
Littlewood, B. (1996). Evaluation of software dependability. In: I. C. Wand & R. Milner (Eds.),

Computing Tomorrow: Future Research Directions in Computer Science. (pp. pp. 198-216). New

York, USA: Cambridge University Press. ISBN 9780521460859

City Research Online

Original citation: Littlewood, B. (1996). Evaluation of software dependability. In: I. C. Wand & R.

Milner (Eds.), Computing Tomorrow: Future Research Directions in Computer Science. (pp. pp. 198-

216). New York, USA: Cambridge University Press. ISBN 9780521460859

Permanent City Research Online URL: http://openaccess.city.ac.uk/1629/

Copyright & reuse

City University London has developed City Research Online so that its users may access the

research outputs of City University London's staff. Copyright © and Moral Rights for this paper are

retained by the individual author(s) and/ or other copyright holders. All material in City Research

Online is checked for eligibility for copyright before being made available in the live archive. URLs

from City Research Online may be freely distributed and linked to from other web pages.

Versions of research

The version in City Research Online may differ from the final published version. Users are advised to

check the Permanent City Research Online URL above for the status of the paper.

Enquiries

If you have any enquiries about any aspect of City Research Online, or if you wish to make contact

with the author(s) of this paper, please email the team at publications@city.ac.uk.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by City Research Online

https://core.ac.uk/display/9559407?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk

Evaluation of Software
Dependability

Bev Littlewood
Centre for Software Reliability

City University
Northampton Square
London EC1V 0HB

1 On disparity, difficulty, complexity, novelty - and
inherent uncertainty

It has been said that the term software engineering is an aspiration not a
description. We would like to be able to claim that we engineer software, in the same
sense that we engineer an aero-engine, but most of us would agree that this is not
currently an accurate description of our activities. My suspicion is that it never will be.

From the point of view of this essay - i.e. dependability evaluation - a major
difference between software and other engineering artefacts is that the former is pure
design. Its unreliability is always the result of design faults, which in turn arise as a
result of human intellectual failures. The unreliability of hardware systems, on the other
hand, has tended until recently to be dominated by random physical failures of
components - the consequences of the ‘perversity of nature’. Reliability theories have
been developed over the years which have successfully allowed systems to be built to
high reliability requirements, and the final system reliability to be evaluated accurately.
Even for pure hardware systems, without software, however, the very success of these
theories has more recently highlighted the importance of design faults in determining
the overall reliability of the final product. The conventional hardware reliability theory
does not address this problem at all.

In the case of software, there is no physical source of failures, and so none of
the reliability theory developed for hardware is relevant. We need new theories that will
allow us to achieve required dependability levels, and to evaluate the actual
dependability that has been achieved, when the sources of the faults that ultimately
result in failure are human intellectual failures.

The importance of human activity, and human fallibility, in the design process
shows itself in several ways. One of these is the enormous disparity that is concealed
under the name of ‘software’. Since much of the difficulty of writing software arises
from the particular nature of the application domain, it seems unlikely that software
engineering will ever be a coherent discipline in the way that civil or electrical
engineering are. Rather we should look to differences in the tasks that face the software
designer in different applications for an explanation of the varying success - particularly
varying dependability - with which systems are built.

Secondly, the question of ‘difficulty’ of the problems we tackle in software is
not well understood. It is intuitively obvious that some problems are intrinsically harder
than others: real-time problems such as aircraft flight control are probably harder to
solve than, say, those involving accountancy, word-processing, etc, or those involving
rigorously expressed mathematics. Models of human intellectual ability, particularly

propensity to failure, are not effective in other disciplines - we do not have good ways
of characterising difficulty in mathematics, for example. We should not be surprised
that we have a poor understanding of what makes software problems hard, but equally
we should be aware that it is this variation in hardness that explains much of the
variation in the observed dependability of the systems we produce.

The issue of difficulty, or hardness, of a problem is distinct from the notion of
the complexity of its solution. Complexity has been recognised as an important factor in
determining the dependability of software products. It is generally agreed that we
should avoid complexity if we desire to achieve high dependability, particularly in the
case of safety-critical systems. Similar arguments have also been used for dependability
evaluation. Certainly it has been said that the utmost simplicity is a prerequisite for
being able to have a sufficiently complete understanding of a system that one could
claim that it was absolutely free of design faults. Intuitively, it seems plausible that,
even when we cannot make such a strong claim as complete perfection, nevertheless
keeping things as simple as possible will be ‘a good thing’. Unfortunately, there are no
satisfactory measures of complexity; there is not even an agreed means of deciding
incontrovertibly that A is more complex than B. The few proposed ‘measures’ of
complexity turn out in practice to be merely measures of ‘size’ [Fenton 1991]. More
seriously, no useful relationship has been established between such measures and
system attributes such as dependability.

Finally, the typically high degree of novelty of software systems distinguishes
them from more conventional engineering. At the most mundane level this is manifest
in a tendency to reinvent the wheel. In spite of much rhetoric about software reuse, this
is still quite rare compared with the reuse of tried and tested design in other engineering
disciplines. When we do not learn from previous experience, we run higher risks of
failure from design faults. The most serious source of novelty, however, arises from
the very success of software-based systems in delivering extensive functionality. It is
clear that technological ‘progress’ has accelerated sharply with the widespread use of
computer-based systems, and it is now commonplace to see systems that it would be
unthinkable to implement purely via conventional hardware engineering: fly-by-wire
and unstable aircraft control systems; railway signalling and control systems that
provide greater track utilisation by allowing less physical separation of trains, etc. If we
consider the evolution of civil aircraft over the past fifty years, it could be argued that
the greatest discontinuity in terms of design novelty occurred with the introduction of
computers in engine controllers and flight control systems. In certain industries there
seems to be an almost cavalier attitude to the use of software - if it can be done it will be
done. Unfortunately, knowing that certain novel functionality can in principle be
delivered by software is not the same as knowing that it will be delivered with the
required dependability.

If disparity, difficulty, complexity and novelty are so important, why do we not
have adequate theories that account for their rôles in software engineering and allow us
to control their impact? One reason lies, I think, in our aspiration to be a ‘proper’
engineering discipline, with a genuine scientific underpinning. This laudable aim is too
often taken to mean that we must only engage with that which is objective and external
to the human - preferably, in fact, with mathematics. Unfortunately, the human element
in what we do seems paramount, and any theories that discount it will be doomed to
failure. Thus exhortations to ‘mathematise’ software engineering, so as to stay in the
world of the logical and deterministic, will at best only address a vanishingly small
class of problems, and at worst may give a false confidence to the designers faced with
those other real-world problems. My point here, in singling out (some would say
caricaturing) a view of formal methods, is not to argue that it has no merit as a means of
aiding system design. Rather it is to claim that for almost all real systems the problem
of evaluating dependability involves an inherent uncertainty that arises from the
potential fallibility of humans when they are faced with solving difficult, novel
problems.

