
Received March 18, 2020, accepted April 14, 2020, date of publication May 22, 2020, date of current version June 12, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.2996661

Lossless Compression of Data From Static and
Mobile Dynamic Vision Sensors-Performance
and Trade-Offs
NABEEL KHAN , KHURRAM IQBAL, AND MARIA G. MARTINI , (Senior Member, IEEE)
Wireless Multimedia and Networking Research Group, Kingston University, London KT1 2EE, U.K.

Corresponding author: Nabeel Khan (n.khan@kingston.ac.uk)

This work was supported by the EPSRC via Internet of Silicon Retinas: Machine to Machine Communications for Neuromorphic Vision
Sensing Data (IoSiRe) under Grant EP/P022715/1.

ABSTRACT Dynamic Vision Sensors (DVS) are emerging retinomorphic visual capturing devices, with
great advantages over conventional vision sensors in terms of wide dynamic range, low power consumption,
and high temporal resolution. The bio-inspired approach of the DVS results in lower data rates than
conventional vision sensors. Still, such data can be further compressed. Compression of DVS data is an
emerging research area and a detailed performance comparison of different compression strategies for these
data is still missing. This paper addresses lossless compression strategies for data output by neuromorphic
visual sensors. We compare the performance of a number of strategies, including the only strategy developed
specifically for such data and other more generic data compression strategies, tailored here to the case of
neuromorphic data. We perform the comparison in terms of compression ratio, as well as compression and
decompression speed and latency. Moreover, the compression performance analysis is performed under
diverse scenarios including stationary and mobile DVS. According to the detailed experimental analysis,
Lempel-Ziv-Markov chain algorithm (LZMA) achieves the best compression ratios among all the considered
strategies for the case when the DVS is static. On the other hand, Spike coding achieves the best compression
ratios under the scenario when spike events are produced by a sensor in motion. However, both strategies
result in low compression speed and high latency which restrict the applications of these strategies in
real-time scenarios. The Brotli strategy achieves the best trade-off between compression ratio, speed and
latency under static as well as mobile scenarios. We also observe a significant decrease in compression and
decompression performance (in terms of ratio, speed and latency) of all the strategies under mobile DVS
scenarios.

INDEX TERMS Dynamic vision senor, neuromorphic computing, computer vision, spike coding, data
compression, dictionary based compression, integer compression, IoT specifc compression, entropy coding,
fast integer compression.

I. INTRODUCTION
Dynamic Vision Sensors (DVS) [1], [2] mimic the visual
processing characteristics of living organisms, i.e., they cap-
ture only changes in scene reflectance. Conventional videos
are captured and stored in the form of synchronous frames,
whereas DVS respond to the temporal luminance changes
with an asynchronous stream of spike events, fired indepen-
dently. The Address Event Representation (AER) protocol
is utilized to output the spike event stream. A spike event

The associate editor coordinating the review of this manuscript and

approving it for publication was Paolo Napoletano .

consists of four essential elements, which are represented by a
tuple< X ,Y , t, p >: the spatial addresses X and Y , the time-
stamp t and the polarity flag p. Spike events occur whenever
there is either movement/change of lights conditions in the
scene or motion of the sensor or both. In other words, there
is no spike event output for static scenes and motionless
sensors. The unique spike firing mechanism enables DVS to
satisfy low-bandwidth, low-power and low-latency require-
ments. Figure 1 shows an example of the conventional camera
and DVS output. The first row shows the DVS output, where
spatio-temporal coordinates {X ,Y , t} and polarity p of the
neuromorphic sequence are rendered as frames. In each of the

VOLUME 8, 2020 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 103149

https://orcid.org/0000-0002-2873-4554
https://orcid.org/0000-0002-8710-7550
https://orcid.org/0000-0001-9112-0574


N. Khan et al.: Lossless Compression of Data From Static and Mobile DVS-Performance and Trade-Offs

rendered DVS frames in the figure, spike events fired owing
to the increase in luminance intensity (polarity p = 1) are
represented by the ‘‘green’’ color. On the other hand, spike
events associated to decrease in brightness (polarity p = 0)
are represented by the ‘‘red’’ color.

The spike event rate of the DVS is dependent on scene
complexity [3] and relative motion of the camera w.r.t scene
objects [4]. Because the output of the DVS is quite different
from conventional frame-based image sequences, existing
computer vision techniques cannot be directly applied to
the series of neuromorphic spike events. To address this
issue, many algorithms have been specifically tailored to
leverage spike events data for a diverse range of applica-
tions (object detection, classifications, optical flow estima-
tion, etc.). A good survey of these algorithms in a wide range
of applications is provided in [5].

FIGURE 1. Rendered frames from DVS data (above) and video frames
acquired via conventional camera (below).

A. MOTIVATION
The unique characteristics of the DVS offer advantages over
conventional vision sensors in real-time interaction systems
such as robotics [6], [7], drones [8] and autonomous driving
[9], [10]. In the near future, most of the envisaged services
performing object/gesture recognition or classification will
be performed via cloud / edge computing. Therefore, these
services would require the transmission of the spike events to
cloud / edge servers for the processing of visual data [11].
Furthermore many scenarios, such as the collaboration of
multiple intelligent cars or drones forming an Internet of
Intelligent Vehicles (IoV) also require real-time transmis-
sion. Even if the data acquisition of DVS yields an inherent
compression, further compression of the spike data would be
highly desirable in the aforementioned scenarios.

A preliminary version of this paper has been presented at
IEEE ICASSP 2020 [12]. The main extensions of this work
are summarized in the subsequent sections.

B. CONTRIBUTIONS
1) COMPRESSION PERFORMANCE ANALYSIS
OF DIVERSE STRATEGIES
This paper addresses lossless compression strategies,
i.e., strategies where compression does not involve loss
of information. The output of the DVS is a multivariate
stream of integers (X and Y spatial addresses, time-stamp
field, and the polarity flag). Hence, it is worth investigating
the performance on DVS data of general purpose lossless

compression strategies, IoT specific compression algorithms,
integer based compression approaches, that we tailored for
DVS data. We also investigate the performance of DVS data
specific compression approach.

2) PERFORMANCE ANALYSIS UNDER DIVERSE
SCENARIOS
We analyse existing lossless data compression strategies and
their suitability for the compression of neuromorphic data
under diverse scenarios. These scenarios include stationary
and mobile sensor for indoor and outdoor conditions. Com-
pression performance evaluation under these diverse scenar-
ios is very important since these represent many emerging
applications; for instance drones [8], self-driving cars [9],
[10], and stereo vision [13]–[15] demonstrate the case of
mobile DVS sensor in outdoor conditions, whereas surveil-
lance and monitoring [16], [17] highlight the application of
stationary DVS sensors, also in outdoor conditions. The work
in [18], [19] explores the application of DVS in amobile robot
for the indoor environments. Furthermore, tactile sensing [7],
[20] and automated fall detection monitoring [21] highlight
the potential of DVS under static indoor environments.

3) PERFORMANCE ANALYSIS IN TERMS OF COMPRESSION
RATIO, COMPRESSION AND DECOMPRESSION SPEED,
AND LATENCY
We perform comparisons in terms of compression ratio,
as well as compression and decompression speed and latency.
Compression speed is an important performance indicator as
compression needs to be fast enough to keep up with the rate
of data ingestion, in particular if compression is performed
onboard, at the sensor location. The majority of the potential
applications of DVS involve complex visual processing, such
as diverse types of machine and deep learning strategies
[7], [9], [13], [14], [20], [21]. Therefore, the majority of
DVS applications would require computation offloading, i.e.,
transfer of resource intensive computation tasks to a cluster,
grid or a cloud. Computation offloading of the compressed
data over a network can overcome resource limitations of
a device. In computation offloading, the decompression
speed of an encoding strategy is of paramount importance
since high decompression speed would reduce cloud service
latency. Therefore, it is important to have an algorithm that
could function efficiently in a central database or cloud
storage.

