
Imperial College London
Department of Electrial and Electronic Engineering

Pushing the Envelope for Estimating Poses and
Actions via Full 3D Reconstruction

Seungryul Baek

Submitted in part fulfilment of the requirements for the degree of
Doctor of Philosophy

Copyright Declaration

© The copyright of this thesis rests with the author. Unless otherwise indicated, its contents are

licensed under a Creative Commons Attribution-Non Commercial 4.0 International Licence

(CC BY -NC).

Under this licence, you may copy and redistribute the material in any medium or format. You

may also create and distribute modified versions of the work. This is on the condition that: you

credit the author and do not use it, or any derivative works, for a commercial purpose.

When reusing or sharing this work, ensure you make the licence terms clear to others by naming

the licence and linking to the licence text. Where a work has been adapted, you should indicate

that the work has been changed and describe those changes.

Please seek permission from the copyright holder for uses of this work that are not included in

this licence or permitted under UK Copyright Law.

Declaration of Originality

This dissertation is submitted to the Department of Electrical and Electronic Engineering,

Imperial College London, in fulfillment of the requirements for the degree of Doctor Philosophy.

I, Seungryul Baek, hereby declare that this work is my own and includes nothing from the

work of others except where specifically indicated in the text. The research presented in this

dissertation resulted in the following listed papers with joint authorship as follows:

S. Baek, K. I. Kim, T.-K. Kim, “Pushing the Envelope for RGB-based Dense 3D Hand Pose

Estimation via Neural Rendering”, in Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition (CVPR) 2019,

S. Baek, K. I. Kim, T.-K. Kim, “Augmented skeleton space transfer for depth-based hand

pose estimation”, in Proceedings of the IEEE Conference on Computer Vision and Pattern

Recognition (CVPR) 2018 (Oral Presentation),

G. Garcia-Hernando, S. Yuan, S. Baek, T-K. Kim, “First-Person Hand Action Benchmark with

RGB-D Videos and 3D Hand Pose Annotations”, in Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition (CVPR) 2018,

S. Baek, Z. Shi, M. Kawade, T.-K. Kim, “Kinematic-Layout-aware Random Forests for Depth-

based Action Recognition”, in Proceedings of the British Machine Vision Conference (BMVC)

2017 (Oral Presentation),

S. Baek, K. I. Kim, T.-K. Kim, “Real-time online action detection forests using spatio-temporal

contexts”, in Proceedings of the IEEE Winter Conference on Applications of Computer Vision

(WACV) 2017,

Seungryul Baek, September 2019.

Abstract

E stimating poses and actions of human bodies and hands is an important task in the

computer vision community due to its vast applications, including human computer

interaction, virtual reality and augmented reality, medical image analysis.

Challenges: There are many in-the-wild challenges in this task (see chapter 1). Among them,

in this thesis, we focused on two challenges which could be relieved by incorporating the 3D

geometry: (1) inherent 2D-to-3D ambiguity driven by the non-linear 2D projection process

when capturing 3D objects. (2) lack of sufficient and quality annotated datasets due to

the high-dimensionality of subjects’ attribute space and inherent difficulty in annotating 3D

coordinate values.

Contributions: We first tried to jointly tackle the 2D-to-3D ambiguity and insufficient data

issues by (1) explicitly reconstructing 2.5D and 3D samples and use them as new training

data to train a pose estimator. Next, we tried to (2) encode 3D geometry in the training

process of the action recognizer to reduce the 2D-to-3D ambiguity. In appendix, we proposed

a (3) new hand pose synthetic dataset that can be used for more complete attribute changes

and multi-modal experiments in the future.

Experiments: Throughout experiments, we found interesting facts: (1) 2.5D depth map re-

construction and data augmentation can improve the accuracy of the depth-based hand pose

estimation algorithm, (2) 3D mesh reconstruction can be used to generate a new RGB data and

it improves the accuracy of RGB-based dense hand pose estimation algorithm, (3) 3D geom-

etry from 3D poses and scene layouts could be successfully utilized to reduce the 2D-to-3D

ambiguity in the action recognition problem.

Keywords

pose estimation, action recognition, 3D reconstruction, 3D geometry, human body, human

hand, convolutional neural network, deep learning, random forest, real dataset, synthetic dataset,

RGB images, depth images, data augmentation, generative adversarial network, 3D mesh, mesh

reconstruction from single images, MANO hand model, SMPL body model, discriminative

model, generative model, privileged information, transfer learning, latent space.

CONTENTS

LIST OF FIGURES x

LIST OF TABLES xviii

ACRONYMS xix

GLOSSARY xxiii

CHAPTER 1

INTRODUCTION 1

1.1 Problem definition 2

1.2 Challenges 4

1.3 Our focus and solutions 6

1.4 Thesis outline and contributions 8

CHAPTER 2

BACKGROUND 13

2.1 Pose estimation 13

2.2 Action recognition 27

2.3 Evaluation criteria 35

CHAPTER 3

COARSE POSE ESTIMATION VIA EXPLICIT 2.5D DATA RECONSTRUCTION

AND AUGMENTATION 37

vii

3.1 Motivation 39

3.2 Hand pose estimation by skeleton augmentation 40

3.3 Experiments 52

3.4 Qualitative evaluation 56

3.5 Conclusion 58

CHAPTER 4

DENSE POSE ESTIMATION VIA EXPLICIT FULL 3D DATA RECONSTRUCTION

AND AUGMENTATION 63

4.1 Motivation 64

4.2 Proposed dense hand pose estimator 67

4.3 Experiments 79

4.4 Conclusion 83

CHAPTER 5

ACTION RECOGNITION USING THE 3D GEOMETRY (BODY SKELETON, SCENE

LAYOUTS) 87

5.1 Motivation 89

5.2 PATIENT dataset 91

5.3 Kinematic-Layout-aware Random Forests 92

5.4 Experiments 100

5.5 Conclusion 104

CHAPTER 6

CONCLUSION 105

6.1 Summary of thesis achievements 105

6.2 Future Work 107

CHAPTER A

BIGHANDMESH: A NOVEL MULTIMODAL SYNTHETIC DATASET 109

A.1 Motivation 110

A.2 BigHandMesh Generation 112

A.3 Experiments: Dataset quality analysis 118

A.4 Conclusion 120

REFERENCES 123

LIST OF FIGURES

1.1 Diverse products exploiting pose estimation and action recognition of human bodies

and hands. 2

1.2 Skeletal model of human and hand models (a) human model which consists of 23

joints [226], (b) hand model which consists of 21 joints [244]: one for wrist and

four for each finger. Each finger has five degrees of freedom: flexion for DIP and

PIP, flexion, abduction and twist for MCP. (c) a skeleton overlaid on the underlying

depth map, (d) SMPL human body model having 6890 vertices, (e) MANO hand

model having 778 vertices. 3

1.3 The example frames of the actions defined. (a) Example action “lying on the bed”

from our PATIENT dataset proposed in Sec. 3, (b) Example action “writing on

the board”from CAD60 dataset [191], i.e. (c) Example action in the hand-object

interaction scenario involving Nouns and Verbs, i.e. pouring milk from FPHA

dataset [50]. 3

1.4 Similar hand skeletons overlaid with the corresponding depth maps in (a) camera

perspective and (b) shape (subject) variations: Note that slight variations in hand

skeletons are instantiated to significantly different depth maps. 4

1.5 Input depth image (first column) and depth images synthesized by rotating the input

(second to last columns: 15, 30, 45, and 60 degrees of rotations, respectively).

Depth values are noisy due to missing points in the z-axis. Red circle denotes the

missing Thumb finger. 5

x

1.6 Chapters through 3 to 5 are designed to reveal the relationships between 2D/3D

cues available in estimating poses and actions of human bodies and hands. 8

3.1 t-SNE embeddings of skeletal poses of Big Hand 2.2M, ICVL, NYU, MSRA

datasets, and our augmented skeletons. Each dataset covers up to a certain degree

of shape and viewpoint variations but none of them is comprehensive as indicated

by the presence of empty space between different clusters. Our data augmentation

process fills in the space and provides a more comprehensive coverage of viewpoints

and poses. To experience the full detail of this figure, readers are advised to view

the electronic version. 39

3.2 Our skeletal hand model (a) consists of 21 joints [244]: one for wrist and four

for each finger. Each finger has five degrees of freedom: flexion for DIP and PIP,

flexion, abduction and twist for MCP. (b) a skeleton overlaid on the underlying

depth map. 42

3.3 Synthesized skeletons y′ overlaid on the depth maps z′ transferred by HPG (x′ =

f G(y′)). These new data entries augment the coverage of the database: The nearest

skeletons (and the paired depth maps) in the database deviate significantly from the

query synthesized skeletons. 43

3.4 Individual network architecture for (a) HPE, (b) HPG, (c) HPDX, and (d) HPDY.

The HPE architecture is inspired from [244]. HPG and HPDX are inspired from the

GAN algorithm [149] and HPDY has a similar architecture to HPDX but is designed

to have 63-dimensional vector as an input. 47

3.5 Schematic diagrams of our algorithm. (a) Manipulating skeletons is easier than

manipulating depth maps; (b) During training, HPE, HPG, HPDX, and HPDY are

optimized by 1) reducing the classical training error of HPE induced via P; 2)

enforcing the cyclic consistency of HPE-HPG combination f E(f G) : Y → Y,

HPG-HPE combination f E(f G) : X → X on P as well as the HPG-HPE-HPG

consistency on unpaired data U; (c) In testing, our algorithm refines the initial

hand pose prediction as guided by HPG and HPDY as a prior. In the diagram, Red

and Green lines represent interactions with the paired set P and unpaired set U,

respectively. The Blue lines represent interactions with both U and P. 48

3.6 Accuracies of different hand pose estimators for four datasets measured in pro-

portion of frames with worst error<ε criteria (a)-(d); (e) Accuracies for NYU,

measured in proportion of frames with mean error<ε criteria (for a fair comparison

with Tang et al. (ICCV2015)); (a-e: the larger the area under each curve is better);

Ours (shape; w/o refine): our method trained with P, and U augmented with only

shape variations; Ours (rotation; w/o refine): our method trained with P, and U

augmented with only viewpoint variations; Ours (w/o refine): our method trained

with P and U fully augmented, without refinement at testing; Ours: our final algo-

rithm including data augmentation and the refinement step; Ours transferred: our

method trained on Big Hand 2.2M dataset and tested on the respective dataset (see

the cross-dataset experiments paragraph); (f) The 2D plot for test errors of HPE and

HPG in the same epoch (trained on ICVL). We note strong correlations in the HPE

and HPG errors. 52

3.7 A failure example (MSRA dataset): (a) input depth map, (b) ground-truth skeleton

overlaid on the input, (c) new depth map synthesized by our generator based on

the ground-truth skeleton, and (d) skeleton estimated by our hand pose estimator

overlaid on the depth map. When the input represents a significantly different

skeletal pose from the database, the corresponding synthesized depth map (c) is

blurry even when based on the ground truth, leading to a large pose estimation error

(d). 55

3.8 Distances of test data points to the closest un-augmented training entries (measured

in skeletal Euclidean distance). The test points are sorted in the ascending distance

order. Thresholding data points based on their respective distances categorizes them

to easy and hard classes (highlighted as the crossing points of the horizontal and

vertical red lines). 57

3.9 Performance of varying HPE design configurations as ratio of frames with worst

error<ε (the proportion of frames whose worst joint error is less than ε). These

results correspond to Table 1 of the main paper where accuracy is measured in

Euclidean distance (to the ground-truth). 58

3.10 Hand pose generation and estimation results for hard examples. (top) eight test

example depth maps (two from each dataset): (a) input depth map, (b) reconstruction

by our HPG, (c) reconstruction by the HPG baseline, (d) nearest (in skeletons) depth

map in the training set, (e) Yuan et al.’s algorithm [244], (f) our HPE (w/o refine.),

(g) our HPE (w refine.), (h) ground-truth; (bottom) hand pose estimation results

for NYU1 (left) and NYU2 (right) from (a) and (e) our HPE (w refine), (b) and (f)

Oberweger et al.’s algorithm [129], (c) and (g) Wan et al.’s algorithm [214], and (d)

and (h) ground-truth. 59

3.11 Hand pose generation and estimation results for easy examples. (top) eight test

example depth maps (two from each dataset): (a) input depth map, (b) reconstruction

by our HPG, (c) reconstruction by the HPG baseline, (d) nearest (in skeletons) depth

map in the training set, (e) Yuan et al.’s algorithm [244], (f) our HPE (w/o refine.),

(g) our HPE (w refine.), (h) ground-truth; (bottom) hand pose estimation results

for NYU1 (left) and NYU2 (right) from (a) and (e) our HPE (w refine), (b) and (f)

Oberweger et al.’s algorithm [129], (c) and (g) Wan et al.’s algorithm [214], and (d)

and (h) ground-truth. 60

4.1 Dense hand pose estimation examples. Our system estimates 3D shapes, as well as

articulations and viewpoints. Left to right: input images, coarse skeletal representa-

tions, dense hand pose representations, and recovered hand shapes in a canonical

articulation/viewpoint. Dense pose estimation provides a richer description of hands

and improves the pose estimation accuracy. 65

4.2 Schematic diagram of the proposed DHPE framework. Our DHPE receives an

input RGB image x and estimates the corresponding hand shape and pose as

parameters h of the MANO [161] hand model. Training DHPE is guided via 1) an

additional projector f Proj that enables us to provide supervision via 3D skeletons

j and foreground segmentation masks m; 2) decomposing the DHPE into the 2D

evidence estimator f E2D and 3D mesh estimator f E3D which stratifies the training

via the intermediate 2D feature estimation step. At testing, once the output mesh

parameter h′ is estimated, it is iteratively refined via enforcing its consistency over

intermediate 2D evidences F(x) and j2D. 67

4.3 A 2D evidence estimation example. (a) input image x, (b) ground-truth 2D segmen-

tation mask m of x, (c) 2D skeletal position heat map of the finger tip of middle

finger overlaid on x, and (d) masked image x�m. 70

4.4 Performances of different algorithms on three benchmark datasets: (a-c) accuracies

on RHD, DO, and STB, respectively; (d-e) evaluation of our algorithm design

choices on RHD and DO, respectively; (f) progressions of the testing errors (orange

curves) and the ratio of training data instances with small joint estimation errors

(< τ in Eq. 4.11; blue curves) with λ fixed at 0.01 (curves with dot markers) and

with λ scheduled based on Eq. 4.11 (curves with cross markers). 80

4.5 Hand segmentation examples. Left to right: input images, ground-truth masks, our

results, the results of the state-of-the-art hand segmentation algorithm [84]. 82

4.6 Example dense hand pose estimation results. (RHD): (a) input images; (b-c) and (d-

e) our results obtained without and with the shape loss LSh (Eq. 4.10), respectively;

(b,d) dense hand pose estimation results, and (c,e) estimated shapes in canonical

hand pose. (DO): (a,c) and (b,d) our results obtained without testing refinement

and after applying 20 iterations of testing refinement, respectively; (e) failure and

success cases under occlusion. (STB): (a-b) input images and our results. 82

4.7 DHPE examples. (a) input images, (b-d) and (e-g) results obtained without and with

shape loss, respectively. (b,e) estimated hand meshes overlaid on the input image and

the corresponding estimated skeletons (Blue) overlaid with their ground-truths (Red),

(c,f) estimated shapes rendered in canonical articulation and viewpoints, and (d,g)

Color-coded 2D segmentation masks: (Green and Blue: estimated masks; Green

and Red: ground-truth masks; Red and Blue highlight errors). Our visualization

method in (d) and (g) is inspired by [193]. 84

4.8 Performance of our algorithm with different design choices. Top to bottom: results

on RHD, DO, and STB, respectively. 85

5.1 Depth maps visualized with kinematic-layout. Note that kinematic-layout has a

potential to improve the ambiguity of depth appearance. (a)-(c) are depth maps

from PATIENT dataset while (d) is the depth map from CAD60 dataset. 89

5.2 Examples of our PATIENT dataset. Our dataset contains both static (left side) and

dynamic actions (right side). Action labels are given in Sec. 5.2. Examples for

different views are also shown in last two columns. 91

5.3 Visualization of the skeleton cue CJ
t at t = T: (a) Skeleton pairwise distance vector

dP
t ; (b) Skeleton motion vector dM

t ; (c) Skeleton offset vector dO
t . Orange arrows

denote example paired joints used for calculating distances. 93

5.4 Flowchart of our method. (a) Training stage of KLRFs, (b) Testing stage of KLRFs,

(c) Weighting method to reduce the gap between PF (y|{A(V)|V ∈ D}) and

PF (y|{K(V)|V ∈ D}). Red balls denote samples constituting the appearance-

based distribution PF (y|{A(V)|V ∈ D}) with their weights in fade-out. Green

line denotes the gap-reduced class distribution. 94

5.5 Further analysis 1: Usefulness score U vs. classes in the databases. 103

5.6 Further analysis 2: Utilizing K at testing for each database 103

5.7 Parameter sensitivity: PATIENT(left), CAD60 (mid), UWA3D (right). Action

classification accuracy according to the different number of trees in each databases.

The accuracy saturates around 500 trees. 104

A.1 Schematic diagram of the proposed pipeline for generating the hand benchmark. We

first select distinct articulations from BigHand2.2M database, then fit the MANO

hand model to their skeletons, finally RGB-D, skeletons, segmentation masks are

generated. 113

A.2 (a) 2-dimensional PCA plot for 25-dimensional angle feature space depending on

different K values: 1, 000, 10, 000, 100, 000 and 957, 032. We select 100, 000

skeletons from total 957, 032 skeletons to reduce the redundancy, (b) Our hand

model having 21 joints, (c) Angles used extracting 25-dimensional angular features. 114

A.3 Fitting process: Visualized with depth images. (Col. 1) Targetted hand pose in

BigHand2.2M, (Col. 2-7) Fitting results in different iterations, (Col. 8) Final fitted

hand pose obtained. Note that even though there is slightly difference between

original one and the final result, we only use the final output and its self-data

generation capability to label it. 115

A.4 Example viewpoint/shape variation results: (Row 1) Shape parameter variation,

(Row 2) Viewpoint (Azimuth) variation, (Row 3) Viewpoint (Elevation) variation.

With the 3D mesh model, we can represent complete viewpoint spaces and diverse

shape spaces from thin to fat hands. 116

A.5 Example RGB-D maps, segmentation masks, mesh and skeletons obtained: (Col. 1)

Real depth maps x and corresponding (Col. 2) synthesized depth maps at iteration

3, 000, (Col. 3) RGB maps, (Col. 4) Part-segmentation maps, (Col. 5) Segmentation

maps, (Col. 6) Full 3D mesh. 118

A.6 Comparison of databases: (a) (Top) Texture comparison, (Bottom) PCA plot for

“articulation” space, Different colors (RHD, STB, SH and Ours) denote samples

from different databases. (b) RGB-based hand pose estimation results trained on

different databases. 120

LIST OF TABLES

3.1 Evaluation of design choices: (a) Test errors of our HPG (unitless) and HPE (in

mm) under varying design conditions: f G (baseline) and f E (baseline): HPG and

HPE trained independently on the paired dataset P, respectively; f E (w/o aug.;

refine): HPE trained only on P pairs (Algorithm 5); f E and f E (w/o refine): HPEs

trained (with skeleton augmentation) with and without the refinement step at testing,

respectively; f G (w/o aug.; refine) and f G (w/o refine): HPGs trained jointly with

f E (w/o aug.; refine) and f E, respectively. (b) Test error of HPE on Big Hand 2.2M

with varying numbers and types of skeleton augmentation. 55

4.1 Notational summary 68

4.2 Performances of different hand segmentation algorithms on RHD (higher is better). 81

5.1 Dataset comparison to recent benchmarks. 92

5.2 Results for PATIENT (single-view (View 1), cross-view (View 2, 3)) and UWA3D

(cross-view) datasets. 101

5.3 Results for CAD60 dataset. 101

A.1 Comparison of related RGB-based hand pose datasets: DO [185], STB [248],

RHD [256], SH [118], GANHAND [117]. 111

xviii

ACRONYMS

AR augmented reality. xviii, 1, 64

AUC area under the curve. xviii, 79

CAD60 cornell activity dataset 60. xviii

CNN convolutional neural network. xviii, 4, 5, 10, 16, 18, 19, 21–25, 27, 29–33, 41, 53, 54, 64,

65, 79, 83, 110

CRF conditional random field. xviii

DHPE dense hand pose estimation. xviii, 66, 68, 75, 78, 80, 83

DIP distal inter phalangeal. xviii, 2, 41, 44, 45

DMM depth motion maps. xviii, 29

DO dexter+object dataset. xviii

FPHA first-person hand action benchmark. xviii

FTP Fourier temporal pyramid. xviii, 30

G3D gesture-3D dataset. xviii

GAN generative adversarial network. xviii, 10, 24, 27, 38, 40, 46, 47, 49, 80, 106, 111

GANHAND GANerated hands dataset. xviii

xix

GMM Gaussian mixture model. xviii, 20, 24

GPU graphic processing unit. xviii, 53, 54

HME hand mesh estimator. xviii, 64, 67, 68, 75, 78

HOG histogram of gradients. xviii, 28, 29, 34

HOPC histogram of oriented principal component. xviii, 30

HPD hand Pose discriminator. xviii, 38, 40, 46, 47, 49–51, 55

HPE hand pose estimator. xviii, 38–41, 46–51, 53–55, 57

HPG hand pose generator. xviii, 24, 38, 40, 41, 44, 46–51, 54–57

I3D two-stream inflated 3D convolutional neural network. xviii

ICP iterative closest point. xviii

ICVL Imperial Computer Vision and Learning Lab Hand Pose Dataset. xviii

IOU interaction over union. xviii

KCF kinematic consistency filter. xviii, 100

KLRF kinematic-layout-aware random forest. xviii, 88, 90, 92, 95, 98, 99, 101, 102, 104

KLT Kanade-Lucas-Tomasi. xviii, 29

LSTM long short-term memory network. xviii, 23, 27, 31–33

MANO hand model with articulated and non-rigid deformations. xviii, 2, 15, 19, 24, 67, 68,

70–72, 76, 78, 109, 111, 112, 114, 117, 121

MCP meta carpo phalangeal. xviii, 2, 41, 44, 45, 73

MP moving pose. xviii, 30

MSE mean squared error. xviii

MSRA microsoft research asia. xviii

NTU NTU action recognition database. xviii

NUCLA northwestern-UCLA multiview 3D human action dataset. xviii

NYU New York University Hand Pose Dataset. xviii

OAD online action detection. xviii

OOB out-of-bag. xviii, 96

PCA principal component analysis. xviii, 2, 18, 70, 71, 76, 116, 118

PCK percentage of correct keypoints. xviii, 79

PIP proximal inter phalangeal. xviii, 2, 41, 44, 45

PSO particle swarm optimization. xviii, 16, 17, 24, 25, 81

RF random forest. xviii, 19–21, 24, 32, 34, 90, 95, 97, 98, 101, 102, 104

RHD rendered hand dataset. xviii

RNN recurrent neural network. xviii, 31, 32

SH synthhands Dataset. xviii

SIFT scale-invariant feature transform. xviii, 28

SMPL a skinned multi-person linear model. xviii, 2, 15, 16, 18, 70

STB stereo hand pose tracking benchmark. xviii

STIP spatio-temporal interest points. xviii

SVM support vector machine. xviii, 29

TIP finger tip Joints. xviii, 44, 45

TSDF truncated signed distance function. xviii, 23

UWA3D university of western australia 3D multiview acitivity II dataset. xviii

VR virtual reality. xviii, 1, 64

GLOSSARY

A Appearance feature space extracted from the raw 2D image input.. xviii, 92, 94–96, 98, 100,

102, 104

DP Hand pose database having images and their skeleton labels.. xviii, 40, 41

K Kinematic-Layout feature space that encodes the 3D geometry.. xviii, 92, 94–104

L 3D scene layout space.. xviii, 92

P 3D human body or hand skeleton space.. xviii, 92

V Depth sequence.. xviii, 92, 94–96, 99, 100

XC 2D RGB image space.. xviii, 67–69, 73, 75

XD 2.5D depth image space.. xviii, 40

YA Action label space.. xviii, 94

YP 3D pose label space.. xviii, 40, 67–69, 72, 73, 75

Ψ Split function of the trained random forests composed of threshold and a specific feature

dimension.. xviii, 95–97, 100

F+ Proposed Kinematic-aware Random forests.. xviii, 95, 98, 99

F Random forests.. xviii, 95

Q Quality function of the random forests used to split each node.. xviii

xxiii

f A Action recognizer.. xviii, 94, 95

f P Pose estimator.. xviii, 40, 67

1CHAPTER

INTRODUCTION

Contents

1.1 Problem definition 2

1.2 Challenges 4

1.3 Our focus and solutions 6

1.4 Thesis outline and contributions 8

U nderstanding poses [18, 50, 70, 148, 242] and actions [5, 8, 49, 50] of human bodies and

hands has been an important problem in the computer vision community, as those poses

and actions (e.g. shaking hands, high fiving, sign languages) are essential to grasp complex

daily interactions between persons or intended purposes of manipulating diverse objects. This

technique has been crucial for practical products such as smart glasses in augmented reality

(AR) and virtual reality (VR) scenario as well as more future-oriented techniques such as AI

which assists doctors in monitoring patients, tele-operations and etc. (See Fig. 1.1). However,

achieving a good understanding of this is not easy due to many in-the-wild challenges.

1

1.1 Problem definition

(a) Smart glass (MS Hololens) (b) Patient Monitoring (U. of Florida) (c) Tele-operation (bbzsrl.com)

Figure 1.1: Diverse products exploiting pose estimation and action recognition of human bodies and
hands.

Pose estimation aims to recover the underlying pose of the subjects (i.e. human bodies and

hands) from an unseen test image. Either a depth map or an RGB image can be used as the

input, and the pose space can be defined in the form of skeletal keypoints or full 3D meshes of

human bodies and hands depending on the applications: For the “hand” pose estimation, we

used the 21 joint-based skeletal hand model proposed in [244] (Fig. 1.2b, 1.2c) and deformable

3D hand model, called hand model with articulated and non-rigid deformations (MANO) [161]

(See Fig. 1.2e) as the target representation to recover. The hand skeletal model in Fig. 1.2b

represents a human hand based on 25 joint angles and the lengths of 20 bones connecting joint

pairs: each finger pose is represented as five angles (twist angle, flexion angle, abduction angle

for the meta carpo phalangeal (MCP) joint and flexion angles for the distal inter phalangeal

(DIP) and proximal inter phalangeal (PIP) joints and four bone lengths. The MANO hand

model is composed of 10 and 45-dimenisional vectors as principal component analysis (PCA)

coefficients for describing shape and articulation spaces of human hands. It is able to encode

hand 3D meshes having 778 vertices and 1, 538 faces. Additional global rotation parameters and

camera parameters are required to properly rotate, translate and scale the meshes. For “human

body” pose estimation, we used the skeleton model of Fig. 1.2a having a number of 15 joints.

We also used the deformable 3D human body model, namely a skinned multi-person linear

model (SMPL) [102] (See Fig. 1.2d) having 6, 980 vertices, similarly to the MANO model in

the hands domain.

Action recognition aims to recover a proper action label to each video sequence. The actions

2

(a)

TIP

DIP

PIP

MCP

(b) (c) (d) (e)

Figure 1.2: Skeletal model of human and hand models (a) human model which consists of 23 joints [226],
(b) hand model which consists of 21 joints [244]: one for wrist and four for each finger. Each finger has
five degrees of freedom: flexion for DIP and PIP, flexion, abduction and twist for MCP. (c) a skeleton
overlaid on the underlying depth map, (d) SMPL human body model having 6890 vertices, (e) MANO
hand model having 778 vertices.

are pre-defined before constructing the action recognizer. The action label space can be defined

in multiple ways: 1) static actions or actions with subtle motions such as “sitting”, “lying on

the bed” and “drinking” can be the action labels, 2) dynamic actions such as “falling from the

bed”, “running” and “hopping” can also be action labels, 3) static and dynamic actions are

mixed to define higher semantic action labels such as “cooking” and “playing tennis”; and 4)

additional objects can be involved and some actions are defined as the combination of nouns

and verbs. “Pouring milk bottles” and “opening milk bottles”, for instance, can be action labels.

The example plots for the action frames are visualized in the Fig. 1.3.

(a) (b) (c)

Figure 1.3: The example frames of the actions defined. (a) Example action “lying on the bed” from
our PATIENT dataset proposed in Sec. 3, (b) Example action “writing on the board”from CAD60
dataset [191], i.e. (c) Example action in the hand-object interaction scenario involving Nouns and Verbs,
i.e. pouring milk from FPHA dataset [50].

3

(a) (b)

Figure 1.4: Similar hand skeletons overlaid with the corresponding depth maps in (a) camera perspective
and (b) shape (subject) variations: Note that slight variations in hand skeletons are instantiated to
significantly different depth maps.

1.2 Challenges

The estimation of actions and poses of human bodies and hands comes with many critical

in-the-wild challenges:

Inherent 2D-to-3D ambiguity. Either 2D RGB images or 2.5D depth maps are widely used

as inputs to the pose estimation and action recognition systems. These inputs lose full 3D

information when they are projected and captured in the form of 2D images. As exemplified

in Fig. 1.4a, we visualized similar hand skeletons which were instantiated with significantly

different depth maps, indicating the highly non-linear characteristics of the 3D-to-2D projection

process. Furthermore, when (self)-occlusions are involved in the 2D images, it is hard to recover

the accurate poses of occluded joints. There have been multiple-input convolutional neural

network (CNN) structures to deal with the issue in the object domain [188]. However, this is

possible only when the multi-viewed camera systems are available during the testing stage which

is a different setting from ours (i.e. “estimating actions and poses from the single images”). In

the single-image scenario, directly changing depth values can easily generate unrealistic hand

shapes as data entries in depth maps are highly structured and correlated. Fig. 1.5 shows the

example results with input depth maps rotated by 15, 30, 45 and 60 degrees. There appear many

holes and the occluded thumb fingers visualized with the red circle in the rightmost figure could

not be recovered in the later stage.

4

Figure 1.5: Input depth image (first column) and depth images synthesized by rotating the input (second
to last columns: 15, 30, 45, and 60 degrees of rotations, respectively). Depth values are noisy due to
missing points in the z-axis. Red circle denotes the missing Thumb finger.

High-dimensionality of the attribute space. Typical parameters for representing human bodies

and hands are approximately 100-dimensional. This is already a high dimensional space which

is non-trivial to be described by manual efforts. To capture more detailed shapes and textures of

human bodies wearing clothes [2], the dimension needs to be much higher. In the hand domain,

feature dimensions for shapes and textures can be lower than human bodies, as textures are

mostly composed of skin colors and shape variations are not significant when compared to

the human body (see Fig. 1.4b, shape variation is mostly parameterized by the bone lengths

of the fingers [28, 39]). However, the camera perspective (i.e. viewpoint) space of the hand

domain is more complex when compared to that of the human body where subjects are typically

isolated, in the frontal viewpoints and upright positions. Hands exhibit frequent and severe

self-occlusions; furthermore, defining canonical views is not straight-forward since hands are

captured in a wide range of equally likely camera perspectives. This high-dimensionality of

attribute space makes the pose estimation and subsequent action recognition tasks challenging.

Size variation. The size of the captured human bodies and hands are variable. This variation

can make the state-of-the-art CNNs suffer from inferring correct labels, which does not have a

principled way of dealing with the scale invariance yet. Naïvely applying the data augmentation

methods by generating random re-scaling [126, 128] could be a remedy for this. However, the

size space of human bodies (140cm to 200cm in height, 20cm to 100cm in width) and hands

(173.5mm to 208mm in lengths, 72.1mm to 97.3mm in width) are inherently wide and could

lead to differences in appearance space. This may cause failure in both pose estimation and

subsequent action recognition.

5

Rapid motion. Natural movements of human bodies and hands are fast. Modern consumer depth

sensors and RGB cameras only run at a modest frame-rate (less than 100 Hz). This inevitably

causes motion blur within frames and reduces consistency between frames. Besides the frame-

rate limitation of the sensors, the speed variations between frames make deciding proper

temporal scales non-trivial and make the temporal modelling of the actions challenging [41].

Noisy data. Depth maps are often captured in a low resolution involving noises. Therefore,

a large gap is observed between synthetic and realistic data [148, 174] as the synthetic data

does not involve the natural sensor noise. This is known to affect the pose estimation tasks in

several ways: 1) the model trained by pure synthetic data generated from the graphics tools

is not easily generalized to the real-world data; this makes it hard to secure a large number

of accurate annotations and quality image appearance pairs which are required for learning

state-of-the-art CNNs; 2) within the real data, characteristics of the noise are random, and pose

estimation often becomes unreliable [12,132,150,241]. In turn, unreliable poses which are used

as the intermediate representation could result in the inferior performance in the subsequent

tasks such as action recognition.

