On the Proof Complexity of Paris-Harrington and Off-Diagonal Ramsey Tautologies

LORENZO CARLUCCI and NICOLA GALESI, University of Rome I MASSIMO LAURIA, Universitat Politècnica de Catalunya

Abstract

We study the proof complexity of Paris-Harrington's Large Ramsey Theorem for bi-colorings of graphs and of off-diagonal Ramsey's Theorem. For Paris-Harrington, we prove a non-trivial conditional lower bound in Resolution and a non-trivial upper bound in bounded-depth Frege. The lower bound is conditional on a (very reasonable) hardness assumption for a weak (quasi-polynomial) Pigeonhole principle in Res(2). We show that under such an assumption, there is no refutation of the Paris-Harrington formulas of size quasipolynomial in the number of propositional variables. The proof technique for the lower bound extends the idea of using a combinatorial principle to blow up a counterexample for another combinatorial principle beyond the threshold of inconsistency. A strong link with the proof complexity of an unbalanced off-diagonal Ramsey principle is established. This is obtained by adapting some constructions due to Erdốs and Mills. We prove a non-trivial Resolution lower bound for a family of such off-diagonal Ramsey principles.

CCS Concepts: - Theory of computation \rightarrow Proof complexity; Complexity theory and logic
Additional Key Words and Phrases: Proof complexity, resolution, Ramsey's theorem, Paris-Harrington's principle

ACM Reference Format:

Lorenzo Carlucci, Nicola Galesi, and Massimo Lauria. 2016. On the proof complexity of Paris-Harrington and off-diagonal Ramsey tautologies. ACM Trans. Comput. Logic 17, 4, Article 26 (September 2016), 25 pages. DOI: http://dx.doi.org/10.1145/2946801

1. INTRODUCTION AND MOTIVATION

The Paris-Harrington Theorem for graphs says that for every k and m there exists an integer $R(k, m)$ such that every graph on the vertices $\{k, \ldots, R(k, m)\}$ contains either a clique with m vertices or an independent set with at least as many vertices as its minimum member (and therefore with at least k vertices). The general version (for arbitrary colorings of hypergraphs) of this seemingly innocent variant of Ramsey Theorem is the most famous example of a natural mathematical finitary theorem that cannot be proved in strong theories like Peano arithmetic, as shown by Harrington and Paris [1977].

It has been sometimes proposed (e.g., by Clote [1995]) that propositional encoding of logically strong combinatorial principles could produce hard tautologies for propositional proof systems. Krajíček [2011] recently dismissed this idea as impracticable.

[^0]Since the functions witnessing the truth of such principles have an extremely fast growth, the corresponding tautologies are so large that there is no room for non-trivial lower and upper bounds on the proof length. This is true to a lesser extent if one focuses on suitably weak instances of the strong principles, as exemplified in this article by focusing on the Paris-Harrington Theorem for bi-colorings of graphs.

Our first result is that for the known upper bound $u(k)$ on $R(k, k)$ (from Erdős and Mills [1981] and Mills [1985]) the natural propositional translation of the statement " $R(k, k) \leq u(k)$ " has efficient bounded-depth Frege proofs. The upper bound is $O\left(|F|^{\log \log \log |F|}\right)$, where $|F|$ is the size of the formula. This improves over the trivial quasi-polynomial upper bound $O(|F|)^{\log |F|}$. The proof combines a combinatorial argument by Mills [1985] with a proof in bounded-depth Frege of a Paris-Harrington principle for triangles. To obtain the latter, we adapt the Pudlák [1991] proof of Ramsey Theorem in bounded arithmetic: Since we focus on an off-diagonal Ramsey principle, the argument requires careful and non-trivial analysis to succeed. This is basically the only part in which we really need the strength of bounded-depth Frege. Note that our upper bound is quasi-polynomial in the size of the formula, which is in this case very large compared to the number of variables $\left(2^{\Theta(u(k))}\right.$ clauses vs. $u(k)^{2}$ variables, see infra for details).

Our second result is that the natural propositional encoding of " $R(k, k) \leq u(k)$ " does not have polynomial-size Resolution proofs, unless the weak Pigeonhole principle with quasi-polynomially many more pigeons than holes has small proofs in Res(2). This is a very plausible assumption, perhaps not far beyond the reach of current methods. Our method of proof builds on a technique due to Krajíček [2001], who showed how to reduce a proof of the Pigeonhole principle to a proof of Ramsey Theorem. We show how to lift examples witnessing the known lower bounds on the Paris-Harrington numbers $R(k, k)$ to counterexamples to a weak Pigeonhole principle. To do this, we employ a construction by Erdôs and Mills [1981] that has never been applied in proof complexity before. The overall proof scheme significantly extends Pudlák [1991] and Krajíček [2001] methods.

We further investigate the proof complexity of a family of off-diagonal Ramsey principles that played a significant role in the analysis of Paris-Harrington tautologies, as mentioned above. We establish a non-trivial lower bound in Resolution for a family of tautologies encoding a quadratic upper bound for very unbalanced Ramsey principles, where one of the two parameters is fixed to be 3 in order exclude triangles.

Our results on Paris-Harrington tautologies stress an interesting connection between (a) constructing witnesses to lower bounds on combinatorial quantities such as $R(k, k)$ or $r(k, k)$ and (b) proving complexity-theoretic lower bounds (in this case, conditional lower bounds for Resolution). Proving lower bounds on Ramsey-like numbers is a notable open-ended problem in combinatorics. The most famous example is the bestknown lower bound on $r(k, k)$, based on the probabilistic construction of a graph with neither cliques nor independent sets of size k. So far, all attempts to build such graph explicitly have failed. Other famous examples include Ramsey numbers for k-uniform hypergraphs for $k>2$. The method of proof in our second result hints at a computational complexity lower bound being hidden under the problem of narrowing the interval in which $R(k, k)$ lays. This remarkable connection was originally established by Krajíček [2001] for Ramsey numbers and we push it further to Paris-Harrington numbers. In our case, the quality of the lower bound on the proof length strongly depends on how tight the known combinatorial bounds are. In the worst case, we are able to (conditionally) exclude proofs of quasi-polynomial length with respect to the number of propositional variables. We believe that the connection is inspiring and worth of further study.
Another point of interest it that the proposed encoding of Paris-Harrington formulas can be considered as a (new) good candidate for separating bounded-depth from lowdepth (e.g., depth 2) Frege systems. This separation is a recurrent and notable open
problem in propositional proof complexity showing the big difference with Boolean circuit complexity, where a separation between bounded-depth circuits and low-depth circuits (e.g., depth 3) is known since the early work in the area (see, e.g., Håstad [1986]). By contrast, only a few good candidates and some partial results are known for the proof complexity separation [Krajíček 1994; Beckmann and Buss 2005].
The plan of the article is a follows. In Section 2, we introduce the propositional versions of Ramsey and Paris-Harrington principles and discuss the proof scheme of our main results; in Section 3, we give a non-trivial quasi-polynomial upper bound for the Paris-Harrington principle in bounded-depth Frege systems; in Section 4, we give a conditional lower bound for the Paris-Harrington principle in Resolution. The proof of the upper bound depends on a theorem that is proved in Section 5. In Section 5.3 we establish a lower bound in Resolution for a family of off-diagonal Ramsey principles.

2. RAMSEY AND PARIS-HARRINGTON PRINCIPLES

We introduce the combinatorial principles of interest for the present article and their propositional formalizations. We consider the following formulation of Ramsey Theorem for bi-colorings of graphs. The principle states that any large-enough graph contains either a clique or an independent set of arbitrarily prescribed size.

Theorem 2.1 (Ramsey Theorem). There exists a number $r(k, s)$ that is the smallest number such that any graph with at least $r(k, s)$ vertices contains either a clique of size k or an independent set of size s.

The conclusion of the above theorem is obviously satisfied by any $n \geq r(k, s)$, and we say that such an n satisfies the Ramsey principle for parameters k and s.

In this article, we are mainly concerned with Paris-Harrington principles. The general Paris-Harrington Theorem (for arbitrary colorings of hypergraphs) was introduced in Harrington and Paris [1977] in the context of the incompleteness of formal theories of arithmetic. This theorem is the first example of a mathematically natural statement that is unprovable in arithmetic. The general version is unprovable in first-order Peano arithmetic [Harrington and Paris 1977], and the same still holds if one just considers bi-colorings of hypergraphs [Loebl and Nešetřil 1992]. We focus instead on the restriction of the theorem to bi-colorings of graphs, which is known to be well in the realm of standard combinatorics (see infra). We now state the principle.

A set of integer numbers is called relatively large (or just large, for brevity) if its cardinality is not smaller than its minimum element. The principle claims that if n is big enough with respect to prescribed parameters k and m, then any graph with vertices labeled by the integers $[k, n]$ either contains a clique of size m or contains an independent set such that the labels of the vertices are a large set. A large set is called exactly large if the minimum of the set is equal to the cardinality of the set.

Theorem 2.2 (Paris-Harrington Theorem for Graphs). There exists a number $R(k, m)$ that is the smallest number such that any graph on the integers $[k, R(k, m)]$ contains either a clique of size m or a relatively large independent set.

Obviously, the conclusion in the above principle is true for every number $n \geq R(k, m)$. We occasionally say that such an n satisfies the Paris-Harrington principle for parameters k and m. Obviously, $R(a, b) \geq r(a, b)$ holds.
We now encode the Ramsey and the Paris-Harrington principles in propositional logic. For any unordered pair of vertices we denote by $E_{i, j}$ a propositional variable whose intended meaning is that vertices i and j are connected. We use two types of clauses, where $X \subseteq[n]$,

$$
\begin{equation*}
\mathrm{Cli}(X)=\bigvee_{\{i, j\} \in\binom{X}{2}} \neg E_{i, j}, \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
\operatorname{Ind}(X)=\bigvee_{\{i, j\} \in\binom{X}{2}} E_{i, j} \tag{2}
\end{equation*}
$$

Clause 1 expresses that X is not a clique, and Clause 2 expresses that X is not an independent set. The CNF encoding the claim " $n<r(k, s)$ " consists of the clause $\mathrm{Cli}(X)$ for any $X \subseteq[n]$ of size k and $\operatorname{Ind}(X)$ for any $X \subseteq[n]$ of size s. We denote this formula as $\operatorname{RAM}(n ; k, s)$ and we refer to it as the Ramsey principle when the parameters are clear from context. When n is larger than $r(k, s), \operatorname{Ram}(n ; k, s)$ is unsatisfiable because of the Ramsey Theorem. The size of $\operatorname{Ram}(n ; k, s)$ is $O\left(n^{\max (k, s)}\right)$: The formula has $\binom{n}{k}$ clauses of size $\binom{k}{2}$ and $\binom{n}{s}$ clauses of size $\binom{s}{2}$.

The Paris-Harrington principle for n, k, m, consists of the clause $\mathrm{Cli}(X)$ for any $X \subseteq$ $[k, n]$ of size m and $\operatorname{Ind}(X)$ for any exactly large set $X \subseteq[k, n]$. We denote this CNF as $\operatorname{PH}(n ; k, m)$ and we refer to it as the Paris-Harrington principle with parameters n, k, m. Note that we explicitly mention exactly large sets only. This is without loss of generality since any large set contains an exactly large subset. When $n \geq R(k, m)$ such CNF is unsatisfiable and we can study its refutations. As for Ramsey principles, the typical cases of interest are when n is the critical (but unknown) Paris-Harrington number $R(k, m)$, and when n is a known upper bound for the latter. The size of the Paris-Harrington principle is dominated by the number of clauses dealing with large sets. For our purposes the following fact is sufficient:

Fact 1. Formula $\operatorname{PH}(n ; k, m)$ contains $2^{\Theta(n)}$ clauses for $n \geq R(k, m)$.
Proof. For large-enough k, we have $\frac{n}{3} \geq \frac{R(k, m)}{3}>k$ (see Equation (3)). For small k, we get that $\frac{n}{3}>k$ eventually, as n grows. In both cases, there is a clause of type 2 corresponding to each subset of size $\lfloor n / 3\rfloor$ having $\lfloor n / 3\rfloor$ as minimum element.

