
3D Sensor Placement and Embedded
Processing for People Detection in an
Industrial Environment

Joacim Dybedal

Doctoral Dissertations at
the University of Agder 433

Joacim Dybedal

3D Sensor Placement and Embedded Processing for

People Detection in an Industrial Environment

Doctoral Dissertation for the degree Philosophiae Doctor (Ph.D.)
at the Faculty of Engineering and Science, Specialisation in Mechatronics

University of Agder
Faculty of Engineering and Science

2023

Doctoral Dissertations at the University of Agder 433

ISSN: 1504-9272
ISBN: 978-82-8427-150-7

c© Joacim Dybedal, 2023

Printed by Make!Graphics
Kristiansand

Preface and Acknowledgements

This thesis presents the results of the Ph.D. project in work package 3.1 in the
research centre SFI Offshore Mechatronics at the University of Agder, Grimstad,
Norway. The project started in August 2016 and was completed in June 2023. I am
grateful for the opportunity to work on this project, which has widely broadened
my knowledge of relevant and interesting topics such as machine vision and artificial
intelligence. To be able to work with such topics from a time when they were still
buzz-words until the recent release of AI services such as ChatGPT to the public has
been humbling and extremely rewarding. And after a period of time with a global
pandemic and the addition of two family members along the way, I am proud to
finally submit this thesis and complete this important chapter of my life, and I am
excited to see what the future holds.

I would like to extend my special thanks to Professor Geir Hovland, who has been
my main supervisor throughout this entire project. Your guidance and support have
been excellent, and I have been inspired by your broad knowledge and expertise.

I would also like to thank Dr. Atle Aalerud for his cooperation in establishing
the Industrial Robotics Lab at the University of Agder, where we both did most of
our research. The time at the university would not be the same without you, and I
am proud of the results we accomplished.

To my girlfriend and partner in life, Tina, and the rest of my family: Thank you
for all your love, support and patience through this period of my life and beyond.

Lastly, I would like to thank NOV Norway AS for giving me the opportunity to
take on this project, Wei Zhao and Kai Erik Nilsen for the help with assembling
the prototype sensors, and all the fellow Ph.D. candidates at the SFI OM for their
contribution to a fun and rewarding work environment.

The research presented in this thesis has received funding from the Norwegian
Research Council, SFI Offshore Mechatronics, project number 237896.

Joacim Dybedal
Kristiansand, Norway
June 2023

v

Abstract

At a time when autonomy is being introduced in more and more areas, computer
vision plays a very important role. In an industrial environment, the ability to
create a real-time virtual version of a volume of interest provides a broad range of
possibilities, including safety-related systems such as vision based anti-collision and
personnel tracking. In an offshore environment, where such systems are not common,
the task is challenging due to rough weather and environmental conditions, but the
result of introducing such safety systems could potentially be lifesaving, as personnel
work close to heavy, huge, and often poorly instrumented moving machinery and
equipment.

This thesis presents research on important topics related to enabling computer
vision systems in industrial and offshore environments, including a review of the most
important technologies and methods. A prototype 3D sensor package is developed,
consisting of different sensors and a powerful embedded computer. This, together
with a novel, highly scalable point cloud compression and sensor fusion scheme allows
to create a real-time 3D map of an industrial area.

The question of where to place the sensor packages in an environment where
occlusions are present is also investigated. The result is algorithms for automatic
sensor placement optimisation, where the goal is to place sensors in such a way
that maximises the volume of interest that is covered, with as few occluded zones
as possible. The method also includes redundancy constraints where important
sub-volumes can be defined to be viewed by more than one sensor.

Lastly, a people detection scheme using a merged point cloud from six different
sensor packages as input is developed. Using a combination of point cloud clustering,
flattening and convolutional neural networks, the system successfully detects multiple
people in an outdoor industrial environment, providing real-time 3D positions.

The sensor packages and methods are tested and verified at the Industrial Robotics
Lab at the University of Agder, and the people detection method is also tested in a
relevant outdoor, industrial testing facility. The experiments and results are presented
in the papers attached to this thesis.

vii

Oppsummering

I en tid hvor autonomi blir introdusert i stadig flere områder, spiller maskinsyn en
svært viktig rolle. I en industriell kontekst gir evnen til å skape en sanntids virtuell
versjon av et interesseområde en rekke muligheter, inkludert sikkerhetssystemer som
baserer seg på maskinsyn for å unngå kollisjoner og for å spore personell. I en
offshore kontekst, der slike systemer ikke er vanlige, er oppgaven utfordrende på
grunn av tøffe vær- og miljøforhold, men å introdusere slike sikkerhetssystemer vil
potensielt kunne redde liv, da personell ofte må arbeide nær tunge, store og dårlig
instrumenterte maskiner og utstyr.

Denne avhandlingen presenterer forskning på viktige emner knyttet til mulig-
gjøring av maskinsyn-systemer i industrielle og offshore miljøer, inkludert en gjen-
nomgang av de viktigste teknologiene og metodene. Det er utviklet en prototyp
på et 3D-sensorsystem, bestående av pakker med ulike sensorer og en innebygd
datamaskin. Dette, sammen med en ny og svært skalerbar punktskykomprimerings-
og sensorfusjons-metode, gjør det mulig å skape en sanntids 3D-kartlegging av et
industrianlegg.

Spørsmålet om hvor man skal plassere sensorpakkene i et miljø der det forekommer
objekter som kan hindre sikt, er også undersøkt. Resultatet er algoritmer for
optimalisering av automatisk plassering av sensorer, hvor målet er å plassere sensorer
slik at mest mulig av interesseområdet blir observert, med så få skjulte soner som
mulig. Metoden inkluderer også mulighet for å legge inn krav om redundans, der
delvolumer kan defineres som ekstra viktige for å bli overvåket av mer enn én sensor.

Til slutt er det utviklet en medtode for detekjon av personer ved bruk av en
sammenslått punktsky fra seks ulike sensorpakker. Ved hjelp av en kombinasjon av
filtrering av punktskyen, transformering til bilder, samt maskinlæring, kan systemet
vellykket detektere flere personer i et utendørs industrianlegg og angi sanntids
posisjoner i tre dimensjoner.

Sensorpakkene og metodene er testet og verifisert ved Industrial Robotics Lab
ved Universitetet i Agder, og persondeteksjons-metoden er også testet på data fra
et relevant utendørs industrianlegg. Eksperimentene og resultatene presenteres i
artiklene vedlagt denne avhandlingen.

ix

Publications

The following papers are included as part of this thesis.

Paper A Joacim Dybedal and Geir Hovland. Optimal placement of 3D sensors
considering range and field of view. In 2017 IEEE International Conference on
Advanced Intelligent Mechatronics (AIM), pages 1588–1593, Munich, 2017.
doi: 10.1109/AIM.2017.8014245.

Paper B Joacim Dybedal and Geir Hovland. GPU-Based Optimisation of 3D
Sensor Placement Considering Redundancy, Range and Field of View. In 2020
15th IEEE Conference on Industrial Electronics and Applications (ICIEA),
pages 1484–1489, Kristiansand, Norway, 2020.
doi: 10.1109/ICIEA48937.2020.9248170.

Paper C Joacim Dybedal and Geir Hovland. GPU-Based Occlusion Minimisation
for Optimal Placement of Multiple 3D Cameras. In 2020 15th IEEE Con-
ference on Industrial Electronics and Applications (ICIEA), pages 967–972,
Kristiansand, Norway, 2020.
doi: 10.1109/ICIEA48937.2020.9248399.

Paper D Joacim Dybedal, Atle Aalerud and Geir Hovland. Embedded Processing
and Compression of 3D Sensor Data for Large Scale Industrial Environments.
Sensors, 19(3):636, 2019.
doi: 10.3390/s19030636.

Paper E Joacim Dybedal and Geir Hovland. CNN-based People Detection in Voxel
Space using Intensity Measurements and Point Cluster Flattening. Modeling,
Identification and Control, 42(2):37–46, 2021.
doi: 10.4173/mic.2021.2.1.

xi

http://dx.doi.org/10.1109/AIM.2017.8014245
http://dx.doi.org/10.1109/ICIEA48937.2020.9248170
http://dx.doi.org/10.1109/ICIEA48937.2020.9248399
http://dx.doi.org/10.3390/s19030636
http://dx.doi.org/10.4173/mic.2021.2.1

In addition to the papers included in this thesis, the author has also contributed
to the following publications as part of the research done in the SFI Offshore
Mechatronics research centre.

Atle Aalerud, Joacim Dybedal and Geir Hovland. Scalability of GPU-Processed 3D
Distance Maps for Industrial Environments. In 2018 14th IEEE/ASME Inter-
national Conference on Mechatronic and Embedded Systems and Applications
(MESA), Oulu, Finland, 2018. doi: 10.1109/MESA.2018.8449160.

Erind Ujkani, Joacim Dybedal, Atle Aalerud, Knut Berg Kaldestad and Geir Hov-
land. Visual Marker Guided Point Cloud Registration in a Large Multi-Sensor
Industrial Robot Cell. In 2018 14th IEEE/ASME International Conference on
Mechatronic and Embedded Systems and Applications (MESA), Oulu, Finland,
2018. doi: 10.1109/MESA.2018.8449195.

Atle Aalerud, Joacim Dybedal and Geir Hovland. Industrial Environment Mapping
Using Distributed Static 3D Sensor Nodes. In 2018 14th IEEE/ASME Inter-
national Conference on Mechatronic and Embedded Systems and Applications
(MESA), Oulu, Finland, 2018. doi: 10.1109/MESA.2018.8449203.

Atle Aalerud, Joacim Dybedal and Geir Hovland. Automatic Calibration of an
Industrial RGB-D Camera Network using Retroreflective Fiducial Markers.
Sensors, 19(7) 2019. doi: 10.3390/s19071561.

Atle Aalerud, Joacim Dybedal and Dipendra Subedi. Reshaping Field of View and
Resolution with Segmented Reflectors: Bridging the Gap Between Rotating
and Solid-State LiDARs. Sensors, 20(12) 2020. doi: 10.3390/s20123388.

Joacim Dybedal. Replication Data for: CNN-based People Detection in Voxel Space
using Intensity Measurements and Point Cluster Flattening. In DataverseNO,
2021. doi: https://doi.org/10.18710/HMJVFM.

Atle Aalerud and Joacim Dybedal. "Reflector for reflecting electromagnetic waves
from a rotating electromagnetic wave source", European Patent EP3899604B1,
Mar. 29, 2023.

xii

http://dx.doi.org/10.1109/MESA.2018.8449160
http://dx.doi.org/10.1109/MESA.2018.8449195
http://dx.doi.org/10.1109/MESA.2018.8449203
http://dx.doi.org/10.3390/s19071561
http://dx.doi.org/10.3390/s20123388
http://dx.doi.org/https://doi.org/10.18710/HMJVFM

Contents

1 Introduction 1
1.1 Motivation and Problem Statement 1

1.1.1 Main Research Questions . 2
1.1.2 Research Methods . 2

1.2 Thesis Outline . 3
1.3 Preliminary Analysis of the State-of-the-art on 3D Sensor Technology 4

1.3.1 3D Sensors for Offshore Environments 5
1.3.2 Embedded Solutions for Processing of 3D Sensor Data 6
1.3.3 Sensor Fusion . 7
1.3.4 Sensor Calibration . 8
1.3.5 Optimisation Techniques . 9

1.4 Contributions . 11
1.4.1 Summary of Papers . 11

1.5 Published Software and Dataset . 13

2 3D Optimisation 15
2.1 Mixed Integer Programming . 15
2.2 Massive Parallelisation on GPUs . 18

3 3D Sensors and Data Structures 23
3.1 3D Sensor Types . 23

3.1.1 Stereo Vision Sensors . 23
3.1.2 Structured Light Cameras . 24
3.1.3 Time-of-Flight Cameras . 26
3.1.4 Lidar . 26
3.1.5 Radar . 28

3.2 3D Data Representation . 28
3.2.1 Depth Maps and RGB-D Image 28
3.2.2 Point Clouds . 29
3.2.3 Voxels and Octree . 29

3.3 Point Cloud Compression and Filtering 31

xiii

4 Experimental Setup and Prototyping 33
4.1 Selected 3D sensors . 34
4.2 3D Sensor Package . 34
4.3 Other Hardware and Prototyping Environment 35

5 People Detection 39
5.1 Statistical Analysis of Binary Classification Performance 39
5.2 Detection Based on Images . 41
5.3 Detection Based on Point Clouds . 43

6 Concluding Remarks 45
6.1 Conclusions . 45
6.2 Future Work . 47

Bibliography 49

Appended Papers 57

A Optimal Placement of 3D Sensors Considering Range and Field of
View 57
A.1 Introduction . 59
A.2 Optimisation Method . 62

A.2.1 Linearisation of Nonlinear Function 63
A.2.2 Implication 1 . 63
A.2.3 Implication 2 . 64
A.2.4 Implication 3 . 64

A.3 Problem Formulation . 64
A.4 Case Studies . 68

A.4.1 Case Study I . 68
A.4.2 Case Study II . 70

A.5 Discussion and Conclusion . 71
A.6 Acknowledgment . 73

B GPU-Based Optimisation of 3D Sensor Placement Considering Re-
dundancy, Range and Field of View 77
B.1 Introduction . 79
B.2 Problem Formulation . 81
B.3 Optimisation Method . 82

B.3.1 Redundancy Constraints . 85
B.4 Case Studies . 85

B.4.1 Case Study I . 86

xiv

B.4.2 Case Study II . 87
B.4.3 Case Study III . 89
B.4.4 Case Study IV . 89
B.4.5 Case Study V . 91

B.5 Discussion and Conclusions . 93
B.6 Acknowledgement . 94

C GPU-Based Occlusion Minimisation for Optimal Placement of Mul-
tiple 3D Cameras 97
C.1 Introduction . 99
C.2 Problem Definition . 100
C.3 Methodology . 101

C.3.1 Occlusion Detection . 102
C.3.2 The Pyramid-shaped Viewing Frustum 104
C.3.3 Extension of the Sensor Placement Optimisation Solver 105

C.4 Case Studies . 106
C.4.1 Case Study 1 . 107
C.4.2 Case Study 2 . 107
C.4.3 Case Study 3 . 108

C.5 Discussion and Conclusions . 112
C.6 Acknowledgement . 113

D Embedded Processing and Compression of 3D Sensor Data for
Large Scale Industrial Environments 117
D.1 Introduction . 119

D.1.1 Related Work . 120
D.1.2 Main Contributions . 121

D.2 Materials and Methods . 122
D.2.1 Problem Formulation and Motivation 122
D.2.2 Point Cloud Preprocessing . 124
D.2.3 Data Representation . 124
D.2.4 Compression . 126
D.2.5 Voxel Intensity Value Computation 127

D.2.5.1 Counting Points . 127
D.2.5.2 Point Value Based on Quadratic Distance 128
D.2.5.3 Point Value Based on Linear Distance 129
D.2.5.4 Voxel Intensity . 130

D.2.6 Decompression and Denoising 131
D.2.7 Experimental Setup . 133
D.2.8 Multisensor Setup . 135

xv

D.3 Results . 136
D.3.1 Preprocessing . 136
D.3.2 Compression . 136
D.3.3 Frequency and Bandwidth . 138
D.3.4 Denoising . 140

D.4 Discussion . 143
D.5 Acknowledgments . 144

E CNN-based People Detection in Voxel Space using Intensity Meas-
urements and Point Cluster Flattening 149
E.1 Introduction . 151
E.2 Methodology . 154

E.2.1 Point Cloud Pre-processing 155
E.2.2 Point Cluster Flattening . 155
E.2.3 Scene Classification . 157
E.2.4 Labeling and Position Extraction 158

E.3 Experimental Results . 159
E.3.1 Indoor Single Person Detection 159
E.3.2 Indoor Accuracy Validation 160
E.3.3 Testing on Outdoor Datasets 162

E.3.3.1 Human Detection Performance 163
E.4 Discussion and Conclusions . 163
E.5 Acknowledgments . 164

xvi

List of Figures

2.1 Illustration of non-convex objective function with many local maxima. 19

3.1 Simple stereo vision setup for identical, parallel cameras. 24
3.2 Output of a SLAM algorithm using a stereo camera 25
3.3 A simple illustration of a structured light sensor 25
3.4 A simple illustration of a time of flight sensor 26
3.5 A conceptual illustration of spinning lidar 27
3.6 An example of a point cloud generated by Kinect V2 sensors. 30
3.7 A representation of 3D pixels, or voxels 30
3.8 A representation of an octree . 31

4.1 Overview of the Industrial Robotics Lab at the University of Agder. . 33
4.2 Sensor package prototypes . 35
4.3 Point clouds from prototyping environment 37
4.4 Overview of the outdoor testing facility at MHWirth. 38

5.1 Example of a binary (2-class) Confusion Matrix 40

xvii

Chapter 1

Introduction

This chapter presents the main research questions and methods used in this Ph.D.
project, and the motivation behind them. It further outlines the structure of the
thesis, and presents a state-of-the-art analysis of relevant topics that places the
project into context. Lastly, the contributions of the papers that were published
during the project are summarised.

1.1 Motivation and Problem Statement

In 2016, when the oil and gas industry was facing hard times, there was a growing
need for products that could reduce costs, improve safety, and improve efficiency. A
machine vision 3D sensor that could be used in offshore environments could help
improve these fields in many scenarios. From the safety perspective of detecting
people on a drill floor, to monitoring or measuring machines and objects, a 3D sensor
would be a versatile and helpful tool for the oil and gas engineers when designing
the rig of the future.

This Ph.D. project was defined as a part of the “Robotics and Automony” work
package at the Centre for Research-based Innovation “SFI Offshore Mechatronics”
at the University of Agder [1]. Being a research centre with many partners from
the offshore industry, this sent a statement that the introduction of computer vision
to offshore environments was highly desirable. The main goal of the project was
to investigate and prototype a 3D sensor package that could be operational in an
offshore environment, including day/night, rough weather conditions, and so on.

The project was initialised by the research partners and industry partners in close
collaboration. As an industry-driven project, it was expected to create demonstrable
results using off-the-shelf components, prototyping and lab testing. The Technology
Readiness Level (TRL) [2] is often used to describe the development phases of a
technology (see Table 1.1). While a typical Ph.D. thesis may present technology or
theory at level 2 or below, the work done in this thesis presents, and was expected

1

to present, technology at level 4 to 5.

Table 1.1: Technology Readiness Level - EU version [2]

TRL Description

1 Basic principles observed
2 Technology concept formulated
3 Experimental proof of concept
4 Technology validated in lab
5 Technology validated in relevant environment
6 Technology demonstrated in relevant environment
7 System prototype demonstration in operational environment
8 System complete and qualified
9 Actual system proven in operational environment

1.1.1 Main Research Questions

Given the task of creating a 3D sensor package for offshore use, and after analysing
the state-of-the art, the following research questions were formulated:

• Can a 3D sensor package suitable for offshore environments be developed, using
existing technologies?

• Is it possible to automatically optimise the placement of such 3D sensors on a
given offshore rig?

• Is it possible to robustly and accurately fuse data from different sensors in an
offshore environment?

• Is it possible to develop a simple and efficient calibration method for the sensors
selected for this project?

• Can deep learning and neural networks assist sensor fusion, calibration and/or
human detection in offshore environments?

1.1.2 Research Methods

To develop the 3D sensor package, in addition to the theoretical work on algorithms
and software, extensive practical work and prototyping was expected. Based on the
research questions, the project was divided into the following sub-tasks:

• Develop a prototype 3D sensor package for offshore environments based on
existing sensor technologies, and test it in both indoor and realistic outdoor
environments.

2

• Develop a computational platform, which may include looking at embedded
solutions, FPGAs (Field Programmable Gate Arrays) and/or GPUs (Graphic
Processing Units).

• Develop a sensor calibration and fusion scheme for the chosen instrumentation,
possibly using machine learning.

• Develop a people detection method, possibly using machine learning.

• Develop an algorithm for 3D sensor layout optimisation for an offshore rig
environment, using Mixed Integer Linear Programming.

Based on the defined research questions and methods, it was expected that several
novelties and publishable results could be created in this project.

1.2 Thesis Outline

In addition to the introduction and concluding remarks, the thesis is divided into
four main chapters, each covering the four main topics of the project: Chapter
2 – 3D Optimisation, Chapter 3 – 3D Sensors and Data Structures, Chapter 4 –
Experimental Setup and Prototyping, and Chapter 5 – People Detection. These
chapters aim to provide the reader with a broader context and relevant background
information for the appended papers.

In addition, as the research into these topics are rapidly progressing and much
new work has been published since the start of this PhD project, the chapters also
touch on new, relevant state-of-the-art techniques. The appendices A to E contain
the full-text papers that were published during this project.

The chapters are further described below:

Chapter 1 – Introduction
The introduction establishes the research questions and motivation for the
research presented in this thesis. The chapter includes the preliminary state-of-
the-art review on 3D sensor technologies conducted in the startup phase of this
project, as well as a summary of the appended papers and their contributions.

Chapter 2 – 3D Optimisation
This chapter gives relevant background information on the optimisation methods
used in the appended papers A, B and C.

Chapter 3 – 3D Sensors and Data Structures
Here, an overview of different 3D sensors and their applications and concepts
are presented, both as background information for the appended papers and

3

as an update on the state-of-the-art 3D sensor technologies. The chapter also
investigates different data structures for storing 3D data, and techniques for
point cloud compression and filtering as used in Paper D.

Chapter 4 – Experimental Setup and Prototyping Presents the experimental
setup and 3D sensor package prototype that was used throughout this project.

Chapter 5 – People Detection
This chapter presents a summary of different people detection techniques in
both two and three dimensions and using different input data, as a relevant
background for the final appended paper, Paper E.

Chapter 6 – Concluding Remarks
The Concluding Remarks summarises the project as a whole and the main
conclusions of the published papers. The chapter also looks at possible future
work on the research presented in this thesis.

Appended Papers
The appendices contain the full-text version of the published papers listed
on page xi. The papers have been modified to fit the format of this thesis
and some small spelling mistakes have been corrected, but they are otherwise
identical to their published versions.

1.3 Preliminary Analysis of the State-of-the-art on

3D Sensor Technology

In rapidly developing fields such as 3D sensors, technologies and methods emerge
and are being improved at a very fast pace. To place the research presented in the
appended papers in this thesis into the correct context, the author includes this yet
unpublished state-of-the-art review performed at the start of the project in 2016.

Updated references as of 2022 for the topics 3D Sensors, Data Structures and
People Detection are given later in Chapters 3 and 5.

With respect to developing a 3D sensor package, several topics were considered:
Firstly, the sensor technology itself including different computational platforms had
to be evaluated for use in offshore environments. Secondly, algorithms to robustly
and efficiently fuse and calibrate sensory data had to be implemented. And lastly,
a method to optimise where to place the sensors to reduce cost and/or ensure
redundancy. In the next sections, the overview of the state-of-the-art as of 2016 of
these topics is given.

4

1.3.1 3D Sensors for Offshore Environments

Sensors for three-dimensional data acquisition were being used in a wide variety of
fields, from medicine to automotive. Apart from some work on 3D sensors for offshore
Remotely Operated Vehicles (ROVs), no published work was found on 3D sensors for
offshore (drilling) rigs. For this project, industrial robotics and automotive sensors
were therefore considered, as they are used in conditions that most closely resemble
offshore conditions.

When looking at these industries, the main sensors that were being used were
acoustic, radar, laser scanners and lidars (light based range sensors), as well as optical
sensors (cameras) [3]. Acoustic sensors have short range and are mostly used for
parking assistant systems, and was therefore deemed not suitable for this project.

Radars could be a good choice for all-weather and rough environments, as they
are robust in rainy, foggy or night-time conditions. Traditionally, radars with one
antenna can only detect the range and speed of an object, not the direction to the
object. 3D imaging using multiple-input-multiple-output (MIMO) radars in different
forms were starting to gain research interest [4]. But with relatively low angular
resolution, radars may only be useful to detect a region of interest, and may need to
be supplemented by cameras for object detection [3]. However, in 2016, Tesla Motors
announced that they would use their on-board radar as the primary sensor for its
Autopilot system, meaning radar was still part of the state-of-the-art in automotive
sensor packages [5].

