reclamations, if mines are not properly backfilled [49,50,122] 

 

Regular landscape management and monitoring at the surface level are crucial for the 

prevention of subsidence and development of early warning systems in a reclaimed mine area 

(Figure 3.1). These are also vital for environmental protection, as well as for mitigation of the 

aftermaths from mining activities [53]. Particularly, monitoring short-term landscape 

dynamics, i.e., changes in the extent of waterbodies and vegetation, may provide important 

information about long-term geological changes such as subsidence, sinkhole formation, and 

changes in water table dynamics and associated effects on the environment [47]. In addition, 



Doctoral Programme in Information Management                                             Rajchandar Padmanaban 
 

          

 

 89 

changes in the productivity of vegetation is an important indicator for assessing the geological 

changes in an active and reclaimed mine area [51,52]. Productivity of vegetation may 

surrogate ecological health as well as growth of water bodies and plant stress [53]. 

 

Figure 3.1. Inundation and subsidence through geological changes in a mining-affected 

area. The changes observed in the surface level using remote sensing (RS) may indicate 

the geological changes at the subsurface level. The figure is created according to the 

description of subsidence in Brunn et al. (2002) [46]. 

Remote Sensing (RS) techniques and Geographic Information Systems (GIS) have shown clear 

advantages over conventional field monitoring and laboratory measurements for assessing 

long- to short-term landscape dynamics [54–56]. Particularly for large areas, where surveying 

using Global Positioning System 27(GPS) and ground levelling are time-consuming, expensive, 

and labor-intensive, RS and GIS provide prompt and efficient information on geological 

changes and subsidence[46]. These techniques are also useful for detecting changes in 

vegetation productivity and cover and flood dynamics through land-use and landcover maps 

[57]. Multispectral satellite images allow for detecting gradual as well as abrupt changes in 

landscapes [26]. However, besides widespread application in monitoring general landscape 

dynamics, the application of RS and GIS in monitoring and assessing mining effects on 
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landscapes and environment and in associated geological changes and vegetation 

productivity dynamics is limited [59,122]. Although high-resolution Light Amplification by 

Stimulated Emission of Radiation 28(LASER), Interferometric Synthetic Aperture Radar 

29(InSAR), and Light Detection and Ranging 30(LIDAR) mapping have been sparsely applied 

in small areas, environmental impacts in large mine reclamation areas have rarely been 

investigated using RS and GIS techniques [60–63,188]. 

 

This study aims to identify the subsidence zones and vegetation productivity degradation in 

a reclaimed mine area through the analyses of short-term landscape dynamics using RS and 

GIS techniques. The specific objectives were: 

(1) To examine the short-term, i.e., during 4 years, land-use and landcover (LULC) dynamics 

in the reclaimed mine area; 

(2) To quantify the emergence and growth of wetlands in the mining-influenced area and 

thus identify potential subsidence spots, i.e., spots exhibiting abrupt growth of 

waterbodies; and 

(3) To examine the vegetation productivity dynamics as a surrogate of the ground water 

table fluctuation and ecological stress. 

3.2 Study Area 

The study area, “Kirchheller Heide” (in English “Kirchhellen Heath”), is located in western 

Germany, surrounded by the towns of Bottrop and Huxe in the North, Oberhausen in the 

South, Gladbeck in the East, and Dinslanken in the West (Figure 3.2). The mining reclamation 

area lies between 51°34′53′′ N and 6°51′50′′ E and covers an area of about 57.74 km2. This site 

is one of the recreation areas for 7.5 million residents of the Kirchheller Heide and Ruhr district 

[44,46]. 

 

27Global Positioning System (GPS) – Global Positioning System is a satellite centred radio navigation 

installed and maintained by the United States government and operated by the United States Air Force. It is a 

worldwide navigation satellite system facilitate to provide geolocation (exact location on the earth) and time 

information to a GPS receiver (Eg. Mobile) [189].  

 
28Light Amplification by Stimulated Emission of Radiation (LASER) – A laser is an instrument that emits light  

through a process of optical amplification based on the stimulated emission of electromagnetic radiation [190].  
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The area was a major industrial region dominated by 229 coal and steel mines from the second 

half of the 19th to the end of the 20th century, which produced approximately 400,000 tons of 

coal per year [44,46]. The coal was extracted from this area from depths up to 1500 m using 

the 31longwall-mining method [53]. This mining method creates cavities in the ground and 

rock formation, which may result in surface subsidence and changes in the ground water table 

[59]. Moreover, 88.9% of production area was not properly backfilled when it was reclaimed 

during the 1990s [44,46]. Improper backfilling often leads to surface and sub-surface level 

depressions, while the magnitude of depressions depends on the length of long walls and the 

dip and width of the mined area [44,46]. Usually, such depressions and surface movements 

start six months after reclamation and gradually result into subsidence, surface area 

inundation, and vegetation degradation [53]. Hence, Kirchheller Heide was chosen to study 

potential occurrence of subsidence, inundation, and vegetation degradation caused by mining 

activities [44]. 

 

Figure 3.2. Location of Kirchheller Heide and mining area. The maps were created 

using Google Maps. 

 

 

29Interferometric Synthetic Aperture Radar (InSAR) – INSAR is a technique is used to generate maps of surface digital 

elevation, using differences in the phase of the waves retuning to the satellite [123].  

30Light Detection and Ranging (LIDAR) – LIDAR is a surveying method that measures distance to a target 

by illuminating the target with pulsed laser light and measuring the reflected pulses with a sensor [191].  
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32GMES4Mining team and EU-project 33MINEO have monitored the wetland and vegetation 

dynamics in Kircheller Heide until 2012 [44]. These monitoring programs have detected 

incidences and passive impacts of surface flooding and subsidence using ground monitoring 

and air-borne hyperspectral images [44]. However, this monitoring was tedious, lengthy, and 

stopped after October 2012, largely because hyperspectral sensors could not cover the area in 

a continuous mode, i.e., mono-temporal, and hence, continuous monitoring was impossible 

[192,193]. Consequently, we aim to quantify landscape dynamics as well as to identify 

potential subsidence zones and vegetation degradation in Kircheller Heide after 2012, i.e., 

during 2013–2016, using imageries from sensors that continuously captured images of the area 

at a regular (yearly) interval, i.e., Landsat ETM+. 

3.3 Materials and Methods 

3.3.1 Satellite Data 

We used four Landsat Enhanced Thematic Mapper plus (ETM+) imageries covering the dates 

of 22 July 2013, 25 July 2014, 03 July 2015, and 30 July 2016, with 30 m spatial resolution. The 

imageries covering four years were chosen to study short-term landscape dynamics. To be 

consistent with seasonal variations and the vegetation productivity analysis, we selected 

images covering the frost-free growing season of Germany. This season starts in May (Spring) 

and ends in September (Fall/Autumn) [44]. To be further consistent with vegetation 

proportion, we selected images of July (growing season), which recorded consistent 

precipitation level varying between 28.2 and 34.4 L per m2 during 2013–2016 [194]. Landsat 

ETM+ data were freely downloaded from the United States Geological Survey (USGS) 

gateway [133]. 

 

31Longwall mining – Longwall mining is a form of underground coal mining where a long wall of coal is mined in a single 

slice (typically 0.6 – 1.0 m thick). The longwall panel (the block of coal that is being mined) is typically 3 – 4 km long and 250 

– 400 m wide [195]. 

32GMES4Mining – GMES4Mining is a Research and Development project supported with funds from the EU and Federal 

State of North Rhine-Westphalia, Germany  aims to support particular tasks within the different phases of a mining life cycle. 

This team also monitors vegetation health, surface subsidence, floods and other environmental hazards in mining influenced 

area [53].  
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3.3.2 Image Processing 

We followed a four-step procedure for investigating the landscape dynamics and vegetation 

productivity in Kirchheller Heide (see Figure 3.3). First, the satellite images were ortho-

rectified and geo-corrected using the available “geoshift” and “georef” functions of the 

“Landsat” package in R studio [196–198]. Then, we geo-referenced the images using Universal 

Transverse Mercator (UTM) coordinate system [199]. The ETM+ images were cropped to the 

study area using a 10 km buffer around the mining area. To enhance the separability of the 

mining area from other land-use and landcover types, we applied the Tasseled Cap 

transformation for each imagery based on digital numbers (DN) [199]. 

 

Figure 3.3. Methodology for the analysis of landscape dynamics and vegetation health 

(productivity) (NDVI: Normalized Difference Vegetation Index; ETM: Enhanced Thematic 

Mapper; SMA: Spectral Mixture Analysis; LULC: Land-use and Land cover). 

 

33MINEO – MINEO  The project MINEO aims at developing Earth Observation (EO) based methods and tools for assessing 

and updating environmental status and impact in European mining areas [53]. 
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We were cautious about the scan line error that occurred in the Landsat 7 ETM+ sensor in 2003 

and subsequently affected the produced imageries in 2003 and following years [200]. To fill 

the data-gap, i.e., Not Available (NA) values, in the imageries that occurred due to this scan 

line error, we applied Landsat 7 Scan Line Corrector (SLC)-off Gap function [197]. The SLC-

off images were further rectified by mosaicking as suggested by USGS [197], and the residual 

gaps were filled using histogram correction [35,201]. Scan line error correction was performed 

in ERDAS Imagine (version 8.7) [202]. 

 

We first distributed and stored the Landsat images in a common radiometric scale to detect 

and quantify changes in the landscape of Kirchheller Heide, particularly for waterbodies and 

vegetation. For this purpose, we converted digital number (DN) integer values (0–255) to at-

satellite radiance values using the available parameters in the ETM+ metadata (radiometric 

calibration), i.e., Top-of-Atmosphere (TOA) radiance [35]. We also applied atmospheric 

correction to overcome the mismatch between surface reflectance and at-sensor reflectance. 

The cloud, snow, aerosol, and cirrus were first identified and classified, and then were 

removed using absolute atmospheric correction, i.e., Dark Object and Modified Dark Object 

Subtraction Method. To ensure the homogeneity of reflectance values for the analysis of 

vegetation dynamics, invariant features in images across 2013–2016 were identified using the 

Pseudo-invariant features (PIF) function and subsequently corrected using a major axis 

regression. The radiometric and atmospheric corrections were conducted employing an 

atmospheric simulation model available in Landsat and RStool packages available in the R 

library [158,203–205]. 

3.3.3 Land-Use and Landcover Classification and Accuracy Assessment 

We analyzed the overall surface level landscape dynamics over the four years using an 

unsupervised image classification technique. The images were classified for 2013, 2014, 2015, 

and 2016 into five land-use and landcover (LULC) classes (Table 3.1). We applied a Random 

Forest (RF) classification technique that optimizes the proximities among data points 

[206,207]. The RF classification algorithm constitutes the following steps: 

1. Draw n-tree bootstrap model from the satellite imageries; 

2. For each bootstrap model: grow unpruned classification according to the DN values; 
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3. Generate N number of polygons according to the DN values; 

4. Choose five classification land-use classes; 

5. Display land-use classification. 

The LULC classification was performed in R [208] using Classes and Methods for Spatial Data 

(Sp), Raster Geospatial Data Abstraction Library (Rgdal), Raster, and Random forests 

packages [204–207]. 

Table 3.1. Description of Land-Use and Landcover (LULC) classes. 

No LULC Classes Land Uses Involved in the Class 

1 Settlement Urban built-up and roads 

2 Dense vegetation Forests, gardens and shrubs 

2 Waterbodies Rivers, lakes, ponds, open water and streams 

3 Agriculture Farms and Agriculture parcels 

4 Bare land Non-irrigated properties and Dry lands 

 

The accuracy of image classification was evaluated by comparing the classified LULC maps 

with reference Google Earth images from 2013 to 2016 of the study area obtained from Google 

Earth Engine (GEE) platform [209]. We produced a set of 75 random points and extracted 

those values for four different study periods. Then, the selected random point values were 

identified from GEE and compared to the LULC maps. We used the kappa coefficient to 

quantify the accuracy of the classified images using ERDAS Imagine (version 8.7) [210]. The 

user and producer accuracies were also calculated through a confusion matrix [187]. A kappa 

coefficient of more than 0.8 indicates a satisfactory accuracy of classified images, i.e., classified 

images are analogous to the reference data [169,211–214]. 

3.3.4 Wetland Coverage and Surface Flooding 

The dynamics of wetland coverage as well as the extent of surface flooding were assessed to 

identify potential subsidence zones. We applied a SMA on the Landsat imageries to track the 
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changes in wetland coverage and identify the emergence of waterbodies [215]. SMA delivers 

pixel estimates for water extent delineated from other landcover pixels based on available 

radiometric data in imageries [215] (Equations (1) and (2)). Hence, the RF classification was 

expanded to the SMA for an accurate and precise examination of wetland dynamics, 

delineated from other LULC classes. 

𝐷𝑁𝑖 ∑ 𝐹𝑗

𝑗

𝐷𝑁𝑖,𝑗 + 𝑟𝑖 (1) 

∑ 𝐹𝑗

𝑗

= 1 (2) 

where, DNi is the measured value of a mixed pixel in band i; DNj is the measured value of 

each endmember (wetland pixel); Fj is the fraction of each endmember; and r is the root mean 

square (rms) residual that accounts for the difference between the observed and modeled 

values [212]. Thus, waterbodies and their extent were delineated from other landcover classes 

for each year during 2013–2016. We calculated the total and individual area coverage of 

waterbodies in each year, as well as identified if any waterbody emerged. SMA calculation 

and changes in waterbodies were analyzed using R packages SP, Rgdal, Raster, and Raster 

Time Series Analysis (rts) [203,216,217]. 

3.3.5 Vegetation Productivity and Coverage 

We calculated the Normalized Difference Vegetation Index (NDVI) for the quantification of 

vegetation productivity during 2013–2016 using Equation (3) [218]: 

𝑁𝐷𝑉𝐼 = (𝑁𝐼𝑅– 𝑅𝑒𝑑)/(𝑁𝐼𝑅 + 𝑅𝑒𝑑) (3) 

 

where, NIR = Near Infrared Band value and R = Red Band value recorded by the Landsat 

ETM+ imageries [219]. Photosynthesis is the main function of plants, which is directly 

associated with electromagnetic energy [220–222]. The spectrum of visible region strongly 

absorbed by green vegetation and reflects in the NIR region [73,121,223]. NDVI performed the 

NIR and R band-ratio to describe the relative density of vegetation greenness. Thus, we 

integrated plant ecological functions with available radiometric data of mining area 

associated with the principles of electromagnetic spectrum. 
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We classified the obtained NDVI values into 10 raster zones based on natural breaks to 

distinguish among different stages of vegetation productivity and coverage, i.e., value ranges 

0.42–1, 0.08–0.42, and −1–0.08 indicated high productivity (dense canopies), medium 

productivity, and low productivity (mostly bare land and water) vegetation, respectively. We 

calculated the changes in the area coverage of each raster zone during 2013–2016 and thus 

quantified the dynamics in vegetation productivity and coverage. NDVI calculation and 

changes in vegetation productivity were analyzed using R packages SP, Rgdal, Raster, and rts 

[203]. 