While general Paris-Harrington principles (for arbitrary colorings of hypergraphs) have enormously growing lower bounds [Ketonen and Solovay 1981], the above version for bi-colorings of graphs is only slightly stronger than the Ramsey Theorem. Indeed, it is known to have double exponential upper bounds. This has been established by Erdốs and Mills [1981] and was later improved by Mills [1985]. The best-known bounds are as follows: there exist constants $\alpha, \beta, N>0$ such that for all $m \geq 3$ and $k \geq N$,

$$
\begin{equation*}
k^{2^{a m}}<R(k ; m)<k^{2^{\beta m}} . \tag{3}
\end{equation*}
$$

On the other hand, we recall the known bounds on Ramsey numbers [Erdôs 1961; Spencer 1977; Ajtai et al. 1980; Kim 1995]. There are constants $c_{1}, c_{2}, c_{3}, c_{4}$ such that

$$
\begin{align*}
& \frac{c_{1} \cdot m^{2}}{\log m} \leq r(3, m) \leq \frac{c_{2} \cdot m^{2}}{\log m} \text { and } \\
& \qquad c_{3}\left(\frac{m}{\log m}\right)^{\frac{k+1}{2}} \leq r(k, m) \leq \frac{c_{4} \cdot m^{k-1}}{(\log m)^{k-2}}, \tag{4}
\end{align*}
$$

for fixed $k>3$. In the present article, it is often sufficient to use the following weaker bound [Graver and Yackel 1968]. For $k, m \geq 2$,

$$
\begin{equation*}
r(k, m) \leq\binom{ k+m-2}{m-1} . \tag{5}
\end{equation*}
$$

Thus, for $2 \leq m \leq k$, we have that $r(k-1, m) \leq k^{m-1}-k^{m-2}$.
We now briefly discuss what is known about the proof complexity of Ramsey principles. Note that all known results deal with the diagonal Ramsey theorem, where one forbids cliques and independent sets of the same size k. Krishnamurthy and Moll [1981]
proved a $r(k, k) / 2$ width lower bound in Resolution and an exponential lower bound for the Davis-Putnam procedure for $\operatorname{Ram}(r(k, k) ; k, k)$. Recently, Krajíček [2011] established an exponential size lower bound in Resolution for the same principle. Pudlák [1991] provided that the formula $\operatorname{Ram}\left(4^{k} ; k, k\right)$ has a proof in bounded-depth Frege system of size $2^{k^{O(1)}}$ (note that such a proof is polynomial in the size of the Ramsey principle and is quasi-polynomial in the number of variables). Krajíček [2001] proved a conditional lower bound for the same formula: A lower bound for $\operatorname{RAM}\left(4^{k} ; k, k\right)$ in Resolution follows from a lower bound for $\mathrm{PHP}_{n}^{n^{4}}$ in $\operatorname{Res}(2)$. The idea is the following: Assume the existence of an injective mapping from $\left[n^{4}\right]$ into $[n]$, and pick a graph with $2^{k / 2}$ vertices and neither cliques nor independent sets of size k. The injective mapping allows us to blow up the graph into a graph of 4^{k} vertices with the same properties, but this is, of course, impossible. In this way, a proof for the Ramsey Theorem can be used as a proof for some Pigeonhole Principle. This can be seen as a reversal of the Pudlák [1991] approach. The proof of our conditional lower bound in Section 4 can be seen as an extension of these ideas to the case of the Paris-Harrington principle. Recently, an unconditional lower bound of $2^{2^{\frac{1}{4}-o(1)}}$ for the size of Resolution refutations of $\operatorname{RAM}\left(4^{k} ; k, k\right)$ has been proved by Pudlák [2013].

We now give a brief overview of our proofs for the upper bound and for the lower bound for the Paris-Harrington tautologies. Both rely on a two-steps reduction:
(1) from the Paris-Harrington principle to an off-diagonal Ramsey principle,
(2) from that off-diagonal Ramsey principle to a suitably weak Pigeonhole principle.

For the upper bound we give a recursive procedure (based on Mills [1985]) to reduce the Paris-Harrington principle to a Paris-Harrington principle for triangles. Then we reduce the latter to the off-diagonal Ramsey principle for triangles. Finally, we use the Pudlák [1991] method to reduce to a suitably weak Pigeonhole principle. For the lower bound, we reduce the Paris-Harrington principle to a very unbalanced offdiagonal Ramsey principle for triangles, as in Erdős and Mills [1981], and we relate the latter to a weak quasi-polynomial Pigeonhole principle.

3. BOUNDED-DEPTH FREGE PROOF OF PARIS-HARRINGTON

For $\beta=1.471$ (see Equation (3)) and $N=k^{2^{2 \beta k}}$, we prove that the Paris-Harrington principle $\operatorname{PH}(N ; k, k)$ has proofs of size $2^{O(N \log \log N)}$ in bounded-depth Frege systems.

We start by recalling the details of bounded-depth Frege systems [Bellantoni et al. 1992]. Lines of a proof are unbounded fan-in formulas over the language $\{\neg, \vee, \wedge\}$. The proof system has the following inference rules:
$\overline{A \vee \neg A}$
$\frac{A}{A \vee B}$
$\frac{\bigvee\left(\left\{\vee_{i} \Gamma_{i}\right\} \cup \Delta\right)}{\bigvee_{i}\left(\Gamma_{i} \cup \Delta\right)}$
$\frac{\bigvee_{i}\left(\Gamma_{i} \cup \Delta\right)}{\bigvee\left(\left\{\vee_{i} \Gamma_{i}\right\} \cup \Delta\right)}$
$\frac{A \vee B \quad \neg A \vee C}{B \vee C}$

Axiom
Weakening
Merging
Unmerging
Cut

The depth of a formula is the maximal number of alternation of connectives in the formula. The depth of a literal is 0 . The size of a formula is the number of occurrences
of connectives in the formula. A Frege proof of depth d for formula F is a sequence D_{1}, \ldots, D_{n} of formulas of depth at most d such that each D_{i} is either an Axiom or else is derived from previous formulas in the sequence by applying one of the other inference rules, and D_{n} is F. The depth of a proof is the maximal depth of formulas occurring in the proof and the size of a proof is the sum of the sizes of the formulas occurring in the proof.

We introduce the sequent notation $A_{1}, A_{2}, \ldots, A_{m} \vdash B_{1}, \ldots, B_{\ell}$, which is an alternative notation for the formula $\bigvee_{i=1}^{m} \neg A_{i} \vee \bigvee_{j=1}^{\ell} B_{j}$.

The argument for our upper bound has two main ingredients: (1) We simulate a combinatorial upper bound construction by Mills [1985]. This construction recursively reduces the upper bound for the Paris-Harrington principle to upper bounds for very unbalanced Ramsey principles; (2) we deal with the base cases of the recursion using small bounded-depth Frege proofs of the Paris-Harrington principle for triangles that exist by the following theorem (proof is deferred to Section 5).

Theorem 3.1. $\operatorname{Pr}\left(k^{2} ; k, 3\right)$ has polynomial-size proofs (w.r.t. the size of the formula) in bounded-depth Frege.

To prove point (1) we translate the Mills [1985] proof method into a search procedure that takes any graph on integers in the interval $\left[k, k^{2^{2 \beta k}}\right]$ and looks for either a clique or a relatively large independent set. Such a procedure is guaranteed to succeed and is essentially a decision tree, with the notable exception of the base cases. The wellknown isomorphism between decision trees and treelike Resolution refutations gives the refutation of $\operatorname{PH}\left(k^{2^{2(2 k)}} ; k, k\right)$. More precisely, Mills' construction defines a decision tree and thus a treelike Resolution refutation. The leaves of this tree are either tautologies or else are clauses that can be derived in bounded-depth Frege using Theorem 3.1. The desired proof of $\operatorname{PH}\left(k^{2^{2 / \beta k}} ; k, k\right)$ in bounded-depth Frege is obtained by composing these derivations and the treelike Resolution refutation corresponding to the decision tree. ${ }^{1}$

Theorem 3.2. Let $N=k^{22^{2 \beta k}}$. Then $\operatorname{PH}(N ; k, k)$ has a proof of size $2^{O(N \log \log N)}$ in bounded-depth Frege.

Proof. Mills [Mills 1985, Theorem 4] defines a function B as follows: $B(1)=1$; $B(2 t)=(2 t-1) B(t)^{2}$ and $B(2 t+1)=2 t B(t) B(t+1)$. Mills shows that the following properties hold:

$$
\begin{gather*}
B(t) \leq 2^{\beta t}, \text { if } t=3 \cdot 2^{r} \text { for some } r \tag{6}\\
k^{B(m)} \geq R(k ; m), \text { for } m \geq 3 \text { and sufficiently large } k . \tag{7}
\end{gather*}
$$

While we are interested mostly in the case $k=m$, we need to keep the two parameters distinct in the proof of the present theorem.

From a refutation of $\operatorname{Pr}(X ; Y, Z)$ one can always obtain a refutation of $\operatorname{Pr}(X ; Y, Z)$ for any $X^{\prime}>X$. Similarly, from a refutation of $\operatorname{PH}(X ; Y, Z)$, one can always obtain a refutation of $\operatorname{PH}\left(X ; Y, Z^{\prime}\right)$ for any $Z^{\prime}<Z$. Given k, choose r such that $k \leq 3 \cdot 2^{r}<2 k$ (such an r exists for any k). Property (6) implies that $k^{B(k)} \leq k^{B\left(3 \cdot 2^{r}\right)} \leq k^{2^{\beta 3 \cdot 2^{r}}} \leq k^{\beta^{22 k}}$. Thus, from a refutation of $\operatorname{PH}\left(k^{B\left(3 \cdot 2^{r}\right)} ; k, 3 \cdot 2^{r}\right)$, we obtain a refutation of $\operatorname{PH}\left(k^{2^{\beta 3 \cdot 2^{r}}} ; k, 3 \cdot 2^{r}\right)$, from

[^1]the latter we obtain a refutation of $\operatorname{PH}\left(k^{2^{83 \cdot 2^{T}}} ; k, k\right)$, and, finally, from the latter we obtain a refutation of $\operatorname{PH}\left(k^{2^{2 \beta k}} ; k, k\right)$.

We make the following assumptions without loss of generality: (a) $m=3 \cdot 2^{r}$ for some $r \geq 0$, and (b) k is so large that the condition of inequality (7) is met with respect to such m. Then the propositional formula $\operatorname{PH}\left(k^{B(m)} ; k, m\right)$ is contradictory. For ease of notation, we fix $N(k, m)=k^{B(m)}$. If $r=0$, then $N(k, m)=k^{B(3)}=k^{2}$. For $r>0$, and our choice of m, the function $N(k, m)$ has the following property:

$$
\begin{equation*}
N(k, m)=N\left(N\left(k, \frac{m}{2}\right)^{m-1}, \frac{m}{2}\right) . \tag{8}
\end{equation*}
$$

This follows from the properties of B and from the special form of m, as we now show in detail. On the one hand we have the following equalities:

$$
N(k, m)=k^{B(m)}=k^{B\left(3 \cdot 2^{r}\right)}=k^{\left(3 \cdot 2^{r}-1\right) B\left(3 \cdot 2^{r-1}\right)^{2}} .
$$

On the other hand, we have the following equality:

$$
N\left(N\left(k, \frac{m}{2}\right)^{m-1}, \frac{m}{2}\right)=k^{B\left(3 \cdot 2^{r-1}\right)\left(3 \cdot 2^{r}-1\right) B\left(3 \cdot 2^{r-1}\right)} .
$$

Proof strategy. Fix $N=N(k, m)$. We describe a search procedure that defines a decision tree for the following problem: Given a graph on integers [k, N], find a clause in $\operatorname{PH}(N ; k, m)$ that is falsified. Since $N \geq R(k, m)$ (by Equation (7)) this decision problem always has an answer. The leaves of the decision tree will be either initial clauses of the Paris-Harrington principle or points at which a small proof of a suitable ParisHarrington principle for triangles can be plugged in. These exist by Theorem 3.1. The decision tree can thus be easily formalized as a bounded-depth Frege proof.

We recall that $E_{i, j}$ indicates if $\{i, j\}$ is an edge in the graph.
The first step of the procedure is to read all edges between integers from k to $R(k, m / 2)$. This costs at most $R(k, m / 2)^{2}$ queries. If a relatively large independent set is found, then the procedure outputs such a set and terminates. Otherwise, the graph explored so far contains a clique of $m / 2$ vertices. Let these vertices be $P=\left\{v_{1}, \ldots, v_{m / 2}\right\}$.

The second step is to read all edges with one vertex in P and the other outside P. This requires fewer than $\frac{m}{2} N$ queries.

For any outcome of the queries, we identify the following sets: $A_{0}=\left\{i \mid E_{i, v_{1}}=0\right\}$, and, for $t \in\left[1, \frac{m}{2}-1\right], A_{t}=\left\{i \mid E_{i, v_{1}} \wedge E_{i, v_{2}} \wedge \ldots \wedge E_{i, v_{t}}=1\right.$ and $\left.E_{i, v_{t+1}}=0\right\}$ and $A_{\frac{m}{2}}=\left\{i \left\lvert\, E_{i, v_{1}} \wedge E_{i, v_{2}} \wedge \ldots \wedge E_{i, v \frac{m}{2}}=1\right.\right\}$.

The third step Each branch of the tree satisfies one of the following two cases:
(Case 1) There exists i such that $0 \leq i<\frac{m}{2}$ and $\left|A_{i}\right| \geq r\left(m-i, v_{i+1}-1\right)$.
(Case 2) For all $0 \leq i<\frac{m}{2},\left|A_{i}\right|<r\left(m-i, v_{i+1}-1\right)$.
If (Case 1) applies for some A_{i}, then we apply a brute-force search procedure on the first $r\left(m-i, v_{i+1}-1\right)$ elements of such an A_{i} to find either a clique C of size $m-i$ or an independent set S of size $v_{i+1}-1$. We know that all elements of A_{i} are connected with v_{1}, \ldots, v_{i} and disconnected from v_{i+1}. Thus, either we output the m-clique $\left\{v_{1}, \ldots, v_{i}\right\} \cup C$ or the independent set $\left\{v_{i+1}\right\} \cup S$ of size v_{i+1} and minimum less than or equal to v_{i+1}. The brute-force search procedure requires at most $r\left(m-i, v_{i+1}-1\right)^{2}$ queries. Note that $v_{i+1} \leq R(k, m / 2)$ and hence $r\left(m-i, v_{i+1}-1\right) \leq r(m, R(k, m / 2)-1)$. Thus the cost of the procedure (i.e., the maximal depth of a branch) in this case is at most $R(k, m / 2)^{2 m}$, using Equation (5).
In (Case 2) we focus on $A_{m / 2}$. To estimate the size of $A_{m / 2}$ we need the following lemma.