LiDAR, or lidar (Light Detection And Ranging) sensors, with their high angular
resolution, were being adopted by autonomous car developers such as Uber [6]. Lidar
scanners range from 2D line scanners to rotating 360 degree 3D scanners such as
the top-of-the-line Velodyne lidars. They use time-of-flight technology to determine
the distance to an object, and the known horizontal and vertical angles of the laser
beam to determine the direction, and they are also reasonably robust against outdoor
weather conditions [7]. Lidars were very expensive compared to radars and cameras,
but prototypes like the MIT “Lidar-on-a-chip” or the Quanergy solid state lidar were,
and are still, being developed, promising a much lower price than currently available
mechanical sensors [8].

One of the drawbacks with radars and lidars, is that they cannot see colour.
Colours are useful for distinguishing (recognising) different objects. Optical cameras
have this advantage, and combined with stereo vision or projected structured light,
they can also be used as a stand-alone sensor to obtain the distance to an object,
creating what is called an RGB-D image (a picture with depth information). The
Microsoft Kinect is an example of such a camera, widely used in academic research
because of its favourable pricing and free development software. In [9], a Kinect

5

camera was used to detect indoor mobile robots by using the Kinect as an objective
(static) sensor. A state-of-the-art, industrial alternative to Kinect was launched by
the Norwegian company Zivid Labs [10], and a small 3D scanning and mapping
camera based on stereo vision called ZED, with 20m range, was released by Stereolabs
[11].

1.3.2 Embedded Solutions for Processing of 3D Sensor Data

When designing a sensor package with the goal of fusing different sensors together,
processing of 3D sensor data in real-time, and even some form of machine learning,
might be necessary to perform locally in the package. For such circumstances, robust
and powerful embedded hardware is essential.

There are several technologies that are suitable for processing large quantities
of data, the first being Field Programmable Gate Arrays (FPGA). FPGAs are
essentially microchips with a huge number of logical gates that can be programmed
using hardware description languages (HDL). These can be tailor-made to a specific
purpose and are extremely fast when used correctly. These massively parallel devices
also require low power compared to CPUs (Central Processing Units), making them
attractive for use in consumer electronics and embedded systems where low cost and
low power consumption is a requirement [12].

Another technology is GPU (Graphics Processing Unit) based systems. GPUs
have the advantage over CPUs by being able to process large amounts of data in
parallel, and they are much more flexible than FPGAs. They have typically been
used in personal computers or supercomputers where size and power consumption is
not a major issue, but developers are now focusing on making low-power GPUs, as an
alternative to FPGAs. In 2015, NVIDIA launched its upgraded Jetson TX1 platform,
combining CPU and GPU processors for embedded purposes. The TX1 promised
to deliver high performance, low energy computing for artificial intelligence, deep
learning and machine vision [13]. Companies like Abaco and Aitech have specialised
in making extremely robust versions of these systems with military-grade protection
from the surrounding environment [14].

Artificial intelligence and deep learning for object detection using computers to
find objects in images, are being researched and developed at a remarkable pace.
This requires a huge amount of computational power, and with companies such as
NVIDIA investing in machine learning and developing ever more powerful GPU
based embedded computers, this field in computer science was on top of the Gartner
2016 hype cycle [15].

6

1.3.3 Sensor Fusion

In the paper [16], data from 2D laser scanners and 3D vision sensors were fused
and combined for use in obstacle detection. In modern data fusion applications,
probabilistic methods are considered to be the standard approaches. Probabilistic
fusion expresses the data uncertainty using a probability distribution for each in-
formation source. In [16], each device provided an object list containing the position,
size, orientation, velocity, and classification of each detected object along with the
uncertainty of these measurements. For each object in the fused object list, a Kalman
filter based prediction was applied to the object centre, object box size, heading, and
object velocity. Afterwards, if there was an association to a current measurement,
the respective Kalman states were corrected accordingly. The sensors and the data
needed to be time synchronised as well. The computation units of 2D perception
and 3D vision have different clocks. To merge the lists of tracked objects provided
by each device, a global time reference is necessary and each data source must
provide a precise timestamp. This was achieved by network time protocol (NTP)
synchronisation where both the 2D perception system and the 3D vision system
synchronise with the reference clock of the global control centre.

The 2D lasers and 3D cameras need to be registered to a common reference frame.
In paper [16] this was performed by perceiving a reference object, at the same time,
with both 3D vision and laser sensors and then estimating the optimal transformation
parameters between the two coordinate systems by using a least squares technique.
In [17], a similar approach was taken for detecting vehicles using lasers and stereo
vision.

The paper [18] contains an extensive state-of-the-art analysis of multi-sensory
data fusion, including 197 references, published in 2013. The challenging problems
of multi-sensory fusion are categorised in [18] as follows:

1. Data imperfection,

2. Outliers and spurious data,

3. Conflicting data,

4. Data modality,

5. Data correlation,

6. Data alignment/registration,

7. Data association,

8. Processing framework,

7

9. Operational timing,

10. Static vs. dynamic phenomena,

11. Data dimensionality.

While many of these problems have been identified and heavily investigated,
no single data fusion algorithm was capable of addressing all the aforementioned
challenges. The variety of methods in the literature focus on a subset of these issues
to solve, which would be determined based on the application in hand.

1.3.4 Sensor Calibration

Closely related to sensor fusion, when a sensor package with multiple different sensors,
or even multiple sensor packages, are deployed, there is a need for a simple and
fast calibration procedure. Traditionally, calibration has been a tedious process
where manual measurement and labelling of a calibration target is involved. In
[19], a software-aided procedure where a person only needs to walk in front of the
sensors to calibrate the system was developed. This procedure was developed for
2D localisation, and a 3D version was not discussed in this paper. Although this
procedure makes the calibration simpler, it must nonetheless be performed before
the system can be deployed (offline), and it cannot detect miscalibration over time
as the system is running.

In [20], an automatic calibration algorithm was developed to calibrate camera
images to lidar (Velodyne) scans. By mapping laser points to the image and detecting
if the depth of the laser points corresponds to edges in the image, a statistical method
was developed to give the probability of whether the sensors are calibrated correctly or
not. This technique can track and correct both sudden calibration errors and drifting
errors over time, updating the translation and rotation parameters in real-time using
a laptop CPU. It is stated in the paper that: “Yet even using less than one second
of data, our results are more accurate than state-of- the-art offline techniques which
require a calibration target or hand-labelling of camera-laser correspondences”.

As machine learning and artificial intelligence was gaining interest in the academic
world, work had also been published where deep convolutional neural networks were
used to fuse, calibrate, and detect objects in different sensor streams. The networks
can learn to fuse different sensors, and even learn when to trust or not to trust a
specific sensor. In the paper [21] members of the Autonomous Intelligent Systems
and Computer Vision groups at the University of Freiburg, Germany, have developed
a system of deep learning networks that can fuse multi-modal RGB and depth
streams while performing semantic segmentation of a scene. It is stated that “We
introduced a new deep adaptive fusion architecture for end-to-end segmentation of

8

multi-modal and multi-spectral images. Our [. . .] model achieves state-of-the-art
performance compared to uni-modal segmentation and existing fusion approaches.
More importantly, the model demonstrates considerable robustness to commonly
observed environmental disturbances, critical for real-world robotic perception”.

1.3.5 Optimisation Techniques

No published work addressing 3D sensor placement in a drilling rig was found in
the literature. Most published work considers sensor placement in 2D environments
(floor plans), or the 3D solutions presented are based on heuristic approaches which
are non-repeatable and usually end up in local minima. Based on the literature
review, the development of a fast and optimal sensor placement solution for the 3D
drilling rig problem would be a novelty. Below is a summary of some of the papers
which were reviewed.

In the paper [22], the problem of optimally placing a minimum number of
distributed sensors to fulfil and optimise task requirements in a 2D environment was
addressed. As stated in [22]: “Overall, the research focus of indoor localisation lies
on the development of signal extraction and localisation methods. Sensor placement
is often done by hand, using the system developers best guess. Thus the resulting
localisation error is neither calculated nor considered”. In [22] the problem was
formulated in a discrete and continuous search space. The discrete formulations were
evaluated using Binary Integer Programming (BIP) and Mixed Integer Programming
(MIP). The continuous formulation was evaluated using nonlinear programming
(NLP) methods. All evaluations were done using the properties of a visual sensor
system that exploited the thermal infrared radiation of humans for indoor localisation.
All the presented methods were implemented using a 2D environment description
and the resulting problems were solved respectively using MIP, BIP and NLP solvers.
The results were compared against each other, taking their exactness and solving
speed into account. An extension of the proposed methods to a 3D environment
would be possible using the appropriate visibility calculations but was not part of
the work.

In [23] the following was stated: “Currently most designers of multi-camera
systems place cameras by hand because there exists only little theoretical research
on visual sensor placement. As video sensor arrays are getting larger, efficient
camera placement strategies need to be developed”. The approaches taken in [23] were
subdivided into algorithms which give a global optimal solution but are complex and
time/memory consuming, and heuristics which solve the problem in reasonable time
and with reasonable complexity. The main contributions of [23] were:

• Space was sampled according to an underlying importance distribution instead

9

of using a regular grid of points.

• A linear programming model for each problem was presented which gave an
optimal solution to the respective problem. It was shown how to reduce the
number of variables and constraints significantly, thus enabling an optimal
solution for larger problems.

• Several heuristics were proposed to approximate the optimal solution of the
different camera placement problems.

• An interface that enables the user to comfortably enter and edit the space, the
optimisation problems as well as the other setup parameters was presented.

• An experimental and competitive evaluation of the different approaches was
given showing the different algorithms’ specific advantages.

Future work will be modifying and applying the approaches to the 3D case and
introducing more complex field-of-view and coverage constraints.

In [24] it is stated that “although the discovery of an algorithm that can solve
the most general case of the camera layout problem for a given volume of interest
is highly desirable, it may prove quite challenging. We therefore focus on a more
manageable subclass of this general problem that can be formulated in terms of planar
regions that are typical of a building floor plan. We then approximate the region by a
polygon. This is a valid assumption since most buildings and floor plans consist of
polygonal shapes or can be approximated by a collection of polygons. The problem
then becomes to reliably compute a camera layout given a floor plan to be observed,
approximated by a polygon. A solution to this problem can be obtained via binary
optimisation over a discrete problem space”. The work is limited to 2D, and the
authors write: “In future work, we hope to pursue solutions to the optimisation in
the continuous space as opposed to the discrete one”.

In [25] it is stated: “Although there are many studies about coverage for wireless
multimedia sensor networks, most of them are based on two-dimensional terrain
assumptions. However, particularly for outdoor applications, three-dimensional (3-D)
terrain structure affects the performance of the WMSN remarkably”, where WMSN
refers to the wireless multimedia sensor network. The optimisation method used in
the paper is a hybrid heuristic Genetic-Algorithm. The optimisation formulation was
found to be NP-complete and for such problems there is no known efficient way to
locate a solution. Hence, the authors implemented a GA-based heuristic approach,
but such approaches usually end up in a local minimum.

10

1.4 Contributions

The research presented in this thesis has focused on making contributions to three
major topics: 3D optimisation techniques, a 3D sensor package and framework for
industrial/offshore use, and people detection in a three dimensional space, where the
common denominator of all the topics was voxels, i.e. three dimensional pixels. The
aim was to deliver technology which could be implemented and further developed by
the industry. The contributions were published in the journal and conference papers
listed below. All the papers are appended to this thesis in their full version.

The most important contributions are as follows:

• Novel algorithms using massively parallel GPU processing to solve the Optimal
Sensor Placement problem in three dimensions.

• A prototype sensor package providing real-time 3D mapping of the Industrial
Robotics Lab at the University of Agder, tested in both indoor and outdoor
locations, enabling further research by this author and fellow colleagues at the
SFI Offshore Mechatronics research centre.

• A ready-to-use ROS (Robot Operating System) software framework for a 3D
sensor network for large scale industrial environments, including methods to
compress, transmit and fuse live streams from multiple 3D sensor packages to
a centralised server.

• A novel people detection scheme for voxel-based 3D data streams based on
machine learning, as well as the publication of training datasets from an outdoor
industrial environment.

1.4.1 Summary of Papers

Paper A – Optimal placement of 3D sensors considering range and field
of view

This paper describes a novel approach to the problem of optimal placement
of 3D sensors in a specified volume of interest. The coverage area of the
sensors is modelled as a cone having limited field of view and range. The
volume of interest is divided into many, smaller cubes each having a set of
associated Boolean and continuous variables. The proposed method could
be easily extended to handle the case where certain sub-volumes must be
covered by several sensors (redundancy), for example ex-zones, regions where
humans are not allowed to enter or regions where machine movement may
obstruct the view of a single sensor. The optimisation problem is formulated

11

as a Mixed-Integer Linear Program (MILP) utilising logical constraints and
piecewise linearisation of nonlinear functions. The final MILP problem is solved
using the Cplex solver interfaced with Matlab.

Paper B – GPU-Based Optimisation of 3D Sensor Placement Consider-
ing Redundancy, Range and Field of View

This paper presents a novel and efficient solution for the 3D sensor placement
problem based on GPU programming and massive parallelisation. Compared
to prior art using gradient-search and mixed-integer based approaches, the
method presented in this paper returns optimal or good results in a fraction
of the time compared to previous approaches. The presented method allows
for redundancy, i.e. requiring selected sub-volumes to be covered by at least n
sensors. The presented results are for 3D sensors which have a visible volume
represented by cones, but the method can easily be extended to work with
sensors having other range and field of view shapes, such as 2D cameras and
lidars.

Paper C – GPU-Based Occlusion Minimisation for Optimal Placement
of Multiple 3D Cameras

This paper presents a fast GPU-based solution to the 3D occlusion detection
problem and the 3D camera placement optimisation problem. Occlusion
detection is incorporated into the optimisation problem to return near-optimal
positions for 3D cameras in environments containing occluding objects, which
maximises the volume that is visible to the cameras. In addition, the authors’
previous work on 3D sensor placement optimisation is extended to include a
model for a pyramid-shaped viewing frustum and to take the camera’s pose
into account when computing the optimal position.

Paper D – Embedded Processing and Compression of 3D Sensor Data
for Large Scale Industrial Environments

This paper presents a scalable embedded solution for processing and transferring
3D point cloud data. Sensors based on the time-of-flight principle generate
data which are processed on a local embedded computer and compressed using
an octree-based scheme. The compressed data is transferred to a central node
where the individual point clouds from several nodes are decompressed and
filtered based on a novel method for generating intensity values for sensors
which do not natively produce such a value. The paper presents experimental
results from a relatively large industrial robot cell with an approximate size of
10m× 10m× 4m. The main advantage of processing point cloud data locally
on the nodes is scalability. The proposed solution could, with a dedicated

12

Gigabit Ethernet local network, be scaled up to approximately 440 sensor
nodes, only limited by the processing power of the central node that is receiving
the compressed data from the local nodes. A compression ratio of 40.5 was
obtained when compressing a point cloud stream from a single Microsoft Kinect
V2 sensor using an octree resolution of 4 cm.

Paper E – CNN-based People Detection in Voxel Space using Intensity
Measurements and Point Cluster Flattening

In this paper real-time people detection is demonstrated in a relatively large
indoor industrial robot cell as well as in an outdoor environment. Six depth
sensors mounted at the ceiling are used to generate a merged point cloud of
the cell. The merged point cloud is segmented into clusters and flattened into
grey-scale 2D images in the xy and xz planes. These images are then used
as input to a classifier based on convolutional neural networks (CNNs). The
final output is the 3D position (x, y, z) and bounding box representing the
human. The system is able to detect and track multiple humans in real-time,
both indoors and outdoors. The positional accuracy of the proposed method
has been verified against several ground truth positions, and was found to be
within the point-cloud voxel-size used, i.e. 0.04m. Tests on outdoor datasets
yielded a detection recall of 76.9% and an F1 score of 0.87.

1.5 Published Software and Dataset

A large portion of the work done in this project was dedicated to writing software.
The source code for the people detection method, and the point cloud compression,
decompression, and fusion methods are published under a BSD 3-Clause License,
enabling the industry, other researchers, or interested parties to freely use and further
develop the software. Mostly written in C++ and MATLAB, the source code can be
found here: https://github.com/dybedal.

In addition, a large dataset of 3D sensor data recorded in an outdoor industrial
test facility is published here: https://doi.org/10.18710/HMJVFM. This dataset
was also used when training and testing the people detection method in Paper E.

13

https://github.com/dybedal
https://doi.org/10.18710/HMJVFM

14

Chapter 2

3D Optimisation

In this thesis, the 3D sensor placement problem is considered given various constraints,
such as obstacles and limited range of the sensors. This chapter contains relevant
background information on the two approaches taken in Papers A, B and C in this
thesis: 1) Mixed-integer programming and 2) Massive parallelisation (or brute force
search) using a GPU.

2.1 Mixed Integer Programming

A standard linear program can be formulated as follows:

mingTx (2.1)

subject to:
Ax ≤ b (2.2)

where:
x ∈ Rn is a vector of n real decision variables
g is a vector of objective function coefficients
A ∈ Rn×n is a square matrix of constraint coefficients
b ∈ Rn is a vector of constraint coefficients

A problem is called mixed-integer when some of the variables in x are forced to
be integer values only, i.e.

xi is integer where i ∈ I. (2.3)

Consider the following example:

min (x1 − 2x2 + 3x3) (2.4)

15

subject to:
−1 −1 0

0 −1 −1
−1 0 −1
0 1 0

 x1

x2

x3

 ≤

0

0

−3
3.5

 . (2.5)

The optimal solution for this problem is x = [5.9090909, 3.5,−3.5] which gives
an objective function value of −11.59090909. If x2 is now constrained to be an
integer, i.e. I = {2}, then the optimal solution becomes: x = [5.455, 3,−3.0] with
an objective function value of −9.54545454. This example demonstrates that the
objective function value of an integer constrained problem becomes equal or less than
the unconstrained problem. Special solvers are required for solving mixed-integer
problems, typically using some type of branch-and-bound algorithm. Going into the
details of mixed-integer solvers, however, is outside the scope of this thesis.

One aspect of mixed-integer programming which makes it particularly attractive
for practical applications is the possibility to formulate logical constraints. Some
examples of logical constraints are presented here, but the interested reader is referred
to [26]. Below, some logical implications are presented and it is shown how these
can be converted to linear constraints suitable for use in a standard mixed-integer
program.

Boolean variables are simply integer variables constrained to have a value of
either zero or one. Implication 1 sets the Boolean variable δ to one (true) if the
continuous variable x lies between the two functions f1(x) and f2(x). If x does not
lie between these two functions, there is no constraint on δ and its value can be
either zero or one.

Implication 1

Constraints:

(f1(x) ≤ x ≤ f2(x)) =⇒ δ (2.6)

is equivalent to:

(m− ε)δ1 ≤ (f1(x)− x)− ε (2.7)

(m− ε)δ2 ≤ (x− f2(x))− ε (2.8)

δ1 + δ2 − δ ≤ 1, (2.9)

16

where δ, δ1 and δ2 are Boolean variables, while x, f1(x) and f2(x) are continuous.
m is a constant smaller than the lower limit of both f1(x) and f2(x). ε is a small
positive tolerance value, which can be selected as low as possibly accepted by the
particular solver in use.

Implication 2 sets the Boolean variable δ to zero if the continuous function
f(x) ≥ k. Otherwise, there is no constraint on δ, it can then be either zero or one.

Implication 2

Constraints:

(f(x) ≥ k) =⇒ δ = 0 (2.10)

is equivalent to:

− (ε+M)(1− δ) ≤ −f(x) + k − ε, (2.11)

where δ is a Boolean variable, while x and f(x) are continuous. M is a constant
larger than the upper limit of f(x). ε is a small positive tolerance value, which can
be selected as low as possibly accepted by the particular solver in use.

As an example, let f(x) = 2x+ 1, k = 4, M = 11 for x < 5, and ε = 0.001. If
x = 1, we then have

−(0.001 + 11)(1− δ) ≤ −(2 + 1) + 4− 0.001 (2.12)

−(11.001)(1− δ) ≤ 0.999, (2.13)

which shows δ can be either zero or one. If x = 1.5, which is the intersection point
of f(x) and k, we then have

−(0.001 + 11)(1− δ) ≤ −(2 ∗ 1.5 + 1) + 4− 0.001 (2.14)

−(11.001)(1− δ) ≤ −0.001, (2.15)

which shows that δ has to be zero, and it also shows the purpose of introducing the
tolerance value ε.

Once a Boolean variable δ is defined as described in Implications 1 and 2 above,
it can for example be multiplied together with a continuous function f(x) as shown
below:

17

z = δ · f(x) (2.16)

is equivalent to:

−Mδ + z ≤ 0 (2.17)

mδ − z ≤ 0 (2.18)

−mδ + z ≤ f(x)−m (2.19)

Mδ − z ≤ −f(x) +M, (2.20)

where m,M are lower and upper bounds on the function f(x) and z is the product
of the Boolean variable and the continuous function, i.e. if δ == 1 then z = f(x),
otherwise z = 0. As demonstrated in Paper A in this thesis, such logical constraints
can for example be used to formulate and solve 3D sensor placement problems.

2.2 Massive Parallelisation on GPUs

As an alternative to traditional optimisation techniques such as mixed-integer pro-
gramming or gradient-search based methods, parallelisation using Graphical Pro-
cessing Units (GPUs) has become a viable alternative, given the rapid growth in the
capabilities of GPUs in recent years. Traditional approaches have some drawbacks,
for example getting stuck in local optima, and it can take a long time to find a good
solution, which is not necessarily the optimal one for non-convex problems. Some
benefits of GPU-based optimisation are the fact that the entire search-space can be
covered relatively quickly, and the best solution from a GPU-based search can later
be used as an initial condition for a gradient-based search in case the discretisation
used in the GPU-based search is too coarse.

To illustrate the benefits of GPU-based optimisation, consider the following
objective function:

F (x, y) = x+ x · cos(5π · x/N) · y · sin(5π · y/N) (2.21)

With N = 200 this objective function is illustrated in Figure 2.1. As seen from
the figure, with this objective function F (x, y) there are two optima with the same
global maxima, i.e. x = −100 and y = ±90 giving a value of F (x, y) = 8900. Since
there are many local optima in Figure 2.1, a gradient search-based method would
have serious problems in finding the global optimal maxima in this example.

The following code example using Python and Numba library shows how a GPU-

18

Figure 2.1: Illustration of non-convex objective function with many local maxima.

based search can be implemented. Using the Numba JIT (Just In Time) compiler,
the function declared with the @jit decorator is compiled and can be set to execute
either on the CPU or a GPU.

from numba import jit

import numpy as np

from math import cos , sin , pi

from timeit import default_timer as timer

@jit("void(float64 [:,:],int32)")

def optim_func(a,n):

N = n/2

for i in range(n):

for j in range(n):

x = i - N

y = j - N

a[i,j] = x+x*cos(x/N*5*pi)*y*sin(y/N*5*pi)

if __name__ =="__main__":

n = 200

Z = np.zeros(shape =(n,n), dtype = np.float64)

19

start = timer()

optim_func(Z,n)

print("Time taken:", timer()-start)

Jmax = Z.max(0).max(0)

print("Maximum value found: {}".format(Jmax))

index = np.where(Z == Jmax)

for result in index:

x = result [0] - n/2

y = result [1] - n/2

print("Maximum value found at: x={} y={}".format(

x,y))

Running the same code on both the CPU and the GPU for comparison, the output
is as follows:

Maximum value found: 8900.0

Maximum value found at: x= -100.0 y= -100.0

Maximum value found at: x= -90.0 y=90.0

CPU: Time taken: 0.014300544979050756

GPU: Time taken: 0.0006120820180512965

In this particular example with the particular hardware chosen, the GPU imple-
mentation is about 23 times faster than the CPU implementation, even for this small
problem. The speed benefit will increase with the size of the problem (N).

In a typical optimisation problem the search-space is too large to cover, even
when using a GPU. In such cases an approach based on randomisation of the search
variables can be used instead. A typical optimisation problem can be formulated as
follows:

k∗ = argmaxkF (x,k) (2.22)

G(x,k) ≤ b, (2.23)

where k is a vector of optimisation or design variables, k∗ is the optimal solution
and F (x,k) is the objective function. One example is a crane or a robot where the
design is optimised with respect to some parameters k in the workspace x. The
workspace x can be 2D as in the previous example (x, y), 3D, or higher dimension.
The parameters k could for example be arm lengths, stiffness parameters, gear ratios,
etc. The objective function F () can be nonlinear and/or mixed discrete/continuous.
If the search space in k is small, more search loops can be added, just like for x and

20

y in the previous example.
If the search in k is large, randomisation in the generation of k can be used,

which was the approach taken in, for example, Paper B in this thesis. The equation
G(x,k) ≤ b describes a set of linear or nonlinear constraints. When generating the
samples of the vectors x,k, either by search loops or by randomisation, k∗ is only
updated if the constraints are satisfied.