I cannot claim that the probabilistic approach to software dependability is a
solution to the problems I have described. On the other hand, notwithstanding its
considerable limitations, it does recognise the uncertainty present in much of what we
do. A better understanding than we currently have will only come about by
acknowledging the inevitability of this uncertainty.

2 The need for evaluation methods

It has become a truism that society depends more and more upon the correct
functioning of software. For the most part the trust we have so far placed in computer
systems has been vindicated: instances of catastrophic system failure, and consequential
loss, arising from software faults are surprisingly rare. Unfortunately, system
complexity continues to rise, and the extent of our dependence increases. It would be
rash merely to assume that future systems can be depended upon - rather we need to be
able to decide in each instance whether such dependence is justified. The subject of this
essay, then, is the evaluation of dependability in the possible presence of design faults,
particularly software faults.

The most dramatic issues in dependability arise in safety-critical applications
when human life can be at risk in the event of failure. I shall begin by briefly listing
some examples of real and proposed systems, with their required levels of
dependability:

• Flight-critical avionics for civil aircraft require a failure rate better than 10-9 per
hour [RTCA 1992]. Examples include the existing ‘fly-by-wire’ system in the
Airbus A320 [Rouquet & Traverse 1986], and similar systems planned for
aircraft such as the Boeing 777. Such requirements may be several orders of
magnitude beyond what can actually be achieved but, more importantly, they
pose insurmountable problems to those responsible for their validation.

• The software-driven Primary Protection System (PPS) of the Sizewell B reactor
originally required a better than 10-4 probability of failure upon demand (pfd)
[Hunns & Wainwright 1991]. As a result of concern expressed about the
likelihood of being able to demonstrate such a level, an analysis of the overall
reactor safety case was carried out which showed that, in fact, 10-3 pfd would
be sufficient. There is general agreement that such modest levels are probably
achievable, even for complex systems such as this. These levels can also, in
principle, be validated.

• The Advanced Automation System (AAS), the new US air traffic control
system, has a dependability requirement expressed as an availability: better than
3 seconds down-time per annum [Avizienis and Ball 1987]. It is curious that
there does not appear to be a reliability or safety requirement: i.e. that safety-
related events will only occur at an acceptably low rate.

• Computer control is becoming increasingly common in medical applications.
Examples include radiation therapy machines [Jacky et al. 1991] (this
application area is noteworthy for providing one of the few well-documented
examples of computer failure resulting in loss of human life), heart pace-makers
[Mojdehbakhsh et al. 1994], and even robotic surgeons.

These examples illustrate several things. In the first place, even for safety
critical systems there is great variation in the levels of dependability that are required.
Some systems seem to need levels that are probably several orders of magnitude from
what we can actually achieve - and are certainly orders of magnitude beyond what it is
possible to evaluate quantitatively in a scientifically convincing way. Some safety
critical systems, on the other hand, have surprisingly modest requirements. Certain

types of heroic surgery upon terminally ill patients may only be possible with computer
assistance; in such cases even a low probability of success may be better than the status
quo. Secondly, the nature of the requirement varies from one application to another. In
systems that need to be working continuously, such as an air traffic control system,
availability and reliability are both important. Even in those cases where reliability is the
most important issue, the precise way in which this is specified needs some care..

Consideration of these examples of safety-critical systems should not deceive us
into thinking that it is only here that the validation of acceptable dependability levels is
of importance. There are many other circumstances where, although human life might
not be at risk, nevertheless a high dependability needs to be assured because the
consequences of failure can be catastrophic: some tightly coupled financial systems
come to mind in this context. And of course in more mundane applications, although
ultra-high dependability is not required, users will still demand that a system is
sufficiently dependable. The fallibility of the author’s word-processor, together with
my tendency to forget to save documents, results in frequent minor crises. It could be
argued that vendors who are prepared to demonstrate that a software product achieves a
particular level of reliability, even though this is relatively modest, will gain the same
market advantages that accrued to Japanese manufacturers of electronic consumer
goods in the past couple of decades. Certainly this approach would be preferable to
some current software ‘warranties’ which are textbook examples of caveat emptor.

Adjudication between different competing software development methods is
another area where dependability evaluation is important. If we can demonstrate that a
particular approach delivers more reliable software for a given cost we would be well-
disposed to use it. At present, recommendations about good practice are at best based
on anecdotal evidence, at worst are dishonest special pleading with no empirical
support.

The above are some of the reasons why we need to be able to measure the
dependability of software. In the next section we shall look at the problem of how this
can be done, briefly describing the current state of the art before going on to consider
some issues that need further research.

3 Where we are now

The word dependability has come to embrace all those aspects of behaviour
upon which the user of a system might need to place dependence: it thus includes
reliability, safety, availability and security.

Measures of dependability are necessarily probabilistic because of an inherent
uncertainty. In the case of reliability, for example, this uncertainty in the failure
behaviour arises directly from two main sources. In the first place, there is uncertainty
about the program itself, inasmuch as we do not know which of the inputs will, when
executed, cause failure. Secondly, the operational environment is variable in a non-
deterministic way: we cannot say with certainty which inputs will be presented to a
program in the future. The net result is that we cannot predict with certainty when
failures will occur in the future.

These remarks concern the failure behaviour of a system with constant
reliability. There is a further cause of uncertainty when we debug programs and thus
cause reliability growth. When we identify a fault, as a result of experiencing a failure,
we cannot be certain that an attempt to fix the fault will be successful - indeed, it is
common to introduce novel faults at such fix attempts. This is another aspect of the
human fallibility that was discussed earlier. Even if the fix is successful, we do not
know the ‘size’ of the fault that has been removed, i.e. there will be uncertainty about
the magnitude of the improvement in reliability that will take place even in the event of a
perfect fix.

A great deal of work has been carried out on the problem of estimating and
predicting the reliability of a program as it is being debugged during test: the reliability
growth problem. There are now many stochastic models which purport to be able to
provide such predictions [Jelinski & Moranda 1972, Littlewood & Verrall 1973, Musa
1975, Goel & Okumoto 1979, Littlewood 1981, Musa & Okumoto 1984]; see [Xie
1991] for a useful survey of this work. Although none of these can be relied upon
always to give reliability measures that are accurate, recent techniques allow us to check
whether they are providing accurate results on a particular software system [Abdel-
Ghaly et al. 1986, Littlewood 1988]. It is often possible to use these techniques to
allow a model to ‘learn’ from its past errors and so recalibrate future reliability
predictions [Brocklehurst et al. 1990]. The bottom line is that it is usually possible to
obtain accurate reliability measures from software reliability growth data, and to know
that confidence in such figures is justified.

