392 research outputs found

    A Depth Video-based Human Detection and Activity Recognition using Multi-features and Embedded Hidden Markov Models for Health Care Monitoring Systems

    Get PDF
    Increase in number of elderly people who are living independently needs especial care in the form of healthcare monitoring systems. Recent advancements in depth video technologies have made human activity recognition (HAR) realizable for elderly healthcare applications. In this paper, a depth video-based novel method for HAR is presented using robust multi-features and embedded Hidden Markov Models (HMMs) to recognize daily life activities of elderly people living alone in indoor environment such as smart homes. In the proposed HAR framework, initially, depth maps are analyzed by temporal motion identification method to segment human silhouettes from noisy background and compute depth silhouette area for each activity to track human movements in a scene. Several representative features, including invariant, multi-view differentiation and spatiotemporal body joints features were fused together to explore gradient orientation change, intensity differentiation, temporal variation and local motion of specific body parts. Then, these features are processed by the dynamics of their respective class and learned, modeled, trained and recognized with specific embedded HMM having active feature values. Furthermore, we construct a new online human activity dataset by a depth sensor to evaluate the proposed features. Our experiments on three depth datasets demonstrated that the proposed multi-features are efficient and robust over the state of the art features for human action and activity recognition

    Depth Images-based Human Detection, Tracking and Activity Recognition Using Spatiotemporal Features and Modified HMM

    Get PDF
    Human activity recognition using depth information is an emerging and challenging technology in computer vision due to its considerable attention by many practical applications such as smart home/office system, personal health care and 3D video games. This paper presents a novel framework of 3D human body detection, tracking and recognition from depth video sequences using spatiotemporal features and modified HMM. To detect human silhouette, raw depth data is examined to extract human silhouette by considering spatial continuity and constraints of human motion information. While, frame differentiation is used to track human movements. Features extraction mechanism consists of spatial depth shape features and temporal joints features are used to improve classification performance. Both of'these features are fused together to recognize different activities using the modified hidden Markov model (M-HMM). The proposed approach is evaluated on two challenging depth video datasets. Moreover, our system has significant abilities to handle subject's body parts rotation and body parts missing which provide major contributions in human activity recognition.1165Ysciescopuskc

    Pushing the envelope for estimating poses and actions via full 3D reconstruction

    Get PDF
    Estimating poses and actions of human bodies and hands is an important task in the computer vision community due to its vast applications, including human computer interaction, virtual reality and augmented reality, medical image analysis. Challenges: There are many in-the-wild challenges in this task (see chapter 1). Among them, in this thesis, we focused on two challenges which could be relieved by incorporating the 3D geometry: (1) inherent 2D-to-3D ambiguity driven by the non-linear 2D projection process when capturing 3D objects. (2) lack of sufficient and quality annotated datasets due to the high-dimensionality of subjects' attribute space and inherent difficulty in annotating 3D coordinate values. Contributions: We first tried to jointly tackle the 2D-to-3D ambiguity and insufficient data issues by (1) explicitly reconstructing 2.5D and 3D samples and use them as new training data to train a pose estimator. Next, we tried to (2) encode 3D geometry in the training process of the action recognizer to reduce the 2D-to-3D ambiguity. In appendix, we proposed a (3) new hand pose synthetic dataset that can be used for more complete attribute changes and multi-modal experiments in the future. Experiments: Throughout experiments, we found interesting facts: (1) 2.5D depth map reconstruction and data augmentation can improve the accuracy of the depth-based hand pose estimation algorithm, (2) 3D mesh reconstruction can be used to generate a new RGB data and it improves the accuracy of RGB-based dense hand pose estimation algorithm, (3) 3D geometry from 3D poses and scene layouts could be successfully utilized to reduce the 2D-to-3D ambiguity in the action recognition problem.Open Acces

    Artificial Vision Algorithms for Socially Assistive Robot Applications: A Review of the Literature