Lemma 3.3 (Mills [1985]). Let $w=N\left(k, \frac{m}{2}\right)$. If, for all $0 \leq i<\frac{m}{2},\left|A_{i}\right|<r\left(m-i, v_{i+1}-1\right)$, then $\left|A_{m / 2}\right|>N\left(w^{m-1}, m / 2\right)-w^{m-1}$.

Proof. In this proof, we use the bound $r(t, s) \leq(s+1)^{t-1}-(s+1)^{t-2}$ for $2 \leq s \leq t$ (see Equation (5)). For all $i<\frac{m}{2}$, we have by construction that $v_{i} \leq w$, and thus we have $\left|A_{i}\right|<r\left(m-i, v_{i+1}-1\right) \leq r(m-i, w-1) \leq w^{m-i-1}-w^{m-i-2}$.

The size of set $P \cup A_{0} \cup \ldots \cup A_{m / 2-1}$ is less than $m / 2+w^{m-1}-w^{m / 2-1}$, and thus

$$
\begin{aligned}
& \left|A_{m / 2}\right| \geq N(k, m)-k-w^{m-1}+w^{m / 2-1}-m / 2 \\
& =N\left(N\left(w^{m-1}, m / 2\right), m / 2\right)-k-w^{m-1}+w^{m / 2-1}-m / 2 \\
& =N\left(w^{m-1}, m / 2\right)^{B(m / 2)}-k-w^{m-1}+w^{m / 2-1}-m / 2 \\
& >N\left(w^{m-1}, m / 2\right)-w^{m-1}
\end{aligned}
$$

for sufficiently large k and m. The second line is because of Equation (8), the third line is by definition of N, the last line is because $B(x) \geq 1$, and $w^{m / 2-1}>k+m / 2$ for large-enough k and m.
The previous lemma guarantees that the size of $A_{m / 2}$ is at least

$$
N\left(N(k, m / 2)^{m-1}, \frac{m}{2}\right)-N(k, m / 2)^{m-1}+1
$$

and thus the graph induced by the elements of $A_{m / 2}$ (preserving their order) on the interval $\left[N(k, m / 2)^{m-1}, N\right]$ either contains a clique of size $m / 2$ or a relatively large independent set.

We then apply the search procedure recursively on this graph to find either a clique C of size $m / 2$ or a relatively large independent set S. We can do this because either (i) $m / 2=3$ or else (ii) $m / 2$ and $N(k, m / 2)^{m-1}=\left(k^{B(m / 2)}\right)^{m-1}$ are such that the conditions for the validity of inequalities (6) and (7) are met, that is, $B(m / 2) \leq 2^{\beta m / 2}$ and $k^{B(m / 2)} \geq$ $R(k, m / 2)$. In case (i), we apply Theorem 3.1. Note that the relevant interval in this case is $\left[N(k, 3)^{5}, N\left(N(k, 3)^{5}, 3\right)\right]$, which is $\left[\left(k^{B(3)}\right)^{5},\left(\left(k^{B(3)}\right)^{5}\right)^{B(3)}\right]$, that is, $\left[k^{10}, k^{20}\right]$, since $B(3)=2$. Now consider case (ii). If C is found, then it maps to a clique of size $m / 2$ in $A_{m / 2}$ that is in turn completely connected with vertices in P. Thus, we output $C \cup P$. If S is found, then notice that mapping back S to $A_{m / 2}$ preserves the size and never increases the indexes of vertices. This implies that S is a relatively large independent set in the original graph and a legitimate output. This concludes the description of the search procedure.

Depth of the procedure. We give an upper bound on the size of our proof of the Paris-Harrington principle.

Let $Q([a, b], c)$ denote the size of the proof that $[a, b]$ satisfies the Paris-Harrington principle for cliques of size c and large independent sets, that is, of $\operatorname{PH}(b ; a, c)$.

In the first and second steps the procedure does an exhaustive search on the value of the queried variables. Thus the number of branches required is at most $2^{R(k, m / 2)^{2}+\frac{m}{2} N(k, m)}$.

An analogous search procedure takes place in the third step if (Case 1) occurs, requiring at most $2^{R(k, m / 2)^{2 m}}$ branches. If (Case 2) occurs, then the procedure is applied recursively to the restriction of the input graph to the interval $\left[N(k, m / 2)^{m-1}, N\right]$, and the search looks for cliques of size $m / 2$ or large independent sets. The recursion stops either when (Case 1) occurs or when the target clique size becomes 3 .

We now have to evaluate the cost of this recursion. We have

$$
Q([k, N], m) \leq\left(2^{R(k, m / 2)^{2}+\frac{m N}{2}}\right) \times M(k, m, N),
$$

where $M(k, m, N)$ abbreviates

$$
\max \left\{2^{R(k, m / 2)^{2 m}}, Q\left(\left[N(k, m / 2)^{m-1}, N\right], m / 2\right)\right\} .
$$

Note that $N=N\left(N(k, m / 2)^{m-1}, m / 2\right)$. This is so because $N=N(k, m)$ and $N(k, m)$ satisfies Equation (8). Therefore, the term $Q\left(\left[N(k, m / 2)^{m-1}, N\right], m / 2\right)$ is of the correct form for the recursion to go through.
To simplify the estimate of the cost of the recursion, we make the following observations. For $m=3 \cdot 2^{\ell}$ for some ℓ, the base case of the recursion is $Q([a, b], 3)$ for some a, b. The recursion determines values $k_{0}, k_{1}, \ldots, k_{\ell}$, where $k_{0}=k$, and, for $0 \leq i<\ell$,

$$
k_{i+1}=N\left(k_{i}, m / 2^{i+1}\right)^{m / 2^{i}-1},
$$

where $\ell=\log m-\log 3$, so $m / 2^{\ell}=3$. The k_{i} s are the successive values of k in the recursive calls. We observe that $k_{\ell}=\sqrt{N}$. This can be seen as follows: By repeated application of Equation (8), we have that for every $i, N\left(k_{i}, m / 2^{i}\right)=N$. In particular, $N\left(k_{\ell}, 3\right)=N$. By definition of $N\left(k_{\ell}, 3\right)$ we get that $k_{\ell}^{B(3)}=N$. Thus $k_{\ell}=\sqrt{N}$, since $B(3)=2$.

We now show that the recursive call arising from (Case 2) always dominates the cost of the procedure in (Case 1). First note that $Q\left(\left[k_{i+1}, N\right], m / 2^{i+1}\right)$ costs at least as the cost of the execution of Step 1 and Step 2, for each level $i \in[0, \ell-1]$ of the recursion. Therefore,

$$
Q\left(\left[k_{i+1}, N\right], \frac{m}{2^{i+1}}\right) \geq 2^{\frac{m}{2^{2+2} \cdot\left(N-k_{i}\right)}} \geq 2^{3(N-\sqrt{N})} \geq 2^{\frac{3}{2} N} .
$$

We now evaluate the cost of (Case 1). Let us assume that we are at level i of the recursion. Let t be such that $0 \leq t<m / 2^{i+1}$ and $\left|A_{t}\right| \geq r\left(m / 2^{i}-t, v_{t+1}-1\right)$. The cost of (Case 1) is then at most $2^{r\left(m / 2^{i}-t, v_{t+1}-1\right)^{2}}$, since a search is performed only on the first $r\left(m / 2^{i}-t, v_{t+1}-1\right)$ elements of A_{t}. It is now sufficient to show that $r\left(m / 2^{i}-t, v_{t+1}-1\right) \leq$ \sqrt{N}. By construction, $v_{t+1} \in\left[k_{i}, N\left(k_{i}, m / 2^{i+1}\right)\right]$ and hence $v_{t+1} \leq N\left(k_{i}, m / 2^{i+1}\right)$, and therefore $r\left(m / 2^{i}-t, v_{t+1}-1\right)$ is not larger than $r\left(m / 2^{i}-t, N\left(k_{i}, m / 2^{i+1}\right)\right)$ and we have

$$
\begin{aligned}
r\left(m / 2^{i}-t, v_{t+1}-1\right) & \leq r\left(m / 2^{i}-t, N\left(k_{i}, m / 2^{i+1}\right)\right) \\
& \leq N\left(k_{i}, m / 2^{i+1}\right)^{m / 2^{i}-t-1} \\
& \leq N\left(k_{i}, m / 2^{i+1}\right)^{m / 2^{i}-1} \\
& =k_{i+1} \\
& \leq \sqrt{N} .
\end{aligned}
$$

The first inequality is by Equation (5), and the last equality is by definition of k_{i+1}. Finally, we observe $k_{i+1} \leq \sqrt{N}$ since at worst $k_{i+1} \leq k_{\ell}$, and we have already proved that $k_{\ell}=\sqrt{N}$. Thus we have, for every $0 \leq i<\ell$,

$$
Q\left(\left[k_{i}, N\right], m / 2^{i}\right) \leq 2^{R\left(k_{i} ; m / 2^{i+1}\right)^{2}+\left(\frac{m}{2^{i+1}}\right) \cdot\left(N-k_{i}\right)} \cdot Q\left(\left[k_{i+1}, N\right], m / 2^{i+1}\right) .
$$

We now observe that for all steps of the recursion except the last, the term $R\left(k_{i}, m / 2^{i+1}\right)^{2}$ is asymptotically polynomially smaller than N. This can be seen as follows:

$$
R\left(k_{i}, m / 2^{i+1}\right)^{2} \leq\left(k_{i}^{B\left(\frac{m}{2 i+1}\right)}\right)^{2} \leq\left(\sqrt[m / 2^{i}-1]{k_{i+1}}\right)^{2}
$$

since $k_{i+1}=\left(k_{i}^{B\left(\frac{m}{2^{i+1}}\right)}\right)^{\frac{m}{2^{i}}-1}$. The term $\left(\sqrt[m / 2^{i}-1]{k_{i+1}}\right)^{2}$ is polynomially smaller than N since $k_{\ell}=\sqrt{N}$. At the last step of the recursion the term $R\left(k_{i}, m / 2^{i+1}\right)^{2}$ could be of the order of N.

Therefore, since the recursion bottoms out after logarithmically many steps, we obtain the following bound on the size of the whole procedure:

$$
Q([k, N], m) \leq Q([\sqrt{N}, N], 3) \cdot 2^{\frac{m}{2} N+\frac{m}{4} N+\cdots+\frac{m}{2^{\ell}} N+O(N)} \leq 2^{c m N\left(\sum_{i=0}^{\ell} 1 / 2^{i}\right)}=2^{O(m N)}
$$

Note that for $m=k$ we have $m \approx \log \log N$. Note that the complexity of the base case accounts for the need of reasoning in bounded-depth Frege.

Assessing the quality of the refutation in Theorem 3.2 is somehow more difficult than usual. For $N=k^{2^{8 k}}$ the size of the trivial treelike refutation is $2^{N^{2}}$, which is far greater than our upper bound $2^{O(N \log \log N)}$. Furthermore, such large refutations are only quasipolynomial in the size of the formula itself, which is $2^{\Theta(N)}$. While the size of the formula and the number of variables are usually polynomially related, it is not the case here, since the number of variables in $\operatorname{PH}(N ; k, k)$ is $O\left(N^{2}\right)$. Thus, while our refutation is not much longer than the formula, there might be refutations that are smaller than the formula itself (as in very weak Pigeonhole principle formulations [Razborov 2002]). A natural open question is whether the upper bound in Theorem 3.2 can be improved to polynomial with respect to formula size.

4. A CONDITIONAL RESOLUTION LOWER BOUND FOR PARIS-HARRINGTON TAUTOLOGY

We prove a conditional lower bound on the Paris-Harrington principle $\mathrm{PH}\left(k^{2 \beta^{\beta k}} ; k, k\right)$ in Resolution. The lower bound is conditional on a lower bound for a quasi-polynomial Pigeonhole principle in Res(2). The technique can be seen as an extension of Krajíček [2001, 2011] approach to the Ramsey principle. We use a weak Pigeonhole principle to blow up a counterexample to the Paris-Harrington principle to obtain a contradiction. More precisely, we show how to start from a small graph on $[k, L]$ without k-cliques and large independent sets and how to blow it up-using a suitable Pigeonhole principle-to a large graph on $[k, N]$ without k-cliques and large independent sets. This is contradictory as soon as N goes above the known upper bounds for $R(k, k)$.

The proof has two ingredients: (1) We show how to adapt a combinatorial lower bound construction for $R(k, k)$ by Erdôs and Mills [1981] to reduce the proof complexity of the Paris-Harrington principle to that of a very unbalanced off-diagonal Ramsey principle for triangles; (2) we use a suitable Pigeonhole principle to obtain conditional lower bounds on the off-diagonal Ramsey principle from part (1) of the proof.

Consider the bounds for $R(k, k)$ proved by Mills [1985] (see Equation (3)). Any proof system that can prove an upper bound for $R(k, k)$ must be able to distinguish the upper bound from the lower bound in Equation (3). Then it must be able to prove some kind of Pigeonhole principle.