With randomisation, the GPU is used until a solution that is considered “good
enough” is found. There is no guarantee that the optimal solution has been found.
The optimisation problem described above is very hard, even more so for traditional
approaches.

The following Python code shows a code example where the parameters k1 and
k2 are generated by randomisation:

from numba import jit

import numpy as np

import random

from math import cos , sin , pi

from timeit import default_timer as timer

@jit("float64 [:](float64 [:,:],int32)")

def optim_func(a,n):

N_rand = 100000

N = n/2

Jmax = 0.0

a_max = np.zeros(1, dtype = np.float64)

k_best = np.zeros(2, dtype = np.float64)

for l in range(N_rand): # Extra randomization loop

k1 = random.randrange (1,10)

k2 = random.randrange (-10,10)

a_max = 0.0

for i in range(n):

for j in range(n):

x = i - N

y = j - N

a[i,j] = x + 1/k1*cos(x/N*5*pi) * k2*sin(

y/N*5*pi)

if a[i,j] > a_max:

a_max = a[i,j]

if a_max > Jmax:

Jmax = a_max

21

k_best [0] = k1

k_best [1] = k2

return k_best

if __name__ =="__main__":

n = 200

Z = np.zeros(shape =(n,n), dtype = np.float64)

start = timer()

k_best = optim_func(Z,n)

print("Time taken:", timer()-start)

Jmax = Z.max(0).max(0)

print("Maximum value found: {} with k1 = {} and k2 =

{}".format(Jmax ,k_best [0], k_best [1]))

index = np.where(Z == Jmax)

for result in index:

x = result [0] - n/2

y = result [1] - n/2

print("Maximum value found at: x={} y={}".format(

x,y))

Running the same code on both the CPU and the GPU for comparison, the
output is as follows:

Maximum value found: 99.74 with k1 = 1.0 and k2 = -10.0

Maximum value found at: x=99.0 y=99.0

Maximum value found at: x= -70.0 y=-30.0

Time taken with GPU: 60.96680168795865

Time taken with CPU: 2297.6071298610186

In this particular example with the particular hardware chosen, the GPU imple-
mentation is about 37 times faster than the CPU implementation.

To conclude, brute-force optimisation using a GPU can be a good solution, when:
1) The objective function has many local optima, 2) The objective function is strongly
nonlinear or contains mixed float & integer variables and 3) A good initial starting
point is needed for the traditional approaches to optimisation.

22

Chapter 3

3D Sensors and Data Structures

This chapter presents the different 3D sensor types and 3D data formats that were
studied and utilised during the project. The aim is to give the reader a broader
background than is given in the appended papers, and an insight in the most used
3D sensor hardware and software technologies.

3.1 3D Sensor Types

The following section outlines the different 3D sensor types and technologies that
were evaluated or used in this project, ranging from image-based to laser and radar
based.

3.1.1 Stereo Vision Sensors

A stereo vision sensor, also referred to as a stereo camera or binocular vision, is made
up of two cameras, placed a given distance from each other and looking in the same
direction, much like the human eyes. The two cameras create images from slightly
different points of views resulting in a position shift or parallax of objects in the two
images. By knowing the relative position and rotation between the cameras, depth
information can be extracted by calculating the disparity between the two images,
as seen in Figure 3.1.

Solving the stereo matching problem to gather the disparity information (i.e.
finding the same object in the two images) has been the most prominent challenge
with stereo vision. In recent years, machine learning has been used to enhance stereo
matching, and the research on learning-based depth extraction in stereo images
has also enabled new possibilities in estimating depth information from monocular
(single) images [27].

The typical output of a stereo camera system is an RGB-D Image (depth image
containing colour information, see Section 3.2). At low cost compared to other 3D

23

Camera 1 Image

Camera 2 ImageCamera 1 Camera 2

Figure 3.1: Simple stereo vision setup for identical, parallel cameras. Distance z to
an object can be calculated using triangulation; z = fb

d
, where f is the focal length

of the camera, b is the baseline distance between the cameras, and d is the disparity.
The left hand side shows the setup from above, the right side shows the resulting
images from each sensor

sensors, stereo cameras have been common to see in drones and other unmanned
vehicles, often used as input to SLAM (Simultaneous Localisation And Mapping)
algorithms to create a three dimensional map of an environment [28, 29]. But the
low cost also comes at a price: When the distance from an object to the sensor
increases, the change in disparity decreases, resulting in higher and higher depth
resolution error. An example of a SLAM output using the first version of the ZED
Stereo Camera by Stereolabs [11] can be seen in Figure 3.2. Here it is visible how
the algorithm tries to connect the depth information in each stereo image to form a
connected mesh of the environment.

3.1.2 Structured Light Cameras

Structured Light sensors were becoming increasingly popular at the early stage of this
thesis, with numerous brands and types emerging, including Zivid, founded in 2015
[10], and Intel RealSense cameras [30]. These brands and more have continued to
improve the technology with updated and enhanced sensors, with Zivid now claiming
time-coded structured light is the "potentially most accurate 3D technology" [31].
One of the most popular and well-known sensor using structured light was the first

24

Figure 3.2: Output of a SLAM algorithm using a stereo camera

version of the Microsoft Kinect [32]. This sensor was widely used in academia due to
its low cost and freely available SDK (Software Development Kit), with the Kinect for
Windows version released in 2012. However, in 2014, Microsoft released an updated
version, referred to as Kinect V2 in this thesis, which changed the technology from
structured light to time-of-flight (see Section 3.1.3).

Structured light sensors consist of a camera and a projector, where a known
pattern is projected onto objects and reflected back at the camera. Projected using
visible or invisible (IR) light, the pattern is warped by objects in the sensor’s field
of view. Since the original pattern is known, the displaced pattern is used to infer
three dimensional shapes, thus creating three dimensional measurements. Different
pattern shapes or time-varying/time-coded patterns can be used to increase the
sensor’s performance in a given application.

Emitter

Sensor

Figure 3.3: A simple illustration of a structured light sensor, comprised of an
emitter/projector that is sending out a light pattern, an array of lines in this case.
The sensor records the transformed lines and software is used to deduce the shape of
the measured object by comparing the original pattern to the resulting pattern.

Figure 3.3 shows a simple illustration of a structured light sensor. For an in-depth

25

explanation of the workings of structured light sensors, the interested reader is
referred to [33].

3.1.3 Time-of-Flight Cameras

Time-of-flight (ToF) cameras, such as the Microsoft Kinect V2 [32] as used in this
project, use a light source to illuminate a scene, and measures distance based on the
reflected signal. The light source is typically an IR LED, as in the Kinect V2, and
each pixel in the camera’s sensor measures the distance, resulting in a depth image.
There are several techniques for measuring the distance, where the simplest is to
emit a light pulse and measure the amount of light reflected in a specific timeframe.
The less reflected light that is received during this window, the larger the distance.
A more common method is to use modulated IR pulses and measure the phase shift
in the reflected signal. Figure 3.4 shows an illustration of a ToF camera, with an
emitter and a sensor, and a more in-depth description of the workings of ToF cameras
can be found in [34].

Emitter

Sensor

Figure 3.4: A simple illustration of a time of flight sensor. An IR LED is typically
used as the emitter. The distance d is measured by measuring the amount of returned
light in a certain window using a shutter, and/or measuring the phase shift of the
returned signal.

A drawback of this type of sensor, which was also noted during the work on
this thesis, is that not all surfaces are reflective enough to send a strong signal back
to the sensor. A typical scenario is people wearing very dark clothing. Another
challenge is the sensor’s sensitivity to ambient light, especially sunlight, which can
lead to saturation. However, it was found in this thesis that the Microsoft Kinect
V2, specifically, can produce good measurements even in outdoor areas. An in-depth
analysis of IR light reflection was performed in [35].

3.1.4 Lidar

LiDAR, or lidar, as the name suggests, is a light based form of radar (Radio Detection
and Ranging), where radio waves are replaced by light waves, and more specifically,

26

laser beams. Laser based range measurement devices exists in a wide variety of
forms, from simple single beam measuring devices, via spinning lidars with up to
hundreds of beams, to solid state, camera-like lidars.

There are two main types of lidars used in 3D computer vision, the first being
spinning lidars, and the second being solid state lidars. Spinning lidars consist of
an array of laser emitters and sensors, arranged vertically with fixed angles between
them. The array is then mounted on a rotating platform, resulting in each of the
individual lasers measuring a circle around the rotational axis. A very simplified
conceptual drawing of a spinning lidar can be seen in Figure 3.5.

Laser

Sensor
Laser

Sensor
Laser

Sensor

Laser

Sensor

Laser

Sensor

Figure 3.5: A conceptual illustration of a spinning lidar, with 5 sensors mounded
with a 5 degree angle between them. An IR laser is typically used in each emitter.

A Solid State Lidar on the other hand, is a lidar with no moving parts. One
category of solid state lidar, also known as the Flash Lidar, is a subset of the time-of-
flight cameras discussed in the previous section. Based on the same principles, the
main difference is that the entire scene is typically illuminated using a single laser
pulse, and distance is estimated by measuring the direct time-of-flight of the pulse
to each camera pixel. Other types of solid state lidars use micro-electromechanical
system (MEMS) mirrors [36] or optical phase arrays (OPA) [37] to steer a laser beam
in different directions.

27

3.1.5 Radar

RADAR, or radar (Radio Detection and Ranging) sensors use electromagnetic waves
in the microwave range. Widely adopted in the automotive industry for anti-collision
and cruise control systems, radar sensors use the same time-of-flight principle as the
lidar. As radar uses lower frequency waves than lidar and other IR/visible light based
sensors, typically around 77 GHz in modern automotive mm-wave radar, it has both
advantages and disadvantages over other sensors. The main advantage of radar are
its range and penetration abilities, making detection possible at longer ranges and in
rougher weather conditions such as heavy rain and fog [38]. The main disadvantage
in the context of this thesis is the 3D resolution. The distance resolution is limited by
the bandwidth of the radar, and the angular resolution is dependent on the number
of sending and receiving antenna arrays. A typical state-of-the art automotive radar
yields a distance resolution of around 0.2 m, and an angular resolution of 2-3 degrees
[39, 40].

Due to these limitations compared to camera and lidar, radar sensors were not
investigated further during this project. However, in the very recent years, research
on people detection based on mm-wave radar has gained some momentum. One
advantage of radar is that it provides information about an object’s velocity in
addition to distance, due to the Doppler component of the returned signal. Another
reason to use radar instead of camera vision is privacy, as there are concerns about
images and videos being leaked or stolen [41]. Most published research on this topic
performs tracking in indoor environments, with focus on identification and tracking
[41, 42, 43] and Human Activity Recognition (HAR) [44].

3.2 3D Data Representation

This section gives a brief introduction to different formats for storing the three
dimensional measurements taken by 3D sensors. While all formats store depth
information, different formats are used based on the data source (sensor), but also
based the application.

3.2.1 Depth Maps and RGB-D Image

A depth map, or depth image, is a two dimensional matrix with depth measurements
stored in each cell. For many types of 3D sensors, this is the raw format in which the
sensor captures the measurements. In e.g. the Microsoft Kinect V2 which was used
in multiple of the papers in this thesis, the depth sensor is an infrared time-of-flight
sensor with a resolution of 512 x 424 pixels.

28

The depth map in its raw format cannot be used to generate three dimensional
points from the measurements, as it contains no information about the transformation
from the image sensor to the measured points. In other words, the only information
in the depth image is the distance to a measured object, not the direction.

An RGB-D image is a depth image with additional colour information. In addition
to the depth channel, three more channels are added for red, green and blue, hence
the abbreviation RGB-D. To accomplish this, a colour image is typically projected
onto the depth image, or vice versa, using a calibrated transformation. RGB-D
images can be generated by multiple types of sensors, either by using stereo images
or a combination of an image sensor and a depth measurement sensor. In sensors
that contain both a colour sensor and a depth sensor, matching the two images is
usually referred to as an intrinsic calibration.

3.2.2 Point Clouds

Point clouds are the most common used representation form used when displaying
3D sensor measurements, as they contain the exact three dimensional coordinates of
the measured points and can be easily interpreted by humans. Where depth and
RGB-D images are stored in a two dimensional array, point clouds are typically
stored in a one-dimensional list.

As discussed above, generating a point cloud from a depth map or RGB-D image
requires knowledge about the sensor, its field of view, and optics (lens distortion,
etc.) to create a transform from the two-dimensional image to the three dimensional
space.

While storing data in point clouds has the advantage that the points are repres-
ented by x,y,z coordinates, one of the disadvantages is storage size. Depth images
commonly use a single 32 bit number per point to store depth information, and
RGB-D images include 24-bit RGB colour depth. Point clouds on the other hand
typically require three 32 bit floating-point numbers per point just to store the
coordinate, resulting in at least 3 times more required storage space, which is why
some sort of compression is essential when transmitting real-time point cloud streams.
Additional information such as colour and intensity could also need to be stored, as
detailed in Paper D. An example of a point cloud generated by the depth maps of
three Kinect V2 sensors can be seen in Figure 3.6.

3.2.3 Voxels and Octree

In this thesis, some of the most used 3D data representations are voxels and octrees,
where both these types add structure to the data. Voxels, a term derived from the
two dimensional pixel, can be considered pixels in 3D space. In a voxel space, the

29

Figure 3.6: An example of a point cloud generated by Kinect V2 sensors.

volume of interest is divided into a three dimensional grid, resulting in a number of
equally sized cubes, or voxels. Adjusting the size of the cubes will therefore adjust
the resolution of the voxel space. This division of a space to a fixed set of sub-spaces
was used in Papers A, B and C, where each voxel, or cube, was assigned it’s own
thread in the CUDA optimisation algorithm. In [45], a voxel space was also used to
perform massively parallel GPU computations for real-time collision detection. A
figure of a volume divided into voxels can be seen in Figure 3.7.

Figure 3.7: A representation of 3D pixels, or voxels. Here the original volume is
divided into a 4× 2× 4 grid of voxels.

When creating a voxel space where the data source is is e.g. a point cloud, each
voxel can contain data from none to many original points. This results in multiple
points being merged to one if a voxel encompasses more than one point. One
approach, used in Paper D, is to add the number of points inside a voxel together,
creating an artificial intensity metric, where voxels with more points have a higher

30

intensity.
While the use of voxels helps generate structure, storing the data in such a format

can be inefficient, especially in sparse volumes where there is a lot of empty space.
In 1980, the octree was proposed as a new way of modelling 3D objects [46]. As the
name suggests, the octree is a tree structure with parent and child nodes.

When creating an octree, the entire volume of interest is covered by a single voxel.
Then, the following algorithm is used:

• If the voxel contains more than one point, divide the voxel into eight smaller
voxels (octants).

• For each of the new voxels, repeat this process recursively.

• Stop the process when all voxels contain only a single point, or when the desired
tree depth is reached.

Adjusting the depth of the tree will thus adjust the resolution of the octree. The
octree model was used when compressing, transferring and decompressing point
clouds in Paper D in this thesis, allowing multiple real-time point cloud streams to
be received and merged by a server on a standard Ethernet connection. An example
of an octree is shown in Figure 3.8.

Figure 3.8: A representation of an octree. The occupied voxels are coloured grey,
and the resulting tree is shown to the right. Branches with empty leaf nodes can be
pruned, as they store no information.

3.3 Point Cloud Compression and Filtering

In 2011, the Point Cloud Library (PCL) was presented [47]. This software library
includes multiple tools for working with point clouds, including an octree-based
compression based on the work presented in [48]. This method was the basis for the

31

point cloud sensor network technique used in Paper D, where multiple real-time point
clouds generated from a sensor network were compressed, transferred and merged to
one single point cloud. This merged, real-time point cloud was in turn used as input
for the human detection algorithm presented in Paper E.

Point cloud compression of real-time (dynamic) point clouds differ from the
compression of static point clouds. Where static point clouds can be compressed by
more conventional compression methods such as DEFLATE commonly used in zip
files [49], streams of point clouds require a fast and efficient algorithm. While the
custom octree approach used in this thesis includes temporal compression, a standard
compression method such as the well known JPEG (by the Joint Photographic
Experts Group) for images and MPEG (by the Moving Picture Experts Group) for
videos was not available at the time the research in Paper D was performed. However,
both these groups are now working on standards including point cloud compression,
which could enable more standardised way of storing, viewing, transferring and
manipulating point cloud streams in the future [50, 51, 52].

In Paper D, the merged point cloud was de-noised using a custom algorithm based
on the intensity of the voxels. Knowing the distance from the sensor to the measured
object, measurements closer to the sensor were given lower weight than measurements
further away. In a multi-sensor environment, this resulted in a point cloud where
objects close to and far from the sensors would get similar intensity. Setting a lower
limit for allowed intensity value efficiently removed noisy measurements from the
point cloud, leaving mostly valid measurement points. This efficient method allowed
the point cloud to be segmented based on minimum Euclidean distance between
points as described in Paper E, without the presence of many outliers.

An extensive review of other point cloud filtering methods was performed in [53],
and the interested reader is therefore referred here for more information on this topic.

32

Chapter 4

Experimental Setup and Prototyping

This chapter presents the experimental setup and 3D sensor package prototypes that
were created and used throughout this project. Most prototyping and experiments
described in this thesis were performed in the Industrial Robotics Lab (IRL) at the
University of Agder, Grimstad, Norway. The lab was built to resemble an industrial
environment, including industrial robots and processing equipment. An overview of
the lab can be seen in Figure 4.1. This chapter gives an introduction to the sensors
and computing hardware that were used in the lab, and the rationale behind it.
Paper D describes the selected hardware and setup in more detail.

Figure 4.1: Overview of the Industrial Robotics Lab at the University of Agder.

33

4.1 Selected 3D sensors

Multiple 3D sensor types were tested for applicability, including range, field of
view, and resolution. Based on the initial tests, the state-of-the-art analysis in
Section 1.3, the technology analysis in Section 3.1 and the availability and cost
of the sensors, three different sensor technologies were chosen for this project: A
time-of-flight camera (Microsoft Kinect V2), a Lidar (Velodyne VLP-16 PUCK)
and an industrial stereo imaging camera (Carnegie Robotics Multisense S21). The
different technologies were selected both to be able to compare the measurements,
but also to take advantage of sensor fusion where one sensor might perform better
than another in different environmental scenarios.

The Kinect Time-Of-Flight camera was selected due to its cost, availability and
extreme popularity in academia. This allowed for a relatively fast prototyping phase
due to available open source drivers and ROS software. It would also make results
more easily comparable to other research using the same type of sensor.

The Velodyne Lidar was chosen due to it’s high accuracy, and increasing popularity
among the computer vision community, especially withing autonomous machines
and autonomous driving. Experience with Lidar systems was deemed to be highly
valuable in future research.

The Carnegie Robotics Stereo Vision Camera was selected to review the state-of-
the art in industrial stereo vision in comparison to the consumer grade Kinect V2
sensor.

4.2 3D Sensor Package

Part of the motivation for this thesis, outlined in Section 1.1, was to build a sensor
package for offshore use. To create a prototype for outdoor use, a water tight cabinet
was chosen, where the sensors and related hardware were mounted. To make it
as compact as possible, the already waterproof VLP-16 and Multisense S21 were
mounted externally, and the Kinect V2 and embedded computer were mounted
internally (see Figure 4.2). Five additional sensor packages were made, which only
incorporated the Microsoft Kinect V2.

The 3D Sensor package also needed an embedded computer to be able to gather
sensor data (RGB-D and point cloud streams), perform compression, and transfer
the data to a central server. After reviewing alternatives, the NVIDIA Jetson TX2
was selected. At the time, this was the state-of-the-art embedded computer from
NVIDIA, capable of handling the data volume produced by the connected sensors.
It also included a GPU used for depth image processing.

To test the ruggedness of the package, it was mounted in an exposed location

34

(a) (b)

(c)

Figure 4.2: (a): The first prototype of a sensor package; (b): Embedded sensor
package consisting of an NVIDIA Jetson TX2, a Kinect V2, a Velodyne VLP-16
PUCK Lidar and a Carnegie Robotics S21; (c) The six sensor packages used to cover
the entire Industrial Robotics Lab.

outdoors on the roof of the University of Agder for approximately one month. The
system was operational for the duration of this time, proving the ruggedness of the
sensor package. However, it is clear that for operation in offshore environments,
especially on drilling rigs, more work is needed to ensure the integrity of the sensor
package, including an EX (explosive environment) certified enclosure.

4.3 Other Hardware and Prototyping Environment

In cooperation with fellow researchers in the SFI Offshore Mechatronics research
centre, a prototyping framework was installed in the Industrial Robotics Lab. A

35

central server was custom built and installed in a server rack along with a switch
that connected the server, the 6 sensor nodes and the ABB robot control system in
a closed, wired Ethernet network.

On both the sensor nodes and server, the Robot Operating System (ROS) [54]
was chosen as the middleware for running most of the software produced in this
project. As ROS was gaining popularity in the research community, it allowed for
rapid prototyping and testing due to already available drivers for sensors, an efficient
communication protocol using a publish and subscribe scheme, and the ability to
create and deploy custom packages, known as ROS nodes. For a detailed description
of the sensor nodes and ROS system, see Paper D.

The goal of the experimental setup was to cover the IRL with the 3D sensors,
and the sensor packages were therefore placed around the outer perimeter of the lab,
with their field of views pointing inward. Once the sensors were mounted, research
was performed to find the best calibration scheme to transform the point clouds
generated by all six sensor nodes into a common coordinate system. In [55] Aalerud,
Dybedal, et al. presented a manual calibration approach, and in [56] and [35] Ujkani,
Aalerud, Dybedal et al. performed intrinsic sensor calibration and proposed an
automatic extrinsic calibration scheme based on ArUco markers.

As the research progressed in parallel, the hardware and calibration techniques
used in the papers attached to this thesis evolved over time. The exact specifications
and methods at the time are specified in each paper. For the same reason, the sensor
placement optimisation and occlusion minimisation methods presented in Papers B
and C were not used when the sensors were originally mounted, but the robotics lab
was used in one of the case studies in Paper C.

Together, the calibration schemes, sensor packages, and computational framework
provided an efficient sensor fusion solution, where, when calibrated correctly, data
from “any” sensor connected to a sensor package were transformed into the same
voxel space and the same format. The transmitted data from each sensor was
time-synchronised using synchronised clocks and timestamps. Using the point cloud
intensity and filtering technique from Paper D, any overlapping sensor field-of-
views meant a stronger intensity/confidence value in the merged point cloud. Once
operational, the prototype environment provided this author and other researchers
in the SFI Offshore Mechatronics with a ready-to-use real-time point cloud stream
of the Industrial Robotics Lab. Figure 4.3, adapted from Paper D, shows how the
system merges both RGB-D and lidar based point clouds into a single voxelised
space.

In August 2018, the sensor packages were temporarily moved to an outdoor
industrial testing facility at MHWirth AS (now HMH) in Kristiansand, Norway.
Here, the dataset published in [57] was recorded. The dataset was part of a total

36

(a)

6

5

4

3

2

1

(b)

(c) (d)

Figure 4.3: (a) Original point clouds from all sensors, including colour information
for the Kinect V2 sensors and points from the VLP-16 lidar; (b) Top down view of
original point clouds, where the different sensors’ points are colour coded and the
sensor packages are numbered; (c) Voxelised and merged, but unfiltered point cloud;
(d) Voxelised and filtered point cloud.

of 1.4 terrabytes of captured data including colour images, IR images, lidar scans
and depth maps. The dataset contains point cloud streams for different weather
conditions such as heavy rain and low sun, and was later used in Paper E to train
and validate the people detection method. A birds-eye-view of the test facility can
be seen in Figure 4.4.

37

Figure 4.4: Overview of the outdoor testing facility at MHWirth.

38

Chapter 5

People Detection

The work presented in Paper E contains a solution for people detection in a voxelised
three-dimensional space. This chapter presents relevant background information on
different people detection techniques.

In the last decade, computer vision systems have become a more and more
important part of different forms of systems: Modern cars, from conventional to fully
autonomous, drones, logistics robots and vacuum cleaners are all examples of systems
where computer vision sensors are used to detect obstacles both for security reasons
and for autonomy. A common factor for these systems is that they are mobile, and
have sensors mounted on them to help them navigate.