Another area where modelling has had some success is in the incorporation of
structural information about the program into the reliability estimation process. These
models aim to emulate the classical hardware procedures which allow the reliability of a
system to be computed from knowledge of the reliabilities of its constituent
components, together with information about the organising structure [Barlow &
Proschan 1975]. Whilst these hardware theories are essentially static, the software
approach must be dynamic and emulate the way in which software components
(modules) are successively exercised in time. This is done by assuming Markovian
[Littlewood 1976, Siegrist 1988a, Siegrist 1988b] or semi-Markovian [Littlewood
1976, Littlewood 1979] exchanges of control between modules. Each module can
itself fail with its own unique failure rate, and the exchanges of control between
modules are failure-prone in the most general formulation. The potential advantage of
this approach is that it allows the reliability of a system to be predicted before it is built,
in the event that it is to be built of modules whose failure history in previous use is
known.

Other structural models have been studied in order to model the failure
behaviour of fault-tolerant software based on the idea of design diversity. The great
difficulty here is that we know from experimental studies [Knight & Leveson 1986,
Eckhardt et al. 1991] that it would be too optimistic to assume that diverse software
versions fail independently. This precludes the simple modelling assumptions that are
sometimes made in the case of hardware redundancy. Estimating the actual degree of
dependence in failure behaviour between two ‘diverse’ software versions seems very
difficult; indeed, it seems as hard as simply treating the whole fault-tolerant system as a
black box and estimating its reliability directly by observing its failure behaviour [Miller
1989].

These are some of the areas where there have been advances recently in our
ability to measure and predict the reliability of software. It must be admitted, however,
that this success story relates only to those cases where the reliability being measured is
quite modest. It is easy to demonstrate that reliability growth techniques are not
plausible ways of acquiring confidence that a program is ultra-reliable [Littlewood
1991; Littlewood and Strigini 1991; Parnas, Schowan et al. 1990]: the testing times
needed become astronomically large as a result of a law of diminishing returns, and the
issue of whether the test inputs are truly representative of those the system will meet in
operational use becomes a serious one. Similarly, as we have seen, the effectiveness of
fault tolerance is limited by the degree of dependence in the failure processes of the
different versions, and experiments [Knight & Leveson 1986, Eckhardt et al. 1991]
suggest that this will be significant. Arguments about the reliability of a software
system based upon the efficacy of the development methods used will probably remain
weak, even when we have good evidence for such efficacy - and this is not the case at
present.

If we really need an assurance of ultra-high system reliability, and this seems
inescapable in some safety-critical applications, it seems that this will have to be
achieved without depending upon software to be ultra-reliable. In fact, of course, the
problem is even worse, since everything we have said about software applies to design
faults in general. Any claims that particular systems are safe because their control
systems are ultra-reliable must take note of these unpalatable facts. The only possible
exceptions are those systems that are so simple that it can be argued that they are
completely correct (and are a complete and accurate embodiment of their high level
requirements, which must also be extremely simple)1. This observation may give us
some leeway to build computer-based systems, with the extra non-safety functionality
that these can deliver, that are nevertheless measurably safe, by confining the safety-
critical functionality in a tightly controlled kernel.

4 Future work: needs and practicalities

Dependability modelling is an area of research which is largely driven by the
problems of system validation that people meet in real life. Rather than pretend that
there is a coherent organising framework, then, this section will be presented in terms
of the different problems that need to be addressed.

It seems inevitable that social and political concerns about safety critical systems
will continue to play a large rôle in deciding which problems are important. However, it
may be the case that some of this work will find its widest application in more modest
applications. The success of manufacturers of fault-tolerant hardware in selling systems
for applications such as financial services, for example, might suggest that software
fault-tolerance techniques might also move out of their present ghetto of safety-critical
applications. Although we shall begin with some problems of dependability evaluation
that presently concern safety-critical systems, it should be born in mind that solutions to
these problems may have much wider applicability.

4.1 Safety critical systems and the problem of assuring very
high dependability

It seems clear that computers will play more and more critical rôles in systems
upon which human lives depend. Already, systems are being built that require
extremely high dependability - the figure of 10-9 probability of failure per hour of flight
that has been stated as the requirement for recent fly-by-wire systems in civil aircraft is
not exceptional. There are clear limitations to the dependability levels that can be
achieved and assured when we are building systems of a complexity that precludes us
from making claims that they are free of design faults.

Although a complete solution to the problem of assessing ultra-high
dependability is beyond us, there is certainly room for improvement on what we can do
presently. Probabilistic and statistical problems abound in this area, where it is
necessary to squeeze as much as we can from relatively small amounts of often

1 It may at first seem contradictory that I would believe your claim that the failure rate is zero, but

regard as untenable your assertion that this was a system with a failure rate of 10-9 per hour - after
all, the former is the stronger claim. In fact, the reasoning in the two cases will be very different. In
the first case it will be completely logical and deterministic: you will be asserting that the system is
sufficiently simple that you have convinced yourself, and are trying to convince me, that it contains
no design faults and thus cannot fail (at least as a result of design faults). In the second case, you are
acknowledging the possible presence of design faults, and thus are in the realm of probability, but
you are claiming that their impact upon the reliability is, literally, incredibly small. I might accept
the first argument, but I would not accept the second.

disparate evidence. The following are some of the areas which could benefit from
investigation.

Design diversity, fault tolerance and general issues of dependence

Clearly, one promising approach to the problem of achieving high dependability
(here reliability and/or safety) is design diversity: building two or more versions of the
required program and allowing an adjudication mechanism (e.g. a voter) to operate at
run-time. Although such systems have been built and are in operation in safety-critical
contexts, there is little theoretical understanding of their behaviour in operation. In
particular, the reliability and safety models are quite poor.

For example, there is ample evidence that, in the presence of design faults, we
cannot simply assume that different versions will fail independently of one another.
Thus the simple hardware reliability models that involve mere redundancy, and assume
independence of component failures, cannot be used. It is only quite recently that
probability modelling has started to address this problem seriously [Eckhardt & Lee
1985, Littlewood & Miller 1989]. These new models provide a formal conceptual
framework within which it is possible to reason about the subtle issues of conditional
independence involved in the failure processes of design diverse systems. They provide
a link between informal notions such as ‘common fault’, and precise formulations of
the probabilistic dependence between the failure behaviours of different versions. The
key novel idea here is that of variation of ‘difficulty’ over the input space of a particular
problem: those inputs that are most ‘difficult’ are ones that will tend to have highest
chance of failure when executed by all versions. The notion of difficulty in these
models is an abstract one, but it is an attempt to represent the intuitive concept of
difficulty discussed earlier. In the Eckhardt and Lee work it is assumed that something
that is difficult for one team will also be difficult for another; our own work, on the
other hand, allows there to be differences between the teams in what they find difficult
(perhaps because they are using development tools that have different strengths and
weaknesses).