We substantially extend the technique by Krajíček [2001] to reduce a refutation of $\mathrm{PHP}_{n}^{2^{(\log n)^{c}}}$, for some c, n depending on the parameters k, β, to a refutation of $\operatorname{PH}\left(k^{2^{\beta k}} ; k, k\right)$. Note that Krajíček [2001] uses $\mathrm{PHP}_{n}^{n^{4}}$ to postulate a bijective mapping between a counterexample to Ramsey Theorem for small graphs and a big graph for which the theorem is true. This gives a contradiction. This technique does not apply immediately to the Paris-Harrington principle. The Pigeonhole mapping does not preserve the relative order of indexes, which is needed for Paris-Harrington. On the other hand, a natural formulation of an order-preserving Pigeonhole principle is easy to refute. We get around this obstacle by going first from Paris-Harrington to Ramsey and only then to the Pigeonhole principle.

We first recall the details of the proof systems Res and Res(2). Both are refutational systems. A refutation of size S of a formula F in CNF form $\bigwedge_{i=1}^{m} C_{i}$ is a sequence of formulas D_{1}, \ldots, D_{S} such that $D_{i}=C_{i}$ for $1 \leq i \leq m$, for $i>m$ the formula D_{i} is either an axiom or is logically inferred from two previous formulas in the sequence, and D_{S} is the empty formula.

In ReS, every line in the refutation is a disjunction of literals, and there is only one inference rule, the resolution rule:

$$
\frac{A \vee \ell \quad B \vee \neg \ell}{A \vee B}
$$

Resolution

The propositional proof system $\operatorname{Res}(2)$ has been first defined by Krajíček [2001] as an extension of Resolution. $\operatorname{Res}(2)$ is a refutational system working with 2-DNFs, that is, clauses C of the form $\bigvee_{i} D_{i}$, where each D_{i} is a conjunction of at most two literals. There are the following basic rules:

It is easy to see that also the following rules are admissible:

$\frac{A \vee \ell_{1} \ell_{2} \quad B \vee \neg \ell_{1}}{A \vee B}$	Resolution 2
$\frac{A}{A \vee \ell}$	Weakening 3

Since we consider $\operatorname{Res}(2)$ as a refutational system, thus we include as axioms also the clauses of the CNF we want to refute.

Theorem 4.1. Let $N \geq k^{2^{\beta k}}$, where β is the constant from Equation (3). There exists $M=M(k)$ such that
(1) $2^{2^{k / 2-1}}<M<\sqrt{N}$, and
(2) if $\operatorname{Pr}(N ; k, k)$ has a Resolution refutation of size S, then $\operatorname{Ram}(N-M+1 ; 3, M)$ has a Resolution refutation of size S.

Proof. We assume even $k \geq 6$. Consider any refutation for $\operatorname{PH}(N ; k, k)$ of $\operatorname{size} S$, and consider the interval $[k, N]$. We divide the interval in the following way: fix $n_{0}=k$, $n_{1}=k+r(3, k)-1, n_{i+1}=n_{i}+r\left(3, n_{i}\right)-1$, up to $M=M(k)=n_{k / 2-2}$. The interval $[k, N]$ is divided as $\left[n_{0}, n_{1}-1\right]$, $\left[n_{1}, n_{2}-1\right]$, up to $\left[n_{k / 2-2}, n_{k / 2-3}-1\right]$, plus another residual interval $\left[n_{k / 2-2}, N\right]$. For $0 \leq i \leq k / 2-3$ we call I_{i} the interval $\left[n_{i}, n_{i+1}-1\right.$]. The last interval is $\left[n_{k / 2-2}, N\right]=[M, N]$. For those familiar with Erdős and Mills [1981], note that we are essentially carrying over Erdős-Mills' construction up to the penultimate step inside a suitably large interval given in advance.

Now we prove point (i). The right-hand side of (i) can be obtained by the following calculations (see Erdős and Mills [1981]). Let a be such that for all sufficiently large s,
$r(3, s) \geq a s^{2} /(\log s)^{2}\left(\right.$ cfr. Erdős [1961]). Let $b=a /(\log k)^{2}$ (we can assume that $\left.b \leq 1\right)$. One can show inductively for $i=0,1, \ldots, k / 2-1$ that $n_{i} \geq\left(2^{2^{i}} 2^{2^{i}-1}\right) /\left(4^{2^{i}-i-1}\right)$. Let now $c=\sqrt{a / 4}$. For all sufficiently large k, we have $n_{k / 2-2} \geq(c \sqrt{k} / \log k)^{2^{k / 2-1}}$ by the following calculation:

$$
\begin{aligned}
n_{k / 2-2} & \geq\left(k^{2^{k / 2-2}} b^{2^{k / 2-2-1}}\right) /\left(4^{2^{k / 2-2}-k / 2+1}\right) \\
& \geq(k b / 4)^{2^{k / 2-2}}=(c \sqrt{k} / \log k)^{2^{k / 2-1}} .
\end{aligned}
$$

The desired inequality follows for k so large that $c \sqrt{k} / \log k>2 .^{2}$
For the left-hand side of (i), we give a very rough overestimation that is sufficient for our purposes (in particular, we ignore the logarithmic factor in the denominator of Equation (4)). Let $u(x):=x+r(3, x)$. Obviously, then $n_{i+1} \leq u\left(n_{i}\right)$, by definition of n_{i+1}. Thus, $n_{i+1} \leq u^{i+1}(k)$ and thence $M \leq u^{k / 2-2}(k)$. Also, $u^{i+1}(x) \leq 2 \cdot r\left(3, u^{i}(x)\right)$, by monotonicity of $r(3, x)$. By the left-hand side of Equation (4), $r\left(3, u^{i}(x)\right)<\left(u^{i}(x)\right)^{2}$. By induction on i, we easily prove $u^{i+1}(k) \leq 2^{2^{i+1}-1} \cdot k^{2 i+1}$: For $i=0$, we have $u(k)=$ $k+r(3, k) \leq 2 \cdot r(3, k)<2 \cdot k^{2}$. For the inductive step we have

$$
\begin{aligned}
u^{i+1}(k) & \leq 2 r\left(3, u^{i}(k)\right) \\
& \leq 2\left(u^{i}(k)\right)^{2} \\
& \leq 2\left(2^{2^{i}-1} \cdot k^{2^{i}}\right)^{2} \\
& \leq 2 \cdot 2^{2^{i+1}-2} \cdot k^{2^{i+1}} \\
& \leq 2^{2^{i+1}-1} \cdot k^{2^{i+1}} .
\end{aligned}
$$

Thus $M<2^{2^{k / 2-2}-1} \cdot k^{2^{k / 2-2}}$ and $M^{2}<2^{2^{k / 2-1}-2} \cdot k^{2^{k / 2-1}}$, which is strictly smaller than $N=k^{2^{\beta k}}$, since

$$
2^{k / 2-1}-2+(\log k) 2^{k / 2-1}<2(\log k) 2^{k / 2-1}=(\log k) 2^{k / 2},
$$

which is smaller than $(\log k) 2^{\beta k}$ for $\beta>1$.
We now prove point (ii) in the statement of the theorem. We define a restriction ρ on the variables of $\operatorname{PH}(N ; k, k)$. First, we fix $E_{a, b}$ to 1 for every choice of a and b in different intervals. For all $i \leq k / 2-3,\left|I_{i}\right|=r\left(3, n_{i}\right)-1$. Therefore, there exists a graph G_{i} of size $\left|I_{i}\right|$ with no independent set of size n_{i} and no triangle. G_{i} immediately defines an assignment ρ_{i} to all variable $E_{a, b}$ with $a, b \in I_{i}$. We restrict the variables in I_{i} according to ρ_{i}.

We observe that the only variables left unassigned are those of the form $E_{a, b}$ with $a, b \in[M, N]$. We now argue that a refutation of $\left.\operatorname{PH}(N ; k, k)\right|_{\rho}$ induces a refutation of $\operatorname{Ram}(N-M+1 ; 3, M)$. In particular, for any clause C in the refutation of $\operatorname{PH}(N ; k, k)$, we can deduce the clause $\left.C\right|_{\rho}$ (or a subset of it) from $\operatorname{Ram}(N-M+1 ; 3, M)$. We prove it for initial clauses, and the rest follows by induction on the Resolution inference process.

If C is an initial clause in $\operatorname{PH}(N ; k, k)$, then is either of type (1) or of type (2).
First, suppose C is of type (1). If three or more elements mentioned in C are in the same I_{i} for some i, then the restriction ρ satisfies C because no triangles are in the assignment ρ_{i} associated to I_{i}. Therefore, the clause is deducible, since it is true. Suppose now that C refers to at most two elements in any interval I_{i}. Then it must refer to at least three elements of interval $[M, N]$, since there are $k / 2-2$ intervals I_{i}.

[^2]The corresponding edges are not assigned by the restriction ρ. Thus, in this case, $\left.C\right|_{\rho}$ is a superset of a clause of $\operatorname{RAM}(N-M+1 ; 3, M)$ of type (1).

Now suppose that C is of type (2). If C refers only to elements from different intervals, then it is killed by the restriction ρ that set to 1 all edges across different intervals. Any clause of type (2) that refers to indexes in an interval I_{i} concerns an independent set of size at least n_{i} and is killed by the restriction ρ_{i}, which set to 1 for at least one edge in any set of n_{i} vertices in I_{i}. The only other clauses of type (2) of the Paris-Harrington principle that survive are the ones referring to vertices in the interval $[M, N]$. Such clauses refer to sets of vertices of size at least M and thus are subsumed by the clauses of type (2) of $\operatorname{Ram}(N-M+1 ; 3, M)$. We conclude that any refutation of size S for $\operatorname{PH}(N ; k, k)$ gives a refutation of the same size for $\operatorname{RAM}(N-M+1 ; 3, M)$.

Theorem 4.2. Let $T<r(k, s)$. If $\operatorname{Ram}(U ; k, s)$ has a Resolution refutation of size S, then PHP_{T}^{U} has a $\operatorname{ReS}(2)$ refutation of size less than $S \cdot 2^{O(k s \cdot \max (\log s, \log k))}$.

Proof. To refute $\operatorname{Ram}(U ; k, s)$ it is necessary to distinguish between numbers U and T with $U \geq r(k, s)>T$. The proof strategy is to encode a Resolution refutation of $\operatorname{Ram}(U ; k, s)$ as a Pigeonhole principle refutation in $\operatorname{Res}(2)$. If there was a homomorphism between a graph of T vertices with neither a k-size clique nor an s-size independent set and a graph of U vertices, then $\operatorname{Ram}(U ; k, s)$ would not be refutable. Thus, any refutation of $\operatorname{RAm}(U ; k, s)$ could be used to refute the Pigeonhole principle.

Fix $G=(V, E)$ to be a graph with no k-clique and no s-independent set, with $|V|=T$ vertices. We identify two sets Δ, Γ of edges and non-edges as follows:

$$
\Delta=\{(a, b) \mid\{a, b\} \in E\}, \Gamma=\{(a, b) \mid\{a, b\} \notin E \text { and } a \neq b\} .
$$

Consider any pair $i, j \in\binom{[U]}{2}$. We give two different encodings for each literal. The disjunctive encoding is defined as follows:

$$
E_{i, j} \mapsto \bigvee_{(a, b) \in \Delta} p_{i, a} \wedge p_{j, b}, \quad \neg E_{i, j} \mapsto \bigvee_{(a, b) \in \Gamma} p_{i, a} \wedge p_{j, b}
$$

The conjunctive encoding is defined as follows:

$$
E_{i, j} \mapsto \bigwedge_{(a, b) \in \Gamma}\left(\neg p_{i, a} \vee \neg p_{j, b}\right), \neg E_{i, j} \mapsto \bigwedge_{(a, b) \in \Delta}\left(\neg p_{i, a} \vee \neg p_{j, b}\right) .
$$

In the above, the variables $p_{i, a}$ for $i \in U$ and $a \in T$ are the variables of PHP_{T}^{U}.
The disjunctive encoding allows to encode each clause in the refutation of $\operatorname{RAM}(U ; k, s)$ as a 2-DNF on the variables of PHP_{T}^{U}. To prove the theorem, it is sufficient to show that in $\operatorname{Res}(2)$ the following hold.
(1) The disjunctive encoding of the empty clause is the empty clause.
(2) The disjunctive encoding of $A \vee B$ is deducible from the disjunctive encoding of $A \vee E_{i, j}$ and $B \vee \neg E_{i, j}$ for any A, B clauses on the variables of $\operatorname{RAm}(U ; k, s)$.
(3) The disjunctive encoding of the initial clauses of $\operatorname{RAM}(U ; k, s)$ is deducible from PHP_{T}^{U}.

Point (1) is trivial. To show point (2), we will use the conjunctive encoding. The conjunctive encoding is necessary to simulate the Resolution cut, but it requires $\Theta\left(T^{2}\right)$ clauses to represent a literal. To represent a clause of width w, it would require up to $T^{2 w}$ clauses, which is too inefficient. Instead, we use the disjunctive encoding for representing clauses, and we extract a mixed encoding to do the cut: All literals but one are in disjunctive form, while one of the literals involved in the cut is represented in conjunctive form. Proving point (3) requires more work, since deducing the encoding
of an axiom of $\operatorname{Ram}(U ; k, s)$ is equivalent to showing that G has no k-clique and no s-independent set.