Another approach, as the one taken in this thesis, is to use computer vision
systems to map a defined area, using multiple static sensors looking at the entire
scene. This approach allows vehicles or equipment that do not have “eyes” of their
own to be monitored and instructed. The Industrial Robotics Lab at the University
of Agder is one example of such an area, where conventional robots without any
vision systems are operational inside a cell where other obstacles could be present.

The following sections give a brief introduction to the methods for human detection
used in this thesis, and how the accuracy measures are calculated.

5.1 Statistical Analysis of Binary Classification Per-

formance

In the paper E, a method for classifying humans in a three dimensional space was
developed. The classification was binary as the candidates were either classified
as human or not human. This section provides a short introduction to binary
classification with emphasis on the metrics used to measure classification accuracy.

Machine learning is much more than artificial intelligence and black boxes that
magically learns features of datasets. The field of machine learning stretches back to

39

the 1960s [58] and is based on statistical analysis methods. The classic classifiers
such as the Naïve Bayesian classifier, and random environment learning machines
are all using statistical approaches to learn and predict.

Whether a legacy or a state-of-the art classifier is used, a common way to describe
its accuracy is needed to be able to compare performances. One such approach is the
Confusion Matrix (see Figure 5.1). This matrix shows how many of the predictions
that were correct (the accuracy, shown on the diagonal) and how many that were
assigned to each of the other possible classes. (In non-binary classifiers, the matrix
can be extended, with correct predictions for each class on the diagonal). Thus the
matrix shows the complete picture, including false positives and false negatives for
each class.

FN
(False Negative)

FP
(False Positive)

Negative

N
eg

at
iv

e

Predicted Result

Ac
tu

al
 R

es
ul

t

TP
(True Positive)

TN
(True Negative)

Positive

Po
si

tiv
e

Figure 5.1: Example of a binary (2-class) Confusion Matrix.

If a classifier is not 100% accurate, two other metrics known as precision and
recall are often used to describe the performance [59]. The precision of the classifier
is defined as the number of correct predictions divided by the total number of
predictions of that class:

precision =
tp

tp+ fp
, (5.1)

where tp is true positives and fp is false positives. This measure then describes
how many of the predictions are actually true. On the other hand, the recall of the
classifier is defined as the number of correct predictions divided by the number of
actual occurrences of that class:

recall =
tp

tp+ fn
, (5.2)

40

where fn is false negatives. The recall thus describes how often the classifier correctly
predicts (or recalls) a given class.

Precision and recall must be used together to describe the performance of a
classifier, as it is very well possible to have 100% recall (every occurrence of a ‘class1’
is correctly predicted), but very low precision (all other classes were also classified as
‘class1’).

Another frequently used method to describe the performance using only a single
metric is the F1-score, or harmonic mean, defined as

F1 = 2
pp · pr
pp + pr

, (5.3)

where 0 ≤ pp ≤ 1 is the precision and 0 ≤ pr ≤ 1 the recall.
Although this measurement takes both precision and recall into account, it does

ignore true negatives and it weighs precision and recall equally, which might not be
desirable. A weighted version can be written as

Fβ = (1 + β2)
pp · pr

β2 · pp + pr
, (5.4)

where β > 1 means precision is more important, and vice versa. In both methods,
the score is zero when either precision or recall is zero, and the maximum score is
1.0 when both precision and recall is 1.0.

Accuracy and the F1 score, which was used to describe the performance of the
classifier developed in Paper E, has been among the most widely used statistical
rates to evaluate classifiers, but other metrics such as the Matthews Correlation
Coefficient (MCC) are suggested to be more precise and reliable [60], and might take
over as a standard measurement in the future.

5.2 Detection Based on Images

The detection of humans in images can be generically described as the following
process: Using an image as input, extract candidate regions where humans could
be present and use a method to find features in the regions to describe the content.
Then, classify the candidate regions as either human or not human.

For machine learning and deep learning based people detection methods, the
following is a brief summary of the necessary steps.

1. Training - The training phase is typically performed on annotated images,
where the true value is known (human or not human). Also known as supervised
learning, this approach is most common in computer vision. A dataset of
annotated images must be gathered, annotated and fed to a training model.

41

2. Testing - The trained model is tested using a subset of the annotated dataset
which was not used in the training phase. This results in metrics used to
measure the accuracy of the model, as described in the previous section.

3. Detection and Classification - The trained and tested model is used on
data from a production environment to detect candidate regions and classify
them as human/not human. Some methods perform both the detection and
classification steps simultaneously – these are known as one-stage detectors,
while the opposite is known as a two-stage detector.

There are multiple approaches to selecting candidate regions. Without prior
knowledge, candidate regions, or windows, of different positions and sizes can be
randomly selected, or systematically checked using a sliding window. After a first
round of classification, the regions would then be merged and adjusted based on the
classification result.

With some prior knowledge of the input data, the number of candidate regions
can be reduced. If the background of an image is known (i.e. a scene with no humans
or other foreign objects present), background subtraction could be used to extract
the initial candidate regions. Or, if the source is a video, subsequent images could
be compared to extract regions with movement.

In the end, the aim is that a human is enclosed by just one region. Thus, the
output of the detection method is typically a four-sided bounding box surrounding
the person. Instead of a bounding box, segments of an image can be classified as
human, another object, or an abstract class such as “road” or “forest”. This is called
semantic segmentation, which essentially assigns a category to each pixel in the
image. However, segmentation is outside the scope of this thesis and will not be
discussed further.

Popular human detection methods based on images often use edge-based feature
descriptors such as histogram of oriented gradients (HOG). It has been found that
such shape-type features (rather than appearance) often yield better results, and
the HOG approach has been widely adopted [61]. Classifiers such as Support Vector
Machines (SVMs) are typically used together with HOGs to detect humans [62].

In recent years, deep learning classifiers such as the convolutional neural network
(CNN) has gained popularity, see for example [63, 64]. A wide variety of neural
network detectors have been developed and improved over time, typically aiming
to not only detect humans, but classify objects in large datasets such as the KITTI
dataset for autonomous driving [65] and the COCO (Common Objects in Context)
dataset for object detection and segmentation [66]. Some examples of these models
are Faster RCNN [67] and YOLO (You Only Look Once) [68]. Originally based
on the DarkNet [69] framework, YOLO has been developed further by multiple

42

instances, such as YOLO by Ultralytics [70] and YOLOv7 [71].
YOLO is one example of a one-stage detector, meaning the two phases of selecting

a region-of-interest and then classifying each region is merged into a single operation,
producing bounding boxes that are already classified. These detectors are typically
used on live video streams.

For a comprehensive review of inner workings of deep learning algorithms, see
[72].

5.3 Detection Based on Point Clouds

The previous section described detection of humans or other objects in images. Adding
depth information has several benefits in applications such as 3D collision detection.
The most obvious is the additional dimension that enables direct measurement of
the distance to and position of a detected object or person.

In [73], people detection was performed on RGB-D data from a Microsoft Kinect
sensor. The HOG detector was used as an inspiration to create a HOD (Histogram
of Oriented Depths) detector, looking at the direction of depth changes in a depth
image. This detector was then combined with a HOG detector for the RBG part of
the image, resulting in a combination, coined as Combo-HOG. The Combo-HOG
detector was used together with an SVM classifier to detect people in the RGB-D
image.

For pure point clouds with no RGB component, as used in Paper E, one of the
most used data sources in the literature is point clouds from a lidar sensor, and
the application is typically pedestrian tracking for autonomous driving, or people
detection by mobile robots. As in Paper E, many of the methods are based on
deep learning. In the literature, three categories for deep learning-based 3D object
detection seem to be dominating:

1. Detectors mapping the 3D data to a 2-dimensional representation used as input
to a more conventional convolutional neural network.

2. Detectors converting the point cloud do a discretised spaced, i.e, a voxel space.

3. Detectors working directly on the 3D point cloud

Combinations, or fusions, of the approaches also exist.
Expanding on the second version of the 2D YOLO detector described in the

previous section, Complex-YOLO [74] was one of the first real-time capable 3D
detectors working on lidar data only. As one example of the first category, Complex-
YOLO converts a lidar point cloud to a bird’s-eye-view RGB map, where the colour
channels are encoded with height, density and intensity. The work included a

43

custom Euler-region proposal network (E-RPN) for estimating the heading of the
3D bounding boxes.

An example of the second category is presented in [75]. Building on the sliding
window approach for selecting candidate regions in two dimensions, the paper presents
a method to efficiently use a sliding window technique in three dimensions, while
exploiting the fact that point clouds tend to be sparse, thus significantly reducing
the amount of computation compared to classifying every window.

In [76], VoxelNet was proposed, a generic, voxel-based, deep architecture for
object detection in 3D point clouds, which outperformed other state-of-the-art lidar
based detection methods when evaluated on the KITTI benchmark. This method
removed the need for hand-crafted feature descriptors and introduced a voxel feature
encoding (VFE) layer in its one-stage detector architecture.

In [77], a novel approach based on a graph neural network (GNN) is an example
of the third category presented above. This paper also presented promising results on
the KITTI dataset. A GNN is described as the following in the paper: "We encode
the point cloud natively in a graph by using the points as the graph vertices. The
edges of the graph connect neighbourhood points that lie within a fixed radius, which
allows feature information to flow between neighbours. Such a graph representation
adapts to the structure of a point cloud directly without the need to make it regular.
A graph neural network reuses the graph edges in every layer, and avoids grouping
and sampling the points repeatedly". This paper also gives a good overview of the
differences, advantages and disadvantages of different point cloud based detection
approaches, and is recommended for further information on the topic.

The research in Paper E falls in both the first and second category. Here, a fusion
of the two were used to detect, classify and segment humans in three dimensions.
First, the point cloud was implicitly converted to the voxel space by the compression
and fusion method presented in Paper D. Then, after segmenting out candidate
clusters, two 2D images were generated by flattening the clusters onto the planes
defined by the xz and yz axes. The images were used for classification, and the point
cloud coordinates were used to get the coordinates for a three dimensional bounding
box. In other words, the whole point cloud cluster representing each human was
surrounded by a cube which would change dimensions with the pose of the human.

44

Chapter 6

Concluding Remarks

The work presented in this thesis focused on three main efforts: 1) to automatically
optimise the placement of computer vision sensors in a three dimensional environment,
2) to create a 3D sensor package and sensor fusion network, and 3) a people detection
method. A common denominator of all the appended papers is the voxel space:
A volume divided into equally sized cubes, which allowed for massively parallel
operations during placement optimisation, and served as a common format when
building the 3D sensor network and the people detection method.

In this chapter, the conclusions to the research questions presented in Chapter 1
are presented. In addition, ideas and suggestions for future work based on this thesis
are given.

6.1 Conclusions

The optimal placement of vision sensors in a 3D environment is a hard problem to
solve. It is a three dimensional variant of the “Art Gallery Problem”, where the aim
is to position as few guards as possible in a gallery, but in such a way that all walls
must be viewed by at least one guard. The art gallery problem has been proved
to be NP-hard [78], so solving a variant of this task in three dimensions was not
expected to be easy.

In Paper A, Mixed Integer Linear Programming (MILP) was used to solve the
placement problem, and this showed good results. Here, a cube shaped volume was
divided into smaller cuboids, or voxels, and the objective of the optimisation was to
maximise the number of cubes that were viewed by the sensors when considering
limited range and a cone-shaped field of view. Although the method yielded optimal
solutions, it was found to not be easily scalable due to the increase in variables
introduced by custom, piecewice linearisation of non-linear functions. Thus, getting
an optimal solutions was time consuming.

A different approach, using random sampling and the massively parallel processing

45

power of a GPU was introduced by Paper B. Using the same concept of dividing the
volume into smaller voxels, this method provided near-optimal results to scaled-up
versions of the problem while using a fraction of the computation time. The method
also introduced redundancy constraints to be able to define important sub-volumes
that should be viewed by at least n sensors. The promising results and short
computation times led to this method being chosen as the basis for further work,
which was presented in Paper C. Here, a more realistic scenario of the problem was
solved, introducing occlusions, i.e. objects blocking the field of view of the sensors.
To combat this problem, an occlusion detection method was developed, and added
as an extension to the placement optimisation solver. The solver was modified to
account for the pyramid shaped field of view typically found in vision based senors,
and to be able to optimise the pose of the sensors in addition to position. The
method yielded near-optimal positions of 6 sensors in a volume consisting of 28.800
voxels where occluded objects were present.

A significant amount of work was put in to establish the prototype environment at
the Industrial Robotics Lab at the University of Agder. As described in Chapter 4, this
work was a joint effort in the SFI Offshore Mechatronics research centre, where this
project focused on the sensor packages, edge computing, compression/decompression
and sensor fusion to enable other fellow researchers to use the merged point cloud
stream of the lab in their research. Calibration methods were developed in [55, 56, 35],
and after an extensive state-of-the-art review and prototyping phase, Paper D
presented the developed 3D sensor package and a highly scalable sensor fusion
method, including a novel point cloud compression scheme to allow six of the sensor
packages to transfer data from individual edge computers to a central server. The
compression ratio of 40.5 and a very low bandwidth would allow the system to
theoretically scale up to 440 sensors. In addition, a filtering technique based on a
custom voxel intensity was presented in the same paper.

The sensor packages, methods, and system presented in Paper D was then used
when developing the people detection scheme published in Paper E. Using the
fused, voxelized, and filtered point clouds from the sensor packages as input, the
detection system was able to detect and classify humans with an F1 score of 0.87
and a position accuracy of 4 cm in an outdoor environment. This was accomplished
through point cloud segmentation, flattening into 2D images, and a CNN based
image scene classifier. This paper also showed that the developed sensor package
performed well in an outdoor scenario, despite the fact that the main sensor, the
Microsoft Kinect V2, was designed for indoor consumer use.

Based on Papers D and E, it can be concluded that it is possible to create a
3D sensor package for outdoor use using off-the-shelf components, and that it is
feasible to develop this further for offshore use, and use it to detect people in possibly

46

hazardous areas. Indeed, the relevance of the research presented in this thesis can
be confirmed by the recent commercial interest in similar sensor systems, such as
HaloGuard by Salunda [79] and VisionIQ by the Marsden Group [80]. In addition,
the open source software, methods and datasets published during this project will
also be suitable to enable computer vision aided monitoring in other scenarios, such
as indoor industrial facilities similar to the prototyping environments presented in
Chapter 4.

Another result of the work performed by the Robotics and Autonomy work
package at SFI Offshore Mechatronics, which has not been discussed earlier, was a
patented reflector which can be mounted on a standard spinning lidar to redirect the
laser beams in a forward facing direction, effectively changing the field-of-view of the
lidar [81]. This opens up new, interesting use cases for a spinning lidar, and was a
direct result of the industry- and technology-oriented research in the research centre.

6.2 Future Work

This thesis has presented technology that could be used by the industry to enable
the use of more computer vision in industrial and/or offshore environments. For
the 3D sensor placement solver, future work should include testing the solution on
a more complex, industrial volume. Using the optimiser on a drilling rig’s derrick
would be optimal, where both the occlusion detection and redundancy constraints
would be very relevant. In addition, as the solver allows to restrict the free position
variables, possible mounting locations such as beams or pillars could be added as
part of the constraints.

The sensor packages and computational platform should be piloted in an opera-
tional industrial environment. To accomplish this, the prototype sensor packages
should be “industrialized” by selecting rugged versions of components such as the
NVIDIA Jetson, and enclosures certified for the applicable environments. In ap-
plications where real-time performance is critical, work should also be done to port
the software from the Robot Operating System to an industrial real-time system.
This should also include optimising the software by e.g. using more of the GPU
capabilities in the embedded computers and on the server. And in light of recent
advances in the field, using a mm-wave radar as part of the sensor package should
be re-evaluated.

Testing the people detection method in an outdoor environment proved its ability
to perform well in sub-optimal conditions. Using this method and the published
software as a baseline, the method could be developed further in multiple aspects.
To decrease the computation time, the software should be ported from Matlab to
a more efficient framework. In addition, adding people identification, tracking and

47

prediction could be a natural step forward. This could be used for e.g. human-
machine anti collision software to stop a machine’s movement if a person is heading
in that direction, and to keep track of the personnel’s movements in and out of
restricted or hazardous areas. To achieve this, a classification method that takes the
temporal element of the point cloud stream into account should be investigated, i.e.
exploiting the fact that the same person will be present in consecutive point clouds
in approximately the same location.

48

Bibliography

[1] SFI Offshore Mechatronics. https://sfi.mechatronics.no/. [Online; accessed
June 19, 2023].

[2] European Association of Research & Technology Organisations. The TRL
Scale as a Research & Innovation Policy Tool, EARTO Recommenda-
tions. https://www.earto.eu/wp-content/uploads/The_TRL_Scale_as_a_

R_I_Policy_Tool_-_EARTO_Recommendations_-_Final.pdf. [Online; ac-
cessed June 19, 2023].

[3] Amir Mukhtar, Likun Xia, and Tong Boon Tang. Vehicle Detection Techniques
for Collision Avoidance Systems: A Review. IEEE Transactions on Intelligent
Transportation Systems, 16:2318–2338, 10 2015.

[4] Xiaowei Hu, Ningning Tong, Yongshun Zhang, Guoping Hu, and Xingyu He.
Multiple-input–multiple-output radar super-resolution three-dimensional ima-
ging based on a dimension-reduction compressive sensing. IET Radar, Sonar &
Navigation, 10:757–764, 2016.

[5] Tesla Shifting Autopilot from Camera to Radar-Based Sensing. http://fortune.
com/2016/09/11/tesla-autopilot-shift/. [Online; accessed June 19, 2023].

[6] Uber starts self-driving car pickups in Pittsburgh. https://techcrunch.com/
2016/09/14/1386711/. [Online; accessed June 19, 2023].

[7] Alireza Asvadi, Cristiano Premebida, Paulo Peixoto, and Urbano Nunes. 3D
Lidar-based static and moving obstacle detection in driving environments: An
approach based on voxels and multi-region ground planes. Robotics and Autonom-
ous Systems, 83:299–311, 2016.

[8] IEEE Spectrum. Quanergy Announces $250 Solid-State LIDAR for Cars, Robots,
and More - IEEE Spectrum. http://spectrum.ieee.org/cars-that-think/
transportation/sensors/quanergy-solid-state-lidar. [Online; accessed
June 19, 2023].

49

https://sfi.mechatronics.no/
https://www.earto.eu/wp-content/uploads/The_TRL_Scale_as_a_R_I_Policy_Tool_-_EARTO_Recommendations_-_Final.pdf
https://www.earto.eu/wp-content/uploads/The_TRL_Scale_as_a_R_I_Policy_Tool_-_EARTO_Recommendations_-_Final.pdf
http://fortune.com/2016/09/11/tesla-autopilot-shift/
http://fortune.com/2016/09/11/tesla-autopilot-shift/
https://techcrunch.com/2016/09/14/1386711/
https://techcrunch.com/2016/09/14/1386711/
http://spectrum.ieee.org/cars-that-think/transportation/sensors/quanergy-solid-state-lidar
http://spectrum.ieee.org/cars-that-think/transportation/sensors/quanergy-solid-state-lidar

[9] Tojiro Kaneko, Hidehisa Akiyama, and Shigeto Aramaki. Detection of Indoor
Mobile Robots Using Objective Sensor without Markers. 2016 5th IIAI Interna-
tional Congress on Advanced Applied Informatics (IIAI-AAI), pages 572–575,
2016.

[10] Zivid AS. About Zivid. https://www.zivid.com/about. [Online; accessed Feb.
12, 2023].

[11] Stereolabs Inc. ZED Stereo Cameras. https://www.stereolabs.com/. [Online;
accessed Feb. 12, 2023].

[12] Stefano Mattoccia and Matteo Poggi. A passive RGBD sensor for accurate and
real-time depth sensing self-contained into an FPGA. In Proceedings of the 9th
International Conference on Distributed Smart Cameras, pages 146–151, 2015.

[13] NVIDIA Corporation. Jetson TX1 Embedded Systems Module. https://

developer.nvidia.com/embedded/jetson-tx1. [Online; accessed June 19,
2023].

[14] Aitech. A176 Cyclone | GPGPU Fanless SFF Supercomputer. https://

aitechsystems.com/product/a176-cyclone-gpgpu/. [Online; accessed June
19, 2023].

[15] Gartner Inc. Gartner’s 2016 Hype Cycle for Emerging Technologies
Identifies Three Key Trends That Organizations Must Track to Gain Com-
petitive Advantage. https://www.gartner.com/en/newsroom/press-

releases/2016-08-16-gartners-2016-hype-cycle-for-emerging-

technologies-identifies-three-key-trends-that-organizations-

must-track-to-gain-competitive-advantage. [Online; accessed June 19,
2023].

[16] Christian Stimming, Annette Krengel, Markus Boehning, Andrei Vatavu, Szilárd
Mandici, and Sergiu Nedevschi. Multi-level on-board data fusion for 2D safety
enhanced by 3D perception for AGVs. In 2015 IEEE International Conference
on Intelligent Computer Communication and Processing (ICCP), pages 239–244.
IEEE, 2015.

[17] Seungki Kim, Hyunkyu Kim, Wonseok Yoo, and Kunsoo Huh. Sensor Fusion
Algorithm Design in Detecting Vehicles Using Laser Scanner and Stereo Vision.
IEEE Transactions on Intelligent Transportation Systems, 17:1072–1084, 4 2016.

[18] Bahador Khaleghi, Alaa Khamis, Fakhreddine O. Karray, and Saiedeh N. Razavi.
Multisensor data fusion: A review of the state-of-the-art. Information Fusion,
14:28–44, 2013.

50

https://www.zivid.com/about
https://www.stereolabs.com/
https://developer.nvidia.com/embedded/jetson-tx1
https://developer.nvidia.com/embedded/jetson-tx1
https://aitechsystems.com/product/a176-cyclone-gpgpu/
https://aitechsystems.com/product/a176-cyclone-gpgpu/
https://www.gartner.com/en/newsroom/press-releases/2016-08-16-gartners-2016-hype-cycle-for-emerging-technologies-identifies-three-key-trends-that-organizations-must-track-to-gain-competitive-advantage
https://www.gartner.com/en/newsroom/press-releases/2016-08-16-gartners-2016-hype-cycle-for-emerging-technologies-identifies-three-key-trends-that-organizations-must-track-to-gain-competitive-advantage
https://www.gartner.com/en/newsroom/press-releases/2016-08-16-gartners-2016-hype-cycle-for-emerging-technologies-identifies-three-key-trends-that-organizations-must-track-to-gain-competitive-advantage
https://www.gartner.com/en/newsroom/press-releases/2016-08-16-gartners-2016-hype-cycle-for-emerging-technologies-identifies-three-key-trends-that-organizations-must-track-to-gain-competitive-advantage

[19] Jürgen Kemper, Markus Walter, and Holger Linde. Human-assisted calibration
of an angulation based indoor location system. In 2008 Second International
Conference on Sensor Technologies and Applications (sensorcomm 2008), pages
196–201, 2008.

[20] Jesse Levinson and Sebastian Thrun. Automatic Online Calibration of Cameras
and Lasers. Robotics: Science and Systems (RSS), 2(7), 2013.

[21] Abhinav Valada, Ankit Dhall, and Wolfram Burgard. Convoluted mixture of
deep experts for robust semantic segmentation. In IEEE/RSJ International
conference on intelligent robots and systems (IROS) workshop, state estimation
and terrain perception for all terrain mobile robots, volume 2, 2016.

[22] Nicolaj Kirchhof. Optimal placement of multiple sensors for localization ap-
plications. 2013 International Conference on Indoor Positioning and Indoor
Navigation, IPIN 2013, pages 28–31, 2013.

[23] Eva Hörster and Rainer Lienhart. On the optimal placement of multiple visual
sensors. In Proceedings of the 4th ACM international workshop on Video
surveillance and sensor networks, pages 111–120, 2006.

[24] Uğur Murat Erdem and Stan Sclaroff. Automated camera layout to satisfy
task-specific and floor plan-specific coverage requirements. Computer Vision
and Image Understanding, 103:156–169, 2006.

[25] H. Topcuoglu, M. Ermis, I. Bekmezci, and M. Sifyan. A new three-dimensional
wireless multimedia sensor network simulation environment for connected cover-
age problems. SIMULATION, 88:110–122, 1 2012.