3.4 Results and Discussion 

3.4.1 Landscape Dynamics during 2013–2016 

Figure 3.4 displays the LULC maps of Kirchheller Heide mining area obtained for July 2013, 

2014, 2015, and 2016 using RF classification in R. We obtained an overall accuracy value of 

more than 85% for the classified LULC maps of all years with kappa coefficient values of more 

than 0.84 (Table 3.2). These values indicate a satisfactory accuracy of the classified LULC 

maps. 

Table 3.2. Summary of the confusion matrix for the classified images of 2013–2016 (PA – 

Producer Accuracy; UA – User Accuracy).  

LULC  

Classes 

2013 2014 2015 2016 

PA UA PA UA PA UA PA UA 

Settlement 87.02 82.21 86.01 82.12 88.22 79.71 92.02 88.19 

Dense Vegetation 83.05 83.85 82.14 85.34 81.76 81.96 83.14 87.02 

Agriculture land 86.78 91.76 83.21 94.21 83.45 92.12 88.46 96.75 

Water bodies 86.95 91.35 81.11 89.55 87.65 88.76 82.11 85.88 

Bare land 91.21 84.12 88.54 79.32 89.31 83.66 81.43 83.23 

Kappa 0.87  0.84  0.86  0.85  
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The classified LULC maps exhibit a 19.9% increase in the coverage of waterbodies between 

2013 and 2016 with an annual growth rate of 6.5% (Table 3.3, Figure 3.4). This increase in the 

coverage of waterbodies was associated with a 5.43% decrease in the coverage of dense 

vegetation and 25.6% increase in the bare land area (Table 3.3, Figure 3.4). The coverage of 

agricultural land also exhibited a 3.2% decrease, whereas the settlement coverage increased 

by 5.45%. The increase in the coverage of waterbodies may relate to the subsidence and 

changes in ground water table in the surface level [49]. This subsidence may have led to 

collision with non-stowed mining cavities, groundwater intrusion, and caused surface 

flooding, which, in turn, affected and caused the decrease in the coverage of dense vegetation 

and agricultural lands. These results are in line with [53], which showed the relation between 

surface landscape dynamics and subsurface geological changes. The observed increase in the 

coverage of bare land may also indicate the vegetation damage caused by the subsidence and 

surface flooding [122]. 

 

Figure 3.4. Classified land-use and landcover (LULC) maps of Kirchheller Heide in July 

2013, 2014, 2015, and 2016. 
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Table 3.3. Comparison of the land-use and land cover (LULC) types during 2013–

2016. 

LULC Classes 

Area in Km2 Differences (km2) 

2013–2016 

Differences (%) 

2013–2016 
2013 2014 2015 2016 

Settlement 12.70 13.04 13.25 13.40 0.69 0.05 

Dense vegetation 30.78 30.27 29.72 29.10 −1.67 −0.05 

Waterbodies 0.29 0.31 0.32 0.35 0.06 0.20 

Agriculture 9.24 9.16 9.02 8.95 −0.29 −0.03 

Bare land 4.74 5.03 5.75 5.95 1.21 0.26 

3.4.2 Emergence and Growth of Waterbodies 

The SMA did not identify any emergence of waterbodies in Kirchheller Heide during 2013 –

2016 (Figure 3.5a). However, we observed an abrupt growth (0.06 km2) in the coverage of two 

waterbodies within the four years (Figure 3.5a). The increase in the coverage of these two 

waterbodies (waterbodies A and B) accounted for 87.2% of the total growth the coverage of 

waterbodies in Kirchheller Heide, with an annual growth rate of 29% (Figure 3.5 b,c). 

Waterbodies A and B exhibited a 67% and 90% growth, respectively, in their coverage during 

2013–2016 (Figure 3.5c). Hence, the locations of waterbodies A and B may have been the 

potential subsidence spots that led to surface sink, collapse, and groundwater intrusion, 

entailing an increase in the coverage of those waterbodies [46]. 
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Figure 3.5. Changes in the extent and coverage of waterbodies in Kirchheller Heide during 

2013–2016. (a) The location of waterbodies (A and B) in the red circle indicate the 

waterbodies with the highest (87.2%) growth and potential subsidence spots; (b) the 

dynamics of the extent of waterbodies A and B during the years 2013–2016; and (c) the 

changes in the area coverage of waterbodies A and B during 2013–2016. 

3.4.3 Vegetation Productivity 

We observed a substantial decrease in the area coverage of highly productive vegetation, 

which was associated with an increase in the area coverage of medium and lowly productive 

vegetation (Figure 3.6, Table 3.4). The area around the waterbodies, which experienced the 

abrupt growth, was with the highest decrease in NDVI values between 2013 and 2016, i.e., the 

average NDVI values decreased from 0.61 to 0.29 (Figure 3.6). A total of 58.5% degradation in 

the productive vegetation mostly occurred in the neighborhood of waterbodies and along the 

water courses in the east (Figure 3.6, Table 3.4). Overall, the total area coverage under highly 

productive vegetation decreased from 56.5 to 28.3% with an annual rate of −9.5%, whereas the 

area coverage under medium and lowly productive vegetation increased from 14 to 76% with 

an annual rate of 15.5% between 2013 and 2016 (Table 3.4). 
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(a) 

 

(b) 

Figure 3.6. (a) NDVI map of the Kirchheller Heide mining area in July 2013, 2014, 2015, 

and 2016. Value ranges 0.42–1, 0.08–0.42, and −1–0.08 indicated highly, medium, and 

lowly productive vegetation, respectively (see b and Table 6 for details). The location of 

the waterbodies, which experienced abrupt growth, are in the black circles; (b) Area 

coverage in km2 by vegetation productivity classes in 2013, 2014, 2015, and 2016. 
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Our results indicate an overall degradation of vegetation productivity with substantial loss of 

vegetation productivity along the water course in the east of Kirchheller Heide (Figure 3.6,  

Table 3.4). This degradation of productivity was likely entailed by the increase in the 

groundwater table and consequent intrusion into the surface level (Figure 3.6) [3]. 

 

The variation in vegetation productivity can also be caused by confounding ecological 

variables, e.g., phenological characteristics (differences between growing characteristics 

across years). However, we controlled for the dominant drivers of seasonal variations, i.e., 

chose images from frost-free growing season in Germany, and precipitation level, i.e., 

between 28.2 and 34.4 L per m2 in July during 2013–2016, while selecting the imageries [194]. 

Moreover, ours is a short-term study and hence, excludes variation in plant phenological 

characteristics, which is usually long-term and gradual. Furthermore, the major decrease in 

vegetation productivity was observed for the area neighboring the waterbodies that 

experienced the abrupt growth. Consequently, we argue that the increase in the groundwater 

table caused by the subsidence is the dominant cause for the degradation of vegetation 

productivity in Kirchheller Heide. Increasing groundwater table led to surface flooding as 

well as to soil erosion, which directly influenced the vegetation productivity, as observed in 

the extent of NDVI values (Figure 3.6) [53]. 

Table 3.4. Vegetation productivity changes between 2013–2014, 2014–2015, and 2015–

2016. Value ranges 0.42–1, 0.08–0.42, and −1–0.08 indicated highly, medium, and lowly 

productive vegetation, respectively, and the overall changes in their coverage are 

reported in bold. 

Vegetation 

Productivity 

Classes 

NDVI 

Values 

Changes in Area Coverage % (km2) 

From 2013 to 

2014 

From 2014 to 

2015 

From 2015 to 

2016 

Highly 

Productive 

0.97–1 −6% (0.55) –8% (0.36) –12% (0.27) 

0.54–0.97 –45% (7.56) –67% (6.49) –78% (4.36) 

0.42–0.54 –34% (11.25) –62% (8.84) –79% (4.85) 
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0.42–1 –28% (19.36) –45.66 (15.69) –56% (9.48) 

Medium 

Productive 

0.34–0.42 62% (5.30) 71% (6.07) 74% (6.33) 

0.29–0.34 35% (3.20) 42% (3.83) 67% (6.11) 

0.24–0.29 51% (29.00) 64% (3.64) 72% (4.10) 

0.16–0.24 35% (8.00) 38% (0.87) 42% (0.96) 

0.08–0.16 21% (0.60) 29% (0.83) 44% (1.25) 

0.08–0.42 40% (12.80) 48% (15.24) 59% (18.75) 

Lowly 

Productive 

0–0.08 12% (0.18) 61% (0.29) 86% (0.55) 

−1–0 16% (0.21) 57% (0.34) 66% (0.56) 

−1–0.08 14% (0.39) 59% (0.63) 76% (1.10) 

3.5 Outlook 

We applied freely available Landsat imageries to study short-term landscape dynamics in the 

mine-reclaimed Kirchheller Heide, and identified two potential subsidence spots that may be 

under risk of collapse and overall degradation and damage of vegetation (Figure 3.5). Thus, 

our results inform environmental management and mining reclamation experts about land 

surface and vegetation loss because of subsidence. Environmental management authorities in 

Kirchheller Heide should prioritize the indicated subsidence areas for further surface and 

subsurface investigation, as well as for remediation and mitigation. The potential biodiversity 

and ecosystem impacts of subsidence should also be investigated. 

 

In general, our study proves the virtue of RS and GIS for monitoring short-term geological 

changes and thus for predicting long-term environmental impacts in reclaimed mine areas. 

Thus, we urge the importance of including RS and GIS monitoring in environmental 

conservation and management projects in addition to field monitoring [63,122]. Our approach 

is also useful for identifying ecological stress, and surface erosion and inundation, and thus 

may provide important metrics for ecological restoration and infrastructure provision 

[46,187]. 
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Our study also emphasizes the need for proper backfilling and management of reclaimed 

mine areas [63,122]. Environmental regulations mostly address the direct impacts of mining 

activities and insufficiently address the long-term impacts of post-mining activities [46,187]. 

We recommend that environmental management should take advantage of satellite imageries 

and RS and GIS techniques [50]. The reclaimed mine areas should be regularly monitored for 

the identification of subsidence and surface collapses. 

 

Field observation and survey data should complement the applied RS techniques with freely 

available satellite data to validate our results [44]. The results should also be compared with 

the SAR analyses and monitoring [3,8]. Future studies should apply higher spatial resolution 

(e.g., 5 m) satellite imageries, e.g., 34Quickbird and LIDAR images, for the identification of 

subsidence extent and magnitude in reclaimed mine areas [3,4]. RS-based monitoring could 

also result in surface metrics for quantification of geological changes in reclaimed mine areas. 

 

High- and hyperspectral and temporal satellite imageries may provide landscape dynamics 

with higher precision than in our study [2–8]. For example, a comprehensive monthly 

variation analysis may provide precise information on the emergence and dynamics of 

subsidence zones when compared to yearly analysis, as subsidence occurs abruptly at the 

surface level [8]. Moreover, images with higher coverage of bands may identify subsidence 

spots that are not observed through the growth of waterbodies, e.g., sink holes and landslides 

[4–8]. We particularly recommend the usage of high- and hyperspectral and temporal 

resolution imageries collected in continuous mode for monitoring immediately after 

reclamation, when urgent surface and subsurface level investigation, as well as proper 

remediation through backfilling to avoid surface level collapse, are needed. 

 

 

 

 

 
 
34Quickbird – Quickbird was a high-resolution commercial earth observation satellite [224].  
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“To truly transform our economy, protect our security, and save our planet from the ravages 

of climate change, we need to ultimately make clean, renewable energy the profitable kind of 

energy.” 

          Barack Obama 
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Chapter 4  

Satellite Image Fusion to Detect Changing Surface Permeability and 

Emerging Urban Heat Islands in a Fast-growing City 

 

4.1 Introduction 

Rapid urbanization has been globally a dominant driver of ecosystems and environmental 

degradation in the recent decades [31]. United Nations projected that two-thirds of the global 

population will live in urban areas by the year 2050 [17]. This will entail major landuse and 

landcover changes in urban areas, which will directly impact urban ecosystem services 

through a loss of agricultural and forested lands, and an increase of barren and impermeable 

built-up surface areas [58]. Loss of vegetation and increasing built-up surface areas may 

eventually affect climatic variability and thus lead to an increase in surface and air 

temperatures in urban areas [102,113,225]. 

 

Urban forests and vegetation control surface and air temperatures through shading and 

evapotranspiration [226]. According to the United States Environmental Protection Agency 

35(USEPA), shaded surfaces are, on average, 11–25°C cooler than unshaded surfaces, while 

evapotranspiration reduces peak summer temperatures by 1–5°C [3]. In contrast, 

impermeable built-up surface areas have a higher solar radiation absorption, and a greater 

thermal capacity and conductivity than the non-built-up areas [226,227]. Consequently, urban 

areas exhibit higher surface and air temperatures than surrounding rural areas [228]. Rapid 

urbanization and consequent expansion of impermeable built-up surface areas may thus lead 

to the emergence of urban heat islands (UHI), which have severe consequences for urban 

ecosystems and humans [22,57,101,225]. 

 

 

 

35United States Environmental Protection Agency (USEPA) – USEPA is the Environmental Protection Agency is an 

independent agency of the United States federal government for environmental protection [229]. 
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Monitoring the rate and extent of urbanization and consequent decrease in surface 

permeability and emergence of UHI provide essential information for averting their adverse 

impacts on urban residents and ecosystems [230]. Particularly, in fast growing cities like 

Tirunelveli, India, which are experiencing rapid and abrupt expansion due to extensive rural-

urban migration and urban sprawl, UHI can emerge spontaneously through the loss of 

vegetation and expansion of impermeable surfaces [231]. Hence, they require detailed and 

continuous monitoring of landuse and landcover (LULC) changes. Emergence of UHI can be 

controlled and prevented through proper urban planning, management and regulations of 

landuse zones that are informed by detailed and continuous LULC change monitoring [115]. 

Monitoring anthropogenic LULC changes may also provide quantification of environmental 

processes and respective sustainable living standards in urban areas [114]. 

 

Remote sensing provides important tools for detailed and continuous monitoring of LULC 

changes in fast growing cities as well as for assessing expansion of impermeable surfaces and 

detecting emergences of UHI [10,11]. Remote sensing tools demonstrate clear advantage for 

monitoring and estimating spatiotemporal changes of LULC over conventional methods that 

are based on time consuming and expensive field studies combined with large scale aerial 

photography [116]. Hence, remote sensing techniques have been widely applied for assessing 

LULC changes, surface permeability and temperature, and detecting emergence of UHIs, in 

several regions of the world, e.g. Egypt [11], Eritrea [13], Germany [14] and Vietnam [19]. 