Subject segmentation. Detecting tight bounding boxes or the exact pixel locations (i.e. seg-

mentation masks) of the subjects is challenging. Several methods for detecting bounding boxes

of spatial humans [153,154,226] and spatio-temporal human actions (i.e. action tubes [55]) have

been proposed so far; still they are regarded as challenging tasks, as many failures are observed

when subjects are within the cluttered backgrounds and involved with severe (self)-occlusions.

Obtaining clean segmentation masks for human bodies [249] and hands [84] is also hard.

1.3 Our focus and solutions

In this thesis, we try to focus on the fundamental issue, namely the inherent 2D-to-3D ambiguity

in the tasks. This challenge is fundamental as all 2D images we are seeing in our daily lives are

captured through a non-linear perspective projection that loses the full 3D information.

6

To relieve the issue, we proposed several ways to incorporate the 3D geometry in action

recognizer and pose estimator. While incorporating the 3D geometry in the problem, as a

by-product, we could tackle the insufficient data and annotation issues of the pose estimation

problem. We detailed targeted challenges and our solutions in the remainder of this section:

2D-to-3D ambiguity. One of the main challenges in 3D pose estimation and action recognition

problems is the inherent ambiguity in 2D-to-3D mapping. Generally, either 2D RGB images [18,

70] or 2.5D depth maps [50, 242] are used as the input to the pose estimation and action

recognition systems. These inputs are losing full 3D information when they are projected and

captured in the form of 2D images, while the 3D information (i.e. occluded parts, appearance

taken from multiple viewpoints or cross-view invariance) is often effective for reasoning about

actions and poses.

Our solution: To relieve this challenge, we adopted two methods:

• Similar to what happens with the multi-task learning [107, 245] where the trained model

is advantaged by the increased number of losses used, we were motivated to incorporate

the additional contextual information encoding the 3D geometry to the action recognizer

during its training process. This was intended to reduce the 2D-to-3D mapping ambiguities

and at the same time to improve the overall action recognition performance.

• We additionally proposed 2.5D depth and 3D mesh reconstruction methods and data

augmentation frameworks to generate samples with new viewpoints to explicitly supply

our pose estimation model with multi-viewed training data.

Lack of data with quality annotations. Another important challenge is the lack of sufficient

training data with quality annotations [6, 127, 244] to train the pose estimator, and the action

recognizer. In particular, annotating 3D poses requires a huge amount of manual efforts as one

has to figure out 60 to 80 coordinate values in a 3D space for subjects in each image. Even

worse is that the depth information is not easy to be secured using the RGB cameras. Manual

annotations using depth sensors [185] are proposed to tackle this; however, for RGB images or

(self-) occluded regions in depth maps, the 3D coordinate values are not available and it prevents

7

Coarse 3D Pose

RGB or D

Scene 3D Layout

Dense 3D Pose 3D Action

Figure 1.6: Chapters through 3 to 5 are designed to reveal the relationships between 2D/3D cues
available in estimating poses and actions of human bodies and hands.

collecting high-quality annotations [18, 70, 244]. With the help of motion capture systems

using magnetic sensors [242, 244], many datasets have been introduced in pose estimation and

action recognition domains recently; however they do not suffice yet to cover all the variety

of in-the-wild scenarios, especially when severe occlusions and background clutters [242] are

introduced.

Our solution: In a similar spirit to the works in [148, 174, 176] that generate the synthetic

databases to create a greater variety of input and annotation pairs, we tried to augment training

data with new 2.5D or 3D data samples generated by manipulating their shape and viewpoint

parameters.

1.4 Thesis outline and contributions

In chapter 2, we review the literature on pose estimation and action recognition for both hand

and human body subjects. We categorize the literature according to their main challenges and

corresponding solutions.

We propose methods concerning the two challenges defined in the previous subsection, and

demonstrate their effectiveness throughout chapters 3 to 5. In Fig. 1.6, we visualize relationships

among available inputs (i.e. 2.5D depth, 2D RGB), 3D geometry (i.e. 3D pose, scene 3D layout)

8

in action recognition/pose estimation tasks and their usage in each chapter.

The objective of this thesis is to fill the gap between the 2D input and targetted 3D outputs (i.e.

3D poses and actions) with the 3D geometric cues available.

In the pose estimation, the 2D-to-3D ambiguity and insufficient data issues are combined:

subtle changes in the viewpoint and shape can result in significantly different 2D images;

however obtaining 3D annotations for all the data takes huge efforts. Despite the difficulty, the

pose estimation is important as it could affect the accuracy of subsequent tasks such as action

recognition.

In the action recognition, 3D geometric cues such as 3D poses and 3D scene layouts are

available, and they are useful to reveal some difficult actions (such as lying or cringing humans

in a hospital); however there have been few works that can exploit such information. Developing

a method to exploit such 3D geometric cues is a promising research direction.

The overall thesis is structured to have primarily two parts: pose estimation and action recog-

nition. In both parts, challenges are lie in the 2D-to-3D mapping ambiguity which makes

the 3D pose estimation difficult: 1) Hand pose estimation is challenging due to its significant

appearance change. Hands exhibit severe viewpoint variations, differently to human bodies and

faces which are mostly in the upright position and frontal viewpoint. Also, data collection is

challenging due to many self-occlusions involved. 2) In the PATIENT action recognition prob-

lem, where humans are not in the upright position and frontal viewpoint, body pose estimation

becomes non-trivial while estimating 3D poses and scene layouts is helpful for revealing their

actions. We tackle the challenges by exploiting the 3D geometry during the training stage

of classifiers.

1) First two chapters (i.e. chapter 3, 4) deal with the “pose estimation” of hands that exhibits

severe viewpoint variations. In the hand domain, there is no complete database yet covering up

the combination of viewpoint and other major variations (i.e. shape, pose). We try to reconstruct

2.5D depth maps (in chapter 3) or 3D meshes (in chapter 4) and use them as the additional

training data while learning the mapping between 2D inputs and 3D poses.

9

2) The last chapter (i.e. chapter 5) deals with the “action recognition” of human bodies under

the scenario of 24/7 monitoring patient’s actions. Estimating accurate patient’s body poses

with the off-the-shelf pose estimator (e.g. Microsoft Kinect) is difficult, due to the unique and

diverse postures of patients (e.g. lying, cringing). Also, 3D scene layouts such as bed and

floor are useful to reveal the actions while estimating them at testing stage is non-trivial. We

bypass the explicit estimation of body poses and scene layouts by developing the random forest

(RF)-based framework that can exploit additional information only during the training stage

(where ground-truths could be utilized). Using the framework, we incorporate the 3D geometry

from both 3D scene layouts and body joints in our model.

In chapter 3, we tackle the problem of both 2D-to-3D ambiguities and insufficient 3D data issues

for the 3D hand pose estimation problem (in the aspects of articulation, shape and viewpoints).

We synthesize the new 2.5D samples using the generative adversarial network (GAN) framework

with cyclic consistency losses to explicitly generate the multi-view information lost during

the 2D projection process. At the same time, we synthesize the new samples in the shape

space as well to enforce pose estimators see diverse samples in another attribute. Using this

2.5D reconstruction method, we can augment the training data and demonstrate that the coarse

skeleton-based hand pose estimator achieved the state-of-the-art performance.

Related publication

S. Baek, K. I. Kim, T.-K. Kim, “Augmented Skeleton Space Transfer for Depth-based Hand

Pose Estimation”, in Proceedings of the IEEE Conference on Computer Vision and Pattern

Recognition (CVPR) 2018 (Oral Presentation).

In chapter 4, we try to reconstruct the full 3D meshes of human hands. As there is no dataset in

the hand domain which has RGB and corresponding full 3D mesh annotation pairs. To tackle

this, we formulate our CNN-based framework to be supervised by the RGB image, 3D skeleton

and 2D segmentation mask triplets using a differentiable renderer and a skeleton regressor,

rather than using the explicit RGB and 3D mesh pairs. Furthermore, to tackle the insufficient

3D data and 2D-to-3D ambiguity, we proposed to generate new RGB samples from intermediate

10

3D meshes estimated, by manipulating their shape and viewpoint parameters. We demonstrated

that the proposed method can obtain the state-of-the-art performance in RGB-based hand pose

estimation benchmarks.

Related publication

S. Baek, K. I. Kim, T.-K. Kim, “Pushing the Envelope for RGB-based Dense 3D Hand Pose

Estimation via Neural Rendering”, in Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition (CVPR) 2019.

In chapter 5, we investigate the use of the 3D geometry information when classifying patient

actions in a ward scenario. We utilize 3D geometry composed of 3D layouts and 3D human poses

and propose the method to implicitly reduce the 2D-to-3D ambiguities during the training stage.

As a result, overall action recognition accuracy has been improved accordingly. Considering

that estimating the 3D geometry cue (e.g. distance between layout planes to the human body

skeletons) itself is challenging during the testing time, we decided to use them only at the

training stage, where ground-truths could be used, while only camera input was used during

testing.

Related publication

S. Baek, Z. Shi, M. Kawade, T.-K. Kim, “Kinematic-Layout-aware Random Forests for Depth-

based Action Recognition”, in Proceedings of the British Machine Vision Conference (BMVC)

2017 (Oral Presentation).

Finally, chapter 6 concludes the thesis.

In appendix, we propose a new synthetic hand pose database by fitting the deformable 3D hand

model to one of the biggest database in the hand domain. We expect it would be interesting to

see the possibility of more diverse data augmentation possibility and multi-modal fusions using

this database in the future.

11

2CHAPTER

BACKGROUND

Contents

2.1 Pose estimation 13

2.2 Action recognition 27

2.3 Evaluation criteria 35

T his chapter reviews previous literature on pose estimation and action recognition. Prob-

lems in understanding the 3D poses and actions of humans have been tackled by breaking

them down into parts – human body, hand and face – and developing domain-specific approaches,

separately. In this chapter, we present their challenges and methods focusing on human bodies

and hands.

2.1 Pose estimation

Human bodies, hands and faces are major subjects in images and videos that we obtain in

our daily lives. Understanding their poses is often critical for performing subsequent tasks

13

(e.g. action recognition, scene understanding or predicting future movement). There has been

significant progress in estimating “2D poses” of human bodies, hands and faces [20]. The “2D

poses” are defined based on the uv-coordinate space of the 2D images, disregarding the z-axis.

However, our interactions with the world happen in the 3D space and more recent works have

made progress towards estimating “3D poses” which are defined in the world coordinate (xyz)

from a single RGB image or a depth map [14].

2.1.1 Human 3D model

3D models are useful tools for capturing 3D poses and shapes of articulated objects. The 3D

model of the human is proposed by breaking it down into individual parts: mainly human body,

hand and face.

Body. Three-dimensional body scanners enabled capturing detailed human body shapes. For

example, the CAESAR dataset [156] has been collected for modelling human body shapes.

Anguelov et al. [4] proposed the SCAPE model, which can deform according to articulated poses

and shapes using data-driven approaches. Subsequent models followed the scheme, using either

triangle deformations [62] or vertex-based displacements [102]. These 3D models [3, 4, 102],

however, focus on capturing the overall shape and pose of the body, excluding hands and face

(these methods assume that hands are clenched as fists and faces have a neutral expression).

However, to properly understand diverse human behaviors, we must capture more than the body

pose.

Hand. From the perspective of machine learning, both hand and body pose estimation could

be formulated as regression problems and they share many similarities. Hand poses, however,

exhibit domain-specific challenges:

Large variations in camera viewpoints. Hand pose estimation requires generally much more

data than is required in the human body pose domain where most humans are upright position

and seen from frontal viewpoints. Combined with the diverse viewpoints, hands exhibit many

14

more self-occlusions than human bodies, and this makes it hard to collect abundant databases

with quality 3D annotations [244]. In chapter 3 and chapter 4, we will tackle this issue by

synthesizing samples with new attributes (i.e. viewpoint, shape).

Delay in the development of a high-quality 3D hand model. Until recently, 3D hand models were

typically artist designed [187] based on primitive shapes (i.e. cylinders, spheres, ellipsoids) [113]

or simple shape spaces [201]. As hand poses exhibit many self-occlusions, in [9], a multi-view

camera system was employed to improve the performnace of 3D hand capture; however these

approaches were based on the fixed shape. Khamis et al. [83] proposed developing a 3D model

captured from 50 peoples’ depth maps, to deal with shape variations. Recently, following the

formulation of the popular 3D body model, SMPL [102], Romero et al. [161] proposed the

high-quality parametric 3D hand model (MANO) with shape and pose parameters. The model

was developed by capturing high-quality 3D scans of 31 subjects in 51 different poses. In

chapter 4, we exploited this MANO 3D hand model to reconstruct the dense representation of

hands from single RGB images.

Face. Blanz and Vetter [11] pioneered developing 3D face model that could model shapes

and the albedo of the human faces. Since that time, numerous methods have been proposed

to capture face shapes and expressions from scanned data [17]. FLAME [95] tried to model

the whole head by capturing rotations of the head and neck regions. Recently, statistical face

models constructed from large-scale scans have been made publicly available [15, 29].

Unified models. There have also been recent efforts at combining 3D models for the human

body, hand and face. Such combined pose estimation was first proposed in [76]. Joo et al. [76]

offered a Frank model by combining three different available 3D models: SMPL [102] for

the body model, an artist-created rig for the hand model and the FaceWarehouse [19] for the

face model. They exploited the multi-view camera to reconstruct full 3D meshes of the human.

Romero et al. [161] also combined body and hand models in a model called “SMPL+H”. The

model was created by stitching the SMPL body model with the proposed MANO [161] 3D

hand model. Very recently, Xiang et al. [232] proposed extending the Frank model [76] for

exploiting only single-view RGB cameras. Pavlakos et al. [138] proposed a similar framework

15

that also incorporated the additional face 3D model from “SMPL+H”. Hasson et al. [63]

proposed reconstructing hand and object 3D meshes together from hand-object interaction

scenarios. Developing the unified models for human body, hand and face is a promising future

direction, however, the completeness of current algorithms is yet inferior to the domain-specific

approaches.

2.1.2 Dense pose estimation (3D model fitting methods)

The generative approaches, also known as “analysis by synthesis” are widely used in the

literature to fit the 3D model to the inputs. The particle swarm optimization (PSO) is a popular

algorithm for this purpose. It is able to fit 3D models to point clouds (depth maps) by minimizing

the discrepancy. Gradient-based optimization methods are also used to solve it as the energy

minimization problem [155, 224]. To fit to RGB images, recent methods try to exploit 2D

estimations (e.g. 2D skeletons, segmentation masks) as the intermediate representation: Loper et

al. [101] proposed a method to fit SCAPE [4] from motion captured skeletons. Using the

SMPL body model with its accompanying 3D skeleton regressor (that geometrically maps

3D vertices to skeletons), Bogo et al. [14] proposed fitting SMPL model to the 2D skeletons

estimated by [144]. The fitting is iteratively performed by minimizing the discrepancy between

the skeleton obtained from SMPL model and that from [144]. Zhou et al. [251] and Hasler et

al. [61] fit their 3D models to the segmentation masks obtained by the GrabCut. Panteleris et

al. [133] take the similar approach in the hand pose estimation domain. They first estimate

2D skeletons from RGB images using [226] and fit their 3D hand model to estimated 2D

skeletons. Joo et al. [76] also formulate energy terms considering the 2D skeleton consistency

and kinematic priors, then minimize it to capture face, body and hands together using their

Frank model. More recently, CNNs are used to infer 3D model parameters from single RGB

images. CNNs are trained by full 3D supervision [57] or indirect weak supervision [77] using

the differentiable renderer [79]. In the remainder of this subsection, we will give more detailed

review for PSO-based and CNN-based works.

16

Particle swarm optimization. Particle swarm optimization (PSO) is a stochastic optimization

algorithm introduced by Kennedy and Eberhart [81]. In PSO, multiple hypotheses are generated

and randomly initialized; then the discrepancy between the manipulated 3D model hypotheses

and input depth map is measured, and hypotheses communicate together to update for the global

minimum. It is proven to achieve the global minimum. The PSO has been successfully applied

to both human body [74] and hand pose estimation [130] works. They both used the primitive

shape-based 3D models. Qian et al. [147] additionally combine the iterated closest point (ICP)

method with PSO, to compensate for the heuristics of the PSO. PSO variants have also been

proposed to improve the method’s convergence properties and to tackle shape variations:

Non-convexity of objective function. One criticism of the generative approaches is that optimiza-

tion is often based on non-convex objective functions and this results in the high time complexity

and frequent local minimas. To tackle this, the concept of “partial PSO” or breaking the overall

parameter space into parts has been proposed [136, 145, 168]. Sharifi et al. [168] adopted a 3D

hand model having 45-dimensional parameters; but divided into 6-dimensional space. Park et

al. [136] adopted the 26-dimensional 3D hand model and divided the space into 6-dimensional

space. Poier et al. [145] proposed a two-staged PSO algorithm: first, the global location and

viewpoint of hands are optimized by PSO, then each finger’s pose is optimized by five instances

of PSO.

Towards shape variations. Most generative methods do not consider shape variations. Therefore,

hand shape was calibrated before running the algorithm. In the early hand pose estimation, the

hand calibration was manually performed. Hu et al. [67] proposed using color LED markers

to calibrate the hand model. Lian [99] proposed equipping markers on hands and developed

the inverse kinematic solution for the hand shape calibration. Melax et al. [113] proposed a

framework that requires the manual adjustment of hand shapes (e.g. finger length, palm width

and so on). Tylor et al. [83] proposed reducing the number of parameters by transforming

the parameter space of a 3D hand mesh model into a few bases. Qian et al. [147] proposed

adopting an approximate ball model to improve the run-time speed as well as the fitting accuracy.

Recently, Tkach et al. [155] tackle the inefficiency by adopting the efficient sphere-mesh model

17

and proposing the low dimensional calibration method. In the following work [203], Tkach et al.

proposed the online method for hand personalization using the sphere-mesh model [202]. In

chapter 3 and 4, we also involved the shape variations: In chapter 3, the hand shape variation is

simplified to the bone length changes based on the research on the hand dimensions [28, 39]

and in chapter 4, hand shapes are captured by the PCA for 3D mesh surfaces to encode more

complicated shape variations (e.g. thin and fat).

CNNs and differentiable renderer. Recently, papers for reconstructing the 3D model of human

bodies based on CNNs have been appeared: Güler et al. [57] proposed a way to reconstruct

full 3D representations of human bodies using CNNs from single RGB images. This method,

however, requires full 3D supervisions using many pairs of 2D images and 3D mesh annotations.

End-to-end CNN methods for reconstructing the full 3D model (parameterized by SMPL) while

not exploiting the full 3D annotation have been proposed for human bodies [77, 209]. Both

works [77, 209] exhibit the similar method to learn the nonlinear mapping between 3D meshes

and RGB inputs. In [77, 209], the SMPL layer is formulated to generate the 3D human body

meshes from SMPL parameters in the differentiable manner. Furthermore, a skeleton regressor

that geometrically maps vertices of SMPL to pre-defined body skeletons is provided by [102].

As both the SMPL layer and the skeleton regressor are differentiable and they could be embed

in the CNNs. In overall, CNNs are formulated to first infer the SMPL parameters and generate

3D mesh vertices via the SMPL layer. Then, the intermediate 3D mesh vertices are used to

generate skeletons via the skeleton regressor. At the training stage, the output 2D skeletons

are compared to 2D skeleton ground-truths and loss is back-propagated through the network

to update CNN parameters. At testing, the intermediate 3D mesh is regarded as the output.

In [209], an additional testing-stage refinement within a CNN architecture is shown effective.

Differentiable renderer. With the aid of the general purpose differentiable renderers [79,100,103],

it becomes easier to map image pixel values to the vertices of the 3D meshes, without needing

the full 3D supervisions. These renderers have been proposed to generate 2D silhouettes, depth

maps and even textured RGB maps without losing the differentiable characteristic. However,

as the inverse rendering is not generally differentiable, approximation is done to keep the

18

backward pass differentiable [79, 103]. A probabilistic approach is explored in [100] to bypass

the approximation. Prior to this, Mansinghka et al. [110] formulate the rendering process with

the generative model and try to infer parameters of the scene model from the observations using

Metropolis-Hastings sampler. Li et al. [96] also introduced a general-purpose differentiable ray

tracer that uses a Dirac delta function-based novel edge sampling algorithm and an efficient

importance sampling based on spatial hierarchies.

In chapter 4, we use the skeleton estimator that maps vertices of MANO 3D hand model to 21

hand skeletons and differentiable renderer of [79] to generate 3D skeletons and 2D segmentation

masks from the 3D hand meshes. Then, the overall CNNs are supervised by RGB, 3D skeleton

and 2D segmentation mask triplets which are available in conventional hand pose datasets.

2.1.3 Skeleton-based coarse pose estimation

Skeleton is defined as the vector concatenating xyz coordinate values of the key points that are

pre-defined for the subject (e.g. hand, human body or face). While it is coarse and loses rich

information about the subject; it is efficient and can describe key components of the subject.

Even temporal actions of subjects can be effectively captured [236].

Discriminative approaches directly learn a posterior probability of mapping the visual features

to the targetted poses. They have been successfully adopted in the skeleton estimation tasks.

Algorithms require a labelled training database for learning such a non-linear mapping between

visual features and poses. In earlier works, nearest neighbour classifiers were used to retrieve

samples in the training data [160, 224]. Recently, random forest (RF)-based and CNN-based

frameworks have been popularly used.

Random forest-based works. Shotton et al. [171] proposed a RF-based human body skeleton

tacker operating in real-time. The approach treats 3D body skeleton estimation as a classification

problem to use the RFs. The authors applied RFs for per-pixel classification of body parts and

applied a mean-seeking algorithm afterwards, to output the final human body parts. Girshick et

19

al. [54] improved it by proposing a regression forest that is able to vote for occluded skeletons

from each pixel. Several works in facial landmark estimation [31, 210] exploited similar voting-

based approaches in their task. Then, Sun et al. [190] proposed a hierarchical approach by

extending the work of Girshick et al. [54] to regress skeletal joints in a coarse-to-fine manner.

The performance was acceptable for even practical products and this accelerated the use of

human body poses as useful cues for subsequent tasks such as action recognition [45, 108, 235].

In the hand skeleton estimation, similar RF-based approaches have been applied, following the

trends in human body skeleton estimation research [54, 171, 189]: a classification-based RF

framework similar to [171] has been developed in [185, 196], followed by a regression-based

RF framework similar to [54] in [215].

Encoding the kinematic prior in RFs. As discriminative approaches lack the ability to encode the

kinematic information from physical objects, their results are sometimes physically implausible.

To relieve this, several works have tried to incorporate such priors in their classifiers for encoding

prior kinematic information. Ye et al. [237] proposed a method with kinematic chain structures

to encode kinematic constrains into the classifier. Ding et al. [33] proposed template-fitting

using the Gaussian mixture model (GMM)s. To encode the kinematic context information from

hands, Zhu et al. [254] proposed to encode contextual information into the RFs.

Hierarchical approach in RFs. The structure of RFs are by nature hierarchically driven. Sev-

eral works exploit this characteristic to perform pose estimation in the coarse-to-fine manner.

Rogez et al. [157] proposed a unified framework for hand pose detection and classification.

A more hierarchical method has been developed in [158] to perform the coarse-level part

classification and the detailed pose-specific part classification. Tang et al. [194] presented the

latent regression forest (LRF) for real-time 3D hand pose estimation. When growing trees, they

exploted the information from kinematic graphs which are separately pre-learned from RFs

and encode kinematic priors of hands. Keskin et al. [82] proposed dealing with different hand

shapes involving multiple RFs. They adopted the RF-based framework of Shotton et al. [171];

however they cluster training data into K clusters depending on different hand shapes. A shape

classification RF is trained using whole training data and for each cluster, part classification

20

forest is trained to predict hand joints. Li et al. [94] proposed segmentation index points (SIPs)

on top of Tang et al.’s work [194] to deal with different topologies of hands. Sun et al. [190]

proposed a hierarchical RF-based framework that first estimates coarse hand poses and then

estimates detailed finger positions. Tang et al. [195] proposed involving multiple RFs to involve

kinematic hierarchy in hand poses. They assign separate multiple RFs for each partial joints

(from palm to finger tips) and RFs are trained to infer partial hand poses sequentially. Wan et

al. [215] explored the hierarchical RF-based framework of [190]; however they explored a new

feature constituted with “normal difference”, rather than conventional “pixel difference”.

Deep learning-based works. CNNs [64, 91, 178] are widely used in many computer vision

problems, due to their state-of-the-art performance. In the pose estimation, pre-trained net-

works [64] are fine-tuned to pose estimation domains [16] or new network architectures suitable

for 3D pose estimation (i.e. iterative inference for incorporating contextual information) have

been proposed [226].

Depth-based 3D skeleton estimation. The problem is better set in the depth domain, compared

to RGB counter-parts as the depth input inherently offers the partial 3D information [196].

Furthermore, deep learning methods have been successfully applied along with the million-

scale hand pose dataset [244] proposed in this domain. In the depth domain, as the magnetic

sensors are not visible, large-scale real data collection with quality 3D annotation is possible by

equipping sensors on hands as in [244], while in the RGB domain, it is impossible as the 2D

images would be spoiled by the sensors. Exploiting the large-scale public depth image datasets

(e.g. ICVL [194], MSRA [190], NYU [205], BigHand2.2M [244], FPAH [50]), CNNs have

shown good accuracy. Recent work [242] analyzed the state-of-the-art approaches and reported

that mean 3D joint error for their results was around 10mm, which is quite small given the

normal scale of human hands (300mm).

Due to the difference between depth maps and RGBs (e.g. number of channels and etc.), re-

searchers have designed several new architectures for the depth domain: Oberweger et al.

propose the DeepPrior arhictecture [128] and more deeper version of DeepPrior++ architec-

ture [126] adopting the ResNet architecture [64]. Zhou et al. [252] proposed a network that

21

estimates joint angles of hands, which are fed into a forward kinematic layer to estimate the

hand joints. Ye et al. [238] proposed the CNN architecture solving multiple scales and having

spatial attention mechanism within a network. In chapter 3, we experimented with the CNN

architecture proposed in Ye et al.’s work [238].

RGB-based 2D skeleton estimation. The process of recovering 2D skeletons from RGB images

are well established as the regression problem. In the earlier work, Toshev et al. [207] proposed

a CNN-based human body skeleton regressor, named “DeepPose” by directly regressing the

coordinate values of each skeletal joint. After this, many CNN-based skeleton regression

methods have been proposed: In [72], Jain et al. proposed a hierarchical CNN-based network

that combines low-level and high-level spatial models. Tompson et al. [206] proposed a CNN-

based network considering the relationship among body parts in a spirit similar to the Markov

random fields. Pfister et al. [142] further developed heat map-based outputs and the effectiveness

of the larger receptive fields. Wei et al. [226] then proposed a more robust CNN architecture

that iteratively improves the heat-map prediction tasks using global contextual information. Due

to vanishing gradients, they proposed to supervise all the heat-maps. Newell et al. [120] again

verified the effects of intermediate supervisions in their architecture. 2D skeleton estimation is

matured in the level of estimating multiple persons’ poses for the human body pose: unstructured

pairwise relationships between body parts of variable numbers of people have been captured

using part affinity fields [20]. Pose residual networks [88] combining detection and keypoint

estimation have been proposed and dense regression from keypoint candidates has been proposed

in [124] to improve pose estimation tasks that use multiple persons.

Wei et al. [226]’s network architecture have been adopted to the hand skeleton estimation domain

by the work of [256] and have established the baseline for 2D hand skeleton estimation. While

in the hand pose estimation domain, hand appearances are varied by the diverse viewpoints

it could have, real RGB data is scarce and automatic annotation of RGB images still remains

challenging. Simon et al. [176] achieved promising results by mixing real data with a large

amount of synthetic data. Further accuracy improvement has been obtained by the automatic

annotation using label consistency in a multiple-camera studio [75]. However, 3D skeleton

22

estimation is more desirable.

RGB-based 3D skeleton estimation. Three-dimensional skeleton estimation from RGB images

has inherent uncertainties, as the input RGB image does not provide any clues for depth

estimation. In the early stages, Chen and Ramamnan [24] proposed estimating 3D human

body skeletons from 2D skeleton estimation results using a nearest neighbor method designed

to search for the closest 3D skeletons that match current 2D skeletons. Martinez et al. [111]

proposed a simple and efficient CNN-based approach to lift 2D human body joints to the 3D

space. Nie et al. [122] used the long short-term memory network (LSTM) network to predict the

depth of 2D skeleton locations to estimate 3D coordinate values. Recent approaches have started

to fuse 2D and 3D skeletal results iteratively [199]. In [204], 3D skeletal joints are refined by

seeing 2D skeletal joints. Similarly, in the hand pose estimation domain, earlier work [256]

attempted to learn direct mapping from RGB images to 3D skeletons. Recent methods [18, 70]

have shown state-of-the-art accuracy by implicitly reconstructing depth images – that is 2.5D

representations– and estimating the 3D skeleton based on them.

In chapter 4, we proposed a method for estimating full 3D meshes from single RGB images.

From obtained 3D meshes, we can uniquely generate both 3D skeletons and 2D segmentation

masks. Via this method, we compared the proposed algorithm with several 3D skeleton estima-

tion algorithms and concluded that our method has obtained the state-of-the-art accuracy in the

RGB-based 3D skeleton estimation task.

Deep learning architecture for 3D operation. As mentioned previously, hand poses exhibit a

much wider scope of viewpoints, given an articulation and shape. It is hard to define a canonical

viewpoint (e.g. a frontal view). To address the issue, intermediate 3D representation is used to

properly represent 3D hand poses. The adopted intermediate 3D representation is for example,

projected point clouds [52], D-truncated signed distance function (TSDF)s [53], voxels [116] or

point sets [51]. Moon et al. [116] proposed a 3D CNN composed of encoder-decoder architecture

to estimate per-voxel likelihoods for each hand joint. Ge et al. [52] projected the depth image

onto three orthogonal planes (i.e. x − y, y − z and z − x) and trained a 2D CNN for each

projection, then fused the results. In [53], Ge et al. proposed a 3D CNN by replacing 2D

23

projections with a 3D volumetric representation (projective D-TSDF volumes). In [51], Ge et al.

proposed using the PointNet [146] in the hand pose estimation domain, which is able to directly

exploit the point clouds as the input. Though these approaches have shown promising results,

they are basically limited in that they cannot re-generate lost 3D information of depth maps.

For example, as in Fig. 1.5, thumb fingers are occluded in the depth map and they cannot be

exploited in those approaches.

In chapter 3 and 4, we try to re-generate lost 3D information (self-occluded) employing the

GAN framework and full 3D mesh (MANO), respectively.

2.1.4 Pose estimation with the refinement

As discriminative methods such as random forests (RFs), convolutional neural networks (CNNs)

and generative methods such as particle swarm optimization (PSO) have their own pros. and

cons., the hybrid approach that combines both are promising. The popular way of combining

the two methods is performing the initialization with the discriminative method and refining

it with the generative method. For example, Qian et al. [147] use fingertip detection results as

initialization for PSO. Tompson et al. [205] apply a CNN to predict 14 joint positions as an

initialization and apply PSO to refine them. Sridhar et al. [184] use RFs to classify pixels into

parts and apply an optimization method for solving energies defined to consider the consistency.

Sharp et al. [169] also take the similar strategy with PSO, however estimate joint angles rather

than the joint locations. To do this, they first classify the input into one of 7 discretized poses

(open, fist and so on) and then apply PSO. Sun et al. [190] propose to use a sequence of weak

regressors that are trained to output residuals to be added to the current pose estimation result to

make it close to their ground-truths. They iteratively refine the once estimated joints by first

improving palm joints and the finger joints afterwards. In this work, palm joints are regarded as

the global pose while finger joints are regarded and finer poses. Oberweger et al. [129] proposed

guiding the iterative refinement by the hand pose generator (HPG) that generates depth images

of hand poses given skeletons. Wu et al.’s algorithm constructs a skeletal GMM which acts as a

24

prior. The initial pose estimates are then refined by combining the prior with 2D re-projection

and temporal consistency likelihood [228].

In both chapter 3 and chapter 4, we involved the testing refinement step for once estimated hand

poses using the gradients for minimizing the losses at the testing step. In chapter 3, the loss is

defined by the hand pose discriminator which is learned to capture the hand pose distribution

and thus, hand poses are updated to be in the hand pose distribution. In chapter 4, the loss is

defined by the discrepancy between the estimated final 3D meshes and estimated 2D evidences,

so that 3D hand meshes are updated to match well to the 2D evidences. This is motivated by the

fact that 2D evidences are better estimated than the 3D meshes as there is an inherent 2D-to-3D

ambiguity.

2.1.5 RGB-D hand pose estimation datasets

The performance of discriminative approaches is highly correlated to the quality and size of

the training data where it was trained on. A large-scale dataset with a good 3D annotation is

desirable to learn a correct mapping between input and output 3D poses; however, collecting

the large-scale real databases with quality 3D annotation is challenging and still an on-going

research problem. However, to properly train CNNs, a large-scale database is required. Several

large-scale databases have been proposed in both depth and RGB domains.