There is possibly a subtle and important distinction to be made here between
identical mistakes and common faults. In experiments like that of Knight and Leveson,
the different teams sometimes made exactly the same mistakes (for example in
misunderstanding the specification). In the Eckhardt and Lee model, there is a
propensity for different teams to make a mistake in similar circumstances, but not a
requirement that the nature of the mistakes be the same. It is an open question worthy
of investigation as to whether this distinction is important. For example, what are the
implications for the shapes of individual fault regions in the input space? (An interesting
experiment by Amman and Knight explored the shapes of ‘faults’ in subsets of the
input space [Amman & Knight 1988])

Further probabilistic modelling is needed to elucidate some of the other complex
issues here. For example, there has been little attention paid to modelling the full fault
tolerant system, with diversity and adjudication. In particular, we do not understand the
properties of the stochastic process of failures of such systems. If, as seems likely,
individual program versions in a real-time control system exhibit clusters of failures in
time, how does the cluster process of the system relate to the cluster processes of the
individual versions? Answering questions of this kind requires information about the
shapes of the fault regions, discussed above, and about the nature of execution
trajectories in the input space. Although such issues seem narrowly technical, they are
of vital importance in the design of real systems, whose physical integrity may be
sufficient to survive one or two failed input cycles, but not many.

Judgement and decision-making framework

Although probability seems to be the most appropriate mechanism for
representing the uncertainty that we have about system dependability, there are other
candidates such as Dempster-Shafer [Shafer 1976] and possibility theories [Dubois &
Prade 1988]. These latter might be plausible alternatives in those safety-critical contexts
where we require quantitative measures in the absence of data - for example, when we
are forced to rely upon the engineering judgement of an expert. Further work is needed
to elucidate the relative advantages and disadvantages of the different approaches for
this specific application.

There is evidence that human judgement, even in ‘hard’ sciences such as
physics, can be seriously in error [Henrion & Fischhoff 1986]: people seem to make
consistent errors, and to be too optimistic in their own judgement of their likely error It
is likely software engineering judgements are similarly fallible, and this is an area
where some empirical investigation is called for. In addition, we need formal means of
assessing whether judgements are well-calibrated, as well as means of recalibrating
those judgement and prediction schemes (humans or models) which have been shown
to be ill-calibrated. This problem has some similarity to the problems of validation of
the predictions emanating from software reliability models, in which the prequential
ideas of Dawid have proved very useful [Dawid 1984, Brocklehurst et al. 1990].

It seems inevitable that when we are reasoning about the fitness for purpose of
safety-critical systems, the evidence upon which we shall have to make our judgements
will be disparate in nature. It could be failure data, as in the reliability growth models;
human expert judgement; evidence of efficacy of development processes; information
about the architecture of the system; evidence from formal verification. If the required
judgement depends upon a numerical assessment of the dependability of the system,
there are clearly important issues concerning the composition of evidence from different
sources and of such different kinds. These issues may, indeed, be overriding when we
come to choose between the different ways of representing uncertainty - Bayes, for
example, may be an easier way of combining information from different sources of
uncertainty than possibility theory.

A particularly important problem concerns the way in which we can incorporate
deterministic reasoning into our final assessment and judgement of a system. Formal
methods of achieving dependability are becoming increasingly important, ranging from
formal notations to assist in the elicitation and expression of requirements, through to
full mathematical verification of the correspondence between a formal specification and
an implementation. One view would be that these approaches to system development
remove a certain type of uncertainty, leaving others untouched (uncertainty about the
completeness of the formal specification, the possibility of incorrect proof, etc). In
which case we need to factor into our final assessment of the dependability of a system
the contribution that comes from such deterministic, logical evidence, keeping in mind,
though, that there is an irreducible uncertainty about the failure behaviour of a system
arising from different sources.

Systems issues

Designers need help in making decisions throughout the design process, but
none more so than those at the very highest level. For example, the allocation of
dependence between computers, hardware and humans often seems to be carried out
rather informally. In addition, real systems often pose difficult problems of assessment
because of these early trade-offs

In the Airbus A320, for example, an early decision was to take certain
responsibilities out of the hands of the pilot, and place a great deal of trust in the
computerised fly-by-wire system. Furthermore, most of the hardware was removed

that would have allowed a pilot, in extremis, to fly the aircraft manually: in the event of
complete loss of the computer control system only rudder and tail trim can be activated
manually.

In the Sizewell B nuclear reactor, the software-based Primary Protection
System (PPS) is backed up by a very much simpler hard-wired secondary system
(SPS), which in the event of failure of the PPS can handle most but not all demands.
This decision was taken early in the development. Quite late in the day it became clear
that it was going to be very difficult to justify having met the original requirement for
the PPS of 10-4 probability of failure upon demand (or better) - by which time it was
too late to increase the coverage of the SPS without considerable delay to the project. A
recalculation of the overall reactor safety case then showed that in fact a PPS
requirement of only 10-3 pfd would satisfy the overall plant safety requirement - at the
time of writing this seems to have saved the day, but somewhat fortuitously.

In taking these very early decisions, designers need help in two ways. Firstly,
they need to be able to set realistic targets for the dependability of the various system
components in order that there will be a good chance of the overall system meeting its
reliability and safety targets. In particular, this means that they need to be able to set
such targets for software. The example of the A320 illustrates the problem: here the
10-9 comes not from a reasoned view of what is achievable with software, but from a
crude allocation of responsibilities among many critical subsystems in order to arrive at
an overall figure of 10-7 for the aircraft as a whole. Most of us would agree that 10-9 is
far beyond what is actually achievable in software for a system as complex as this. The
10-4 goal for the PPS, on the other hand, is a more considered judgement: it was
devised as a general claim limit for critical software in UK nuclear power stations
[CEGB 1982a, CEGB 1982b].

The second area where designers need help is in designing for eventual
validation. It may be that here formal methods and probability modelling can work
together. For example, in certain cases it may be possible to argue deterministically
about safety - essentially prove that certain classes of safety-related events cannot occur
- and leave only reliability to be treated probabilistically. This may have been possible
in the Sizewell example, where a software-based, highly functional PPS could have
been completely backed up by a simple SPS, guaranteed free of design faults. Such a
solution provides the advantages of the software functionality most of the time, but in
extremis provides the required system safety without unreasonable dependence upon
the software.