[26] Alberto Bemporad and Manfred Morari. Control of systems integrating logic,
dynamics, and constraints. Automatica, 35:407–427, 3 1999.

[27] Matteo Poggi, Fabio Tosi, Konstantinos Batsos, Philippos Mordohai, and Stefano
Mattoccia. On the Synergies Between Machine Learning and Binocular Stereo
for Depth Estimation From Images: A Survey. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 44(9):5314–5334, 2022.

[28] Guodong Zhai, Wentao Zhang, Wenyuan Hu, and Zhendong Ji. Coal Mine
Rescue Robots Based on Binocular Vision: A Review of the State of the Art.
IEEE Access, 8:130561–130575, 2020.

[29] Boyu Gao, Haoxiang Lang, and Jing Ren. Stereo visual slam for autonomous
vehicles: A review. In 2020 IEEE International Conference on Systems, Man,
and Cybernetics (SMC), pages 1316–1322, 2020.

51

[30] Intel Corporation. Intel RealSense Computer Vision - Depth and Tracking
Cameras. https://www.intelrealsense.com/. [Online; accessed Feb. 12,
2023].

[31] Zivid AS. 3D Structured Light Vision. https://www.zivid.com/3d-

structured-light. [Online; accessed Feb. 12, 2023].

[32] S. Zennaro, M. Munaro, S. Milani, P. Zanuttigh, A. Bernardi, S. Ghidoni, and
E. Menegatti. Performance evaluation of the 1st and 2nd generation Kinect for
multimedia applications. In 2015 IEEE International Conference on Multimedia
and Expo (ICME), pages 1–6, 2015.

[33] Jason Geng. Structured-light 3D surface imaging: a tutorial. Advances in Optics
and Photonics, 3(2):128–160, Jun 2011.

[34] Radu Horaud, Miles Hansard, Georgios Evangelidis, and Clément Ménier. An
overview of depth cameras and range scanners based on time-of-flight technolo-
gies. Machine Vision and Applications, 27:1005–1020, 10 2016.

[35] Atle Aalerud, Joacim Dybedal, and Geir Hovland. Automatic Calibration of
an Industrial RGB-D Camera Network Using Retroreflective Fiducial Markers.
Sensors, 19(7), 2019.

[36] Dingkang Wang, Connor Watkins, and Huikai Xie. MEMS Mirrors for LiDAR:
A Review. Micromachines, 11(5), 2020.

[37] Ching-Pai Hsu, Boda Li, Braulio Solano-Rivas, Amar R. Gohil, Pak Hung
Chan, Andrew D. Moore, and Valentina Donzella. A Review and Perspective on
Optical Phased Array for Automotive LiDAR. IEEE Journal of Selected Topics
in Quantum Electronics, 27(1):1–16, 2021.

[38] Shizhe Zang, Ming Ding, David Smith, Paul Tyler, Thierry Rakotoarivelo,
and Mohamed Ali Kaafar. The Impact of Adverse Weather Conditions on
Autonomous Vehicles: How Rain, Snow, Fog, and Hail Affect the Performance
of a Self-Driving Car. IEEE Vehicular Technology Magazine, 14(2):103–111,
2019.

[39] Christian Waldschmidt, Juergen Hasch, and Wolfgang Menzel. Automotive
Radar — From First Efforts to Future Systems. IEEE Journal of Microwaves,
1(1):135–148, 2021.

[40] Nicolas Scheiner, Ole Schumann, Florian Kraus, Nils Appenrodt, Jürgen Dick-
mann, and Bernhard Sick. Off-the-shelf sensor vs. experimental radar - How
much resolution is necessary in automotive radar classification? In 2020 IEEE

52

https://www.intelrealsense.com/
https://www.zivid.com/3d-structured-light
https://www.zivid.com/3d-structured-light

23rd International Conference on Information Fusion (FUSION), pages 1–8,
2020.

[41] Peijun Zhao, Chris Xiaoxuan Lu, Jianan Wang, Changhao Chen, Wei Wang,
Niki Trigoni, and Andrew Markham. mID: Tracking and Identifying People with
Millimeter Wave Radar. In 2019 15th International Conference on Distributed
Computing in Sensor Systems (DCOSS), pages 33–40, 2019.

[42] Han Cui and Naim Dahnoun. High Precision Human Detection and Track-
ing Using Millimeter-Wave Radars. IEEE Aerospace and Electronic Systems
Magazine, 36(1):22–32, 2021.

[43] Zhongfei Ni and Binke Huang. Gait-Based Person Identification and Intruder
Detection Using mm-Wave Sensing in Multi-Person Scenario. IEEE Sensors
Journal, 22(10):9713–9723, 2022.

[44] Youngwook Kim, Ibrahim Alnujaim, and Daegun Oh. Human Activity Classific-
ation Based on Point Clouds Measured by Millimeter Wave MIMO Radar With
Deep Recurrent Neural Networks. IEEE Sensors Journal, 21(12):13522–13529,
2021.

[45] Andreas Hermann, Florian Drews, Joerg Bauer, Sebastian Klemm, Arne Roen-
nau, and Ruediger Dillmann. Unified GPU voxel collision detection for mobile
manipulation planning. In 2014 IEEE/RSJ International Conference on Intelli-
gent Robots and Systems, pages 4154–4160, 2014.

[46] Donald J. R. Meagher. Octree encoding: a new technique for the representation,
manipulation and display of arbitrary 3-D objects by computer. Rensselaer
Polytechnic Institute, Oct 1980. Print.

[47] Radu Bogdan Rusu and Steve Cousins. 3D is here: Point Cloud Library
(PCL). In IEEE International Conference on Robotics and Automation (ICRA),
Shanghai, China, May 9-13 2011.

[48] Julius Kammerl, Nico Blodow, Radu Bogdan Rusu, Suat Gedikli, Michael Beetz,
and Eckehard Steinbach. Real-time compression of point cloud streams. In 2012
IEEE International Conference on Robotics and Automation, pages 778–785,
2012.

[49] L. Peter Deutsch. DEFLATE Compressed Data Format Specification version
1.3. RFC 1951, May 1996.

53

[50] International Organization for Standardization. Information technology —
Plenoptic image coding system (JPEG Pleno) — Part 1: Framework (ISO/IEC
21794-1:2020), 2020.

[51] Sebastian Schwarz, Marius Preda, Vittorio Baroncini, Madhukar Budagavi,
Pablo Cesar, Philip A. Chou, Robert A. Cohen, Maja Krivokuća, Sébastien
Lasserre, Zhu Li, Joan Llach, Khaled Mammou, Rufael Mekuria, Ohji Nak-
agami, Ernestasia Siahaan, Ali Tabatabai, Alexis M. Tourapis, and Vladyslav
Zakharchenko. Emerging MPEG Standards for Point Cloud Compression. IEEE
Journal on Emerging and Selected Topics in Circuits and Systems, 9(1):133–148,
2019.

[52] D. Graziosi, O. Nakagami, S. Kuma, A. Zaghetto, T. Suzuki, and A. Tabatabai.
An overview of ongoing point cloud compression standardization activities:
video-based (V-PCC) and geometry-based (G-PCC). APSIPA Transactions on
Signal and Information Processing, 9:e13, 2020.

[53] Xian-Feng Han, Jesse S. Jin, Ming-Jie Wang, Wei Jiang, Lei Gao, and Liping
Xiao. A review of algorithms for filtering the 3D point cloud. Signal Processing:
Image Communication, 57:103–112, 2017.

[54] Morgan Quigley, Ken Conley, Brian Gerkey, Josh Faust, Tully Foote, Jeremy
Leibs, Rob Wheeler, Andrew Y Ng, et al. ROS: an open-source Robot Operating
System. In ICRA workshop on open source software, volume 3(2), page 5. Kobe,
Japan, 2009.

[55] Atle Aalerud, Joacim Dybedal, Erind Ujkani, and Geir Hovland. Industrial
Environment Mapping Using Distributed Static 3D Sensor Nodes. In 2018 14th
IEEE/ASME International Conference on Mechatronic and Embedded Systems
and Applications (MESA), pages 1–6, 2018.

[56] Erind Ujkani, Joacim Dybedal, Atle Aalerud, Knut Berg Kaldestad, and Geir
Hovland. Visual Marker Guided Point Cloud Registration in a Large Multi-Sensor
Industrial Robot Cell. In 2018 14th IEEE/ASME International Conference on
Mechatronic and Embedded Systems and Applications (MESA), pages 1–6, 2018.

[57] Joacim Dybedal. Replication Data for: CNN-based People Detection in Voxel
Space using Intensity Measurements and Point Cluster Flattening. DataverseNO ,
2021.

[58] N.J. Nilsson. Learning Machines. McGrawHill, New York, 1965.

54

[59] Michael Buckland and Fredric Gey. The relationship between Recall and
Precision. Journal of the American Society for Information Science, 45(1):12–19,
1994.

[60] Davide Chicco and Giuseppe Jurman. The advantages of the Matthews cor-
relation coefficient (MCC) over F1 score and accuracy in binary classification
evaluation. BMC Genomics, 21:6, 12 2020.

[61] Duc Thanh Nguyen, Wanqing Li, and Philip O. Ogunbona. Human detection
from images and videos: A survey. Pattern Recognition, 51:148–175, 3 2016.

[62] Luciano Spinello and Roland Siegwart. Human detection using multimodal and
multidimensional features. In 2008 IEEE International Conference on Robotics
and Automation, pages 3264–3269, 2008.

[63] Shuai Shao, Zijian Zhao, Boxun Li, Tete Xiao, Gang Yu, Xiangyu Zhang, and
Jian Sun. Crowdhuman: A benchmark for detecting human in a crowd. arXiv
preprint arXiv:1805.00123, 2018.

[64] Sasa Sambolek and Marina Ivasic-Kos. Automatic Person Detection in Search
and Rescue Operations Using Deep CNN Detectors. IEEE Access, 9:37905–37922,
2021.

[65] Andreas Geiger, Philip Lenz, Christoph Stiller, and Raquel Urtasun. Vision
meets Robotics: The KITTI Dataset. International Journal of Robotics Research
(IJRR), 2013.

[66] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva
Ramanan, Piotr Dollár, and C Lawrence Zitnick. Microsoft coco: Common
objects in context. In Computer Vision – ECCV 2014, pages 740–755. Springer,
2014.

[67] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster R-CNN:
Towards Real-Time Object Detection with Region Proposal Networks. In
C. Cortes, N. Lawrence, D. Lee, M. Sugiyama, and R. Garnett, editors, Advances
in Neural Information Processing Systems, volume 28. Curran Associates, Inc.,
2015.

[68] Joseph Redmon and Ali Farhadi. Yolov3: An incremental improvement. arXiv
preprint arXiv:1804.02767, 2018.

[69] Joseph Redmon. Darknet: Open Source Neural Networks in C. http://

pjreddie.com/darknet/, 2013–2016. [Online; accessed May 31, 2023].

55

http://pjreddie.com/darknet/
http://pjreddie.com/darknet/

[70] G. Jocher, A. Chaurasia, and J. Qiu. YOLO by Ultralytics. https://github.
com/ultralytics/ultralytics. [Online; accessed May 31, 2023].

[71] Chien-Yao Wang, Alexey Bochkovskiy, and Hong-Yuan Mark Liao. YOLOv7:
Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 7464–7475, 2023.

[72] Ajay Shrestha and Ausif Mahmood. Review of Deep Learning Algorithms and
Architectures. IEEE Access, 7:53040–53065, 2019.

[73] Luciano Spinello and Kai O. Arras. People detection in RGB-D data. In 2011
IEEE/RSJ International Conference on Intelligent Robots and Systems, pages
3838–3843, 2011.

[74] Martin Simony, Stefan Milzy, Karl Amendey, and Horst-Michael Gross. Complex-
YOLO: An Euler-Region-Proposal for Real-time 3D Object Detection on Point
Clouds. In Proceedings of the European Conference on Computer Vision (ECCV)
Workshops, September 2018.

[75] Dominic Zeng Wang and Ingmar Posner. Voting for voting in online point cloud
object detection. In Robotics: science and systems, volume 1(3), pages 10–15.
Rome, Italy, 2015.

[76] Yin Zhou and Oncel Tuzel. VoxelNet: End-to-End Learning for Point Cloud
Based 3D Object Detection. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), June 2018.

[77] Weijing Shi and Raj Rajkumar. Point-GNN: Graph Neural Network for 3D
Object Detection in a Point Cloud. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR), June 2020.

[78] D. Lee and A. Lin. Computational complexity of art gallery problems. IEEE
Transactions on Information Theory, 32(2):276–282, 1986.

[79] Salunda Limited. HaloGuard - Unauthorised Personnel Detection. https:

//www.salunda.com/haloguard. [Online; accessed June 19, 2023].

[80] Velodyne Lidar Inc. Lidar Helping to Improve Safety in Offshore
Drilling. https://velodynelidar.com/blog/lidar-helping-to-improve-

safety-in-offshore-drilling/. [Online; accessed June 19, 2023].

[81] Atle Aalerud and Joacim Dybedal. Reflector for reflecting electromagnetic
waves from a rotating electromagnetic wave source, 2023. European Patent
EP3899604B1.

56

https://github.com/ultralytics/ultralytics
https://github.com/ultralytics/ultralytics
https://www.salunda.com/haloguard
https://www.salunda.com/haloguard
https://velodynelidar.com/blog/lidar-helping-to-improve-safety-in-offshore-drilling/
https://velodynelidar.com/blog/lidar-helping-to-improve-safety-in-offshore-drilling/

148

Paper D

Embedded Processing and
Compression of 3D Sensor Data for
Large Scale Industrial Environments

Joacim Dybedal, Atle Aalerud and Geir Hovland

117

This paper has been published as:

Joacim Dybedal, Atle Aalerud and Geir Hovland. Embedded Processing and Com-
pression of 3D Sensor Data for Large Scale Industrial Environments. Sensors,
19(3):636, 2019.
doi: 10.3390/s19030636.

118

http://dx.doi.org/10.3390/s19030636

Embedded Processing and Compression of
3D Sensor Data for Large Scale Industrial

Environments

Joacim Dybedal*, Atle Aalerud* and Geir Hovland*

*University of Agder
Faculty of Engineering and Science

Jon Lilletunsvei 9, 4879 Grimstad, Norway

Abstract This paper presents a scalable embedded solution for pro-
cessing and transferring 3D point cloud data. Sensors based on the time-
of-flight principle generate data which are processed on a local embedded
computer and compressed using an octree-based scheme. The compressed
data is transferred to a central node where the individual point clouds
from several nodes are decompressed and filtered based on a novel method
for generating intensity values for sensors which do not natively produce
such a value. The paper presents experimental results from a relatively
large industrial robot cell with an approximate size of 10m× 10m× 4m.
The main advantage of processing point cloud data locally on the nodes
is scalability. The proposed solution could, with a dedicated Gigabit Eth-
ernet local network, be scaled up to approximately 440 sensor nodes, only
limited by the processing power of the central node that is receiving the
compressed data from the local nodes. A compression ratio of 40.5 was
obtained when compressing a point cloud stream from a single Microsoft
Kinect V2 sensor using an octree resolution of 4 cm.

D.1 Introduction

The rapid development of 3D sensors based on the time-of-flight principle is currently
an important enabling factor for different autonomous systems, such as self-driving
vehicles or drones. However, there is also an increasing interest in using these types
of sensors in other industries where the sensors are not moving with a vehicle or
machine, but are mounted in fixed locations and monitoring a volume of interest.
One such application is within the offshore oil and gas industry, where, in recent
years, there has been a growing focus on automation, safety systems and better
efficiency (see, for example, [D1]). This is highly motivated by cost reductions due to
lower investment activity by exploration and production companies. Adding depth

119

cameras, lidar (Light Detection And Ranging) and other 3D sensors to existing and
newly built facilities could contribute to enabling and accelerating this development.

One feature of the 3D sensors is the generation of a potentially large amount of
data, requiring a high bandwidth between the sensor and the computer processing the
data. For example, the Microsoft Kinect for Xbox One (Kinect V2) sensor (Microsoft
Corporation, Redmond, WA, USA) can generate data of several Gbit/s on a USB3
connection. With a dedicated PCI card, it is possible to use a few such sensors on a
single computer; however, scaling the solution up to many more sensors is difficult
with a centralized solution. A first step to ensure scalability is to lower the bandwidth
requirement using point cloud compression. The following subsection will describe
previous methods for compressing point cloud data and the main contributions of
this paper will be outlined in Section D.1.2.

D.1.1 Related Work

In [D2], a compression and decompression scheme for point cloud streams was
presented. The paper presented a novel XOR-based differential octree used by the
compressor to detect temporal changes between two consecutively measured point
clouds. The authors in [D2] implemented both spatial and temporal compression of
arbitrary point clouds originating from a single Kinect depth sensor. It was shown
that octrees can be used to efficiently compress and encode such point cloud streams.
The authors also showed that the double-buffered octree compression scheme was
suitable for compressing even unstructured point clouds. Temporal compression was
described to be especially effective when there is a limited amount of movement in
the point cloud, which is the case in our application where most of the scenery is
static and movement only comes from the machines and/or humans. In addition to
the implicit grid filtering performed by inserting points into an octree with a fixed
minimum voxel size, the points in the original point cloud could be reconstructed
with a given precision at the decompressor due to an additional encoding of point
details in each octree leaf node.

The underlying compression algorithm used in [D2] is a variant of an arithmetic
entropy encoder known as an integer-arithmetic or range encoder originally presented
in [D3]. In short, a range encoder utilizes the probability distribution of a set of
symbols (e.g., bytes in this case) with a given range, and encodes the symbols
into one number by dividing the initial range into sub-ranges based on the symbol
probabilities. The reader is referred to [D3] for further details. The range encoder
implemented by [D2] takes a stream of bytes as an input, and produces an encoded
stream which can be stored or transmitted over a network.

A dynamic compression scheme based on [D2] was developed in [D4]. Using a

120

single Kinect depth sensor, the authors were able to achieve an average frame rate
of 5.86Hz on a network subjected to different levels of background transmissions.
In our scenario, such background noise on the network is minuscule, as the entire
network is designated to transfer data between the sensors, the central computer and
the machines in the lab.

Another technique that has been shown to be useful for processing point clouds is
graph signal processing (GSP). In [D5, D6], GSP was used to resample and compress
point clouds, respectively. Resampling was achieved by applying different filters on
the generated graphs and compression was partially based on the double-buffered
octree scheme outlined above. Furthermore, in [D7], GSP was used to perform
denoising by first removing outlier points based on a weighted graph (similar to a
statistical outlier removal filter), and subsequently smoothing the point cloud by
means of convex optimization on the graph signal. While these results show that
GSP can be well suited for working with point clouds, they also show that the process
can be time-consuming. For example, in [D5], the authors were able to process 15
million 3D points in 1000 s, equivalent to 15,000 points per second. However, since
the Kinect V2 used in this paper generates point clouds consisting of 217,088 points
at rates up to 30Hz, it would require a much lower processing time to keep up with
such frame rates.

In [D8], an octree based mapping framework (OctoMap) was proposed. The
generated map was implemented as an occupancy grid, where voxels are labeled
occupied, free or unknown based an occupancy probability. The work included a
compression scheme combining clamping and octree pruning, where the tree is pruned
when all children of a tree node are considered stable (the nodes have an occupancy
probability close to 0 or 1). The framework, which also incorporates probabilistic
sensor fusion, is intended to build a map of an environment, and thus is of interest
in our scenario where the goal is to create a dynamic map of a robotic cell. If all
sensors were directly connected to the central computer, OctoMap could be used to
fuse the sensor data and generate a map of the complete area. However, the focus of
this paper is to lower the amount of data generated by the sensors before the data
is inserted into such a map, limiting the required network bandwidth between the
sensors and the central computer, and ensuring scalability.

D.1.2 Main Contributions

Unlike in most literature where single sensors often are considered [D9, D4, D10], an
industrial application will typically need multiple sensors to cover relatively large
areas. To ensure scalability, a new approach is presented, where each sensor is
connected to a local computer. The generated point cloud data is processed and

121

compressed on the embedded sensor node before the data is sent to a central computer
for decompression and further processing.

To perform the compression, the method presented in [D2] has been implemented
on embedded hardware. The method has further been modified by introducing an
attribute that represents the “intensity” of each voxel. The modification was made
in order to allow filtering of noisy measurements (outliers) at the central computer
and to introduce a trust level indicator for each voxel. Implementation of such an
intensity value for RGB-D (color and detph) sensors was also motivated by intensity
values returned by lidar sensors and the potential fusion of data from different sensor
types.

A compression ratio of 40.5 is achieved, and a denoising scheme based on the
calculated point intensities is proposed. With such a setup, the scalability problem
is solved by decentralization.

D.2 Materials and Methods

This paper describes a processing, compression and transmission framework for
point cloud data generated by 3D sensors. The software is developed as two Robot
Operating System (ROS, [D11]) nodes. The first ROS node is deployed on an
NVIDIA Jetson TX2 module (NVIDIA Corporation, Santa Clara, CA, USA) which,
in addition to a CPU, contains a general purpose graphical processing unit (GPGPU).
The module may have one or more 3D sensors connected, and together they form a
sensor node. By exploiting the processing capabilities of the Jetson TX2, data from
the connected sensor(s) is processed and compressed locally before it is published
on the ROS network. The second ROS node is deployed on a central computer
and receives the compressed data from one or more sensor nodes. In the following
subsections, the different processing steps are described. The developed software is
available in public github repositories, see [D12].

D.2.1 Problem Formulation and Motivation

The sensor data from multiple time-of-flight 3D sensors is to be used as input to a
“GPU Voxels”-based application [D13], a GPU based collision detection software which
is running on a centralized computer. Similar to OctoMap, a voxel-based occupancy
grid is created and, due to the fact that the map is stored in the GPU memory,
calculations such as distance to the nearest object can be performed efficiently on
multiple voxels in parallel and in real-time. As the application requires a fixed voxel
size, the voxel size used in the developed compression scheme should be adjustable
to match the size used in the application such that the voxel grids on both the

122

sensor end and the application overlap. The area to be covered by 3D sensors is
an industrial robotic cell, approximately 10 m wide, 10 m long and 4 m high. This
requires multiple 3D sensors distributed around the cell, focusing inwards.

The end application does not require the RGB data that is generated by the
Kinect sensors, thus only the depth measurements and the corresponding point clouds
are of interest. However, as mentioned in the introduction, a single computer has
limited USB bandwidth, which makes it practically impossible to connect all sensors
directly to the central computer. By introducing an embedded computer placed
at the sensor location, preprocessing and compression can be done locally before
transferring the data to the central computer over a Gigabit local area network, as
illustrated in Figure D.1.

Embedded computer 1

with point cloud

compression

Embedded computer 2

with point cloud

compression

Embedded computer N

with point cloud

compression

ROS topics on Gigabit

Ethernet Network

Robots and

sensors

Other

systems

Central computer

with point cloud

decompression

ROS topics on Gigabit

Ethernet Network

Figure D.1: Schematic overview of the considered sensor network. The number of
sensors and embedded computers is scalable.

The software running on the embedded computer should be easy to deploy to
an arbitrary number of sensor nodes from a remote location, i.e., it should not be
necessary to compile or set up different versions of the software for nodes that use
identical hardware. The system should also be scalable to such an extent that adding
several more sensor nodes should not exhaust either the Gigabit Ethernet bandwidth
or the CPU and GPU processing capabilities of the central computer. Thus, as
much processing as possible should be performed locally at the sensor node, and
efficient 3D point cloud processing and compression schemes are therefore needed at
the embedded computer.

123

D.2.2 Point Cloud Preprocessing

The ROS node running on the sensor node is developed to process point clouds
from different types of time-of-flight sensors. The software is designed to receive a
“PointCloud2” ROS topic which can be generated by different ROS drivers depending
on the sensor brand and type. Different point types can also be used, e.g., XYZ
(coordinates only), XYZI (coordinates + intensity) and XYZRGB (coordinates +
color). When a point cloud is received by the ROS node, it is first converted to an
XYZI type cloud regardless of the input type. If the original point cloud already
contains an intensity value, it is passed through as is (with some scaling), but, if not,
a new intensity value is calculated. The generation of this intensity value will be
described in detail in Section D.2.5. Any RGB color information is discarded.