Inference simulation. Consider $A \vee E_{i, j}$ and $B \vee \neg E_{i, j}$ where we assume that A and B are already disjunctively encoded. We want to deduce $A \vee \neg p_{i, c} \vee \neg p_{j, d}$ for every pair $(c, d) \in \Gamma$. Such set of formulas is essentially a mixed encoding for which A is encoded disjunctively, and $E_{i, j}$ is encoded conjunctively. Since we encode conjunctively just one literal, the size blow-up does not occur.

Once the mixed encoding of $A \vee E_{i, j}$ has been deduced, we then apply $\operatorname{Res}(2)$ Cut to all such formulas and to the disjunctive encoding of $B \vee \neg E_{i, j}$ to obtain $A \vee B$. We now show how to obtain the set of $O\left(T^{2}\right)$ formulas

$$
\begin{equation*}
A \vee \neg p_{i, c} \vee \neg p_{j, d} \tag{9}
\end{equation*}
$$

for each $(c, d) \in \Gamma$, from the 2-DNF disjunctive encoding of $A \vee E_{i, j}$, which is

$$
\begin{equation*}
A \vee \bigvee_{(a, b) \in \Delta} p_{i, a} \wedge p_{j, b} \tag{10}
\end{equation*}
$$

Fix any $(c, d) \in \Gamma$. For any of $(a, b) \in \Delta$, either $a \neq c$ or $b \neq d$ because Δ and Γ are disjoint sets. Thus, any term $p_{i, a} \wedge p_{j, b}$ can be eliminated from Equation (10) by an application of resolution with either $\neg p_{i, a} \vee \neg p_{i, c}$ or $\neg p_{j, b} \vee \neg p_{j, d}$: At least one of these formulas is a Pigeonhole axiom. After removing all such terms from Equation (10), we are left with a formula of the form $A \vee \neg p_{i, c} \vee \neg p_{j, d}$. The just described process costs $O\left(T^{2}\right)$ steps and must be repeated for any $(c, d) \in \Gamma$. Thus inferring the formulas in Equation (9) requires $O\left(T^{4}\right)$ steps.

Now we have all formulas of the form in Equation (9) and $B \vee \bigvee_{(c, d) \in \Gamma} p_{i, c} \wedge p_{j, d}$, which is the disjunctive encoding of $B \vee \neg E_{i, j}$. To deduce the disjunctive encoding of $A \vee B$, we proceed as follows. Consider any $\Gamma^{\prime} \subseteq \Gamma$. We have that for any $(c, d) \in \Gamma^{\prime}$, one application of resolution to $A \vee \neg p_{i, c} \vee \neg p_{j, d}$ and

$$
A \vee B \vee\left(\bigvee_{\left(c^{\prime}, d^{\prime} \in \Gamma^{\prime}-\{(c, d)\}\right.} p_{i, c^{\prime}} \wedge p_{j, d^{\prime}}\right) \vee\left(p_{i, c} \wedge p_{j, d}\right)
$$

gives

$$
A \vee B \vee\left(\bigvee_{\left(c^{\prime}, d^{\prime}\right) \in \Gamma^{\prime}-\{(c, d)\}} p_{i, c^{\prime}} \wedge p_{j, d^{\prime}}\right)
$$

The base case $A \vee B \vee E_{i, j}$ is obtained by weakening. We repeat this inference until $\Gamma^{\prime}=\emptyset$, and we get $A \vee B$. The complete process is dominated by the $O\left(T^{4}\right)$ steps required to obtain the formulas in Equation (9).
Axiom deduction. We show how to deduce the disjunctive encoding of an axiom of $\operatorname{Ram}(U ; k, s)$ from the PhP_{T}^{U} axioms. We focus on the axioms that claim that no independent set of size s exists in the graph. The case of cliques is dual. Without loss of generality, we assume that the axiom we want to deduce is exactly the following:

$$
\begin{equation*}
\bigvee_{i \neq j \in[s]]} \bigvee_{(a, b) \in \Delta} p_{i, a} \wedge p_{j, b} \tag{11}
\end{equation*}
$$

The deduction of such an axiom is equivalent to proving that there is no independent set of size s in the model graph G (indeed, Equation (11) claims that any set of s vertices contains a pair with an edge of G between them). The deduction of the latter fact can be done in $T^{O(s)}$ steps, according to the following lemma.

Lemma 4.3. Let G be a graph with T vertices and no independent set of size s. Consider propositional variables $p_{i, v}$ for $i \in[s]$ and $v \in V(G)$. The following formula has Resolution refutation of size $T^{O(s)}$:

$$
\begin{array}{lr}
\bigvee_{v} p_{i, v} & i \in[s], \\
\neg p_{i, v} \vee \neg p_{j, v} & i \neq j \in[s] \text { and } v \in V(G), \\
\neg p_{i, v} \vee \neg p_{j, v^{\prime}} & i \neq j \in[s] \text { and }\left\{v, v^{\prime}\right\} \in E(G) . \tag{14}
\end{array}
$$

Proof. Proof strategy is a brute-force exploration of all possible assignments of the s indexes to T elements. For any sequence of vertices $\left(v_{1}, \ldots, v_{w}\right)$ of length $0 \leq w \leq s$, we are going to deduce the clause $\bigvee_{i=1}^{w} \neg p_{i, v_{i}}$.

We start with $w=s$ and we proceed downward to $w=0$, which corresponds to the empty clause, that is, the end of the refutation.

Since G has no independent set of size s, any sequence of $\left(v_{1}, \ldots, v_{s}\right)$ either has a repetition or there is an edge between v_{i} and v_{j} for some $1 \leq i<j \leq s$. In both cases, the clause to deduce is a weakening of an initial clause of the type of Equation (13) or Equation (14).
Fix $w<s$ and $C=\bigvee_{i=1}^{w} \neg p_{i, v_{i}}$. For any $v \in V(G)$, clause $C \vee \neg p_{w+1, v}$ has been deduced at the previous step. We obtain clause C by doing resolution of the initial clause $\bigvee_{v} p_{w+1, v}$ (clause (12)) with all such T many clauses.

In this refutation, we produce T^{w} clauses of width w for $0 \leq w \leq s$. The clauses of width s need an axiom download and a (not strictly necessary) weakening step to be deduced from initial clauses. Each clause of width less than s requires at most $T+1$ steps to be deduced from the corresponding clauses of larger width. The total size is then $T^{O(s)}$.

Lemma 4.3 immediately implies that formula (11) is deducible in $T^{O(s)}$ steps. The refutation of Equation (11) is obtained by simulating the refutation given by Lemma 4.3 using the initial clauses of PHP_{T}^{U}. Clauses (12) and (13) are also initial clauses of PHP_{T}^{U}; clauses (14) are substituted by the corresponding 2-DNF tautologies $\neg p_{i, v} \vee \neg p_{j, v^{\prime}} \vee$ ($p_{i, v} \wedge p_{j, v^{\prime}}$), which requires three steps each to be deduced. The simulation of the refutation in Lemma 4.3 does not end with the empty clause, because of the weakening of the initial formulas. Instead, it ends with the disjunction of all weakenings made at the beginning. Such a disjunction is a sub-formula of the desired axiom (11).
If a Resolution refutation of $\operatorname{Ram}(U ; k, s)$ has length S, then the corresponding $\operatorname{Res}(2)$ refutation of PHP_{T}^{U} costs T^{4} for each inference step, $T^{O(k)}$ for each axiom (1), and $T^{O(s)}$ for each axiom (2). Thus, the length of the whole refutation is at most $T^{O(\max (s, k))} S$. By the choice of $T<r(k, s)$ and by Equation (5), we have $T \leq(k+s-2)^{\min (k, s)}=$ $2^{O(\min (k, s) \max (\log k, \log s))}$. Thus the total length is $T^{O(\max (s, k))} S=2^{O(k s \cdot \max (\log s, \log k))} S$.

In the following discussion, we fix $N=k^{2^{f k}}, M=n_{k / 2-2}$ as in the proof of Theorem 4.2, and $L=r(3, M)-1$. From Theorem 4.1 and Theorem 4.2, we immediately obtain the following corollary.

Corollary 4.4. If $\operatorname{PH}(N ; k, k)$ has a refutation of size S in Resolution, then PhP_{L}^{N-M+1} has a refutation of size $2^{O(M \log M)} \cdot S$ in $\operatorname{Res}(2)$.

Proof. By Theorem 4.1, if the Paris-Harrington principle $\operatorname{PH}(N ; k, k)$ has a Resolution refutation of size S, then $\operatorname{Ram}(N-M+1 ; 3, M)$ also has such a refutation. By Theorem 4.2, if $\operatorname{RAm}(N-M+1 ; 3, M)$ has a size S refutation in Resolution, then the Pigeonhole principle PHP_{L}^{N-M+1} has a $\operatorname{Res}(2)$-refutation of size $M^{O(M)} \cdot S$.

A conditional lower bound for the Paris-Harrington principle in Resolution can be gleaned from the above results as follows. First, note that PHP_{L}^{N-M+1} is at best quasilinear and at worst quasi-polynomial for the parameters N, M, and L in question. From (i) in Theorem 4.1, we know that

$$
\begin{equation*}
2^{2^{k / 2-1}}<M<\sqrt{k^{2^{\beta k}}} \tag{15}
\end{equation*}
$$

For $L=r(3, M)-1$ we have ([Kim 1995], see Equation (4)) that $L \approx \frac{M^{2}}{\log M}$.
If M is close to the upper bound in Equation (15), then $L=\Theta\left(\frac{N}{\log N}\right)$, and we are dealing with a quasi-linear Pigeonhole principle. If M is close to the lower bound in Equation (15), then $L=2^{2^{\ominus(k)}}$, and we are dealing with a quasi-polynomial Pigeonhole principle (recall that $k \approx \log \log N$).

The strength of our result then depends on the lower bound we assume on the relevant Pigeonhole principle $\operatorname{PHP}_{L}^{N-M+1}$ in $\operatorname{ReS}(2)$. For the sake of concreteness, let us assume a lower bound of $2^{L^{\frac{1}{2}+\epsilon}}$ for some $\epsilon>0$. Then $2^{L^{\frac{1}{2}+\epsilon}}\left(2^{O(M \log M)}\right)^{-1}$ is a lower bound for $\operatorname{PH}(N ; k, k)$ in Resolution. Since $L=\Omega\left(\frac{M^{2}}{\log M}\right)$, we have that $L^{1+\epsilon} \geq \frac{M^{1+\epsilon}}{(\log M)^{d}}$ for some d, and the latter term obviously dominates $M \log M$. Therefore, we obtain a bound of $2^{\Omega\left(L^{\frac{1}{2}+\epsilon}\right)}$ for the Paris-Harrington principle in Resolution. We sum up the above observations in the following corollary.

Corollary 4.5. If the length of any $\operatorname{Res}(2)$ refutations of $\operatorname{PHP}_{L}^{N-M+1}$ is at least $2^{L^{\frac{1}{2}+\epsilon}}$ for some $\epsilon>0$, then any Resolution refutation of $\operatorname{PH}(N ; k, k)$ has size $2^{\Omega\left(L^{\frac{1}{2}+\epsilon}\right)}$.

In our conditional lower bound, L could be very small when compared to N. Indeed, we could have (if M is close to the lower bound in Equation (15)) that for some c, $N=2^{O\left((\log L)^{c}\right)}$. Thus, our conditional $2^{L^{\frac{1}{2}+\epsilon}}$ lower bound in the worst case only excludes proofs of size quasi-polynomial in N but much smaller than the trivial $2^{N^{2}}$ upper bound in Resolution. Nevertheless, any progress seems unlikely without a serious improvement of the combinatorial upper and lower bounds.

5. THE CASE OF TRIANGLE-FREE GRAPHS

In this section we prove Theorem 3.1, used as the base case of the recursive construction in the proof of Theorem 3.2. To achieve this, we follow an argument by Mills [1985] that reduces the Paris-Harrington principle for triangles to an off-diagonal Ramsey principle. In Section 5.2 we formalize such a reduction, but first, in Section 5.1, we prove efficiently the off-diagonal Ramsey Theorem in bounded-depth Frege systems. The latter proof is a rather straightforward generalization of the Pudlák [1991] proof for the diagonal Ramsey Theorem, but we avoid using the language of bounded arithmetic. In Section 5.3, we prove a lower bound in Resolution for the off-diagonal Ramsey Theorem.

5.1. Off-Diagonal Ramsey Theorem in Bounded Depth

We adapt the Pudlák [1991] treatment to the case of severely unbalanced off-diagonal Ramsey principles. We bypass the use of transfer principles from bounded arithmetic to propositional systems. In particular, we show that $\operatorname{RAM}\left(s^{2}-5 s+2 ; 3, s-1\right)$ has polynomial-size proofs in bounded-depth Frege systems. The choice of the parameters is dictated by the aim of eventually obtaining polynomial size proofs for $\operatorname{PH}\left(s^{2} ; s, 3\right)$. We will show how to obtain such proofs by a reduction to $\operatorname{RAM}\left(s^{2}-5 s+2 ; 3, s-1\right)$. Note that by Equation (4) there exists a constant c such that $s^{2}-5+2 \geq c\left(s^{2}-2 s+1\right) /(\log (s-1)) \geq$ $r(3, s-1)$ for sufficiently large s. Small proofs for the Ramsey principles are obtained
by reduction to a weak Pigeonhole principle of the form $(2 n-6 \sqrt{n}) \rightarrow n$. We start with a simple lemma concerning this principle. We do not make any attempt to strenghten the claim (e.g., by reducing to a stronger but still efficiently provable Pigeonhole principle), which is sufficient for our purposes.