4.2 The rôle of evaluation at modest levels of dependability

In this section I will examine a few of the more important general issues
concerning dependability evaluation and its relationship to software engineering. There
has been no attempt here to be exhaustive, but rather to pick out some areas where a
probabilistic and statistical approach could be helpful.

Experimentation and data collection, general statistical techniques

Software engineering is an empirical subject. Questions concerning issues such
as the efficacy of software development methods ought to be resolved by observation
of real practice or by experiment. Instead, a dearth of data has been a problem in much
of this area since its inception. There are still only a handful of published data sets even
for the software reliability growth problem, and this is by far the most extensively
developed part of dependability modelling. Sometimes the problem arises because there
is no statistical expertise on hand to advise on ways in which data can be collected cost
effectively. It may be worthwhile attempting to produce general guidelines for data

collection that address the specific difficulties of the software engineering problem
domain. Confidentiality issues are a problem here - industrial companies are reluctant
to allow access to failure data because it is thought that this will cause people to think
less highly of their products. More use could be made of anonymous reporting methods
to overcome such difficulties: even in the case of safety critical system failures it might
be possible to adopt confidential reporting as has been done successfully for air miss
incidents. An alternative would be to make reporting of safety-related incidents
mandatory.

Experimentation, with notable exceptions, has so far played a low-key rôle in
software engineering research. The most extensive research involving experiments has
been, somewhat surprisingly in view of its difficulty and cost, in investigation of the
efficacy of design diversity [Anderson et al. 1985, Knight & Leveson 1986, Eckhardt
et al. 1991]. There are other areas where experimental approaches look feasible and
should be encouraged. The most obvious question to address would be the general one
of which software development methods are the most cost effective in producing
software products with desirable attributes such as dependability. Statistical advice on
the design of such experiments would be essential, and it may be that innovation in
design of experiments could make feasible some investigations here that presently seem
too expensive to contemplate.

The main problem in this kind of statistical approach to evidence arises from the
need for replication over many software products. On the other hand, there are some
areas where experiments can be conducted without the replication problem being
overwhelming. These involve the investigation of quite restricted hypotheses about the
effectiveness of specific techniques. An example concerns questions related to software
testing: are the techniques that are claimed to be effective for achieving reliability (i.e.
effectiveness of debugging) significantly better than those, such as operational testing,
that will allow reliability to be measured? Such evidence that we have suggests that
testing in a way that allows reliability measurement can also be efficient at debugging
[Duran & Ntafos 1984]: if this can be shown to be generally true, it would be an
important factor in encouraging practitioners to obtain numerical estimates of product
reliability.

The influence of the software development process, and other factors,
on dependability

Some of the most important and contentious issues in software engineering
concern the efficacy of different practices and methods. There is surprisingly little real
evidence to support even the most widely accepted claims, for example about the
effectiveness of structured programming. In more contentious areas, such a formal
methods, the picture is even more bleak. But some tools for such investigations are
largely in place. Issues of comparative effectiveness are largely ones of costs and
benefits; costs are relatively easy to track, and product reliability is one benefit that is
now generally measurable with reasonable accuracy.

The main difficulty in such investigations, when they are based upon real
product development, is to identify and control those confounding factors which can
interfere with the simple hypothesis under test. Thus if we want to examine whether
process A can deliver a given level of reliability more cost-effectively than B, we need
to be able to exclude the influence of factors such as quality of personnel, difficulty of
problem being tackled, and so on. The simplest way of doing this involves
comparisons where all these factors are kept constant, with only the process factors
under examination being allowed to vary. Unfortunately, this requires replication of the
entire development, which is usually prohibitively expensive for realistic software
products (even where this has been done, at great expense, in investigations of the
effectiveness of design diversity, the problems tackled have been somewhat artificial).

There are other statistical approaches to these problems. If we could identify all
the confounding factors, and measure them, we could build larger regression models.
The problem here is that we would require quite large samples of different software
product developments, which brings us back to the data collection difficulties of the
previous section.

Because of all these difficulties, most investigations of the efficacy of software
development process have involved case studies: essentially just single developments in
which measurement of interesting factors takes place. Clearly there are strong
limitations to what can be concluded from such studies, particularly the extent to which
the conclusions generalise outside the immediate context. Nevertheless, realism
suggests that this may be the best we can hope for. Even here, it is vital that
investigation proceeds within a proper measurement framework [Fenton 1991], and is
not reduced to mere anecdote.

The influence of the operational environment on dependability

It can be misleading to talk of ‘the’ reliability of a program: just as is the case in
hardware reliability, the reliability of a program will depend on the nature of its use.
For software, however, we do not have the simple notions of stress that are sometimes
plausible in the hardware context. It is thus not possible to infer the reliability of a
program in one environment from evidence of its failure behaviour in another. This is a
serious difficulty for several reasons.

In the first place, we would like to be able to predict the operational reliability of
a program from test data. The only way that this can be done at present is to be certain
that the test environment - i.e. the type of usage - is exactly similar to the operational
environment. Real software testing regimes are often deliberately made different from
operational ones, since it is claimed that in this way reliability can be achieved more
efficiently: this argument is similar to hardware stress testing, but is much less
convincing in the software context.

A further reason to be interested in this problem is that most software goes out
into the world and is used very differently by different users: there is great disparity in
the population of user environments. Vendors would like to be able to predict how
different users will perceive the reliability of the product, but it is clearly impractical to
replicate every different possible operational environment in test. Vendors would also
like to be able to predict the properties of the population of users Thus it might be
expected that a less disparate population of users would be preferable to a more
disparate one: in the former case, for example, the problem reports from the different
sites might be similar and thus involve less costs in fault fixing.

The data requirements for studies of operational environments are much less
severe than for those investigating the relationship between process and product
attributes. Manufacturers of, say, operating systems should have considerable
quantities of information about the different environments in which a particular product
operates. If we could identify interesting explanatory variables - a problem for software
engineers rather than statistical modellers - it should be possible to use standard
statistical techniques to predict reliability in a novel environment, and other things of
interest. There may be other ways of forming stochastic characterisations of operational
environments. Markov models of the successive activations of modules, or of
functions, have been proposed [Littlewood 1979, Siegrist 1988a, Siegrist 1988b], but
have not been widely used. Further work on such approaches, and on the problems of
statistical inference associated with them, seems promising.

Stochastic models for security evaluation

Ideally, a measure of the security of a system should capture quantitatively the
intuitive notion of ‘the ability of the system to resist attack’. That is, it should be
operational, reflecting the degree to which the system can be expected to remain free of
security breaches under particular conditions of operation (including attack). Instead,
current security levels [NCSC 1985] at best merely reflect the extensiveness of
safeguards introduced during the design and development of a system. Whilst we
might expect a system developed to a higher level than another to exhibit ‘more secure
behaviour’ in operation, this cannot be guaranteed; more particularly, we cannot infer
what the actual security behaviour will be from knowledge of such a level.