To minimize the amount of data which is transmitted on the network between the
embedded and the central computer, the captured point cloud is then transformed into
a global coordinate system and cropped. The transformation matrix from the sensor’s
local coordinate system to the global coordinate system is known and published as
an ROS topic by the central computer. By subscribing to this topic, the ROS node
performs the transformation by using functions from the Point Cloud Library (PCL,
[D14]). Even though the sensors are statically mounted, the transformation matrix
is looked up every time a point cloud is received, to ensure that any changes due to
updated sensor calibration are incorporated. If, for some reason, the matrix is not
received, the latest known transformation is used.

When the transformation is complete, most of the unwanted sensor data (i.e.,
data which lie outside of the robotic cell) can be filtered out using a simple box crop
filter. The resulting point cloud now only contains points in the global coordinate
system which are of interest to the application on the central computer. As both the
transformation matrices for all sensors and the robotic cell size are known, the same
method can be applied on an arbitrary number of sensor nodes without any need
for customization. Transforming all points to the global coordinate system before
compression also ensures that the voxel grid of the octree used by the compressor
will overlap with the grid of the GPU Voxels map used by the central computer.

D.2.3 Data Representation

The resulting point cloud format after processing on the embedded computer was
preferred to be voxel- or grid-based, as the application running on the central
computer uses this kind of representation. By building on the result found by [D2],
the ROS node performs octree compression and encoding on the preprocessed point
cloud stream before publishing the encoded stream to the network.

An octree is defined as a tree structure, where each node has zero or eight children.

124

A point cloud can be inserted into an octree structure by encapsulating the whole
volume in a bounding box with equal side lengths. The bounding box is then divided
into eight subvolumes (children) called voxels, and the process is repeated for each
subvolume that contains points. A fixed octree resolution dv can be selected such
that the division process stops when the subvolumes reach a given size. The result is
an octree, where all points of the cloud is encapsulated by the leaf nodes (the smallest
voxels). Based on the resolution, each leaf node may encapsulate one or many points.
The octree can be serialized to a binary sequence describing its structure, as shown
in Figure D.2.

Serialized Octree:

00000100 01000001 00011000 00100000

00000100

01000001

0010000000011000

Figure D.2: Schematic overview of the octree data structure and its serialization.
Nodes in the tree that encapsulate points are marked as occupied (binary 1). These
are the only nodes that have children. On the finest level, the division process is
stopped, and the nodes that encapsulate points are marked as occupied. Figure
c©2012 IEEE. Reprinted, with permission, from [D2].

The Point Cloud Library supplies several types of octrees and octree leaf nodes,
including base classes. One of them is the double-buffered octree with point detail
encoding, as outlined in [D2]. To achieve the best possible compression ratios, the
double-buffered octree was selected as the base octree type, and, by adapting the
point detail encoding scheme, a new octree class was created. The encoding of the
full point details was removed, and a new value of intensity was introduced. By
creating a new leaf node type, each leaf in the octree is now capable of storing a
floating point intensity value between 0 and 1. The creation of the intensity value will
be described in Section D.2.5. When the point cloud is inserted into the octree, the
intensity value from all XYZI points that fall within each leaf node are accumulated.
Thus, each voxel in the octree gets a value of trust or intensity based on the intensity
values of all points in the original point cloud that was covered by the voxel.

125

D.2.4 Compression

When the ROS node is started, an octree resolution dv must be specified. The
resolution of the octree is then kept constant as long as the process is running. This
ensures that the tree depth is constant and that subsequent octrees can be compared
using the XOR-method incorporated in the double-buffered octree. After the point
cloud has been inserted into the octree, the tree structure is serialized to its binary
sequence. For each leaf node, the new floating point intensity value is encoded as a
separate 8-bit integer value, i.e., the floating point range 0–1 is converted into the
integer range 0–255, which results in a maximum quantization error of ±0.00195.
Using a byte to represent a floating point value is done to minimize the size of the
compressed point cloud and, as will be shown in Section D.2.5, the resolution is
sufficient for the application at hand.

The entropy coder exploiting the double-buffered octree structure as well as the
octree serialization function were used in their original and unmodified versions. An
overview of the modified compression scheme is shown in Figure D.3. The point
detail encoding implemented in the original method generated sets of integer x, y
and z coordinates relative to the leaf node origin for each point encapsulated in the
voxel. The precision of the encoded points was controlled by limiting the range of
these integer values, e.g., when using an octree resolution of 9mm, a range of [0, 8]
results in a precision of 1mm. Limiting the range of the symbol set in this way
allowed the point details to be efficiently encoded by the range encoder [D2].

Intensity Encoding

Octree structure with

“intensity type”

leaf nodes

ROS Node at embedded computer

Entropy Encoding

Point Cloud

Preprocessing and

Transformation

Point cloud

as ROS topic

Compressed

stream as

ROS topic

Figure D.3: Schematic overview of the compression principle implemented as an
ROS node at the embedded computer.

In our work, the point detail encoding was replaced by the generated intensity
value stored in a single byte with a range 0–255. The range is not further limited,
but, in contrast to the original method, our method guarantees that there will only
be one such number for each voxel. Depending on the octree resolution and the
sensor resolution, there could possibly be a large number of points encapsulated by
each voxel. The original method requires that, for each point, the point details must

126

be encoded, but when using an intensity value, only a single byte is needed. Both
the serialized octree and the intensity values are finally passed to the range encoder,
which results in a compressed byte stream that is published as an ROS topic.

D.2.5 Voxel Intensity Value Computation

Some versions of time-of-flight sensors natively provide an intensity value for each
measured point. One example of such a sensor type is a lidar, where each measurement
contains an intensity value based on the strength of the reflected signal. For other
sensor types, e.g., RGB-D sensors such as the Kinect, such a value does not exist,
and, when considering individual measurements, it is difficult to see how such a value
could be constructed. However, when the point cloud has been converted to the
“voxel domain” after being inserted into an octree, each voxel can contain several
measurements, and that number of measurements can be seen as a measurement of
trust in or intensity of the voxel.

The following paragraphs will describe different methods to construct the intensity
value of a voxel, based on the measurements from a single Kinect sensor. One reason
for introducing such a value is that, when using e.g., OctoMap or GPU Voxels in a
later stage to fuse data from multiple sensors into a single map, the intensity values,
if comparable and based on the same calculations, can be easily fused to create a
level of trust for each voxel in the map. The intensity values can also be used to
filter out voxels with weak measurements (typically noisy outlier points). Thus, the
goal is to create an intensity value that makes sense in such scenarios.

D.2.5.1 Counting Points

When constructing a voxel intensity value, perhaps the most intuitive method is to
simply count the number of points that reside in each voxel such that the intensity
value becomes Iv = n, where v is the considered voxel and n is the number of points
inside the voxel. This gives a value of strength directly based on the number of
measurements, where each point is given a point intensity

Ip = 1. (D.1)

While this is a simple solution, it introduces an issue when the intention is to filter
out noise from RGB-D sensors such as the Kinect V2 due to the fact that the
measurement points are not evenly distributed throughout the volume of interest.

127

D.2.5.2 Point Value Based on Quadratic Distance

The Kinect V2 has a field of view (FOV) of 70.6× 60 degrees, and a resolution of
512×424 pixels for the generated depth map (a total of 217,088 pixels). As the octree
resolution is constant, using the counting method to create voxel intensities means
that voxels closer to the sensor will contain a much higher number of measurements
than voxels farther away, when measuring the same object at different distances.
Even a few noisy points (or false measurements) close to the sensor is enough to
generate a much higher voxel intensity than accurate measurements farther away.
Consider, for example, rain drops when using the sensors outdoors. The drops are
evenly distributed in the entire volume but will trigger much higher intensity values
close to the sensor, as they are “hit” by more measurements. To compensate for this
behavior, a new method for generating intensity values is suggested.

Let x and y be the side lengths of the rectangle that is generated by intersecting
the FOV with a plane perpendicular to the Z-axis (the depth axis) of the sensor (see
Figure D.4). Using the FOV angles, the lengths at a given depth z can be calculated
as

x(z) = 2 · z · tan
(
35.3 · π
180

)
, y(z) = 2 · z · tan

(
30 · π
180

)
. (D.2)

Now, let dx(z) and dy(z) be the side length of each pixel in the depth map
projected onto the plane. The area of each pixel for the Kinect V2 can be written as

Ap(z) = dx(z) · dy(z) =
x(z)

512
· y(z)
424

. (D.3)

Let dv be the octree resolution, i.e., the side length of the cube forming the voxel,
and let d2v be the area of the voxel when projected onto the plane. The maximum
number of measurements (pixels) that can be encapsulated by a single voxel at a
given distance can then be found by

Np(z) =
d2v

Ap(z)
=

d2v
z2 · c

, (D.4)

where c is constant for a given sensor type. It should be noted that c will be different
depending on the sensor type and its parameters, i.e., the FOV and the resolution.
Changing any of these values will impact the calculation of the point intensity value
Ip. A finer resolution (more pixels in the same FOV), will result in a lower Ip,
as more points will fit into a voxel. A larger FOV with the same resolution will
have the opposite effect. In addition, note that Np(z) is an approximation: The
voxels have a fixed placement in the global coordinate system and, depending on
the transformation between the sensor and the global coordinate system and the
distance z, dv may not accurately describe the area of the voxel when projected onto

128

the plane, since the voxel may be rotated or offset relative to the plane. However,
since the calculation of the point intensity value is performed before the points are
transformed, this approximation is not practically avoidable. The point intensity
value Pv for a given measurement point can now be defined as

Ip(z) =
1

Np(z)
(D.5)

such that each point is given an intensity value inversely proportional to the maximum
number of points that could fit inside the voxel. This suggested method for calculating
the voxel intensity place low value in measurements close to the sensor, but, when
looking at it from the voxel perspective, all voxels will have comparable intensities,
and as the experimental results will show, when using the generated value to filter
out “weak” voxels, the ones that are removed will be distributed over the entire
volume, as opposed to the counting method where voxels closer to the sensor are
prioritized, and accurate measurements far from the sensor are removed more quickly.

Z

Rectangle projected onto plane

at distanse z along Z axiz
Camera Frame

Horizontal FOV

Vertical FOV

Sensor Origin

x(z)

y(z)

dx(z)

dy(z)

Pixel

Ap(z)

Y

Voxel example

dv

dv

dv

Figure D.4: Schematic view of a sensor’s field of view when projected onto a plane
perpendicular to its direction of view.

D.2.5.3 Point Value Based on Linear Distance

A third method for generating the voxel intensity is to use a slightly less aggressive
approach when lowering the point intensities close to the sensor, so that voxels with
multiple measurements are awarded a higher intensity value. To achieve this, the
cutoff distance zc at which it is impossible to get more than one measurement inside

129

a voxel is calculated, i.e., where Np(z) = 1:

zc =

√
d2v
c
. (D.6)

When inserting an octree resolution dv of e.g., 0.04m, this distance is 14.57m. The
point intensity value is then defined as simply

Ip(z) =
z

zc
. (D.7)

Figure D.5 shows Ip(z) for the three different methods outlined above for the
Kinect V2 depth sensor. The values are capped at 1.0 after the cutoff distance zc,
thus preventing single point intensities from exceeding the 0–1 range.

0 2 4 6 8 10 12 14 16 18 20

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Figure D.5: Plot of the point intensities Ip(z) for the three discussed calculation
methods.

D.2.5.4 Voxel Intensity

In the previous paragraphs, three methods for generating point intensity were
presented. The final step is to generate an intensity value for the voxel that is
encapsulating the points. The voxel intensity is defined as follows:

Iv =
n∑
i=1

Ip(i), (D.8)

where n is the number of points inside the voxel. When using Ip from Equation (D.1),
the generated value is an integer value corresponding to the number of points.
Using Equation (D.5), Iv will accumulate towards 1 when the voxel is filled up

130

with points. However, as Np(z) is an approximation, Iv may accumulate to slightly
more than 1, hence Iv is capped in the software so that it will never exceed 1 when
using Equation (D.5). The voxel intensity generated based on Equation (D.7) may
accumulate to more than 1 if there are multiple measurements inside the voxel.
This must be taken into account during the octree serialization process, where the
intensity value is converted to an 8-bit integer value by the following method:

I intv =

Iv · 255 for Iv ≤ 1,

255 for Iv > 1.
(D.9)

As described in Section D.2.4, the maximum quantization error when converting
a floating point range 0–1 into an integer range 0–255 is ±0.00195. If only a single
point is registered in a voxel, the point intensity value Ip must be larger than the
quantization error for it not to be set to zero. For Ip according to Equation (D.1), this
is not an issue as the value is already an integer and does not need to be converted.
This means that, if there are more than 255 points in a voxel, the intensity value
will be capped at 255 and not reflect the real point count. However, this can only
happen when the Kinect V2 measures objects closer than approximately 1m when
using a 4 cm octree resolution, which will never happen in our scenario.

The worst case scenario happens when using Equation (D.5), where point intens-
ities close to the sensor are very small. However, it can be shown that, when using
an octree resolution of 0.04m, which is the largest resolution used in the experiments
in this paper, the smallest possible point intensity is 0.0047 at a distance 1.0m from
the sensor, which is more than double the quantization error.

The methods used in the examples in this section are only valid for the Kinect
V2 or similar sensors. Other methods for generating the voxel intensity may be
designed for different sensor types or depending on the application. For example, for
the Velodyne PUCK lidar connected to one of the sensor nodes, the intensity value
already exists and does not need to be calculated.

D.2.6 Decompression and Denoising

The ROS node which runs on the central computer subscribes to, decodes and decom-
presses the encoded stream into reconstructed point clouds as shown in Figure D.6.
After the compressed stream has passed through the entropy decoder, the output
point cloud is generated by combining the deserialized octree structure and the
voxel intensity values. As mentioned in Section D.2.2, the octree resolution should
be selected to match the requirement of the end application. In our scenario, the
application is intended to be based on the GPU Voxels library. By matching the size
of the leaf nodes in the octree used by the compressor with the resolution of the GPU

131

Voxels map, the reconstructed point cloud can be inserted with a one-to-one ratio.
To achieve this, the center coordinate of the leaf voxels needs to be reconstructed by
the decompressor.

Intensity Decoding

Octree structure with

“intensity type”

leaf nodes

ROS Node at central computer

Entropy Decoding

Point cloud with

intensity value

Compressed

stream as

ROS topic
+

Figure D.6: Schematic overview of the decompression principle implemented as an
ROS node at the central computer.

For each leaf node in the received octree, a point is generated from the voxel
center coordinate and the intensity value of the voxel. The result is a new point
cloud including coordinates with a precision equal to the octree resolution, similar
to a voxel grid filter. Every leaf node of the decompressed octree thus results in an
XYZI point in the new point cloud, including the voxel intensity value in the range
0–255 (see Figure D.7).

2

3

1

Figure D.7: (Left) The points of the original point cloud inserted into an octree
structure. The figure shows only a subset of the octree consisting of eight leaf
nodes, where three of the voxels are occupied. (Right) After decompression, the
reconstructed point cloud contains points at the center coordinate of the occupied
voxels, in addition to the intensity value. In this example, the intensity value is
generated by point counting. The dashed voxel cubes on the right-hand side are only
shown for reference.

After decompression, the generated intensity value can be further exploited. By
using a pass-through filter, the point cloud can be filtered such that points with an
intensity below a given value are removed.

132

D.2.7 Experimental Setup

The point cloud processing and compression scheme described in this paper is intended
for use in a large scale industrial location. The system was therefore developed and
tested in an indoor robotic cell consisting of two rail-mounted ABB IRB4400 robots
(ABB Ltd., Zurich, Switzerland) and one gantry-mounted ABB IRB2400 robot (see
Figure D.8). In addition to the robots, a processing facility was placed in the cell to
introduce a more realistic environment.

The area to be covered by 3D sensors is approximately 10 m wide, 10 m long
and 4 m high. To accomplish this, six Kinect V2 sensors were mounted at different
locations along the walls at a height of around 4.2 m. In addition, a single Velodyne
PUCK VLP-16 lidar (Velodyne LIDAR, San Jose, CA, USA) was mounted in one of
the corner locations.

(a) (b)

Figure D.8: (a) overview of the robotic cell which is covered by the embedded
sensor nodes; (b) the cell seen from a different angle, close to one of the sensor nodes.

The ROS nodes for preprocessing and compression were deployed on six NVIDIA
Jetson TX2 Development Boards, each connected to their own Kinect V2 depth
sensor. one node is also connected to a Velodyne VLP-16 PUCK lidar and, for future
use, a Carnegie Robotics Multisense S21 stereo camera (Carnegie Robotics LLC,
Pittsburgh, PA, USA), as seen in Figure D.9. The Jetson TX2 contains a Quad-
core Arm A57 CPU (Arm Limited, Cambridge, UK), an NVIDIA Pascal GPGPU
and 8GB LPDDR4 memory. The ROS node for decompression and denoising was
deployed on the central computer, which was equipped with an Intel Core i5-2500
CPU (Intel Corporation, Santa Clara, CA, USA) and 8GB of system memory.

By equipping sensor nodes with different sensor technology and enclosing the
electronics in a waterproof cabinet, the goal is to use the sensors in an outdoor
environment, where measurements from the different sensors can compliment each
other in different weather and lighting conditions. In fact, the sensor nodes have
already been tested outdoors in an industrial area, and evaluating the results from

133

these tests is part of our future work.

(a) (b)

NVIDIA Jetson TX2 Development Board

Ethernet

Kinect (USB3.0)

Velodyne (Ethernet)

S21 (future use)

Kinect ROS Driver

Velodyne ROS Driver

S21 Driver (future use)

ROS Nodes: Point cloud

Processing and Compressoin

(c)

Figure D.9: (a,b): Embedded sensor node consisting of an NVIDIA Jetson TX2
Development Board, a Kinect V2 depth sensor, a Velodyne VLP-16 PUCK Lidar
and a Carnegie Robotics S21 stereo camera for future experiments; (c) schematic
overview of the NVIDIA Jetson TX2 hardware connections and software modules.
The points from the Velodyne lidar and the S21 stereo camera are not part of the
experimental results.

To generate the point cloud stream which is input to the compressor, an ROS
driver for the Kinect V2 (IAI Kinect2, [D15]) was installed. This driver generates
depth and color images at a rate of 30 frames per second, which in turn are converted
and published as ROS PointCloud2 messages. The driver uses the NVIDIA GPU for
depth image processing. Figure D.9c shows a block diagram of the hardware and
software used in the experimental setup.

In the experimental results presented in Sections D.3.2 and D.3.3, the compression

134

and decompression processes from a single sensor node to the central computer was
considered. Only the Kinect V2 data was processed, and the point counting method
for generating voxel intensities was used.

The transformation from the sensor’s coordinate system to the global coordinate
system was manually measured and has an unknown accuracy. However, the trans-
formation only affects which points are removed by the crop-filter, and thus does not
directly affect the compression performance. All experiments were conducted using
live point cloud streams.

D.2.8 Multisensor Setup

For the denoising results presented in Section D.3.4, all six sensor nodes were used.
The sensors were placed along the outer peripheral of the lab and manually calibrated
based on the method in [D16]. Calibration of the camera intrinsic parameters was
performed according to [D17]. Note that, compared to the setup in [D16], some of
the sensors’ mounting locations have been moved such that the monitored area is
smaller. Work has also been done to create an automatic calibration scheme for
the same industrial lab. These results have been submitted and are currently under
review in [D18]. Table D.1 shows the locations of the sensors in the global coordinate
system.

Table D.1: Calibrated sensor positions in meters and orientations in degrees. The
positions are in the global coordinate system. N corresponds to the sensor number.

N X Y Z RotZ RotY RotX

1 7.798 0.496 4.175 40.170 0.639 −136.170
2 1.729 0.501 4.135 −45.253 2.063 −141.490
3 9.522 5.275 4.353 88.439 −0.072 −143.461
4 0.553 4.995 4.353 −89.208 −0.495 −145.591
5 8.879 9.192 4.194 126.733 −1.311 −139.272
6 0.559 9.136 4.145 −121.458 −0.487 −137.562

Mounting several Kinect sensors in the same environment could possibly lead
to interference problems. Indeed, the first version of the Kinect is known to have
problems with interference, as they are based on structured light [D19]. The latest
version that we used in our experiments (Kinect for XBOX One) is based on time-
of-flight measurements using a modulated continuous wave IR signal. There is still
a possibility of interference when using this version of the sensor, but it has been
shown that the errors caused by interference are negligible when certain mounting
constellations are avoided [D20]. Even though some of the sensor orientations in our

135

lab may fall within this “bad” configuration, we have not had any visible problems
with interference in our experiments, and thus no further steps have been taken to
manage this potential issue.

D.3 Results

The resolution of the Kinect V2 IR depth image is 512× 424 pixels, thus the number
of points in each point cloud generated by the IAI Kinect2 ROS driver is 217,088.
When discarding the RGB color information which is not used, each point consists
of 4 32 bit floating point numbers, or 16 bytes. (The PCL point type used includes
x, y, z coordinates and four bytes of padding). These numbers are constant for all
point clouds and give an original point cloud size of 3392KiB.

D.3.1 Preprocessing

The first step in preprocessing was to generate the point intensity values for all
points. In this experiment, Equation (D.1) was used. In the process, the points were
converted from XYZ to XYZI (this does not increase the point cloud size due to
the four bytes of padding in the XYZ type point). Before the point cloud was sent
through the octree compressor, it was transformed and crop-filtered as previously
described. This yielded a new point cloud with an average of 37,108 points when
measuring 1000 consecutive point cloud frames, which was then sent through the
compressor at the sensor node. Table D.2 shows the experimental results from this
part of the process. By cropping the point cloud, the size was reduced by an average
factor of 5.85.

Table D.2: Point cloud filtering and cropping results. Cropped results are mean
values over 1000 measured point clouds.

Measurement Original Cropped

Number of Points 217,088 37,108 ± 293
Size (KiB) 3392 579.8 ± 4.6
Ratio 1:1 1:5.85 ± 0.05

D.3.2 Compression

After preprocessing, the point cloud was processed by the compressor. When inserting
them into an octree structure with a 4 cm octree resolution, the same 1000 point
clouds resulted in octrees with an average of 17,771 octree leaf nodes each. This

136

means that, on average, 2.09 points were inserted into each voxel. The compression
ratios and sizes were logged by the compressor software. The number of bytes in
the transferred encoded stream was counted each frame to measure the exact size
of each compressed point cloud. Table D.3 shows the experimental results from the
compression process. A compression ratio (based on size) of 40.5 was achieved.

Table D.3: Octree Compression Results, 4 cm octree resolution. The results are
mean values over 1000 measured point clouds, with the number of points rounded to
the nearest integer.

Measurement Cropped Compressed

Number of Points 37,108 ± 293 17,771 ± 118
Size (KiB) 579.8 ± 4.6 14.31 ± 0.20
Bytes per Point 16 0.82± 0.01

Compression Ratio 1:1 1:40.5± 0.5

Another experiment was done with an octree resolution of 2 cm. This was
performed on another point cloud stream, hence the size of the cropped point cloud
is slightly different. The results from this experiment can be seen in Table D.4. A
compression ratio of 22.5 was obtained using 2 cm octree resolution.

Table D.4: Octree compression results, 2 cm octree resolution. The results are
mean values over 1000 measured point clouds, with the number of points rounded to
the nearest integer.

Measurement Cropped Compressed

Number of Points 37,574 ± 313 33,321 ± 243
Size (KiB) 587.1± 4.9 26.08± 0.17

Bytes per Point 16 0.80± 0.01

Compression Ratio 1:1 1:22.5± 0.1

The number of bytes per point in both experiments was reduced by a factor of
20 from 16 to 0.82 and 0.8, respectively. These results indicate that the encoding
process presented by [D2] is providing similar performance in both experiments. The
larger compressed size and lower compression ratio in the second case are due to a
higher number of octree leaf nodes as a result of a more fine-grained resolution.

The IAI Kinect2 driver can deliver compressed depth images, which can limit the
bandwidth required to transfer depth data. The depth images could be transferred to
the central computer before being converted to point clouds. Measuring 1000 depth
images from the same sensor node yields an average depth image size of 0.43MB,
and a compressed image size of 0.22MB when using the default JPEG compression.

137

Compared to transferring the depth data in a raw point cloud format, using the
compressed depth image would yield better results (the cropped, uncompressed point
cloud has a size of approximately 0.58MB as seen in Table D.3). However, the
octree compression method far outperforms the depth image compression, yielding
compressed clouds of only 14.31KiB and 26.06KiB when using an octree resolution
of 4 and 2 cm, respectively.