Existing data compression strategies that can be used for
neuromorphic visual sensor data are reviewed in Section II.
We introduce the datasets considered for the tests and the
simulation set-up in Section III, while comparative simulation
results are reported in Sections IV and V, where the trade-offs
to be addressed are also discussed. In particular, we analyse
the compression performance for spike events emitted from
static DVS in Section IV, whereas the compression perfor-
mance of mobile DVS data is analysed in Section V. Finally,
the concluding remarks appear in Section VI.

103150 VOLUME 8, 2020



N. Khan et al.: Lossless Compression of Data From Static and Mobile DVS-Performance and Trade-Offs

FIGURE 2. Potential compression strategies applicable to DVS Data.

II. RELEVANT DATA COMPRESSION STRATEGIES
The potential strategies to compress DVS data are reported
in Figure 2, clustered in five classes, and described in
detail below. Section II-A discusses the spike coding strategy
specifically designed for DVS data, whereas general purpose,
IoT specific, and integer based compression approaches are
discussed in Section II-B.

FIGURE 3. Two different modes of the spike coding strategy. Left: AP
mode; Right: TP mode.

A. DVS SPECIFIC COMPRESSION APPROACH
The authors in [22] proposed the first lossless coding strat-
egy for DVS data. According to the proposed strategy,
the event sequence is partitioned into multiple three dimen-
sional macrocubes, as shown in Figure 3, where the X and Y
dimensions of the macrocube span the full spatial resolution
of the pixel array (for instance, Xmax = 240 and Ymax = 180
for DVS240B). The third dimension of the macrocube is the
time dimension (in terms of number of spike events). Each
macrocube coding has two modes which are Address-Prior
(AP) and Time-Prior (TP) modes, as shown in Figure 3. The
AP mode is designed for spatially decentralized macrocubes,
i.e., for the case where events are distributed over the entire
spatial resolution. On the other hand, the TPmode is designed
for spatially centralized macrocubes, i.e., for the case where
events occur among neighboring pixels. For each macrocube,
both the modes are tried and the one achieving the best

compression is chosen. The prediction residuals of the chosen
mode are fed into a CABAC (Context-adaptive binary arith-
metic coding) entropy coder.

The coding strategy is based on the spike firing mechanism
of the DVS, which indicates the presence of temporal and
spatial redundancy.

• Temporal redundancy: According to the spike firing
model [22], when the luminance intensity is stably
changing, linearly increasing or decreasing, the time
intervals between consecutive spikes at the same pixel
appear to be nearly equal, which may induce temporal
correlations.

• Spatial redundancy: The adjacent pixels receive almost
the same luminance concurrently, indicating the pres-
ence of spatial correlation.

1) TIME-PRIOR MODE
The TP mode of the strategy, exemplified in the right part of
Figure 3, exploits spatial redundancy when the majority of
the neighboring pixels elicit spike events. This mode finds a
centre point (x3, y3 in Figure 3) and projects all other spike
events w.r.t the centre point. In this mode, the events are
projected in an increasing order of their time-stamps and
delta coding is applied to the time-stamp field as shown
in Figure 3. Since the time-stamp field comprises a stream
of incremental integers, delta coding results in an efficient
compression of this field. Spike events are centralized in the
spatial field, therefore, the offsets of the spike events to the
centre point result in compression of the spatial address field.
The residuals of both the fields (spatial address and time-
stamp) are fed to the CABAC for further compression.

2) ADDRESS-PRIOR MODE
The AP mode exploits temporal redundancy of the spike
firing mechanism. Since events are spread over the entire
spatial resolution, the TP mode cannot achieve high com-
pression gains for the spatial address field, i.e., the offsets
of the events to the centre point cannot efficiently reduce
the size of the spatial addresses. In AP mode, the number of
spikes at each pixel is recorded, as shown in the left part of
Figure 3. Since the time intervals between consecutive events
at a pixel are approximately equal (as shown below in the
left part of Figure 3), differencing (delta coding) between
successive events time-stamps results in a series of approx-
imately similar integers which is exploited by the entropy
coder (CABAC). Therefore, efficient compression gains can
be achieved for the spatially decentralized macrocubes by
projecting the spike event count in a macrocube to the XY
plane, and delta coding the time-stamps of the successive
events on each pixel.

3) SPIKE EVENT POLARITY
The spike polarity field is separately fed to the entropy coder.
Luminance increases (or decreases) in a steady state [22],
therefore, the temporal correlation of the polarity on a pixel

VOLUME 8, 2020 103151



N. Khan et al.: Lossless Compression of Data From Static and Mobile DVS-Performance and Trade-Offs

FIGURE 4. IoT specific compression to the time-stamp and the spatial
address fields.

is high. In other words, if the polarity of the previous spike
event is one (or zero) on a pixel, there is a high probability
that the next event polarity will be one (or zero) on the same
pixel. Hence, the encoding of the current spike event polarity
exploits the polarity of the previous spike event, i.e., previous
spike polarity becomes the context of the current spike event
and fed to the context adaptive binary coder (CABAC).

B. GENERAL PURPOSE, IoT AND INTEGER BASED
COMPRESSION APPROACHES
1) ENTROPY CODING
Entropy coding is a lossless compression technique applica-
ble to all types of data, hence the most fundamental building
block of many compression strategies. Entropy coders are
quite versatile, i.e., they can compress any type of data.
Therefore, most of the complex compression strategies have
an entropy coder as their final compression step. In entropy
coding, the length of the codeword that the encoder associates
to each input symbol is directly proportional to the negative
logarithm of the probability of each symbol. The most com-
mon entropy coding strategies are Huffman [23] and Arith-
metic [24]. Huffman is a prefix encoder that uses variable
length codewords for encoding the input data symbols. On the
other hand, Arithmetic coding encodes a group of symbols
into a single number.

2) DICTIONARY BASED COMPRESSION
Dictionary coding strategies operate by searching for matches
between the data to be compressed and a set of strings
contained in a dictionary. The dictionary is a data struc-
ture (maintained by the encoder), which is either static or
dynamic, containing the set of strings. The main goal of a
dictionary encoder is to find a match between the content
of the dictionary and the data to be compressed. When an
exact match is found, the encoder substitutes a short reference
to the position of the string in the dictionary. The major-
ity of advanced encoders use a dynamic dictionary whose
content changes according to the content of the data to be

compressed. For instance, LZ77 [25] holds the last N bytes
of the processed data in a sliding window buffer. This slid-
ing buffer serves as the dictionary storing every substring
of N bytes of data as dictionary entries. There are many
advanced level dictionary-based compression strategies, such
as LZMA [26], Zstandard (Zstd) [27], Zlib [28] and Brotli
[29], having sophisticated data structures. These strategies
have huge dictionary sizes and use multi-level encoding to
achieve high compression ratios. For instance, LZMA uses a
multi-level compression where the dictionary based output is
further compressed by an adaptive binary range coder. On the
other hand, Zstd combines a dictionary based coding strategy
with a hybrid entropy coder. The hybrid encoder achieves
fast compression and comprises a combination of Finite State
Entropy (FSE) [30] and Huffman encoding. Similarly Brotli
combines dictionary based encoding with Huffman and sec-
ond order context modelling. Another well known dictionary
based encoder is Zlib which utilises the combination of LZ77
and Huffman encoding where a sliding window buffer can
be adjusted to achieve a trade-off between compression ratio
and speed.