Lemma 5.1. The Pigeonhole principle $\mathrm{PhP}_{n}^{2 n-6 \sqrt{n}}$ has bounded-depth Frege proofs of size $n^{O(\sqrt{n})}$.

Proof. Consider the first $6 \sqrt{n}$ pigeons. In the first part of the refutation, we deduce the sequent $p_{1, h_{1}}, p_{2, h_{2}}, \ldots, p_{6 \sqrt{n}, h_{6 \sqrt{n}}} \vdash \perp$ for any sequence ($h_{1}, h_{2}, \ldots, h_{6 \sqrt{n}}$) of holes.

If a sequence contains a repetition, then the corresponding sequent follows immediately from the injectivity axioms of the Pigeonhole principle. Fix a sequence with no repetitions, and consider a restricted version of the principle, where the first $6 \sqrt{n}$ pigeons are assigned to that sequence of holes.
We call such a restricted formula F. It is easy to see that up to renaming variables, F is isomorphic to $\operatorname{PHP}_{n-6 \sqrt{n}}^{2(n-6 \sqrt{n})}$.

By unit propagation of the partial assignment implied by the left part of the sequent, formula $p_{1, h_{1}}, p_{2, h_{2}}, \ldots, p_{6 \sqrt{n}, h_{6 \sqrt{n}}} \vdash F$ can be deduced in polynomial time from the initial pigeon axioms. Furthermore, F has a polynomial size refutation in bounded-depth Frege (see Paris et al. [1988] and Maciel et al. [2002]), thus we can deduce the empty clause from the $p_{1, h_{1}}, p_{1, h_{2}}, \ldots, p_{6 \sqrt{n}, h_{6 \sqrt{n}}}$ and the axioms of the Pigeonhole principle in polynomial size.

The second part of the refutation goes through by noticing that for any i and any formula A the collection of sequents $\left\{p_{i, j}, A \vdash \perp\right\}_{j=1}^{n}$ and the axiom $\vdash \vee_{j=1}^{n} p_{i, j}$ imply $A \vdash \perp$ with n cut operations. Thus, for $6 \sqrt{n}$ times, we group sequents that are equal up to the last hole, and we deduce the sequent corresponding to the common part. By induction, we obtain the empty sequence, that is, the sequent $\emptyset \vdash \perp$.

The number of sequents to produce in the first part is $n^{6 \sqrt{n}}$, and each one requires a polynomial number of steps. The second part has size roughly $n^{6 \sqrt{n}+O(1)}$, since the deduction process mimics a tree of height $6 \sqrt{n}$ and branch n, and there is a $O(n)$ cost at each node to actually simulate the branching.

Given $s \geq 3$, let $\Sigma=\Sigma(s)$ be the set of binary sequences containing at most one occurrence of 1 and at most $s-2$ occurrences of 0 . The sequences in Σ are called good sequences. Note that good sequences have length at most $s-1$. The cardinality of Σ is $S=\frac{(s+2)(s-1)}{2}$. This can be seen as follows. Σ contains a single sequence consisting of all 0's for each of the possible lengths. This gives $s-1$ sequences (including the empty one). For each possible positive length up to $s-1, \Sigma$ contains one sequence per choice of positioning a 1 , which gives $\sum_{\ell=1}^{s-1} \ell$ many sequences. We use the cardinality of Σ as an upper bound to the off-diagonal Ramsey number $r(3, s)$ (see Equation (4)).

Theorem 5.2. $\operatorname{Ram}((s+1)(s-2)-4(s-1) ; 3, s-1)$ has polynomial-size bounded-depth Frege proofs.

Proof. The proof is by reduction to $\mathrm{PHP}_{(s+1)(s-2) / 2}^{(s+1)(s-2)-4(s-1)}$. The latter has small boundeddepth Frege proofs by Lemma 5.1 and since

$$
4(s-1) \leq 6 \sqrt{(s+1)(s-2) / 2} .
$$

We introduce a crucial relation. For any sequence x_{0}, \ldots, x_{j} of elements of $[1,(s+1)(s-2)-4(s-1)]$, and for any binary sequence $\alpha_{0}, \ldots, \alpha_{j-1}$, we denote by
$R\left(x_{0}, \ldots, x_{j} ; \alpha_{0}, \ldots, \alpha_{j-1}\right)$ the following formula:

$$
\left(\bigwedge_{u \in[0, j-1]} \bigwedge_{v \in[u+1, j-1]} E_{x_{u}, x_{v}}=\alpha_{u}\right) \wedge\left(\bigwedge_{u \in[1, j]} \bigwedge_{x_{u-1}<y<x_{u}} \bigvee_{w \in[0, u-1]} E_{x_{w}, y} \neq \alpha_{w}\right)
$$

The first conjunct expresses a compatibility condition between the sequence of vertices \vec{x} and the sequence of colors $\vec{\alpha}$; the second conjunct expresses a minimality condition.

We further set, for every sequence $\vec{\alpha}$ of length j,

$$
p_{x, \vec{\alpha}}:=\bigvee_{x_{0}<\cdots<x_{j-1}} R\left(x_{0}, \ldots, x_{j-1}, x ; \vec{\alpha}\right)
$$

Proof Strategy. We show how to deduce, given x in the domain, the disjunction $\bigvee_{\bar{\alpha} \in \Sigma} p_{x, \bar{\alpha}}$ from the negation of the Ramsey principle.

Completeness Axioms Deduction. We first give a sketch of the deduction of the Pigeonhole principle axioms in the form of a Branching Program. In this particular case, the Branching Program is readily translatable in a bounded-depth Frege proof.

We fix x_{0} to be an arbitrary, but fixed, vertex (e.g., $x_{0}=1$), and we branch on the value of $E_{x_{0}, x}$. This univocally determines the color of $\left(x_{0}, x\right)$, be it α_{0}. We then branch on $E_{x_{0}, t}=\alpha_{0}$, for $t=1, \ldots, x-1$. If all these queries have negative answer, then the program exits and $R\left(x_{0}, x ; \alpha_{0}\right)$ holds. Else, let x_{1} be the first value of t such that $E_{x_{0}, t}=\alpha_{0}$. We then branch on $E_{x_{1}, x}$, which determines color α_{1}. We then branch on $E_{x_{0}, t}=\alpha_{0} \wedge E_{x_{1}, t}=\alpha_{1}$, for $t>x_{1}$. If no t satisfies the condition, then the program exits and the relation $R\left(x_{0}, x_{1}, x ; \alpha_{0}, \alpha_{1}\right)$ is satisfied. Else, we proceed in a similar fashion chosing x_{2} as the first value of t that satisfies the condition. We continue this process indefinitely.

The program either exits satisfying the relation $R\left(x_{0}, \ldots, x_{j-1}, x ; \vec{\alpha}\right)$ for some x_{0}, \ldots, x_{j-1}, and some $\alpha_{0}, \ldots, \alpha_{j-1}$, or else $\vec{\alpha}$ is not a good sequence. The corresponding branch then falsifies one of the initial clauses, since it implies the existence of either a triangle or a large independent set.

It is easy to see that the cost of the process for every vertex is $O\left(\left(s^{2}\right)^{s}\right)=O\left(s^{2 s}\right)$.
We now show how to translate the above Branching Program into a derivation in a bounded-depth Frege system. We introduce a family of auxiliary relations, parametrized by x,

$$
C_{x}\left(x_{0}, \ldots, x_{\ell} ; \alpha_{0}, \ldots, \alpha_{\ell-1}\right):=R\left(x_{0}, \ldots, x_{\ell} ; \alpha_{0}, \ldots, \alpha_{\ell-1}\right) \wedge \bigwedge_{i=0}^{\ell-1} E_{x_{i}, x}=\alpha_{i}
$$

Observe that $C_{x}\left(x_{0}, \ldots, x_{\ell-1}, x ; \alpha_{0}, \ldots, \alpha_{\ell-1}\right)$ is $R\left(x_{0}, \ldots, x_{\ell-1}, x ; \alpha_{0}, \ldots, \alpha_{\ell-1}\right)$. We split the rest of the argument into two parts. First, we show that, for all ℓ, the truth of $C_{x}\left(x_{0}, \ldots, x_{\ell} ; \alpha_{0}, \ldots, \alpha_{\ell-1}\right)$ implies

$$
\bigvee_{x_{\ell}<z \leq x} C_{x}\left(x_{0}, \ldots, x_{\ell}, z ; \alpha_{0}, \ldots, \alpha_{\ell}, 0\right) \vee \bigvee_{x_{\ell}<z \leq x} C_{x}\left(x_{0}, \ldots, x_{\ell}, z ; \alpha_{0}, \ldots, \alpha_{\ell}, 1\right)
$$

Second, we show that all the formulas $C_{x}\left(x_{0}, \ldots, x_{\ell}, \vec{\alpha}\right)$ generated by the just-described inference process can be cut except those with $\vec{\alpha} \in \Sigma$ and that for all such formulas $x_{\ell}=x$.

For the rest of this proof, we abbreviate by R (respectively, A) the first (respectively, the second) conjunct of $C_{x}\left(x_{0}, \ldots, x_{\ell} ; \alpha_{0}, \ldots, \alpha_{\ell-1}\right)$. First, observe that

$$
\left(R \wedge A \wedge E_{x_{\ell}, x}=0\right) \vee\left(R \wedge A \wedge E_{x_{\ell}, x}=1\right)
$$

is obviously deducible. We now reason by cases. We treat the case $R \wedge A \wedge E_{x_{\ell}, x}=0$ (the other case is symmetric).

First, observe that the following formula is deducible from $A \wedge E_{x_{\ell}, x}=0$:

$$
\bigvee_{x_{\ell}<z \leq x}(\underbrace{\bigwedge_{i=0}^{\ell-1} E_{x_{i}, z}=\alpha_{i} \wedge E_{x_{\ell}, z}=0}_{F(z)} \wedge \underbrace{\bigwedge_{x_{\ell}<y<z}\left(\bigvee_{i=0}^{\ell-1} E_{x_{i}, y} \neq \alpha_{i} \vee E_{x_{\ell}, y} \neq 0\right)}_{G(z)})
$$

For $z=x, F(z)$ is exactly $A \wedge E_{x_{\ell}, x}=0$. We then reason by cases to either obtain $G(x)$ or to obtain $F(z) \wedge G(z)$ for some $x_{\ell}<z<x$. The reasoning by cases is on the minimality of the currently inspected z, that is, on the axiom $G(z) \vee \neg G(z)$. Thus, we have that $R \wedge A \wedge E_{x_{\ell}, x}=0$ implies

$$
R \wedge \bigvee_{x_{\ell}<z \leq x}\left(\bigwedge_{i=0}^{\ell-1} E_{x_{i}, z}=\alpha_{i} \wedge E_{x_{\ell}, z}=0\right) \wedge \bigwedge_{x_{\ell}<y<z}\left(\bigvee_{i=0}^{\ell-1} E_{x_{i}, y} \neq \alpha_{i} \vee E_{x_{\ell}, y} \neq 0\right),
$$

which is just $\bigvee_{x_{\ell}<z \leq x} C_{x}\left(x_{0}, \ldots, x_{\ell}, z ; \alpha_{0}, \ldots, \alpha_{\ell}, 0\right)$ as needed.
If the sequence $\vec{\alpha}$ is not a good sequence, then the conjunct $R(\vec{x} ; \vec{\alpha})$ in $C_{x}(\vec{x}, \vec{\alpha})$ induces a monochromatic triangle or an independent set of size $s-1$, thus violating one of the axioms of the Ramsey principle. The case is that α is a good sequence but $x_{\ell} \neq x$ is impossible since the sequence would have been extended using the above-described inference process.
Injectivity Axioms Deduction. For the simulation of the inferences, it is sufficient to show that $p_{x, \vec{\alpha}} \vdash \overline{p_{y, \vec{\alpha}}}$ (that is, that $p_{x, \vec{\alpha}} \wedge p_{y, \vec{\alpha}}$ is contradictory) for every $x \neq y$ and every $\vec{\alpha}$.
Each of $p_{x, \vec{\alpha}}$ (respectively, $p_{y, \vec{\alpha}}$) is a disjunction asserting the existence of a sequence of vertices of length $j-1$ that can be extended by x (respectively, y), so the relation R is satisfied with respect to $\vec{\alpha}$. For each such pair of sequences, σ and σ^{\prime}, the extensions $\sigma \cdot x$ and $\sigma^{\prime} \cdot y$ are distinct (since $x \neq y$). Consider the first coordinate in which they differ, and let v, v^{\prime} be the corresponding vertices. Suppose without loss of generality that $v<v^{\prime}$. Then $R(\sigma \cdot x ; \vec{\alpha})$ contains a clause asserting the compatibility of v while $R(\sigma \cdot y ; \vec{\alpha})$ contains a clause asserting the non-compatibility of $v<v^{\prime}$. These two clauses can be singled out using structural rules and then eliminated by a Cut.
The cost of the simulation is $O\left(s^{2 s} \times s^{2 s}\right)=O\left(s^{4 s}\right)$ steps.
The cost of the whole reduction is thus $O\left(s^{4 s}\right)$ times the size of a refutation of the formula $\operatorname{PHP}_{(s+1)(s-2) / 2}^{(s+1)(s-2)-4(s-1)}$. By Lemma 5.1, the latter quantity is bounded by $O\left(s^{12 s}\right)$. The size of the whole proof is thus bounded by $s^{O(s)}$, which is polynomial in the size of the Ramsey formula (hence quasi-polynomial in the number of variables).