D.3.3 Frequency and Bandwidth

Table D.5 shows the results obtained by logging the application and system per-
formance. The frequency of the transferred point clouds was measured using the
built-in ROS topic monitor, and the cycle time of the software was measured using
the rostime C++ library. CPU load and memory usage were not formally measured
but estimated based on the Linux process monitoring utility htop.

The maximum frequency and bandwidth of the compressor were measured while
compressing point clouds using a 4 cm octree resolution. While the IAI Kinect2 ROS
driver is able to deliver point clouds at a rate of 30 per second, the compression
process is currently limited by running on a single CPU core. The developed ROS
node was able to process, compress and transfer point clouds at an average rate
of 26.9Hz measured over a window of 10,000 frames. This results in an average
bandwidth of 384.9KiB/s, based on the compressed size in Table D.3.

Table D.5: Compression and decompression performance when using 4 cm octree
resolution.

Measurement Compression Compression Decompression

(@ max. FPS 1) (@ 20 Hz) (@ 20 Hz)

FPS 26.9Hz 20.0Hz 20.0Hz

Bandwidth 384.9KiB/s 286.2KiB/s 286.2KiB/s

Cycle Time (36± 4)ms (36± 4)ms (13± 2)ms

CPU load 100% 80% 14%

Memory 63.5MiB 60MiB 35.7MiB

1 Frames per second.

By logging the processing time for the ROS node function responsible for the
preprocessing and compression processes, an average time of 36ms per frame was
measured over 1000 frames. This corresponds to a maximum possible frame rate of
27.8Hz, which is in accordance with the above results when taking into account that
there is some additional overhead caused by the underlying ROS system and that
the process used approximately 100% of a single CPU core.

138

When limiting the IAI Kinect2 driver to output point clouds at 20.0Hz, the
developed ROS node is able to process and compress all incoming point clouds,
resulting in a bandwidth of 286.2KiB/s. At this configuration, the ROS node utilizes
around 80% of the processing capability of one CPU core on the Jetson TX2. In
addition, the node used approximately 60MiB of memory.

On the central computer, the average amount of time used to decompress a
single frame, based on 1000 measurements, was 13ms, as seen in Table D.5. The
process utilized around 14% of a single CPU core and 35.7MiB of memory. As a final
test, point clouds from all six sensor nodes were decompressed simultaneously. This
utilized around 65% of the CPU core and 51.3MiB of memory, which indicates that
there is some overhead in the ROS software and that the actual resources needed for
decompression are less than the results presented in Table D.5.

Figure D.10 shows a visual comparison between uncompressed and compressed
point clouds. Figure D.10a,c show the cropped point cloud with RGB color, where
Figure D.10c is accumulated over one second for better visibility. Figure D.10b,d
show the same region of interest after compression and decompression, using a
4 cm octree resolution. The decompressed clouds were filtered using the calculated
intensity value, such that points with an intensity value lower than 2 were removed.
To highlight the underlying octree structure, the points are displayed using cubes.

(a) (b)

(c) (d)

Figure D.10: Visual comparison of original and compressed point clouds using
a 4 cm octree resolution. (a,c): colored point cloud generated by the Kinect V2
sensor. (b,d): point cloud generated by the decompressor at the central computer.
For better visibility of the underlying octree structure, the points are shown as cubes
with 3 cm sides. A stronger color indicates higher intensity.

139

D.3.4 Denoising

When the compressed point cloud has been reconstructed by the decompressor, the
new intensity value can be used to filter the points, as suggested in Section D.2.5.
To test the feasibility of this suggestion, point clouds from all six sensor nodes,
including the Velodyne lidar, were compressed, transmitted, reconstructed and
filtered using different intensity values. Any formal verification of the results has not
been performed, but the results were visually inspected using a visualizer application
from ROS. Figure D.11 presents the visualized results, when using the different point
intensity generation algorithms and filtering using different values. A stronger color
corresponds to a higher intensity. Points with an intensity value lower than the filter
value are removed. As seen in Figure D.11a,c, there is a relatively large amount of
noise in the point clouds, especially close to the sensor origins. In the filtered clouds,
the floor and points outside the cell have been removed by the box crop filter.

Filtering the points on the “point count” intensity (Figure D.11d) does a decent
job of cleaning up the cloud. However, as can be seen from the picture, some noisy
points close to the sensors are still present, and points further away are aggressively
removed. This is best seen from the yellow points in the bottom left corner, which
originates from the sensor placed in the top right corner (the origin of the sensor lies
just outside of the image, refer to Figure D.11b for the sensor locations).

Using the “linear” intensity value, all noisy points close to the sensor origin are
removed, and more of the measurements further away are preserved, as seen in
Figure D.11e. In the authors’ opinion, this is the point cloud that best represents
the measured environment, with the least amount of noise and strong measurements
of the actual objects.

Figure D.11f shows the points filtered using the “quadratic” point intensity value.
Here, it is seen that points closer to the sensor (e.g., on the blue column on the
left) are given a relatively lower intensity value, and points farther from the sensor
(e.g., the yellow points in the lower bottom corner and close to the floor) are given a
relatively higher intensity value. The effect is, as expected, that the points removed
by the filter are evenly distributed throughout the volume, and not based on the
distance to the sensor.

In all the filtered clouds, almost all points generated by the Velodyne lidar (best
seen as the olive-colored points on the right wall) are conserved, due to the fact that
the intensity is generated by the sensor itself and not calculated, and that these
values are higher than the filter values. This behavior is intended, as the Velodyne
measurements are much more stable and reliable than the Kinect measurements,
and thus should not be filtered out as noise. In the examples, the filter values were
picked by trial and error, and different values would show different results (i.e., more

140

points removed by using a higher filter value). The values should therefore be tuned
to the application requirements and the user’s needs.

141

(a)

6

5

4

3

2

1

(b)

(c) (d)

(e) (f)

Figure D.11: (a) original point clouds from all sensors, including color information
for the Kinect sensors; (b) top down view of original point clouds, where the different
sensors’ points are color coded; (c) reconstructed, unfiltered point cloud; (d) cloud
with “point count” voxel intensities, filter value 2; (e) cloud with “linear” intensities,
filter value 64; (f) cloud with “quadratic” intensities, filter level 64.

142

D.4 Discussion

In this paper, a scalable solution for 3D sensing in a large volume consisting of
multiple sensors was presented. A constant frame rate of 20Hz was achieved on the
sensor nodes containing an embedded processing unit. The bandwidth requirement
on each local node was 286.2KiB/s, which means that the proposed solution could be
scaled up to an order of 440 sensors (assuming that the central node has a dedicated
1Gbit/s network input and “unlimited” processing power). Compared to transferring
the cropped, but uncompressed point cloud, which would result in a bandwidth of
11 596KiB/s (579.8KiB × 20Hz), the compression leaves room for significantly more
point clouds streams on the network. It was also shown that the octree compression
outperforms the default depth image compression performed by the IAI Kinect2
driver.

In [D2], the number of bytes per point (BPP) when using an octree resolution of
9mm and a fixed point precision of 9mm was 0.30. When using a point precision of
1mm, the BPP was 0.87, which is closer to our results. The lower values achieved in
[D2] is most likely due to the fact that the range of the symbol set used to encode
the point details is greatly limited (the range [0, 8] was used), which makes the range
encoder more efficient. The results also show that, while in the original method the
BPP increases with finer precision, in our method, the BPP is practically unaffected
when the octree resolution is changed.

It should also be noted that since point details for all points are encoded in the
original method, the total compressed size of the point cloud would be larger. Even
with a BPP of 0.3, the resulting compressed cloud would have a size of 63.6KiB,
corresponding to a bandwidth of 1272KiB/s. Thus, when comparing the results, one
should also consider the application at hand. In our scenario, it was more important
to lower the size of the compressed point cloud and to generate the intensity values
which are to be used by the end application than to encode point details for all
points in the original point cloud.

In [D4], a frame rate of 5.86Hz was achieved with a powerful CPU (Intel i7), while
20Hz was achieved in this paper using only a much less powerful ARM processor.
The reason for the improved performance achieved in our work results from (1) a
dedicated local network with no background transmission and (2) all the data points
inside one voxel are in our work filtered and described by only one coordinate and
one intensity value.

Different algorithms for generating voxel intensity values based on measurements
where no such value exists were proposed. The experiments showed promising results
when using the generated values to filter out false or noisy measurements. By
adapting the algorithms, this method can be used to generate intensity values for

143

different sensor types, not only RGB-D sensors as described in this paper.
Future work includes evaluating the benefit of filtering based on intensity values

on data from outdoor testing (e.g., removing noise from rain and other unwanted
reflections). In the future, measurements from the Carnegie Robotics stereo camera
will also be included. In addition, an effort will be made to optimize the software.
More specifically, the possibility of limiting the symbol range used when encoding
the intensity value should be explored, as this could make the range compressor more
efficient. Parts of the process can also be parallelized in order to utilize multiple
CPU or even GPU cores on both the Jetson TX2 module and the central computer.
This could make it possible to compress streams at higher frame rates and reduce
latency.

D.5 Acknowledgments

The research presented in this paper has received funding from the Norwegian
Research Council, SFI Offshore Mechatronics, project number 237896.

144

References – Paper D

[D1] J. Dybedal and G. Hovland. Optimal placement of 3D sensors considering
range and field of view. In 2017 IEEE International Conference on Advanced
Intelligent Mechatronics (AIM), pages 1588–1593, July 2017.

[D2] J. Kammerl, N. Blodow, R. B. Rusu, S. Gedikli, M. Beetz, and E. Steinbach.
Real-time compression of point cloud streams. In 2012 IEEE International
Conference on Robotics and Automation, pages 778–785, May 2012.

[D3] G Nigel N Martin. Range encoding: an algorithm for removing redundancy
from a digitised message. Video and Data Recording Conference, pages 24–27,
March 1979.

[D4] C. Moreno, Yilin Chen, and M. Li. A dynamic compression technique for
streaming kinect-based Point Cloud data. In 2017 International Conference
on Computing, Networking and Communications (ICNC), pages 550–555, Jan
2017.

[D5] Siheng Chen, Dong Tian, Chen Feng, Anthony Vetro, and Jelena Kovačević.
Fast Resampling of Three-Dimensional Point Clouds via Graphs. IEEE
Transactions on Signal Processingl, 66(3):666–681, 2018.

[D6] Dorina Thanou, Philip A. Chou, and Pascal Frossard. Graph-based com-
pression of dynamic 3D point cloud sequences. IEEE Transactions on Image
Processing, 25(4):1765–1778, 2016.

[D7] Y. Schoenenberger, J. Paratte, and P. Vandergheynst. Graph-based denoising
for time-varying point clouds. arXiv e-prints, nov 2015.

[D8] Armin Hornung, Kai M. Wurm, Maren Bennewitz, Cyrill Stachniss, and
Wolfram Burgard. OctoMap: An efficient probabilistic 3D mapping framework
based on octrees. Auton. Robot, 34:189–206, 2013.

[D9] Knut B. Kaldestad, Geir Hovland, and David A. Anisi. 3D Sensor-Based
Obstacle Detection Comparing Octrees and Point clouds Using CUDA. Mod-
eling, Identification and Control, 33(4):123–130, 2012.

145

[D10] S. Ueki, T. Mouri, and H. Kawasaki. Collision avoidance method for hand-arm
robot using both structural model and 3D point cloud. In 2015 IEEE/SICE
International Symposium on System Integration (SII), pages 193–198, Dec
2015.

[D11] Morgan Quigley, Ken Conley, Brian P. Gerkey, Josh Faust, Tully Foote,
Jeremy Leibs, Rob Wheeler, and Andrew Y. Ng. ROS: an open-source Robot
Operating System. In ICRA Workshop on Open Source Software, 2009.

[D12] Joacim Dybedal. SFI-Mechatronics/wp3_compressor and SFI-Mechatronics/
wp3_decompressor: First Release. https://doi.org/10.5281/zenodo.

2554855, February 2019.

[D13] A. Hermann, F. Drews, J. Bauer, S. Klemm, A. Roennau, and R. Dillmann.
Unified GPU voxel collision detection for mobile manipulation planning. In
2014 IEEE/RSJ International Conference on Intelligent Robots and Systems,
pages 4154–4160, Sept 2014.

[D14] Radu Bogdan Rusu and Steve Cousins. 3D is here: Point Cloud Library
(PCL). In IEEE International Conference on Robotics and Automation (ICRA),
Shanghai, China, May 9-13 2011.

[D15] Thiemo Wiedemeyer. IAI Kinect2. https://github.com/code-iai/iai_

kinect2, 2014 – 2015. [Online; accessed Jan. 23, 2018].

[D16] Atle Aalerud, Joacim Dybedal, Erind Ujkani, and Geir Hovland. Industrial
Environment Mapping Using Distributed Static 3D Sensor Nodes. In 2018
14th IEEE/ASME International Conference on Mechatronic and Embedded
Systems and Applications (MESA), pages 1–6. IEEE, jul 2018.

[D17] Erind Ujkani, Joacim Dybedal, Atle Aalerud, Knut Berg Kaldestad, and
Geir Hovland. Visual Marker Guided Point Cloud Registration in a Large
Multi-Sensor Industrial Robot Cell. In 2018 14th IEEE/ASME International
Conference on Mechatronic and Embedded Systems and Applications (MESA),
pages 1–6. IEEE, jul 2018.

[D18] Atle Aalerud, Joacim Dybedal, and Geir Hovland. Automatic calibration
of an industrial rgb-d camera network using retroreflective fiducial markers.
Submitted to Sensors, 2018.

[D19] Andrew Maimone and Henry Fuchs. Reducing interference between multiple
structured light depth sensors using motion. In Proceedings - IEEE Virtual
Reality, pages 51–54. IEEE, mar 2012.

146

https://doi.org/10.5281/zenodo.2554855
https://doi.org/10.5281/zenodo.2554855
https://github.com/code-iai/iai_kinect2
https://github.com/code-iai/iai_kinect2

[D20] Andreas Kunz, Luzius Brogli, and Ali Alavi. Interference measurement of
kinect for xbox one. In Proceedings of the 22nd ACM Conference on Virtual
Reality Software and Technology - VRST ’16, pages 345–346, New York, New
York, USA, 2016. ACM Press.

147

Paper E

CNN-based People Detection in
Voxel Space using Intensity
Measurements and Point Cluster
Flattening

Joacim Dybedal and Geir Hovland

149

This paper has been published as:

Joacim Dybedal and Geir Hovland. CNN-based People Detection in Voxel Space
using Intensity Measurements and Point Cluster Flattening. Modeling, Identification
and Control, 42(2):37–46, 2021.
doi: 10.4173/mic.2021.2.1.

150

http://dx.doi.org/10.4173/mic.2021.2.1

CNN-based People Detection in Voxel
Space using Intensity Measurements and

Point Cluster Flattening

Joacim Dybedal* and Geir Hovland*

*University of Agder
Faculty of Engineering and Science

Jon Lilletunsvei 9, 4879 Grimstad, Norway

Abstract In this paper real-time people detection is demonstrated in
a relatively large indoor industrial robot cell as well as in an outdoor en-
vironment. Six depth sensors mounted at the ceiling are used to generate
a merged point cloud of the cell. The merged point cloud is segmented
into clusters and flattened into gray-scale 2D images in the xy and xz

planes. These images are then used as input to a classifier based on con-
volutional neural networks (CNNs). The final output is the 3D position
(x, y, z) and bounding box representing the human. The system is able
to detect and track multiple humans in real-time, both indoors and out-
doors. The positional accuracy of the proposed method has been verified
against several ground truth positions, and was found to be within the
point-cloud voxel-size used, i.e. 0.04m. Tests on outdoor datasets yielded
a detection recall of 76.9% and an F1 score of 0.87.

E.1 Introduction

The ability to detect the presence of people or other objects in three dimensional data
is an important factor in enabling autonomy and automation in environments where
machinery and humans are both present. A natural example is in the automotive
industry, where autonomous vehicles must be able to accurately perceive their
surroundings. Another example is in any industrial environment where robotic
machinery must coexist with personnel, whether it is on a large offshore platform or
in a small indoor robotic cell.

Several approaches for people detection exist, where the problem of detecting
people and other objects in 2D images is well documented in the academic literature,
especially methods composing different types of machine learning such as Histograms
of Oriented Gradients (HOG) [E1] and convolutional neural networks (CNNs). The
problem of detecting people in 3D space, e.g. in point clouds, is also a hot topic.

151

Much research has been done on methods for detection in data from 2D and 3D lidars
typically found on autonomous vehicles and mobile robots. In [E2], an approach
based on implicit shape models (ISM) was used to detect people in a 3D lidar scan,
and in [E3] person detection and tracking was done using a laser scan of the person’s
hip area and a Sample-based Joint Probabilistic Data Association Filter (SJPDAF).
A 3D lidar was also used in [E4], where a bottom-up, top-down detector was used
to select hypothetical candidates and perform validation on a tessellated volume,
respectively.

For RGB-D images, the authors of [E5] used a tessellation boosting approach
for human feature classification, e.g. different types of clothes and hairstyles. This
approach, combined with the feature-based detection method from [E6], was used in
[E7] to estimate human poses based on performant features extracted from colored
point clouds. The detection method used a layer-based approach to calculate feature
descriptors for each layer in a point cluster and concatenated the histograms to form
feature vectors. In [E8] both 2D laser scans and RGB-D images were used for human
detection and tracking, including keeping track of multiple humans in groups.

Human pose estimation has also been heavily researched and CNN-based methods
such as OpenPose [E9] for 2D and [E10] for 3D pose estimations from 2D images.
In [E11], RGB-D data was used for 3D pose estimation, using depth information
in addition to the color image. Vehicle detection in lidar point clouds using neural
networks such as VoxelNet [E12], 3D YOLO [E13] and [E14] also show promising
results.

A common denominator of the methods mentioned above is that they are either
tailor-made for lidar scans or that they depend on RGB images as well as any depth
data. While the availability of RGB images is a justifiable assumption, there are
scenarios in which redundancy is crucial, such as in the red-zone of oil-rigs. Such
areas would typically be monitored by both RGB and depth-sensors (see [E15]),
and while combining the measurements could yield the best detection results, in a
scenario where the RGB information becomes unavailable a fall-back solution based
on depth-information only should be available. In this paper, we therefore aim to
remove the need for using RGB images when detecting people.

In addition, while most of the literature concentrates on single mobile sensors
mounted on vehicles or robots, the method proposed in this paper utilizes a point
cloud generated by several statically mounted 3D sensors as described by [E16],
which is a just as likely scenario in industrial environments.

In [E17] Complex-YOLO is introduced, which is an extension of YOLOv2, a
fast 2D standard object detector for RGB images, by a specific complex regression
strategy to estimate multi-class 3D boxes in Cartesian space. A specific Euler-Region-
Proposal Network (E-RPN) is proposed to estimate the pose of the object by adding

152

an imaginary and a real fraction to the regression network. The result is a closed
complex space which avoids singularities, which can occur by single angle estimations.
In our work multiple depth sensors are used and the data is merged into a single
point cloud used for detection. Hence, the single angle problem mentioned in [E17]
is not a problem in the work presented here.

In [E18] OpenPTrack is presented, which is an open source software for multi-
camera calibration and people tracking in RGB-D camera networks. People detection
is executed locally, in the machines connected to each sensor, while tracking is
performed by a single node which takes into account detections from all over the
network. For Kinect v1 and stereo cameras, which can produce color images, the
HOG technique for people detection is applied to these images in correspondence of
the clusters extracted from the point cloud. For the Kinect v2 the infrared images
are used, since they are invariant to visible lighting.

In [E19] the proposed algorithms have been demonstrated further using aligned
color and depth data in industrial environments. The algorithms have been released
as open source as part of the ROS-Industrial project. The work presented in this
paper is different from [E18, E19] in that a CNN-based approached is used and that
the people detection is performed on the merged point cloud on the central node
using only depth measurements, as opposed to detection locally on each node using
color or infrared images in addition to depth information. The authors believe that
people detection and tracking on a central node will be more robust, since the central
node has access to the full point cloud, merged from all the sensors in real-time,
however this has not been demonstrated experimentally in this work.

In [E20] an object detection method based on 3D information extraction of laser
point clouds is proposed. Similar to the approach taken in this paper, in [E20] the
point cloud is flattened to 2D images which are used as a basis for learning using the
AdaBoost algorithm.

In [E21] the proposed method maps the three-dimensional point cloud to the
two-dimensional plane by a distance-aware expansion approach. The corresponding
2D contour and its associated 2D features are then extracted. A radial basis function
(RBF) kernel support vector machine (SVM) is employed with the extracted features
for classification. A selective binary and Gaussian filtering regularized level set
(SBGFRLS) algorithm is utilized for contour detection in the 2D images. In addition,
other popular feature descriptors from the projected 2D images, such as HOG, LBP
and Haar-like features are extracted.

[E22] present recent work on human detection and a classification scheme based
on 3D Lidar data and an algorithm using a standard Support Vector Machine (SVM).
The 3D indoor data used in [E22] has been made publicly available. In the conclusions
the authors write: Future work should look at other classification methods such as

153

deep neural networks. The suggestion to use a CNN-approach is addressed in this
paper, and the method developed here should fit such a system well, as it is designed
to classify humans in point clouds containing intensity measurements, similar to the
ones generated by a Lidar-based system.

This paper is organized as follows: Section 2 presents the overall methodology and
the different modules that were developed. Section 3 contains several experimental
results, while discussion and conclusions are given in Section 4.

E.2 Methodology

The main inspiration for our work was the ‘3D YOLO’ type detectors where laser
point clouds were used as inputs to image classifiers. To tackle the problem of
human detection using only depth information, a scheme based on scene classification
using convolutional neural networks (CNNs) was developed. To generate images for
classification, a point cloud flattening approach was applied.

The input to the detector is a stream of compressed, voxelised point clouds,
as described in [E16]. These streams are published as ROS (Robot Operating
System) topics. Six Microsoft Kinect V2 3D sensors were used to generate the depth
measurements, corresponding to six point cloud streams. Although the Microsoft
Kinect sensors can supply RGB images, the purpose of this study was to become
independent from RGB sensors, thus only the depth measurements were used.

The methodology is demonstrated in this paper by real-time multiple people
detection in both indoor and outdoor environments.

Figure E.1 shows the structure of the developed system and the different steps
will be further outlined in the following sections. The source code is available at
[E23].

ROS BOUNDING

BOX MESSAGES

C++ ROS NODES MATLAB ROS NODE

Compressor 1

Compressor 2

Compressor 6

Decompressor

&

Point Cloud

Merger

Point Cloud

Filtering and

Segmentation

Candidate

Cluster

Flattening

Classification

by CNN

Position

Extraction

ROS

Msg

ROS

Msg

ROS

Msg

Figure E.1: Flowchart of the people detection system. The point clouds from each
sensor is compressed by an edge computer, and received by a centralized computer
before being decompressed and processed.

154

E.2.1 Point Cloud Pre-processing

Each of the six Kinect sensor nodes publishes compressed point cloud streams at up
to 20Hz. As described in [E16], the points in the compressed point clouds contain no
colors, but an additional intensity value corresponding to the amount of measured
points inside a single voxel, compensated for the distance to the sensor. The purpose
of this addition was to add a measure of strength or confidence to each voxel as the
point clouds were compressed, while accounting for the fact that objects close to the
sensor will have a much higher point density than similar objects further away.

It should be noted that in addition to not including colors, the point clouds used
in this paper are heavily compressed and down-sampled by voxelization. When using
a voxel size of 4 cm× 4 cm× 4 cm and cropping to the volume of interest, [E16] found
that each point cloud was typically reduced from 217 088 points to 17 771± 118,
with a reduction in required storage space of 1 : 40.5± 0.5.

In this paper, a ROS node was created which receives, synchronizes and merges
the point clouds into a single cloud. The sensor nodes are time synchronized against
a server, which ensures that the different point clouds are as close to each other as
possible in the temporal space. Calibration to ensure optimized transfer functions
between the sensors and the global coordinate system was performed according to
the method described in [E24]. When merging the point clouds, the intensity values
are accumulated such that the points in the merged point cloud contain the sum of
all intensity values corresponding to the same voxel. The result and output of the
developed ROS node is thus a single voxelised point cloud stream, where each point
contains an intensity value in addition to x, y and z coordinates.