3) IoT SPECIFIC COMPRESSION
The authors in [31] proposed a time-series compression
algorithm, called Sprintz, for resource constrained devices.
The strategy achieves state-of-the-art compression ratios with
very low memory requirements (less than 1 KBmemory) and
virtually adds no latency. The main goal of the strategy is to
exploit correlation among successive samples in multivariate
time series data. The first step of the strategy is based on
a forecaster, also known as Fast Integer Regression (FIRE),
which encodes the difference between the actual and the
predicted sample. The next step is to apply a bit packing algo-
rithm to the prediction residuals. In the final step, Huffman
coding is applied to the residuals. The strategy combining
the predictive coder (FIRE) and Huffman coding is called
Sprintz-FIRE. In order to achieve a trade-off between speed
and compression, Sprintz has several variants. For instance,
Sprintz-Delta skips theHuffman coding step and utilizes delta
coding, instead of forecasting (FIRE), for a better compres-
sion speed. On the other hand, Sprintz-Delta-Huf combines
delta coding and Huffman encoding to achieve better com-
pression at the expense of lower compression speed.

Encoding steps of Sprintz-Delta-Huf on time-stamp and
spatial address fields are shown in Figure 4, where delta
coding and bit packing greatly reduce the size of the time-
stamp field (32 bits to only 3 bits). Since spatial address
differencing results in negative integers, an additional zigzag
encoding step is applied to the signed residuals as shown
in Figure 4.

4) FAST INTEGER COMPRESSION
Another class of potential candidates for compressing
neuromorphic data are the Fast Integer compressors like
SIMDBP128 [32], Simple8B [33], Memcpy, FastPFOR
[32] and SNAPPY [34]. These algorithms are known for

103152 VOLUME 8, 2020



N. Khan et al.: Lossless Compression of Data From Static and Mobile DVS-Performance and Trade-Offs

their superlative compression speed as they are specifically
designed for encoding and decoding billions of arrays of
integers for search engines and relational database applica-
tions. The fastest known method of compressing integers
is SIMDBP128 [32] and Memcpy, whereas FastPFOR [32]
achieves better compression ratios with a little compromise
on compression speed. Another well known fast integer com-
pression algorithm is SNAPPY [34], developed by Google
and used by various distributed file systems such as Hadoop,
InfluxDB, KairosDB, etc.

TABLE 1. Dataset information for static DVS scenarios [35].

III. EXPERIMENT SETUP
A. DATASETS
In order to compare the different compression strategies over
a variety of scenes and sensor speeds, we consider two
datasets, for fixed and moving visual sensor. The datasets are
described below.

1) DATASET FOR STATIONARY DVS
To evaluate the performance of the considered strategies for
static DVS, we utilized the PKU-DVS dataset for spike cod-
ing [35]. For static DVS scenarios, spike events are produced
due to object movements (change of light conditions) in the
scene, whereas the sensor remains stationary. The consid-
ered dataset is divided into indoor and outdoor scenarios.
These scenarios are captured under diverse circumstances; for
instance the outdoor sequences include daytime, night, slow
speedmovement (pedestrian scenarios) and high speedmove-
ment (vehicular speed movements). Similarly the indoor sce-
narios include diverse types of object movements ranging
from pendulum motion to a jumping movement of a person.
The spike event rate, in Kilo-event per second (Kev/s), along
with the sequence duration of all the indoor and outdoor
scenarios is reported in Table 1.

2) DATASET FOR MOBILE DVS
In order to assess the compression performance on mobile
DVS data, we consider the Dynamic and Active-pixel Vision
Sensor (DAVIS) dataset [36]. DAVIS incorporates a conven-
tional global-shutter camera and an event-based sensor in
the same pixel array. The compression performance of the
considered strategies is evaluated on the asynchronous spike

event stream. The DAVIS dataset is specifically designed for
high-speed and high-dynamic-range robotics and computer-
vision applications for indoor and outdoor scenarios. In addi-
tion to the visual output (spike event stream and intensity
images), the dataset also includes the speed of the sensor.
The indoor and outdoor scenarios are captured under widely
varied motion (angular and linear motion of the sensor) and
dynamic range. The inclusion of intensity images also makes
it possible to compute scene complexity [4] of different
outdoor and indoor scenes. Figure 5 shows some of the
considered indoor and outdoor scenes [36]. The extracted
sequences considered for compression performance evalua-
tion, with different content complexity and sensor speed, are
shown in Table2. The higher the scene complexity and sensor
speed, the higher the event rate [4]. For instance, the Boxes
sequence exhibits an event rate of 4288.65 Kev/s, whereas
the bandwidth of the Shapes sequence is only 245.61 Kev/s
owing to the low content complexity and slow speed of the
sensor. The scene complexity and motion speed information
of the dataset is reported in [4].

FIGURE 5. Shapes, Boxes, Poster and Outdoor scenes of the the DAVIS
dataset [36].

TABLE 2. Dataset information for mobile DVS scenarios, extracted
from [36].

B. MULTIVARIATE REPRESENTATION OF THE AER (AER:
DATA OUTPUT FORMAT OF THE DVS CAMERA)
Figure 6 shows the recorded data format of spike events in
terms of AER: a series of 8-byte words, where time-stamp

VOLUME 8, 2020 103153



N. Khan et al.: Lossless Compression of Data From Static and Mobile DVS-Performance and Trade-Offs

FIGURE 6. Simulation Setup, including in the top part the AER data format.

information is represented by the first 32 bits. One bit is
reserved for the neuromorphic vision sensor type (DVS or
Asynchronous Time-based Image Sensor (ATIS)). The spatial
address information in terms of X and Y is represented by
10 and 9 bits respectively.

The ATIS has built in acceleration, temperature and gyro-
scope sensors, therefore 10 bits are reserved for Analog to
Digital Converter (ADC) samples of these sensors, as shown
in Figure 6. One bit (44th bit) represents the DVS polarity
field, whereas DVS trigger information is also represented
by one bit (43rd bit). There are several ways to compress
the AER data, the most common approach consisting of
compressing the data as a single variable vector, i.e., as a
single stream of 8 byte integers. According to our study
[12], the most effective approach is to convert the data into
a multivariate stream by extracting the relevant information
(time-stamps, spatial addresses and the polarity bit) from the
64-bit AER data. This approach is shown in Figure 6, where
all the four relevant fields are extracted from the AER data
format. It is important to note that we divide the 32-bit time-
stamp field into four 8-bit integers. The multivariate stream
now consists of seven columns (each 1 byte long) where
time-stamp information consists of four columns, whereas the
spatial addresses and the polarity flag fields comprise three
columns. The multivariate data stream is then converted into
row-major and column-major formats. In row-major order,
consecutive elements of the rows of the array are contiguous
in memory, whereas in column-major order the consecutive
elements of the columns are contiguous, as shown in Figure 6.
The row major format is primarily used for the IoT specific
compression strategies, whereas Entropy, Dictionary and

Fast integer compression strategies utilize the column major
format.

In order to compress the DVS data by utilizing the spike
coding strategy, the spatial resolution of the macrocube is the
same as that of the DAVIS, i.e., Xmax = 240, and Ymax = 180.
Furthermore, the third dimension (number of spikes) of the
macrocube is set to 32768, for optimum compression perfor-
mance recommended by [37].

C. KEY PERFORMANCE INDICATORS
1) COMPRESSION RATIO
The performance of the considered and benchmark strategies
is evaluated by computing the compression ratio (CR):

CR =
Nevents × 8

γ
(1)

where γ is the size (in bytes) of the compressed output stream
andNevents is the total number of spike events, with each event
equal to 8 bytes.