Particularly, the advent of high quality satellite imageries from multiple sensors for a certain 

location enables the fusion of those imageries to arrive at a combined image for that location 

[232]. Such combined images are substantially more detailed than images from individual 

sensors as they fuse images with diverse spatial and spectral resolutions and thus enable the 

detection of a diverse range of objects, which are often undetected through single sensor 

derived images [40,233–236].  However, monitoring of surface permeability and UHI 

emergence mostly involve time consuming and expensive field studies and single sensor 

derived aerial and satellite imageries.  
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Fused remotely sensed imageries provide important metrics for the quantification of LULC 

changes, surface impermeability and consequent increase in surface temperature in urban 

areas as well as for the assessment of the relationship between changes in surface permeability 

and surface temperature [10–12]. For instance, the Soil Adjusted Vegetation Index (SAVI) 

quantifies changes in vegetation cover and health in relation with soil moisture, saturation 

and color [121]. Hence, it has been widely used as an important proxy for surface permeability 

and also as an early warning metric for food security and ecological health [237]. Moreover, 

Land Surface Temperature (LST) is a metric for measuring the temperature of the interface 

between the earth’s surface and the atmosphere [115,238], which is often shaped by LULC 

and, particularly, vegetation cover [119]. Fused remotely sensed imageries provide 

considerably quicker continuous measurement of LST when compared with the conventional 

extrapolation of non-contiguous meteorological station measurements [120]. LST is also an 

important metric for the identification of the emergence and propagation of UHI [239]. 

Calculated SAVI can indicate climate change impacts in urban areas and hence, is associated 

with the changes in LST [121]. In general, areas with higher SAVI typically exhibit lower LST 

and vice-versa, given constant soil moisture and evapotranspiration capacity of the surface 

[27]. Overall, understanding the patterns of LULC, SAVI and LST changes, and their 

associations using fused remotely sensed imageries may provide quick and precise 

information crucial for urban ecosystem zoning and UHI control in fast growing cities like 

Tirunelveli [240,241]. 

 

This study quantified the LULC, SAVI and LST changes, as well as the relationship between 

SAVI and LST changes, in a fast-growing city, i.e. Tirunelveli, Tamilnadu, India, during a 11 

years period, i.e. between 2007 and 2017. We fused satellite imageries from two different 

sensors, i.e. IRS-LISSIII and Landsat-7 ETM+, to arrive at combined high spatial resolution 

(23.5m of IRS P6-LISSIII) and high thermal band (30m of Landsat-7 ETM+) imageries for 

Tirunelveli. The objectives of our study are twofold: (i) To demonstrate the advantage of using 

fused imageries over non-fused single images through a comparison of image classification 

accuracies and (ii) to identify the potential zones for UHI emergence using a SAVI-LST 

combined metric for Tirunelveli in 2017. 
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4.2 Study Area  

Tirunelveli is one of the largest and oldest municipal corporations at Tirunelveli  district in 

Tamilnadu state of India with a total population of 473,637 according to the 2011 census [242]. 

The city lies between 8°44’ and 9°30’of the Northern latitude, and 77°05’ and 78°25’ of Eastern 

longitude with an altitude of 47m above the mean sea level (Figure 4.1). Tirunelveli is situated 

on the East bank of Thamirabarani River, the major water course for domestic usage, power 

generation and irrigation in Tirunelveli and other neighboring cities (Tuticorin, Sankarankovil 

and Valliyur) [127].  

 

The climate of Tirunelveli is dominantly tropical and receives rainfall in all seasons 

throughout a year [240]. The average annual rainfall during 2010-2016 was 947.6mm [243], 

with a contribution of 555.08mm and 189.6 mm rain from the North-East and South-West 

Monsoons, respectively. The average annual surface temperature of the city varies between 

24.4°C  and 34.6°C, with the lowest winter (November to February) and highest summer 

(March to June) temperatures of 27.1°C and 30.4°C, with an average precipitation of 127.7mm 

and 74.5mm, respectively [243].  

 

Tirunelveli experienced a rapid and extensive urbanization and urban sprawl during the last 

two decades [231]. The city population has doubled during this time, which depicts 

Tirunelveli as one of the fastest growing cities in the India [241]. As a principal business hub 

of Southern India, Tirunelveli experienced a substantial immigration of people from 

neighboring cities and rural areas in search for better standard of lives, income and 

employments [231]. This has caused an uncontrolled expansion of the city and associated 

adverse effects on the city land, water and air [244]. According to the Centre for Agriculture 

and Rural development studies (CARDS), the rapid urbanization driven conversion of 

agriculture lands in Tirunelveli and surrounding districts have adversely impacted the 

region’s food security [106,245].  

 

 
36Centre for Agriculture and Rural development studies (CARDS) – CARDS is a Non-Government Organization 

committed to reaching all parts of the rural society especially farming community and participates actively towards improving 

the quality of life of rural masses by addressing technical, economic policy issues related to the development of agriculture and 

rural society in India [246].  
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The rapid urbanization also entailed rapid industrialization leading to the establishment of 

more than 25 large-scale industries such as cement factories, cotton yarn manufacturers, 

calcium carbide production plants, sugar factories, cotton seeds oil refinery plants, brick 

factories, paper and flour mills, and several hundreds of small-scale industries. This, in turn, 

led to air pollution, water scarcity, degradation of vegetation, ecosystems fragmentation, 

floods and droughts [247]. 

 

We selected an area of 104.2 km2 covering the central area and periphery of Tirunelveli city 

(Figure 4.1). According to CARDS, this area has undergone the highest LULC conversion in 

Tirunelveli district between 2007 and 2017 [245]. Hence, we chose the years 2007 and 2017 for 

assessing LULC zones, SAVI and LST in Tirunelveli, as well as for quantifying their changes 

and detecting UHI emergence in our study. 

 

 

Figure 4.1. Geographic location and area of Tirunelveli city. The maps were generated using 

Google Maps. 

 

 

 

 

 

 

 

37United States Geological Survey (USGS) formerly simply Geological Survey) – USGS is a scientific agency of 

the United States government study the landscape of the United States, its natural resources, and the natural hazards that 

threaten it [248]. 
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4.3 Materials and Methods 

4.3.1 Data  

We used Landsat Enhanced Thematic Mapper (ETM+) and Indian Remote Sensing Satellite 

Resourcesat-1 - Linear Imaging Self-Scanning Sensor -3 (IRS LISS-III) images with 30 m and 

23.5 m spatial resolutions, respectively, from June 2007 and June 2017. Freely available 

Landsat satellite data were downloaded from Unites States Geological Survey 37(USGS) 

gateway in GeoTiff format [249]. IRS-LISSIII data was purchased from the National Remote 

Sensing Centre 38(NRSC), Indian Space Research Organisation (ISRO) in GeoTiff format [171].  

 

Daytime images from 11th  June (summer) were chosen for both years to obtain the least cloud 

coverage possible as well as to control for the seasonal homogeneity in plant phenology for 

LULC classification, and SAVI and LST calculation, and thus to exclude impacts of seasonal 

variation of plant phenology [159]. Landsat ETM+ and IRS-LISSIII were georeferenced using 

the World Geodetic System (WGS) 1984 and then projected to the Universal Transverse 

Mercator 39(UTM) coordinates [163,250]. The data has been geo-corrected and cropped to the 

study area (Figure 4.1).  

 

4.3.2 Image Pre-Processing  

We first pre-processed the Landsat ETM+ and IRS-LISSIII images, separately, for 2007 and 

2017 (Figure 4.2). Triangulation and Digital Elevation Model 40(DEM) were generated for IRS-

LISSIII images from each year to examine the land dynamics and prime variations [179]. 

Triangulation process for IRS-LISSIII was performed by fitting a second order polynomial in 

41Leica Photogrammetry Suite (LPS) [251]. Then DEMs were generated using built-in image 

matching techniques [252]. DEMs were further edited using the built-in pit removal technique 

in LPS, where the abrupt elevational changes were identified [144]. The final DEMs of 2007 

and 2017 were further orthorectified for LULC classification and analysis (Figure 4.2).  

 

 

38National Remote Sensing Centre (NRSC) – NRSC is one of the centres of the Indian Space Research Organisation 

manages data from aerial and satellite sources [171]. 
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The Landsat ETM+ images were first geometrically corrected and orthorectified using the 

“georef” and “geoshif” functions of the “Landsat” package in R [205]. Then the orthorectified 

images were checked for scan line errors that occurred in the Landsat 7 ETM+ sensor from 

2003 onward and consequently, influenced our images from 2007 and 2017 [197]. The missing 

data occurred due to scan line error were filled with the Landsat 7 Scan Line Corrector (SLC)-

off Gap function in ERDAS Imagine (version 8.7) [35,163]. The SLC-off images were further 

rectified by mosaicking as recommended by USGS, and the residual gaps were filled using 

the histogram correction technique [197]. 

 

We performed radiometric and atmospheric corrections of the orthorectified and SLC-off 

Landsat ETM+ images. First, we transformed Digital Number (DN) integer values (0–255) in 

Landsat ETM+ images to at-satellite radiance values using the ETM+ radiometric calibration 

of Top-of-Atmosphere (TOA) radiance [35]. Then, we applied atmospheric correction to 

minimize the mismatch between surface reflectance and at-sensor reflectance [44]. The cloud, 

aerosol, and cirrus were identified and classified, and removed using Dark Object and 

Modified Dark Object Subtraction method [44]. Finally, to ensure the homogeneity of 

reflectance values for the analysis of surface permeability, invariant features in images from 

2007 and 2017 were identified using the Pseudo-invariant features (PIF) function and 

subsequently corrected using a major axis regression [35]. The radiometric and atmospheric 

corrections were conducted in R environment [205].  

 

4.3.3 Image Fusion  

The pre-processed IRS-LISSIII and Landsat 7 images were combined using the “Ehlers” image 

fusion technique [253,254]. Ehlers fusion works based on an Intensity-Hue-Saturation (IHS) 

transformation coupled with adaptive filtering in the Fourier domain to prevent the fused 

image from color distortion, which frequently occurs in conventional statistical or color 

transformation fusion methods (see [255] for details on Ehlers image fusion techniques).  To 

avoid loss of information and further minimize color distortion, we also used all bands from 

IRS-LISSIII and Landsat ETM+ for the fusion process. The image fusion was performed using 

the “panSharpen” function of the “RStoolbox” package in R [256]. We maintained 30m 

resolution in fused images for further classification and indices calculation.  
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Figure 4.2. Methodological flow for landuse and landcover classification, surface 

permeability, surface temperature and urban heat islands emergence assessment. Fig. 

legends- DEM: Digital Elevation Model; LULC: Landuse and Landcover; ETM: Enhanced 

Thematic Mapper; SAVI: Soil-Adjusted Vegetation Index; LST: Land Surface Temperature; 

UHI: Urban Heat Island. 

 

 
39Universal Transverse Mercator (UTM) – UTM coordinate system is a standard set of map projections with a central 

meridian for each six-degree wide UTM zone [257].  
40Digital Elevation Model (DEM) – DEM is a 3Dimesnional representation of a terrain's surface [179]. 
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4.3.4 Image Classification 

We classified the fused images using a Rotation Forest (ROF) machine learning algorithm 

[258]. Previous studies have demonstrated the higher accuracy levels of ROF than other 

available methods for fused and non-fused image classification, such as GentleAdaBoost and 

Random Forest [259]. ROF is based on an ensemble construction and is associated with a 

Decision Tree (DT), where each classifier is individually constructed [258]. The DT classifier 

is constructed following a five-fold process: (1) a K subset is randomly split from the feature 

set. The split subset are intersecting and disjoint, while we chose the disjoint subsets for a high 

diversity of features; (2) a Principal Component Analysis (PCA) is applied to each of the 

subsets to identify the variability information in the data; (3) undefined LULC classes are 

categorized; (4) the regular buoyancy for each class is computed; and (5) the label for each 

class is allocated to the one with the maximum buoyancy value [258].  

We delineated eight LULC classes from the fused images of 2007 and 2017 using RF with the 

built-in DT classifier (see Table 4.1 for LULC classes definition). The delineation process 

includes the following steps in R [258] for training the DT classifier and image classification: 

1. Build the stack for the fused raster data; 

2. Divide the feature data set d into K feature subsets, each subset holds M=n/K number 

of feature; 

3. Let Fi,j be the jth, j=1,..,K, subset of features for Li, and Xi,j be the features in Fi,j from X; 

4. Select new training set from Xi,j randomly using a bootstrap algorithm; 

5. Transform Xi,j to get the coefficient mi,j,..., mi,j , the size of mi,j is M * 1; 

6. Implement the following sparse rotation matrix Ri, which is systematized with the 

above coefficients. 

Ri = [  

mi, 1, . . . , mi, 1 0 … 0
0 mi, 2, . . . , mi, 2 . . 0
. . . .
. . ⋱ .
. . . .
0 0 . mi, k, . . . , mi, k

]  (1) 

7. Rearrange matrix Ri to 𝑅𝑖
𝑎 with respect to the initial feature set; 

8. Train the classifiers in a parallel style; 
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9. Compute the confidence of the given data 𝜒 for each landuse class by an average 

combination method: 

μK(𝜒) = 
1

𝐿
∑ 𝛾𝑖, 𝑘 (𝜒𝐿

𝑖=1 𝑅𝑖
𝑎), 𝐾 = 1, … . , 𝑐   (2) 

Where 𝛾𝑖, 𝑘 (𝑅𝑖
𝑎) is the probability produced by Li 

10. Allocate 𝜒 to the landuse class with the highest confidence. 

11. Transform the raster LULC classes into homogenized vector polygons. We selected 

the classification and regression tree (CART) transformation method, which is based 

on a decision tree algorithm and Gini index. 

Gini(t) = ∑ 𝑝𝑤𝑖
𝑐
𝑖=1  (1-𝑝𝑤𝑖)   (3) 

Where c is the number of LULC classes and 𝑝𝑤𝑖 is the probability of class wi at node t. 

𝑝𝑤𝑖 =  
𝑛𝑤𝑖

𝑁
      (4) 

Where N is the total number of training set samples and 𝑛𝑤𝑖  is the number of samples 

of class wi 

12. Extract the DN values of polygon classes derived from CART; 

13. Generate numbers of polygons cohering to the DN values; 

14. Allocate color bands to the LULC classes. 

We also applied the above image classification algorithm on the non-fused IRS-LISSIII and 

Landsat ETM+ images of 2007 and 2017 to compare the image classification accuracies 

between the fused and non-fused images. 