    Get PDF
    Today, computer vision algorithms are very important for different fields and applications, such as closed-circuit television security, health status monitoring, and recognizing a specific person or object and robotics. Regarding this topic, the present paper deals with a recent review of the literature on computer vision algorithms (recognition and tracking of faces, bodies, and objects) oriented towards socially assistive robot applications. The performance, frames per second (FPS) processing speed, and hardware implemented to run the algorithms are highlighted by comparing the available solutions. Moreover, this paper provides general information for researchers interested in knowing which vision algorithms are available, enabling them to select the one that is most suitable to include in their robotic system applicationsBeca Conacyt Doctorado No de CVU: 64683

    GIFT: Gesture-Based Interaction by Fingers Tracking, an Interaction Technique for Virtual Environment

    Get PDF
    Three Dimensional (3D) interaction is the plausible human interaction inside a Virtual Environment (VE). The rise of the Virtual Reality (VR) applications in various domains demands for a feasible 3D interface. Ensuring immersivity in a virtual space, this paper presents an interaction technique where manipulation is performed by the perceptive gestures of the two dominant fingers; thumb and index. The two fingertip-thimbles made of paper are used to trace states and positions of the fingers by an ordinary camera. Based on the positions of the fingers, the basic interaction tasks; selection, scaling, rotation, translation and navigation are performed by intuitive gestures of the fingers. Without keeping a gestural database, the features-free detection of the fingers guarantees speedier interactions. Moreover, the system is user-independent and depends neither on the size nor on the color of the users’ hand. With a case-study project; Interactions by the Gestures of Fingers (IGF) the technique is implemented for evaluation. The IGF application traces gestures of the fingers using the libraries of OpenCV at the back-end. At the front-end, the objects of the VE are rendered accordingly using the Open Graphics Library; OpenGL. The system is assessed in a moderate lighting condition by a group of 15 users. Furthermore, usability of the technique is investigated in games. Outcomes of the evaluations revealed that the approach is suitable for VR applications both in terms of cost and accuracy

    Egocentric Perception of Hands and Its Applications

    Get PDF

    Two Hand Gesture Based 3D Navigation in Virtual Environments

    Get PDF
    Natural interaction is gaining popularity due to its simple, attractive, and realistic nature, which realizes direct Human Computer Interaction (HCI). In this paper, we presented a novel two hand gesture based interaction technique for 3 dimensional (3D) navigation in Virtual Environments (VEs). The system used computer vision techniques for the detection of hand gestures (colored thumbs) from real scene and performed different navigation (forward, backward, up, down, left, and right) tasks in the VE. The proposed technique also allow users to efficiently control speed during navigation. The proposed technique is implemented via a VE for experimental purposes. Forty (40) participants performed the experimental study. Experiments revealed that the proposed technique is feasible, easy to learn and use, having less cognitive load on users. Finally gesture recognition engines were used to assess the accuracy and performance of the proposed gestures. kNN achieved high accuracy rates (95.7%) as compared to SVM (95.3%). kNN also has high performance rates in terms of training time (3.16 secs) and prediction speed (6600 obs/sec) as compared to SVM with 6.40 secs and 2900 obs/sec

    Artificial intelligence detects awareness of functional relation with the environment in 3 month old babies

    Get PDF
    A recent experiment probed how purposeful action emerges in early life by manipulating infants’ functional connection to an object in the environment (i.e., tethering an infant’s foot to a colorful mobile). Vicon motion capture data from multiple infant joints were used here to create Histograms of Joint Displacements (HJDs) to generate pose-based descriptors for 3D infant spatial trajectories. Using HJDs as inputs, machine and deep learning systems were tasked with classifying the experimental state from which snippets of movement data were sampled. The architectures tested included k-Nearest Neighbour (kNN), Linear Discriminant Analysis (LDA), Fully connected network (FCNet), 1D-Convolutional Neural Network (1D-Conv), 1D-Capsule Network (1D-CapsNet), 2D-Conv and 2D-CapsNet. Sliding window scenarios were used for temporal analysis to search for topological changes in infant movement related to functional context. kNN and LDA achieved higher classification accuracy with single joint features, while deep learning approaches, particularly 2D-CapsNet, achieved higher accuracy on full-body features. For each AI architecture tested, measures of foot activity displayed the most distinct and coherent pattern alterations across different experimental stages (reflected in the highest classification accuracy rate), indicating that interaction with the world impacts the infant behaviour most at the site of organism~world connection
    corecore