2) COMPRESSION AND DECOMPRESSION SPEED
In order to evaluate data compression algorithms, speed
(compression and decompression) is measured in terms of
uncompressed data handled per second. The compression
speed (CS) and decompression speed (DS) is evaluated as:

CS =
Nevents × 8

Tc
[bytes/s] (2)

and

DS =
Nevents × 8

Td
[bytes/s] (3)

103154 VOLUME 8, 2020



N. Khan et al.: Lossless Compression of Data From Static and Mobile DVS-Performance and Trade-Offs

where Tc and Td are the time (seconds) required to com-
press and decompress the spike events data respectively.
All experiments use a single thread on a 2015 Macbook Pro
with a 2.2GHz Quad-Core Intel Core i7 processor and 16 GB,
1600 MHz DDR3 RAM.

3) COMPRESSION AND DECOMPRESSION
DELAY FACTOR
We define the compression (and decompression) delay factor
as the ratio between the bit rate of the source and the compres-
sion (and decompression) speed. This is evaluated as reported
below:

3c =

(
Nevents×8

Ts

)
CS

=
Tc
Ts

(4)

and

3d =

(
Nevents×8

Ts

)
DS

=
Td
Ts

(5)

where Ts is the time duration (in seconds) of the DVS
sequence.

In order to analyse the latency performance of each of
the considered algorithms, first we compute the bitrate of
a single DVS sequence followed by the computation of the
average bitrate of all the video sequences. The compression
delay factor, for instance, of an algorithm is computed as
the ratio between the average bit rate of all the sequences
and the average compression speed. This is equivalent to the
ratio between the time required to compress the DVS data
sequence and the time duration of the DVS sequence.

In the following, the compression performance analysis of
the static and mobile DVS data is discussed in Section IV
and V respectively.

IV. COMPRESSION PERFORMANCE ON DVS DATA
GENERATED BY STATIC SENSOR FOR OUTDOOR
AND INDOOR SCENARIOS
In this section we first analyse the different spike event fields
of the DVS data for static scenarios, followed by a detailed
analysis of the compression performance of all the considered
strategies.

A. HISTOGRAM ANALYSIS OF DIFFERENT FIELDS OF
THE DVS DATA UNDER STATIC SCENARIOS
In order to analyse the compression performance of all the
considered strategies on the DVS data for the static scenario,
we computed the histogram of different sequences (Night-
traffic,Pendulum andDaytime-traffic2), as shown in Figure 7.
The figure shows the histogram of the spatial address fields
(X and Y) in the first two columns and of the the delta-
coded time-stamp field in the third column. The histogram
of the spatial address highlights the locations receiving spike
events (change of luminance intensity). For static sensor
scenarios, objects’ movements usually lead to spike events
firing over adjacent pixels (neighbouring spatial address).

In other words, the spatial address integer field in the spike
event stream (due to objects movements) is highly correlated.
For instance if we analyse the histogram of the Night-traffic
sequence (first row of Figure 7), the majority of the the spike
events are elicited over a specific range of spatial addresses
(X= 180 to 220 and Y= 130 to 170). Similarly, for the other
two sequences spike events are fired at a specific range of
pixels. For instance, the motion of pendulum elicits lumi-
nance variations at a handful of pixels location, as shown
by the histogram bins of the Pendulum sequence (second
row of Figure 7). On the other hand, the delta coding of the
time-stamp field reduces the range of the 32 bit integer down
to fewer bits. For instance, in the time-stamp histogram of
the Night-traffic sequence (top right in Figure 7) there are
only two bins. Therefore, only one bit (0 or 1) is required to
represent the delta coded time-stamp field of the Night-traffic
sequence. Similarly the number of bins for the Pendulum and
Daytime-traffic2 sequences is less than 200. These sequences
require only 8 bits to represent the delta coded time-stamp
field (28 = 256 > 200).
The histogram analysis of the static DVS data reveals a

highly correlated spike event sequence, i.e., the stream of
multivariate integers exhibits a high degree of correlation.

B. COMPRESSION PERFORMANCE ANALYSIS
In the following, we analyse the compression performance of
the considered strategies. As a summary, Table 3 reports the
compression ratios of all the considered strategies, whereas
the compression and decompression speed, in Mega-byte
per second (MB/s), is reported in Table 4. The best strategy
for each scene is highlighted in bold. According to Table 3,
spike coding and dictionary based strategies show impressive
lossless compression ratios.

Details on the compression performance of each strategy
are reported below:

1) COMPRESSION PERFORMANCE OF DICTIONARY
BASED STRATEGIES
Dictionary based compression strategies yield excellent com-
pression performance, as reported in Table 3. The histogram
analysis of the static DVS data shows a highly correlated
multivariate stream of integers. The main design goal of
dictionary based strategies is to exploit redundancy in the
data. The higher the correlation in the data, the higher the
compression performance of these strategies.

LZMA shows the best performance in term of compression
ratio among the considered strategies. LZMA utilizes a huge
dictionary size as compared to LZ4 and has a range encoder
as the final compression step. The range encoder utilizes a
complex mathematical model to make probability predictions
on a bit basis (as compared to byte predictions models in
other dictionary based strategies). Therefore, encoding data
on a bit by bit bases allows LZMA to efficiently exploit
correlation between consecutive spike events. The encoding
of single bit by the range encoder allows many encoding
possibilities, therefore, LZMA uses Dynamic Programming

VOLUME 8, 2020 103155



N. Khan et al.: Lossless Compression of Data From Static and Mobile DVS-Performance and Trade-Offs

FIGURE 7. Histogram of different fields of the spike events data. First row: Night-traffic, Second row: Pendulum and Third row:
Daytime-traffic2.

TABLE 3. Compression ratio comparison of the considered strategies on the static PKU-DVS dataset.

algorithm to select an optimal encoding mode. The utilization
of range encoder and dynamic programming for encoding
mode selection is computationally expensive, therefore the
compression and decompression speed for LZMA is the slow-
est among all the considered dictionary based strategies. Zstd
also performs well in terms of compression ratios as it also
uses an entropy coder as the final compression step. How-
ever, instead of using the computationally expensive binary
range encoder, it utilizes a combination of the finite state
entropy and Huffman encoding strategy. This results in fast
compression and decompression speedwith a slight reduction
in compression ratio. The use of Finite State Entropy as
the final encoding step achieves very high decompression
speed for Zstd as shown in Figure 4. Brotli achieves the best
trade-off between compression ratio and speed (compression
and decompression) as shown in Table 3 and Table 4. The
better compression and decompression speed for Brotli is
mainly due to the utilization of Huffman encoding as the
final compression step. Furthermore, second order context
modelling achieves superior compression ratios for Brotli as
compared to Zstd and Zlib.

2) SPIKE CODING COMPRESSION PERFORMANCE
The spike coding strategy encodes spike events by project-
ing them over a series of macrocubes. A limited number of
spikes are projected within each macrocube. In this study,
we consider 32678 number of spike events per macrocube
as recommended by [37]. In order to fix the size of the
entropy coder, the spike coding strategy limits the number
of spike events per macrocube. The histogram analysis of
static DVS data shows the firing of spike events among
a group of adjacent pixels. For such scenarios, spike cod-
ing utilizes the TP mode, where spike events are projected
based on their firing time as shown in Figure 3. The TP
mode exploits spatial redundancy with in each macrocube.
In dictionary based strategies, correlation among millions of
consecutive spike events (multivariate stream of integers) is
exploited because of the huge dictionary size. On the other
hand, the spike coding exploits spatial redundancy among
32678 spike events, i.e., with in each macrocube. Therefore,
dictionary based compression strategies such as Brotli and
LZMA outperform the spike coding strategy. The cube-based
spike coding mechanism achieves good compression ratios

103156 VOLUME 8, 2020



N. Khan et al.: Lossless Compression of Data From Static and Mobile DVS-Performance and Trade-Offs

TABLE 4. Static sensors compression and decompression speed [MB/s] comparison.

by exploiting the spatial redundancies in the DVS data. The
compression ratios achieved for the datasets Jump, Game,
Pendulum and Daytime-traffic2 are the best among all the
considered strategies. It is important to note that the spatial
and temporal prediction residuals are further compressed by
CABAC. However, CABAC is computationally expensive,
therefore the compression and decompression speed achieved
by spike coding is the lowest among all the considered strate-
gies, as reported in Table 4. Moreover, the process of trying
both the modes, AP and TP, and the selection of the best
mode (yielding maximum compression) further reduces the
compression speed.