 

 

 

 

 
41Leica Photogrammetry Suite (LPS) – LPS is a software application for performing photogrammetric operations on 

imagery and extracting information from imagery [144].  
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Table 4.1. Landuse and landcover (LULC) classes definition. 

No LULC Classes Definition 

1 Barren land Dry lands and non-irrigated  

2 Crop land pasture  Agriculture lands, grazing area, coconut and banana farm   

3 Fallow land  Non-plowed, dry farming area and real estate plots 

4 Forest  Deciduous forest  

5 Scrubs Bushes and shrubbery  

6 Urban Roads, temples, and built-up areas 

7 Water bodies Rivers, lakes, open water, and ponds 

8 Wetland Marsh, bog, fen and swamp  

 

4.3.5 Accuracy Assessment 

We assessed and compared the accuracy of classification between the fused and non-fused 

images of 2007 and 2017 [160]. Cartographic map of 2007 and classified Google Earth images 

of 2017 (as cartographic map wasn’t available) of the Tirunelveli city obtained from BHUVAN, 

ISRO India and Google Earth Engine (GEE), respectively, were used as reference images 

(ground truth) for the accuracy assessment of the classified LULC maps and comparison 

between the fused and non-fused images [260]. 75 Random pixels were generated from the 

classified LULC data and LULC values were extracted for those pixels for 2007 and 2017. 

Then, the LULC values were identified for the same pixels in the referenced images and 

compared with the LULC values of classified images. We employed the kappa coefficient as 

the accuracy indicator [160]. A kappa coefficient of more than 0.8 indicates a satisfactory 

accuracy of LULC maps, i.e., classified images are satisfactorily analogous to the reference 

data [261]. Kappa coefficients were computed for the classified fused and non-fused images 

in ERDAS Imagine (version 8.7) and compared. We also computed the producer and user 

accuracies of image classification through a confusion matrix [160].  

4.3.6 Surface Permeability Assessment 

We computed Soil-Adjusted Vegetation Index (SAVI) to assess the changes in surface 

permeability in Tirunelveli between 2007 and 2017. Generally, SAVI indicates vegetation 
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coverage and health with respect to soil moisture, saturation and color, and thus accounts for 

the high variability of built-up and non-built-up land cover in urban areas [121,262]. SAVI 

also controls for the influence of soil brightness in Normalized Difference Vegetation Index 

(NDVI) and thus, minimizes soil brightness-related noise in vegetation coverage estimation 

[263]. Since coverage, brightness and health of vegetation are strongly associated with surface 

permeability, SAVI provides an important proxy for the identification of impermeable 

surfaces, particularly in urban areas [237]. We calculated SAVI using equation (5) [264]. 

 

               SAVI =
(𝑁𝐼𝑅 − 𝑅𝐸𝐷)

(𝑁𝐼𝑅 + 𝑅𝐸𝐷 + 𝐿) 
   ∗ (1 + L)              (𝟓) 

 

Where, RED is the reflectance of the band 3 (RED band) and NIR is the reflectance value of 

the near infrared band (Band 4). L is the soil brightness correction factor. For dense vegetation 

and highly permeable surface areas, L=0 and for vegetation scarce and impermeable surface 

areas, L=1 [263]. Due to high dynamics of vegetation and built-up coverage in Tirunelveli 

(urban areas in general), L was set to 0.5 [264].  

 

SAVI was computed for each pixel of the fused images from 2007 and 2017. We delineated 

five raster zones based on natural breaks in SAVI values of the pixels to distinguish among 

degrees of surface permeability, e.g. 0.54–1 and −1–0.08 zones indicated highly permeable 

surface with high density healthy vegetation and impermeable surface with low density 

unhealthy or no vegetation (mostly barren and fallow land, and built-up surfaces), 

respectively. We computed the area coverage of each soil permeability zone in 2007 and 2017 

and calculated percentage changes in their coverage between 2007 and 2017. Areal average 

and standard deviation of SAVI were also computed for each LULC class in 2007 and 2017.  

 

4.3.7 Land Surface Temperature Measurement  

We calculated Land Surface Temperature (LST) index for each pixel of the fused images from 

2007 and 2017 to measure the radiative skin temperature of the surface and its features, which 

depends on the optical brightness and reflectance of the surface (Albedo) [27]. Generally, bare 

soil and built-up settlements with low SAVI exhibit high Albedo whereas dense vegetation 

with high SAVI exhibits low Albedo and hence, low radiative skin temperature [265]. Thus, 
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LST indicates climatic variability across vegetation and urban settlements associated with the 

degree of surface permeability [266]. LST for each pixel was calculated using equation (6) 

according to the Landsat user’s hand book, in which the digital number (DN) of thermal 

infrared band is converted into spectral radiance (Lλ) [213,267]. 

 

Lλ= {𝐿𝑀𝐴𝑋 − 𝐿𝑀𝐼𝑁 ÷ 𝑄𝐶𝐴𝐿𝑀𝐴𝑋 − 𝑄𝐶𝐴𝐿𝑀𝐼𝑁} ∗ 𝐷𝑁 − 1 + 𝐿𝑀𝐼𝑁}                (6) 

 

Where, 

LMAX = the spectral radiance that is scaled to QCALMAX in W/(m2 *sr *μm) 

LMIN = the spectral radiance that is scaled to QCALMIN in W/(m2 *sr*μm) 

QCALMAX = the maximum quantized calibrated pixel value (corresponding to LMAX) in DN 

= 255 

QCALMIN = the minimum quantized calibrated pixel value (corresponding to LMIN) in DN 

= 1 

Raster maps of the LST index were computed for 2007 and 2017 from the fused satellite images 

and compared to assess changes in surface radiant temperatures in Tirunelveli between 2007 

and 2017. To be coherent with SAVI classes, we delineated five LST raster zones based on 

natural breaks and computed their area coverage in 2007 and 2017. The average and standard 

deviation of LST for each LULC class were also computed. We also quantified the association 

between surface permeability and temperature through a Spearman raster correlation 

analysis between SAVI and LST for entire Tirunelveli also for the classified LULC zones. 

 

4.3.8 Emergence Potential for Urban Heat Islands 

We quantified the emergence potential of Urban Heat Islands (UHI) in Tirunelveli using a 

combined metric computed from LST and SAVI in 2017 [230]. Generally, impermeable surface 

areas with lower SAVI exhibit higher solar radiation absorption, and a greater thermal 

capacity and conductivity, and consequently exhibit higher potential for UHI emergence, and 

vice-versa [25,227]. Moreover, areas with high surface temperature (LST) exhibit higher 

number of daily high degree-hours and lower differences between daily maximum and 

minimum temperatures, and thus also exhibit higher potential for UHI emergence, and vice-

versa [268]. Hence, we first coded the five SAVI and LST classes from 1 to 5 in descending and 
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ascending orders, respectively. Subsequently, we sum aggregated the recoded SAVI and LST 

class values for each pixel to compute the combined metric for UHI emergence potential. 

Pixels with higher combined UHI metric value indicated higher potential for UHI emergence 

and vice-versa. Finally, we delineated the zones with high UHI emergence potential in 

Tirunelveli. 

 

4.4 Results and Discussion  

4.4.1 Landuse and Landcover Changes  

The LULC maps of 2007 and 2017 show that the Tirunelveli city has undergone a rapid 

urbanization at an average rate of 4% between 2007 and 2017, with a 32% total increase in the 

coverage of urban built-up areas (Figure 4.3, Table 4.2). Fertile cropland pastures have been 

substantially converted (59% decline between 2007 and 2017) into fallow lands (mostly real 

estate plots, 178% increase between 2007 and 2017) and fallow lands (transitioning into built-

up areas, 6% increase between 2007 and 2017). Forested areas in the North-eastern part of the 

city decreased by 12% whereas the bushes and shrubbery covered infertile areas increased by 

164% throughout the city between 2007 and 2017. The Western riparian part of the city has 

undergone the most expensive LULC conversion from cropland pasture to fallow lands and 

built-up areas (Figure 4.3), which is in line with the findings of CARDS [245]. Although the 

wetland and waterbodies showed an aggregate increase by 35% between 2007 and 2017, forest 

cover and vegetation exhibited substantial decrease and conversion into urban areas (Figure 

4.3, Table 4.2). These results are in line with [58], which estimated a rapid urbanization and 

urban sprawl in the Tirunelveli city between 2007 and 2017. 
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(a)  

Figure 4.3. Classified landuse and landcover (LULC) maps of Tirunelveli city in 2007 
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(b) 

Figure 4.3. Classified landuse and landcover (LULC) maps of Tirunelveli city in 2017 
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Table 4.2. Change in the area coverage of the landuse and landcover (LULC) classes 

between 2007 and 2017. 

 

 

We obtained kappa coefficient values of 0.84 and 0.83 with an overall accuracy value of 86% 

and 85% for the LULC classification for 2007 and 2017, respectively, using fused images (Table 

4.3). In contrast, the average kappa coefficient and overall accuracy values for LULC 

classification using non-fused images for 2007 and 2017 were considerably lower, i.e. 0.72 and 

0.75, 71% and 74%, respectively. Hence, the accuracy of LULC classification using fused 

images was considerably higher than the LULC classification using non-fused images because 

of the substantially higher spatial resolution and number of bands available in fused images 

than non-fused images [236]. These results are also in line with [235]. 

 

 

 

 

 

 

 

Classes 2007 (km2) 

 

2017 (km2) Change (%) 

Barren land 10.07 10.69 6.15 

Cropland pasture 45.42 18.43 -59.42 

Fallow land 5.79 16.11 178.23 

Forest  1.78 1.56 -12.35 

Scrubs 3.37 8.89 163.79 

Urban 27.85 36.73 31.88 

Water bodies 3.84 4.25 10.67 

Wetland 6.08 7.54 24.01 

Total 104.2 104.2  
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Table 4.3. Accuracy assessment results for the landuse and landcover classification using 

fused images of 2007 and 2017. 

 

Classes 2007 2017 

 Producer 

Accuracy 

User 

Accuracy 

Producer 

Accuracy 

User 

Accuracy 

Barren land 82.01 83.12 87.12 86.20 

Crop land and pasture 84.15 87.14 82.56 83.21 

Fallow land 82.34 89.16 87.32 92.35 

Forest 84.15 90.12 84.51 87.18 

Scrubs 88.11 84.21 83.15 82.13 

Urban 91.32 89.34 88.29 96.07 

Waterbodies 85.21 87.43 79.45 81.32 

Wetland 89.01 91.03 84.56 89.04 

Overall accuracy 85.75  84.62  

Kappa 0.84  0.83  

 

4.4.2 Changes in Soil Permeability and Surface Temperature  

We observed a substantial decrease (58% on average) in the area coverage of permeable 

surfaces (SAVI values 0.08-1) while a substantial increase (33% on average) in the area 

coverage of impermeable surfaces (SAVI values -1-0.08) in Tirunelveli between 2007 and 2017 

(Figure 4.4 and Table 4.4). The riparian zone at the Western part of Tirunelveli, which 

experienced the most extensive LULC conversion (Figure 4.3), also undergone the highest 

decline in highly and medium permeable surfaces (SAVI values 0.34-1) with dense vegetation 

between 2007 and 2017, i.e., the average SAVI value decreased from 0.54 to 0.08 (Figure 4.4). 

In general, the highly (SAVI 0.54-1) and medium (0.34-0.54) permeable zones undergone the 

highest decline, i.e. more than 87%, in Tirunelveli between 2007 and 2017 (Figure 4.4 and Table 

4.4). Conversely, impermeable surface zones (SAVI values -1-0.08) exhibited a substantial 

increase, mostly around the built-up Southeastern part of Tirunelveli. 
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Generally, we observed high areal average SAVI values, i.e. high surface permeability, for the 

LULC zones with vegetation cover, e.g. cropland and scrubs, in contrast to the low SAVI 

values for built-up LULC areas, e.g. urban and barren land (Table 4.5). The average SAVI 

values for all LULC zones decreased between 2007 and 2017 apart from the Wetlands (Table 

4.5). The highest average changes in SAVI values were observed for the barren and fallow 

lands (Table 4.5). Fallow land also represents the LULC class that has undergone the highest 

transition (178%) into real estate plots and built-up areas, i.e. urbanization (Table 4.2). This 

indicates that the extensive urbanization has adversely affected the soil permeability in 

Tirunelveli between 2007 and 2017, which is in line with [262]. Although the area coverage by 

water bodies has increased by 11% between 2007 and 2017 (Table 4.2), the permeability of the 

surface beneath also decreased for this LULC class (Table 4.5), indicating marginal or no 

improvement of soil permeability through anthropogenic development of water courses [263].  

 

The overall climatic impact of extensive LULC conversion and decrease in surface 

permeability was evident by an average increase of LST by 1.30C in Tirunelveli city between 

2007 and 2017 (Figure 4.5 and Table 4.6). Particularly, the Western riparian zone, which has 

undergone the highest conversion of LULC and highest decrease in SAVI, also experienced 

the highest increase in LST, i.e. 40C on average from 280C to 320C, between 2007 and 2017 

(Figure 4.5 and Table 4.6). LST zone 30–32°C exhibited the highest increase in area coverage 

(165%) whereas the highest decrease was observed for the coverage of LST zone 26–28°C 

(64%) (Table 4.6). Overall, the low temperature zones (26–30°C) showed a decreasing coverage 

whereas the high temperature zones (more than 30°C) exhibited an increasing coverage in 

Tirunelveli between 2007 and 2017 due to extensive LULC conversion and surface 

permeability deterioration (Table 4.6), which is also in line with [267].  

 

In general, we detected higher LST values for the LULC zones with lower vegetation cover, 

e.g. barren and fallow land, and urban built-up areas, and with lower surface permeability 

(lower SAVI), and vice-versa, which is in line with [213] (Table 4.7). The highest areal average 

LST of above 34°C was observed for the urban built-up areas and barren lands in 2007, which 

has increased to above 36°C in 2017. In contrast, the lowest areal average LST of below 27°C 

was observed for croplands, fallow lands, water bodies and wetlands in 2007, which has also  
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increased to below 28°C in 2017. The highest increase in areal average LST, i.e. 2.4°C, was 

observed for the urban area and barren lands (Table 4.7). Areal average LSTs of wetland and 

waterbodies also exhibited an increase of 10C between 2007 and 2017 (Figure 4.4,4.5 and Table 

4.7). Moreover, the deciduous forest area exhibited a decrease (0.03) and an increase (0.30C) in 

the areal average SAVI and LST, respectively, between 2007 and 2017, indicating the adverse 

impact of overall rapid and extensive urbanization in Tirunelveli (Table 4.5 and 4.7).  

 

Note that we obtained lower SAVI (lower surface permeability) and higher LST (higher 

surface temperature) values for the forested area at the North-eastern part of Tirunelveli than 

other vegetated areas, i.e. cropland pastures and scrubs (Table 4.5 and 4.7). This is because the 

deciduous forest of Tirunelveli sheds its leaves completely during summer (March - June) 

[241]. During this season, the surface of the dry forest receives the least precipitation with no 

other sources of irrigation, and absorbs the highest solar radiation with the highest 

temperature of the year [269]. Consequently, this dry decidous forest area exhibits relatively 

lower surface permeability and higher surface temperature than other vegetated areas during 

July in our study (Figure 4.4 and 4.5, Table 4.5 and 4.7). Similar climatic responses of decidous 

forest were observed in summer by other studies investing impacts of climatic changes on 

forests [269]. Nevertheless, this deciduous forest area exhibited a decrease (0.03) and an 

increase (0.30C) in the areal average SAVI and LST, respectively, between 2007 and 2017, 

indicating the adverse impact of overall rapid and extensive urbanization in Tirunelveli (Table 

4.5 and 4.7), which is in line with [231].   
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(a) 

Figure 4.4. Soil-Adjusted Vegetation Index (SAVI) (surface permeability) maps of the 

Tirunelveli city in 2007. 
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(b) 

Figure 4.4. Soil-Adjusted Vegetation Index (SAVI) (surface permeability) maps of the 

Tirunelveli city in 2017. 
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Table 4.4. Changes in the coverage of soil permeability (indicated by soil-adjusted 

vegetation index (SAVI)) classes in Tirunelveli between 2007 and 2017. 

 

SAVI 

Classes 

Surface 

permeability 

Total Area Coverage 

(Km2) 

Change in area 

coverage (%) 

2007 2017 

0.54-1 Very high 12.6 1.64 -86.98 

0.34-0.54 High 8.34 0.87 -89.56 

0.24-0.34 Medium 5.67 3.13 -44.79 

0.08-0.24 Low 11.76 10.54 -10.37 

-1-0.08 No 68.15 90.34 32.56 

 

Table 4.5. Areal average SAVI values for the LULC zones. 

 

LULC zones 2007 Standard deviation (±) 2017 Standard deviation (±) 

Barren land 0.09 0.59 -1 0.70 

Cropland pasture 0.42 0.13 0.29 0.08 

Fallow land 0.08 0.48 -1 0.61 

Forest 0.24 0.03 0.21 0.04 

Scrubs 0.54 0.14 0.34 0.12 

Urban 0.16 0.10 0.08 0.19 

Waterbodies 0.97 0.24 0.54 0.37 

Wetland 0.24 0.11 0.34 0.17 
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(a) 

 

Figure 4.5. Land Surface Temperature (LST) maps of the Tirunelveli city for 2007. 
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(b) 

Figure 4.5. Land Surface Temperature (LST) maps of the Tirunelveli city for 2017. 
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Table 4.6. Statistics of the area between 2007–2017 with corresponding changes in LST.  

 

 

Table 4.7. Average land surface temperature (LST) in degrees Celsius by landuse and 

landcover cover (LULC) zones. 

 

LULC zones 2007 Standard deviation 

(±) 

2017 Standard deviation 

(±) 

Barren land 34.106 5.32 36.604 7.92 

Cropland pasture 26.861 5.89 27.112 6.32 

Fallow land 34.127 3.21 35.821 6.87 

Forest 32.153 3.15 32.462 3.91 

Scrubs 26.242 6.13 27.357 7.44 

Urban 34.196 1.11 36.620 2.73 

Water bodies 26.824 6.98 27.868 8.03 

Wetland 26.291 8.44 27.731 9.34 

 

4.4.3 Urban Heat Islands Emergence 

We observed a negative correlation between LST and SAVI overall, as well as by the LULC 

zones (Table 4.8). The overall correlation coefficients obtained for entire Tirunelveli in 2007 

LST Classes 

(0C) 

Area Coverage 

(km2) 

Change in area 

coverage 

(%) 2007 2017 

26 - 28 28.46 10.21 -64.12 

28 - 30 19.97 7.21 -63.89 

30 - 32 10.43 27.69 165.48 

32 - 34 14.77 18.20 23.22 

>34 30.57 40.89 33.75 
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and 2017 were -0.24 and -0.72, respectively (both statistically significant at p ≤ 0.01). Urban 

built-up areas exhibited the highest correlation coefficients in 2007 and 2017, along with the 

highest increase in correlation coefficient values (Table 4.8). In general, LULC zones with 

lower surface permeability exhibited higher correlation coefficient values, and vice-versa. 

This indicates that a decrease in surface permeability entails an increase in surface 

temperature [266] and hence, exhibit a high potential for the emergence of UHIs [270]. 

 

The emergence potential for UHI was high for the Eastern periphery of Tirunelveli in 2017 

with the highest potential for the urban built-up areas at the Southeastern part (Figure 4.6). 

The Western riparian zone, which has undergone the highest LULC transition from cropland 

to barren and fallow lands, and urban built-up areas, also exhibited high emergence potential 

for UHI (Figure 4.6). Consequently, we suggest the Southeastern built-up areas in Tirunelveli 

as a potential UHI hotspot, while a caution for the Western riparian zone for UHI emergence 

that requires continuous and detailed monitoring. The waterbodies and wetlands, however, 

showed the lowest potential for UHI emergence, proving the importance of including 

waterbodies and greenspaces into urban planning to prevent the emergence of UHI [266]. 

 

Note that our analysis is limited to daytime imageries due to the unavailability of nighttime 

imageries and hence, did not measure nighttime temperature to determine the difference 

between minimum and maximum surface temperatures. This might affect the accuracy of 

UHI emergence detection using our SAVI-LST metric. However, since ours is a study on 

surface temperature and not air temperature, the variation between daytime and nighttime 

temperatures is marginal due to nighttime surface radiation [267]. Moreover, we used SAVI 

as an additional surrogate of LST, which provided important proxies for mean, range and 

variance of surface temperatures [262]. Furthermore, previous studies accurately detected and 

delineated UHIs based on only daytime imageries [230,239,271]. Hence, we suggest that our 

SAVI-LST metric is sufficiently robust for detecting UHIs emergence although nighttime 

imageries should be included when available.   
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Table 4.8. Spearman correlation between soil-adjusted vegetation index (SAVI) and land 

surface temperature (LST) by landuse and landcover (LULC) zones. All correlation 

coefficients are statistically significant at p ≤ 0.01. 

LULC zones Correlation coefficients p-values 

 2007 2017  

Barren land -0.19 -0.25 0.0023 

Cropland pasture -0.11 -0.21 0.0049 

Fallow land -0.17 -0.27 0.0031 

Forest -0.07 -0.13 0.0012 

Scrubs -0.11 -0.13 0.0015 

Urban -0.29 -0.52 0.0062 

Water bodies -0.14 -0.16 0.0017 

Wetland -0.13 -0.25 0.0037 

 

 

Figure  4.6. UHI emergence potential map of Tirunelveli city for 2017. 
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4.5 Concluding Remarks 

We demonstrated the advantage of using fused satellite imageries combining multiple sensors 

in detecting and monitoring changes in land surface permeability and temperature and 

emergence of Urban Heat Island (UHI) in fast growing cities like Tirunelveli. Future studies 

should fuse higher temporal and spectral resolution imageries than the ones used in our study 

to provide a continuous, seasonal and more detailed assessment of Landuse and Landcover 

(LULC), Soil-Adjusted Vegetation Index (SAVI) and Land Surface Temperature (LST) 

changes, and UHI emergence in Tirunelveli [230]. 

 

The UHI emergence potential, which was computed by aggregating SAVI and LST provide 

important metrics for the identification and quantification of UHI zones. These metrics can be 

integrated in sophisticated UHI detection models for a more accurate and precise 

identification and quantification of UHI [271]. 

 

We suggest that urban landuse measures and zonal planning should be informed by detailed 

and continuous RS and GIS based assessment of LULC, SAVI and LST [121,265]. Possible 

measures include the conservation of agriculture and forested lands, and proper management 

of the reclamations of barren lands to pasture lands to avoid the decrease in surface 

permeability and ecosystem fragmentation [272]. Urban expansion should include provision 

of water bodies and afforestation to preserve surface moisture, permeability and radiative 

capacity, and thus to prevent the increase in surface temperature [25]. 
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Chapter – 5 

 

What drives a Mangrove degradation?  
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“Humanity is cutting down its forests, apparently oblivious to the fact that we may not be 

able to live without them” 

Isaac Asimov 
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Chapter 5  

What Drives Mangrove Degradation?  

 

5.1 Introduction  

The tropical and subtropical climate regions of the world comprise intertidal mangrove 

swamps forming an unique interface between estuaries, terrestrial and marine ecosystems 

with enriched biodiversity composed of different species of flora and fauna of which millions 

people depend upon [273–276].  Mangroves provide unique and valuable provisioning (e.g. 

aquaculture, fisheries, fuel, medicine, textiles), regulating (e.g. shoreline protection, erosion 

control, climate regulation), supporting (nutrient cycling, nursery habitat), and cultural 

(recreation and tourism) ecosystem services [273]. It is estimated that 10 to 15% of coastal 

sediment retention and carbon storage are due to the global mangrove forest [183]. These 

values are five times greater than those of tropical forest when including other coastal 

wetlands [83,277,278]. Mangrove forest acts as an environmental barrier between shore and 

land from the impact of extreme events, such as hurricanes, storms and tsunamis [279–284]. 

 

The mangrove forests are mainly existing in eighteen countries which are Brazil, Mexico, 

Australia, India, Bangladesh, Indonesia, Nigeria, Malaysia, Papua New Guinea, Colombia, 

Nigeria, Myanmar, and Cuba, and less importantly in other countries, such as Thailand, 

Mozambique, Philippines, Guinea-Bissau, and Vietnam. In total, it is estimated that the 

mangroves forest cover a total area of approximately 150,000km2 [283,285,286]. Southeast Asia 

contains about 35% of the mangroves found on earth [283], and has been the site of several 

mangrove preservation, management, and assessment studies [287]. There are about 50 to 60 

known species of mangrove in the world [288], and 35 of these are in the Philippines [273].  

 

The mangrove species in tropical environments are facing major habitat degradation at an 

alarming rate, possibly even more rapidly than non-coastal tropical forests [74,75]. About 35% 

of the mangrove forest area has vanished during the past 20 years, and much of the leftovers 

is in a degraded state [76,77]. This is mainly due to climatic changes and human activities, 

which cause major alterations over the coastal ecosystem, mostly through deforestation,  
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agriculture, aquaculture, and urban development [78–83]. Globally, there are many mangrove 

species identified at risk of extinction, which leads to a tremendous loss of several ecosystem 

functions, especially in Asia where over-exploitation of mangrove is reported [84,85].  

 

There are several threatened species (Rhizophora samoensis, Conocarpus erectus and Avicennia 

germinans) found at the Pacific coast and Colombia [289,290]. Another species called Heritiera 

fomes, which protects the coastal land from erosion, salt water intrusion, storms, high tides 

and floods, is widely available in South Asia and has experienced an extensive decline since 

the 1990s, which reduces the potential for protection [291]. For instance, Muthurajawela 

Marsh in Sri Lanka, the water purification processed by this mangrove species were valued 

in more than 1.8 million (US$) per year [292]. West Africa and Central Pacific Island are 

covered by only two species (Aegicera floridum and sonneratia griffithii), which are globally wide 

spread species facing regional and local loss [293,294]. 

 

Mangrove forest rehabilitation activities have been gradually increasing in different regions 

especially in Asian countries, such as Indonesia, Bangladesh, Brazil, the East African region 

and China widely concentrating on mangrove restoration and reforestation, which brings 

increasing mangrove area and  helps to revive fisheries’ habitats, ecological restoration, and 

other forestry purposes [295,296]. But in some cases, it’s not viable to restore the mangrove 

coastal ecosystem [297].  

 

The restoration process of mangroves always needs careful consideration of several factors. 

One of the main factors which was considered in several studies suggested to identify the 

distribution of existing and former mangrove forest area [297]. Analyzing the variations to the 

coastal hydrology which may cause the degradation of mangrove forest and identified the 

existing watershed can also be considered as the main factor for the restoration process [296]. 

The study about the temporal changes about the mangrove site is also needed to decide the 

restoration site selection by considering the several environmental drivers in mangrove forest 

degradation. Additionally, various parameters have been considered for afforestation site 

selection including soil characteristics, tidal currents, site stability, depth of the water and 

fresh water existence [298]. However, efficient policies, an important subject on global drivers, 

are needed to identify and protect the mangrove forest from further degradation [299].  
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The monitoring of the distribution and changes in mangrove populations at global and 

regional scales has been carried out with Remote Sensing (RS) methods [86–90] using different 

types of data, varying from airborne data (e.g. LiDAR, 42Radar) to space borne images (e.g. 

medium and high resolution data) [300], or from 43hyper-spectral imaging to 44microwave data 

[301–304]. These studies enabled the investigation of the human interference on mangroves 

through the analysis of land use landcover changes (LULCC), at regional and global scales 

[91]. Additionally, research has been employed to identify several drivers on a regional level, 

which is geographically limited to small case studies [92–98]. However, such LULCC studies 

do not allow to detect the drivers of mangrove degradation at the global scale [99]. Thus, 

identifying the global drivers of mangrove habitat loss is still challenging [100].  

 

In this paper, we review and assess up-to-date information on anthropogenic and 

environmental drivers of the mangrove degradation, and the causes of disturbance over its 

ecosystems. First we discussed the global spatial distribution and changes in the mangrove 

forest. Subsequently we deliberated the identified drivers on mangrove degradation.   

 

5.2 Methods 

5.2.1 Document Search and Categorization 

In order to collect different information about mangroves, we followed a detailed search 

approach related with important functional keywords using two electronic journal sources, 

45Scopus and Web of Science 46(WOS).  

 

 

 

 

42Radar – Radar is a detection system that uses radio waves to determine the range, angle, or velocity of objects [305]. 

 
43Hyperspectral imaging – Hyperspectral imaging is the spectral imaging process which collects information from across 

the electromagnetic spectrum. It is used to obtain the spectrum for each pixel in the image of a scene, with the purpose of 

finding objects, identifying materials, or detecting processes [253].  

 
44Microwaves – Microwaves are a form of electromagnetic radiation with wavelengths ranging from about one meter to one 

millimeter; with frequencies between 300 MHz and 300 GHz [306]. 
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We considered all documents published from 1st January 1980 to 30th December 2018. A total 

of 231 articles were found using these search terms for the 3 considered categories: status and 

distribution, drivers, and impacts of degradation (Table 5.1). 

 

Table 5.1. List of the combination of mangrove relevant keywords and number of studies 

considered. 

Mangroves Keywords Number of studies Total number of 

studies WOS Scopus 

Status and 

Distribution 

 

Global distribution 5 6 11 

Mangrove biomass 6 3 9 

Mangrove species 3 4 7 

Mangrove 

ecosystem 

2 7 9 

Drivers 

 

 

 

Changes in climate  15 11 26 

Extreme events    20 25 45 

Land changes 19  21  40  

Pollution  12 15 27 

Water flow 

modification 

12 10 22 

Impacts of 

degradation 

Ecosystem and 

Biodiversity 

changes  

3 4 7 

Loss on nutrient 

cycling and 

nursery habitat 

2 5 7 

Declining raw 

product  

4 3 7 

Loss on natural 

barriers  

1 1 2 

Lost on carbon 

sequestration  

2 4 6 

Influence on 

culture, tourism 

and trade  

1 5 6 

 Total number of 

papers 

107 124 231 
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5.2.2 Data Interpretation and Analysis 

A database of research studies was built and analyzed to assess the dynamics of research 

providing an updated overview of the status and distribution, drivers, and impacts of 

mangrove degradation. Geographical Information System’s 47ArcGIS software [307] was used 

to map the distribution of the research studies found on mangrove. 

 

5.3 Results 

5.3.1 Global Distribution of Mangrove Forest 

The mangrove regions covered in this study as well as the number of studies used are shown 

in Figure 5.1. A great part of the research papers found were related to Asian countries, which 

had a high rate of mangrove loss in the last three decades (see Table 5.2) [308,309]. To 

understand the spatial distribution of global mangrove forest, we assessed a total of 36 

studies. Recent studies measured the global total mangrove cover for year 2000 in about 

137,760km2 for 118 countries [310]. 

 

However, this estimation differs from the recent valuation by the 48FAO and other related 

mangrove cover evaluations (Figure 5.2). An assessment of the rate of mangrove spatial 

distribution and transformation has differed since the 1980s [310]. This inconsistency may be 

associated with methodological approaches used in the analyses which depend on the 

countries covered, degradation level, afforestation activities, and also due to the coarse 

resolution of satellite imagery [285,310]. 

 

Mangroves are mostly situated in equatorial regions, geographically in the tropical and sub-

tropical region between 30° N and 30° S [311–313]. Mangroves typically grow in a harsh 

environment which has high temperatures, extreme tides and high salinity in water. These 

conditions nourish canopies of mangrove growth up to 30-40m in height [314]. The canopies’ 

height and biomass differences depend on the regional temperature and environmental 

conditions [75], for instance low temperature conditions decline to nurture canopies of 

mangrove which drops the growth up to 1-2m in height [314,315].  

 

Mangrove cover mapping can be carried out with the aid of time series of remotely sensed 

data, such as radar, LIDAR and optical data with a spatial resolution varying from 1m to 30m 
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[123]. Mangrove cover can also be obtained from the several existing mangrove atlases at 

regional and global scale [316]. Particularly, these kinds of atlases or FOA and other national 

examined data provide information about the different kind of species, mangrove covers and 

situation of mangroves at the local level [317]. Using these datasets, we can attain different 

mangrove functions, such as carbon stocks, conservation, functionality for biodiversity and 

changes. However, these kinds of national estimates have a lack of information providing 

prominent drivers of mangrove degradation at the global scale [186]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

45Scopus –  Scopus is citation database launched in 2004. Scopus covers nearly 36,377 titles from approximately 11,678 

publishers, of which 34,346 are peer-reviewed journals in top-level subject fields [318]. 

 
46Web of Science – Web of Science (previously known as Web of Knowledge) is an online subscription-based scientific citation 

indexing service [318]. 
 

47ArcGIS – ArcGIS is a geographic information system (GIS) software platform for working with geospatial data, maps and 

geographic information. It is used for generating and using maps, compiling geographic data, geospatial modelling, analyzing 

mapped information, sharing and discovering geographic information [307]. 

 
48Food and Agriculture Organization (FAO) – FAO is an agency of the United Nations that centrals worldwide 

determinations to defeat hunger [317].  
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Figure 5.1. Studies covered in this chapter in region wise [260-320]. 
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The major mangrove cover (about 75%) is located in only 15 countries [310]. Asia holds the 

largest (around 42%) and most diverse mangrove area available in southeast Asia [310]. About 

15% of mangrove is situated in Africa. Oceania and South America have 12% and 11% of 

mangrove forest, respectively. Ramsar wetlands (Sundarbans in Bangladesh and India, Garig 

Gunak Barlu in Australia, Cayapas-Mataje in Ecuador, Everglades in the United States and 

Douala Edea in Cameroon) alone held mangrove cover of about 338,482 km2 in 2012 [106]. 

Table 5.2 shows the 23 most mangrove-rich countries and their distribution changes between 

2000 and 2012 [310].  

 

 

Figure 5.2. Mangroves covers assessment from different sources.  
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Table 5.2. 23 Most mangrove-rich countries and their covered area changes from 2000 to 

2012. [91,310] 

 

Region  Country % of 

global 

(2000) 

Area in 

km2 (2000) 

% of 

global 

(2012) 

Area in km2 

(2012) 

Asia  Indonesia 28.83 24,073 28.50 23,324 

Malaysia 9.25 4969 5.77 4725 

Myanmar 3.34 2793 3.12 2557 

Bangladesh 2.12 1774 2.17 1772 

India 0.99 825 0.97 797 

Thailand 2.32 1933 2.30 1876 

 Philippines 2.50 2091 2.30 1886 

Africa  Nigeria 3.18 2657 3.24 2653 

Guinea Bissau 0.89 745 0.91 744 

Mozambique 1.47 1226 1.61 1223 

Madagascar 1.02 852 1.04 849 

 Cameroon 1.34 1119 1.36 1112 

 Gabon 1.30 1087 1.32 1082 

North and 

central 

America  

Mexico 3.62 3021 3.66 2991 

Cuba 1.99 1660 2.0 1633 

 United states 1.93 1612 1.92 1568 

South 

America  

 Brazil 9.25 7721 9.38 7674 

 Venezuela 2.89 2416 2.94 2403 

 Colombia 2.01 1674 2.04 1671 

 Panama 1.59 1328 1.62 1323 

 Ecuador 1.12 938 1.14 935 

Oceania  Australia 3.98 3327 4.05 3316 

Papu New 

Guinea 

5.02 4190 5.10 4172 

Total  91.95 74,031 88.46 72,286 
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5.3.2 Drivers in Mangrove Forest Degradation   

 
We found 250 records consisting of 229 studies associated with drivers and 21 on impacts of 

mangrove degradation. Environmental and anthropogenic pressures are identified as key 

factors for the continuous mangrove forest degradation  [61,319]. In many regions of the 

world, the decline of mangrove cover rate is increasing rapidly (see table 5.2) [91,310]. 

However, such changes and causes are not identified globally [320–322]. 

 

Worldwide, around 1000km2 of mangrove cover were converted to other land uses (e.g. 

agriculture and aquaculture) by implementing the economic policies of the 1970 to the 1980’s 

[323]. Similarly, mangrove forest in Ramsar sites suffered substantial losses between 2000 and 

2012 [106] as is listed in Table 5.3. 

 

Table 5.3. Ramsar site mangrove loss during 2000 and 2012 [106]. 

Ramsar site Area in Km2 

(2000) 

Area in Km2 

(2012) 

Loss in 

percentage 

Sundarbans, Bangladesh & 

India  

197,994 197,961 0.02 

Douala Edea, Cameroon 24,648 24,532 0.47 

Garig Gunak Barlu, 

Australia  

11,360 11,296 0.56 

Cayapus-Mataje, Ecuador  14,807 14,748 0.40 

Everglades, United States  93,090 89,945 3.38 

 

The progressive degradation of the mangrove forest has been associated to pollution, coastal 

erosion, saline water intrusion, changes in sea resources, flood and deforestation [136]. As a 

consequence, significant ecosystem services provided by the mangroves have also 

diminished. These include carbon sequestration, acting as a natural barrier from coastal 

hazards  and biodiversity [324–326]. Table 5.4 shows the number of drivers associated with 

different regions on mangrove degradation studies covered in this study. 
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Table 5.4. Listed several drivers on mangrove studies covered in this paper. N/A – Not 

available. 

 

   Countries Climate changes  Anthropogenic activities 

Temperature, 

Sea-level rise 

& 

Precipitation 

Extreme 

events 

Aquaculture, 

agriculture 

& plantation 

Water 

and soil 

Pollutions 

Flow 

modification 

Mexico 5 N/A 3 1 N/A 

Cuba N/A N/A 1 1 N/A 

Brazil 3 N/A 3 3 N/A 

Guinea 

Bissau 

1 1 N/A N/A N/A 

Guyana N/A N/A 2 1 N/A 

Saudi Arabia 1 1 1 N/A N/A 

Ethiopia 2 1 4 N/A N/A 

Mozambique  1 N/A 2 1 N/A 

Madagascar  4 2 N/A N/A N/A 

India  9 4 6 7 4 

Bangladesh  6 4 6 2 3 

Myanmar 1 2 N/A N/A N/A 

Malaysia 3 N/A 3 N/A N/A 

Philippines 6 2 6 1 1 

Indonesia 7 2 8 1 1 

Australia 3 4 1 2 N/A 

Papua New 

Guinea 

1 1 1 N/A N/A 

New 

Zealand  

2 2 1 N/A N/A 

Thailand 4 2 6 1 N/A 

Colombia 3 2 1 N/A N/A 

Nigeria 2 2 1 N/A 1 

Vietnam 1 2 3  N/A N/A 

China 2 N/A 1 2 1 

South Africa 1 N/A N/A 2 1 

Ecuador  N/A N/A 2 1 N/A 

Pakistan 1 2 2 1 3 

Venezuela 2 N/A N/A 1 1 

United States  2 4 N/A N/A N/A 

Mauritius  1 1 N/A 2 1 
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Srilanka 2 2 1 N/A N/A 

Kenya 1 1 N/A 1 N/A 

Japan 2 3 N/A N/A N/A 

Total 79 47 65 31 17 

 

However, the causes of mangrove degradation and its drivers in many parts of the mangrove 

distributed regions are still poorly comprehended [100]. For effective investigation and policy 

management it is necessary to analyze global coastal wetland changes and to identify the key 

answers for mangrove habitat loss. The drivers could be anthropogenic or environmental, or 

both (Figure 5.3). The environmental drivers comprise of climate, extreme events, and changes 

in the ecosystem of marine resources [327]. The anthropogenic activities are coastal 

population, pollution, flow modification and urban development [319]. 

 

 

 

Figure 5.3. Environmental Drivers in mangrove forest and its consequence.  
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5.3.2.1 Environmental Drivers on Mangrove Degradation and Impacts 

5.3.2.1.1 Global Sea Level Rise and Extreme High Water Occurrences  

Several types of research have been conducted to identify the cause and impact of sea-level 

rise [19,328–330]. The main findings is due to global warming related with global and regional 

sea-level rise is projected to great upsurge between 2090-2099 is 0.18–0.59 m [331]. The recent 

changes in relative sea-level rise is one of the key drivers of degradation of coastal wetlands 

including mangroves [19]. Even small increases in the sea level made low-lying coastal land 

vulnerable, includes Palembang (Indonesia), Sagar Island (India) Sundarbans (Bangladesh) 

and Shenzhen (China) and small Island states such as Solomon and Nuatambu Island [332–

336]. Evidence to that is that mangrove forest in Sagar Island, India is affected by increasing 

sea level (3.14mm per year) and the rate could upsurge to 3.5 mm per year due to the global 

warming [337]. Similarly, deltaic subsidence in Bangladesh doubled the rate of sea level rise 

which threatens the largest tidal halophytic mangroves [338]. Due to the changes in the 

elevation of the wetland sediment surfaces, there will be differences in the relative 

measurement of sea-level at tide gauge, and at coastal wetlands [339]. Also, the changes in the 

coastal wetlands could be caused by the local tectonic progressions, wetland subsidence due 

to the weight of overlying ice, sedimentation due to erosion, climatological and oceanographic 

causes [330]. 

 

As a consequence of oceanic and temperature factors leading to sea-level changes, the 

extremely high water events are also likely to increase due to variations in regional climate 

and ‘El Nino Southern Oscillation 49(ENSO)’ and ‘Northern Atlantic Oscillation 50(NAO)’ 

[340]. An analysis of the records collected from globally distributed stations in the recent years 

shows every hour sea-level has increased since 1975 [341]. Such increase in the occurrence of 

severe high water proceedings can drives the condition of the marine ecosystem which poses 

a great threat to human safety [278] due to increasing water level, coastal sedimentation and 

sulfide soil toxicity [341]. 

 

 

49El Niño–Southern Oscillation (ENSO) – ENSO is an irregularly periodic variation in winds and sea surface 

temperatures over the tropical eastern Pacific Ocean, affecting the climate of much of the tropics and subtropics [342]. 
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The sea level changes vary with local to regional dependency on the coastal landscape and 

situation. With time, change in Eustatic is defined as a variation in sea-level with respect to 

the earth coordinates system [330]. Eustatic changes are caused by ice melting, increase in the 

sea water temperature and transfer of Arctic sea ice to water. [328]. Extraction of subsurface 

ground water has led to coastal subsidence, and variations in thermal expansion across the 

geography are a few of such factors responsible for the vertical motion of the landform in 

tectonic movement [170,330,343,344]. These changes cause subsidence along the shoreline and 

continue with shallow subsidence on mangrove cover area [328]. According to the researchers, 

the subsidence has been happening since the ice age [19]. There are several delta regions, 

including Changjiang river delta (China), Chao phraya delta (Thailand) and Mississippi river 

delta (Gulf of Mexico), that were identified as extremely sensitive to sea level fluctuations, 

and for which the amount of relative sea level changes is greater than the global average, due 

to subsidence [345–347]. Coastal erosion and sediment deposition from the banks of large 

rivers have led to an alarming rate of silt deposition and increased subsidence level [348]. 

Most of the mangrove area in deltaic plains situated in Brahmaputra, Ganges and Meghna 

rivers in India (West Bengal) and Bangladesh, and accelerated high water events and sea-

level-rise may drive subsidence and erosion due to the monsoons rains which leads to coastal 

habitat loss of Sundarbans mangroves [338,349–351]. Many studies forecasted the future 

situation of mangrove inland margin were analyzed based on a) Physio-graphic setting of 

mangrove forest i.e., information about the neighboring land (slope) and existence of any 

obstacles, b) a present mangrove boundary delineation, c) forecasting the sea level changes 

relative to the mangrove swamplands [123,295,352].   

 

5.3.2.1.2 Extreme Events in a Warming Environment  

As an impact of global climate change, there will be a sharp rise in the tropical cyclone peak 

wind strengths, with an upsurge in tropical cyclone mean, and highest precipitation 

intensities in different  areas as a result of global climate alteration, which was noted by the 

Intergovernmental Panel on Climate Change 51(IPCC) [9,331,353]. If storms become more 

frequent, storm surge heights are projected to upsurge with strong winds which will affect 

mangroves and their ecosystems [72], through three different primary means: sediment  
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deposition, wind damage, and storm flow [354]. The high winds produce sudden and topple 

stems, defoliate the canopy and cut off the tree branches [355]. A speedy wind flow uproots 

the taller mangrove trees and knocks them over, but shorter trees may be protected from the 

hurricanes [356,357]. Evidence to that was the Caribbean hurricane ‘Joan’ in 1988, which 

caused extreme damage to the largest mangrove trees and reduced the stability of the stand, 

loss on several species and forest density [358].  

 

The defoliation and tree mortality to mangroves occurs due to the strong intensity and 

increased frequency upsurge [359]. This brings high sedimentation rate in wetlands 

association with changes in soil stability and soil erosion [360]. In addition, it affects the 

fertility rate of mangroves, variation in seedling season and changes in coastal hydrology 

causing permanent ecosystem conversion [352]. Sundarbans in Bangladesh and India – the 

world’s largest mangrove forest region - have a high tropical storms frequency and tidal bore 

since the 60s [361–363]. For instance, Sundarbans in Bangladesh, which is damaged by the 

cyclone Sidr in 2007, observed 2500 sq.km area of mangroves forest lost due to the cyclone 

[73]. Similarly, mangrove ecosystems in Orissa and Tamilnadu in India experienced severe 

damages on mangrove forest due to the super cyclone in 1999 and Vardah cyclone in 2016, 

Ockhi cyclone in 2017, Gaja cyclone in 2018 respectively [364,365].  

 

Apart from extreme wind induced damages, other natural vulnerabilities such as landslides 

and Tsunamis can cause severe damages to coastal ecosystems, including mangroves [282]. 

For instance, the greater Tsunami (2004) occurred in the Indian Ocean after the earthquake hit 

the epicenter off Sumatra, Indonesia on the Richter magnitude scale of 9.1 – 9.3, which lead to 

a major loss of human lives and coastal ecosystem in 14 countries [313].  

 

 

 

50North Atlantic Oscillation (NAO) – NAO is a weather phenomenon in the North Atlantic Ocean of fluctuations in the 

difference of atmospheric pressure at sea level (SLP) between the Icelandic Low (semi-permanent centre of low atmospheric 

pressure found between Iceland and southern Greenland) and the Azores High (High atmospheric pressure typically found 

south of the Azores) [366]. 

 
51Intergovernmental Panel on Climate Change (IPCC) –  IPCC is an international body of the United Nations, committed 

to delivering the world with an objective, scientific view of climate change and its political and economic impacts [9]. 
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According to FAO studies, these countries have mangrove cover cut-rates from 5,054,900 to 

3,660,600 ha [317]. Indonesia has one of the greatest recorded alteration on the mangrove 

stands, followed by India, Sri Lanka and Thailand [367–369]. Andaman Island, India itself 

brought 3825-10,200 ha of mangrove forest degradation from 12,750 ha of pre-impact cover, 

followed by Aceh Province (Sumatra) that lost approximately 750 ha and Andaman cost in 

Thailand that lost 306 ha [370–372]. As post-tsunami studies clearly disclose, the Tsunami 

degraded areas in India and Thailand are mostly converted into other land uses [311]. For 

example, the south and north province in Thailand has significantly mitigated the influence 

of Tsunami, which is converted into aquaculture and agriculture lands [373]. The Tsunami in 

Japan in 2011 and Papua New Guinea in 1999 also lead to ecosystem loss [374,375]. Mangrove 

and other forest were uprooted and broken in tsunami affected places, which brought huge 

mangrove habitat loss [374].  

 

5.3.2.1.3 Changes in Temperature and Precipitation Patterns  

Anthropogenic greenhouse gas atmospheric concentrations have been linked to the rise in 

global average surface temperature [376]. Globally, the surface temperature has increased by 

0.74 8C between 1906 and 2005 [353] which shows that the linear warming tendency of the 

past five decades (0.13 8C per decade) is closely twofold that for the last 100 years [353]. 

Increased surface temperature is expected to affect mangroves by changing the ecosystem and 

the species [301], mangrove productivity rate [377] and changing phenological patterns [378]. 

 

A hard freeze is a natural phenomenon which can deteriorate the growth and expansion of 

the mangrove forest [88]. The Southwest of Florida is identified as one of the mangrove coasts 

affected by hard freeze since the 90s, the species death from hoar frost when the temperature 

reaches -3ºC [379]. Therefore, the temperature of the air functions as some physiological 

barriers, which affects the growth of mangroves into higher altitude [379]. However, the 

global climate variation and its impact on the growth of the mangrove can slow down the 

recovery process even after the hard freeze [352]. On the other hand, summer heat waves also 

produce mangrove habitat loss due to defoliation and intense herbivory, as e.g. Hong Kong 

experiences strong defoliation in every summer during flowering season that causes low 

reproductivity and fewer seedlings [380].   



Doctoral Programme in Information Management                                             Rajchandar Padmanaban 

          

 

 154 

Climate change will cause a rise of about 25% in rainfall by 2050 [381]. The regional 

distribution will be unequal such as boosted precipitation in high-latitudes countries (e.g. 

New Zealand and South Africa) and reduced precipitation is possible in most subtropical 

countries [382]. Studies have shown that decline in rainfall and amplified evaporation leads 

to higher salinity which affects the mangrove productivity, development and sapling and 

seedling existence, shrinking the diversity of mangrove regions [340]. The degree of changes 

in rainfall will decline water input to the ground and decreased freshwater supply to 

mangroves [376], which directly upturns the rate of salinity in coastal wetlands that leads to 

swelled salt level in mangrove tissues. [343].  

 

Rich biodiversity with the increased productivity in the previously unvegetated areas of the 

landward fringe within the tidal wetland zone are some of the benefits of increased rainfall 

[383]. There is a positive correlation between high rainfall and higher mangrove diversity. 

Productivity has been increased due to a greater source of fluvial sand deposit and nutrients, 

as well abridged the sulfate level and cut-rate the salinity [378]. However, severe precipitation 

can produce coastal waterbodies to jump their waterways and introduce fresh channels 

through the coastal upland, transporting tons of sediment that are accumulated in 

downstream coastal lands, such as happened in the Choluteca River on the Pacific coast 

(Honduras) during Hurricane Mitch in 1998 and Tijuana River during the El Nin ̃o storm 

(1993) in southern California, which caused severe damage to the mangrove forest [66,384]. 

Several ecosystems such as algae, coral reefs and seagrasses also suffered from deteriorated 

health and changes in cover due to climate changes [385,386]. Mangrove forest is always 

associated with adjacent coastal ecosystems [333]. Subsequently, effects on the adjacent 

coastal ecosystems will affect the mangrove health and seedling rate [387]. For example, 

productive coral reefs supply a proportion of sediment into the low islands of mangroves 

[377].  This phenomenon will affect the mangroves due to lesser sedimentation rates and 

boosted regional subsidence if coral reefs and other ecosystem become less productive [330].  
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5.3.2.2 Anthropogenic Drivers and Impacts 

5.3.2.2.1 Population Growth and Urbanization 

Human populations occupy an area with-in 60 to 150 kilometers of the coastal land that may 

contain coastal floodplains, mangroves, tide flats, dunes, and coral reefs [388]. According to 

the publications from the World Bank group, the human population density in coastal region 

is around 80 person per square kilometer [339]. Many countries have a higher growth rate in 

coastal areas than in non-coastal areas [389]. Nearly 50% of population in Africa and 

Bangladesh lives at the coastline .[304]. The high population density poses great demands and 

exploitation to marine ecosystem [90] and directly motivates fishing, aquaculture, water and 

soil pollution due to development. Any impact on the coastal areas will directly reflect the 

economic growth of the country but the growth in the coastal areas comes with a problem in 

impacting the marine and coastal ecosystem [390,391]. Studies show that 50% of mangroves 

and 60% of coral reefs are degraded due to anthropogenic activities [99].  

 

The previous studies recorded the rate of mangrove habitat loss in Asia between 2000 and 

2012 as an average of 1% per year, which is higher than in other mangrove regions on several 

continents [100]. Following Asia, the Caribbean mangrove province has the second highest 

lost over the past three decades due to driving on sewage, oil pollution, solid waste and 

conversion to landfills and aquaculture [392]. Coastal communities, private industries, and 

governments in developing countries exploit and transform the resources from mangrove 

ecosystems for a different purposes. In Asia and Africa, the major drivers that are identified 

as degradation factors of mangrove forest are agriculture, aquaculture, climate and 

urbanization [385]. Particularly the Indian coastline, which is acknowledged as one of the 

richest in biodiversity and includes several countries such as Sri Lanka, Myanmar, 

Bangladesh, Singapore, Indonesia and Australia, has been losing its mangrove ecosystem in 

the last three decades due to human interference [385]. Also, in Sub-Saharan countries such 

as Mauritania, Comoros, Djibouti and Somalia, most of the development progression happens 

without any strategical plan, which brings mangrove loss [393–397]. 

 

Urban development components such as clearing for aquaculture, rice cultivation and timber 

production have led to the destruction of 25% of global mangroves in past 20 years [71]. This 
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alarming effect has caused evident modifications in the cover and health of the mangrove 

forest and its marine environment [398,399]. According to the recent studies, aquaculture is 

identified as one of the prominent drivers which causes mangroves degradation [400]. 

Aquaculture destroys the mangroves to create shrimp ponds, which reduces the ground water 

levels, and causes pollution to the surface water from the pond effluents [401]. However, the 

governments should invest in infrastructure and development of sewage treatment plants to 

overcome the loss of coastal habitat [402] because lack of long-term maintenance of natural 

resources are the greatest shortcoming of shrimp aquaculture [90]. Such developments reduce 

the environmental contamination to some extent. Researchers have noticed, the world-wide 

mangroves will vanish in about 50 years if this trend continues [403]. The impacts will be on 

coastal fisheries, bird life, and other ecosystems which thrive because of mangroves in several 

parts of the world [285]. 

 

5.3.2.2.2 Aquaculture and Agriculture 

Globally, 38% of mangroves were cleared for shrimp aquaculture and 14% for another fish 

aquaculture [404]. Thailand and Vietnam are two of the hot spots areas of mangrove 

degradation which is recorded at a high rate of about 9.535 ha per year [405]. In Thailand 

alone, records 40% (69,400 ha) of mangrove area were converted into aquaculture [406], 

102,000 ha in Vietnam [90], 6500 ha in Bangladesh [304], 21,600 ha in Ecuador, and 11,515 ha 

in Honduras [153,310,404]. India recorded that about 40% of mangrove habitat on the western 

coastline has been transformed into urban land and aquaculture [401]. Similarly, Philippines 

has a high rate of mangrove loss about 50% of the 279,00 ha of mangrove habitat from 1951 to 

1988 [407]. About 205,523 ha and 211,000 ha of mangrove marshlands have been transformed 

into shrimp and other fish farms in the Philippines and Indonesia respectively [81]. An 

estimation of these ecosystem changes in several Southeast Asian countries (Myanmar, 

Borneo, Malaysia, and Sumatra) is >10% between 2000 and 2012 [100]. Major decline of 

mangrove forest in Latin America also due to the wide clearing of mangroves for  shrimp 

farms and agriculture [408].  

 

Agriculture is the dominant influence in all mangrove habitat countries excluding Indonesia, 

where timber extraction and aquaculture is the major reason [371]. For instance, the 
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Philippines and Indonesia have most of the deforested mangrove area converted into another 

ecosystem services such as aquaculture and agriculture, but in West Africa mangrove 

ecosystems are exploited for wood harvesting and are not transformed [81,97,367]. Likely the 

conversion of mangrove area into salt pan, river damming and other coastal infrastructure is 

a major cause of ecosystem degradation recorded in Brazil during 1968 and 1999 but recent 

research reveals the mangrove biomass of the Pacoti estuary is growing from 0.71 to 1.44 km2 

in the past 10 years, which is formerly occupied with salt marshes [186,409]. Even though the 

mangrove area in Brazil is affected by human settlements, aquaculture and water pollution,  

there has been a very low rate of mangrove area loss that has been documented since 1980 

[410].  

 

Most of the deforested mangrove areas in the different region was supplanted with 

agriculture or aquaculture, which is misclassified as mangrove forest in 2012 spatial 

distribution studies, particularly in Indonesia [367]. But not all mangrove deforested area can 

be reinstated [404]. For instance, deforestation in Malaysia and Singapore is highly dominant 

with urban development, which is very improbable to revert back to mangroves [411]. Even 

some of the agricultural area, previously mangrove forest in Thailand, Burma, Bangladesh, 

and India, are very hard to afforest or rehabilitate due to the area being spoiled by pesticides 

and pollution [412]. The mangrove habitat loss rates in Kenya over the 2000-2010 is increasing 

due to the soil and water pollution [394,395]; Particular studies proved the influence of soil 

quality for potential agriculture and aquaculture use directly brings on rates of deforestation 

[413].  

 

The growth of oil palm plantations in Thailand, Malaysia, Sumatra, Colombia and Indonesia 

is a proximate driver of deforestation [100]. The past transformation of mangrove forest into 

palm plantations might have been unobserved, because oil palm plantation extension is 

commonly considered a terrestrial subject, and palm farm that replaces mangrove area may 

look like those that were replaced in satellite images [411]. The increasing demand for palm 

oil is expected to bring more production of oil in Indonesia, which is expected to increase by 

30% above 2012 levels by 2019, which influences intrusion on mangrove land [100].  
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5.3.2.2.3 Coastal Protection Structures and Flood Control Walls 

Coastal erosion structure, seawalls, and other coastal constructions as an effect of rising water 

level  in swamps have affected the mangroves ecosystem [319]. These structures cause surface 

run-off and flooding of the mangrove immediately during flash flood and increasing down 

current [414]. Increased rainfall leads to improved construction of storm water drainage, dams 

and erosion control structures reduce flooding of coastal regions [360]. This diverts the upland 

water from mangroves and other coastline ecosystems, dropping mangrove productivity 

[377]. For example, in Asia, the construction of upstream reservoirs and dams is now 

extremely reducing the supply of sediments to many Delta regions, including Ganges and 

Cauvery in India and Sundarbans deltas of India and Bangladesh and Indus river delta of 

Pakistan, which are facing increased wetland erosion with widespread significance 

[145,246,415,416]. Likewise, China has reduced the annual sediment that is brought to its delta 

to 0.4 billion metric tons from 1.1 billion metric tons [417]. The costal infrastructure will likely 

continue to upsurge throughout Asia and globally in coming years [418]. On the other hand,  

coastal regions with drought or lesser rainfall due to climate change and temperature rise will 

have higher groundwater extraction [312]. Boosted groundwater withdrawal will increase sea 

water intrusion to mangrove surfaces and thereby aggregate mangrove marshland 

vulnerability [304].  

 

In the Mississippi Delta, the wetlands have been reduced drastically because of the building 

of flood control walls and hydrological disturbance of the deltaic plain [345]. These 

components led to an isolation of the river from the Delta. Measures have been taken to restore 

the wetlands by diverting the river water into the wetlands and by creating marshes by 

pumping the dredged sediments [376]. However, it is important to find a viable and less 

expensive solution to mitigate the problems since intensive pumping for coastal wetland 

restoration is expensive and unaffordable in most cases [329]. 

 

Industrialization and oil extraction on virgin mangrove forests have increased in the last two 

decades [419]. But mangrove ecosystems can bioremediate certain industrial and oil 

pollutants in the limited environment and help in nutrients cycles and sediment 
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characteristics [335]. It dissolves the metals existent in the deposit by exuding oxygen into the 

anoxic soil sediment through mangrove aerial roots [420,421]. However, mangroves have 

adapted to them by acting as biological pollution sinks of low level anthropogenic pollutants 

[335,412].  

 

Immobilization of metals in mangroves is the major problem due to the chemical contaminant 

and the organic matter in mangroves [319]. The inundation of the mangrove area leads to 

depletion of oxygen which reacts with the deposited organic matter [335]. The coastal 

pollution can be assessed by calculating the presence of heavy and non-toxic metals such as 

Copper (Cu), Iron (Fe), Magnesium (Mg), Manganese (Mn), and Zinc (Zn) and Mercury (Hg), 

Lead (Pb), and Tin (Sn) respectively [419]. The presence of heavy metals has led to severe and 

long-lasting effects in humans and in forest decline due to its environmental direct damages 

[421,422].  

 

In India, a considerable amount of environmental stress is caused by domestic and industrial 

waste, heavy metals and other toxic excess from the thermal power stations (Tuticorin), 

nuclear power plants (Kudankulam & Kalpakkam) and dye factories [146]. In a region like the 

Arab states in the Persian Gulf, substantial petroleum exploration, oil wells, oil refiners and 

transportation lead to the oil spill and oil pollution drive on habitat loss on mangroves and 

other ecosystems [423]. The Gulf of Mexico oil spill in 2010 lead to major threats on costal 

ecosystems, because oil produces an instant cause with a resident time up to 10 years [424]. 

Recently, On January, 2017, the tonnes of toxic heavy bunker oil spill in Chennai, Tamilnadu 

spread some 34 kilometres of Ennore coast and that slick has reached Pichavaram mangrove 

in south Cuddalore and Pulicat mangroves in northwards, where it brought major ecological 

damage [425].  
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“The most patriotic thing you can do is to take care of the environment and try to live 

sustainably” 

 

Robert F.Kennedy. Jr 
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Chapter 6  

Major Results and Discussion  

 

 
6.1 Modelling Urban Sprawl using Remotely Sensed Data 
 

In chapter 2, We found fragmented urban growth in the outskirts of Chennai city, with the 

transformation of vegetation cover and agricultural land into built-up settlements. This 

alarming extent and level of US will have adverse impacts on the natural resources and land 

of Chennai. The combined application of geographic information systems, remote sensing, 

urban change modelling, landscape metrics and entropy measures proved to be a useful and 

efficient approach for our assessment and modelling US for the Chennai city. Consequently, 

this study contributes with indicators and metrics to monitor this US in Chennai. It also 

provides relevant information for sustainable urban growth and efficient urban planning as 

well as for mitigation of environmental impacts in Chennai. To conclude, our study provides 

quantitative measures for urban planning and management authorities for mitigating 

socioecological consequences of US and preventing loss of urban ecosystem services. 

 

6.2 A Remote Sensing Approach to Environmental Monitoring in a Reclaimed Mine 

Area 

 

In chapter 3, We identified two potential subsidence spots that may be under risk of collapse 

and overall degradation and damage of vegetation. Thus, our results inform environmental 

management and mining reclamation experts about land surface and vegetation loss because 

of subsidence. Environmental management authorities in Kirchheller Heide should prioritize 

the indicated subsidence areas for further surface and subsurface investigation, as well as for 

remediation and mitigation. The potential biodiversity and ecosystem impacts of subsidence 

should also be investigated. In general, our study proves the virtue of RS and GIS for 

monitoring short-term geological changes and thus for predicting long-term environmental 

impacts in reclaimed mine areas. Thus, we emphasize the importance of including RS and GIS 

monitoring in environmental conservation and management projects in addition to field 
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monitoring [219,426]. Our approach is also useful for identifying ecological stress, and surface 

erosion and inundation, and thus may provide important metrics for ecological restoration 

and infrastructure provision [49,53]. 

 

6.3 Satellite Image Fusion to Detect Changing Surface Permeability and Emerging 

Urban Heat Islands  

 

In chapter 4, we demonstrated the advantage of using fused satellite imageries combining 

multiple sensors in detecting and monitoring changes in land surface permeability and 

temperature and emergence of Urban Heat Island (UHI) in fast growing cities like Tirunelveli. 

Future studies should fuse higher temporal and spectral resolution imageries than the ones 

used in our study to provide a continuous, seasonal and more detailed assessment of Landuse 

and Landcover (LULC), Soil-Adjusted Vegetation Index (SAVI) and Land Surface 

Temperature (LST) changes, and UHI emergence in Tirunelveli [230]. We suggest that urban 

landuse measures and zonal planning should be informed by detailed and continuous RS and 

GIS based assessment of LULC, SAVI and LST [121,265]. Possible measures include the 

conservation of agriculture and forested lands, and proper management of the reclamations 

of barren lands to pasture lands to avoid the decrease in surface permeability and ecosystem 

fragmentation [272]. Urban expansion should include provision of water bodies and 

afforestation to preserve surface moisture, permeability and radiative capacity, and thus to 

prevent the increase in surface temperature [25]. 

 

6.4 Drives of Mangrove Degradation at Regional to Global Levels 

 

In chapter 5, we identified several mangrove degradation drivers at regional and global levels 

resulting from decades of research data of climate variations and human activities. We 

identified anthropogenic activities, such as encroachment near coastal line, coastal LULC 

changes, US, exploitation of mangrove forest resources, water withdrawal and pollution in 

upstreams as the main drivers of mangrove degradation in Asian countries including India, 

Bangladesh, Thailand and Vietnam. The climatic and associated geological changes, including 

increased salinity driven by increasing temperatures, are a common reason for mangrove 

health degradation that was identified in almost all mangrove presence countries. Natural 
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disasters, e.g. tropical cyclones, entail disruptive damages, whereas climatic changes and 

anthropogenic activities cause incremental degradation of the global mangrove forest. This 

information can be useful for future research on mangroves, and to help delineating global 

planning strategies which consider the correct ecological and economic value of mangroves 

in order to protect them from further loss.  

 

6.5 Contributions  
 

We believe that this dissertation has a comprehensive and rich practical model for 

quantification of local to global scale socio-ecological impacts of anthropogenic landscape 

changes by connecting the different aspects, which threaten ecosystem and biodiversity. This 

research has several contributions in the field of RS and GIS:  

 

First contributes to the field of Urban planning and management. We classified the different 

land features with the aid of Rotation Forest (ROF) and Random Forest (RF) in the R 

environment. R facilitates handling large volumes of geospatial data without any technical 

errors and with high accuracy, when compared to the other existing image processing 

software and methods. R can easily interface with external databases to handle large amounts 

of geospatial data [216]. The algorithms for RF and ROF suggested in this dissertation will 

contribute to classify the LULC area from regional to global extent with low human resource 

and cost. Thus, the algorithm for LULC introduced in the R environment can effortlessly 

interface with several geodatabases to classify vast and different kinds of earth landscapes, 

and contributes to Land monitoring and Landuse department.  

 

We introduced a new approach, Renyi’s Entropy method to measure the extent, pattern and 

level of US of fast-growing cities instead of applying Shannon’s entropy in preceding research. 

Renyi’s offers high performance to characterize and identify the degree of spatial dispersion 

and concentration of urban areas, and can also be computed from remotely sensed images 

and effectively used to quantify the level of US. We also suggested six landscape metrics to 

quantify the spatial and physical characteristics of urban features, urban patterns and their 

forms. This proved practical entropy and metrics method will contribute to city planners and 

urban developers to provide sustainable urban planning to modern society.  
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This dissertation moreover contributes a useful metric to identify the mining subsidence spot 

with the help of freely available spatial data. The presented indices combination of SMA and 

NDVI that were coded in the R platform will contribute to the field of environmental 

management and mining reclamation experts to understand the spatio-temporal changes in 

massive post-mining areas. This research also demonstrated the advantage of fusing 

imageries from multiple sensors for LULC change assessments as well as for assessing surface 

permeability and temperature and UHI emergence. Even though the relationship between 

urbanization and UHI emergence has been well established in previous research. However, 

there remains a gap at the front of developing early warning signals for the emergence of 

UHIs using remotely sensed imageries. We overcame this gap and established the advantage 

of using fused imageries combining multiple sensors in detecting and monitoring UHI in fast 

growing cities. 

 

This research furthermore contributes to environmental activists and coastal authorities. The 

broad study on global mangrove forest degradation provides a detailed report on drivers of 

global mangrove degradation. The identified drivers resulted from decades of published data 

(from 1981 to present) of climate variations (seal-level rising, storms, precipitation, extremely 

high-water events and temperature), and human activities (pollution, wood extraction, 

aquaculture, agriculture and urban expansion). This information can be useful for future 

research on mangroves, and to help delineating global planning strategies which consider the 

correct ecological and economic value of mangroves protecting them from further loss.  

 

6.6  Outlook and Concluding Remarks  

This Ph.D. dissertation investigated the drivers of environmental degradation associated with 

different landscape changes including urbanization, geological changes, and forest 

degradation, and thus to contribute to an integrated landscape management. We were 

interested in the quantification of urban to global scale social-ecological impacts of 

anthropogenic landscape changes by connecting the different aspects, which threaten the 

ecosystem and biodiversity. Social-ecological impacts of anthropogenic landscape changes 

that account for large scale degradation are still constrained by many concerns, which should 
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be covered by future research. Landscape data scarcity is certainly one of them, not only for 

resource constraints of developing countries but also globally for many significant variables. 

For instance, there is no accessibility of the high geometric and thematic accuracy data for 

specific dates or to cover definite areas. In addition to that, there is the problem of unsuitability 

of some vegetation and soil indices on the imagery of all sensors. 

 

Remote sensing data for geological changes associated with mining activities have only 

recently been available for few mining regions and hence, large scale risk assessment related 

with climate changes and vegetation degradation are lacking. High- and hyperspectral and 

temporal satellite imageries may deliver mining landscape dynamics with higher accuracy 

than in our research [62]. For example, a wide-ranging monthly variation analysis may offer 

detailed information on the emergence and dynamics of subsidence zones when compared to 

yearly analysis, as subsidence occurs abruptly at the surface level [8]. Moreover, images with 

higher coverage of bands may classify subsidence spots that are not observed through the 

growth of waterbodies, e.g., sink holes and landslides [53]. We specifically recommend the 

usage of high- and hyperspectral and temporal resolution imageries collected in continuous 

mode for monitoring directly after mining reclamation, when it is most urgent to investigate 

the surface and subsurface level. 

 

The proposed Renyi’s entropy and landscape metrics should be further explored for 

delineating US extent, level, and patterns in cities of other parts of the world. Though 

predicted for worldwide applicability, this dissertation could only deliver the test case of one 

Indian city for US quantification and land change prediction. Associated studies on different 

cultural landscapes and urban morphologies should be conducted. Even though some 

landscape metrics examinations have determined the applicability of pattern indices for 

differentiating landscapes, there is a scarcity of evidence that pattern indices imply ecological 

progressions. Thus, the advantage of landscape pattern indices for estimating the habitat 

consequences of unsustainable landscape plans should be handled especially cautiously in 

creating ecological inferences from landscape pattern index values applied to sustainable  

landscape plans. Consequently, future studies should develop landscape patterns by 

considering developments and not merely spatial patterns, associating data of diverse 
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qualities, generalizing outcomes in space and time, and deliberating culture as a driver of 

landscape change.  

 

Even though Landsat imagery is worldwide available, the classification of LULC in larger 

areas is still challenging, as it would need more manpower and a highly efficient geodatabase. 

As a possible way to overcome this challenge, this dissertation provided the test cases of two 

Indian cities and one European city for LULC classification from RF and RAF algorithm in the 

R environment. Though, the proposed classification algorithm should be integrated with 

external geodatabases and tested to overcome the limitation of LULC classification.  However, 

handling geospatial big data sets outstripping capacity of present computing methods 

includes R programming [427]. A momentous percentage of big data is actually geospatial 

data, and the size of such data is rising promptly at least by 20% every year [427]. Besides the 

drawback in handling geospatial big data, up-to-date data integration, setback in present 

computer models, incorporation of regional changeability and practise of large scale datasets 

for analysing landscape dynamics, crowd-sourced geospatial data refers to producing a map 

using informal social networks have shown substantial to fill geospatial data gaps [428–430].  

 

Though, technologies for efficient use of the spatial data and for interpreting valuable 

information from the data of RS are still very limited since no single sensor combines the 

spatial, radiometric, spectral and temporal resolution [35,88,254,431]. To overcome this 

drawback, we demonstrated the advantage of using fused satellite imageries combining 

multiple sensors in detecting and monitoring changes in land surface permeability and 

temperature and emergence of UHI. Nevertheless, future studies should fuse higher temporal 

and spectral resolution imageries than the ones used in our study to provide a continuous, 

seasonal and more detailed assessment of LULC, SAVI, and LST changes, and UHI emergence 

worldwide.   

 

Even though our research identifies several drivers on mangrove degradation, the 

associations of climatic changes and anthropogenic activities with the incremental 

degradation of vegetation health in the global mangrove forest have not yet been quantified 

[145,246,415,416]. Thus, the future project should aim at disentangling and quantifying the 

relative associations of climatic changes and anthropogenic activities with the vegetation 
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changes globally and predict the future vegetation health and ecosystem services of mangrove 

forests. Besides, the data for mangrove degradation drives are only accessible for certain areas 

and therefore, global drivers related with mangrove health degradation are required for 

global assessment.  
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