1,021 research outputs found

    Loss-resilient Coding of Texture and Depth for Free-viewpoint Video Conferencing

    Full text link
    Free-viewpoint video conferencing allows a participant to observe the remote 3D scene from any freely chosen viewpoint. An intermediate virtual viewpoint image is commonly synthesized using two pairs of transmitted texture and depth maps from two neighboring captured viewpoints via depth-image-based rendering (DIBR). To maintain high quality of synthesized images, it is imperative to contain the adverse effects of network packet losses that may arise during texture and depth video transmission. Towards this end, we develop an integrated approach that exploits the representation redundancy inherent in the multiple streamed videos a voxel in the 3D scene visible to two captured views is sampled and coded twice in the two views. In particular, at the receiver we first develop an error concealment strategy that adaptively blends corresponding pixels in the two captured views during DIBR, so that pixels from the more reliable transmitted view are weighted more heavily. We then couple it with a sender-side optimization of reference picture selection (RPS) during real-time video coding, so that blocks containing samples of voxels that are visible in both views are more error-resiliently coded in one view only, given adaptive blending will erase errors in the other view. Further, synthesized view distortion sensitivities to texture versus depth errors are analyzed, so that relative importance of texture and depth code blocks can be computed for system-wide RPS optimization. Experimental results show that the proposed scheme can outperform the use of a traditional feedback channel by up to 0.82 dB on average at 8% packet loss rate, and by as much as 3 dB for particular frames

    Optimising Spatial and Tonal Data for PDE-based Inpainting

    Full text link
    Some recent methods for lossy signal and image compression store only a few selected pixels and fill in the missing structures by inpainting with a partial differential equation (PDE). Suitable operators include the Laplacian, the biharmonic operator, and edge-enhancing anisotropic diffusion (EED). The quality of such approaches depends substantially on the selection of the data that is kept. Optimising this data in the domain and codomain gives rise to challenging mathematical problems that shall be addressed in our work. In the 1D case, we prove results that provide insights into the difficulty of this problem, and we give evidence that a splitting into spatial and tonal (i.e. function value) optimisation does hardly deteriorate the results. In the 2D setting, we present generic algorithms that achieve a high reconstruction quality even if the specified data is very sparse. To optimise the spatial data, we use a probabilistic sparsification, followed by a nonlocal pixel exchange that avoids getting trapped in bad local optima. After this spatial optimisation we perform a tonal optimisation that modifies the function values in order to reduce the global reconstruction error. For homogeneous diffusion inpainting, this comes down to a least squares problem for which we prove that it has a unique solution. We demonstrate that it can be found efficiently with a gradient descent approach that is accelerated with fast explicit diffusion (FED) cycles. Our framework allows to specify the desired density of the inpainting mask a priori. Moreover, is more generic than other data optimisation approaches for the sparse inpainting problem, since it can also be extended to nonlinear inpainting operators such as EED. This is exploited to achieve reconstructions with state-of-the-art quality. We also give an extensive literature survey on PDE-based image compression methods

    Image Completion for View Synthesis Using Markov Random Fields and Efficient Belief Propagation

    Full text link
    View synthesis is a process for generating novel views from a scene which has been recorded with a 3-D camera setup. It has important applications in 3-D post-production and 2-D to 3-D conversion. However, a central problem in the generation of novel views lies in the handling of disocclusions. Background content, which was occluded in the original view, may become unveiled in the synthesized view. This leads to missing information in the generated view which has to be filled in a visually plausible manner. We present an inpainting algorithm for disocclusion filling in synthesized views based on Markov random fields and efficient belief propagation. We compare the result to two state-of-the-art algorithms and demonstrate a significant improvement in image quality.Comment: Published version: http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=673843

    Livrable D2.2 of the PERSEE project : Analyse/Synthese de Texture

    Get PDF
    Livrable D2.2 du projet ANR PERSEECe rapport a été réalisé dans le cadre du projet ANR PERSEE (n° ANR-09-BLAN-0170). Exactement il correspond au livrable D2.2 du projet. Son titre : Analyse/Synthese de Textur

    Fast 3D cluster tracking for a mobile robot using 2D techniques on depth images

    Get PDF
    User simultaneous detection and tracking is an issue at the core of human-robot interaction (HRI). Several methods exist and give good results; many use image processing techniques on images provided by the camera. The increasing presence in mobile robots of range-imaging cameras (such as structured light devices as Microsoft Kinects) allows us to develop image processing on depth maps. In this article, a fast and lightweight algorithm is presented for the detection and tracking of 3D clusters thanks to classic 2D techniques such as edge detection and connected components applied to the depth maps. The recognition of clusters is made using their 2D shape. An algorithm for the compression of depth maps has been specifically developed, allowing the distribution of the whole processing among several computers. The algorithm is then applied to a mobile robot for chasing an object selected by the user. The algorithm is coupled with laser-based tracking to make up for the narrow field of view of the range-imaging camera. The workload created by the method is light enough to enable its use even with processors with limited capabilities. Extensive experimental results are given for verifying the usefulness of the proposed method.Spanish MICINN (Ministry of Science and Innovation) through the project ‘‘Applications of Social Robots=Aplicaciones de los Robots Sociales.’’Publicad
    corecore