3) IoT SPECIFIC COMPRESSION PERFORMANCE
Table 3 shows that IoT specific compression strategies yield
low compression ratios. These strategies consider only 8 sam-
ples per block, i.e., 8 consecutive samples for each spike’s
field. These strategies are mostly designed for sensor gener-
ated time-series data exhibiting slow time-varying character-
istics, i.e. when consecutive samples in sensor generated data
have high correlation. However, the correlation among the
8 spatial address integers can be low when the spike events
are fired at 8 different spatial locations. Sprintz-Delta-Huff
shows the best compression ratio among the IoT specific
compression strategies, which shows that delta coding yields
better compression than Sprintz forecasting algorithm FIRE.
This is mainly because it is difficult to forecast the firing
location of the spike events.

The time-stamp field of the spike events is the most
compressible field since it is an incremental integer. Delta
coding followed by bitpacking greatly reduces redundancy,
as shown in Figure 4, where the 32 bits time-stamp field is
reduced to 3 bits. It is important to note that Huffman cod-
ing as the final compression step improves the compression

ratio of the Sprintz strategy as shown in Table 3, where
Sprintz-Delta-Huf outperforms Sprintz-Delta at the expense
of a higher compression speed. The main advantage of the
Sprintz strategy is its low memory consumption (less than
1 kB), which makes it suitable for resource constrained
devices.

4) HUFFMAN CODING COMPRESSION
PERFORMANCE
Huffman encoding as the only compression strategy achieves
low compression ratio. However, the combination of Huff-
man coding with the Sprintz and Dictionary based strategies
yields promising results. For instance, the compression ratio
is more than doubled (from 2.67 to 5.72) by employing Huff-
man encoding to further compress the residuals of Sprintz-
Delta encoding. Similarly the performance of the classic
dictionary based strategy (LZ4, yielding compression ratio
of 7.63) is enhanced by using Huffman encoding as the final
compression step in the Zlib strategy, which increases the
compression ratio to 13.53 as shown in Table 3. However,
the improved compression ratio comes at the cost of decrease
in the compression and decompression speed, as shown
in Table 4.

5) FAST INTEGER COMPRESSION PERFORMANCE
Fast compression strategies such as Memcpy, Simple8B,
FastPFOR and SIMDBP128 hardly compress the DVS data.
These strategies do not aim at maximum compression,
but rather at high compression and decompression speed.
For instance, Memcpy and SIMDBP128 achieve compres-
sion speed of 12745.76 and 9967.79 MB/s respectively,
as reported in Table 4. Snappy achieves the best com-
pression ratio among the fast integer based compression
approaches.

VOLUME 8, 2020 103157



N. Khan et al.: Lossless Compression of Data From Static and Mobile DVS-Performance and Trade-Offs

FIGURE 8. Average compression and decompression delay factor (time needed to compress and decompress 1s of data) for static
sensor scenario.

C. AVERAGE COMPRESSION AND DECOMPRESSION
DELAY FACTOR ANALYSIS FOR STATIC DVS
Figure 8 reports the average compression and decompres-
sion delay factor w.r.t compression and decompression ratios
respectively. The average compression delay factor is a func-
tion of input data rate and compression speed. The higher the
compression speed and lower the data rate, the lower the delay
factor. Spike coding and LZMA exhibit a higher compression
delay factor of approximately 0.45 and 0.25 respectively. This
implies that spike coding and LZMA need 0.45 and 0.25 sec-
onds respectively to compress one second of data on average.
The higher latency performance of both the strategies is
mainly because of the utilization of computationally expen-
sive binary arithmetic encoding. Furthermore, the process
of finding the best compression mode (TP or AP) for each
macrocube increases the average compression delay factor
(to approximately 0.45) for the spike coding strategy. On the
other hand, LZ4 achieves the lowest compression delay factor
of less than 0.005 (less than 5 ms of latency in compressing
one second of data) because this strategy skips the entropy
coding step, unlike other dictionary based strategies. Snappy
also shows impressive compression delay factor performance
because the main design goal of the strategy is the high
compression speed with a reasonable compression ratio. IoT
specific Sprintz strategies also incur low compression latency
(less than 20 ms) owing to the encoding of only 8 spike events
per block. Dictionary based strategies such as Brotli, Zstd
and Zlib are also suitable for real-time compression mainly
because of the delay factor of less than 0.06, i.e, less than than
60 ms of compression latency is required by these strategies.

All the considered strategies show impressive decom-
pression delay factor (less than 60 ms needed to decom-
press one second of data on average) performance as shown
in Figure 8. This is mainly because of the higher decompres-
sion speed of all the considered strategies.

In the following, we analyse the compression and decom-
pression performance of the different strategies on data
acquired by a DVS sensor in motion.

V. COMPRESSION PERFORMANCE ON DVS DATA
GENERATED BY MOBILE SENSOR FOR OUTDOOR
AND INDOOR SCENARIOS
The compression ratios of mobile DVS sensor data for the
outdoor and indoor scenarios are shown in Table 5, whereas
the compression and decompression speed performance is
shown in Table 6. For mobile sensor scenarios, spike coding
achieves the best compression performance followed by the
dictionary based compression strategies.

A summary of the key observations from the results is
reported subsequently.

A. LOW COMPRESSION RATIO PERFORMANCE
FOR MOBILE DVS DATA
The compression gains achieved by different strategies are
lower compared to the scenarios of the static sensor. Table 5
also reports the percentage decrease in compression gains
w.r.t static sensor. For instance, the gains achieved by the
spike coding strategy decrease by 72.2 % (14.35 to 3.99),
whereas the compression performance of LZMA decreases
to 3.57 (79.14 % decrease). There is also a sharp decline in
compression performance of other dictionary based strate-
gies, for instance the performance of Zstd, Zlib, Brotli and
LZ4 decreases by 76.66 %, 76.63 %, 77.18 % and 67.40 %
respectively. The decrease in the compression performance
of different Sprintz strategies is lower as compared to the
dictionary based strategies. For instance Sprintz-Delta-Huff,
Sprintz-Fire and Sprintz-Delta show a decline of 50.21 %,
44.38 % and 9.40 % respectively. The compression perfor-
mance of the fast integer compression strategies remains
approximately the same.

103158 VOLUME 8, 2020



N. Khan et al.: Lossless Compression of Data From Static and Mobile DVS-Performance and Trade-Offs

TABLE 5. Compression ratio comparison of the considered strategies on the mobile DAVIS dataset.

TABLE 6. Mobile sensors compression and Decompression speed [MB/s] comparison.

B. THE COMPRESSION RATIO INCREASES WITH
THE EVENT RATE
Another important observation is that higher event rate
sequences result in better compression performance, i.e.,
all the considered strategies compress higher event rate
sequences more than low event rate sequences. For instance,
among the considered sequences, Poster and Boxes yield the
highest compression gains. On the other hand, the compres-
sion performance of the Shapes sequence is the lowest.

In the following, we find the reasoning behind the afore-
mentioned observations of higher event rate sequences yield-
ing better compression, and the low compression ratios for
the mobile DVS data.