When the single, merged point cloud was obtained, it was segmented into clusters
based on a minimum Euclidean distance between points in the clusters. However,
most of the resulting clusters could be discarded, and only clusters defined to be a
human candidate were used further in the detection scheme. To select the candidate
clusters, the following constraints based on normal human poses were applied:

• Min, Max height (z dimension): 0.5m and 2.0m

• Min, Max width (x,y dimensions): 0.2m and 2.0m

• Max. distance from floor: 0.2m

As seen in Figure E.2, this filtering resulted in a set of candidate clusters, which
were used to generate gray-scale images for CNN-based training and classification.

E.2.2 Point Cluster Flattening

Several methods for calculating the positions of humans in point clouds were con-
sidered, including slicing the entire point cloud into segments in the xz and yz planes

155

(a)

0.5

1

7

1.5

6
8

5 7

6
4

5

3

4

(b)

Figure E.2: (a) Candidate clusters after segmentation, but before dimension
constraints; (b) Candidate clusters after dimension constraints have been applied.

and classify/detect humans in each slice. However, due to the fact that humans
would normally be present in only a fraction of the points, this was deemed too
computationally expensive. In addition to the inevitable trade-off between accuracy
(slice thickness) and speed, the same human, or parts of it, could be detected in
multiple slices. Hence, the method developed in this paper was to flatten each
candidate point cluster in the xz and yz planes, resulting in just two small slices per
candidate.

As the input point cloud has already passed through a compressor based on a
voxel grid, where each point has a fixed coordinate in the voxel center, and where the
voxels are aligned to the global coordinate system, the process of cluster flattening
could be implemented by iterating over the voxels in each dimension. Eq. E.1 shows
the process of generating one pixel in the xz plane.

P (i, j) =

ymax∑
y=ymin

I(xi, y, zj), (E.1)

where P (i, j) is one pixel in the flattened image and I(xi, y, zj) is the intensity value
for the voxel at (xi, y, zj). The result is two gray-scaled images, where each pixel
corresponds to the sum of the intensity values of the flattened points, as seen in
Figure E.3. Using the intensity values to create a gray-scale image instead of just
counting points results in images with a larger dynamic range. As the human body
is solid, points can only exist on the exterior, which greatly limits the amount of
points that would result in a single pixel in the flattened image.

Due to the coarse resolution of the voxelised point cloud, a human is typically
represented by an image of only 25 times 45 pixels when a voxel grid resolution of
4 cm is used.

156

5 10 15 20

5

10

15

20

25

30

35

40

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(a)
5 10 15 20

5

10

15

20

25

30

35

40

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(b)

Figure E.3: (a) Candidate cluster after flattening in the y dimension (xz plane);
(b) Candidate cluster after flattening in the x dimension (yz plane). Color represents
the accumulated intensity values, where yellow is higher.

E.2.3 Scene Classification

As the images are already cropped to the candidate point cluster, and the positions in
the global coordinate system are known, there is no need for additional segmentation
or bounding boxes. The classification of humans in the generated images could
therefore be performed as a scene classification, i.e. the whole image was classified
as a single class. As a proof of concept, a simple convolutional neural network was
trained using images generated from captured datasets. The images corresponding
to each candidate cluster in the training datasets were manually labeled as either
’Human’ or ’Not Human’. A total of 1105 and 1956 images were used for the ’Human’
and ’Not Human’ classes, respectively. The two classes were chosen as the purpose
here was to detect the presence of humans in a robotic environment. It would be
possible to extend the number of classes to be able to classify any other object, such
as the robots, other machines, equipment, etc.

The labeled images were then randomly binned into training images (60 %),
validation images (30 %) and testing images (10 %). In addition, the images were
augmented with random rotation (±90deg), reflection (around the z axis) and shear.

The structure of the neural network, including three convolution blocks, and
the parameters used is shown in Table E.1. The structure was inspired by a simple
example by [E25], but tuned to maximize the validation accuracy. The input layer
is three-dimensional (RGB) with an input size of 224 times 224 pixels. Thus, in
addition to resizing, the images needed to be augmented such that the gray-scale
content was replicated across all RGB channels. As many image classifiers, including
pre-trained networks, are expecting color images, converting from gray-scale to color

157

allows for a modular application where the classifier could be replaced by another
without adding extra complexity. In contrast to many other scenarios, the images to
be classified are very small, as described in the previous section. As a consequence,
most images would need to be scaled up, not down, before being evaluated by the
classifier.

Layer Parameter Value

Input Layer Size 224× 224× 3

Convolution Layer Filter Size 3
No. of filters 16
Padding 1

Batch Norm. Layer
ReLu Layer
Max-pooling layer Pool Size 2

Stride 2

Convolution Layer Filter Size 3
No. of filters 32
Padding 1

Batch Norm. Layer
ReLu Layer
Max-pooling layer No. of pools 2

Stride 2

Convolution Layer Filter Size 3
No. of filters 64
Padding 1

Batch Norm. Layer
ReLu Layer

Fully-connected layer Output Size 2
Softmax Layer
2-class Classifier

Table E.1: CNN Structure and layer parameters.

Training of the network was performed in Matlab by the stochastic gradient
descent with momentum (SGDM) optimizer. Using 100 epochs and an initial learning
rate of 0.00001, the final validation accuracy was 95.75%.

E.2.4 Labeling and Position Extraction

The nature of the detection mechanism developed in this paper includes a coarse
confidence measure, i.e. a human can be classified in either zero, one, or both of the
flattened images. For the testing described in this paper, only the scenarios where
both images are classified as humans were considered a detection.

158

In the event of a detection, the developed ROS program publishes a “marker”
message that includes the position and extent of the detected human. The position
used is the center of the bounding box surrounding the candidate point cluster, and
the bounding box itself is used to describe the area where the person was detected.

E.3 Experimental Results

Four different test cases were used to evaluate the system. First, the scheme was
tested in the Industrial Robotics Lab (IRL) at the University of Agder [E16]. In this
environment, six 3D sensor nodes consisting of Microsoft Kinect V2s and NVIDIA
Jetson TX2s are mounted on the walls around a robotic cell. Inside the area monitored
by the sensors, there are three ABB robots, where two are track mounted and one is
mounted on a Güdel gantry crane. The test served as a proof-of-concept, verifying
that the detector worked on live data different from the datasets used for training
and validation.

Second, the accuracy of the system was measured by comparing detected coordin-
ates with ground truth coordinates measured by a Leica Laser Tracker. The same
setup as in the first experiment was used.

Third, the scheme was tested using a datasets recorded at an outdoors test facility
for offshore pipe handling equipment, without altering the algorithms. The datasets
were recorded in August 2018, using the same sensor nodes as in the IRL lab, and
includes recordings with multiple people in different weather conditions.

Lastly, the CNN was re-trained using outdoor data, and a detection capability
test was performed, measuring possible detections versus actual detections.

All experiments were performed on a stationary computer running the detector in
Matlab. The computer was running Ubuntu 16.04 with ROS Kinetic and contained
an Intel Core i7 7820X 3,6 GHz processor, an NVIDIA GTX 1080Ti GPU and 32
GB of RAM.

The following subsections present the results from the three different test cases.
The outdoor dataset, training data and a demonstrative video are made publicly
available at [E26].

E.3.1 Indoor Single Person Detection

After the detector had been trained, it was tested on a single person in the IRL lab.
The aim was to verify that the detector would yield good results on data different to
the training data.

Figure E.4 shows the detected bounding boxes around a person in different poses.
In (a), the detected position coordinates were x =4.42m, y =5.22m, z =0.94m,

159

(a) (b)

(c)

Figure E.4: (a) Example detection, walking; (b) Example detection, arms out; (c)
Example detection, crouching.

where this point is the center of the displayed bounding box. The detection algorithm
functioned as expected, marking the person with correctly sized bounding boxes for
all the tested poses.

In addition, a small set of 160 ‘Human’ images and 70 ‘Not Human’, where the
subject had different outfits than used in the training, was used to test the CNN.
The accuracy in this test was 88.2%, which as expected is a little lower than the
training accuracy, but still close to 90%.

E.3.2 Indoor Accuracy Validation

To verify the accuracy of the detector, the output X, Y coordinates were compared
to coordinates that had been previously measured to sub-millimeter accuracy by

160

a Leica laser tracker and marked on the floor. A person would walk around the
monitored area, stopping at the marked coordinates, before moving on to the next.
Performing the test in such a way would introduce some inaccuracy, as it is not
possible to guarantee that the person is standing exactly above the ground truth
coordinate. However, since the resolution of the input point cloud was as coarse as
0.04m, the test would still yield useful results.

A total of 21 coordinates were pre-measured. During the test, a total of 94
detections were performed at the ground truth positions, and a subset is shown
in Table E.2. The result is shown in Table E.3, and it can be seen that the mean
absolute deviation of the detector was within the point cloud resolution of 0.04m.

X Y X meas. Y meas. Z meas.

5.0 8.0 4.96 8.06 0.94
5.0 7.0 5.02 7.02 0.94
5.0 6.0 4.96 6.02 0.92
5.0 5.0 5.02 4.98 0.94
4.69 5.3 4.72 5.23 0.92
4.0 3.0 4.02 2.98 0.94
2.0 7.0 5.02 7.02 0.94
5.42 9.24 5.5 9.2 0.94

Table E.2: A subset of results obtained during the accuracy validation.

X Y Total

Mean absolute deviation (m) 0.035 0.039 0.037
Std.dev absolute deviation (m) 0.041 0.035 0.038
Mean deviation (m) −0.001 −0.004 −0.003
Std.dev deviation (m) 0.054 0.053 0.053

Table E.3: Results from accuracy test using 94 detections compared to ground
truth coordinates.

The X and Y coordinates are the ones that have been used for verification, as
these are the only ones with an accurate ground truth. However, the bounding box
also contains the width, depth and height of the detected person. While the width
and depth can vary greatly due to different poses, the measured height was compared
to the height of the test subject. Using 56 of the detections performed while the
subject was standing, the measured height was (1.76± 0.06)m, and the real height
of the test subject was 1.75m.

161

E.3.3 Testing on Outdoor Datasets

To test the detection algorithm on more challenging data, datasets recorded on an
outdoors facility were used. The datasets were recorded in August 2018, using the
same sensors as used for the two first experiments, and contains a variety of weather
conditions and multiple persons. Due to the lack of ARUCO codes used for the
automatic calibration performed in the indoor experiments, the sensors’ translation
and rotation were calibrated manually using other features in the point clouds.

Figures E.5 (a) and (b) show a snapshot of the first test, where four persons
are present. As seen in Figure E.5 (a), the weather conditions were challenging,
with a low sun shining on wet concrete. The persons were all wearing different
outfits, in addition to helmets, which were not part of the original training data.
However, without altering the algorithm, i.e. only using training data from the indoor
experiments, it was able to detect all four persons.

(a) (b)

(c) (d)

Figure E.5: Detection test on Outdoor Data - (a) and (b) Four people present
and detected at the test site, in low sun on wet ground; (c) and (d) Two people
present and detected, in heavy rain.

Another dataset was recorded in heavy rain. While the rain was causing an
increased amount of noise in the point clouds, the system was still able to correctly

162

classify humans, as seen in Figures E.5 (c) and (d).

E.3.3.1 Human Detection Performance

To determine the detection capability of the system, the network was trained again,
this time including data from the outdoor datasets. Six datasets, each consisting of
approximately 1500 merged point cloud frames with 0-2 persons present, were added
to the training and validation data. After image extraction and manual labeling, the
final training and validation set now consisted of 4715 images for the ‘Human class’,
and 6805 images for the ‘Not Human class’.

A seventh dataset was used for testing. This dataset contained a 300 s recording
where up to four people were present at the same time. The persons were walking
randomly, resulting in many different poses, as well as entering and leaving the area.
From this set, a total of 949 merged point clouds were analyzed, where 21 contained
one person, 83 contained two persons, 324 contained three persons and 521 contained
four persons, i.e. there were a total of 3243 clusters that should be classified as
humans. The detection accuracy (recall) was calculated by dividing the number of
Humans actually detected by the total number of possible detections. This yielded a
recall of 76.9% (2495 out of 3243 humans were correctly detected). The calculated
F1 score was 0.87, due to a high precision of 99.9%.

During the testing, while the point clouds were streamed at around 5Hz, the
detector was outputting results at about 1.2Hz. The relatively low rate is due to
the fact that the detection system is run in Matlab and that temporary images are
written to disk before they are classified.

E.4 Discussion and Conclusions

This paper has demonstrated a novel approach to people detection on very sparse
point clouds using only depth information. The proof of concept and accuracy
experiments show promising results, with an absolute error that is approximately
the same as the resolution of the voxelised point cloud at ±4 cm.

During the accuracy test, the test subject was wearing different clothing with
different colors than used in the training data. This implies that the use of intensity
values and not colors in the point clouds allows the classifier to distinguish objects
based primarily on shape, without being biased by certain outfits.

The tests on outdoor datasets yielded a detection recall of 76.9% and an F1 score
of 0.87. While this is not optimal, further investigation has led to the conclusion that
this is mostly due to the filtering and segmentation process, and not the classification.
Firstly, work should be done to optimize the segmentation to better distinguish

163

persons from the environment. Typical scenarios are where persons are standing on
or close to constructions, or carrying large items. In these scenarios, the Euclidean
distance segmentation approach struggles to create the correct candidate clusters,
and the clusters are discarded immediately and never passed to the classifier.

Another improvement would be to classify parts of persons instead of whole
persons. In some scenarios, e.g. when wearing very dark clothes or when occluded
by objects, parts of the body may not be visible in the point clouds. In an example
where only the torso is visible, the current candidate cluster processing would discard
these clusters as they would not be within the constraints. The same problem occurs
when a person is entering or exiting the monitored area, leading to partial point
clouds of the body.

As our approach is using a scene classifier, the approach could be extended to
detect any class of items by adding more classes during training or by training on
other classes entirely. This makes it possible augment the system to detect human
body parts or any other objects such as robots and equipment. If needed, the system
could also be extended by including the (x,y) plane in the flattening process, thus
generating a third image for classification at the cost of increased computational
load.

Future work should also include testing the classifier on other, published datasets,
to compare the performance to other people detection techniques. Specifically, the
precision of the presented solution was found to be 99.9%, however there were few
foreign objects present in the data sets which led to very few false positives. In
addition, work should be done to port the classifier and detector from MATLAB to
a more efficient environment, e.g. a native ROS node, to achieve a higher maximum
detection rate than the 1.2Hz achieved in this paper.

E.5 Acknowledgments

The research presented in this paper has received funding from the Norwegian
Research Council, SFI Offshore Mechatronics, project number 237896.

164

References – Paper E

[E1] Navneet Dalal and Bill Triggs. Histograms of oriented gradients for human
detection. In Proc. 2005 IEEE Comp. Soc. Conf. on Comp. Vision and Pattern
Recognition, CVPR 2005, volume I, pages 886–893, 2005.

[E2] B Borgmann, M Hebel, M Arens, and U Stilla. Detection of Persons in MLS
Point Clouds using Implicit Shape Models. pf.bgu.tum.de, 2017.

[E3] Ju Min Kim, Young-Joo Kim, and Chang-Bae Moon. Human Target Tracking
using a 3D Laser Range Finder based on SJPDAF by Filtering the Laser
Scanned Point Clouds. Intl. J. Control, Automation and Systems, 18(X):1–11,
2020.

[E4] Luciano Spinello, Matthias Luber, and Kai O. Arras. Tracking people in 3D
using a bottom-up top-down detector. In Proc. IEEE Intl. Conf. Robotics and
Automation, pages 1304–1310, 2011.

[E5] Timm Linder and Kai O. Arras. Real-time full-body human attribute classific-
ation in RGB-D using a tessellation boosting approach. In IEEE Intl. Conf.
Intelligent Robots and Systems, pages 1335–1341, 12 2015.

[E6] Benjamin Lewandowski, Jonathan Liebner, Tim Wengefeld, Steffen Muller,
and Horst Michael Gross. Fast and robust 3D person detector and posture
estimator for mobile robotic applications. In Proc. IEEE Intl. Conf. Robotics
and Automation, pages 4869–4875, 5 2019.

[E7] Tim Wengefeld, Benjamin Lewandowski, Daniel Seichter, Lennard Pfennig, and
Horst Michael Gross. Real-time person orientation estimation using colored
pointclouds. In Proc. 2019 European Conf. Mobile Robots, 9 2019.

[E8] Timm Linder and Kai O. Arras. People detection, tracking and visualization
using ROS on a mobile service robot. Studies in Computational Intelligence,
625:187–213, 2 2016.

165

[E9] Zhe Cao, Tomas Simon, Shih En Wei, and Yaser Sheikh. Realtime multi-person
2D pose estimation using part affinity fields. In Proc. 30th IEEE Conf. Comp.
Vision and Pattern Rec., CVPR 2017, pages 1302–1310, 11 2017.

[E10] Denis Tome, Chris Russell, and Lourdes Agapito. Lifting from the deep:
Convolutional 3d pose estimation from a single image. In Proceedings of the
IEEE conference on computer vision and pattern recognition, pages 2500–2509,
2017.

[E11] Christian Zimmermann, Tim Welschehold, Christian Dornhege, Wolfram
Burgard, and Thomas Brox. 3D Human Pose Estimation in RGBD Images for
Robotic Task Learning. In Proc. IEEE Intl. Conf. Robotics and Automation,
pages 1986–1992, 9 2018.

[E12] Yin Zhou and Oncel Tuzel. VoxelNet: End-to-End Learning for Point Cloud
Based 3D Object Detection. In Proc. IEEE Comp. Soc. Conf. Comp. Vision
and Pattern Rec., pages 4490–4499, 11 2017.

[E13] Ezeddin AL Hakim. 3D YOLO: End-to-End 3D Object Detection Using Point
Clouds. Technical report, Dissertation, 2018.

[E14] Martin Simon, Karl Amende, Andrea Kraus, Jens Honer, Timo Samann, Hauke
Kaulbersch, Stefan Milz, and Horst Michael Gross. Complexer-yolo: Real-time
3d object detection and tracking on semantic point clouds. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
Workshops, pages 0–0, 2019.

[E15] Velodyne Lidar. Automated with Velodyne | The Marsden Group | Velodyne
Lidar, 2020.

[E16] Joacim Dybedal, Atle Aalerud, and Geir Hovland. Embedded Processing
and Compression of 3D Sensor Data for Large Scale Industrial Environments.
Sensors, 19(3):636, 2 2019.

[E17] Martin Simony, Stefan Milzy, Karl Amendey, and Horst-Michael Gross.
Complex-yolo: An euler-region-proposal for real-time 3d object detection
on point clouds. In Proceedings of the European Conference on Computer
Vision (ECCV) Workshops, pages 0–0, 2018.

[E18] Matteo Munaro, Filippo Basso, and Emanuele Menegatti. OpenPTrack: Open
source multi-camera calibration and people tracking for RGB-D camera net-
works. Robotics and Autonomous Systems, 75:525–538, 1 2016.

166

[E19] Matteo Munaro, Christopher Lewis, David Chambers, Paul Hvass, and
Emanuele Menegatti. RGB-D human detection and tracking for industrial
environments. In Adv. Intell. Systems and Computing, pages 1655–1668, 2016.

[E20] Li Hui, Liu Yun, Qian Meiyi, and Pei Shujuan. Object detection method based
on three-dimension information extraction of laser point cloud. In ACM Intl.
Conf. Proc. Series, pages 208–213, New York, USA, 1 2019. Association for
Comp. Mach.

[E21] Hsueh Ling Tang, Shih Che Chien, Wen Huang Cheng, Yung Yao Chen, and
Kai Lung Hua. Multi-cue pedestrian detection from 3D point cloud data. In
Proc. IEEE Intl. Conf. Multimedia and Expo, pages 1279–1284, 8 2017.

[E22] Zhi Yan, Tom Duckett, and Nicola Bellotto. Online learning for 3D LiDAR-
based human detection: experimental analysis of point cloud clustering and
classification methods. Autonomous Robots, 44:147–164, 2020.

[E23] Joacim Dybedal. Human detector for point clouds using point cloud flattening
an CNN scene classifier. https://github.com/dybedal/wp3-human-voxel-
detector, 2021.

[E24] Atle Aalerud, Joacim Dybedal, and Geir Hovland. Automatic Calibration of
an Industrial RGB-D Camera Network Using Retroreflective Fiducial Markers.
Sensors, 19(7):1561, 3 2019.

[E25] The MathWorks, Inc. Scene Classification Using Deep Learn-
ing. https://blogs.mathworks.com/deep-learning/2019/11/25/scene-

classification-using-deep-learning/, 2021. Accessed: 2021-04-28.

[E26] Joacim Dybedal. Replication Data for: CNN-based People Detection in Voxel
Space using Intensity Measurements and Point Cluster Flattening. Data-
verseNO , 2021.

167

https://github.com/dybedal/wp3-human-voxel-detector
https://github.com/dybedal/wp3-human-voxel-detector
https://blogs.mathworks.com/deep-learning/2019/11/25/scene-classification-using-deep-learning/
https://blogs.mathworks.com/deep-learning/2019/11/25/scene-classification-using-deep-learning/

	ny-omslagsside-doktorgradsavhandling.pdf
	Joacim-Dybedal-Thesis-Final.pdf
	Introduction
	Motivation and Problem Statement
	Main Research Questions
	Research Methods

	Thesis Outline
	Preliminary Analysis of the State-of-the-art on 3D Sensor Technology
	3D Sensors for Offshore Environments
	Embedded Solutions for Processing of 3D Sensor Data
	Sensor Fusion
	Sensor Calibration
	Optimisation Techniques

	Contributions
	Summary of Papers

	Published Software and Dataset

	3D Optimisation
	Mixed Integer Programming
	Massive Parallelisation on GPUs

	3D Sensors and Data Structures
	3D Sensor Types
	Stereo Vision Sensors
	Structured Light Cameras
	Time-of-Flight Cameras
	Lidar
	Radar

	3D Data Representation
	Depth Maps and RGB-D Image
	Point Clouds
	Voxels and Octree

	Point Cloud Compression and Filtering

	Experimental Setup and Prototyping
	Selected 3D sensors
	3D Sensor Package
	Other Hardware and Prototyping Environment

	People Detection
	Statistical Analysis of Binary Classification Performance
	Detection Based on Images
	Detection Based on Point Clouds

	Concluding Remarks
	Conclusions
	Future Work

	Bibliography
	Appended Papers
	Optimal Placement of 3D Sensors Considering Range and Field of View
	Introduction
	Optimisation Method
	Linearisation of Nonlinear Function
	Implication 1
	Implication 2
	Implication 3

	Problem Formulation
	Case Studies
	Case Study I
	Case Study II

	Discussion and Conclusion
	Acknowledgment

	GPU-Based Optimisation of 3D Sensor Placement Considering Redundancy, Range and Field of View
	Introduction
	Problem Formulation
	Optimisation Method
	Redundancy Constraints

	Case Studies
	Case Study I
	Case Study II
	Case Study III
	Case Study IV
	Case Study V

	Discussion and Conclusions
	Acknowledgement

	GPU-Based Occlusion Minimisation for Optimal Placement of Multiple 3D Cameras
	Introduction
	Problem Definition
	Methodology
	Occlusion Detection
	The Pyramid-shaped Viewing Frustum
	Extension of the Sensor Placement Optimisation Solver

	Case Studies
	Case Study 1
	Case Study 2
	Case Study 3

	Discussion and Conclusions
	Acknowledgement

	Embedded Processing and Compression of 3D Sensor Data for Large Scale Industrial Environments
	Introduction
	Related Work
	Main Contributions

	Materials and Methods
	Problem Formulation and Motivation
	Point Cloud Preprocessing
	Data Representation
	Compression
	Voxel Intensity Value Computation
	Counting Points
	Point Value Based on Quadratic Distance
	Point Value Based on Linear Distance
	Voxel Intensity

	Decompression and Denoising
	Experimental Setup
	Multisensor Setup

	Results
	Preprocessing
	Compression
	Frequency and Bandwidth
	Denoising

	Discussion
	Acknowledgments

	CNN-based People Detection in Voxel Space using Intensity Measurements and Point Cluster Flattening
	Introduction
	Methodology
	Point Cloud Pre-processing
	Point Cluster Flattening
	Scene Classification
	Labeling and Position Extraction

	Experimental Results
	Indoor Single Person Detection
	Indoor Accuracy Validation
	Testing on Outdoor Datasets
	Human Detection Performance

	Discussion and Conclusions
	Acknowledgments

