20,055 research outputs found

    Towards operational measures of computer security

    Get PDF
    Ideally, a measure of the security of a system should capture quantitatively the intuitive notion of ‘the ability of the system to resist attack’. That is, it should be operational, reflecting the degree to which the system can be expected to remain free of security breaches under particular conditions of operation (including attack). Instead, current security levels at best merely reflect the extensiveness of safeguards introduced during the design and development of a system. Whilst we might expect a system developed to a higher level than another to exhibit ‘more secure behaviour’ in operation, this cannot be guaranteed; more particularly, we cannot infer what the actual security behaviour will be from knowledge of such a level. In the paper we discuss similarities between reliability and security with the intention of working towards measures of ‘operational security’ similar to those that we have for reliability of systems. Very informally, these measures could involve expressions such as the rate of occurrence of security breaches (cf rate of occurrence of failures in reliability), or the probability that a specified ‘mission’ can be accomplished without a security breach (cf reliability function). This new approach is based on the analogy between system failure and security breach. A number of other analogies to support this view are introduced. We examine this duality critically, and have identified a number of important open questions that need to be answered before this quantitative approach can be taken further. The work described here is therefore somewhat tentative, and one of our major intentions is to invite discussion about the plausibility and feasibility of this new approach

    Attack-Surface Metrics, OSSTMM and Common Criteria Based Approach to “Composable Security” in Complex Systems

    Get PDF
    In recent studies on Complex Systems and Systems-of-Systems theory, a huge effort has been put to cope with behavioral problems, i.e. the possibility of controlling a desired overall or end-to-end behavior by acting on the individual elements that constitute the system itself. This problem is particularly important in the “SMART” environments, where the huge number of devices, their significant computational capabilities as well as their tight interconnection produce a complex architecture for which it is difficult to predict (and control) a desired behavior; furthermore, if the scenario is allowed to dynamically evolve through the modification of both topology and subsystems composition, then the control problem becomes a real challenge. In this perspective, the purpose of this paper is to cope with a specific class of control problems in complex systems, the “composability of security functionalities”, recently introduced by the European Funded research through the pSHIELD and nSHIELD projects (ARTEMIS-JU programme). In a nutshell, the objective of this research is to define a control framework that, given a target security level for a specific application scenario, is able to i) discover the system elements, ii) quantify the security level of each element as well as its contribution to the security of the overall system, and iii) compute the control action to be applied on such elements to reach the security target. The main innovations proposed by the authors are: i) the definition of a comprehensive methodology to quantify the security of a generic system independently from the technology and the environment and ii) the integration of the derived metrics into a closed-loop scheme that allows real-time control of the system. The solution described in this work moves from the proof-of-concepts performed in the early phase of the pSHIELD research and enrich es it through an innovative metric with a sound foundation, able to potentially cope with any kind of pplication scenarios (railways, automotive, manufacturing, ...)
    corecore