1) HISTOGRAM AND ENTROPY COMPUTATION
Figure 9 shows the frequency distribution (histogram) of the
X, Y, and delta coded time-stamp fields of the Poster, high
rate sequence, and Shapes, low rate sequence. Furthermore,
the figure also reports the entropy of these fields.

The entropy is evaluated as:

H (X ) =
∑

x=1,...,Xmax

p(x) log2
1
p(x)

(6)

H (Y ) =
∑

y=1,...,Ymax

p(y) log2
1
p(y)

. (7)

The corresponding source with the same alphabet and uni-
form probability distribution, i.e., with equiprobable symbols
(incompressible source in the memoryless case if we do not
accept losses) would result in the maximum entropy:

Hmax(X ) = log2 Xmax (8)

Hmax(Y ) = log2 Ymax . (9)

The maximum entropy of spatial address X is hence
log2 240 = 7.9069, and for Y it is log2 180 = 7.4919.
The entropy of both the spatial address fields is close to

that of the uncompressible source for both the sequences,
as shown in Figure 9, where the entropy of the spatial
addresses of both the sequences is reported. In other words,
the spatial address fields exhibit a stream of nearly equally
distributed random integers for mobile DVS scenarios. It
is important to note that both, high and low complexity
sequences, show similar entropy for the spatial address field.
The other considered outdoor and indoor scenes also exhibit
approximately the same level of entropy for the spatial
address fields (not shown here for brevity). The proximity

VOLUME 8, 2020 103159



N. Khan et al.: Lossless Compression of Data From Static and Mobile DVS-Performance and Trade-Offs

to an equiprobable distribution in the spatial address fields
of the spike events (produced by the moving DVS) is the
main reason for the low lossless compression performance
as analysed in Section V-A.

FIGURE 9. First Row: Frequency distribution and entropy of the X, Y and
delta-coded time-stamp fields of the Shapes sequence. Second Row:
Frequency distribution and entropy of the X, Y and delta-coded
time-stamp fields of the Poster sequence.

Figure 9 also shows the histogram and entropy of the
delta coded time-stamp field. The entropy of the delta coded
(differences between the consecutive integers) time-stamps is
very low. Furthermore, the frequency distribution of the delta
coded time-stamp field ranges from 0 to 1, and 0 to 20 for
the Poster and Shapes sequences respectively. In other words,
delta coding of time-stamp integers produces a series of zeros
and ones for the high rate Poster sequence and a stream
of integers with the range 0 to 20 for the low rate Shapes
sequence. This implies that the time-stamp information for
the Poster and Shapes sequences require only one and five
bits respectively.

FIGURE 10. Macrocubes containing the location histogram count
(AP mode). The higher the average number of events per macrocube,
the higher the compression.

Contrary to the spatial address field, the time-stamp field
is highly compressible as shown (Figure 9) by the lower
entropy computation of this field. Furthermore, the higher

the event rate of the mobile DVS, the lower the number of
bins of the delta coded time-stamp. Since the spatial address
field is nearly incompressible, the delta coded time-stamp
field determines the compression performance of a sequence.
Therefore, the higher the event rate, the higher the compres-
sion ratio as analysed in Section V-B.
Another key observation is the decrease in compression

and decompression speed of the mobile DVS scenarios as
compared to the scenarios of the static DVS.

C. DECREASE IN COMPRESSION AND DECOMPRESSION
SPEED FOR MOBILE DVS SCENARIOS
The majority of the considered strategies (especially dic-
tionary based strategies) shows a considerable decrease in
compression and decompression speed for mobile sensor data
vs. fixed sensor data. For instance the compression speed of
LZMA shows a decline of 65.67 % (25.63 to 8.84). Similarly
Zlib, Zstd, Brotli and LZ4 exhibit a decrease of 60.97 %,
30.77 %, 37.54 % and 20.71 % respectively. This is mainly
because of the lack of patterns (randomness) in the stream
of consecutive spike events. DVS motion fires spike events
across the entire pixel array and the spatial address fields
(X and Y) in the spike events represent a random stream
of integers as depicted by the histogram in Figure 9. The
compression and decompression speed depend upon the com-
pressibility of the data. For instance, in dictionary based
strategies, repeatable items are stored in a dictionary and a
code is assigned as a substitute. The higher the repeatable
items in the data to be compressed, the smaller the size of the
dictionary and vice versa. Randomness in the data causes the
dictionary to fill more quickly. When the dictionary becomes
full, a new one is created on the fly and new codes are
assigned to the repeatable items in the data. This process
requires a lot of computation which results in a decrease of
compression and decompression speed.

For mobile sensor data, the decrease in the compression
and decompression speed of the Sprintz strategy is negligible
(comparing Table 4 and Table 6). This is mainly because the
Sprintz strategy encodes only a block of eight consecutive
spike events. Therefore, the randomness in the data only
affects the compression ratio but does not impact the com-
pression and decompression speed. Furthermore, the Sprintz
strategy virtually adds no latency and requires less than 1 KB
of memory. The performance difference in the compression
ratio between the Sprintz and the best performing strategies is
between 10 % to 40 %. Hence, the Sprintz strategy becomes
a good candidate to compress mobile DVS data for IoT
scenarios where computation resources are limited.

In the subsequent section, we analyse how the spike coding
strategy achieves the best compression gains for the mobile
DVS data.

D. SPIKE CODING ACHIEVES THE BEST COMPRESSION
RATIOS FOR MOBILE DVS SCENARIOS
The spike event distribution in space is either centralized
or decentralized. In static sensor scenarios, the motion of

103160 VOLUME 8, 2020



N. Khan et al.: Lossless Compression of Data From Static and Mobile DVS-Performance and Trade-Offs

FIGURE 11. Average compression and decompression delay factor (time needed to compress and decompress 1s of data) for
mobile sensor scenario.

objects leads to a number of neighbouring pixels to elicit
spikes (spatial-centralized). On other hand, the motion of
the DVS sensor causes spike firing across the full resolu-
tion of the pixel array (spatial-decentralized). However, the
firing of spike events across the entire pixel array produces
a random stream of integers (X and Y), shown in Figure 9,
which are hardly compressible. The AP mode of the spike
coding strategy is specifically designed for such scenarios.
For instance, consider Figure 10, which shows spike firing
across the entire pixel array of the macrocubes (the four
macrocubes contain the location histogram event count). The
first macrocube contains 36 events, which are represented
by 36 bytes, i.e., each pixel has an event and each event
count is represented by a byte. In the second macrocube, the
event count per pixel is doubled but the number of bytes
required to represent spike event count remains the same.
Thus, the higher the average event count per macrocube,
the higher the compression performance of the spike coding
strategy. Furthermore, the temporal correlation between the
successive macrocubes’ spike event count is also exploited,
which results in a better compression performance for the
spike coding strategy as compared to the dictionary based
strategies.

E. INCREASE IN COMPRESSION AND DECOMPRESSION
LATENCY UNDER MOBILE DVS SCENARIOS
The delay factor performance (w.r.t compression ratio) for
mobile scenarios is reported in Figure 11. A significant
increase in compression and decompression delay factors is
observed as compared to the latency performance under static
DVS scenarios reported in Figure 8. This is mainly because
of the high event rate of mobile DVS and low compres-
sion and decompression speed. The comparison of the delay
factors between the static and mobile scenarios is reported

in Figure 12. According to the figure, the average one sec-
ond compression latency (delay factor) for spike coding is
increased from 450 ms to 1352 ms (an increase of 200.44 %).
For LZMA, the average compression latency per second is
increased by 476.89 % (225 ms to 1298 ms). LZ4 and Snappy
achieve the lowest compression latency (less than 10 ms)
as shown in Figure 11. Brotli and Zstd are the other two
low latency dictionary based compression strategies, incur-
ring a delay of 54 and 33 ms respectively (for the mobile
DVS scenarios). It is important to note that the compression
speed of the Sprintz strategies remains the same for the static
and mobile DVS scenarios. Therefore, the Sprintz strategies
exhibit an impressive compression latency of less than 50 ms
(1 s of DVS data compressed in less than 50 ms) for mobile
scenarios.