Clearly there are similarities between reliability and security and it would be
desirable to have measures of ‘operational security’ similar to those that we have for
reliability of systems. Very informally, these measures could involve expressions such
as the rate of occurrence of security breaches (cf rate of occurrence of failures in
reliability), or the probability that a specified ‘mission’ can be accomplished without a
security breach (cf reliability function). Recent work [Littlewood, Brocklehurst et al.
1994 (to appear)] has started to investigate this analogy between reliability and security
and a number of important open questions have been identified that need to be
answered before the quantitative approach can be taken further.

Empirical investigation of these issues is difficult: problems of data collection
here are even more acute than in the rest of software engineering. Partly this is because
security events, by their very nature, are incompletely observed. Another reason is that
the security community has tended to concentrate on the problems of ultra-high
security, since much of the research funding here comes from military and other
government sources. Evaluating operational security at these very high levels is likely
to be even more difficult than the problems of evaluating ultra-high reliability - and we
have seen that these are essentially insurmountable. Work on stochastic models of
security should therefore concentrate on systems which have more modest requirements
- analogous to the work that has been successful in reliability modelling.

One approach to the data problem that might be worth pursuing involves
experimenting with instrumented systems and sanctioned attackers. Some tentative
steps have been taken in this direction [Brocklehurst et al. 1994] with qualified success.

5 Conclusion

In this essay I have tried to make clear what I believe to be certain unpalatable
truths, and to sugar this pill with some suggestions as to where modest progress might
be made.

The first point I wanted to make was that there is an inherent uncertainty about
the behaviour of the systems we build, which forces us to talk about their dependability
in the language of probability and statistics. This is unpalatable to many computer
scientists, who conclude from the deterministic predictability of the machine itself that
we can have similar determinism at the macroscopic level of the behaviour observed by
a user. Whilst I will concede that arguments of fault-freeness are possible, at the price
of only building systems of great simplicity, I think that in practice such simplicity will
never be achieved. Certainly, I have never seen a computer system used in a context
where it would be plausible to claim that the software could never fail.

If readers concede this first point, it seems to me that questions about whether a
software-based system is fit for its purpose become questions about whether a
particular probabilistic dependability level has been achieved - a problem of numerical
evaluation. It is easy to show that we can only answer such questions when the level

required is quite modest: we cannot gain confidence in ultra-high dependability without
obtaining (literally) incredible amounts of evidence.

I think these difficulties have serious implications for the builders of safety-
critical systems, and for society at large. It is easy to be seduced by the extensive
functionality that can be provided by software, without the constraints of ensuing
hardware unreliability. Some of the benefits from this functionality may indeed be
claimed to bring enhanced safety. But at the end of the day we have a right to demand
that the system is sufficiently safe, and this cannot be demonstrated for some of the
systems that we are building even now. Perhaps now is a time to take stock and
consider some retrenchment - for example, deciding that an unstable civil airliner is not
a good thing.

All is not gloom. Systems with these dramatic requirements are not that
common. For more modest systems, with modest dependability requirements,
evaluation is possible. Further research will extend this achievement - but only
relatively modestly.

Acknowledgements

My work in this area has been funded over the years by several agencies, too
numerous to name here. Most recently, my thinking about the limitations to the
evaluation of software dependability has been supported by the CEC ESPRIT
programme under project number 6362, PDCS2.

References
[Abdel-Ghaly et al. 1986] A. A. Abdel-Ghaly, P. Y. Chan and B. Littlewood,

“Evaluation of Competing Software Reliability Predictions”, IEEE Trans. on
Software Engineering, 12 (9), pp.950-67, 1986.

[Amman & Knight 1988] P. E. Amman and J. C. Knight, “Data diversity: an approach
to software fault tolerance”, IEEE Trans on Computers, 37 (4), pp.418-25,
1988.

[Anderson et al. 1985] T. Anderson, P. A. Barrett, D. N. Halliwell and M. R.
Moulding, “An Evaluation of Software Fault Tolerance in a Practical System”,
in Proc. 15th Int. Symp. on Fault-Tolerant Computing (FTCS-15), (Ann
Arbor, Mich.), pp.140-5, 1985.

[Barlow & Proschan 1975] R. E. Barlow and F. Proschan, Statistical Theory of
Reliability and Life Testing, 290p., Holt, Rinehart and Winston, New York,
1975.

[Brocklehurst et al. 1990] S. Brocklehurst, P. Y. Chan, B. Littlewood and J. Snell,
“Recalibrating software reliability models”, IEEE Trans Software Engineering,
16 (4), pp.458-70, 1990.

[Brocklehurst et al. 1994] S. Brocklehurst, B. Littlewood, T. Olovsson and E.
Jonsson, “On Measurement of Operational Security”, in COMPASS 94 (9th
Annual IEEE Conference on Computer Assurance), (Gaithersburg), pp.257-66,
IEEE Computer Society, 1994.

[CEGB 1982a] CEGB, Design Safety Criteria for CEGB Nuclear Power Stations,
Central Electricity Generating Board, N°HS/R167/81, 1982a.

[CEGB 1982b] CEGB, Pressurised Water Reactor Design Safety Guidelines, Central
Electricity Generating Board, N°DSG2 (Issue A), 1982b.

[Dawid 1984] A. P. Dawid, “Statistical theory: the prequential approach”, J Royal
Statist Soc, A, 147, pp.278-92, 1984.

[Dubois & Prade 1988] D. Dubois and H. Prade, Possibility Theory: An Approach to
Computerised Processing of Uncertainty, Plenum Press, New York, 1988.

[Duran & Ntafos 1984] J. T. Duran and S. Ntafos, “An evaluation of random testing”,
IEEE Trans Software Engineering, 10 (4), pp.438-44, 1984.

[Eckhardt et al. 1991] D. E. Eckhardt, A. K. Caglayan, J. C. Knight, L. D. Lee, D.
F. McAllister, M. A. Vouk and J. P. J. Kelly, “An experimental evaluation of
software redundancy as a strategy for improving reliability”, IEEE Trans
Software Eng, 17 (7), pp.692-702, 1991.

[Eckhardt & Lee 1985] D. E. Eckhardt and L. D. Lee, “A Theoretical Basis of
Multiversion Software Subject to Coincident Errors”, IEEE Trans. on Software
Engineering, 11, pp.1511-7, 1985.

[Fenton 1991] N. E. Fenton, Software Metrics: A Rigorous Approach, Chapman and
Hall, London, 1991.

