9,815 research outputs found

    Proof Complexity of Systems of (Non-Deterministic) Decision Trees and Branching Programs

    Get PDF
    This paper studies propositional proof systems in which lines are sequents of decision trees or branching programs, deterministic or non-deterministic. Decision trees (DTs) are represented by a natural term syntax, inducing the system LDT, and non-determinism is modelled by including disjunction, ?, as primitive (system LNDT). Branching programs generalise DTs to dag-like structures and are duly handled by extension variables in our setting, as is common in proof complexity (systems eLDT and eLNDT). Deterministic and non-deterministic branching programs are natural nonuniform analogues of log-space (L) and nondeterministic log-space (NL), respectively. Thus eLDT and eLNDT serve as natural systems of reasoning corresponding to L and NL, respectively. The main results of the paper are simulation and non-simulation results for tree-like and dag-like proofs in LDT, LNDT, eLDT and eLNDT. We also compare them with Frege systems, constant-depth Frege systems and extended Frege systems

    Polylogarithmic Cuts in Models of V^0

    Full text link
    We study initial cuts of models of weak two-sorted Bounded Arithmetics with respect to the strength of their theories and show that these theories are stronger than the original one. More explicitly we will see that polylogarithmic cuts of models of V0\mathbf{V}^0 are models of VNC1\mathbf{VNC}^1 by formalizing a proof of Nepomnjascij's Theorem in such cuts. This is a strengthening of a result by Paris and Wilkie. We can then exploit our result in Proof Complexity to observe that Frege proof systems can be sub exponentially simulated by bounded depth Frege proof systems. This result has recently been obtained by Filmus, Pitassi and Santhanam in a direct proof. As an interesting observation we also obtain an average case separation of Resolution from AC0-Frege by applying a recent result with Tzameret.Comment: 16 page

    An Abstract Approach to Stratification in Linear Logic

    Full text link
    We study the notion of stratification, as used in subsystems of linear logic with low complexity bounds on the cut-elimination procedure (the so-called light logics), from an abstract point of view, introducing a logical system in which stratification is handled by a separate modality. This modality, which is a generalization of the paragraph modality of Girard's light linear logic, arises from a general categorical construction applicable to all models of linear logic. We thus learn that stratification may be formulated independently of exponential modalities; when it is forced to be connected to exponential modalities, it yields interesting complexity properties. In particular, from our analysis stem three alternative reformulations of Baillot and Mazza's linear logic by levels: one geometric, one interactive, and one semantic

    Some subsystems of constant-depth Frege with parity

    Get PDF
    We consider three relatively strong families of subsystems of AC0[2]-Frege proof systems, i.e., propositional proof systems using constant-depth formulas with an additional parity connective, for which exponential lower bounds on proof size are known. In order of increasing strength, the subsystems are (i) constant-depth proof systems with parity axioms and the (ii) treelike and (iii) daglike versions of systems introduced by Krajíček which we call PKcd(⊕). In a PKcd(⊕)-proof, lines are disjunctions (cedents) in which all disjuncts have depth at most d, parities can only appear as the outermost connectives of disjuncts, and all but c disjuncts contain no parity connective at all. We prove that treelike PKO(1)O(1)(⊕) is quasipolynomially but not polynomially equivalent to constant-depth systems with parity axioms. We also verify that the technique for separating parity axioms from parity connectives due to Impagliazzo and Segerlind can be adapted to give a superpolynomial separation between daglike PKO(1)O(1)(⊕) and AC0[2]-Frege; the technique is inherently unable to prove superquasipolynomial separations. We also study proof systems related to the system Res-Lin introduced by Itsykson and Sokolov. We prove that an extension of treelike Res-Lin is polynomially simulated by a system related to daglike PKO(1)O(1)(⊕), and obtain an exponential lower bound for this system.Peer ReviewedPostprint (author's final draft

    Generic Modal Cut Elimination Applied to Conditional Logics

    Full text link
    We develop a general criterion for cut elimination in sequent calculi for propositional modal logics, which rests on absorption of cut, contraction, weakening and inversion by the purely modal part of the rule system. Our criterion applies also to a wide variety of logics outside the realm of normal modal logic. We give extensive example instantiations of our framework to various conditional logics. For these, we obtain fully internalised calculi which are substantially simpler than those known in the literature, along with leaner proofs of cut elimination and complexity. In one case, conditional logic with modus ponens and conditional excluded middle, cut elimination and complexity were explicitly stated as open in the literature

    Resolution over Linear Equations and Multilinear Proofs

    Get PDF
    We develop and study the complexity of propositional proof systems of varying strength extending resolution by allowing it to operate with disjunctions of linear equations instead of clauses. We demonstrate polynomial-size refutations for hard tautologies like the pigeonhole principle, Tseitin graph tautologies and the clique-coloring tautologies in these proof systems. Using the (monotone) interpolation by a communication game technique we establish an exponential-size lower bound on refutations in a certain, considerably strong, fragment of resolution over linear equations, as well as a general polynomial upper bound on (non-monotone) interpolants in this fragment. We then apply these results to extend and improve previous results on multilinear proofs (over fields of characteristic 0), as studied in [RazTzameret06]. Specifically, we show the following: 1. Proofs operating with depth-3 multilinear formulas polynomially simulate a certain, considerably strong, fragment of resolution over linear equations. 2. Proofs operating with depth-3 multilinear formulas admit polynomial-size refutations of the pigeonhole principle and Tseitin graph tautologies. The former improve over a previous result that established small multilinear proofs only for the \emph{functional} pigeonhole principle. The latter are different than previous proofs, and apply to multilinear proofs of Tseitin mod p graph tautologies over any field of characteristic 0. We conclude by connecting resolution over linear equations with extensions of the cutting planes proof system.Comment: 44 page

    On the proof complexity of Paris-harrington and off-diagonal ramsey tautologies

    Get PDF
    We study the proof complexity of Paris-Harrington’s Large Ramsey Theorem for bi-colorings of graphs and of off-diagonal Ramsey’s Theorem. For Paris-Harrington, we prove a non-trivial conditional lower bound in Resolution and a non-trivial upper bound in bounded-depth Frege. The lower bound is conditional on a (very reasonable) hardness assumption for a weak (quasi-polynomial) Pigeonhole principle in RES(2). We show that under such an assumption, there is no refutation of the Paris-Harrington formulas of size quasipolynomial in the number of propositional variables. The proof technique for the lower bound extends the idea of using a combinatorial principle to blow up a counterexample for another combinatorial principle beyond the threshold of inconsistency. A strong link with the proof complexity of an unbalanced off-diagonal Ramsey principle is established. This is obtained by adapting some constructions due to Erdos and Mills. ˝ We prove a non-trivial Resolution lower bound for a family of such off-diagonal Ramsey principles

    Algorithmic Structuring of Cut-free Proofs

    Get PDF
    The problem of algorithmic structuring of proofs in the sequent calculi LK and LKB ( LK where blocks of quantifiers can be introduced in one step) is investigated, where a distinction is made between linear proofs and proofs in tree form. In this framework, structuring coincides with the introduction of cuts into a proof. The algorithmic solvability of this problem can be reduced to the question of k-l-compressibility: "Given a proof of length k , and l ≤ k : Is there is a proof of length ≤ l ?" When restricted to proofs with universal or existential cuts, this problem is shown to be (1) undecidable for linear or tree-like LK-proofs (corresponds to the undecidability of second order unification), (2) undecidable for linear LKB-proofs (corresponds to the undecidability of semi-unification), and (3) decidable for tree-like LKB -proofs (corresponds to a decidable subprob- lem of semi-unification)
    corecore