Apart from spike coding and LZMA, all the strate-
gies exhibit a decompression latency of less than 50 ms.
The impact of DVS mobility on decompression latency is the
highest for LZMA and spike coding algorithms, where the
latency is approximately 200 ms.

VI. CONCLUSION
Spike event cameras are revolutionary sensors, that offer
many advantages over conventional frame-based vision sen-
sors, such as low power, wide dynamic range, low latency
and high temporal resolution. The pixels in DVS respond
to luminance changes by firing an asynchronous stream of
spike events. The spike stream comprises the X and Y spa-
tial addresses, firing time, and the polarity of each spike
event. The compression of the DVS output is important for
efficient transmission, storage, on-board detection, monitor-
ing and recording. Since the output of the DVS comprises
a multivariate stream of integers, it is worth investigating
the performance of integer based compression approaches,

VOLUME 8, 2020 103161



N. Khan et al.: Lossless Compression of Data From Static and Mobile DVS-Performance and Trade-Offs

FIGURE 12. Comparison of compression and decompression delay factors between static and mobile sensor scenarios.

IoT specific compression strategies, general purpose lossless
compression algorithms, andmany other similar compression
approaches. This work provides a detailed lossless compres-
sion performance analysis of diverse strategies under diverse
scenarios including outdoor static DVS, outdoormobile DVS,
indoor static DVS and outdoor static DVS.

According to the detailed experimental analysis provided,
LZMA achieves the best compression ratios among all the
considered strategies for the case when the DVS is static.
On the other hand, Spike coding achieves the best compres-
sion ratios when spike events are produced by a visual sensor
in motion. In terms of compression and decompression speed
and latency, LZ4 and Snappy provide the best performance,
while the Brotli algorithm represents a good compromise
between compression ratio, compression and decompression
speed and latency. We observe a significant compression
performance degradation, in terms of ratio, speed and latency,
for mobile sensor scenarios vs. fixed sensor scenarios. The
detailed analysis presented in this paper provides a bench-
mark in the selection of a lossless compression approach for
a particular application. Furthermore, such a detailed study
also provides a benchmark for an efficient design of spike
coding algorithms.

REFERENCES
[1] P. Lichtsteiner, C. Posch, and T. Delbruck, ‘‘A 128×128 120 dB 15 µs

latency asynchronous temporal contrast vision sensor,’’ IEEE J. Solid-State
Circuits, vol. 43, no. 2, pp. 566–576, Jan. 2008.

[2] P. Lichtsteiner, C. Posch, and T. Delbruck, ‘‘A 128×128 120db 30mw
asynchronous vision sensor that responds to relative intensity change,’’
in IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers,
San Francisco, CA, USA, Feb. 2006, pp. 2060–2069.

[3] N. Khan andM.G.Martini, ‘‘Data rate estimation based on scene complex-
ity for dynamic vision sensors on unmanned vehicles,’’ in Proc. IEEE 29th
Annu. Int. Symp. Pers., IndoorMobile Radio Commun. (PIMRC), Bologna,
Italy, Sep. 2018, pp. 1174–1178.

[4] N. Khan and M. G. Martini, ‘‘Bandwidth modeling of silicon retinas for
next generation visual sensor networks,’’ Sensors, vol. 19, no. 8, p. 1751,
Apr. 2019.

[5] M. Cannici, M. Ciccone, A. Romanoni, and M. Matteucci, ‘‘Attention
mechanisms for object recognition with event-based cameras,’’ 2018,
arXiv:1807.09480. [Online]. Available: http://arxiv.org/abs/1807.09480

[6] D. Tedaldi, G. Gallego, E. Mueggler, and D. Scaramuzza, ‘‘Feature
detection and tracking with the dynamic and active-pixel vision sensor
(DAVIS),’’ in Proc. 2nd Int. Conf. Event-Based Control, Commun., Signal
Process. (EBCCSP), Krakow, Poland, Jun. 2016, pp. 1–7.

[7] A. Rigi, F. B. Naeini, D.Makris, andY. Zweiri, ‘‘A novel event-based incip-
ient slip detection using dynamic active-pixel vision sensor (DAVIS),’’
Sensors, vol. 18, no. 2, pp. 1–17, 2018.

[8] E. Mueggler, B. Huber, and D. Scaramuzza, ‘‘Event-based, 6-DOF pose
tracking for high-speed maneuvers,’’ in Proc. IEEE/RSJ Int. Conf. Intell.
Robots Syst., Chicago, IL, USA, Sep. 2014, pp. 2761–2768.

[9] A. I. Maqueda, A. Loquercio, G. Gallego, N. Garcia, and D. Scaramuzza,
‘‘Event-based vision meets deep learning on steering prediction for self-
driving cars,’’ in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit.,
Salt Lake city, UT, USA, Jun. 2018, pp. 5419–5427.

[10] J. Li, S. Dong, Z. Yu, Y. Tian, and T. Huang, ‘‘Event-based vision
enhanced: A joint detection framework in autonomous driving,’’ in Proc.
IEEE Int. Conf. Multimedia Expo (ICME), Shanghai, China, Jul. 2019,
pp. 1396–1401.

[11] M. Martini, N. Khan, Y. Bi, Y. Andreopoulos, H. Saki, and
M. Shikh-Bahaei, ‘‘Challenges and perspectives in neuromorphic-
based visual IoT systems and networks,’’ in Proc. IEEE Int. Conf.
Acoust., Speech Signal Process. (ICASSP), Barcelona, Spain, May 2020,
pp. 8539–8543.

[12] K. Iqbal, N. Khan, and M. G. Martini, ‘‘Performance comparison of
lossless compression strategies for dynamic vision sensor data,’’ in Proc.
IEEE Int. Conf. Acoust., Speech Signal Process. (ICASSP), Barcelona,
Spain, May 2020, pp. 4427–4431.

[13] Z. Xie, S. Chen, and G. Orchard, ‘‘Event-based stereo depth estima-
tion using belief propagation,’’ Frontiers Neurosci., vol. 11, pp. 535–549,
Oct. 2017.

[14] P. Rogister, R. Benosman, S.-H. Ieng, P. Lichtsteiner, and T. Delbruck,
‘‘Asynchronous event-based binocular stereomatching,’’ IEEETrans. Neu-
ral Netw. Learn. Syst., vol. 23, no. 2, pp. 347–353, Feb. 2012.

[15] G. Gallego, H. Rebecq, and D. Scaramuzza, ‘‘A unifying contrast maxi-
mization framework for event cameras, with applications to motion, depth,
and optical flow estimation,’’ in Proc. IEEE/CVF Conf. Comput. Vis.
Pattern Recognit., Salt Lake City, USA, Jun. 2018, pp. 3867–3876.

103162 VOLUME 8, 2020



N. Khan et al.: Lossless Compression of Data From Static and Mobile DVS-Performance and Trade-Offs

[16] M. Litzenberger, B. Kohn, A. N. Belbachir, N. Donath, G. Gritsch,
H. Garn, C. Posch, and S. Schraml, ‘‘Estimation of vehicle speed based
on asynchronous data from a silicon retina optical sensor,’’ in Proc. IEEE
Intell. Transp. Syst. Conf., Toronto, ON, Canada, Sep. 2006, pp. 653–658.

[17] E. Piatkowska, A. N. Belbachir, S. Schraml, and M. Gelautz, ‘‘Spatiotem-
poral multiple persons tracking using dynamic vision sensor,’’ in Proc.
IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit. Workshops,
Providence, RI, USA, Jun. 2012, pp. 35–40.

[18] A. Glover and C. Bartolozzi, ‘‘Robust visual tracking with a freely-moving
event camera,’’ in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS),
Vancouver, ON, Canada, Sep. 2017, pp. 3769–3776.

[19] D. P. Moeys, F. Corradi, E. Kerr, P. Vance, G. Das, D. Neil, D. Kerr, and
T. Delbruck, ‘‘Steering a predator robot using a mixed frame/event-driven
convolutional neural network,’’ in Proc. 2nd Int. Conf. Event-Based Con-
trol, Commun., Signal Process. (EBCCSP), Krakow, Poland, Jun. 2016,
pp. 1–8.

[20] F. Baghaei Naeini, A. M. Alali, R. Al-Husari, A. Rigi, M. K. Al-Sharman,
D. Makris, and Y. Zweiri, ‘‘A novel dynamic-vision-based approach for
tactile sensing applications,’’ IEEE Trans. Instrum. Meas., vol. 69, no. 5,
pp. 1881–1893, May 2020.

[21] E. Torti, A. Fontanella, M. Musci, N. Blago, D. Pau, F. Leporati, and
M. Piastra, ‘‘Embedded real-time fall detectionwith deep learning onwear-
able devices,’’ in Proc. 21st Euromicro Conf. Digit. Syst. Design (DSD),
Prague, Czech Republic, Aug. 2018, pp. 405–412.

[22] Z. Bi, S. Dong, Y. Tian, and T. Huang, ‘‘Spike coding for dynamic vision
sensors,’’ in Proc. Data Compress. Conf., Snowbird, UT, USA: IEEE,
Mar. 2018, pp. 117–126.

[23] D. Huffman, ‘‘A method for the construction of minimum-redundancy
codes,’’ Proc. IRE, vol. 40, no. 9, pp. 1098–1101, Sep. 1952.

[24] I. H. Witten, R. M. Neal, and J. G. Cleary, ‘‘Arithmetic coding for data
compression,’’ Commun. ACM, vol. 30, no. 6, pp. 520–540, Jun. 1987.

[25] T. Nishimoto and Y. Tabei, ‘‘LZRR: LZ77 parsing with right reference,’’
in Proc. Data Compress. Conf. (DCC), Mar. 2019, pp. 211–220.

[26] I. Pavlov. LZMA SDK (Software Development Kit). Accessed: Oct. 1, 2019.
[Online]. Available: https://www.7-zip.org/sdk.html

[27] Y. Collet and E. M. Kucherawy. (Jul. 2018). Zstandard-Real-Time
Data Compression Algorithm. [Online]. Available: http://facebook.
github.io/zstd/

[28] P. Deutsch and J.-L. Gailly, Zlib Compressed Data Format Specification
Version 3.3, document RFC 1950, May 1996.

[29] J. Alakuijala and Z. Szabadka, Brotli Compressed Data Format, Internet
Engineering Task Force, document RFC 7932, 2016.

[30] Y. Collet. Finite State Entropy. [Online]. Available: https://github.
com/Cyan4973/FiniteStateEntropy

[31] D. Blalock, S. Madden, and J. Guttag, ‘‘Sprintz: Time series compression
for the Internet of Things,’’ in Proc. ACM Interact., Mobile, Wearable
Ubiquitous Technol., 2018, vol. 2, no. 3, p. 93.

[32] D. Lemire and L. Boytsov, ‘‘Decoding billions of integers per second
through vectorization,’’ Softw., Pract. Exper., vol. 45, no. 1, pp. 1–29,
Jan. 2015.

[33] V. N. Anh and A. Moffat, ‘‘Index compression using 64-bit words,’’ Softw.,
Pract. Exper., vol. 40, no. 2, pp. 131–147, 2010.

[34] S. H. Gunderson. (Apr. 2015). Snappy: A Fast Compressor/Decompressor.
[Online]. Available: https://github.com/google/snappy

[35] National Engineering Laboratory for Video Technology (NELVT)
and Institute of Digital Media (Peking University). PKU-
DVS Dataset. Accessed: Oct. 1, 2019. [Online]. Available:
https://pkuml.org/resources/pku-dvs.html

[36] E. Mueggler, H. Rebecq, G. Gallego, T. Delbruck, and D. Scaramuzza,
‘‘The event-camera dataset and simulator: Event-based data for pose esti-
mation, visual odometry, and SLAM,’’ Int. J. Robot. Res., vol. 36, no. 2,
pp. 142–149, 2017.

[37] S. Dong, Z. Bi, Y. Tian, and T. Huang, ‘‘Spike coding for dynamic vision
sensor in intelligent driving,’’ IEEE Internet Things J., vol. 6, no. 1,
pp. 60–71, Feb. 2019.

NABEEL KHAN received the B.S. degree in elec-
tronics engineering from the Sir Syed Univer-
sity of Engineering and Technology (SSUET),
Karachi, Pakistan, in 2007, and the M.Sc. degree
in data communication from Kingston Univer-
sity, London, in 2009, and the Ph.D. degree in
video optimization over LTE networks. He works
as a Research Fellow with the Wireless Multi-
media and Networking (WMN) Research Group,
Kingston University, where he is working on Inter-

net of Silicon retina (IoSIRE) Project. His research interest includes data
communication, computer vision, data compression and modeling, and the
Internet of Things.

KHURRAM IQBAL received the B.Sc. degree
from the University of Engineering and Tech-
nology, Taxila, Pakistan, in 2003, and the M.Sc.
degree fromKing’s College London, in 2006. He is
currently pursuing the Ph.D. degree in data com-
pression algorithms for dynamic video sensor with
the Department of Science, Engineering and Com-
puting, Kingston University. He is also an expe-
rienced software test developer with full system
development lifecycle experience.

MARIA G. MARTINI (Senior Member, IEEE)
received the Laurea in electronic engineering
(summa cum laude) from the University of
Perugia, Italy, in 1998, and the Ph.D. degree in
electronics and computer science from the Univer-
sity of Bologna, Italy, in 2002. She is currently a
Professor with the Faculty of Science, Engineer-
ing and Computing, Kingston University, London,
where she also leads theWireless Multimedia Net-
working Research Group. She has led the KU

team in a number of national and international research projects, funded
by the European Commission, such as OPTIMIX, CONCERTO, QoE-NET,
Qualinet, U.K. research councils, U.K. Technology Strategy Board/Innovate,
U.K., and International Industries. She was an Associate Editor of the IEEE
Signal processing Magazine, from 2018 to 2020, and the IEEE TRANSACTIONS

ON MULTIMEDIA, from 2014 to 2018. She has also been Lead Guest Editor
for the IEEE JSAC special issue on QoE-aware wireless multimedia
systems and the Guest Editor of the IEEE JOURNAL OF BIOMEDICAL AND

HEALTH INFORMATICS, the IEEE Multimedia, and the International Journal
on Telemedicine and Applications, among others. She chaired/organized a
number of conferences and workshops. She is part of international commit-
tees and expert groups, including the NetWorld2020 European Technology
Platform expert advisory Group, the Video Quality Expert Group (VQEG)
and the IEEEMultimedia Communications Technical Committee, where she
has served as Vice-Chair, from 2014 to 2016, as a Chair, from 2012 to 2014,
of the 3D Rendering, Processing, and Communications Interest Group, and
as a Key Member of the QoE and multimedia streaming IG. She is an Expert
Evaluator for the European Commission and EPSRC among others. Her
research interests include QoE-driven wireless multimedia communications,
decision theory, video quality assessment, and medical applications. She has
authored about 200 scientific articles, contributions to standardization groups
(IEEE, ITU), and several patents on wireless video.

VOLUME 8, 2020 103163