[Goel & Okumoto 1979] A. L. Goel and K. Okumoto, “Time-Dependent Error-
Detection Rate Model for Software and Other Performance Measures”, IEEE
Trans. on Reliability, 28 (3), pp.206-11, 1979.

[Henrion & Fischhoff 1986] M. Henrion and B. Fischhoff, “Assessing uncertainty in
physical constants”, Americal J. of Physics, 54 (9), pp.791-8, 1986.

[Hunns & Wainwright 1991] D. M. Hunns and N. Wainwright, “Software-based
protection for Sizewell B: the regulator’s perspective”, Nuclear Engineering
International, September, pp.38-40, 1991.

[Jacky et al. 1991] J. Jacky, R. Risler, I. Kalet, P. Wootton, A. Barke, S. Brossard
and R. Jackson, “Control system specification for a cyclotron and neutron
therapy facility”, in IEEE Particle Accelerator Conference, (San Francisco),
IEEE, 1991.

[Jelinski & Moranda 1972] Z. Jelinski and P. B. Moranda, “Software Reliability
Research”, in Statistical Computer Performance Evaluation (W. Freiberger,
Ed.), pp.465-84, Academic Press, New York, 1972.

[Knight & Leveson 1986] J. C. Knight and N. G. Leveson, “Experimental evaluation
of the assumption of independence in multiversion software”, IEEE Trans
Software Engineering, 12 (1), pp.96-109, 1986.

[Littlewood 1976] B. Littlewood, “A Semi-Markov Model for Software Reliability
with Failure Costs”, in MRI Symp. Computer Software Engineering pp.281-
300, Polytechnic Press, Polytechnic of New York, New York, 1976.

[Littlewood 1979] B. Littlewood, “Software reliability model for modular program
structure”, IEEE Trans Reliability, 28 (3), pp.241-6, 1979.

[Littlewood 1981] B. Littlewood, “Stochastic Reliability Growth: A model for fault
removal in computer programs and hardware designs”, IEEE Trans. on
Reliability, 30, pp.313-20, 1981.

[Littlewood 1988] B. Littlewood, “Forecasting software reliability”, in Software
Reliability Modelling and Identification (S. Bittanti, Ed.), Lecture Notes in
Computer Science 341, pp.141-209, Springer, Heidelberg, 1988.

[Littlewood & Miller 1989] B. Littlewood and D. R. Miller, “Conceptual Modelling of
Coincident Failures in Multi-Version Software”, IEEE Trans on Software
Engineering, 15 (12), pp.1596-614, 1989.

[Littlewood & Verrall 1973] B. Littlewood and J. L. Verrall, “A Bayesian Reliability
Growth Model for Computer Software”, J. Royal Statist. Soc. C, 22, pp.332-
46, 1973.

[Miller 1989] D. Miller, “The role of statistical modelling and inference in software
quality assurance”, in Software Certification (B. d. Neumann, Ed.), Elsevier
Applied Science, Barking, 1989.

[Mojdehbakhsh et al. 1994] R. Mojdehbakhsh, W.-T. Tsai, S. Kirani and L. Elliott,
“Retrofitting software safety in an implantable medical device”, IEEE Software,
11 (1), pp.41-50, 1994.

[Musa 1975] J. D. Musa, “A Theory of Software Reliability and its Application”,
IEEE Trans. on Software Engineering, 1, pp.312-27, 1975.

[Musa & Okumoto 1984] J. D. Musa and K. Okumoto, “A Logarithmic Poisson
Execution Time Model for Software Reliability Measurement”, in Proc.
Compsac 84, (Chicago), pp.230-8, 1984.

[NCSC 1985] NCSC, Department of Defense Trusted Computer System Evaluation,
National Computer Security Center, Department of Defense, N°DOD
5200.28.STD, 1985.

[Rouquet & Traverse 1986] J. C. Rouquet and P. J. Traverse, “Safe and reliable
computing on board the Airbus and ATR aircraft”, in Safecomp: 5th IFAC
Workshop on Safety of Computer Control Systems, (W. J. Quirk, Ed.),
Pergamon Press, 1986.

[RTCA 1992] RTCA, Software considerations in airborne systems and equipment
certification, Requirements and Technical Concepts for Aeronautics, N°DO-
178B, July 1992 1992.

[Shafer 1976] G. Shafer, A Mathematical Theory of Evidence, Princeton University
Press, 1976.

[Siegrist 1988a] K. Siegrist, “Reliability of systems with Markov transfers of control”,
IEEE Trans Software Engineering, 14 (7), pp.1049-53, 1988a.

[Siegrist 1988b] K. Siegrist, “Reliability of systems with Markov transfers of control,
II”, IEEE Trans Software Engineering, 14 (10), pp.1478-80, 1988b.

[Xie 1991] M. Xie, Software Reliability Modelling, World Scientific, Singapore,
1991.

[Abdel-Ghaly, Chan et al. 1986] A.A. Abdel-Ghaly, P.Y. Chan and B. Littlewood,
“Evaluation of Competing Software Reliability Predictions,” IEEE Trans. on
Software Engineering, vol. SE-12, no. 9, pp.950-967, 1986.

[Amman and Knight 1988] P.E. Amman and J.C. Knight, “Data diversity: an
approach to software fault tolerance,” IEEE Trans on Computers, vol. 37, no.
4, pp.418-425, 1988.

[Anderson, Barrett et al. 1985] T. Anderson, P.A. Barrett, D.N. Halliwell and M.R.
Moulding. “An Evaluation of Software Fault Tolerance in a Practical System,”
in Proc. 15th IEEE Int. Symp. on Fault-Tolerant Computing (FTCS-15), pp.
140-145, Ann Arbor, Mich., 1985.

[Avizienis and Ball 1987] A. Avizienis and D.E. Ball, “On the achievement of a highly
dependable and fault-tolerant air traffic control system,” IEEE Computer, vol.
20, no. 2, pp.84-90, 1987.

[Barlow and Proschan 1975] R.E. Barlow and F. Proschan. Statistical Theory of
Reliability and Life Testing, New York, Holt, Rinehart and Winston, 1975,
290 p.

[Brocklehurst, Chan et al. 1990] S. Brocklehurst, P.Y. Chan, B. Littlewood and J.
Snell, “Recalibrating software reliability models,” IEEE Trans Software
Engineering, vol. SE-16, no. 4, pp.458-470, 1990.

[Brocklehurst, Littlewood et al. 1994] S. Brocklehurst, B. Littlewood, T. Olovsson
and E. Jonsson. “On measurement of operational security,” in COMPASS,
1994.

[CEGB 1982a] CEGB. Design Safety Criteria for CEGB Nuclear Power Stations,
HS/R167/81, Central Electricity Generating Board, 1982a.