5.2. Small Paris-Harrington Numbers

Paris-Harrington numbers for the case of forbidding a triangle and a large independent set have the same asymptotic as the corresponding off-diagonal Ramsey numbers. In particular, Mills [1985] gives a direct proof of the following fact. For all $k \geq 3$,

$$
R(k, 3) \leq r(3, k-1)+5 k-7
$$

Thus, $k^{2} \geq R(3, k)$ for sufficiently large k, by Equation (4). We analyze this proof to show that the complexity of proving a quadratic Paris-Harrington principle for forbidding triangles can be reduced to the complexity of the quadratic off-diagonal Ramsey principle from the previous subsection.

Theorem 5.1. $\operatorname{Pr}\left(k^{2} ; k, 3\right)$ has polynomial-size bounded-depth Frege proofs.
Proof. In the previous subsection, we showed how to prove efficiently $\operatorname{RAM}((k+1)(k-$ $2)-4(k-1) ; 3, k-1)$ in bounded-depth Frege. We will show how to mimic efficiently Mills' proof [Mills 1985] by replacing the critical Ramsey number $r(3, k-1)$ by the upper bound $(k+1)(k-2)-4(k-1)$ used in our proof of Theorem 5.2. Thus, we show how to efficiently reduce a proof of $\operatorname{PH}((k+1)(k-2)-4(k-1)+5 k-7 ; k, 3)$, that is, of $\operatorname{PH}\left(k^{2}-5 ; k, 3\right)$, to a proof of $\operatorname{Ram}((k+1)(k-2)-4(k-1) ; 3, k-1)$. A fortiori, this gives a small proof of $\operatorname{PH}\left(k^{2} ; k, 3\right)$. The reduction procedure can be achieved in treelike Resolution with the exception of the use of small bounded-depth Frege proofs of Ramsey principles for triangles.

Let $n=k^{2}$ and suppose by way of contradiction that $G=(V, E)$ is given such that $V=[k, n]$ and G contains no triangle and no large independent set.

Let A denote the set of vertices connected to k in G and B denote the set of vertices disconnected from k in G. We branch exhaustively to determine A and B completely. This results in at most 2^{n-k} branches.

We then verify that A is an independent set. This produces at most $|A|^{2}$ branches. In case A is not an independent set, then a triangle is found and we are done. On the remaining branches, the set A is independent. If $|A| \geq \min (A)$, then we have found a large independent set and we are done.

If $|B| \geq(k+1)(k-2)-4(k-1)$, then we know how to prove $\operatorname{RAM}(|B| ; 3, k-1)$ in size $2^{O(k \log k)}$ (Theorem 5.2). Then either we find a triangle in B, in which case we are done immediately, or else we find an independent set $X \subseteq B$ of size $k-1$. In the latter case, $\{k\} \cup X$ is a large independent set in G and we are done.

In the rest of the proof, all the branches that are left open correspond to cases where $|A|<\min (A)$ and $|B|<(k+1)(k-2)-4(k-1)$. We prove that such cases are impossible. We distinguish two further cases.
(Case 1) $\min (A)<2 k$. Then $|A| \leq 2 k-2$. Thus, since $n=|A|+|B|+k$, we have the following contradiction to the choice of n :

$$
\begin{aligned}
n & \leq k+2 k-2+(k+1)(k-2)-4(k-1) \\
& =k+2 k-2+k^{2}-k-4 k+2=k^{2}-2 k<k^{2} .
\end{aligned}
$$

(Case 2) $\min (A) \geq 2 k$. Then we have $I=[k+1,2 k-1] \subseteq B$. We explore all the pairs in I. This requires at most k^{2} branches. If no positive edge is found, then G contains a large independent set and we are done. Otherwise, let $p<q$ be connected vertices in B.
We look for triangles involving vertices p, q in G. This search requires n branches.
With $2^{2|A|} \leq 2^{2 n}$ steps we determine the set of all vertices in A independent from p and the set of all vertices in A independent from q. If more than $p-2$ vertices in A are independent from p, then we have found a large independent set and analogously for q and $q-2$. We now assume that A contains at most $p-2$ vertices independent from p and $q-2$ vertices independent from q. But then we have that

$$
|A| \geq \mid A \cap\{\text { neighbors of } p\}|+| A \cap\{\text { neighbors of } q\} \mid,
$$

and thus

$$
|A| \geq|A|-p+2+|A|-q+2=2|A|-(p+q-4) .
$$

Hence, since $p, q \leq 2 k-1$,

$$
|A| \leq p+q-4 \leq 2 k-1+2 k-2-4 \leq 4 k-7 .
$$

Finally, then (recall $|B| \leq(k+1)(k-2)-4(k-1)-1)$

$$
n=k+|A|+|B| \leq 4 k-7+k+k^{2}-k-4 k+1=k^{2}-6 .
$$

This is a contradiction to our choice of n.

In the worst case, the above procedure translates into a bounded-depth Frege proof of size at most $2^{n-k} \cdot 2^{O(k \log k)} \cdot 2^{2 n} \leq 2^{4 n}=2^{3 n+O(k \log k)}=2^{O(n)}$.

5.3. Off-Diagonal Ramsey Theorem in Resolution

We study the Resolution proof complexity for the propositional formula which claims that $r(3, t)>t^{2}$.
The known bounds on off-diagonal Ramsey numbers for graphs have been given in the sequence of articles [Erdős 1961; Ajtai et al. 1980; Kim 1995]. In particular, it is known that

$$
\begin{equation*}
r(3, t)=\Theta\left(\frac{t^{2}}{\log t}\right) \tag{16}
\end{equation*}
$$

The main result of this section is a lower bound on the refutation length of $\operatorname{Ram}(n ; 3, \sqrt{n})$, and its proof is similar to the one used in Erdős [1961] to show a lower bound to Ramsey number $r(3, t)$. That proof consisted in a probabilistic construction of a triangle-free graph with no independent sets of size t. Our proof would try to construct a triangle-free graph such that a particular family of independent sets are forbidden.

Theorem 5.3. $\operatorname{Ram}(n ; 3, \sqrt{n})$ is an unsatisfiable CNF of $2^{\Theta(\sqrt{n} \log n)}$ clauses and width $\Theta(n)$ that requires Resolution refutations of length $2^{c \sqrt{n}}$ for some constant $c>0$.

Proof. We fix $t=\sqrt{n}$. W.l.o.g. we assume it is integer. The size and the width of the formula are clear by its definition.
Assignments for this formula correspond to graphs on t^{2} vertices. The initial clauses of the formula enforce forbidden triangles and forbidden independent sets of size t. We are going to prove that if one just forbids less than $2^{c t}$ independent sets, then there exists an assignment encoding a graph G that is triangle-free and such that none of the forbidden independent sets is independent in G. That would immediately imply the theorem, since any Resolution refutation of length smaller that $2^{c t}$ would use fewer than $2^{c t}$ initial clauses of the form Ind. Some graph G would satisfy simultaneously all such initial clauses and all clauses that forbid triangles, thus satisfying all clauses of a Resolution refutation. That is impossible.
Let us consider a generic Resolution refutation. We call $\mathcal{F} \subseteq\binom{\left[t^{2}\right]}{t}$ the family of forbidden independent sets that induced such a refutation (i.e., which corresponds to the clauses Ind used in it). We assume $|\mathcal{F}|<2^{c t}$, with $c>0$ to be fixed later.
We now want to find G that is triangle-free and such that no set of vertices in \mathcal{F} is independent. To construct G, we start by choosing I to be a random graph in the model $\mathcal{G}\left(t^{2}, \frac{1}{10 t}\right)$: The graph has t^{2} vertices, and edges are independently distributed according to a Bernoulli distribution with parameter $\frac{1}{10 t}$ (I stands for "independently distributed"). The random graph G is obtained from I by removing a minimal set of edges such that G is triangle-free. Notice that the edges of graph G are not distributed independently anymore. We will show that for this probabilistic construction, any set of t vertices contains an edge with probability at least $1-2^{-c t}$. Graph G is triangle-free by construction, and with probability $1-\frac{|\mathcal{F}|}{2^{c t}}>0$ none of the sets in \mathcal{F} is independent. Thus we can fix the random choices to obtain the desired graph.
For the rest of the proof, we focus on a particular set X of t vertices. We also fix notation Y for the set of the $t^{2}-t$ remaining vertices. Our goal is to show that X is independent in G with probability at most $2^{-c t}$. To do this, it is sufficient to upper bound the probability of the following event A_{X} :
for all pairs $\{i, j\} \in\binom{X}{2}$, if $\{i, j\} \in E(I)$, then there is a vertex $w \in Y$ such that edges $\{i, w\}$ and $\{j, w\}$ are both in $E(I)$.

Lemma 5.4. $\operatorname{Pr}[X$ is an independent set in $G] \leq \operatorname{Pr}\left[A_{X}\right]$.
Proof. Let G_{X} and I_{X} to be the graphs G and I, respectively, restricted to vertices in X. Let E be the set of edges that have been deleted in the cancellation step of the random construction. More precisely, $E:=E(I) \backslash E(G)$.

Assume by contradiction that X is independent in G and that A_{X} does not hold. We partition E in three classes. The set of "bad" edges E_{b} is the set of all $\{i, j\} \in E\left(I_{X}\right)$ such that there is a vertex $w \in Y$ and $\{i, w\}$ and $\{j, w\}$ in $E(I) . E_{g}:=E\left(I_{X}\right) / E_{b} \cup E\left(G_{X}\right)$ are the "good" edges removed from I_{X} but not involved in a triangle with Y (so, in particular, they must be in a triangle involving just vertices in X). E_{o} are the deleted edges that are not in I_{X} at all. Clearly, E_{o}, E_{g}, E_{b} form a partition of E.

After removing from I all edges in E_{o} and E_{b}, all triangles that have survived so far are contained in X. We know that G_{X} is the empty graph, so all edges in $\binom{X}{2}$ that have survived so far must be eventually deleted and are exactly E_{g}. E_{g} is non-empty because we assumed A_{X} does not hold. To make the graph (X, E_{g}) triangle-free, it is sufficient to remove $E_{g}^{\prime} \subsetneq E_{g}$. It follows that removing $E_{o} \cup E_{b} \cup E_{g}^{\prime}$ from I makes it triangle-free. Since E was defined to be minimal, we have reached a contradiction.

Studying the event A_{X} instead of studying directly the independence of X in graph G allows us to focus on graph I. The edges in the latter are independently distributed, so the analysis is facilitated.

To conclude the proof, we need to show that $\operatorname{Pr}\left[A_{X}\right] \leq \frac{1}{2^{c t}}$. Let B be the number of unordered pairs of vertices in X that are connected in I to a common vertex $w \in Y$. By independence,

$$
\operatorname{Pr}\left[A_{X}\right] \leq(1-p)^{\left(t_{2}^{2}\right)-B}=\left(1-\frac{1}{10 t}\right)^{\left(t_{2}^{2}\right)-B}
$$

We need to bound the value of B from above: Let n_{d} be the number of elements of Y with at least d neighbors in X. Clearly, $B \leq \sum_{d=2}^{t}\left(n_{d}-n_{d+1}\right)\binom{d}{2}$, a bound that in principle can be larger than B and even larger than $\binom{t^{2}}{2}$. Nevertheless, with high probability, such a bound is small. In particular, we use the following lemma to control the values n_{d}.

Lemma 5.5. Let $d_{L}=\left\lfloor\frac{\log t}{\log 10}\right\rfloor$ and $d_{H}=\lceil 3 \log t\rceil$. Let the event Good be the event where the following conditions are satisfied:
-for all $2 \leq d \leq d_{L}$, it holds that $n_{d} \leq \frac{t^{2}}{10^{d}}$;
-for all $d_{H}<d \leq \frac{t}{10}$, it holds that $n_{d}<\frac{t}{10 d}$;

- for $d>\frac{t}{10}$, it holds that $n_{d}=0$.

Then the probability that Good is false is at most $2^{-\Omega(t)}$.
Proof. To simplify counting, we consider $|Y|=t^{2}$. This can only increase the value of n_{d}, so it is without loss of generality. We also focus on $d \geq 2$. The probability that a vertex in Y has degree $\geq d$ is at most $\binom{t}{d} \cdot \frac{1}{10^{d} t^{d}} \leq \frac{1}{d!10^{d}} \leq \frac{1}{2 \cdot 10^{d}}$.

The expected degree of each vertex in Y is less than $\frac{t^{2}}{2 \cdot 10^{d}}$, so the probability of n_{d} being more than twice the expected value is $2^{-\Omega\left(\frac{t^{2}}{10^{d}}\right)}$ by the Chernoff Bound [Dubhashi and Panconesi 2009, Theorem 1.1]. For $d \leq d_{L}$, that is $2^{-\Omega(t)}$.