Depth dataset. In early works, the datasets (e.g. ICVL [194], MSRA [190], NYU [205]) were

collected by the combination of model fitting methods such as PSO, use of tracking algorithm

for temporal propagation and manual refinement. Therefore, the obtained 3D annotation is noisy

and inaccurate. The automatic data collection pipeline has been developed afterwards. Yuan et

al. [244] equipped magnetic sensors on hands and applied the inverse kinematics to reconstruct

hand skeleton locations from obtained sensor locations. They used the reconstructed hand

skeletons as the ground-truths. Furthermore, they scheduled to explore complete articulation

transitions between 32 extreme hand poses (i.e. cases obtained by extremely folding or stretching

each finger) with random viewpoint changes and involving 10 persons. This dataset is called as

25

the Big Hand 2.2M dataset [244] and is regarded as one of the biggest dataset in the aspect of

articulation, viewpoint and shape variations in the depth-based hand pose estimation community.

Yuan et al.’s automatic annotation was possible as the equipped magnetic sensors are not

visible in the captured depth maps; however it is impossible to apply this to RGB domain as

the equipped magnetic sensors could spoil the RGB appearance. Using the same skill, the

FPAH [50] dataset that deals with the challenging scenario, the egocentric hand pose estimation,

is proposed. The scenario is challenging as in the egocentric viewpoint, hand poses exhibit

much more self-occlusions than in the third viewpoint. Also, in the scenario, the hand-object

interaction was involved and hands are also occluded by the objects. However, even for hands

exhibiting many (self-)occlusions, the automatic annotation works successfully.

Obtaining the complete realistic database in the combination of main variations of hand poses

(i.e. viewpoints, poses and shapes) is still challenging due to the high dimensional space of the

hand subject. In chapter 3, we tackle this challenge by synthesizing new 2.5D samples in the

aspect of viewpoint and shape variations.

RGB dataset. The dataset issue is more imminent in the RGB domain as the automatic data

collection pipeline such as Yuan et al.’s [244] cannot be applied, as the magnetic sensors involved

could spoil the input appearance. However, several datasets have recently been proposed such as

DO [186], STB [248], RHD [256], SH [118] and GANerated [117] datasets. Due to the difficulty

in the annotation, most available datasets such as GANerated, RHD and SH are synthetic. They

are rendered from the 3D model with simulated textures. DO [186] and STB [248] are realistic

datasets; however the number of collected frames are small, as they were annotated based on the

manual efforts.

The gap between real and synthetic data. Synthetic data are widely used as it is easy to obtain

both appearance and quality annotations even in the 3D space. Thus, many state-of-the-art 3D

pose estimation methods employ the 3D model for human bodies and hands to augment their

training data space. Both direct data augmentation [117] and pre-training on synthetic data [176]

were proposed. One critical issue with synthetic datasets is that there is a gap between real and

synthetic data. It is well known that a model trained on pure synthetic data does not generalized

26

well to the real testing data [148, 174]. To reduce the gap, Shrivastava et al. [174] proposed the

conditional GAN framework that inputs the pure synthetic depth maps and is trained to improve

its realism using the adversarial loss. Mueller et al. [117] also proposed similar method for

the RGB domain using the conditional GAN framework. While images obtained by the GAN

framework is appealing; sometimes it is not optimal for the subsequent pose estimation task. To

relieve this, in [148], Rad et al. proposed to close the distance between the real and synthetic

feature spaces rather than the 2D image appearance.

2.2 Action recognition

Action recognition of human bodies and hand gestures has a long history. We will first review

the available cues in the action recognition problem and review methods and database.

2.2.1 Various cues for action recognition

In action recognition, the spatial and temporal cues have been combined: Spatial cue captures

the static appearance information of single frames while temporal cue conveys the movement

of the observee or objects in the form of motion across frames. It includes low-level features

that are computed over the spatio-temporal volume of the human action [34] or higher-level

representations, such as body pose [217] or 3D scene layouts [32].

RGB cue. RGB images are the most popular inputs to the action recognition systems, as

they can be trivially obtained from the usual video camera. Furthermore, many deep learning

architectures, which was originally developed for the image classification such as AlexNet [91],

VGG-16 [178] and ResNet [64], could be extended towards spatio-temporal feature extractors

via pre-trained weights. One of the traditional methods of encoding spatio-temporal information

using RGB streams is via applying long short term memory network (LSTM) [119] on these

CNN features. Two stream networks [42, 177] also have been popularly used. Simonyan et

27

al. [177] combined two streamed features extracted from temporal (by optical flows) and spatial

(by RGBs) inputs and obtained the promising results. Feichtenhofer et al. [42] further explored

operations for combining the spatial and temporal streams and obtained the state-of-the-art

performance using the convolutional operation.

Before deep learning. Prior to the deep learning, the hand-crafted features were extracted and

encoded as the spatio-temporal feature vectors. For example, Bobick and Davis [13] constructed

the action templates as the major representation that summarizes the history of motion from

humans. Efros et al. [38] proposed a motion descriptor based on the optical flow that is computed

over the human movements. Then, the nearest neighbor classifier is applied to classify the

obtained representation according to action labels. Yilmaz and Shah [200] proposed to exploit

the differential properties of spatio-temporal volumes for efficient encoding. Blank et al. [10]

proposed to use the saliency to efficiently capture human’s movement over time.

Captured videos and images often contain useless information which is un-related to the human

actions (e.g. backgrounds). In the global representation, both useful and useless components

are mixed. To filter out such useless components, local representations of actions based on

the interest point detection have been proposed. Local representation become popular after

the work of Laptev [92] where the Harris corner detector is extended to the temporal domain

and applied to RGB videos to encode the space-time interest points. However, the detected

interest points were rather sparse. Instead of using sparse interest points, Dollár et al. [34]

proposed using dense interest points that are able to reflect a more complete information. A

small spatio-temporal volume is proposed as the interest points, and appearance features such

as gradients, optical flows are calculated to create a vocabulary via quantization methods (e.g.

k-means clustering) similar to the bag-of-words model.

Some researchers proposed the feature representation by extending the 2D representation used

in image classification tasks to the spatio-temporal domain. Scovanner et al. [163] extended the

scale-invariant feature transform (SIFT) [125] to the spatio-temporal domain and named it as

the “3D-SIFT”. Klaser et al. [87] extended the histogram of gradients (HOG) descriptor [30] to

propose the “HOG3D”. As an alternative, Laptev et al. [93] proposed the histogram of the optical

28

flow (HOF) by extracting optical flow and calculating HOG features on it. Combination of this

feature extensions and support vector machine (SVM) recorded the state-of-the-art performance

in 2009 [221].

Fixed spatio-temporal location for extracting features is ineffective, as motion information is

often lost due to sudden motion changes. To tackle the problem, many algorithms have been

proposed using spatio-temporal tracking of points over time. The spatio-temporal trajectory

information was proven effective for action recognition task [112,114,220]. Messing et al. [114]

proposed to extract trajectories by using a point detector [92] and a Kanade-Lucas-Tomasi

(KLT) feature tracker [104]. Matikainen et al. [112] also used a KLT feature tracker for tracking

trajectories. Wang et al. [220] proposed using denser sampling for extracting spatio-temporal

points. However dense sampling method improved the overall action recognition accuracy at

the cost of the high time complexity. To reduce the time complexity, Oneata et al. [131] and

Peng et al. [140] explored the use of Fisher vectors [141] for learning the compact representation.

Wang and Schmid [217] also proposed similar Fisher vector encoding and have obtained the

state-of-the-art accuracy.

Depth cue. The recent emergence of cost-effective and easy operation depth sensors [172]

have opened the door to a new family of methods for action recognition from depth sequences.

Compared to conventional color images, depth maps offer several advantages: 1) Depth maps

encode rich 3D structural information, including informative shape, boundary, geometric cues

of a human body and an entire scene. 2) Depth maps are insensitive to changes in lighting and

illumination conditions that make it possible to monitor patient/animal 24/7. 3) It is invariant to

texture and color variations, which eases the task of human detection and segmentation.

As the feature encoding method developed for the RGB domain is non-optimal for the depth

domain, many works have been proposed for encoding the depth appearance. Yang et al. [233]

proposed the depth motion maps (DMM) by stacking motion energy (i.e. substraction of two

consecutive frames) of depth maps projected onto three orthogonal Cartesian planes. Then they

extracted HOG descriptors from DMMs. Wang et al. [223] defined Hierarchical DMMs by

using different offsets between frames and extracting CNN features from them. More recently,

29

Rahmani et al. proposed a view-invariant descriptor histogram of oriented principal component

(HOPC) [151] to deal with the 3D action recognition from unknown and unseen views.

The deep learning networks are also non-optimal for the depth domain. Especially, Rahmani et al.

pointed out the cross-view invariance issue and proposed the view-invariant representation [152]

using CNNs. It has shown the state-of-the-art accuracy on both single-view and multi-viewed

depth-based action recognition benchmarks. In chapter 5, we employed the Rahmani et al. [152]

pre-trained network as our feature extractor.

Skeleton/pose cue. Pose estimation is shown beneficial for understanding human actions

in [45,108,235], while action recognition can also facilitate 3D human pose estimation as shown

in [241]. The joint modeling of action and pose has been studied on RGB data in [123]. Pose

estimation is performed at testing stages, which either helps further action recognition [45, 235]

or is helped by prior action recognition [241]. In either case, accurate pose estimation at testing

is aimed at. A well trained skeleton tracker can provide a high-level cue for depth sequences.

The use of skeleton joints has been suggested by [105, 213, 222] for alleviating ambiguities in

action recognition. Wang et al. [222] represent the interaction between human body parts and

environmental objects with an ensemble of human joint-based features. Vemulapalli et al. [213]

have represented entire skeletons as a point in the Lie group and capture temporal dynamics by

applying the Fourier temporal pyramid (FTP). Their feature descriptors are constituted with a

moving pose (MP) descriptor proposed in [246] that encode poses as the atomic motions and

used for mining useful key- frames adopting K-nearest neighbor approach. Skeleton joints have

also been used to constrain the dictionary learning for feature representation [105]. There have

been several works [48, 49, 247] that use skeleton/pose cues both at testing and training stages.

In those works, estimated poses are relatively stable and provide good discrimination among

actions, since most human poses are captured in the upright position and the camera is located

in front of humans. However, human pose estimation is not always stable due to the noisy depth

maps, self-occlusions by camera views and diverse human poses as demonstrated in [216]. To

solve these issues, Wang et al. [216] considered the best-K joint configurations to reduce the

30

joint estimation errors. In our work, estimating human body joints is even more challenging,

due to ambiguous and unique human poses (e.g. lying) in a hospital environment. To avoid

the unreliable dependency, we used the ground-truth of human poses and their 3D relation to

layouts to aid model decision at training while bypassing their explicit estimation at testing.

Recently, some works have utilized CNNs to automatically learn features directly from skeleton

data [80] or from Lie group representations [69]. Researchers have also proposed deep sequential

models that involve vanilla recurrent neural network (RNN)s [36] and with LSTMs [212] to

model temporal dependencies. However, these models have exhibited inferior performance

compared to recent models that explicitly exploit static information [218] or well-suited time-

series mining called Gram Matrix [250]. In demonstrating the benefit of combining feature

learning and sequential deep models, Du et al. [36] have first proposed a hierarchical, end-to-end

architecture that uses a hierarchical bi-directional RNN. This approach contrasts with Veeriah et

al. [212], who have directly fed hand-crafted features into a RNN with LSTM.

3D Scene layout cue. 3D Scene layouts provide the useful information for categorizing actions.

Often, actions have high correlation with its surrounding 3D scene layouts. For example, in

chapter 5, our targeted actions have the close relationship with the bed and floor layouts (e.g.

“falling from the bed” or “lying on the bed”). There have been several works for inferring indoor

scene layouts such as object, wall, floor, and ceiling from 2D inputs [65, 219]. Furthermore,

many researchers have shown the correlation among pose estimation, action recognition and

the 3D scene layouts: Fouhey et al. [44] and Delaitre et al. [32] show that by observing human

behavior, a strong correlation can be found between human actions and properties of a scene

and its objects. Similarly, Savva et al. [162] observe and track people as they interact with the

environment using RGB-D sensors. These methods aim at improving the estimation of 3D

scene geometry. Recently, Tulsiani et al. [208] proposed to predict object shapes and poses

simultaneously with the indoor scene layout estimation and have obtained the improved accuracy.

Gupta et al. [59] proposed using the environmental cues when understanding the human-object

interactions. Yu et al. [239] proposed the video representation for understanding actions using

the scene layouts as the feature descriptor. In chapter 5, we try to use these 3D scene layout

31

cues as well as 3D human body joints, to aid the 24/7 patient monitoring scenario. Due to the

challenging and unseen viewpoints, the 3D geometric information is encoded only during the

training stage where the ground-truths could be secured.

2.2.2 Random forest, convolutional neural networks

RF-based method. Standard RFs are popularly used for tackling the action recognition problem,

as it shows good performance with low complexity. Fothergill et al. [43] proposed using RFs in

the action recognition domain by fully exploiting multiple frames and classifying their pooled

features according to the action labels. Zhu et al. [255] adopted the bag-of-words model in the

context of the action recognition problem, thereby capturing poses and creating “bags-of-poses”

that encode critical motions of human actions. Mikolajczyk and Uemura [115] proposed an

unified framework for action recognition and localization. To encode the temporal cues during

the training stage of the RFs, [73, 165, 240] exploited the Hough forest [46] framework to infer

the temporal offsets to the center of a video. Chen et al. [25] proposed a temporal smoothing

term in the RF training. Also, Charles et al. [22] proposed a temporal context term in by

encoding the consistency of the confidence maps through temporal cues which are calculated

from the optical flow on human body poses.

CNN-based methods. Convolutional neural networks (CNN) [91] have shown the state-of-the-

art performance for representation learning on various computer vision tasks. The CNN has

been applied in action recognition as well in recent decades. Simonyan and Zisserman [177]

proposed learning two streamed CNN features by exploiting the appearance from RGB image

inputs and the motions from optical flow inputs. The network training was transferred from

the VGG network which was pre-trained on the image recognition tasks. Feichtenhofer et

al. [42] explored diverse temporal fusion methods in the two streamed networks [177] and

obtained significant improvements using convolutional fusion method. To more effectively

capture long-range temporal dependencies, recurrent neural network (RNN) with long-short

term memory (LSTM) [66] have been used. The feature-learning methods for color frames

32

within an LSTM architecture was introduced in [35]. Feature learning could be performed

by constituting the motion stream either with the two-stream model [121] or by an attention

mechanism [98]. Later, 3D CNN [211] is proposed to encode spatio-temporal information from

RGBs. The temporal axis is regarded as the third axis and 3D convolution is applied in the

spatio-temporal video inputs. Recently, Carreira and Zisserman [21] proposed a new CNN

architecture that embeds 3D convolution operations. Besides, a method to lengthen the range of

dependency in videos were investigated in [225].

2.2.3 RGB-D action recognition datasets

Most action recognition datasets that use the RGB-D sensors have human body pose annotations

via Microsoft Kinect [172].

Single-viewed gaming or daily activity dataset. Since RGB-D sensors work only in the indoors,

action classes are usually limited to daily actions, gaming or human-computer interaction

scenario. The first proposed RGB-D benchmark was MSR-Action3D [97] that contains actions

in a gaming scenario with a fixed camera perspective. Similar popular datasets containing

the gaming scenario are MSRC12 [43] and UT-Kinect datasets [231]. Gaming actions are

usually recorded from a single camera viewpoint with the humans in frontal and upright position.

Popular datasets regarding daily actions are MSR-DailyActivity3D [222] and Florence-3D [164].

These are usually more challenging because they involve objects and users are not necessarily

in the frontal viewpoint.

Multi-viewed dataset. One limitation of the aforementioned datasets is that they are recorded

from a single and fixed camera perspective. UWA3D Multiview II [152] and NTU RGB+D [166]

datasets were proposed to explore the use of multiple camera viewpoints. The NTU

RGB+D [166] dataset has more than 56, 000 videos and 60 classes. This is one of the largest-

scale real dataset in the daily action recognition with multiple viewpoints. It also provide IR

images.

33

In chapter 5, We proposed dealing with 24/7 patient monitoring scenario, where the human

body pose is difficulty to be secured by the Microsoft Kinect [171]. On the other hand, in the

intended scenario, the 3D scene layouts (e.g. bed and floor), 3D body pose and their relationship

are useful to reveal the targetted actions such as ‘lying on the bed” or “falling from the bed”.

Also, to meet the real-time requirement, we employed an efficient RF-based framework.

2.2.4 Hand gesture recognition (egocentric action recognition)

Action recognition from an egocentric viewpoint has opened new challenges for the action

recognition problem. The difference from the 3rd-person videos is that the egocentric viewpoint

does not capture the actor’s body. In this new viewpoint, hands and manipulated objects become

the most prominent subjects. Additionally, the camera is moving, as it is mounted at a person’s

head position. Thus, there could be noises or abrupt motion changes in captured videos.

Temporal reasoning of hand movements representing semantic actions (i.e. hand gestures) is

an important topic. The aim of the task is similar to that of recognizing human body actions.

However due to the domain difference (mainly different viewpoints [106] – that is, an egocentric

view and self-occlusions introduced by manipulated objects [157]), more specialized algorithms

have been proposed. Fathi et al. [40] found that hand features encode rich information for

the egocentric action recognition problem. Pirsiavash and Ramanan [143] proposed using

HOG descriptors to model objects and introduced the importance of the incorporation of object

cues in the problem. Most recent works [71, 106, 179] also proposed using features extracted

from both hands and objects. Ishihara et al. [71] extract HOG descriptors and encode the

temporal information using IDTs. Ma et al. [106] and Singh et al. [179] apply two-stream

networks [42, 177] in an egocentric setting and have obtained good performance.

Skeleton/pose cue. In full-body human action recognition, it is known that using higher-level

and viewpoint invariant features such as body pose can benefit action recognition [227, 235],

although this has not yet been studied in detail for hands. Compared to full-body actions, hand

actions present unique differences that make the use of pose as a cue not obvious: style and

34

speed variations across subjects are more pronounced due to a higher degree of mobility of

fingers and the motion can be very subtle. A setback for using hand pose for action recognition

is the absence of reliable pose estimators off-the-shelf in contrast to full body [171,226], mainly

due to the absence of hand pose annotations on real (cf. synthetic) data sequences, notably

when objects are involved [159]. One of the seminal work is [50] that proposes a hand gesture

benchmark that includes hand-object interacting gestures, hand pose annotations and 3D object

annotations jointly. In this work, authors introduce a new dataset of first-person dynamic hand

action sequences with more than 100,000 RGB-D frames annotated with 3D hand poses and

6D poses of manipulated 3D objects, using 6D magnetic sensors attached to the fingertips

and inverse kinematics. Tekin et al. [198] proposed a framework that simultaneously captures

actions, 6D object poses and hand poses using the database proposed in [50].

RGBD cue. Raw RGB frames or depth sequences are the primary inputs for the egocentric

action recognition problem. As in the hand domain, differently to the human bodies, an off-the-

shelf pose estimator is not available due to varied camera viewpoints, Thus, most of methods rely

on the RGB or Depth frames. The early work in first-person action recognition [71] found that

daily actions are well explained by looking at hands, a similar observation found in third-person

view [234]. In these approaches, hand information is extracted from hand silhouettes [106, 180]

or discrete grasp classification [71] using low-level image features.

2.3 Evaluation criteria

This section introduces the evaluation metrics for both action recognition and pose estimation

tasks. Different criterion is used for each task.

2.3.1 Accuracy measurement on action recognition

Action recognition problem is the multi-class classification problem. We used several existing

measures for evaluating our algorithms: ‘accuracy’, ‘precision’. The ‘precision’ is defined to

35

be the percentage measure of the number of correctly classified videos in relation to the total

number of videos. One drawback of this measure is its sensitivity to the class imbalance of the

specific databases, which denotes the problem where some classes are much more common than

others. Thus, this measure could introduce a bias to selecting the model. To relieve the issue,

‘average class accuracy’ was proposed to compute the number of correctly classified videos over

the total videos for a given class and considers the average as the final performance indicator.

2.3.2 Accuracy measurement on pose estimation

Mean testing error in mm unit is a widely used measurement for evaluating the pose estimation

systems. It can help users to judge how well pose estimation algorithms perform on average.

However, this measurement is not enough to evaluate the detailed behavior of the algorithms.

For example, one cannot tell the proposed algorithm performs well on which kind of data

solely using the “mean testing error” . To visualize overall distributions of hand pose samples,

proportion (in %) of the frames with all joints error<ε (in Euclidean distance per joint) being

smaller than a tolerance parameter ε [197] is proposed, which is defined as:

r f =
N f

N
(2.1)

where N is total number of frame, N f = g(ε) is the number of frames whose joints are all with

in euclidean distance of ε to the ground truth. This metric shows overall distribution of the hand

pose testing samples, and shows the percentage of good and bad samples in a glance.

36

3CHAPTER

COARSE POSE ESTIMATION VIA

EXPLICIT 2.5D DATA

RECONSTRUCTION AND

AUGMENTATION

Contents

3.1 Motivation 39

3.2 Hand pose estimation by skeleton augmentation 40

3.3 Experiments 52

3.4 Qualitative evaluation 56

3.5 Conclusion 58

T his chapter describes the method to jointly tackle the ‘inherent 2D-to-3D ambiguity’

and ‘insufficient data and quality annotation’ issues in the pose estimation problem,

mentioned in chapter 1. We propose to reconstruct new 2.5D depth data having novel viewpoint

37

to shape parameters based on the conditional generative adversarial network (GAN) [137]

framework. We use the bone length as the simplified shape parameter in this chapter, based on

the research on hand dimensions [28, 39]. While a deterministic rendering using a 3D model

is possible, synthetic depth maps exhibit an observable difference from real data [174]: It is

known that the model trained by pure synthetic data does not generalize well to the real testing

data. Thus, in [174], conditional GAN [137]-based approaches are proposed to fill the gaps.

Similarly, in this chapter, we use the conditional GAN [137] framework for hand pose generator

(HPG) and scheduled the attributes (i.e. viewpoint, shape) of synthesized data to be diversified.

An alternative is training a hand pose estimator (HPE) with a simple depth map and skeleton

pair manipulation, e.g. by in-plane rotations and translations. As shown in our experiments,

while this way of augmenting data helps, the resulting database coverage, however, is limited.

Crucial to the success of training a depth-based 3D HPE is the availability of comprehensive

datasets covering diverse camera perspectives, shapes, and pose variations. However, collecting

such annotated datasets is challenging. We propose to complete existing databases by generating

new database entries. The key idea is to synthesize data in the skeleton space (instead of doing

so in the depth-map space) which enables an easy and intuitive way of manipulating data entries.

Since the skeleton entries generated in this way do not have the corresponding depth map entries,

we exploit them by training a separate hand pose generator (HPG) which synthesizes the depth

map from the skeleton entries. By training the HPG and HPE in a single unified optimization

framework enforcing that 1) the HPE agrees with the paired depth and skeleton entries; and 2)

the HPG-HPE combination satisfies the cyclic consistency (both the input and the output of

HPG-HPE are skeletons) observed via the newly generated unpaired skeletons, our algorithm

constructs a HPE which is robust to variations that go beyond the coverage of the existing

database.

Our training algorithm adopts the GAN training process. As a by-product, we obtain a hand Pose

discriminator (HPD) that is capable of picking out realistic hand poses. Our algorithm exploits

this capability to refine the initial skeleton estimates in testing, further improving the accuracy.

We test our algorithm on four challenging benchmark datasets (ICVL [194], MSRA [190],

38

(a) Viewpoint and pose space (b) Viewpoint space

Figure 3.1: t-SNE embeddings of skeletal poses of Big Hand 2.2M, ICVL, NYU, MSRA datasets, and our
augmented skeletons. Each dataset covers up to a certain degree of shape and viewpoint variations but
none of them is comprehensive as indicated by the presence of empty space between different clusters. Our
data augmentation process fills in the space and provides a more comprehensive coverage of viewpoints
and poses. To experience the full detail of this figure, readers are advised to view the electronic version.

NYU [205], BigHand2.2M [244] datasets) and demonstrate that our approach outperforms or is

on par with state-of-the-art methods quantitatively and qualitatively.

3.1 Motivation

A straightforward approach to construct a robust hand pose estimator (HPE) might be to train it

on a large dataset that covers such variations. However, as far as we are aware, existing datasets

are limited in the coverage of camera viewpoint, shape, and/or pose variations (see Sec. 3.2).

When the data space is visualized using the ground-truth annotations of hand poses, shapes, and

camera perspectives in such databases, one can identify the missing regions in the space, e.g.

camera perspectives that are not covered by the database (see Fig. 3.1).

We present an algorithm that mitigates these limitations by augmenting the camera views and

shapes. In training, we synthesize unseen human hands in the skeleton space and transfer them

39

to synthetic depth maps: This helps to avoid the challenge in manipulating the depth maps and

provide an easy and intuitive way to close the gaps in the data space by editing existing data

points. To facilitate the transfer of generated skeletons to depth maps, we introduce two new data

processing networks: Inspired from the recent success of 2D/3D image generation [135], we

train the hand pose generator (HPG) that transfers input skeletons to corresponding depth maps.

As in GAN [56,149], we train the second, hand pose discriminator (HPD) that distinguishes real

depth maps from these synthesized by the HPG. Combining and jointly training HPG, hand pose

estimator (HPE), and HPD enable the automatic transfer of the augmented skeletons to depth

maps by enforcing the consistency over existing paired skeleton and depth map database entries

and the self-consistency over unpaired augmented skeletons. The HPD’s ability (combined

with HPG) to pick out realistic human hands can also be used in testing: During testing, we

synthesize multiple hand pose hypotheses out of the initial HPE prediction, and generate the

final refined prediction by combining them using the HPG and HPD as a prior.

To summarize, we contribute by 1) a new HPG and HPE combination that enables to exploit

both existing paired skeletons and depth map entries and newly synthesized depth maps in

a single unified framework; 2) a strategy that refines the HPE prediction during testing by

generating multiple pose hypotheses and combining them using HPD and HPG as a prior.

In the experiments with four challenging datasets, we demonstrate that our robust algorithm

outperforms or is on par with state-of-the-art algorithms on each dataset.

3.2 Hand pose estimation by skeleton augmentation

Given a database of input depth maps and the corresponding ground-truth hand pose anno-

tations DP= {(xi, yi)}l
i=1 ⊂ XD×YP, our goal is to construct a hand pose estimator (HPE)

f P:XD→YP that recovers the underlying pose y′ of an unseen test depth map x′. When the

paired dataset DP is large enough to cover variations in poses, shapes, views, etc., a straightfor-

40

ward approach to train such a HPE is to minimize the mean squared loss over DP:

LP(f P) =
l

∑
i=1
|| f P(xi)− yi||22. (3.1)

For this baseline, we use the CNN architecture in [244]: Each input depth map x is presented as

a 96× 96-dimensional array while for the output y, we adopt the 63-dimensional skeletal pose

vector representing the (x, y, z)-coordinate values of 21 hand joints (Fig. 3.2).

Unfortunately, existing datasets do not comprehensively cover the wide variety of hand shape

and views. Therefore, we explicitly fill-in these missing regions by synthesizing data entries

in the skeleton space Y. Once such unpaired skeletal poses DU = {zi}u
i=1 are synthesized,

training the HPE is performed based on a combination of the standard estimation error LP via

DP (Eq. 3.5) and the cyclic consistency requirements induced from DU (see Fig. 3.5 and Eq. 3.8).

To facilitate this process, we train a hand pose generator (HPG) f G : Y → X that receives

a skeleton (either y or z) and synthesizes the corresponding depth map x. Note our skeletal

representation incorporates camera perspectives (i.e. rotational transformation of skeletons):

63-dimensional skeletal pose values are assigned based on the coordinate system defined by the

viewpoints.

3.2.1 Skeleton augmentation

Skeletal hand shape model. We use the 21 joint-based skeletal hand shape model proposed

in [244] (Fig. 3.2). This model represents a human hand based on 25 joint angles and the lengths

of 20 bones connecting joint pairs: Each finger pose is represented as 5 angles (twist angle,

flexion angle, abduction angle for the meta carpo phalangeal (MCP) joint and flexion angles for

the distal inter phalangeal (DIP and proximal inter phalangeal (PIP) joints and 4 bone lengths.

Hand datasets: obtaining DP. The performance of hand pose estimator (HPE) depends on its

training datasets. The Big Hand 2.2M dataset collected by Yuan et al. [244] is the largest dataset

including 2.2 million frames extracted from sequences of
(

32
2

)
= 496 transitions between

25 = 32 extreme hand poses. While it provides a comprehensive hand pose coverage, Big

41

TIP

DIP

PIP

MCP

(a) (b)

Figure 3.2: Our skeletal hand model (a) consists of 21 joints [244]: one for wrist and four for each
finger. Each finger has five degrees of freedom: flexion for DIP and PIP, flexion, abduction and twist for
MCP. (b) a skeleton overlaid on the underlying depth map.

Hand 2.2M still lacks the variety in hand shapes (only 10 subjects) and in camera views (see

Fig. 3.3). Other popular datasets include ICVL [194], MSRA [190] and NYU [205]. The ICVL

benchmark [194] includes only 1 subject and provides a limited coverage of viewpoints and

poses consisting of 17,604 frames. The NYU dataset provides a broader range of viewpoints

(81,009 frames) but with limited shape variations (one subject for training and another subject

for testing). The MSRA [190] benchmark is similar in scale to NYU (76,375 frames) but with a

more comprehensive viewpoint coverage. However, its shape and pose variations are limited to

9 subjects and 17 discretized poses per subject, respectively.

Skeleton augmentation: constructing DU . For each of the four datasets aforementioned, we

enlarge its skeleton space coverage by adding variations in viewpoints and shapes. We do not

consider pose (i.e. articulation) augmentation as we observed in preliminary experiments that

synthesizing realistic hand poses without having access to statistical or physical hand models is

challenging.

New camera perspectives (viewpoints) of an existing skeleton entry are synthesized by applying

(3D) rotations along y− z and x− z panes, prescribed by the corresponding rotation degrees θ1

and θ2. In-plane rotations (along x− y pane) can also be considered but we exclude them in the

skeleton augmentation process as the corresponding paired data is straightforwardly constructed

42

Nearest

DB sample

HPG

output

Shape changeShape change

(a) Shape variation

Nearest

DB sample

HPG

output

Nearest

DB sample

HPG

output

Azimuth changeElevation change

(b) Viewpoint variation

Figure 3.3: Synthesized skeletons y′ overlaid on the depth maps z′ transferred by HPG (x′ = f G(y′)).
These new data entries augment the coverage of the database: The nearest skeletons (and the paired
depth maps) in the database deviate significantly from the query synthesized skeletons.

by rotating the skeleton and depth map pairs. In the experiments (Table 3.1(b)) we demonstrate

that both simple in-plane rotations and our skeletal augmentation help improve the performance

and furthermore, they are complementary: The combination of the two data augmentation modes

is better than either taken alone.

Adopting existing models from human hand shape analysis [28,39], we characterize hand shapes

based on the width to length ratio of each finger. Accordingly, new skeletons are generated by

43

Algorithm 1: Skeleton augmentation process
Input: a skeleton sample yi, τ, θ1, θ2, and the number of augmentation M
Output: the augmented skeleton sample y∗i
for m=1 to M do

Sample τ, θ1, θ2 from N (1, 0.52), N (0, π
4

2), N (0, π
4

2), respectively.
for h=1 to 5 do

Calculate the bone lengths of the h-th finger: measure the Euclidean distances
between MCP and PIP, PIP and DIP, DIP and TIP joints.

Calculate the joint angles by Algorithm 2.
Manipulate the bone lengths by multiplying τ.
Reconstruct the h-th finger by Algorithm 4.

end
Manipulate the rotations by multiplying the rotation matrices θ1, θ2.

end

varying the finger lengths of existing data entries as measured in Euclidean distances between

finger tip Joints (TIP) to DIP, DIP to PIP and PIP to MCP while fixing the palm (see Fig. 3.2).

While fixing 6 palm positions, we first identify 5 angles (i.e. flexion angles for TIP, DIP and PIP

and twist angle, flexion angle abduction angle for the MCP) and 3 bone lengths (distances from

MCP to PIP, from PIP to DIP and from DIP to TIP) for each finger and given them, reconstruct

each finger by rotating/translating their end points to attach them to the palm. We assume that

the ratios of finger lengths are fixed and thus only the bone length of each finger is manipulated

by multiplying a global constant τ in the above reconstruction process.

The variation parameters θ1, θ2, and τ are sampled from Gaussian distributions: N (1.0, 0.52) for

τ andN (0, π
4

2) for θ1 and θ2. While in general, more sophisticated data manipulation strategies

can be adopted, our preliminary visual evaluation on a small sample revealed that skeletons

generated in this way look realistic. Figure 3.3 shows example skeletons (overlaid on the

corresponding depth maps synthesized by HPG; see Sec. 3.2.2) generated from this process. Note

that the alternative way of directly manipulating depth maps could be much more challenging

as the variables are highly structured and correlated, and therefore naïvely manipulating depth

pixels would lead to unrealistic hand shapes. We apply the manipulation process M times for

each database entry constructing an unpaired database DU (|DU | = M|DP|). Table 3.1(b)

shows the effect of varying M on the final pose estimation performance.

44

Algorithm 2: Calculate the joint angles of a finger
Input: 4 skeleton joints locations (MCP, PIP, DIP, and TIP; see Fig. 3.2) of a finger;
Output: 5 joint angles of the input finger;
Compute the two flexion angles for DIP and PIP using two joint sets: (PIP, DIP, TIP)
and (MCP, PIP, DIP) (by Eq. 3.2);

Reconstruct the base finger (by Algorithm 3);
Align the base finger to the observed skeleton counter part by calculating a rigid

transform and obtain 3 joint angles (twist, flexion and abduction angles) for the MCP.

Algorithm 3: Reconstruct the base finger model
Input: 3 bone lengths (i.e. distances between MCP and PIP, PIP and DIP and DIP and
TIP), 2 joint angles (i.e. flexion angles for DIP and PIP)

Output: Reconstructed 4 finger joints (i.e. MCP, PIP, DIP and TIP locations)
Assign MCP’s 3D location as (0, 0, 0).
Assign PIP’s 3D location as (0, 0, 0) and shift it in the y-axis by the bone length

between PIP and MCP.
Assign DIP’s 3D location as (0, 0, 0) and shift it in the y-axis by the the distance

between DIP and PIP, then rotate it along the x-axis by flexion angle for the PIP. Add
PIP location as the starting point.

Assign TIP’s 3D location as (0, 0, 0) and shift it in the y-axis by the distance between
TIP and DIP, then rotate it along the x-axis by the sum of flexion angles for the PIP
and DIP. Add DIP as the starting point.

Algorithm 4: Reconstruct the hand model
Input: 5 skeleton joint angles, 3 bone lengths of each finger
Output: 4 skeleton joints (i.e. MCP, PIP, DIP and TIP) of the finger
Reconstruct the base finger (by Algorithm 3).
Rotate the base finger by the twist, abduction and abduction angles of the MCP,
obtained in Algorithm 2.

Attach the finger to the palm.

Figure 3.1 visualizes the results of skeleton augmentation: We observe that even the biggest

Big Hand 2.2M dataset is far from being fully covering the wide variations in shapes and

camera viewpoints as evidenced by almost 10-times larger area coverage accomplished by our

augmented dataset.

Algorithm 1 combined with Algorithm 2,3,4 contain more details about the skeleton aug-

mentation process. The joint angle θ between two 3D joint vectors a and b is calculated as

45

follows:

θ = atan(||a× b||, a · b). (3.2)

3.2.2 Transferring skeletons to depth maps

Hand pose generator (HPG) . Our HPG f G synthesizes a depth map x given the input

skeleton parameters y. We adopt Pathak et al.’s conditional GAN architecture [137] that

combines both L2-loss and adversarial loss (Eq. 3.4): The L2 loss (defined via P) measures

the deviation of the synthesized depth maps from the ground-truths while the adversarial loss

generates data distribution and helps the generator to synthesize more plausible data samples.

Hand pose discriminator (HPD). We construct auxiliary models that provide feedback on the

quality of synthesized data. To leverage the cyclic nature of HPE and HPG combinations (i.e.

f E(f G) and f G(f E) map Y to itself and X to itself, respectively; see the next paragraph), we

train two such discriminators: The depth hand pose discriminator (HPDX) f DX is the same as

the standard GAN discriminator; It outputs 1 for real data entries and 0 for the synthesized

entries. The role of skeleton hand pose discriminator (HPDY) f DY is to decide whether the

estimated finger joints conform the human skeleton model (Fig. 3.2). It aims to accept original

skeletal entries y in P as well as the augmented entries z in U, while rejecting outputs from the

HPE. Therefore, incorporating f DY into the joint GAN training enables us to steer the training

of the generator f G towards the skeletal poses that were not covered in the original dataset P.

Network architecture for HPE, HPG and HPD. Figure 3.4 shows the architectures of our

HPE, HPG, HPDX and HPDY. The HPE architecture follows that of [244]: the input depth

map is a 96× 96-dimensional array and the output is a 63-dimensional skeletal pose vector

representing the (x, y, z)-coordinates of 21 hand joints (Fig. 3.2). We adopt two stages of

max-pooling and ReLU activation.

The architecture of our HPG is inspired by Radford et al.’s image generation network [149]. It

has the same architecture as in [149] except for the sizes of the output (96× 96 matching the

46

128x4x4

128x4x4

128x4x4

6

1

4

4

96x10x10

96x10x10

96x6x6

3x3 Conv, Batch_norm

2x2 Maxpool, stride 2

ReLU

3x3 Conv 3x3, Batch_norm

2x2 Maxpool, stride 2

ReLU

3x3 Conv, Batch_norm

2x2 Maxpool, stride 1

ReLU

64x23x23

64x22x22

64x10x10

5x5 Conv, Batch_norm

2x2 Maxpool, stride 1

ReLU

3x3 Conv, Batch_norm

2x2 Maxpool, stride 2

ReLU

4x4 Conv, Batch_norm

2x2 Maxpool, stride 2

ReLU

5x5 Conv, Batch_norm

4x4 Maxpool, stride 2

ReLU

5x5 Conv, Batch norm

2x2 Maxpool, stride 2

ReLU

5x5 Conv, Batch_norm

2x2 Maxpool, stride 2

ReLU

96x96 Input

48x48

24x24

Maxpool 2x2

Maxpool 2x2

t

3

1

7

2

6

3

6

1

4

4

63 Output

(a)

256x24x24

64x96x96
128x48x48

Conv 4x4, stride 2

Batch Norm.

Conv 4x4, stride 2

Batch Norm.

96x96 Output

6

3

63 Input

1024x6x6

512x12x12

Conv 4x4, stride 2

Batch Norm.

Conv 4x4, stride 2

Batch Norm.

Conv 4x4, stride 2

Batch Norm.

(b)

256x24x24

96x96 Input

128x48x48

4x4 Conv, stride 2

Batch

LeakyReLU (ra!o 0.2)

Norm.
4x4 Conv, stride 2

Batch

LeakyReLU (ra!o 0.2)

Norm.

1024x6x6
512x12x12

4x4 Conv, stride 2

Batch

LeakyReLU (ra!o 0.2)

Norm.
4x4 Conv, stride 2

Batch

Leaky ReLU (ra!o 0.2)

Norm.

6x6 Conv

Sigmoid()

1

Real

or

Fake

(c)

6

3

1

2

8

1x1 Conv

Batch Norm

LeakyReLU

.

2

5

6

1x1 Conv

Batch Norm

LeakyReLU

.

5

1

2

1

0

2

4

1

Real

or

Fake

1x1 Conv

Batch Norm

LeakyReLU

.

1x1 Conv

Batch Norm

LeakyReLU

. 1x1 Conv

Sigmoid()

63 Input

(d)

Figure 3.4: Individual network architecture for (a) HPE, (b) HPG, (c) HPDX , and (d) HPDY. The HPE
architecture is inspired from [244]. HPG and HPDX are inspired from the GAN algorithm [149] and
HPDY has a similar architecture to HPDX but is designed to have 63-dimensional vector as an input.

size of the HPE input) and input (63 skeleton dimensions) layers, and the corresponding first

convolutional kernel size (6× 6). It adopts fully convolutional units and batch normalization in

each layer, followed by the Tanh unit in the last layer

The architectures of HPDX is the same as Radford et al.’s GAN discriminator [149]. It has

4 convolutional layers with the kernel size 4 and stride 2, which turns a 96× 96 sized depth

input to a 6× 6 sized response map. The last convolution layer with the kernel size 6× 6 then

produces a scalar value. The Sigmoid unit is applied to get the output value in [0, 1], as the

probability for the binary classes

HPDY has a similar architecture to HPDX but its input is a 63-dimensional vector. Thus, we

apply fully connected layers to obtain the final binary labels (rather than the convolutional units).

The number of response maps remains the same as that of HPDX. The Sigmoid unit is applied

in the last layer. For both HPDX and HPDY, we apply batch normalization and LeakyReLU in

all convolutional layers.

Training HPG and HPE. Our goal is to jointly train hand pose generator (HPG) and hand

47

(c) Tes�ng stage

HPDY

HPE

Viewpoint

augmenta�on

HPG

Paired set

Unpaired set

Shape and viewpoint

augmenta�on

(a) Skeleton augmenta�on

HPG

HPDX HPDY

HPE

HPEHPG

(b) Training stage

HPG

Augmenta�on

L2 Loss for ,

HPD Loss for ,

L2 Loss for

L2 Loss for

,

HPD Loss for

HPD Loss for

Figure 3.5: Schematic diagrams of our algorithm. (a) Manipulating skeletons is easier than manipulating
depth maps; (b) During training, HPE, HPG, HPDX , and HPDY are optimized by 1) reducing the classi-
cal training error of HPE induced via P; 2) enforcing the cyclic consistency of HPE-HPG combination
f E(f G) : Y → Y, HPG-HPE combination f E(f G) : X → X on P as well as the HPG-HPE-HPG
consistency on unpaired data U; (c) In testing, our algorithm refines the initial hand pose prediction as
guided by HPG and HPDY as a prior. In the diagram, Red and Green lines represent interactions with
the paired set P and unpaired set U, respectively. The Blue lines represent interactions with both U and
P.

pose estimator (HPE) by fully exploiting the paired data P as well as the augmented unpaired

data U. Since skeletons z in unpaired data U have no corresponding depth maps x for explicit

supervision, our training algorithm adopts cyclic consistency: When the depth map f G(y) ∈ X

generated from a hypothesized input pose z is fed to the HPE, the resultant f E(f G(z)) ∈ Y

should be similar to z. Similarly, the HPE result f E(x) ∈ Y for an input depth map x can be fed

to HPG and the resulting simulated depth map f G(f E(x)) ∈ X should be similar to the original

input x.

Accounting for these requirements, our energy L consists of four components: The individual

training losses for HPE and HPG, respectively, and the consistency losses for f E(f G) and

f G(f E) measured based on the paired (P) and unpaired (U) data:

L(f G, f E, f DX , f DY) = LG(f G, f DX) + LE(f E, f DY) + λ(LP(f E, f G) + LU(f E, f G))

(3.3)

48

where the individual training losses LG and LE are defined as:

LG(f G, f DX) = Ex[log f DX (x)] + Ey
[

log(1− f DX (f G(y))
]
+ || f G(y)− x||22 (3.4)

LE(f E, f DY) = Ey[log f DY(y)] + Ex
[

log(1− f DY(f E(x))
]
+ || f E(x)− y||22 (3.5)

with the expectations Ex and Ey taken respectively under the empirical marginal distributions

pX(x) and pY(y) (defined by P). The first two terms denote the adversarial loss while the last

term denotes the Euclidean loss. In Fig. 3.5, Euclidean loss is denoted as the symbol“=” while

the adversarial loss is denoted as the arrows “←−” to the HPDs. The combination of Euclidean

loss and adversarial loss is proposed in [137] as the way to implement the conditional GAN

framework.

The consistency losses for the paired (LP) and unpaired (LU) datasets are respectively given as:

LP(f E, f G) = Ey
[

log f DX (x) + || f E(f G(y))− y||22
]
+ Ex

[
|| f G(f E(x))− x||22

+ log(1− f DX (f G(f E(x)))
]
+ Ey

[
log f DY(y) + log(1− f DY(f E(f G(y)))

]
, (3.6)

LU(f E, f G) = Ez
[

log f DY(z) + log(1− f DY(f E(f G(z))) + || f E(f G(z))− z||22

+ || f G(f E(f G(z)))− f G(z)||22 + log(1− f DX (f G(z))) + log(1− f DX (f G(f E(f G(z))))
]
,

(3.7)

where the expectation Ez is taken over the empirical distribution P(z) of the augmented

skeletons z ∈ Y (defined by U). The rationale behind these formulation is that if estimated

x̂ = f E(y) or ŷ = f G(x) is inputted again to HPG or HPE, it should be same as its original

input: x = f E(f G(x)) or y = f G(f E(y)). We explicitly enforce such supervision using the

cyclic consistency with LP and LU . In Fig. 3.5b, the red, green and blue arrows denote paths

used by paired data P, unpaired data U, and both P and U, respectively.

Discussions. The cyclic consistency of f E(f G) and f G(f E) combinations on unpaired data U

are inspired by the consistency loss of cyclic GAN [253] that exploits the mutual consistency of

two transfer functions f E : X → Y and f G : Y → X (adapted to our problem setting). Indeed,

the last terms in LP and LU are smooth versions of the consistency loss in [253]. However,

the main goal of cyclic GAN training is to automatically infer the correspondences between

49

Algorithm 5: Training process for HPG and HPE

Input: Depth map and skeleton pairs P = {(xi, yi)}l
i=1 and unpaired skeletons

U = {zi}u
i=1; Hyper-parameters: the number T of epochs and the size N′ of

mini-batch;
Output: HPE f E, HPG f G, HPDX f DX , and HPDY f DY .
Initialization: randomly allocate parameters of f E, f G, f DX , and f DY ;
for t=1 to T do

for n=1 to N′ do
Evaluate (feed-forward) f G and f DX and their respective gradients ∇ f G and
∇ f DX on P (Eq. 3.4);

Evaluate f E, f DY , ∇ f E, and ∇ f DY (Eq. 3.5);
Evaluate f E(f G), f G(f E), f DY , and their gradients on U and P (Eqs. 3.6 and
3.7);

Update f G, f DX , f DY combining the calculated gradients.
Evaluate f E(f G), f G(f E), and f DY , and their gradients on U and P (Eqs. 3.6

and 3.7) and update f E accordingly.
end

end

two unpaired sets UX and UY (adapted to our problem setting) without having to use explicitly

paired data. Therefore, in [253], the consistency is enforced on two sets of unpaired data UX

and UY. Our algorithm aims to achieve a similar goal but it is provided with a small paired

dataset P plus a large unpaired dataset U := UX only in the skeleton space (as augmenting data

in Y is challenging). Therefore, our algorithm indirectly induces the consistency of f E(f G) and

f G(f E) by putting a consistency loss over a complete circle (the third and last terms in the LU

expectation: Eq. 3.7):

z
f G

→ x̂
f E

→ ẑ
f G

→ ˆ̂x ≈ x̂. (3.8)

Furthermore, our consistency losses incorporate the contributions from the discriminators f DX

and f DY . This helps in decoupling the updates of f E and f G (within each mini-batch) : We

empirically observed that simultaneously updating f G and f E by combining all gradients is

prone to overfitting, i.e. the resulting HPE-HPG combination memorizes the depth map entries

in U but it cannot faithfully re-generate over unseen depth maps. This can be attributed to the

significantly larger dimensionalities of the depth map space X (e.g., 962) than the parameterized

skeleton space Y (63): By simultaneously updating f G and f E, the algorithm tends to emphasis

50

the losses observed at X. These different scaling behaviors of X- and Y-losses can be addressed

by explicitly scaling them, but it requires tuning a separate scaling parameter. Instead, our

algorithm avoids such degeneracy by simply decoupling the updates of f E and f G. Algorithm 5

and Fig. 3.5(b) summarizes the training process.

Our model is trained using the Adam optimizer [86] with its default parameters: β1 = 0.9,

β2 = 0.999, and ε = 10−8. The learning rate and the regularization parameter λ (Eq. 3.3) are

fixed at 10−4 and 10−4, respectively based on cross-validation on Big Hand 2.2M dataset, which

are fixed throughout the entire experiments (over other datasets).

Refining predictions at testing. Once the hand pose estimator f E is trained, it can be directly

applied to an unseen input depth map x′ to generate the output pose estimate y′. However,

during the training of HPE-HPG combination, we constructed an auxiliary hand HPD f DY that

(combined with the HPG) can identify realistic skeleton configurations. Therefore, we refine the

initial estimate y′ as guided by HPG and HPD: Our initial result y′ is updated using the gradient

back-propagated from the HPG and HPDY (see Fig 3.5(c)):

y∗ = y′ − γ∇
(
− f DY(y′) + λre f || f G(y′)− x′||22

)
. (3.9)

where γ = 10−5 and λre f = 0.01 are fixed for all datasets by cross-validation on Big Hand

2.2M. This corresponds to a (computationally cheap) single step of energy minimization. In this

way, the refined skeleton joints move towards matching the distribution of plausible skeleton

joints.

Multi-view gradient ensemble. Throughout the training process, f DX and f G have access to the

augmented skeletons U and the corresponding transferred depth maps f G|U , covering a variety

of viewpoints. We generalize our refinement strategy to a multi-view scenario by exploiting this

accumulated multi-view knowledge: First, our refinement step generates R-different views of

the initial estimate y′ by rotating it R-times, similarly to the skeleton augmentation process in

training. These multiple view hypotheses are then fed to f DY and FG to generate the respective

gradient updates (Eq. 3.9). The final prediction is then obtained by rotating back the updated

results {y∗} to the original views and taking the average. For the rotated skeletons, λre f is set

51

0 10 20 30 40 50 60 70 80

error threshold (mm)

0 %

10 %

20 %

30 %

40 %

50 %

60 %

70 %

80 %

90 %

100%

p
ro

p
o

rt
io

n
 o

f
fr

a
m

e
s

 w
it

h
 a

ll
 j

o
in

ts
 e

rr
o

r
<

Oikonomidis et al. (BMVC2011)

IntelSR300

Yuan et al. (CVPR2017)

Ours (w/o refine)

Ours

(a)

0 10 20 30 40 50 60 70 80

error threshold (mm)

0 %

10 %

20 %

30 %

40 %

50 %

60 %

70 %

80 %

90 %

100%

p
ro

p
o

rt
io

n
 o

f
fr

a
m

e
s

 w
it

h
 a

ll
 j

o
in

ts
 e

rr
o

r
<

Melax et al. (i3D 2013)

Keskin et al. (ECCV2012)

Tang et al. (CVPR2014)

Sun et al. (CVPR2015)

Tang et al. (ICCV2015)

Yuan et al. (CVPR2017)

Ours transferred

Ours

(b)

0 10 20 30 40 50 60 70 80

error threshold (mm)

0 %

10 %

20 %

30 %

40 %

50 %

60 %

70 %

80 %

90 %

100%

p
ro

p
o

rt
io

n
 o

f
fr

a
m

e
s

 w
it

h
 a

ll
 j

o
in

ts
 e

rr
o

r
<

Ge. et al. (CVPR 2016)

Ge. et al. (CVPR 2017)

Yuan et al. (CVPR 2017)

Wan et al. (CVPR2017)

Ours transferred

Ours

(c)

0 10 20 30 40 50 60 70 80

error threshold (mm)

0 %

10 %

20 %

30 %

40 %

50 %

60 %

70 %

80 %

90 %

100%

p
ro

p
o

rt
io

n
 o

f
fr

a
m

e
s

 w
it

h
 a

ll
 j

o
in

ts
 e

rr
o

r
<

Oberweger et al. (ICCV2015)

Oberweger et al. (CVWW2015)

Ge et al. (CVPR2017)

Wan et al. (CVPR2017)

Yuan et al. (CVPR2017)

Ours

(d)

0 10 20 30 40

error threshold (mm)

0 %

10 %

20 %

30 %

40 %

50 %

60 %

70 %

80 %

90 %

100%

p
ro

p
o

rt
io

n
 o

f
fr

a
m

e
s

 w
it

h
 m

e
a

n
 e

rr
o

r
<

Tang et al. (ICCV2015)

Oberweger et al. (CVWW2015)

Wan et al. (CVPR2017)

Ours

(e)

0 10 20 30 40 50 60 70 80 90 100

epoch

5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

e
rr

o
r

o
f

H
P

E
(m

m
)

0

1

2

3

4

5

6

7

8

9

e
rr

o
r

o
f

H
P

G
 (

m
e
a
n

 p
ix

e
l
e
rr

o
r)

(f)

Figure 3.6: Accuracies of different hand pose estimators for four datasets measured in proportion of
frames with worst error<ε criteria (a)-(d); (e) Accuracies for NYU, measured in proportion of frames
with mean error<ε criteria (for a fair comparison with Tang et al. (ICCV2015)); (a-e: the larger the area
under each curve is better); Ours (shape; w/o refine): our method trained with P, and U augmented with
only shape variations; Ours (rotation; w/o refine): our method trained with P, and U augmented with
only viewpoint variations; Ours (w/o refine): our method trained with P and U fully augmented, without
refinement at testing; Ours: our final algorithm including data augmentation and the refinement step;
Ours transferred: our method trained on Big Hand 2.2M dataset and tested on the respective dataset (see
the cross-dataset experiments paragraph); (f) The 2D plot for test errors of HPE and HPG in the same
epoch (trained on ICVL). We note strong correlations in the HPE and HPG errors.

to 0 in Eq. 3.9 as they do not have the corresponding rotated depth maps. We fix R at 50 trading

off the run-time complexity with the accuracy.

3.3 Experiments

We evaluate our algorithm on four depth-based hand pose estimation datasets: Big Hand 2.2M,

MSRA, ICVL, and NYU. Each dataset differs in their intended use cases and properties, and

therefore, we adopt different experimental settings per dataset.

Setup. For Big Hand 2.2M, we use the experimental settings proposed by the authors of the

dataset, Yuan et al. [244] (see Sec. 3.2.1 for the discussion on this dataset): We use 90% and

10% of database entries for training and validation, respectively. For testing, 37,000 frames

52

captured from a subject not contained in the training/validation sets are used. For the MSRA

dataset containing 9 subjects, we follow the setting of [52, 53, 190] where the depth map and

skeleton pairs of 8 subjects are used for training and the remaining data pairs (of one subject)

are used for testing. We repeated the experiments for each subject left out and the observed

accuracies are averaged. For both Big Hand 2.2M and MSRA, the output space represents 21

skeleton joints. For the ICVL dataset, we use the ground-truth annotations (21 skeleton joints)

provided by Tang et al. [195, 244]. This model differs from the 16-joint model provided by

the authors of the original data [194]. While in principle, our model can be applied to any

output configurations, we adopt this 21-joint model for simplicity of evaluation and to facilitate

the cross-dataset transfer experiments (to be discussed shortly). The combination of training

and testing sets also follows from [195, 244]: 16,008 frames are used for training while the

remaining 1,596 frames are used in testing. For the NYU dataset, we adopt the experimental

settings of [129, 174, 214]: 72,757 frames and 8,252 frames are used for training and testing,

respectively. Following their experimental settings, we estimate the 14 target skeleton joints (out

of 36 joints in the original datasets). For comparison, we adopt several state-of-the-art methods

that share the same evaluation protocol: For Big Hand 2.2M, we compare with CNN estimator

employed by Yuan et al. [244] which constitutes our baseline HPE. We also evaluate two existing

generative hand model-based approaches: FORTH [130] and Intel RealSense SR300 camera [1].

On ICVL, we compare with Sun et al.’s cascaded refinement algorithm (denoted as Sun et

al.) [190] and Tang et al.’s hierarchical decision forests-based algorithm (Tang et al.) [195]

which constitutes the state-of-the-art on this benchmark. For MSRA, we compare with two

state-of-the-art methods, Ge et al. [52] and Ge et al. [53]). Both algorithms [52, 53] adopt the

multi-view approach and therefore, they are especially effective for MSRA that covers diverse

view points. For the NYU dataset, in addition to Sun et al.’s cascade algorithm [129] and

Ge et al.’s multi-view approach [214], we compare with two generative model-based algorithms

(Wan et al. [214]) constituting the-state-of-the-art on this dataset. All components of our

networks were implemented with the Torch library and they are trained and evaluated on an Intel

3.40 GHz i7 machine with two NVIDIA GTX 1070 graphic processing unit (GPU)s. Training

our network on 10 times augmented Big Hand 2.2M dataset takes 3-4 days (100 epochs). At

53

testing, our algorithm processes 300 frames per second using the GPU.

System evaluation. We use a commonly used criteria for hand pose estimates [197]: the

proportion (in %) of the frames with all joints error<ε (in Euclidean distance per joint) being

smaller than a tolerance parameter ε. Figure 3.6 shows the results: For all benchmarks, our

algorithm (‘Ours’ in Fig. 3.6 and Table 3.1(a)) constantly improved upon the baseline HPE

(Yuan et al.’s CNN estimator [244]) by a significant margin. In comparison to Tang et al.’s

algorithm (Tang et al. (ICCV 2015)) [195], our algorithm shows higher and lower accuracies on

NYU (Fig. 3.6(e)) and ICVL (Fig. 3.6(b)), respectively confirming the complementary nature of

the two approaches. On MSRA containing a wide range of camera views but limited shapes and

poses (see Sec. 3.2), Ge et al.’s multi-view-based approach (Ge et al. CVPR 2017) [53] achieved

the best results, followed by our algorithm. Overall, our algorithm outperforms or is on par with

state-of-the-art methods.

Cross-dataset experiments. In principle, the space of (augmented) skeletons is independent of

specific datasets and representations and therefore, it can be shared across multiple benchmark

datasets. We tested this possibility by applying our model trained on Big Hand 2.2M to ICVL

and MSRA datasets: For MSRA, our model trained only on Big Hand 2.2M (‘Ours transferred’

in Fig. 3.6(c)) achieved the best results outperforming Ge et al.’s state-of-the-art model [53]:

MSRA is limited in the range of poses (only 17 gestures), which can be compensated by

transferring skeletons augmented from the much larger Big Hand 2.2M dataset. For ICVL,

the transferred version is slightly worse than the original but still outperforms several existing

algorithms.

Evaluation of design choices. Our approach enables 1) to easily augment skeleton datasets and

2) to transfer them consistently to depth maps. This approach was facilitated by training the HPE

and HPG in a single unified criteria guided by the paired (P) and unpaired (U) data. To gain

an insight into the contribution of each algorithm component, we evaluated the corresponding

variations of our final algorithm: Table 3.1(a) shows that each component of our algorithm indeed

makes a significant contribution to building a system as a whole: Skeletal data augmentation

helps improve the performances of both HPG and HPE. Even without data augmentation, jointly

54

Table 3.1: Evaluation of design choices: (a) Test errors of our HPG (unitless) and HPE (in mm) under
varying design conditions: f G (baseline) and f E (baseline): HPG and HPE trained independently on
the paired dataset P, respectively; f E (w/o aug.; refine): HPE trained only on P pairs (Algorithm 5); f E

and f E (w/o refine): HPEs trained (with skeleton augmentation) with and without the refinement step at
testing, respectively; f G (w/o aug.; refine) and f G (w/o refine): HPGs trained jointly with f E (w/o aug.;
refine) and f E, respectively. (b) Test error of HPE on Big Hand 2.2M with varying numbers and types of
skeleton augmentation.

(a)

Configuration Big Hand 2.2M ICVL MSRA NYU

(b)

Configuration Error (mm)
f G (baseline) 0.151 0.588 0.482 0.451 HPE baseline 17.1
f G (w/o aug.; refine) 0.124 0.516 0.470 0.415 Ours (w/o aug.; refine) 15.7
f G (w/o refine) 0.102 0.486 0.438 0.396 Ours (w/ in-plane-rot 10x.; w/o aug.; refine) 14.9
f E (baseline) 17.1 12.1 16.3 17.3 Ours (5× aug.; w/o refine) 15.1
f E (w/o aug.; refine) 15.7 10.4 14.4 16.4 Ours (10× aug.; w/o refine) 14.1
f E (w/o refine) 14.1 9.1 13.1 14.9 Ours (20× aug.; w/o refine) 14.0
f E 13.7 8.5 12.5 14.1 Ours (w/ in-plane-rot; 10x aug.; w/o refine) 12.5

(a) (b) (c) (d)

Figure 3.7: A failure example (MSRA dataset): (a) input depth map, (b) ground-truth skeleton overlaid
on the input, (c) new depth map synthesized by our generator based on the ground-truth skeleton, and (d)
skeleton estimated by our hand pose estimator overlaid on the depth map. When the input represents a
significantly different skeletal pose from the database, the corresponding synthesized depth map (c) is
blurry even when based on the ground truth, leading to a large pose estimation error (d).

training HPE and HPG within our framework, already improves the performance. Refining

the prediction during testing as guided by HPG and HPDY plus multi-view synthesis, further

significantly improves the pose estimation accuracy. Figure 3.6(f) confirms the importance of

joint HPE/HPG training: A simpler data augmentation alternative to our joint training approach

is to hold the HPG f G trained on P and fixed, then individually train HPE on the resulting

augmented skeletons U and transferred depth maps f G(U) (HPE w/aug. given fixed HPG),

while this approach improves upon the HPE trained on P (HPE baseline), our final algorithm

shows much more significant improvements.

Influence of the size and type of skeleton augmentation. Table 3.1(b) shows that the HPE

test error constantly decreases as the augmented dataset grows, confirming the importance

of dataset augmentation. The accuracy gain saturates when the augmented set is around 10

55

times larger than the original suggesting M = 10 as a good trade-off between the (training)

computational efficiency and accuracy. Finally, we observe that our approach of skeleton-

based data augmentation and transfer is complementary to traditional view-dependent data

augmentation approaches: The straightforward in-plane rotation approach applied to the skeleton

and depth map pairs also significantly improve the performance of hand pose estimation, and

combining the two approaches further boosts the accuracy.

3.4 Qualitative evaluation

The quantitative analysis in previous section has demonstrated that benefiting from the new

skeletal augmentation strategy, our algorithm significantly improves upon the state-of-the-art

hand pose estimation algorithms. In this section, we further demonstrate with examples that

such accuracy gain is more pronounced when the test data entries are distinct from the original

training data, confirming the effectiveness of skeletal augmentation.

To facilitate the analysis, we categorize the test entries based on their projection distances on

the (un-augmented) training set, i.e. distances to the closest training data points (in the skeleton

space):1 Each test entry is classified as hard if its projection distance belongs to the larger 10% of

projection distances of all test data entries. All other test patterns are considered easy. Figure 3.8

displays the distribution of calculated projection distances and the corresponding categories

and Figs. 3.10 and 3.11 show hand pose estimation, and auxiliary depth-map reconstruction

results on hard and easy examples, respectively. For patterns in the easy category, both existing

algorithms and the proposed algorithm generate good skeleton estimates (Fig. 3.11). However,

hard examples deviate significantly from the training set and therefore, they pose great challenges

for existing algorithms as in general, the learned estimators generalize to the extent covered by

training data. For instance, when applied to hard patterns, the baseline HPG (HPG; Fig. 3.10(c))

trained without our data augmentation process generated overall blurry depth maps, smearing

1We use the ground-truth skeletons to ease the visualization of the results. Our algorithm does not require
ground-truth annotations.

56

0 0.5 1 1.5 2 2.5 3 3.5 4

testing sample index
10

4

0

20

40

60

80

100

120

140

N
N

 d
is

ta
n

c
e
 (

m
m

)

 (33300,62.03)

(a) Big Hand 2.2M

0 200 400 600 800 1000 1200 1400 1600

testing sample index

0

10

20

30

40

50

60

70

80

90

N
N

 d
is

ta
n

c
e
 (

m
m

)

 (1436,18.80)

(b) ICVL

0 1000 2000 3000 4000 5000 6000 7000 8000 9000

testing sample index

0

10

20

30

40

50

60

70

80

90

100

N
N

 d
is

ta
n

c
e
 (

m
m

)

 (7649,37.75)

(c) MSRA

0 1000 2000 3000 4000 5000 6000 7000 8000 9000

testing sample index

0

20

40

60

80

100

120

140

160

180

200

N
N

 d
is

ta
n

c
e
 (

m
m

)

 (7427,101.92)

(d) NYU

Figure 3.8: Distances of test data points to the closest un-augmented training entries (measured in
skeletal Euclidean distance). The test points are sorted in the ascending distance order. Thresholding
data points based on their respective distances categorizes them to easy and hard classes (highlighted as
the crossing points of the horizontal and vertical red lines).

details in the finger boundaries (1st, 3rd, and 6th examples from top to bottom). Naïvely

training a HPE on this dataset resulted in spurious skeletal pose estimates (Fig. 3.10(e)). In

contrast, our HPG results (both with and without refinement in testing) faithfully reconstructed

the depth maps which are much sharper and crisper in locating finger boundaries. This is in

accordance with the corresponding improved skeletal pose estimation results (Fig. 3.10(f-e)).

We observe a similar tendency in the results of other state-of-the-art hand pose estimation

algorithms (Fig. 3.10(bottom)). To summarize, by explicitly widening the training set coverage

of skeletal shape and view, our algorithm achieved better generalization performance than

existing algorithms in both skeletal pose estimation and depth map synthesis tasks.

Figure 3.9 shows the performance of our HPE with different design configurations. Our skeleton

augmentation and testing refinement strategies both contribute significantly to higher accuracy

over the baseline.

57

0 10 20 30 40 50 60 70 80
0 %

10 %

20 %

30 %

40 %

50 %

60 %

70 %

80 %

90 %

100%

ra
ti

o
 o

f
fr

a
m

e
s
 w

it
h

 w
o

rs
t

e
rr

o
r

<

error threshold (mm)

(a) Big Hand 2.2M

0 10 20 30 40 50 60 70 80
0 %

10 %

20 %

30 %

40 %

50 %

60 %

70 %

80 %

90 %

100%

ra
ti

o
 o

f
fr

a
m

e
s
 w

it
h

 w
o

rs
t

e
rr

o
r

<

error threshold (mm)

(b) ICVL

0 10 20 30 40 50 60 70 80
0 %

10 %

20 %

30 %

40 %

50 %

60 %

70 %

80 %

90 %

100%

ra
ti

o
 o

f
fr

a
m

e
s
 w

it
h

 w
o

rs
t

e
rr

o
r

<

error threshold (mm)

(c) MSRA

0 10 20 30 40 50 60 70 80
0 %

10 %

20 %

30 %

40 %

50 %

60 %

70 %

80 %

90 %

100%

ra
ti

o
 o

f
fr

a
m

e
s
 w

it
h

 w
o

rs
t

e
rr

o
r

<

error threshold (mm)

(d) NYU

Figure 3.9: Performance of varying HPE design configurations as ratio of frames with worst error<ε
(the proportion of frames whose worst joint error is less than ε). These results correspond to Table 1 of
the main paper where accuracy is measured in Euclidean distance (to the ground-truth).

3.5 Conclusion

Existing depth-based hand (pose estimation) datasets are limited in their extent in shapes, poses,

and/or camera viewpoints. Traditional data augmentation approaches directly manipulate the

depth map and skeleton pairs and therefore, their augmentation capabilities are limited to simple

2D view-dependent manipulations. We introduced a framework that extends this domain to a

variety of hand shapes and poses. Our algorithm enables to augment data only in the skeleton

space where data manipulation is intuitively controlled and greatly simplified and thereafter,

automatically transfers them to realistic depth maps. This was made possible by jointly training

the hand pose estimator and hand pose generator in a single unified framework. The resulting

algorithm significantly outperforms or is on par with state-of-the-art hand pose estimation

algorithms.

Our skeleton augmentation process enables the generator (and the corresponding pose estimator)

58

error:31.61mm error:11.78mmerror:17.39mm

error:31.03mm error:15.72mmerror:19.21mm

error:21.12mm error:10.32mmerror:11.04mm

error:11.35mm error:5.83mmerror:5.95mm

error:43.54mm error:9.58mmerror:10.72mm

error:41.24mm error:15.25mmerror:19.01mm

error:29.20mm error:12.21mmerror:13.55mm

error:19.17mm error:10.44mm error:10.01mm

error:10.01mm error:11.18mm error:12.53mm error:12.21mm error:16.34mm error:14.59mm

BigHand2.2M 1

BigHand2.2M 2

ICVL 1

ICVL 2

MSRA 1

MSRA 2

NYU 1

NYU 2

(a) (b) (c) (d) (e) (f) (g) (h)

NYU 1&2

(a) (b) (c) (d) (e) (f) (g) (h)

Figure 3.10: Hand pose generation and estimation results for hard examples. (top) eight test example
depth maps (two from each dataset): (a) input depth map, (b) reconstruction by our HPG, (c) recon-
struction by the HPG baseline, (d) nearest (in skeletons) depth map in the training set, (e) Yuan et al.’s
algorithm [244], (f) our HPE (w/o refine.), (g) our HPE (w refine.), (h) ground-truth; (bottom) hand
pose estimation results for NYU1 (left) and NYU2 (right) from (a) and (e) our HPE (w refine), (b)
and (f) Oberweger et al.’s algorithm [129], (c) and (g) Wan et al.’s algorithm [214], and (d) and (h)
ground-truth.

59

error:11.18mm

BigHand2.2M 1

BigHand2.2M 2

error:23.37mm error:9.93mm

ICVL 1

error:21.12mm error:10.32mmerror:11.04mm

ICVL 2

error:19.51mm error:5.45mm

MSRA 1

error:21.47mm error:5.12mmerror:5.83mm

MSRA 2

error:16.32mm error:8.56mm

NYU 1

NYU 2

error:22.45mm error:8.54mmerror:9.85mm

(a) (b) (c) (d) (e) (f) (g) (h)

error:22.84mm error:10.72mm error:7.51mm

NYU 1&2

error:8.03mm error: 8.54mm error:11.54mm error:9.34mmerror:7.51mm error:9.21mm

error:17.27mm error:10.12mmerror:11.14mm

error:13.23mm

error:8.76mm

error:8.75mm

(a) (b) (c) (d) (e) (f) (g) (h)

Figure 3.11: Hand pose generation and estimation results for easy examples. (top) eight test example
depth maps (two from each dataset): (a) input depth map, (b) reconstruction by our HPG, (c) recon-
struction by the HPG baseline, (d) nearest (in skeletons) depth map in the training set, (e) Yuan et al.’s
algorithm [244], (f) our HPE (w/o refine.), (g) our HPE (w refine.), (h) ground-truth; (bottom) hand
pose estimation results for NYU1 (left) and NYU2 (right) from (a) and (e) our HPE (w refine), (b)
and (f) Oberweger et al.’s algorithm [129], (c) and (g) Wan et al.’s algorithm [214], and (d) and (h)
ground-truth.

60

to absorb a wide range of skeleton variations. However, when the input test entries exhibit

significantly-different skeletal poses from any of the (original+augmented) training database

entries, the corresponding synthesized depth maps tend to be blurry, indicating an ambiguity.

This can eventually lead to pose estimation errors (Fig. 3.7). Future work should address this,

e.g., by actively sampling such difficult poses in the augmented skeleton space during training.

61

4CHAPTER

DENSE POSE ESTIMATION VIA

EXPLICIT FULL 3D DATA

RECONSTRUCTION AND

AUGMENTATION

Contents

4.1 Motivation 64

4.2 Proposed dense hand pose estimator 67

4.3 Experiments 79

4.4 Conclusion 83

I n this chapter, we try to reconstruct the full 3D meshes of hands from single 2D RGB

images. The main contribution of this chapter is related to relieving the “insufficient data

issue” mentioned in chapter 1. In the hand pose estimation domain, as far as we are aware,

there is no dataset having 2D RGB and 3D mesh pairs. Thus, training a network with such full

63

supervision is non-trivial. To tackle the challenge, we adopt a compact parametric 3D hand

model that represents deformable and articulated hand meshes. To obtain the 3D mesh model

fitted to RGB images, we investigate and contribute in three ways: 1) Neural rendering: inspired

by recent work on human body pose estimation works, our hand mesh estimator (HME) is

implemented by a neural network and a differentiable renderer, supervised by 2D segmentation

masks and 3D skeletons. HME demonstrates good performance for estimating diverse hand

shapes and improves pose estimation accuracies. 2) Iterative testing refinement: Our fitting

function is differentiable. We iteratively refine the initial estimate using the gradients, in the spirit

of iterative model fitting methods like ICP. The idea is supported by the latest research on human

body pose estimation. 3) Self-data augmentation: collecting sized RGB-mesh (or segmentation

mask)-skeleton triplets for training is a big hurdle. Once the model is successfully fitted to input

RGB images, its meshes i.e. shapes and articulations, are realistic, and we augment view-points

on top of estimated dense hand poses. Experiments using three RGB-based benchmarks show

that our framework offers beyond state-of-the-art accuracy in 3D pose estimation, as well as

recovers dense 3D hand shapes. Each technical component above meaningfully improves the

accuracy in the ablation study.

4.1 Motivation

Recovering hand poses and shapes from images enables many real-world applications, e.g. hand

gesture as a primary interface for AR/VR. Most existing methods have focused on recovering

sparse hand poses i.e. skeletal articulations from either a depth or RGB image. However,

estimating dense hand poses including 3D shapes (Fig. 4.1) is important as it helps understand

e.g. human-object interactions [5,8,26,50] and perform robotic grasping, where surface contacts

are essential. Discriminative methods based on CNN have shown very promising performance

in estimating 3D hand poses either from RGB images or depth maps (More detailed analysis

are given in Sec. 2.1.3). However, the predictions are based on coarse skeletal representations,

and no explicit kinematics and geometric mesh constraints are often considered. On the other

64

Figure 4.1: Dense hand pose estimation examples. Our system estimates 3D shapes, as well as
articulations and viewpoints. Left to right: input images, coarse skeletal representations, dense hand
pose representations, and recovered hand shapes in a canonical articulation/viewpoint. Dense pose
estimation provides a richer description of hands and improves the pose estimation accuracy.

hand, establishing a personalized hand model requires a generative approach that optimizes

the hand model to fit to 2D images. Optimization-based methods, besides their complexity,

are susceptible to local minima and the personalized hand model calibration contradicts the

generalization ability for hand shape variations. Sinha et al. [181] learn to generate 3D hand

meshes from depth images. A direct mapping between a depth map and its 3D surface is learned;

however, the accuracy shown is limited. Malik et al. [109] incorporate a 3D hand mesh model

to CNN and learn a mapping between depth maps and mesh model parameters. They further

raycast 3D meshes with various viewpoint, shape and articulation parameters to generate a

million-scale dataset for training CNN. Our work tackles the similar but in RGB domain and

offers an iterative mesh fitting using a differentiable renderer [79]. This improves once estimated

mesh parameters using the gradient information at testing. Our framework also allows indirect

2D supervisions (2D segmentation masks, keypoints) instead of using 3D mesh data.

3D keypoints involve the full xyz world coordinate values in contrast to 2D keypoints whose

coordinate values are defined using the uv coordinates without a depth value. While 2D keypoint

65

detection is well established in the RGB domain [176], estimating 3D keypoints from RGB

images is less trivial. Recently, several methods were developed [18, 70, 133, 256]. While

directly lifting 2D estimations to 3D space was attempted in [256], 2.5D depth maps are first

estimated as clues for 3D lifting in state-of-the-art techniques [18,70]. In this chapter, we exploit

a deformable 3D hand mesh model, which inherently offers a full description of both hand

shapes and articulations, 3D priors for recovering depths, and self-data augmentation. Different

from purely generative optimization methods e.g. [133], we propose a method based on a neural

renderer and CNNs.

Our contribution is in implementing a full 3D dense hand pose estimation (DHPE) using single

RGB images via a neural renderer. Our technical contributions are largely threefold:

1) DHPE is composed of convolutional layers that first estimate 2D evidences (RGB features,

2D keypoints) from an RGB image and then estimate the 3D mesh model parameters. Since

RGB/mesh pairs are not sufficient, the network is learned to fit the 3D model using 2D seg-

mentation masks and skeletons as supervision, similar to recent work on human body pose

estimation [77, 139, 209], via neural renderer. The dense shape estimation helps improve the

pose estimation.

2) At the testing time, we iteratively refine the initial 3D mesh estimation using the gradients.

The gradients are computed over self-supervisions by comparing estimated 3D meshes to

predicted 2D evidences, as ground-truth labels are not available at testing. While previous

work [209] fixed 2D skeletons/segmentation masks during the refinement step, we recursively

improve 2D skeletons and exploit the improved skeletons and feature similarities for 2D masks.

3) To further deal with limited annotated training data, especially for diverse shapes and view-

points, we supply fitted meshes and their 2D projected RGB maps by varying shapes and

view-points, to fine-tuning the network. Purely synthetic data imposes a synthetic-real domain

gap, and annotating 3D meshes or 2D segmentation masks of real images is difficult. Once

the model is successfully fitted to input RGB images, its meshes, i.e. shapes and poses are

close-to-real.

66

2D evidence estimator f E2D 3D mesh estimator f E3D Projector f Proj

Pose estimation net f J2D

2D Feature extractor F

2D pose
refiner

f Ref

Iterative regression (t=t+1)
Input image x

2D mask m
3D skeleton j2D skeleton j2DGT

Supervision

y’(t)=(j', m')

2D projection

F(x)

Output mesh
v’(t)

3D skeleton &
mask estimate

Dense hand pose estimator f DHPE

2D Heatmap j2DHEAT

j2D(0)

j2D(t) h'(t)

Draw Heatmap

Te
stin

g refin
e

m
e

n
t

3D mesh
estimation net

f J3D

Figure 4.2: Schematic diagram of the proposed DHPE framework. Our DHPE receives an input RGB
image x and estimates the corresponding hand shape and pose as parameters h of the MANO [161]
hand model. Training DHPE is guided via 1) an additional projector f Proj that enables us to provide
supervision via 3D skeletons j and foreground segmentation masks m; 2) decomposing the DHPE into the
2D evidence estimator f E2D and 3D mesh estimator f E3D which stratifies the training via the intermediate
2D feature estimation step. At testing, once the output mesh parameter h′ is estimated, it is iteratively
refined via enforcing its consistency over intermediate 2D evidences F(x) and j2D.

The proposed method can also be seen as a hybrid method [90, 205, 238] combining merits of

discriminative and generative approaches.

4.2 Proposed dense hand pose estimator

Our goal is to construct a pose estimator f P:XC→YP that maps an input RGB image x ∈XC to

the corresponding estimated 3D hand mesh v ∈YP. Each input is given as an RGB pixel array of

size 224×224 while an output mesh corresponds to 3D positions of 778 vertices encoding 1,538

triangular faces. As the resultant output is the mesh, we call the pose estimator as the HME

f P:= f HME. Instead of directly generating a mesh v as a 778× 3-dimensional raw vector, our

HME estimates a 63-dimensional parameter vector h that represents v by adopting the MANO

3D hand mesh model [161] (Sec. 4.2.2). Once a hand mesh v (or equivalently, its parameter

h) is estimated, the corresponding skeletal pose j consisting of 21 3D joint positions can be

recovered via a 3D skeleton regressor f Reg discussed shortly. This 21 3D joints are in the same

topology with the skeleton model we used in the chapter 3.

Learning the HME can be cast into a standard multivariate regression problem if a training

67

Table 4.1: Notational summary

y y = (j, m) ∈ Y = (J ,M) ⊂ R(21×3)×(224×224)

f DHPE dense hand pose estimator (f DHPE = f Proj ◦ f HME)
f Proj projection operator (f Proj = [f Reg, f Ren])
f Reg 3D skeleton regressor
f Ren renderer

database of pairs of input images and the corresponding ground-truth meshes are available.

However, we are not aware of any existing database that provides such pairs. Inspired by the

success of existing human body reconstruction work [77,139,209], we take an indirect approach

by learning a DHPE which combines the HME and a new projection operator. The projection

operator consists of a 3D skeleton regressor and a renderer which respectively recover a 3D

skeletal pose (j ∈ J) and a 2D foreground hand segmentation mask (m ∈ M) from a hand

mesh v. Table 4.1 shows our notation, and Eq. 4.1 and Fig. 4.2 summarize the decomposition of

DHPE:

XC

f HME= f E3D◦ f E2D︷ ︸︸ ︷
f E2D

−−→ Z f E3D

−−→ YP
f Proj=(f Reg, f Ren)−−−−−−−−→︸ ︷︷ ︸

f DHPE= f Proj◦ f HME

Y = (J ,M). (4.1)

Extending the skeleton regressor provided by the MANO model [161], our skeleton regressor

f Reg maps a hand mesh v to its skeleton j consisting of 21 3D joint positions. It is a linear

regressor implemented as three matrices of size 778× 21 (see Sec. 2.1 of the supplemental for

details).

Our renderer f Ren generates the foreground hand mask m by simulating the camera view of x.

We adopt the differentiable neural renderer proposed by Kato et al. [79].

By construction, the projection operator respects the underlying camera (via f Ren) and hand

shape (via f Reg) geometry and it is held fixed throughout the entire training process. This

facilitates the training of f HME indirectly via training f DHPE. However, even under this setting,

the problem still remains challenging as estimating a 3D mesh given an RGB image is a seriously

ill-posed problem. Adopting recent human body pose estimation approaches [139, 209], we

68

further stratify learning of f DHPE :XC→ Y by decomposing f HME :XC→YP into a 2D evidence

estimator f E2D : XC → Z and a 3D mesh estimator f E3D : Z →YP.

Our 2D evidence z ∈ Z consists of a 42-dimensional 2D skeletal joint position vector j2D (21

positions × 2; as in [18, 70]) and a 2,048-dimensional 2D feature vector F(x) (Eq. 4.2). The

remainder of this section provides details of these two estimators.

4.2.1 2D evidence estimator f E2D = (F, f J2D)

Silhouettes (or foreground masks) and 2D skeletons have been widely used as the mid-level

cues for estimating 3D body meshes [78, 139, 209]. However, for hands, accurately estimating

foreground masks from RGB images is challenging due to cluttered backgrounds [84, 256].

We observed that naïvely applying the state-of-the-art foreground segmentation algorithms

(e.g. [256]) often misses fine details, especially along the narrow finger regions (see Fig. 4.5 for

examples) and this can significantly degrade the performance of the subsequent mesh estimation

step. We bypass this challenge by learning instead, a 2D foreground feature extractor F: F(x)

encapsulates the textural and shape information of the foreground regions in x.

Our 2D feature extractor F is trained to focus on the foreground regions by minimizing the

deviation between the features extracted from the entire image x and the foreground region

x�m extracted via the ground-truth mask m (see Fig. 4.3d): The training loss (per data point)

for F is given as

LFeat(F) = ‖F(x)− F(x�m)‖2
2, (4.2)

where� denotes element-wise multiplication. F employs the ResNet-50 [64] architecture whose

output is a 2,048-dimensional vector.

Estimating 2D skeletal joints from an RGB image has been well studied. Similarly to [18,70],

we embed the state-of-the-art 2D pose estimation network f J2D [226, 256] into our framework.

The initial weights provided by the authors of [256] are refined based on the 2D joint estimation

loss:

69

(a) (b) (c) (d)

Figure 4.3: A 2D evidence estimation example. (a) input image x, (b) ground-truth 2D segmentation
mask m of x, (c) 2D skeletal position heat map of the finger tip of middle finger overlaid on x, and (d)
masked image x�m.

LJ2D(f J2D) = ‖ f J2D(x)− j2DHeat‖2
2. (4.3)

The output of f J2D is a matrix of size 21×32×32 encoding 21 heat maps (per joint) of size

32×32. j2DHeat is the ground-truth heat map. Given the estimated heat maps, 2D skeleton joints

j2D are extracted by finding the maximum for each joint. Figure 4.3(b) shows an example of 2D

evidence estimation.

4.2.2 3D mesh estimator f E3D = (f J3D, f Ref)

Taking the 2D evidence z (2, 048-dimensional feature vector F(x) and 21× 3-dimensional

2D skeleton j2D) as input, the 3D mesh estimation network f J3D constructs parameters of a

deformable hand mesh model and a camera model. We use the MANO model representing a

hand mesh based on 45-dimensional pose parameters p and 10-dimensional shape parameters

s [161]. The original MANO framework uses only 6-dimensional PCA subspace of p for

computational efficiency. However, we empirically observed that to cover a variety of hand

poses, all 45-dimensional features are required: We use the linear blend skinning formulation as

in the SMPL model [102].

Given the MANO parameters p and s, a mesh v is synthesized by conditioning them on the

hypothesized camera c, which comprises of the 3D rotation (in quaternion space) cq ∈ R4, scale

70

cs ∈ R, and translation ct ∈ R3: An initial mesh is constructed by combining MANO’s PCA

basis vectors using the shape parameter s, rotating the bones according to the pose parameter

p, and deforming the resulting surface via linear blend skinning. The final mesh v is then

obtained by globally rotating, scaling, and translating the initial mesh according to cq, cs, and ct,

respectively. The entire mesh generation process is differentiable. Under this model, our 3D

mesh estimation network f J3D is implemented as a single fully-connected layer of 2153×63

weights and it estimates a 63-dimensional mesh parameter:

h = [p, s, cq, cs, ct]
>. (4.4)

Iterative mesh refinement via back-projection. Adopting Kanazawa et al.’s approach [77],

instead of estimating h directly, we iteratively refine the initial mesh estimate h(0) by recursively

performing regression on the parameter offset ∆h: At iteration t, f J3D takes z and the current

mesh estimate h(t), and generates a new offset ∆h(t):

h(t + 1) = h(t) + ∆h(t). (4.5)

At t = 0, h(0) as an input to f J3D, is constructed as a vector of zeros except for the entries

corresponding to the pose parameter p which is set as the mean pose of the MANO model. We

fix the number of iterations at 3 as more iterations did not show any noticeable improvements in

preliminary experiments.

In [77], each offset prediction ∆h(t) is built based only on 2D features F(x). Inspired by the

success of [18, 70], we additionally use 2D skeletal joint j′2D as input. However, as an estimate,

j′2D(0) (obtained at iteration 0) is inaccurate, causing errors in the resulting ∆h(t) estimate.

Then, these errors accumulate over iterations (Eq. 4.5) lessening the benefit of the entire iterative

estimation process. We address this by an additional 2D pose refiner f Ref which iteratively

refines the 2D joint estimation j′2D(t) via back-projecting the estimated mesh h′(t): At t, f Ref

receives the estimated mesh parameter h′(t), 2D feature F(x), 3D skeleton f Reg(v′), and j′2D(t),

and generates a refined estimate j′2D(t + 1). The 2D pose refiner f Ref is implemented as a

single fully connected layer of size 2216×42 and it is trained using the loss LRef by closing its

71

prediction close to the ground-truth 2D skeletons (j2DGT):

LRef =
∥∥ f Ref ([j′2D(t), F(x), h′(t), f Reg(v′)]

)
− j2DGT

∥∥2
2 . (4.6)

In the experiments, we demonstrate that 1) using both 2D features and 2D skeletons (Fig. 4.4(e):

‘Ours (w/o Test. ref. and Refiner f Ref)’) improves performance over Kanazawa et al.’s 2D feature-

based framework [77] (Fig. 4.4(e): ‘Ours (w/o Test. ref., f Ref and 2D losses (LFeat, LJ2D)’); 2)

explicitly building the refiner f Ref under the auxiliary 2D joint supervision (Fig. 4.4(e): ‘Ours

(w/o Test. ref.)’) further significantly improves performance. More importantly, the refiner takes

a crucial role in our testing refinement step (Sec. 4.2.5) which improves a once predicted 3D

mesh v′ by enforcing its consistency with the corresponding 2D joint evidence j′2D(t) (as well

as other intermediate results) throughout the iteration (Eq. 4.12).

4.2.3 Skeleton regressor f Reg and neural renderer f Ren

Skeleton regressor f Reg receives a (predicted) mesh consisting of 778 vertices v ∈ YP ⊂

R778×3 and generates 21 skeletal joint positions j ∈ J ⊂ R21×3. Our regressor builds upon the

original MANO regressor which is implemented as three multi-dimensional linear regressors,

each aligned with a coordinate axis [161]: The x−axis regressor receives the x−coordinate

values of v and synthesizes the x−axis coordinate values of 16 skeletal joints. The y−axis

and z−axis regressors are constructed similarly. In this way, the original MANO regressor

estimates only 16 joint positions. The remaining five, finger tip positions are estimated by simply

selecting a point of v that corresponds to a finger tip, per axis.1 These additional regressors

are implemented for each finger tip and for each axis, as a 778-dimensional vector where all

elements are zero except for the entry corresponding to the vertex location of the corresponding

finger tip, where value 1 is assigned. As a whole, our regressor f Reg is represented as three

matrices of size (778× 21): As a linear regressor, f Reg is differentiable with respect to its input

and output arguments.

1Unlike other skeletal joint locations which lie inside the mesh v, finger tips lie on (the surface) v. Therefore,
selecting a point on v can give a good joint location estimate.

72

Neural renderer f Ren is implemented by adopting the work of [79]. We only used their binary

segmentation mask renderer as our f Ren, to differentiably obtain the binary segmentation masks

from inferred 3D meshes.

4.2.4 Joint training

Training the 2D evidence estimator f E2D : XC → Z and 3D mesh estimator f E3D : Z → YP

given fixed projection operator f Proj : YP → Y is performed based on a training set consisting

of input images, and the corresponding 3D skeleton joints and 2D segmentation masks D =

{(xi, yi}l
i=1 ⊂ XC ×Y , yi = (ji, mi). Since all component functions of f E2D, f E3D, and f Proj

are differentiable with respect to the weights of F and f E3D, they can be optimized based on on

standard gradient descent-type algorithm: Our overall loss (per training instance xi, yi) is given

as (see Eqs. 4.2 and 4.6):

L(f E3D, F) = LArt(f E3D, F) + LLap(f E3D, F) + LFeat(F)

+ λLSh(f J3D, F) + LRef (f J3D, F). (4.7)

The articulation loss LArt measures the deviation between the skeleton estimated from xi and

its ground-truth ji:

LArt = ‖[f DHPE(xi)]J − ĵi‖2
2, (4.8)

where [y]J extracts the j-component of y = (j, m) and ĵ spatially normalizes j similarly

to [70, 256]: First, the center of each skeleton is moved to the corresponding middle finger’s

MCP position. Then each axis is normalized to a unit interval [0, 1]: The x, y−coordinate values

are divided by g (=1.5 times the maximum of height and width of the tight 2D hand bounding

box). The z−axis value is divided by (zRoot × g)/c f where zRoot is the depth value of the

middle finger’s MCP joint and c f is the focal length of the camera. At testing, once normalized

skeletons are estimated, they are inversely normalized to the original scale.

To facilitate the training of the skeleton regressor f Reg, similarly to [70, 256], we explicitly

normalize its output space J : Our articulation loss LArt measures the deviation between the

73

skeleton estimated from the training input xi and the corresponding growth-truth ji:

LArt = ‖[f DHPE(xi)]J − ĵi‖2
2, (4.9)

where [y]J extracts the j-component of y = (j, m).

Here, ĵ spatially normalizes j: First, a tight 2D hand bounding box is extracted from the

corresponding ground-truth 2D skeleton of xi, and the center of the skeleton is moved to its

middle finger’s MCP position. Then, each axis is normalized to a unit interval [0, 1]: The

x, y−coordinate values are divided by 1.5 times the maximum g of height and width of the

bounding box. The z−axis value is divided by zRoot/(c f × g) where zRoot is the depth value of

the middle finger’s MCP joint and c f is the focal length of the camera.

At testing, once normalized skeletons are generated, they are inversely normalized to the original

scale based on the parameters g and zRoot.

Estimation of the bounding box size g. First, we use Zimmermann and Brox’s hand detec-

tor [256] to infer bounding boxes in each video frame. The corner coordinates of the detected

boxes are then temporally smoothed by taking an average over the past five frames.

For RHD, following Cai et al.’s experimental settings [18], the bounding boxes are extracted

from the ground-truth 2D skeletons provided in the dataset, to facilitate a fair comparison with

their algorithm.

Estimation of the hand depth zRoot. We use the 3D root depth estimation algorithm proposed

by Iqbal et al. [70]. For RHD, for pair comparison with [18], the ground-truth depth values

accompanying this dataset are used.

Our shape loss LSh facilitates the recovery of hand shapes as observed indirectly via projected

2D segmentation masks:

LSh =
∥∥[f DHPE(xi)]M −mi

∥∥2
2 , (4.10)

where [y]M extracts the m-component of y = (j, m).

74

The Laplacian regularizer LLap enforces spatial smoothness in the mesh v. This helps avoid

generating implausible hand meshes as suggested by Kanazawa et al. [78].

Hierarchical recovery of articulation and shapes. We observed that naïvely minimizing the

overall loss L with a constant shape loss weight λ (Eq. 4.7) tends to impede convergence

during training (Fig. 4.4(f)): Our algorithm simultaneously optimizes the mesh (v) and camera

(c = {cq, cs, ct}) parameters which over-parameterize the rendered 2D view, e.g. the effect of

scaling v itself can be offset by inversely scaling cs. This often hinders the alignment of v with

the ground-truth 2D mask and thereby rendering the network inappropriately update the mesh

parameters. Therefore, we let the shape loss LSh take effect only when the articulation loss LArt

becomes sufficiently small: λ is set per data instance based on the LArt-value:

λ =

1 if

∥∥[[f DHPE(xi)]j
]

2D − [ji]2D
∥∥2

2 < τ

0 otherwise,
(4.11)

where [j]2D projects 3D joint coordinates j to 2D view based on c (Eq. 4.4). The threshold τ is

empirically set to 15 pixels. Initially, with zero λ, LArt dominates in L, which helps globally

align the estimated meshes with 2D ground-truth evidence. As the training progresses, the role

of LSh becomes more important (λ = 1) contributing to recovering the detailed shapes.

As the generation of the 2D skeleton j2D from an estimated heat-map f J2D(x) is not differentiable

(see Eq. 4.3), our 2D pose estimation network f J2D cannot be trained based on L. Thus we train

it in parallel using LJ2D (Eq. 4.3). For both cases, we use the standard Adam optimizer with the

learning rate γ set at 10−3.

4.2.5 Testing refinement

To facilitate the training of the HME, we constructed an auxiliary DHPE that decomposes into

three component functions: f Proj, f E2D, and f E3D (see Eq. 4.1). An important benefit of this

step-wise estimation approach is that it enables us to check and improve once predicted output

mesh by comparing it with the intermediate results: For testing, the underlying mesh v of a

given test image x can be first estimated by applying f HME = f E3D ◦ f E2D : XC → YP.

75

Algorithm 6: Training process
Input:

–Training data D = {(xi, (ji, mi))}l
i=1:

x: RGB image;
(j, m): ground-truth

3D skeleton and 2D segmentation mask;
–Projection operator f Proj = (f Reg, f Ren);
–MANO model: PCA shape basis;

mean pose vector;
–Hyper-parameters: number T of epochs

size N′ of mini-batch;
Output: (Weights of)

–3D mesh estimator f E3D;
–2D evidence estimator f E2D = (F, f J2D);

Initialization:
–Randomize (parameters) of f E3D;
–Pre-train F based on [64];
–Pre-train f J2D based on [256];

for t = 1, . . . , T do
for n = 1, . . . , N/N′ do

For each data point x in the mini-batch Dn,
evaluate (feed-forward) f DHPE on x:
Generate mesh parameter h′, 3D skeleton j′ and 2D segmentation mask m′;
Generate 2D evidences (F(x), j′2D(t)), mesh parameter h′, 3D skeleton j′ and

2D segmentation mask m′;
if t > 20 then

Augment D with new synthetic data instances generated from h′ (Eq. 4.4),
by changing its shape s′ and viewpoint q′;

end
Calculate gradient ∇L with respect to (the weights of) f E3D (Eq. 4.7) on Dn,

and update f E3D;
Calculate gradients ∇LFeat (Eq. 4.2) and ∇L with respect to F on Dn, and
update F;

Calculate gradient ∇LJ2D (Eq. 4.3) with respect to ∇ f J2D on Dn, and update
f J2D;

end
end

If the resulting prediction v′ (equivalently, h′) is accurate, it must be in accordance with

the intermediate results F(x) and j′J2D generated from x. Checking and further enforcing

this consistency can be facilitated by noting that our loss function L and its components are

76

Algorithm 7: Testing process
Input: Test image x;
Output:

–3D mesh v′;
–2D segmentation mask m′;
–3D skeleton j′;

Feed-forward f DHPE on x: Generate 2D evidence j′2D(t), and 3D mesh v′ and it’s
parameter h′;

for t = 1, . . . , 50 do
Update h′(t) using Eq. 4.12.

end
Generate v′ from h′(t) and m′;
Generate j′ from v′;

differentiable with respect to the mesh parameter h. By reinterpreting L as a smooth function of

h given fixed f Proj, f E2D, and f E3D, we can refine the initial prediction h′(0) by enforcing such

consistency:

h′(t + 1) = h′(t)− γ · ∇h

(∥∥[[f DHPE(x)]J
]

XY − j′J2D

∥∥2
2

+ λ
∥∥F(x)− F(f Ren(v′)� x)

∥∥2
2 + LLap

)
, (4.12)

where [j]XY extracts the x, y−coordinate values of skeleton joints from j. Note that in the

first gradient term, we use the 2D skeleton j′2D since the ground-truth 3D skeleton ĵ is not

available at testing. This step benefits from explicitly building the 2D pose refiner f Ref that

improves the once estimated 2D joint j′2D during iterative mesh estimation process (Eq. 4.6).

Also, for the second, shape loss term of the gradient, since the ground-truth segmentation mask

m is not available, we use the segmentation mask rendered via f Ren based on the estimated

mesh v′ enforcing self-consistency. The number of iterations in Eq. 4.12 is fixed at 50. Our

testing refinement step takes 250ms (5ms per iteration × 50 iterations) in addition to the initial

regression step which takes 100ms. Figure 4.4(e) shows the performance variation with varying

number of iterations.

77

4.2.6 Self-supervised data augmentation

An important advantage of incorporating a generative mesh model (i.e. MANO) into the training

process of the HME (via h; see Eq. 4.4) is that it can synthesize new data as guided by (and

subsequently, guiding) HME. The MANO model provides explicit control over the shape of

synthesized 3D hand mesh.1 Combining this with a camera model, we can generate pairs of 3D

meshes, and the corresponding rendered 2D masks and RGB images.

To render RGBs, we adopt the neural texture renderer f TRen proposed by Kato et al. [79]: During

training, once a seed mesh vS is predicted, the corresponding camera and shape parameters hS

are changed to generate new meshes {vN
j }: The shape parameter s is sampled uniformly from

the interval covering three times the standard deviation per dimension. For camera perspectives,

the rotation matrix along each of x, y, z− axes are sampled uniformly on [0, 2π]. Once the

foreground hand region is rendered via f TRen, it is placed on random backgrounds obtained from

the NYU depth database [175].

For each new mesh vN , we generate a triplet
(

f TRen(vN), f Ren(vN), f Reg(vN)
)

constituting a

new training instance for the DHPE. We empirically observed that when the training of the

DHPE reaches 20 epochs, it tends to generate seed meshes {vS
i } which faithfully represent

realistic hand shapes (even though they might not accurately match the corresponding input

images {xi}). Therefore, we initiate the augmentation process after the first 20 training epochs.

For each mini-batch, three new data instances are generated per seed prediction vS gradually

enlarging the entire training set (see supplemental for examples). A similar self-supervised data

augmentation approach has been adopted for facial shape estimation [85].

1While it is also possible to generate new poses, we do not explore this possibility since we observed that it
often leads to implausible hand poses.

78

4.3 Experiments

Experimental settings. We evaluate the performance of our algorithm on 3 hand pose esti-

mation datasets. Stereo hand pose dataset (STB) provides frames of 12 stereo video sequences

each recording a single person performing various gestures [248]. It contains total 36,000

frames. Among them, 30,000 frames sampled from 10 videos constitute a training set while

the remaining 6,000 frames (from 2 videos) are used for testing. The rendered hand pose

dataset (RHD) contains 43,986 synthetically generated images showing 20 different characters

performing 39 actions where 41,258 images are provided for training while the remaining 2,728

frames are reserved for testing [256]. Both datasets are recorded under varying backgrounds and

lighting conditions and they are provided with the ground-truth 2D and 3D skeleton positions of

21 keypoints (1 for palm and 4 for each finger), on which the accuracy is measured. The Dex-

ter+Object dataset (DO) contains 3,145 video frames sampled from 6 video sequences recording

a single person interacting with an object (see Fig. 4.6(DO)) [185]. This dataset provides

ground-truth 3D skeleton positions for the 5 finger-tips of the left hand: The overall accuracy is

measured in these finger-tip locations. Following the experimental settings in [18, 70, 256] we

train our system on 71,258 frames combining the original training sets of STB and RHD. For

testing, the remaining frames in STB and RHD, respectively and the entire DO is used. The

overall hand pose estimation accuracy is measured in the area under the curve (AUC) and the

percentage of correct keypoints (PCK) with varying thresholds for each [18, 70, 256].

For comparison, we adopt seven hand pose estimation algorithms including five CNN-based

algorithms ([18, 256] for RHD, [70, 117] for DO, and [117, 183, 256] for STB) and two 3D

model fitting-based algorithms [81, 133].

Many existing CNN-based algorithms guide the learning process via building intermediate

2D evidence: Zimmermann and Brox’s algorithm [256] first estimates 2D skeletons from the

input RGB images and thereafter, maps estimated 2D skeletons to 3D skeletons. Spurr et al.’s

algorithm [183] builds a latent space shared by RGB images and 2D/3D skeletons. Cai et

al.’s algorithm [18] trains an RGB-to-depth synthesizer that generates intermediate depth-map

79

20 25 30 35 40 45 50
Error Thresholds (mm)

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

3D
 P

CK

((a)) Accuracies on RHD

0 20 40 60 80 100
Error Thresholds (mm)

0

0.2

0.4

0.6

0.8

1

3D
 P

CK

((b)) Accuracies on DO

20 25 30 35 40 45 50
Error Thresholds (mm)

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

3D
 P

CK

((c)) Accuracies on STB

0 20 40 6 0
Error Thresholds (mm)

0

0.2

0.4

0.6

0.8

1

3D
 P

CK

0 8

((d)) Ablation study results RHD

0 20 40 60 80 100
Error Thresholds (mm)

0

0.2

0.4

0.6

0.8

1

3D
 P

CK

((e)) Ablation study results DO
Epoch

0

20

40

60

80

100

R
at

io
 o

f t
ra

in
 d

at
a

in
st

an
ce

s
w

it
h

 e
rr

o
r

<
 (%

)

10

15

20

25

30

35

40

Te
st

in
g

 e
rr

o
r

(m
m

)

Ratio (Ours)
Ratio (Constant weight)
Testing error (Ours)
Testing error (Constant weight)

806040200

((f)) Progression of the DHPE accura-
cies

Figure 4.4: Performances of different algorithms on three benchmark datasets: (a-c) accuracies on
RHD, DO, and STB, respectively; (d-e) evaluation of our algorithm design choices on RHD and DO,
respectively; (f) progressions of the testing errors (orange curves) and the ratio of training data instances
with small joint estimation errors (< τ in Eq. 4.11; blue curves) with λ fixed at 0.01 (curves with dot
markers) and with λ scheduled based on Eq. 4.11 (curves with cross markers).

estimates to guide skeleton estimation. Similarly, Iqbal et al.’s algorithm [70] reconstructs depth

maps from input RGB images. Unlike these algorithms, our algorithm builds full 3D meshes to

guide the skeleton estimation process.

Mueller et al. [117] approached the challenge of building realistic training data pairs of 3D

skeletons and RGB images by first generating synthetic RGB images from skeletons and then

transferring these images into realistic ones via a GAN transfer network. On the other hand, our

algorithm focuses on dense hand pose estimation and thus it generates pairs of RGB images and

the corresponding 3D meshes.

Results. Figure 4.4 summarizes the results. Our algorithm improved Zimmermann and Brox’s

algorithm [256] with a large margin (Fig. 4.4(a)).

80

Table 4.2: Performances of different hand segmentation algorithms on RHD (higher is better).

Method IOU score Precision Recall F1-score
Ours 65.13% 82.82% 75.31% 78.88
[256] 35.40% 36.52% 92.06% 52.29
[84] 52.68% 71.65% 66.55% 69.00

Also, a significant accuracy gain (≈4mm on average) from Cai et al.’s approach [18] was

obtained, demonstrating the effectiveness of our 3D mesh-guided supervision in comparison to

2.5D depth map-guided supervision. Figure 4.4(a) also demonstrates that jointly estimating the

shape and pose (using Eqs. 4.9 and 4.10) leads to higher pose estimation accuracy than estimating

only the pose. Figure 4.4(b) (DO) shows that our algorithm clearly outperforms [70, 117]: It

should be noted that the comparison with [117] is not fair since their networks were trained

on a database tailored for object interaction scenarios as in DO. Figure 4.4(c) (STB) further

demonstrates that in comparison to the state-of-the-art CNN-based algorithms [117, 183, 256]

as well as 3D model fitting approaches (PSO and [133]), our algorithm achieves significant

performance improvements. The superior performance of our algorithm over [117] shows the

effectiveness of our data generation approach. The performance of our algorithm is on par

with [70] on this dataset but ours outperforms [70] on DO.

Ablation study. Figure 4.4(d-e) shows the result of varying design choices in our algorithm

on DO and RHD: The testing refinement step (Sec. 4.2.5) had a significant impact on the final

performance: The results obtained without this step (‘w/o Test. ref.’) is considerably worse on

DO; On RHD, results of ‘w/o Test. ref.’ are similar. Our data augmentation strategy (Sec. 4.2.6)

further significantly improved the accuracy over ‘w/o Data Aug.’ cases. Figure 4.4(d-e) further

show that explicitly providing supervision to our 2D evidence estimator via 2D losses (LJ2D

and LFeat; Eqs. 4.2-4.3) constantly improve the overall accuracy over ‘w/o 2D loss’ cases which

correspond to Kanazawa et al.’s iterative estimation framework [77]. Figure 4.4(f) visualizes

the effectiveness of our hierarchical shape and articulation optimization strategy (Eq. 4.11): In

comparison to the case of constant λ value (‘Constant weight’), automatically scheduling λ

based on Eq. 4.11 led to larger fraction of training instances that have small articulation errors

(< τ; Eq. 4.11) which then led to faster decrease of test error.

81

Figure 4.5: Hand segmentation examples. Left to right: input images, ground-truth masks, our results,
the results of the state-of-the-art hand segmentation algorithm [84].

(a) (b) (c) (d)

(RHD)

(e) (a) (b) (c) (d) (e)

(DO)

(a) (b)

(STB)

Figure 4.6: Example dense hand pose estimation results. (RHD): (a) input images; (b-c) and (d-e) our
results obtained without and with the shape loss LSh (Eq. 4.10), respectively; (b,d) dense hand pose
estimation results, and (c,e) estimated shapes in canonical hand pose. (DO): (a,c) and (b,d) our results
obtained without testing refinement and after applying 20 iterations of testing refinement, respectively;
(e) failure and success cases under occlusion. (STB): (a-b) input images and our results.

Qualitative evaluation. For qualitative evaluation, we show example dense hand pose estima-

tion results in Fig. 4.6. Figure 4.6(RHD) demonstrates the importance of the shape loss LSh

(Eq. 4.10) conforming the quantitative results of Fig. 4.4(a,d).

Figure 4.7 shows additional dense hand pose estimation results extending Fig. 7 of the main

paper. When compared with the results obtained by a variation of our algorithm that does not

82

use the shape loss (b–d: LSh; Eq. 4.10), our final algorithm (e–g) achieved much higher shape

estimation accuracy (c and f, especially in 1st, 2nd, 5th, and 7th examples), which led to better

alignment of hand contours (c and f) and eventually to significantly lower pose estimation error

(b and e). These examples confirm the quantitative results shown in Fig. 4.8 and demonstrate

the benefits of shape estimation even when the final goal is to estimate skeletal poses.

Hand segmentation performance. Systematically evaluating the performance of dense hand

pose estimation (including shape) is challenging due to the lack of ground-truth labels. Therefore,

we assess the performance indirectly based on the 2D hand segmentation accuracy. Table 4.2

shows the results measured in 4 different object segmentation performance criteria. In com-

parison to the state-of-the-art hand segmentation networks [84, 256] (note [84] is fine-tuned

for RHD), our algorithm led to significantly higher accuracy. Also, Fig. 4.5 shows that the

state-of-the-art segmentation net [84] is distracted by other skin colored objects than hands (e.g.

arms) while our algorithm, by explicitly estimating 3D meshes, can successfully disregarded

these distracting backgrounds.

4.4 Conclusion

We have presented DHPE network, a CNN-based framework that reconstructs 3D hand shapes

and poses from single RGB images. DHPE decomposes into the 2D evidence estimator, 3D

mesh estimator and projector. The projector, via the neural renderer, replaces insufficient full

3D supervision with indirect supervision by 2D segmentation masks/3D joints, and enables

generating new data. In the experiments, we have demonstrated that stratifying 2D/3D estima-

tors improves accuracy, updating 2D skeletons helps self-supervision in the iterative testing

refinement and improves 3D skeleton estimation, and jointly estimating 3D hand shapes and

poses offers the state-of-the-art accuracy in both 3D hand skeleton estimation and 2D hand

segmentation tasks.

83

30.65 mm 29.85 mm

7.73 mm 7.43 mm

16.22 mm 15.14 mm

11.89 mm 11.44 mm

17.87 mm 17.10 mm

9.80 mm 7.67 mm

(a) (b) 13.81 mm (c) (d) (e) 12.99 mm (f) (g)

Figure 4.7: DHPE examples. (a) input images, (b-d) and (e-g) results obtained without and with shape
loss, respectively. (b,e) estimated hand meshes overlaid on the input image and the corresponding
estimated skeletons (Blue) overlaid with their ground-truths (Red), (c,f) estimated shapes rendered in
canonical articulation and viewpoints, and (d,g) Color-coded 2D segmentation masks: (Green and Blue:
estimated masks; Green and Red: ground-truth masks; Red and Blue highlight errors). Our visualization
method in (d) and (g) is inspired by [193].

84

0 20 40 60 80
Error Thresholds (mm)

0

0.2

0.4

0.6

0.8

1

3D
 P

C
K

0 20 40 60 80 100
Error Thresholds (mm)

0

0.2

0.4

0.6

0.8

1

3D
 P

C
K

0 20 40 60 80
Error Thresholds (mm)

0

0.2

0.4

0.6

0.8

1

3D
 P

C
K

Figure 4.8: Performance of our algorithm with different design choices. Top to bottom: results on RHD,
DO, and STB, respectively.

85

5CHAPTER

ACTION RECOGNITION USING THE 3D
GEOMETRY (BODY SKELETON, SCENE

LAYOUTS)

Contents

5.1 Motivation 89

5.2 PATIENT dataset 91

5.3 Kinematic-Layout-aware Random Forests 92

5.4 Experiments 100

5.5 Conclusion 104

T his chapter deals with the action recognition problem. In the action recognition, multiple

cues (e.g. RGB, depth, 3D skeleton and scene layout) are available as discussed in

chapter 2. In the conventional action recognition scenario that deals with the daily or gaming

actions, humans are mostly in the upright position and frontally looking at the camera viewpoint.

In such a scenario, human body keypoints (i.e. skeletons) are well recognized by the commercial

87

human body skeleton estimator [172] and thus, subsequent action recognition can exploit

them. However, the body pose estimator does not work well if the frame contains unique

human postures and viewpoints. In this case, the subsequent action recognition also suffers.

In this chapter, we aim to deal with such a case where the human body pose estimation is

challenging: 24/7 monitoring patient’s actions in the hospital scenario. In the problem of “24

hours monitoring patient actions” in a hospital scenario, we tackle actions such as “lying on the

bed”, “stretching an arm out of the bed” and “falling out of the bed”. Due to the privacy issue

and the 24/7 monitoring requirements, we are constrained to use the depth sequences without

color information; however recognizing actions solely by depth information is challenging.

Especially in the concerned scenario, 3D geometric information, i.e. relations between scene

layouts and body kinematics is important to reveal the actions. We try to additionally incorporate

such 3D geometric information in our action recognizer. However as mentioned, due to unique

and diverse human postures in our data, securing the 3D geometric information at testing itself

is a challenging problem. To address the problem, we propose kinematic-layout-aware random

forest (KLRF) considering the geometry between scene layouts and skeletons (i.e. kinematic-

layout), secured in the offline manner, in the training of forests to maximize the discriminant

power of depth appearance. The proposed method uses the additional information only at

training to obtain the robust classification model, while at testing the additional cue is not used.

We integrate the kinematic-layout in the split criteria of random forests to guide the learning

process by 1) measuring the usefulness of kinematic-layout information and switching the use

of kinematic-layout, and 2) implicitly closing the gap between two distributions obtained by

the kinematic-layout and the appearance, if the kinematic-layout appears useful. Experimental

evaluations on our new dataset (PATIENT) demonstrate that our method outperforms various

state-of-the-arts for this problem. We have also demonstrated accuracy improvements by

applying our method to conventional single-view and cross-view action recognition datasets

(e.g. CAD60, UWA3D).

88

Figure 5.1: Depth maps visualized with kinematic-layout. Note that kinematic-layout has a potential to
improve the ambiguity of depth appearance. (a)-(c) are depth maps from PATIENT dataset while (d) is
the depth map from CAD60 dataset.

5.1 Motivation

The recent emergence of cost-effective and easy-operation depth sensors have opened the door

to a new family of methods [68, 89] for action recognition from depth sequences. Compared to

conventional color images, depth maps offer several advantages: 1) Depth maps encode rich

3D structural information, including informative shape, boundary, geometric cues of a human

body and an entire scene. 2) Depth maps are insensitive to changes in lighting and illumination

conditions that make it possible to monitor patient/animal 24/7. 3) It is invariant to texture and

color variations, which benefits various recognition tasks.

These advantages have promoted the fast pace development of depth-based techniques for action

recognition. A number of spatio-temporal representations [151, 152, 223] have been proposed to

well represent the depth appearance, which is different from color maps. Recent approaches

resorted to selecting the informative points around skeleton joints and modelling their temporal

dynamics [37, 213, 222, 250], when human skeleton can be estimated from depth sequences.

However, it is important to note that human pose estimation is known to be not always reliable

and can fail when the human is not in an upright and frontal view position (e.g. lying) [151] or

observed from unseen camera viewpoints [60]. Our scenario lies in these cases as in Fig 5.1

(a)-(c) and 5.2. To utilize the information which is not reliably obtainable at testing, we seek

to formulate human poses and their 3D relations to layouts only during training by using their

offline-secured ground-truths. Our aim is therefore to learn more robust classification models

with more information at training and to obtain improved testing accuracy without explicit use

89

of them at testing.

In order to investigate these issues, in this chaper we make following contributions:

New action recognition dataset (PATIENT) has been collected containing patient behaviors

(15 actions) in a ward by a depth camera. Actions in our dataset have close ties with scene

layouts (e.g. bed, floor) and human body joints as in Fig. 5.1, 5.2; thus, utilizing kinematic-

layout (i.e. 3D geometric relations between layouts and human body joints) is important to

discriminate targeted actions. On the contrary, due to unique viewpoints and human poses in our

dataset, skeleton information cannot be reliably tracked [60, 151] in a real-time manner, using a

conventional depth sensor (e.g. kinect).

Kinematic-layout-aware random forests (KLRF) is introduced to improve the discriminant

power of depth appearance by encoding the kinematic-layout. Considering that obtaining

kinematic-layouts at testing itself is a challenging problem, we formulate KLRFs to use their

offline-secured ground-truth implicitly at training and do not use them at testing (see Fig. 5.4

(a), (b)). Similarly to random forests (RFs), KLRFs learn split parameters by maximizing split

objectives. However, in KLRFs, while split parameters are conditioned only on the appearance

feature, split objectives are defined based on both appearance feature and kinematic-layout

information. This is different from the case of RFs whose split parameters and split objectives

are both conditioned only on the appearance feature. As a result, split parameters of KLRFs

are determined satisfying more strict split objectives composed of multimodal information,

compared to those of RFs. Furthermore, we constitute the KLRFs encode the kinematic-layout

adaptively: first cluster data samples into two groups where a group whose kinematic-layout is

useful and a group whose kinematic-layout is less useful, then adaptively use it depending on

the usefulness.

Both cross and single-view settings are tested on our own scenario (i.e. PATIENT dataset) and

conventional (i.e. CAD60, UWA3D) action recognition. Cross-view experiment is demonstrated

to show the generalization ability of our method.

90

Figure 5.2: Examples of our PATIENT dataset. Our dataset contains both static (left side) and dynamic
actions (right side). Action labels are given in Sec. 5.2. Examples for different views are also shown in
last two columns.

5.2 PATIENT dataset

We collect our own dataset (i.e. PATIENT) in a hospital scenario which contains 15 actions,

performed by 10 subjects in 3 different viewpoints having close ties with bed and floor layouts.

The dataset contains both static and dynamic actions and all 15 actions are: (1) lying, (2) sitting

and (3) standing on the bed; (4-5) stretching body parts out of the bed when the patient is lying

and sitting; (6-7) sitting and standing on the floor; (8) falling out of the bed; (9-15) suffering

status of actions (1-8) except (3). In Table 5.1, we compare the PATIENT dataset with recently

proposed action recognition datasets.

In most action DBs in Table 5.1, human joints are well captured by kinect sensors at testing,

since humans are in upright positions (e.g. standing, sitting) and the camera is located in front

of humans. In our scenario, humans’ depth appearance is ambiguous due to their unique poses

(e.g. lying, sitting back) and camera views (i.e. not human’s frontal). Thus, capturing human

joints is not also easy [60, 151]. Another characteristic of our dataset is that actions that we aim

to recognize are closely related to 3D geometric relations between layouts (i.e. bed, floor) and

human joints. Thus, we provide manually labeled human body joints and layout planes (i.e. bed,

floor) as the ground-truths to help reveal the actions. 3D scene layouts are fixed throughout the

videos, thus, first frame’s scene layouts are used for all frames. Three different 3D points are

manually annotated for each layout to uniquely decide the plane. Also, human body skeletons

91

Dataset Geometric info. Samples Classes Subjects Views Human poses
CAD60 [192] 3D joints 60 12 4 1 Frontal/Upright
3D Action Pairs [132] 3D joints 360 12 10 1 Frontal/Upright
UTD-MHAD [23] 3D joints 861 27 8 1 Frontal/Upright
UWA3D [151] 3D joints 1075 30 10 5 Frontal/Upright
NTU [166] 3D joints 56880 60 40 80 Frontal/Upright
Ours 3D joints+Layout 450 15 10 3 Various

Table 5.1: Dataset comparison to recent benchmarks.

are labeled by manual efforts: reading depth values and doing approximation for occluded joints

with neighboring pixels. The initial annotation is done for every 10 frames and temporally

interpolated. Then, manual inspection was performed. We also generate 5 layout planes (i.e.

floor, left wall, mid wall, right wall, ceiling) for conventional (CAD60, UWA3D) datasets, as in

Fig. 5.1 (d). Fig. 5.2 shows example frames of our dataset spanning static and dynamic actions.

5.3 Kinematic-Layout-aware Random Forests

In this section, we first introduce our appearance A and kinematic-layout K (Sec. 5.3.1) and

then present how our approach exploits both information at training (Sec. 5.3.2). Testing stage

of KLRFs are explained in Sec. 5.3.3.

5.3.1 Appearance and kinematic-layout information

We construct the appearance A using the depth sequence V and the kinematic-layout K using

layouts L and skeleton joints P for V, respectively. 1) We first extract depth cue CD
t , layout

cue CL
t and skeleton cue CJ

t for each frame t. 2) Then, we generate the spatio-temporal

representation, A and K for a depth sequence V, by applying the Fourier transform on per-frame

cues as in [152, 222]. The per-frame cues are defined as follows:

Depth cue CD
t : For each frame t, we extract the 4, 096 dimensional feature CD

t from the f c7

layer of the CNN architecture proposed in [152]. This architecture is pre-trained on synthetic

92

t=0 t=Tt=T

(a) (b) (c)

p(t)-p(0)

t=Tt=T-1

p(t)-p(t-1)p(t)-p(0)

(a)

t=0 t=Tt=T

(a) (b) (c)

p(t)-p(0)

t=Tt=T-1

p(t)-p(t-1)p(t)-p(0)

(b)

t=0 t=Tt=T

(a) (b) (c)

p(t)-p(0)

t=Tt=T-1

p(t)-p(t-1)p(t)-p(0)

(c)

Figure 5.3: Visualization of the skeleton cue CJ
t at t = T: (a) Skeleton pairwise distance vector dP

t ; (b)
Skeleton motion vector dM

t ; (c) Skeleton offset vector dO
t . Orange arrows denote example paired joints

used for calculating distances.

multi-view depth maps and shown to produce the state-of-the-art accuracy on both single and

multi-viewed 3D action recognition benchmarks [152].

Skeleton cue CJ
t : Skeleton cue CJ

t is encoded similar to [213, 247, 255] that proposed a method

to calculate feature vector from skeletal coordinate values. For example, they encode per-

frame pose by calculating the pairwise distance between all skeleton pairs, the motions by

calculating the same skeleton joint’s displacement between two consecutive frames and offsets

by calculating the offset to the initial skeleton locations. We constitute the skeleton cue CJ
t by

concatenating three types (see Figure 5.3 visualizes the three types of skeleton cues) of cues as

CJ
t = [dP

t ; dM
t ; dO

t] where dP
t , dM

t , dO
t are defined as follows:

(1) Skeleton Pairwise distance vector, dP
t = [p1(t)− p2(t), ..., pp(t)− pq(t), ..., pP−1(t)−

pP(t)] is defined for ∀p, ∀q, p 6= q ∈ [1, P] to encode current frame’s human poses.

(2) Skeleton Motion vector, dM
t = [p1(t) − p1(t − 1), ..., pp(t) − pp(t − 1), ..., pP(t) −

pP(t− 1)] is defined for ∀p ∈ [1, P] to encode its temporal motion information.

(3) Skeleton Offset vector, dO
t = [p1(t) − p1(1), ..., pp(t) − pp(1), ..., pP(t) − pP(1)] is

defined for ∀p ∈ [1, P] to encode human offset information to their initial values i.e. t = 1.

Skeleton cue can consider the spatial location of human body parts.

Layout cue CL
t : For each frame t, we propose to extract CL

t by 3D displacements between

93

(a) Training stage

layout depth image skeleton

low purity

high purity

Kinematic-layout term

Switching term

Appearance term

if is useful

if is useful

same view or cross-view

(b) Testing stage

(c) Weighting method

Figure 5.4: Flowchart of our method. (a) Training stage of KLRFs, (b) Testing stage of KLRFs, (c)
Weighting method to reduce the gap between PF (y|{A(V)|V ∈ D}) and PF (y|{K(V)|V ∈ D}). Red
balls denote samples constituting the appearance-based distribution PF (y|{A(V)|V ∈ D}) with their
weights in fade-out. Green line denotes the gap-reduced class distribution.

layout planes L = {L1, ...Ll , ..., LL} and skeleton joints P(t) = {p1(t), ...pp(t), ..., pP(t)} as:

CL
t = [dt11; ...; dt1L; dt21; ...; dt2L; ...; dtP1; ...; dtPL] (5.1)

where dtpl = pp(t)− p̄Ll , pp(t) is a 3-dimensional vector whose entry corresponds to its x, y

and depth value and p̄Ll is a projection of pp(t) to the plane Ll , respectively.

This layout cue provides information on how humans interact with their environments. There

exists a strong physical and functional coupling between human actions/poses and the 3D

geometry of a scene [32, 44, 58]. We try to consider such physical constraints to support actions

such as “sitting” and “lying” by layout planes.

5.3.2 Learning KLRFs

In the action recognition problem, as mentioned in chapter. 1, we construct the action recognizer

f A : V → YA that maps depth video space V to the action label space YA (we will call this

as Y for simplicity). We first extract appearance A and kinematic-layouts K from each frame

94

of the video v ∈ V and maps the appearance A to the action label space Y using the random

forests (RFs), f A:=F . RFs F are constructed as the baseline which learn a mapping from the

appearance A to the label set Y:

F : A 7→ Y. (5.2)

To improve the action recognition accuracy using the 3D geometry information, i.e. kinematic-

layouts K, we propose KLRFs F+ to optimize the mapping in Eq. 5.2 with the help of

kinematic-layouts K at training. Considering the fact that there are actions which are well

recognized by the appearance A rather than the kinematic-layouts K, we also propose to encode

kinematic-layouts K when it appears to be useful, as follows:

F+ :

A K7−→ Y, , if K is useful

A 7→ Y , otherwise
(5.3)

Standard RF training. RFs are ensembles of binary trees, containing two types of nodes: split

and leaf. At training, trees are grown by deciding the split function Ψ(A(·)γ, τ) recursively

from the root node, where A(·)γ denotes the γ-th value in the appearance feature and τ is a

threshold. At each split node, arrived samples V ∈ D are divided into two subsets Dl and Dr

(Dl ∩ Dr = ∅) by a set of split function candidates {Ψc} that is generated randomly. Samples

whose A(V)γ are less than τ go to the left child node (Dl) while others go to the right child

node (Dr). Among candidates, the one that maximizes the split objective Q is selected as a split

function Ψ∗:

Ψ∗ = arg max
Ψ∈{Ψc}

Q(Ψ). (5.4)

Trees are grown while sample number is above the minimum threshold (i.e. 5 in our experiments)

or information gain is positive, where the information gain is defined as Q(Ψ∗)−Q(Ψ0) and

Ψ0 is the reference split that have all samples in Dl and no samples in Dr. The terminating node

becomes a leaf node and saves class distribution of arrived samples to use it at testing. Note that

Q in Eq. 5.4 can depend on both appearance A and kinematic-layout K since it is used at offline

training, while Ψ(A(·)γ, τ) depends only on A to prevent the dependency of K at testing.

95

Pre-trained forests FK, FA: Before training each tree, we pre-train two forests FK and FA us-

ing out-of-bag (OOB) samples1 and their kinematic-layout and appearance, respectively. Forests

are pre-trained to obtain two class distributions for a sample V (i.e. P(y|A(V)) = FA(V),

P(y|K(V)) = FK(V)) and two class distributions for each node (i.e. PF (y|{K(V)|V ∈

D}) = 1
|D| ∑V∈D FK(V), PF (y|{A(V)|V ∈ D}) = 1

|D| ∑V∈D FA(V)) at each tree training.

Pre-trained forests are used whenever either Qs or Qk is selected for each node split.

Switching term Qs: This term measures the usefulness of kinematic-layout K and selects Ψ

that clusters samples into two groups: a group whose K is useful and another group whose K

is less useful. The underline rationale of this term is our observation that kinematic-layout K

does not always help improve the classification accuracy. For some samples, appearance A is

enough or better than kinematic-layout K (see Fig. 5.7 (a), (b) and (d)). We define the score

U(V) ∈ [−1, 1] to measure the usefulness of kinematic-layout for sample V:

U(V) = FK,y∗(V)−FA,y∗(V) (5.5)

where y∗, FK,y∗(V) and FA,y∗(V) are the the ground-truth class label, y∗-th dimensional value

of FK(V) and FA(V), respectively. The positive U(V) implies that kinematic-layout K is

empirically more useful than the appearance A, while negative U(V) means the opposite. The

Qs =
[
1 + ∑m∈{l,r}

|Dm|
|D| var

({
U(V)|V ∈ Dm

})]−1 prefers Ψ that clusters samples into left

or right child nodes by the value of U(V), where var(·) is the variance operator.

Appearance term Qc: This term is same as Shannon entropy measure employed in standard

classification RFs [173]. It measures the uncertainty of class distributions in Dl and Dr based

on the appearance A. It prefers Ψ that makes the class posterior distribution, empirically the

class histograms, in Dl and Dr are dominated by a certain class.

Kinematic-layout term Qk: To prevent the explicit usage of kinematic-layout K at testing, this

term implicitly exploits the K at training, by minimizing the gap between two class distributions:

1Samples, not used in current tree training for bootstrap aggregating.

96

PF (y|{K(V)|V ∈ D}), PF (y|{A(V)|V ∈ D}) at each node training. The gap is minimized

by controlling each sample’s weight and Qk is defined based on the weighted distribution as in

Eq. 5.7. The weight w∗ = [w1, ..., w|D|]> ∈ R|D|×1 is optimized by:

w∗ = min
w
||A ·w− b||22 s.t. ∀wi ≥ 0, (5.6)

where wi denotes each sample’s weight, the i-th column of A ∈ R|Y|×|D|, Ai ∈ R|Y|×1

corresponds to each sample’s P(y|A(V)) and b ∈ R|Y|×1 corresponds to P(y|{K(V)|V ∈

D}). The Eq. 5.6 can be optimized by the least-square solver with non-negativity constraints

(e.g. lsqnonneg function in MATLAB). Meanwhile, as in Fig. 5.4 (c), a sample V ′, whose

P(y = l1|A(V ′)) = FA,l1(V) is high, is emphasized if P(y = l1|{K(V)|V ∈ D}) > P(y =

l1|{A(V)|V ∈ D}) while surpressed, otherwise (for 1 ≤ l1 ≤ |Y|). Samples with high

discrepancy can be benefitted by kinematic-layouts K; thus they are emphasized and carefully

considered for deciding Ψ while others are surpressed regarded as a noise. The Qk is defined as

the Shannon entropy measure on the weighted class histograms nw(y, Dm) as follows:

Qk = ∑m∈{l,r} ∑y nw(y, Dm) log nw(y,Dm)

∑|D|i=1 wi
(5.7)

where nw(y, D) = ∑V∈D wi · I(y = y∗) and I(·) is an impulse function.

Discussion on the alternative kinematic-layout term. The original classification objective Qc

based on the entropy measure cannot incorporate additional variables. The kinematic-layout

term Qk is proposed to incorporate the additional kinematic-layout information K in the split

objective of the RFs and it reflects K when deciding the split parameter Ψ using the Eq. 5.4.

However, there could be alternative choices for Qk: one simple alternative is the split objective

which is proposed in the regression forests [54]:

Qreg = − ∑
m∈{L,R}

∑
i∈Dm

∥∥∥∥∥Ki −
1
|Dm| ∑

j∈Dm

Kj

∥∥∥∥∥
2

, (5.8)

where Ki, Kj denote the kinematic-layout for the i-th and the j-th sample, respectively. Using

the Qreg, left and right child nodes are enforced to have samples with similar K values in the

Euclidean space. As an alternative, we think of the graph cut [170, 229]-based split objective as

97

follows:

Qcut = − ∑
i∈DL

∑
j∈DR

w(i, j; K), (5.9)

where

w(Ij, Ik; K) = exp
(−‖Ki − Kj‖2

σ2

)
. (5.10)

Using the pairwise similarity w enforces that samples i and j are grouped together when the

corresponding kinematic-layout K are similar. Using the Qcut, we can measure the smoothness

of data points in each child nodes.

However, our preliminary experiments have revealed that these two methods do not work well.

We think this is due to the fact that the decision boundary of actions in the kinematic-layout K

space is still non-linear and more than the smoothness of the kinematic-layout K is required.

Therefore, instead of using the raw values of kinematic-layouts K, we propose to use the

posterior probability for the actions given kinematic-layouts learned by pre-trained RFs, P(Y|K)

as in the proposed Qk.

KLRFs training. To train KLRFs F+ hierarchically as in Eq. 5.3 and Fig. 5.4 (a), we propose

three types of split objectives: Qs, Qc and Qk , which are called as switching, appearance and

kinematic-layout term, respectively. Qs first measures the usefulness of K as the if-statement of

Eq. 5.3. Then, Qc, Qk selectively performs either A 7→ Y or A K7−→ Y depending on the node

characteristics. The three split objectives are combined into a Q by variables α, β as:

Q(Ψ) = αQs + (1− α){βQc + (1− β)Qk} (5.11)

where variables α and β controls KLRFs to first select Qs until certain number of data samples

remain in a node and then select either Qc or Qk to perform further classification according to

the node characteristics. As in our preliminary experiments, we find that some samples are better

classified using appearance A rather than using kinematic-layouts K. This phenomenon could

be observed in the Fig. 5.5 (In the figure, we visualize the usefulness of the kinematic-layouts for

each action class label.) Thus, we try to use the kinematic-layouts adaptively by first clustering

98

samples according to the usefulness of the kinematic-layouts by Qs. Then, we further classify

samples using either kinematic layout terms Qk (if kinematic-layout is useful) or appearance

term Qc (if kinematic-layout is less useful). Towards the objective, α and β are defined as

follows:

α =

1 , if |D| > η

0 , otherwise
, β =

1 , if ζ > ∆

0 , otherwise

where |D| is the number of samples in a current node, η is empirically set to 0.1 times total

number of training samples, ∆ is the ratio of samples having positive usefulness score U(V)

(Eq. 5.5) and ζ ∈ [0, 1] is a randomly sampled value at each node. If ∆ is high, it implies that

K is useful in a current node. At the same time, the probability for ζ > ∆ becomes low and

nodes tend to select Qk more frequently than Qc. If ∆ is low, the opposite happens. Each tree’s

diversity obtained by this random configuration makes the KLRF ensemble become robust [47].

As in Fig. 5.4 (a), thanks to the hierarchical nature of trees, we are able to utilize different split

objectives within a tree: nodes near the root select Qs while nodes in the bottom gradually

select either Qc or Qk. In our further analysis shown in the Fig. 5.6, we performed the ablative

experiments on the configuration of Qs and Qc combined with different configuration of cues:

A, A + C J
t of K and (full) K. We observed that given same cues, performing the Qs at first

consistently improves the accuracy.

5.3.3 Inference by KLRFs

Inference of KLRFs. At testing, as in Fig. 5.4 (b), Appearance feature extracted from V, A(V)

is passed down the KLRFs F+ by learned split functions {Ψ(Aγ(·), τ)} until it reaches the

leaf nodes, which store both the class distribution P(y|V) and the kinematic vectors K(V).

Split nodes decide its input V goes either to the left child (if A(V)γ < τ) or to the right child

(otherwise) according to learned split functions {Ψ(A(·)γ, τ)}. The responses are averaged to

output the final P(y|V) and K̂(V) for each V.

99

Cross-view setting. Cross-view setting is challenging: the model is testified for unseen camera

views, which have much impact on the depth appearance [151, 152]. For example, in the

right-most column of the Fig. 5.2, we visualized depth frames with new viewpoints. Depth

appearance A by [152] is view-invariant to a certain degree. To further help, we augment depth

maps by synthetic rotations and translations as in [223], and consider their coherency using Qv

at training and kinematic consistency filter (KCF) at testing. Though both Qv and KCF are

designed for cross-view, we also apply them for single-view experiment and report their results

(see Fig. 5.7 (e)).

View clustering term Qv: This term enforces Ψ to cluster data samples according to the

value of K(V) at training: Qv =
[
1 + ∑m∈{l,r}

|Dm|
|D| Λ

({
K(V)|V ∈ Dm

})]−1, where Λ =

trace(var(·)) is defined as trace of a variance operator. Augmented data (i.e. translated, rotated)

share the same kinematic-layout K; thus they are clustered together by Qv. As a result, it

enhances the view-invariance. Either Qv or Q in Eq. 5.11 is randomly selected at each node,

where random selection is known effective to mix up split objectives in a forest [47].

KCF: At testing, after obtaining both P(y|V) and K̂(V) from the leaf nodes, we

smooth out noisy predictions by applying the KCF to P(y|V). KCF exploits pairwise

similarities of inferred kinematic-layout K̂(V) to smooth the result by: P∗(y|V) =

1
Wp

∑J′∈S(V) P(y|J)g(||K̂(J) − K̂(J′)||) where Wp = ∑J′∈S(V) g(||K̂(J) − K̂(J′)||) is a

normalizing factor, g(·) is a Gaussian kernel and S(V) is the augmented dataset of V. P∗(y|V)

is the final class distribution.

5.4 Experiments

We perform both single-view (on PATIENT, CAD-60 [192] datasets) and cross-view (on

PATIENT, SHUWA3D [151] datasets) experiments to validate our methods. The “Baseline

100

Method
PATIENT UWA3D

View 1 View 2 View 3 Cross View
DCSF [230] 18.7 6.7 16.0 −
HON4D [132] 21.1 6.3 13.8 28.9
HOPC [151] 28.2 15.4 23.1 52.2
DMM [223] 29.3 19.3 24.0 −
Novel View [152] 43.8 23.8 32.5 76.9
Baseline (RFs) 47.8 21.5 27.2 77.1
Ours (KLRFs) 53.2 27.5 36.2 80.4

Table 5.2: Results for PATIENT (single-view (View 1), cross-view (View 2, 3)) and UWA3D (cross-view)
datasets.

Method Accuracy Precision Recall
Testing Input: Depth

HON4D [132] 72.7 − −
Zhu et al. [255] 75.0 − −
Baseline (RFs) 81.6 93.2 78.6
Ours (KLRFs) 87.1 92.3 85.7

Testing Input: Skeleton
GI et al. [134] − 91.9 90.2
Shan et al. [167] 91.9 93.8 94.5
Cippitelli et al. [27] − 93.9 93.5

Testing Input: Depth+Skeleton
Actionlet Ensemble [222] 74.7 − −
Zhu et al. [255] 87.5 93.2 84.6
Baseline (RFs+Skeleton) 89.7 92.9 89.3
Ours (KLRFs+Skeleton) 94.1 97.5 92.7

Table 5.3: Results for CAD60 dataset.

(RFs)” is the combination of depth appearance from [152] and standard RFs using additional

translational, rotational data augmentation as in [223]. “Ours (KLRFs)” replaces RFs of

“Baseline (RFs)” to KLRFs and consider the kinematic-layout K at training.

Same-view. We first evaluate our method for single-view action recognition using PATIENT

and CAD60 datasets and each result is shown in Table 5.2 “View 1” column and Table 5.3,

respectively. The classification accuracy is averaged over all classes, which corresponds to

the mean of the confusion matrix diagonal. For PATIENT, we use the first 5 subjects as

101

training and others as testing samples. We evaluate the recent state-of-the-art depth-based

methods [132, 151, 152, 223, 230] using their publicly available codes. Our method produces

a significant accuracy gain (6 − 10%) over these methods. For CAD60, we follow the

cross-person experimental settings in [68, 222]. We also use two more measures (i.e.

Precision/Recall) to compare with various state-of-the-arts for this dataset. KLRFs show good

accuracy compared to depth-based approaches [132, 255]. Since this conventional dataset

contains mostly upright humans with frontal views, most state-of-the-arts use real-time obtained

skeleton joints at testing to obtain their results. Thus, for fair comparison, we combine skeleton

cues to our method at testing: We train half of trees as RFs using pure skeletons and half of

trees as KLRFs (denoted as “Ours (KLRFs+Skeleton)”). Also, “Baseline (RFs+Skeleton)”

consists with half skeleton-based RFs and half depth-based RFs. Showing 5% accuracy

gain to “Baseline (RFs+Skeleton)”, “Ours (KLRFs+Skeleton)” shows the best result in Table 5.3.

Cross-view. We also applied our method to cross-view experiments using PATIENT and

SHUWA3D datasets. For SHUWA3D, we follow the same experimental setting as in [152].

Averaged accuracy for all cross-views is reported in the “SHUWA3D Cross View” column

of Table 5.2. For PATIENT dataset, we applied the same model trained in the single-view

setting to View 2 and View 3 for cross-view tesing. The results are summarized in “View 2”,

“View 3” columns of PATIENT in Table 5.2, respectively. “Baseline (RFs)” often performs

worse than [152] in cross-view experiments, while “Ours (KLRFs)” shows consistent accuracy

improvement.

Usefulness score U vs. classes. In Fig. 5.7 (a), (b) and (d), We plot the averaged usefulness

score U(V) ∈ [−1, 1] for samples in each action classes. Positive U(V) means that K is more

useful than A, while negative U(V) means the opposite. The results imply that in PATIENT

dataset, static actions (i.e. (1)-(7)) are well explained by K rather than A while dynamic actions

(i.e. (8)-(15)) are well classified by using only A without K. In CAD60 and SHUWA3D

datasets, we also report the usefulness scores per each class, showing variations. Class index is

102

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Action class index

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

U
 s

c
o

r
e

(a) U score vs. class in PATIENT.

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Action class index

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

U
 s

c
o

r
e

(b) U score vs. class in CAD60.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Action class index

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

U
 s

c
o

r
e

(c) U score vs. classes in UWA3D.

Figure 5.5: Further analysis 1: Usefulness score U vs. classes in the databases.

given in Sec. 5.2 for PATIENT and in the supplementary page for other datasets.

A by Qc A+ CJ
t of K by Qc A + CJ

t of K by Qc, Qs A+ full K by Qc A+ full K by Qc,Qs

PATENT
0.4

0.45

0.5

0.55

0.6

A
c
c
u
ra
c
y

CAD60
0.75

0.8

0.85

0.9

0.95

A
c
c
u
ra
c
y

UWA
0.7

0.75

0.8

0.85

A
c
c
u
ra
c
y

Figure 5.6: Further analysis 2: Utilizing K at testing for each database

Utilizing K at testing. To test the strength of kinematic-layout K, we report the classification

accuracy explicitly using ground-truths of K as input features in Fig. 5.7 (c). Note that utilizing

K at testing is not realistic in our scenario; we conducted the experiments only for evaluation

103

purpose using ground-truths of K. We configure 3 different features {A, A + CJ
t of K, A + K}

and two classifiers by standard RFs (i.e. Qc) and KLRFs using Qc + Qs terms. The graph

shows that K offers 5− 10% accuracy gain, when combined with A.

Qc Qc + Qk Qs + Qc + Qk Qs + Qc + Qk + Qv Qs + Qc + Qk + Qv + KCF

50 100 250 500

Number of Trees

0.6

0.65

0.7

0.75

0.8

0.85

0.9

A
c

c
u

ra
c

y

CAD60

50 100 250 500

Number of Trees

0.44

0.46

0.48

0.5

0.52

0.54

A
c

c
u

ra
c

y

PATENT

50 100 250 500

Number of Trees

0.7

0.72

0.74

0.76

0.78

0.8

0.82

A
c

c
u

ra
c

y

UWA

Figure 5.7: Parameter sensitivity: PATIENT(left), CAD60 (mid), UWA3D (right). Action classification
accuracy according to the different number of trees in each databases. The accuracy saturates around
500 trees.

Sensitivity to parameters. We evaluate the sensitivity of our model depending on tree numbers

in Fig. 5.7 (e). The performance increases as tree numbers increase and saturates around 500

trees. Component analysis is further reported in the same figure.

5.5 Conclusion

In this chapter, we study the problem of depth-based action recognition in a 24 hours-monitoring

patient actions in a ward, with the goal of effectively recognizing human actions in the hospital

scenario. We try to improve the overall action recognition accuracy by exploiting the scene

layout and skeleton information in the training process. We propose the KLRF to encode this

prior information, thereby capturing more geometry that provides greater discriminant power

in action classification. Even though this method encodes the 3D geometry information rather

implicitly only at the training stage, the obtained accuracy improvement was significant, showing

that the 2D-to-3D ambiguity could be relieved by this method.

104

6CHAPTER

CONCLUSION

Contents

6.1 Summary of thesis achievements 105

6.2 Future Work 107

W e have proposed methods to exploit the 3D geometry in the context of estimating 3D

poses and actions for especially human bodies and hands. This chapter concludes

this thesis by summarizing key achievements and describing the future work.

6.1 Summary of thesis achievements

As mentioned in the chapter 1, estimating poses and actions of human bodies and hands has

many applications while it also involves many in-the-wild challenges. Among challenges, we

try to focus on the two, which is closely tied with the incorporation of the 3D geometry:

• 2D-to-3D mapping ambiguity: While the interaction between human-human, hand-hand,

hand/human-objects occurs in the 3D space, captured inputs (i.e. RGB images, Depth

105

maps) are projected into the 2D space. 3D information (i.e. multi-viewed appearance,

cross-view invariance) is missing in the obtained inputs; while the lost information is

often critical to reason about poses and actions of human bodies and hands.

• Insufficient data with quality 3D annotations: There have been no principled way

of collecting 1) large-scale datasets 2) with high-quality 3D pose annotations 3) in an

automatic way yet. Furthermore, planning and collecting a new dataset requires huge

amount of manual efforts.

We designed chapters to deal with challenges we mentioned above:

In chapter 3, we proposed to reconstruct the new data samples in the form of 2.5D depth maps

using the conditional GAN framework. The attributes of the new samples are manipulated in

the aspects of a shape as well as a viewpoint, to jointly tackle both challenges. The synthesized

2.5D depth maps are used as the new training samples where the hand pose model is trained

on. By this data augmentation scheme, we demonstrated that the state-of-the-art accuracy is

obtained in the depth-based hand pose estimation task.

In chapter 4, we proposed to reconstruct the full 3D meshes of hands. Since there is no proper

dataset to train the dense hand pose estimation network that can estimates 3D meshes based on

RGB images, we formulate our framework to use the indirect coarse supervision whose input is

RGB images and outputs are 3D skeletons and 2D segmentation masks using the differetiable

renderer and skeleton regressors. Furthermore, during the training, as the estimated 3D meshes

are in the hand pose distribution, we generate new samples by manipulating their shape and

viewpoint parameters and re-projecting them into the new RGB images. We observe that the

proposed framework and methods are able to generate 3D meshes and the pose the 3D meshes

are better than previous skeleton-based coarse approaches.

In chapter 5, we have demonstrated that the 3D geometry can be used as context for the action

recognition problem. Our algorithm is developed based on the random forest classifier and on

top of it, we developed the method that can use 3D geometry during the training stage, to obtain

106

the more robust model. We have demonstrated that the information used is able to improve the

overall action recognition accuracy by 5-7%.

In the appendix, we proposed a new multimodal synthetic database named BigHandMesh,

which has complete articulation space of BigHand2.2M database while having wide range of

viewpoint/shape variation capability with the aid of fitted 3D deformable mesh model. Also, we

could obtain multimodal cues: 2D/3D skeletons, 3D meshes, RGB images, Depth maps, 2D

segmentation masks, 2D part-based segmentation masks having 6 hand parts. We expect this

database could be usefully used in the multi-modal learning in the hand domain , combining

RGB-based and depth-based approaches which was tackled separately as in chapter 3 and 4.

Overall, we have found the method to compensate losing 3D information, insufficiency of data,

coarseness of the representation using the full 3D mesh representation and obtained improved

results in each sub-tasks.

6.2 Future Work

Although estimating poses and actions of human bodies and hands have achieved great improve-

ments in past years, it is still challenging and on-going research problem in computer vision

community which have many remaining issues:

• Multiple subject pose estimation: Most pose estimation frameworks are based on

detection modules exploiting the simple heuristics (hands are the foremost objects) in

the depth domain or external hand detector [256] in the RGB domain. 1) If multiple

hands/humans are in the scene, the development of high-quality detection methods are

required. Exploiting interactions between pose estimator and subject detector will be

informative. 2) Also, the new poses like “shaking hands”, “praying” will be introduced

which were ignored in the single hand pose estimation scenario. New dataset and new

methods need to be developed to tackle this new challenges.

107

• Multiple subject action recognition: It is hard to deal with multiple subjects in action

recognition problem since most of actions are annotated for the main subjects in each

video. If multiple subjects are involved in the video and they are performing different

actions, new dataset need to collected and methods based on local subject bounding boxes

need to be developed.

The 3D information is very useful and properly incorporating dense hands and humans are not

well established in the action recognition framework yet. In the future, more methods need to be

developed for this direction to verify the helpfulness of the 3D geometry in both recognizing

poses and actions:

• Joint end-to-end learning of multi-modal tasks (i.e. estimating full 3D meshes, full

3D scenes and action/gesture recognition): Multiple tasks in each individual domains,

for example, 2D/3D skeleton and 3D mesh estimation from depth/RGB maps, 2D seg-

mentation and etc. are challenging tasks by itself. These multimodal tasks can be learned

together to improve each individual task’s performance in the similar aspect with the work

of “taskonomy” [245].

‘

108

AAppendix

BIGHANDMESH: A NOVEL

MULTIMODAL SYNTHETIC DATASET

Contents

A.1 Motivation 110

A.2 BigHandMesh Generation 112

A.3 Experiments: Dataset quality analysis 118

A.4 Conclusion 120

I n this chapter, a novel multimodal synthetic benchmark that can be used for different

computer vision tasks involving human hands, including 3D mesh information, RGB-D

hand pose annotations and 2D/3D hand/part segmentation masks is proposed. This is intended

to encourage the development of pose estimation methods exploiting more diverse and complete

attribute challenges, and at the same time encourage the future aggregation of multi-modal tasks

in the hands domain (i.e. RGB-based, depth-based, segmentation, pose estimation and etc).

The generated dataset covers diverse hand pose variations by leveraging the existing large scale

depth hand pose dataset BigHand2.2M, and the deformable 3D hand mesh model MANO. First,

109

the large scale dataset is strategically subsampled to reduce articulation redundancy and the 3D

mesh model is fitted to the sampled hand skeletons. After distilling the articulation space, shape

and viewpoint parameters of the 3D meshes are swept to cover the natural variability of the

human hand in images. Finally, with the use of realistic textures and background RGB images

along with mesh-to-skeleton regressors and 2D projection renderers, the multiple modality data

are generated. Data coverage in terms of hand articulations, shapes and viewpoints is compared

with those of existing benchmarks, showing that the proposed benchmark fills the gaps of

previous work. Furthermore, experiments on a real RGB-based hand pose estimation dataset by

using the proposed dataset in training demonstrate the quality and quantity of the generated data.

To conclude, we expect our proposed dataset to accelerate research on hand tasks that have been

previously hindered by lack of a quality large benchmark, such as RGB-based 3D hand pose

estimation and semantic hand part segmentation.

A.1 Motivation

One of of the most important challenges in understanding hands from a computer vision

perspective is the access to a significant amount of annotated data to be able to train modern

machine learning systems, usually requiring the learning of non-linear and high dimensional

mappings of noisy, occluded, and highly variable images. Typical applications of hands require

estimating the similar number of joint parameters as in human body pose. However, compared

to body pose, hands often present severe self-occlusions making hard to define canonical views,

while human bodies usually appear isolated and in upright postures in images. Therefore, the

ability to operate reliably under varying viewpoints, poses, and shapes is crucial to accomplish

the tasks of interest. A simple yet most promising approach to face such challenge is by training

e.g. CNN on a large-scale dataset which covers such variations. However, to the best of our

knowledge, most existing datasets are limited in the coverage of camera viewpoint, shape,

and pose variations. The main difficulty to obtain a large scale dataset lies in procurement of

ground-truth annotations in the form of either skeleton joints or segmentation masks, which often

110

Table A.1: Comparison of related RGB-based hand pose datasets: DO [185], STB [248], RHD [256],
SH [118], GANHAND [117].

[185] [248] [256] [118] [117] Ours

Depth 3 3 3 3 7 3

RGB 3 3 3 3 3 3

(Part-based) hand mask 7 7 3 7 7 3

3D mesh 7 7 7 7 7 3

Shape (subjects) 2 1 16 2 7 31 and in-between
Viewpoints 3rd 3rd 3rd Ego Ego Complete
Skeleton annotations 5 tips 21 21 21 21 21
Real (R)/Synth. (S) R R S S S S
Number of Frames 3,014 18k 41k+2.7k 63k 330k 100k×(#view)×(#shape)

involves laborious efforts. To relieve this, data augmentation methods have been frequently used

in hand pose domain, and have observed major accuracy improvements [126, 128]. Synthetic

datasets have also been used to augment the data space [117, 176]; random sampling is usually

adopted to generate the dataset and there is, nonetheless, no guarantee of capturing diverse

variations of hands. The gap between synthetic and real data also has been the issue in this

approach, and several methods were proposed [148, 174] to tackle this. Yuan et al. [244]

proposed a systematic method to collect real database in the depth domain, equipping magnetic

sensors on hands and proposed the biggest dataset up to date, BigHand2.2M. Baek et al. [6]

tried to fill the remaining gap in data space by synthesizing data using the cyclic consistency

and changing viewpoints and shapes of existing data entries. However, note the variation ranges

were limited to, i.e. ±45 standard deviation for rotation angles, ±0.5 standard deviation for

bone length change ratio, due to limited extrapolation capability of GAN. Also, the approach

for shape variations is relatively simple over more sophisticated models such as MANO [161], a

parametric deformable 3D hand model.

In this chapter, we propose a pipeline to complete the three main variations of hands, i.e

shapes, viewpoints and articulations, and transfer them to computer vision tasks involving

hands. With the aid of the annotated 3D skeletons of BigHand2.2M, we first fit the hand

model MANO to these skeletons. As the dataset was collected densely there are redundant

articulations among different subjects, we cluster data in the articulation angle space first. We

select K = 100, 000 distinct articulation samples and fit the hand model to the selected data.

111

Shape and viewpoint parameters are manipulated to complete the data coverage. Finally, RGB-

D images, 2D/3D skeletons, 2D segmentation masks and part-based segmentation masks are

automatically generated using a Neural renderer and the 3D skeleton regressor provided by the

MANO model. After generating the dataset, we compare the data coverage of the proposed to

existing RGBD-based hand pose datasets. Furthermore, we perform a comparative quantitative

experiment on a RGB-based hand pose estimation with and without the use of the proposed

dataset in training, showing state-of-the-art performance on a real RGB dataset without the use

of real data in training. In summary, this work has the following major contributions:

• A pipeline to systematically generate a complete and multimodal dataset: A deformable

3D hand mesh model is fitted to an existing real depth benchmark that has satisfactorily complete

articulation space. Shape and viewpoint are generated by changing corresponding parameters

of the model. Finally, using 2D projection methods, multiple modality data from the 3D mesh

model are generated. The pipeline is shown in Figure A.1 .

• A large scale synthetic dataset: In computer vision tasks such as 3D mesh reconstruction,

2D/3D pose estimation and segmentation tasks, the lack of a complete dataset has been often

pointed out by the community. This work attempts to fill the gap and encourages multimodal

research on hands by making this dataset publicly accessible.

• Analyses on the dataset quality: The proposed dataset is compared with existing datasets in

terms of the three main hand domain variations: shape, viewpoint and articulation. Furthermore,

the completeness of the dataset is empirically shown, from which the state-of-the-art hand pose

estimation accuracy is obtained.

A.2 BigHandMesh Generation

In this section, we will explain how we generate the BigHandMesh benchmark exploiting the

MANO deformable 3D mesh model [161] and BigHand2.2M benchmark [182].

112

Skeleton-MANO
Iterative fitting

Articulation
distillation

BigHand2.2M Generated dataset

Skeleton

MANO
model

Figure A.1: Schematic diagram of the proposed pipeline for generating the hand benchmark. We first
select distinct articulations from BigHand2.2M database, then fit the MANO hand model to their skeletons,
finally RGB-D, skeletons, segmentation masks are generated.

A.2.1 Distilling hand articulations from BigHand2.2M

As described in Yuan et al. [182], during their dataset collection 10 subjects were requested

to perform 25 = 32 extreme articulations by completely folding or stretching fingers to cover

32C2 = 496 hand postures and thus continuous transitions in-between 32 extreme articulations

were collected. By using this systematic scheme, the database could be regarded as complete in

the hand articulation space. However, since the dataset was collected in a continuous and dense

way, several redundant postures were captured. Utilizing all redundant articulations is inefficient

considering the time taken for a deep neural network training. This leads us to the first step:

reducing the redundancy in the articulation space from a total 957, 032 training samples publicly

available via the ICCV’17 HANDS workshop challenge [243] and then fit the MANO model to

the sampled skeletons.

Selecting distinct hand articulations. The 63-dimensional raw skeleton vectors composed of

the 3D coordinate values x, y and z of the 21 joints are affected by the main three hand variations,

i.e. viewpoint, shape and articulation. To distill articulations only, we propose to extract 25-

dimensional angle features, 5 angles for each finger as depicted in Fig. A.2(c)). K-means

algorithm is applied on top of these angular feature vectors. A cluster size of K = 100, 000

is empirically set, as it can be observed in Fig. A.2(a), the angular space containing the 496

continuous transitions in-between 32 extreme articulations could be sufficiently covered by this

number. K skeletons closest to each cluster mean are selected for further processing.

113

(a)

TIP

DIP

PIP

MCP

(b)

(Angle 1)
(Angle 2)

(Angle 3, 4, 5)

(c)

Figure A.2: (a) 2-dimensional PCA plot for 25-dimensional angle feature space depending on different
K values: 1, 000, 10, 000, 100, 000 and 957, 032. We select 100, 000 skeletons from total 957, 032
skeletons to reduce the redundancy, (b) Our hand model having 21 joints, (c) Angles used extracting
25-dimensional angular features.

Gradient-based MANO model fitting. We fit the MANO model [161]’s shape s = {sj}10
j=1,

camera c = {cj}8
j=1 and articulation a = {aj}45

j=1 parameters to the i-th raw skeletons of

selected articulations z = {zi}K
i=1, by solving the following equation:

(si∗, ci∗, ai∗) = arg min
(s,c,a)

O(s, c, a, zi)), ∀i ∈ [1, K], (A.1)

where our proposed objective function O(s, c, a, zi) for the sample i is defined as follows:

O(s, c, a, zi) = || f reg(V(s, c, a))− zi||22 +
10

∑
j=1
‖sj‖2

2 + RLap(V(s, c, a)), (A.2)

where V(s, c, a) denotes the parametric 3D mesh with three parameters s, c, a. Eq. A.2 is

composed of the following terms: i) the Euclidean distance between 3D skeleton ground-truths

zi and the current MANO mesh model’s 3D skeleton values f reg(V(s, c, a))1; ii) A shape

regularizer enforcing the shape parameters s to be close to their MANO model’s mean values,

normalized to 0 as in [161], to maximize the shape likelihood; and iii) A Laplacian regularizer

RLap(V(s, c, a)) to obtain the smooth mesh surfaces similar to [78]. Eq. A.1 is solved iteratively

by using the gradients from Eq. A.2 as follows:

(st+1, ct+1, at+1) = (st, ct, at)− γ · ∇O(st, ct, at, zi), ∀t ∈ [1, T] (A.3)

1 f reg geometrically regresses the 3D skeleton from the 3D mesh vertices coordinates. This regressor is provided
with the MANO model and its weights are fixed during the process. The provided regressor does not have finger tips,
which we define similar to [7, 16].

114

Figure A.3: Fitting process: Visualized with depth images. (Col. 1) Targetted hand pose in BigHand2.2M,
(Col. 2-7) Fitting results in different iterations, (Col. 8) Final fitted hand pose obtained. Note that even
though there is slightly difference between original one and the final result, we only use the final output
and its self-data generation capability to label it.

where γ = 10−3 and T = 3, 000 are empirically set. This process is similar to the refinement

step from [7, 209], which refines estimated meshes by using the gradients from the loss.

In Fig. A.3, both the target and the fitted depth images during the process described by Eq. A.3

are depicted. The obtained meshes are slightly different from their original inputs, however

this is not a problem for our purpose given that we will generate input and output pairs of the

fitted model by exploiting fitted meshes’ self-data generation capability while ignoring original

depth and skeletons. Here the aim of fitting the hand model is to obtain a plausible and complete

articulation space.

115

Figure A.4: Example viewpoint/shape variation results: (Row 1) Shape parameter variation, (Row 2)
Viewpoint (Azimuth) variation, (Row 3) Viewpoint (Elevation) variation. With the 3D mesh model, we
can represent complete viewpoint spaces and diverse shape spaces from thin to fat hands.

A.2.2 Varying shape and viewpoint parameters of the fitted hand

model

Although BigHand2.2M dataset is complete in the articulation space, the combinatorial with

viewpoints and shapes is not, given that only five subjects are available in the training data and

viewpoint variation is randomly directed during the data collection. To overcome this issue we

further perform viewpoint and shape parameters variations. The fitted hand meshes could be

rotated with rotation matrices constructed by angles relative to x and y axes. The 10 shape PCA

coefficients can also be manipulated to change the mesh shapes. For the shape variation, we

bounded shape entries within three times of the standard deviation to avoid implausible hand

poses. Varying shape and viewpoint examples are shown in Fig. A.4.

A.2.3 Data generation for heterogeneous tasks

After generating meshes covering a relatively complete space of articulation, shape, and view-

point spaces, we use these meshes to generate diverse modality data with the help of a 3D

skeleton regressor and rendering engines. The resultant examples of six modalities are plotted

116

in Fig. A.5.

2D and 3D skeletons. The 3D skeleton is obtained by directly applying the 3D skeleton

regressor provided by the MANO model. Since the provided 3D skeleton regressor geometrically

infers the 16 skeleton joints from the mesh vertices, we additionally define the finger tip vertices

to obtain a total of 21 skeleton joints. This 21 skeletal joint model is shared by recent benchmarks

in hand pose estimation [182]. 2D skeleton is obtained by projecting the 3D skeletons to the 2D

space.

RGB maps. We use the neural renderer proposed in [79] to 2D raycast the 3D mesh into 2D

images with textures. Textures are recovered similarly to the work of [16] by geometrically

comparing the MANO original scans and registered meshes. Since original scans have textures

on the mesh vertices, we retrieve the closest vertices to 3 vertices of each face and average them

in the face. To improve the reality of the texture, we apply the following post processing steps:

1) Since ambient and light components are not separated in the original MANO scan, we convert

RGB values to YUV space and increase Y values within the dark regions, while decreasing Y

values within bright regions. 2) We apply a bilateral filter with 9 pixel neighborhood diameter,

60 spatio-color sigma values to smooth out “blocky" textures due to triangular faces. The

generated RGB images are of size 224× 224.

Depth maps. We use the same neural renderer as above to generate 96× 96 sized depth maps

with intensity values in the range of [0, 255].

Hand and part segmentation masks. Vertice-to-part labels with 6 part labels, i.e. palm and 5

finger regions, are defined. This label map is attached to the mesh faces and projected to the 2D

space using the neural renderer. Hand segmentation masks are generated by gathering all the

part segmentation masks.

117

Figure A.5: Example RGB-D maps, segmentation masks, mesh and skeletons obtained: (Col. 1) Real
depth maps x and corresponding (Col. 2) synthesized depth maps at iteration 3, 000, (Col. 3) RGB maps,
(Col. 4) Part-segmentation maps, (Col. 5) Segmentation maps, (Col. 6) Full 3D mesh.

A.3 Experiments: Dataset quality analysis

In this section we analyze the quality of proposed BigHandMesh dataset. First, we compare our

dataset with other publicly available related datasets, i.e. STB [248], RHD [256], and SH [118],

in terms of articulation space by using a PCA projection. Second, we compare our texture model

to those of the mentioned datasets. Finally, to quantitatively evaluate the benefit the proposed

dataset, we train a hand pose estimator that maps RGB images to 3D skeletons with and without

our dataset.

A.3.1 Related datasets comparison

As presented in Table A.1, shape and viewpoint spaces of our BigHandMesh dataset are more

complete compared to conventional RGB-based hand pose databases, i.e. STB [248], RHD [256],

and SH [118]. Shape and viewpoint variations of BigHandMesh dataset are visualized in the

Fig. A.4. In Fig. A.6 (a) textures and articulations are compared.

118

Textures. In the top of Fig. A.6 (a), we qualitatively compare our generated textures with those

of the other datasets. We can see that our texture is moderately closer to real dataset STB

compared to other synthetic datasets RHD and SH.

Articulations. In the bottom of Fig. A.6 (a), the articulation space of the four compared datasets

is shown. As expected, the articulation space of our data is more dense compared to the related

datasets. This could be explained by the fact that STB contains simple counting hand gestures,

while RHD and SH contain only few synthetic action poses.

A.3.2 RGB-to-3D skeleton experiments

In this section we quantitatively evaluate the benefit the proposed dataset. For this, we train a

RGB-based hand pose estimator [256] with and without the use of our dataset and compare the

obtained results with the state-of-the-art on STB dataset [248].

Implementation details. For the RGB-based hand pose estimator we use the architecture

presented in [256] whose code is publicly available online, by exploiting three types of networks:

hand detector, heat map-based 2D skeleton estimator and 3D skeleton estimation network. We

initialized our architecture using pre-trained weights provided on the author’s website. We

fine-tune our architecture using K = 100, 000 articulations combined with random viewpoint

and shape parameters at each epoch. We used Adam optimizer with a learning rate of 10−3 and

default β parameters.

Result analysis. We compare the trained hand pose estimator [256] with the use of our proposed

dataset with four state-of-the-art RGB-based 3D skeleton estimation algorithms [18, 117, 133,

256]. These approaches are trained using slightly different combinations of datasets and we

detail specify this in the legend of Fig. A.6 (b). In the case of [133] given that it is a generative

fitting method does not require a training dataset.

In Fig. A.6 (b) we observe the benefit of using our synthetic dataset to train a RGB-based hand

pose estimator even when the test data is real. Training [256] with BigHandMesh leads to a

119

(RHD) (SH)(STB) (Ours)

(Articulation space)

(a) Texture/Articulation comparison

20 25 30 35 40 45 50
Error Thresholds (mm)

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

3D
 P

C
K

(b) Accuracy on STB database

Figure A.6: Comparison of databases: (a) (Top) Texture comparison, (Bottom) PCA plot for “articulation”
space, Different colors (RHD, STB, SH and Ours) denote samples from different databases. (b) RGB-
based hand pose estimation results trained on different databases.

significant improvement in performance compared to training with STB and RHD. The approach

of Iqbal et al. [18] is the best performing approach among all the evaluated ones. However,

it uses a sophisticated RGB-to-Depth reconstruction module within its network architecture,

making it difficult to draw any conclusions with respect to the use of our dataset. Mueller et

al. [117] also proposed and to use a synthetically generated data by enhancing SH dataset using

CycleGAN. Compared to Mueller et al. [117]’s work, our trained hand pose estimator achieves

a higher accuracy. Considering that this approach uses a deeper ResNet architecture, using our

dataset with stronger architectures could lead to a better performance. Furthermore, Mueller et

al. [117]’s work shows a significant accuracy drop when the real dataset STB is not included in

the training stage. Our proposed dataset leads to a higher performance even without the aid of

real data.

A.4 Conclusion

In this chapter, a novel multimodal synthetic benchmark including 3D mesh, RGB-D hand pose

annotations and 2D/3D hand/part segmentation masks is proposed. In chapters 3 and 4, we

tackle the depth-based and RGB-based hand pose estimation, respectively. In this chapter, we

120

try to combine the largest-scale “depth”-based dataset (Big Hand 2.2M) and 3D model (MANO)

to generate more complete synthetic datasets. This dataset could be used for both “RGB”-based

and “depth”-based hand pose estimation works. We expect our proposed dataset to accelerate

research on hand tasks that have been previously hindered by lack of a quality large benchmark,

such as RGB-based 3D hand pose estimation and semantic hand part segmentation.

Finally, in order to encourage research on these directions, we are organizing the “HANDS 2019

Challenge” (https://sites.google.com/view/hands2019/challenge) in 5th International Workshop

on HANDS 2019 (https://sites.google.com/view/hands2019/) held in conjunction with the

ICCV’19. We encourage participants to augment their training pose datasets using initial 3D

mesh model we fitted.

121

REFERENCES

[1] IntelSR300. http://click.intel.com/intelrrealsensetm-developer-kit-featuring-sr300.html.

Accessed: 2017-11-12. 53

[2] T. Alldieck, M. Magnor, B. Bhatnagar, C. Theobalt, and G. Pons-Moll. Learning to

reconstruct people in clothing from a single RGB camera. In CVPR, 2019. 5

[3] B. Allen, B. Curless, and Z. Popovic. The space of human body shapes: Reconstruction

and parameterization from range scans. ACM Transactions on Graphic, 2003. 14

[4] D. Anguelov, P. Srinivasan, D. Koller, S. Thrun, J. Rodgers, and J. Davis. Scape: Shape

completion and animation of people. ACM Transactions on Graphic, 2005. 14, 16

[5] S. Baek, K. I. Kim, and T.-K. Kim. Real-time online action detection forests using

spatio-temporal contexts. In WACV, 2017. 1, 64

[6] S. Baek, K. I. Kim, and T.-K. Kim. Augmented skeleton space transfer for depth-based

hand pose estimation. In CVPR, 2018. 7, 111

[7] S. Baek, K. I. Kim, and T.-K. Kim. Pushing the envelope for RGB-based dense 3D hand

pose estimation via neural rendering. In CVPR, 2019. 114, 115

[8] S. Baek, Z. Shi, M. Kawade, and T.-K. Kim. Kinematic-layout-aware random forests for

depth-based action recognition. In BMVC, 2017. 1, 64

[9] L. Ballan, A. Taneja, J. Gall, L. V. Gool, and M. Pollefeys. Motion capture of hands in

action using discriminative salient points. In ECCV, 2012. 15

[10] M. Blank, L. Gorelick, E. Shechtman, M. Irani, and R. Basri. Actions as space-time

shapes. In ICCV, 2005. 28

123

[11] V. Blanz and T. Vetter. A morphable model for the synthesis of 3D faces. In SIGGRAPH,

1999. 15

[12] V. Bloom, D. Makris, and V. Argyriou. G3D: A gaming action dataset and real time

action recognition evaluation framework. In CVPR Workshop, 2012. 6

[13] A. F. Bobick and J. W. Davis. The recognition of human movement using temporal

templates. TPAMI, 2001. 28

[14] F. Bogo, A. Kanazawa, C. Lassner, P. Gehler, J. Romero, and M. J. Black. Keep it SMPL:

Automatic estimation of 3D human pose and shape from a single image. In ECCV, 2016.

14, 16

[15] J. Booth, A. Roussos, S. Zafeiriou, A. Ponniah, and D. Dunaway. A 3D face model for

pose and illumination invariant face recognition. In CVPR, 2016. 15

[16] A. Boukhayma, R. Bem, and P. H. S. Torr. 3D hand shape and pose from images in the

wild. In CVPR, 2019. 21, 114, 117

[17] A. Brunton, A. Salazar, T. Bolkart, and S. Wuhrer. Review of statistical shape spaces for

3D data with comparative analysis for human faces. CVIU, 2014. 15

[18] Y. Cai, L. Ge, J. Cai, and J. Yuan. Weakly-supervised 3d hand pose estimation from

monocular rgb images. In ECCV, 2018. 1, 7, 8, 23, 66, 69, 71, 74, 79, 81, 119, 120

[19] C. Cao, Y. Weng, S. Zhou, Y. Tong, and K. Zhou. Facewarehouse: A 3D facial expression

database for visual computing. IEEE Transactions on Visualization and Computer

Graphics, 2014. 15

[20] Z. Cao, T. Simon, S.-E. Wei, , and Y. Sheikh. Realtime multi-person 2d pose estimation

using part affinity fields. In CVPR, 2017. 14, 22

[21] J. Carreira and A. Zisserman. Quo vadis, action recognition? a new model and the

kinetics dataset. In CVPR, 2017. 33

[22] J. Charles, T. Pfister, D. Magee, D. Hogg, and A. Zisserman. Upper body pose estimation

with temporal sequential forests. In BMVC, 2014. 32

[23] C. Chen, R. Jafari, and N. Kehtarnavaz. UTD-MHAD: A multimodal dataset for human

action recognition utilizing a depth. In ICIP, 2015. 92

124

[24] C. Chen and D. Ramanan. 3d human pose estimation = 2d pose estimation + matching.

In CVPR, 2017. 23

[25] J. Chen, H. M. Le, P. Carr, Y. Yue, and J. J. Little. Learning online smooth predictors for

realtime camera planning using recurrent decision trees. In CVPR, 2016. 32

[26] C. Choi, S. H. Yoon, C.-N. Chen, and K. Ramani. Robust hand pose estimation during

the interaction with an unknown object. In ICCV, 2017. 64

[27] E. Cippitelli, S. Gasparrini, E. Gambi, and S. Spinsante. A human activity recognition

system using skeleton data from RGBD sensors. In Computational Intelligence and

Neuroscience, 2016. 101

[28] A. M. Clerke, J. P. Clerke, and R. D. Adams. Effects of hand shape on maximal isometric

grip strength and its reliability in teenagers. Journal of Hand Therapy, 2005. 5, 18, 38,

43

[29] H. Dai, N. Pears, W. Smith, and C. Duncan. A 3d morphable model of craniofacial shape

and texture variation. In ICCV, 2017. 15

[30] N. Dalal and B. Triggs. Histograms of oriented gradients for human detection. In CVPR,

2005. 28

[31] M. Dantone, J. Gall, G. Fanelli, and L. V. Gool. Real-time Facial Feature Detection using

Conditional Regression Forests . In CVPR, 2012. 20

[32] V. Delaitre, D. F. Fouhey, I. Laptev, J. Sivic, A. Gupta, and A. A. Efros. Scene semantics

from long-term observation of people. In ECCV, 2012. 27, 31, 94

[33] M. Ding and G. Fan. Articulated gaussian kernel correlation for human pose estimation.

In CVPR Workshop, 2015. 20

[34] P. Dollár, , V. Rabaud, G. Cottrell, and S. Belongie. Behavior recognition via sparse

spatio-temporal features. In IEEE International Workshop on Visual Surveillance and

Performance Evaluation of Tracking and Surveillance, 2005. 27, 28

[35] J. Donahue, L. A. Hendricks, S. Guadarrama, M. Rohrbach, S. Venugopalan, K. Saenko,

and T. Darrell. Long-term recurrent convolutional networks for visual recognition and

description. In CVPR, 2015. 33

125

[36] Y. Du, W. Wang, and L. Wang. Hierarchical recurrent neural network for skeleton based

action recognition. In CVPR, 2015. 31

[37] Y. Du, W. Wang, and L. Wang. Hierarchical recurrent neural network for skeleton based

action recognition. In CVPR, 2015. 89

[38] A. A. Efros, A. C. Berg, G. Mori, and J. Malik. Recognizing actions at a distance. In

ICCV, 2003. 28

[39] A. A. Fallahi and A. A. Jadidian. The effect of hand dimensions, hand shape and some

anthropometric characteristics on handgrip strength in male grip athletes and non-athletes.

Journal of Human Kinetics, 2011. 5, 18, 38, 43

[40] A. Fathi, X. Ren, and J. M. Rehg. Learning to recognize objects in egocentric activities.

In CVPR, 2011. 34

[41] C. Feichtenhofer, H. Fan, J. Malik, and K. He. SlowFast Networks for Video Recognition.

In ICCV, 2019. 6

[42] C. Feichtenhofer, A. Pinz, and A. Zisserman. Convolutional two-stream network fusion

for video action recognition. In CVPR, 2016. 27, 28, 32, 34

[43] S. Fothergill, H. Mentis, P. Kohli, and S. Nowozin. Instructing people for training gestural

interactive systems. In Proceedings of the SIGCHI Conference on Human Factors in

Computing Systems, 2012. 32, 33

[44] D. F. Fouhey, V. Delaitre, A. Gupta, A. A. Efros, I. Laptev, and J. Sivic. People Watching:

Human Actions as a Cue for Single View Geometry. IJCV, 2014. 31, 94

[45] J. Gall, A. Yao, and L. V. Gool. 2D Action Recognition Serves 3D Human Pose Estimation.

In ECCV, 2010. 20, 30

[46] J. Gall, A. Yao, N. Razavi, L. V. Gool, and V. Lempitsky. Hough forests for object

detection, tracking, and action recognition. TPAMI, 2011. 32

[47] J. Gall, A. Yao, N. Razavi, L. V. Gool, and V. Lempitsky. Hough forests for object

detection, tracking, and action recognition. TPAMI, 2011. 99, 100

[48] G. Garcia-Hernando, H. Chang, I. Serrano, O. Déniz, and T.-K. Kim. Transition Hough

forest for trajectory-based action recognition. In WACV, 2016. 30

126

[49] G. Garcia-Hernando and T.-K. Kim. Transition forests: learning discriminative temporal

transitions for action recognition and detection. In CVPR, 2017. 1, 30

[50] G. Garcia-Hernando, S. Yuan, S. Baek, and T.-K. Kim. First-person hand action bench-

mark with RGB-D videos and 3D hand pose annotations. In CVPR, 2018. x, 1, 3, 7, 21,

26, 35, 64

[51] L. Ge, Y. Cai, J. Weng, and J. Yuan. Hand PointNet: 3D hand pose estimation using point

sets. In CVPR, 2018. 23, 24

[52] L. Ge, H. Liang, J. Yuan, and D. Thalmann. Robust 3D Hand pose estimation in single

depth images: from single-view CNN to multi-view CNNs. In CVPR, 2016. 23, 53

[53] L. Ge, H. Liang, J. Yuan, and D. Thalmann. 3D convolutional neural networks for

efficient and robust hand pose estimation from single depth images. In CVPR, 2017. 23,

53, 54

[54] R. Girshick, J. Shotton, P. Kohli, A. Criminisi, and A. Fitzgibbon. Efficient regression of

general-activity human poses from depth images. In ICCV, 2011. 20, 97

[55] G. Gkioxari and J. Malik. Finding action tubes. In CVPR, 2015. 6

[56] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair,

A. Courville, and Y. Bengio. Generative adversarial nets. In NIPS, 2014. 40

[57] R. A. Güler, N. Neverova, and I. Kokkinos. DensePose: Dense human pose estimation in

the wild. In CVPR, 2018. 16, 18

[58] A. Gupta, S. Satkin, A. A. Efros, and M. Hebert. From 3d scene geometry to human

workspace. In CVPR, 2011. 94

[59] T. Gupta, A. Schwing, and D. Hoiem. No-frills human-object interaction detection:

factorization, layout encodings and training techniques. In ICCV, 2017. 31

[60] A. Haquea, B. Peng, Z. Luo, A. Alahi, S. Yeung, and L. Fei-Fei. Towards viewpoint

invariant 3D human pose estimation. In ECCV, 2016. 89, 90, 91

[61] N. Hasler, H. Ackermann, B. Rosenhahn, T. Thormhlen, and H. P. Seidel. Multilinear

pose and body shape estimation of dressed subjects from image sets. In CVPR, 2010. 16

127

[62] N. Hasler, C. Stoll, M. Sunkel, B. Rosenhahn, and H.-P. Seidel. A statistical model of

human pose and body shape. Computer Graphics Forum, 2009. 14

[63] Y. Hasson, G. Varol, D. Tzionas, I. Kalevatykh, M. J. Black, I. Laptev, and C. Schmid.

Learning joint reconstruction of hands and manipulated objects. In CVPR, 2019. 16

[64] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. In

CVPR, 2016. 21, 27, 69, 76

[65] V. Hedau, D. Hoiem, and D. Forsyth. Recovering the spatial layout of cluttered rooms.

In ICCV, 2009. 31

[66] S. Hochreiter and J. Schmidhuber. Long short-term memory. Neural compu- tation, 1997.

32

[67] H. Hu, X. Gao, J. Li, J. Wang, and H. Liu. Calibrating human hand for teleoperating the

hit/dlr hand. In ICRA, 2004. 17

[68] J.-F. Hu, W.-S. Zheng, J. Lai, and J. Zhang. Jointly learning heterogeneous features for

RGB-D activity recognition. In CVPR, 2015. 89, 102

[69] Z. Huang, C. Wan, T. Probst, and L. V. Gool. Deep learning on lie groups for skeleton-

based action recognition. In CVPR, 2017. 31

[70] U. Iqbal, P. Molchanov, T. Breuel, J. Gall, and J. Kautz. Hand pose estimation via latent

2.5D heatmap regression. In ECCV, 2018. 1, 7, 8, 23, 66, 69, 71, 73, 74, 79, 80, 81

[71] T. Ishihara, K. M. Kitani, W.-C. Ma, H. Takagi, and C. Asakawa. Recognizing hand-object

interactions in wearable camera videos. In ICIP, 2015. 34, 35

[72] A. Jain, J. Tompson, M. Andriluka, G. W. Taylor, and C. Bregler. Learning human pose

estimation features with convolutional networks. In ICLR, 2014. 22

[73] Y. Jang, S.-T. Noh, H. J. Chang, T.-K. Kim, and W. Woo. 3D Finger Cape: Clicking

action and position estimation under self-occlusions in egocentric viewpoint. TVCG,

2015. 32

[74] V. John, E. Trucco, and S. Ivekovic. Human articulated tracking using hierarchical

particle swarm optimization. Image and Vision Computing, 2010. 17

128

[75] H. Joo, H. Liu, L. Tan, L. Gui, B. Nabbe, I. Matthews, T. Kanade, S. Nobuhara, and

Y. Sheikh. Panoptic studio: a massively multiview system for social motion capture. In

ICCV, 2015. 22

[76] H. Joo, T. Simon, and Y. sheikh. Total capture: A 3D deformation model for tracking

faces, hands, and bodies. In CVPR, 2018. 15, 16

[77] A. Kanazawa, M. J. Black, D. W. Jacobs, and J. Malik. End-to-end recovery of human

shape and pose. In CVPR, 2018. 16, 18, 66, 68, 71, 72, 81

[78] A. Kanazawa, S. Tulsiani, A. A. Efros, and J. Malik. Learning category-specific mesh

reconstruction from image collections. In ECCV, 2018. 69, 75, 114

[79] H. Kato, Y. Ushiku, and T. Harada. Neural 3D mesh renderer. In CVPR, 2018. 16, 18,

19, 65, 68, 73, 78, 117

[80] Q. Ke, M. Bennamoun, S. An, F. Sohel, and F. Boussaid. A new representation of skeleton

sequences for 3d action recognition. In CVPR, 2017. 31

[81] J. Kennedy and R. Eberhart. Particle Swarm Optimization. In IEEE International

Conference on Neural Networks, 1995. 17, 79

[82] C. Keskin, F. Kirac, Y. E. Kara, and L. Akarun. Hand pose estimation and hand shape

classification using multi-layered randomized decision forests. In ECCV, 2012. 20

[83] S. Khamis, J. Taylor, J. Shotton, C. Keskin, S. Izadi, and A. Fitzgibbon. Learning an

efficient model of hand shape variation from depth images. In CVPR, 2015. 15, 17

[84] A. U. Khan and A. Borji. Analysis of hand segmentation in the wild. In CVPR, 2018.

xiv, 6, 69, 81, 82, 83

[85] H. Kim, M. Zollöfer, A. Tewari, J. Thies, C. Richardt, and C. Theobalt. Inversefacenet:

Deep single-shot inverse face rendering from a single image. In CVPR, 2018. 78

[86] D. Kingma and J. B. Adam. A method for stochastic optimization. In ArXiv:1412.6980,

2014. 51

[87] A. Klaser, M. Marszalek, and C. Schmid. A Spatio-Temporal Descriptor Based on

3D-Gradients. In BMVC, 2008. 28

129

[88] M. Kocabas, S. Karagoz, and E. Akbas. Multiposenet: Fast multiperson pose estimation

using pose residual network. In ECCV, 2018. 22

[89] Y. Kong and Y. Fu. Bilinear Heterogeneous Information Machine for RGB-D action

recognition. In CVPR, 2015. 89

[90] P. Krejov, A. Gilbert, and R. Bowden. Combining discriminative and model based

approaches for hand pose estimation. FG, 2015. 67

[91] A. Krizhevsky, Sutskever, Ilya, and G. E. Hinton. ImageNet classification with deep

convolutional neural networks. In NIPS, 2012. 21, 27, 32

[92] I. Laptev. On Space-Time Interest Points. IJCV, 2005. 28, 29

[93] I. Laptev, M. Marszalek, C. Schmid, and B. Rozenfeld. Learning realistic human actions

from movies. In CVPR, 2008. 28

[94] P. Li, H. Liang, X. Li, and C. Liao. 3D hand pose estimation using randomized decision

forest with segmentation index points. In ICCV, 2015. 21

[95] T. Li, T. Bolkart, M. J. Black, H. Li, and J. Romero. Learning a model of facial shape

and expression from 4D scans. In ACM Transactions on Graphics, 2017. 15

[96] T.-M. Li, M. Aittala, F. Durand, , and J. Lehtinen. Differentiable monte carlo ray tracing

through edge sampling. ACM Transactions on Graphics, 2018. 19

[97] W. Li, Z. Zhang, and Z. Liu. Action recognition based on a bag of 3d points. In CVPR

Workshop, 2010. 33

[98] Z. Li, K. Gavrilyuk, E. Gavves, M. Jain, and C. G. Snoek. Videolstm convolves, attends

and flows for action recognition. CVIU, 2018. 33

[99] C. Lien. A scalable model-based hand posture analysis system. In MVA, 2005. 17

[100] S. Liu, T. Li, W. Chen, and H. Li. Soft rasterizer: A differentiable renderer for image-

based 3D reasoning. In ICCV, 2019. 18, 19

[101] M. Loper, N. Mahmood, and M. J. Black. MoSh: Motion and shape capture from sparse

markers. TOG, 2014. 16

130

[102] M. Loper, N. Mahmood, J. Romero, G. Pons-Moll, and M. J. Black. SMPL: A skinned

multi-person linear model. ToG, 2015. 2, 14, 15, 18, 70

[103] M. M. Loper and M. J. Black. OpenDR: An approximate differentiable renderer. In

ECCV, 2014. 18, 19

[104] B. D. Lucas and T. Kanade. An iterative image registration technique with an application

to stereo vision. In IJCAI, 1981. 29

[105] J. Luo, W. Wang, and H. Qi. Group Sparsity and Geometry Constrained Dictionary

Learning for Action Recognition from Depth Maps. In ICCV, 2013. 30

[106] M. Ma, H. Fan, and K. M. Kitani. Going deeper into first-person activity recognition. In

CVPR, 2016. 34, 35

[107] B. Mahasseni and S. Todorovic. Latent multitask learning for view-invariant action

recognition. In ICCV, 2013. 7

[108] B. Mahasseni and S. Todorovic. Regularizing long short term memory with 3D human-

skeleton sequences for action recognition. In CVPR, 2016. 20, 30

[109] J. Malik, A. Elhayek, F. Nunnari, K. Varanasi, K. Tamaddon, A. Heloir, and D. Stricker.

DeepHPS: End-to-end estimation of 3D hand pose and shape by learning from synthetic

depth. In 3DV, 2018. 65

[110] V. Mansinghka, T. D. Kulkarni, Y. N. Perov, and J. Tenenbaum. Approximate bayesian

image interpretation using generative probabilistic graphics programs. In NIPS, 2013. 19

[111] J. Martinez, R. Hossain, J. Romero, and J. J. Little. A simple yet effective baseline for 3d

human pose estimation. In ICCV, 2017. 23

[112] P. Matikainen, M. Hebert, and R. Sukthankar. Trajectons: Action recognition through the

motion analysis of tracked features. In ICCV Workshop, 2009. 29

[113] S. Melax, L. Keselman, and S. Orsten. Dynamics based 3D skeletal hand tracking. In

i3D, 2013. 15, 17

[114] R. Messing, C. Pal, and H. Kautz. Activity recognition using the velocity histories of

tracked keypoints. In ICCV, 2009. 29

131

[115] K. Mikolajczyk and H. Uemura. Action Recognition with Motion-Appearance Vocabulary

Forest. In CVPR, 2008. 32

[116] G. Moon, J. Y. Chang, and K. M. Lee. V2V-PoseNet: Voxel-to-voxel prediction network

for accurate 3D hand and human pose estimation from a single depth map. In CVPR,

2018. 23

[117] F. Mueller, F. Bernard, O. Sotnychenko, D. Mehta, S. Sridhar, D. Casas, and C. Theobalt.

GANerated hands for real-time 3D hand tracking from monocular RGB. In CVPR, 2018.

xviii, 26, 27, 79, 80, 81, 111, 119, 120

[118] F. Mueller, D. Mehta, O. Sotnychenko, S. Sridhar, D. Casas, and C. Theobalt. Real-time

hand tracking under occlusion from an egocentric RGB-D sensor. In ICCV, 2017. xviii,

26, 111, 118

[119] A. Mujika, F. Meier, and A. Steger. Fast-Slow recurrent neural networks. In NIPS, 2017.

27

[120] A. Newell, K. Yang, and J. Deng. Stacked hourglass networks for human pose estimation.

In ECCV, 2016. 22

[121] J. Y.-H. Ng, M. Hausknecht, S. Vijayanarasimhan, O. Vinyals, R. Monga, and G. Toderici.

Beyond short snippets: Deep networks for video classification. In CVPR, 2015. 33

[122] B. X. Nie, P. Wei, and S.-C. Zhu. Monocular 3d human pose estimation by predicting

depth on joints. In ICCV, 2017. 23

[123] B. X. Nie, C. Xiong, and S.-C. Zhu. Joint Action Recognition and Pose Estimation From

Video. In CVPR, 2015. 30

[124] X. Nie, J. Feng, J. Xing, and S. Yan. Pose partition networks for multi-person pose

estimation. In ECCV, 2018. 22

[125] J. C. Niebles, H. Wang, and L. Fei-Fei. Distinctive image features from scale-invariant

keypoints. IJCV, 2004. 28

[126] M. Oberweger and V. Lepetit. DeepPrior++: Improving fast and accurate 3D hand pose

estimation. In ICCV Workshop, 2017. 5, 21, 111

132

[127] M. Oberweger, G. Riegler, P. Wohlhart, and V. Lepetit. Efficiently creating 3D training

data for fine hand pose estimation. In CVPR, 2016. 7

[128] M. Oberweger, P. Wohlhart, and V. Lepetit. Hands deep in deep learning for hand pose

estimation. In CVWW, 2015. 5, 21, 111

[129] M. Oberweger, P. Wohlhart, and V. Lepetit. Training a Feedback Loop for Hand Pose

Estimation. In ICCV, 2015. xiii, 24, 53, 59, 60

[130] I. Oikonomidis, N. Kyriazis, and A. A. Argyros. Efficient model-based 3D tracking of

hand articulations using kinect. In BMVC, 2011. 17, 53

[131] D. Oneata, J. Verbeek, and C. Schmid. Action and event recognition with fisher vectors

on a compact feature set. In ICCV, 2013. 29

[132] O. Oreifej and Z. Liu. HON4D: histogram of oriented 4D normals for activity recognition

from depth sequences. In CVPR, 2013. 6, 92, 101, 102

[133] P. Panteleris, I. Oikonomidis, and A. Argyros. Using a single RGB frame for real time

3D hand pose estimation in the wild. In WACV, 2018. 16, 66, 79, 81, 119

[134] G. I. Parisi, C. Weber, and S. Wermter. Self-organizing neural integration of pose-motion

features for human action recognition. In Frontier in Neurobotics, 2015. 101

[135] E. Park, J. Yang, E. Yumer, D. Ceylan, and A. C. Berg. Transformation-grounded image

generation network for novel 3D view synthesis. In CVPR, 2017. 40

[136] G. Park, A. A. Argyros, and W. Woo. Efficient 3d hand tracking in articulation subspaces

for the manipulation of virtual objects. In CGI, 2016. 17

[137] D. Pathak, P. Krahenbuhl, J. Donahue, T. Darrell, and A. A. Efros. Context encoders:

Feature learning by inpainting. In CVPR, 2016. 38, 46, 49

[138] G. Pavlakos, V. Choutas, N. Ghorbani, T. Bolkart, A. A. A. Osman, D. Tzionas, and M. J.

Black. Expressive body capture: 3D hands, face, and body from a single image. In CVPR,

2019. 15

[139] G. Pavlakos, L. Zhu, X. Zhou, and K. Daniilidis. Learning to estimate 3D human pose

and shape from a single color image. In CVPR, 2018. 66, 68, 69

133

[140] X. Peng, C. Zou, Y. Qiao, and Q. Peng. Action recognition with stacked fisher vectors.

In ECCV, 2014. 29

[141] F. Perronnin, J. Sanchez, and T. Mensink. Improving the fisher kernel for large-scale

image classification. In ECCV, 2010. 29

[142] T. Pfister, J. Charles, and A. Zisserman. Flowing convnets for human pose estimation in

videos. In ICCV, 2015. 22

[143] H. Pirsiavash and D. Ramanan. Detecting activities of daily living in first-person camera

views. In CVPR, 2012. 34

[144] L. Pishchulin, E. Insafutdinov, S. Tang, B. Andres, M. Andriluka, and P. Gehler. DeepCut:

Joint subset partition and labeling for multi person pose estimation. In CVPR, 2016. 16

[145] G. Poier, K. Roditakis, S. Schulter, D. Michel, H. Bischof, and A. A. Argyros. Hybrid

one-shot 3d hand pose estimation by exploiting uncertainties. In BMVC, 2015. 17

[146] C. R. Qi, H. Su, K. Mo, and L. J. Guibas. PointNet: Deep learning on point sets for 3D

classification and segmentation. In CVPR, 2017. 24

[147] C. Qian, X. Sun, Y. Wei, X. Tang, and J. Sun. Realtime and robust hand tracking from

depth. In CVPR, 2014. 17, 24

[148] M. Rad, M. Oberweger, and V. Lepetit. Feature mapping for learning fast and accurate

3D pose inference from synthetic images. In CVPR, 2018. 1, 6, 8, 27, 111

[149] A. Radford, L. Metz, and S. Chintala. Unsupervised representation learning with deep

convolutional generative adversarial networks. In ICLR, 2016. xi, 40, 46, 47

[150] H. Rahmani, A. Mahmood, D. Q. Huynh, and A. Mian. HOPC: histogram of oriented

principal components of 3D pointclouds for action recognition. In ECCV, 2014. 6

[151] H. Rahmani, A. Mahmood, D. Q. Huynh, and A. Mian. Histogram of oriented principal

components for cross-view action recognition. TPAMI, 2016. 30, 89, 90, 91, 92, 100,

101, 102

[152] H. Rahmani and A. Mian. 3D action recognition from novel viewpoints. In CVPR, 2016.

30, 33, 89, 92, 93, 100, 101, 102

134

[153] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi. You Only Look Once: Unified,

real-time object detection. In CVPR, 2016. 6

[154] J. Redmon and A. Farhadi. YOLO9000: better, faster, stronger. In CVPR, 2017. 6

[155] E. Remelli, A. Tkach, A. Tagliasacchi, and M. Pauly. Low-dimensionality calibration

through local anisotropic scaling for robust hand model personalization. In ICCV, 2017.

16, 17

[156] K. M. Robinette, S. Blackwell, H. Daanen, M. Boehmer, S. Fleming, T. Brill, D. Hoeferlin,

and D. Burnsides. Civilian american and european surface anthropometry resource

(caesar) final report. In Technical Report AFRL-HE-WP-TR-2002-0169, US Air Force

Research Laboratory, 2002. 14

[157] G. Rogez, M. Khademi, J. S. III, J. M. M. Montiel, and D. Ramanan. 3D hand pose

detection in egocentric RGB-D images. In ECCV, 2014. 20, 34

[158] G. Rogez, J. Rihan, C. Orrite-Uruneula, and P. H. Torr. Fast human pose detection using

randomized hierarchical cascades of rejectors. IJCV, 2012. 20

[159] G. Rogez, J. S. Supancic, and D. Ramanan. First-person pose recognition using egocentric

workspaces. In CVPR, 2015. 35

[160] J. Romero, H. Kjellstrom, and D. Kragic. Monocular real-time 3D articulated hand pose

estimation. Humanoids, 2009. 19

[161] J. Romero, D. Tzionas, and M. J. Black. Embodied hands: Modeling and capturing hands

and bodies together. In SIGGRAPH Asia, 2017. xiv, 2, 15, 67, 68, 70, 72, 111, 112, 114

[162] M. Savva, A. X. Chang, P. Hanrahan, M. Fisher, and M. Niesner. SceneGrok: Inferring

Action Maps in 3D Environments. ACM Transactions on Graphics (TOG), 2014. 31

[163] P. Scovanner, S. Ali, and M. Shah. A 3-dimensional sift descriptor and its application to

action recognition. In ACM International Conference on Multimedia, 2007. 28

[164] L. Seidenari, V. Varano, S. Berretti, A. Bimbo, and P. Pala. Recognizing actions from

depth cameras as weakly aligned multi-part bag-of-poses. In CVPRW, 2013. 33

135

[165] I. Serrano, O. Deniz, G. Bueno, G. Garcia-Hernando, and T.-K. Kim. Spatio-temporal

elastic cuboid trajectories for efficient fight recognition using hough forests. In Machine

Vision and Applications, 2018. 32

[166] A. Shahroudy, J. Liu, T.-T. Ng, and G. Wang. NTU RGB+D: a large scale dataset for 3D

human activity analysis. In CVPR, 2016. 33, 92

[167] J. Shan and S. Akella. 3D human action segmentation and recognition using pose kinetic

energy. In IEEE Workshop on Advanced Robotics and its Social Impacts, 2014. 101

[168] A. Sharifi, A. Harati, and A. Vahedian. Marker based human pose estimation using

annealed particle swarm optimization with search space partitioning. In ICCKE, 2014.

17

[169] T. Sharp, C. Keskin, D. Robertson, J. Taylor, J. Shotton, D. Kim, C. