13,460 research outputs found

    Active microwave remote sensing of earth/land, chapter 2

    Get PDF
    Geoscience applications of active microwave remote sensing systems are examined. Major application areas for the system include: (1) exploration of petroleum, mineral, and ground water resources, (2) mapping surface and structural features, (3) terrain analysis, both morphometric and genetic, (4) application in civil works, and (5) application in the areas of earthquake prediction and crustal movements. Although the success of radar surveys has not been widely publicized, they have been used as a prime reconnaissance data base for mineral exploration and land-use evaluation in areas where photography cannot be obtained

    3D Sensor Placement and Embedded Processing for People Detection in an Industrial Environment

    Get PDF
    Papers I, II and III are extracted from the dissertation and uploaded as separate documents to meet post-publication requirements for self-arciving of IEEE conference papers.At a time when autonomy is being introduced in more and more areas, computer vision plays a very important role. In an industrial environment, the ability to create a real-time virtual version of a volume of interest provides a broad range of possibilities, including safety-related systems such as vision based anti-collision and personnel tracking. In an offshore environment, where such systems are not common, the task is challenging due to rough weather and environmental conditions, but the result of introducing such safety systems could potentially be lifesaving, as personnel work close to heavy, huge, and often poorly instrumented moving machinery and equipment. This thesis presents research on important topics related to enabling computer vision systems in industrial and offshore environments, including a review of the most important technologies and methods. A prototype 3D sensor package is developed, consisting of different sensors and a powerful embedded computer. This, together with a novel, highly scalable point cloud compression and sensor fusion scheme allows to create a real-time 3D map of an industrial area. The question of where to place the sensor packages in an environment where occlusions are present is also investigated. The result is algorithms for automatic sensor placement optimisation, where the goal is to place sensors in such a way that maximises the volume of interest that is covered, with as few occluded zones as possible. The method also includes redundancy constraints where important sub-volumes can be defined to be viewed by more than one sensor. Lastly, a people detection scheme using a merged point cloud from six different sensor packages as input is developed. Using a combination of point cloud clustering, flattening and convolutional neural networks, the system successfully detects multiple people in an outdoor industrial environment, providing real-time 3D positions. The sensor packages and methods are tested and verified at the Industrial Robotics Lab at the University of Agder, and the people detection method is also tested in a relevant outdoor, industrial testing facility. The experiments and results are presented in the papers attached to this thesis.publishedVersio

    The Reality of Virtual Environments: WPE II Paper

    Get PDF
    Recent advances in computer technology have made it now possible to create and display three-dimensional virtual environments for real-time exploration and interaction by a user. This paper surveys some of the research done in this field at such places as: NASA\u27s Ames Research Center, MIT\u27s Media Laboratory, The University of North Carolina at Chapel Hill, and the University of New Brunswick. Limitations to the reality of these simulations will be examined, focusing on input and output devices, computational complexity, as well as tactile and visual feedback

    Activity monitoring and behaviour analysis using RGB-depth sensors and wearable devices for ambient assisted living applications

    Get PDF
    Nei paesi sviluppati, la percentuale delle persone anziane è in costante crescita. Questa condizione è dovuta ai risultati raggiunti nel capo medico e nel miglioramento della qualità della vita. Con l'avanzare dell'età, le persone sono più soggette a malattie correlate con l'invecchiamento. Esse sono classificabili in tre gruppi: fisiche, sensoriali e mentali. Come diretta conseguenza dell'aumento della popolazione anziana ci sarà quindi una crescita dei costi nel sistema sanitario, che dovrà essere affrontata dalla UE nei prossimi anni. Una possibile soluzione a questa sfida è l'utilizzo della tecnologia. Questo concetto è chiamato Ambient Assisted living (AAL) e copre diverse aree quali ad esempio il supporto alla mobilità, la cura delle persone, la privacy, la sicurezza e le interazioni sociali. In questa tesi differenti sensori saranno utilizzati per mostrare, attraverso diverse applicazioni, le potenzialità della tecnologia nel contesto dell'AAL. In particolare verranno utilizzate le telecamere RGB-profondità e sensori indossabili. La prima applicazione sfrutta una telecamera di profondità per monitorare la distanza sensore-persona al fine di individuare possibili cadute. Un'implementazione alternativa usa l'informazione di profondità sincronizzata con l'accelerazione fornita da un dispositivo indossabile per classificare le attività realizzate dalla persona in due gruppi: Activity Daily Living e cadute. Al fine di valutare il fattore di rischio caduta negli anziani, la seconda applicazione usa la stessa configurazione descritta in precedenza per misurare i parametri cinematici del corpo durante un test clinico chiamato Timed Up and Go. Infine, la terza applicazione monitora i movimenti della persona durante il pasto per valutare se il soggetto sta seguendo una dieta corretta. L'informazione di profondità viene sfruttata per riconoscere particolari azioni mentre quella RGB per classificare oggetti di interesse come bicchieri o piatti presenti sul tavolo.Nowadays, in the developed countries, the percentage of the elderly is growing. This situation is a consequence of improvements in people's quality life and developments in the medical field. Because of ageing, people have higher probability to be affected by age-related diseases classified in three main groups physical, perceptual and mental. Therefore, the direct consequence is a growing of healthcare system costs and a not negligible financial sustainability issue which the EU will have to face in the next years. One possible solution to tackle this challenge is exploiting the advantages provided by the technology. This paradigm is called Ambient Assisted Living (AAL) and concerns different areas, such as mobility support, health and care, privacy and security, social environment and communication. In this thesis, two different type of sensors will be used to show the potentialities of the technology in the AAL scenario. RGB-Depth cameras and wearable devices will be studied to design affordable solutions. The first one is a fall detection system that uses the distance information between the target and the camera to monitor people inside the covered area. The application will trigger an alarm when recognizes a fall. An alternative implementation of the same solution synchronizes the information provided by a depth camera and a wearable device to classify the activities performed by the user in two groups: Activity Daily Living and fall. In order to assess the fall risk in the elderly, the second proposed application uses the previous sensors configuration to measure kinematic parameters of the body during a specific assessment test called Timed Up and Go. Finally, the third application monitor's the user's movements during an intake activity. Especially, the drinking gesture can be recognized by the system using the depth information to track the hand movements whereas the RGB stream is exploited to classify important objects placed on a table

    Fusing spatial and temporal components for real-time depth data enhancement of dynamic scenes

    Get PDF
    The depth images from consumer depth cameras (e.g., structured-light/ToF devices) exhibit a substantial amount of artifacts (e.g., holes, flickering, ghosting) that needs to be removed for real-world applications. Existing methods cannot entirely remove them and perform slow. This thesis proposes a new real-time spatio-temporal depth image enhancement filter that completely removes flickering and ghosting, and significantly reduces holes. This thesis also presents a novel depth-data capture setup and two data reduction methods to optimize the performance of the proposed enhancement method

    In situ sensors for measurements in the global trosposphere

    Get PDF
    Current techniques available for the in situ measurement of ambient trace gas species, particulate composition, and particulate size distribution are reviewed. The operational specifications of the various techniques are described. Most of the techniques described are those that have been used in airborne applications or show promise of being adaptable to airborne applications. Some of the instruments described are specialty items that are not commercially-available. In situ measurement techniques for several meteorological parameters important in the study of the distribution and transport of ambient air pollutants are discussed. Some remote measurement techniques for meteorological parameters are also discussed. State-of-the-art measurement capabilities are compared with a list of capabilities and specifications desired by NASA for ambient measurements in the global troposphere
    • …
    corecore