[CEGB 1982b] CEGB. Pressurised Water Reactor Design Safety Guidelines, DSG2
(Issue A), Central Electricity Generating Board, 1982b.

[Dawid 1984] A.P. Dawid, “Statistical theory: the prequential approach,” J Royal
Statist Soc, A, vol. 147, pp.278-292, 1984.

[Dubois and Prade 1988] D. Dubois and H. Prade. Possibility Theory: An Approach
to Computerised Processing of Uncertainty, New York, Plenum Press, 1988.

[Duran and Ntafos 1984] J.T. Duran and S. Ntafos, “An evaluation of random
testing,” IEEE Trans Software Engineering, vol. SE-10, no. 4, pp.438-444,
1984.

[Eckhardt, Caglayan et al. 1991] D.E. Eckhardt, A.K. Caglayan, J.C. Knight, L.D.
Lee, D.F. McAllister, M.A. Vouk and J.P.J. Kelly, “An experimental
evaluation of software redundancy as a strategy for improving reliability,” IEEE
Trans Software Eng, vol. SE-17, no. 7, pp.692-702, 1991.

[Eckhardt and Lee 1985] D.E. Eckhardt and L.D. Lee, “A Theoretical Basis of
Multiversion Software Subject to Coincident Errors,” IEEE Trans. on Software
Engineering, vol. SE-11, pp.1511-1517, 1985.

[Fenton 1991] N.E. Fenton. Software Metrics: A Rigorous Approach, London,
Chapman and Hall, 1991.

[Goel and Okumoto 1979] A.L. Goel and K. Okumoto, “Time-Dependent Error-
Detection Rate Model for Software and Other Performance Measures,” IEEE
Trans. on Reliability, vol. R-28, no. 3, pp.206-211, 1979.

[Henrion and Fischhoff 1986] M. Henrion and B. Fischhoff, “Assessing uncertainty
in physical constants,” Americal Journal of Physics, vol. 54, no. 9, pp.791-
798, 1986.

[Hunns and Wainwright 1991] D.M. Hunns and N. Wainwright, “Software-based
protection for Sizewell B: the regulator’s perspective,” Nuclear Engineering
International, vol. September, pp.38-40, 1991.

[Jacky, Risler et al. 1991] J. Jacky, R. Risler, I. Kalet, P. Wootton, A. Barke, S.
Brossard and R. Jackson. “Control system specification for a cyclotron and
neutron therapy facility,” in IEEE Particle Accelerator Conference, San
Francisco, IEEE, 1991.

[Jelinski and Moranda 1972] Z. Jelinski and P.B. Moranda. “Software Reliability
Research,” in Statistical Computer Performance Evaluation, pp. 465-484, New
York, Academic Press, 1972.

[Knight and Leveson 1986] J.C. Knight and N.G. Leveson, “Experimental evaluation
of the assumption of independence in multiversion software,” IEEE Trans
Software Engineering, vol. SE-12, no. 1, pp.96-109, 1986.

[Littlewood 1976] B. Littlewood. “A Semi-Markov Model for Software Reliability
with Failure Costs,” in MRI Symp. Computer Software Engineering, pp. 281-
300, Polytechnic of New York, New York, Polytechnic Press, 1976.

[Littlewood 1979] B. Littlewood, “Software reliability model for modular program
structure,” IEEE Trans Reliability, vol. R-28, no. 3, pp.241-246, 1979.

[Littlewood 1981] B. Littlewood, “Stochastic Reliability Growth: A model for fault
removal in computer programs and hardware designs,” IEEE Trans. on
Reliability, vol. R-30, pp.313-320, 1981.

[Littlewood 1988] B. Littlewood. “Forecasting software reliability,” in Software
Reliability Modelling and Identification, pp. 141-209, Heidelberg, Springer,
1988.

[Littlewood, Brocklehurst et al. 1994 (to appear)] B. Littlewood, S. Brocklehurst,
N.E. Fenton, P. Mellor, S. Page, D. Wright, J.E. Dobson, J.A. McDermid

and D. Gollmann, “Towards operational measures of computer security,”
Journal of Computer Security, 1994 (to appear).

[Littlewood and Miller 1989] B. Littlewood and D.R. Miller, “Conceptual modelling
of coincident failures in multi-version software,” IEEE Trans on Software
Engineering, vol. SE-15, no. 12, pp.1596-1614, 1989.

[Littlewood and Verrall 1973] B. Littlewood and J.L. Verrall, “A Bayesian Reliability
Growth Model for Computer Software,” J. Roy. Statist. Soc. C, vol. 22,
pp.332-346, 1973.

[Miller 1989] D. Miller. “The role of statistical modelling and inference in software
quality assurance,” in Software Certification, Barking, Elsevier Applied
Science, 1989.

[Mojdehbakhsh, Tsai et al. 1994] R. Mojdehbakhsh, W.-T. Tsai, S. Kirani and L.
Elliott, “Retrofitting software safety in an implantable medical device,” IEEE
Software, vol. 11, no. 1, pp.41-50, 1994.

[Musa 1975] J.D. Musa, “A Theory of Software Reliability and its Application,” IEEE
Trans. on Software Engineering, vol. SE-1, pp.312-327, 1975.

[Musa and Okumoto 1984] J.D. Musa and K. Okumoto. “A Logarithmic Poisson
Execution Time Model for Software Reliability Measurement,” in Proc.
Compsac 84, pp. 230-238, Chicago, 1984.

[NCSC 1985] NCSC. Department of Defense Trusted Computer System Evaluation,
DOD 5200.28.STD, National Computer Security Center, Department of
Defense, 1985.

[Rouquet and Traverse 1986] J.C. Rouquet and P.J. Traverse. “Safe and reliable
computing on board the Airbus and ATR aircraft,” in Safecomp: 5th IFAC
Workshop on Safety of Computer Control Systems, Pergamon Press, 1986.

[RTCA 1992] RTCA. Software considerations in airborne systems and equipment
certification, DO-178B (Draft), Radio-Technical Commission for Aeronautics,
1992.

[Shafer 1976] G. Shafer. A Mathematical Theory of Evidence, Princeton University
Press, 1976.

[Siegrist 1988a] K. Siegrist, “Reliability of systems with Markov transfers of control,”
IEEE Trans Software Engineering, vol. SE-14, no. 7, pp.1049-1053, 1988a.

[Siegrist 1988b] K. Siegrist, “Reliability of systems with Markov transfers of control,
II,” IEEE Trans Software Engineering, vol. SE-14, no. 10, pp.1478-1480,
1988b.

[Xie 1991] M. Xie. Software Reliability Modelling, Singapore, World Scientific,
1991.