For $d \geq d_{H}$, fix $m=\frac{t}{10 d}$, and notice that $m d=\frac{t}{10}$. The probability that at least m vertices of Y have at least d neighbors in X is at most

$$
\binom{t^{2}}{m} \cdot\left(\frac{1}{10}\right)^{m d} \leq\left(\frac{e t^{2}}{m}\right)^{m} \cdot\left(\frac{1}{10}\right)^{m d} \leq(\sqrt[d]{e d t})^{t / 10} \cdot\left(\frac{1}{10}\right)^{t / 10}=2^{-\Omega(t)}
$$

In the last inequality, we used that $d \geq 3 \log t$.
Assuming the event Good, we can control the magnitude of B,

$$
\begin{align*}
B & \leq \sum_{d=2}^{t}\left(n_{d}-n_{d+1}\right) \cdot\binom{d}{2}=\sum_{d=2}^{t} n_{d}(d-1) \\
& \leq\left(t^{2} \cdot \sum_{d=2}^{d_{L}} \frac{d-1}{10^{d}}\right)+d_{H}\left(d_{H}-d_{L}\right) n_{d_{L}}+\sum_{d=d_{H}+1}^{t / 10} n_{d} \cdot d \\
& \leq\left(\frac{t^{2}}{100} \cdot \sum_{d=0}^{\infty} \frac{1}{5^{d}}\right)+O\left(t(\log t)^{2}\right)+\frac{t^{2}}{100} \leq \frac{t^{2}}{40}+o\left(t^{2}\right) . \tag{17}
\end{align*}
$$

Assuming B is small, it is easy to show that event A_{X} occur with small probability. More formally:

$$
\begin{align*}
\operatorname{Pr}\left[A_{X}\right] & \leq \operatorname{Pr}\left[A_{X} \mid \text { Good }\right]+\operatorname{Pr}[\neg \text { Good }] \\
& \leq\left(1-\frac{1}{10 t}\right)^{\left(t_{2}^{2}\right)-B}+2^{-\Omega(t)}=\left(1-\frac{1}{10 t}\right)^{\Omega\left(t^{2}\right)}+2^{-\Omega(t)}=2^{-\Omega(t)} . \tag{18}
\end{align*}
$$

We just proved that there is a constant c such that $\operatorname{Pr}\left[A_{X}\right] \leq 2^{-c t}$. By union bound, all vertex sets in any family $\mathcal{F} \subset\binom{t^{2}}{t}$ of size less than $2^{c t}$ can be made independent in some graph with no triangles. That concludes the proof of the theorem.

It is a legitimate question to ask why we focus on an off-diagonal Ramsey statement that is weaker than the state of the art. Our lower bound is indeed non-trivial, while a (weaker) lower bound for the harder statement " $r(3, t)>c \frac{t^{2} \text { " }}{\log t}$ is a simple corollary of the following two theorems. The first theorem is just our Theorem 4.2 rephrased for $r(3, t)$.

Theorem 5.6. Let $L<r(3, t)<U$. If claim " $r(3, t)>U$ " has a Resolution refutation of size S, then PHP_{T}^{U} has a $\operatorname{Res}(2)$ refutation of size $S \cdot 2^{O(t \log t)}$.

The next theorem is Theorem 6.2 in Segerlind et al. [2004], rephrased for REs(2).
Theorem 5.7 (Segerlind et al. [2004]). For every $c>1$, there exists $\epsilon>0$ so that for all n sufficiently large, every $\operatorname{Res}(2)$ refutation of $\operatorname{PHP}_{n}^{c n}$ has size at least $2^{n^{\epsilon}}$.

Unfortunately, our lower bound is sub-polynomial with respect to the size of the CNF to be refuted. Our lower bound is a non-trivial result for such a big formula like $\operatorname{Ram}(n ; 3, \sqrt{n})$; nevertheless, it is natural to ask whether it is possible obtain lower bounds that are super-linear with respect to the size of the formula. Our proof technique cannot work in such a direction, since it is based on finding the size of the smallest unsatisfiable sub-formula.

We further observe that that Theorem 5.3 and Theorem 4.1 have the following corollary. $M(k)$ is as in Theorem 4.1.

Corollary 5.8. Let $N=k^{2^{\beta k}}$. If $M(k)=(1+o(1)) \sqrt{N}$, then the CNF encoding the claim " $R(k, k)>N$ " is an unsatisfiable propositional formula of size $2^{\Theta(N)}$ that requires Resolution refutations of size $2^{\Omega(\sqrt{N})}$.

The problem here is that we do not know if such $M(k)$ (which comes from the constructions in Mills [1985]) is close to \sqrt{N}. In particular, if $M \equiv \sqrt{N}$, then the lower bound transfers from off-diagonal Ramsey to Paris-Harrington. The authors must admit that the condition on $M(k)$ in the previous Corollary does not seem very plausible. Nevertheless, it is important to notice that any lower bound of type $2^{\Omega\left(N^{\nu}\right)}$ for constant $\gamma>0$ would imply a breakthrough in lower bounding $R(k, k)$. Thus, it is quite natural for the actual proof complexity lower bound to be conditioned on the quality of actual constructions employed to prove lower bounds on $R(k, k)$, which in turn are notoriously hard to find.

6. CONCLUSION

We briefly comment on the significance of our results. In our conditional lower bound, L could be very small when compared to N. Indeed, we could have (if M is close to the lower bound in Equation (15)) that, for some $c, N=2^{O\left((\log L)^{c}\right)}$. Thus, our conditional $2^{L^{\frac{1}{2}+\epsilon}}$ lower bound only excludes proofs of size quasi-polynomial in N but much smaller than the trivial $2^{N^{2}}$ upper bound in Resolution. Nevertheless, any progress seems unlikely without a serious improvement of the combinatorial upper and lower bounds. On the other hand, assessing the quality of the refutation in Theorem 3.2 is somehow more difficult than usual. For $N=k^{2^{8 k}}$, the size of the worst treelike refutation is $2^{N^{2}}$, which is far greater than our upper bound. Furthermore, such large refutations are only quasi-polynomial in the size of the formula itself, which is $2^{\Theta(N)}$. While the size of the formula and the number of variables are usually polynomially related, it is not the case here, since the number of variables in $\operatorname{PH}(N ; k, k)$ is $O\left(N^{2}\right)$. Thus, while our refutation is not much longer than the formula, there might be refutations that are smaller than the formula itself (as in very weak Pigeonhole principle formulations [Razborov 2002]).

Furthermore, notice that when $\operatorname{Pн}(N ; k, k)$ is unsatisfiable, then $N \geq R(k, k)$ and the clauses of $\operatorname{PH}(R(k, k) ; k, k)$ are contained in $\operatorname{PH}(N ; k, k)$. This means that $2^{R(k, k)^{2}}$ steps are always sufficient for a treelike refutation of $\operatorname{PH}(N ; k, k)$. Thus, any lower bound of the form $2^{h(k)}$, even for simple treelike resolution, implies $\sqrt{h(k)} \leq R(k, k)$. Proving a non-trivial lower bound requires a better understanding of the value of $R(k, k)$ itself. Indeed, the strength of our conditional lower bound from Section 4 depends on how close the lower and upper bounds for $R(k, k)$ are.

Besides the problem of turning our lower bound into an unconditional one, a natural open question is whether the upper bound in Theorem 3.2 can be improved to polynomial with respect to formula size.

ACKNOWLEDGMENTS

We thank the anonymous referees for comments that improved the presentation of the article.

REFERENCES

Miklós Ajtai, János Komlós, and Endre Szemerédi. 1980. A note on Ramsey numbers. J. Combin. Theor. Ser. A 29, 3 (1980), 354-360.
Arnold Beckmann and Samuel R. Buss. 2005. Separation results for the size of constant-depth propositional proofs. Ann. Pure. Appl. Logic 136, 1-2 (2005), 30-55.

Stephen Bellantoni, Toniann Pitassi, and Alasdair Urquhart. 1992. Approximation and small-depth Frege proofs. Siam J. Comput. 21 (1992), 1161-1179. Issue 6.
Peter Clote. 1995. Cutting planes and Frege proofs. Inform. Comput. 121, 1 (1995), 103-122.
Devdatt P. Dubhashi and Alessandro Panconesi. 2009. Concentration of Measure for the Analysis of Randomized Algorithms. Cambridge University Press.
Paul Erdős. 1961. Graph theory and probability II. Canadian J. Math. 13 (1961), 346-352.
Paul Erdős and George Mills. 1981. Some bounds for the Ramsey-Paris-Harrington numbers. J. Combin. Theor. Ser. A 30, 1 (1981), 53-70.
Jack E. Graver and James Yackel. 1968. Some graph theoretic results associated with Ramsey's theorem. J. Combin. Theor. 4, 2 (1968), 125-175.
Leo Harrington and Jeff Paris. 1977. A mathematical incompleteness in Peano arithmetic. In Handbook of Mathematical Logic, John Barwise (Ed.). North-Holland, 1133-1142.
Johan Håstad. 1986. Almost optimal lower bounds for small depth circuits. In Proceedings of the 18th ACM Symposium on Theory of Computing. ACM, 6-20.
Jussi Ketonen and Robert M. Solovay. 1981. Rapidly growing Ramsey functions. Ann. Math. 113 (1981), 267-314.
Jeong Han Kim. 1995. The Ramsey number $R(3, t)$ has order of magnitude $t^{2} / \log (t)$. Rand. Struct. Algor. 7, 3 (1995), 173-208.
Jan Krajíček. 1994. Lower bounds to the size of constant-depth propositional proofs. J. Symbol. Logic 59, 1 (1994), 73-86.

Jan Krajíček. 2001. On the weak Pigeonhole principle. Fundam. Math. 170, 1-3 (2001), 123-140.
Jan Krajíček. 2011. A note on propositional proof complexity of some Ramsey-type statements. Archive for Mathematical Logic 50 (2011), 245-255. Issue 1. http://dx.doi.org/10.1007/s00153-010-0212-9 10.1007/s00153-010-0212-9.

Balakrishnan Krishnamurthy and Robert N. Moll. 1981. Examples of hard tautologies in the propositional calculus, in STOC 1981, 13th ACM Symposium on Th. of Computing. Unknown J. (1981), 28-37.
Martin Loebl and Jaroslav Nešetřil. 1992. An unprovable Ramsey-type theorem. Proc. Am. Math. Soc. 116, 3 (1992), 819-824.
Alexis Maciel, Toniann Pitassi, and Alan Woods. 2002. A new proof of the weak Pigeonhole principle. J. Comput. System Sci. 64, 4 (2002), 843-872.
George Mills. 1985. Ramsey-Paris-Harrington numbers for graphs. J. Combin. Theor., Ser. A 38, 1 (1985), 30-37. DOI:http://dx.doi.org/DOI: 10.1016/0097-3165(85)90018-4
Jeff Paris, Alex Wilkie, and Alan Woods. 1988. Provability of the Pigeonhole principle and the existence of infinitely many primes. J. Symbol. Logic 53, 4 (1988), 1235-1244.
Pavel Pudlák. 1991. Ramsey's theorem in bounded arithmetic. In Proceedings of Computer Science Logic 1990. 308-317.

Pavel Pudlák. 2013. A lower bound on the size of resolution proofs of the Ramsey theorem. Inform. Process. Lett. 14-15, 112 (2013), 610-611.
Alexander A. Razborov. 2002. Proof complexity of pigeonhole principles. In Proceedings of the 5th Developments in Language Theory (Lecture Notes in Computer Science), Vol. 2295. Springer-Verlag, 100-116.
Nathan Segerlind, Samuel R. Buss, and Russell Impagliazzo. 2004. A switching lemma for small restrictions and lower bounds for k-DNF resolution. SIAM J. Comput. 33, 5 (2004), 1171-1200.
Joel Spencer. 1977. Asymptotic lower bounds for Ramsey functions. Discr. Math. 20 (1977), 69-76.
Received May 2015; revised March 2016; accepted May 2016

[^0]: The second and third authors have been supported by Grant No. 20517 by the John Templeton Foundation as part of the project "Limits of Theorem Proving." A preliminary version of the present article has been presented at the IEEE Conference on Computational Complexity, 2011.
 Authors' addresses: L. Carlucci and N. Galesi, Dipartimento di Informatica, Università di Roma La Sapienza, Via Salaria 113, 00198 Roma; emails: \{carlucci, galesi\}@di.uniroma1.it; M. Lauria, Universitat Politècnica de Catalunya, c/ Jordi Girona, 1-3, Omega 223, 08034 Barcelona, Catalonia, Spain; email: lauria@cs.upc.edu. Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component of this work in other works requires prior specific permission and/or a fee. Permissions may be requested from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212) 869-0481, or permissions@acm.org.
 (C) 2016 ACM 1529-3785/2016/09-ART26 \$15.00

 DOI: http://dx.doi.org/10.1145/2946801

[^1]: ${ }^{1} \mathrm{~A}$ comment is in order here. The best-known upper bound on $R(k, k)$ is $k^{2^{\beta k}}$ while we deal with the weaker $k^{2^{2 \beta k}}$. The reason for this is technical and has to do with the details of Mills' original proof. We believe that the result can be strengthened to $\operatorname{PH}\left(k^{2^{\beta k}} ; k, k\right)$ with a slightly more involved construction, thus matching the best-known upper bound on Paris-Harrington numbers.

[^2]: ${ }^{2}$ The lower bound on M can be slightly improved using the bounds on Ramsey numbers from equation (4) but this is irrelevant for our purposes.

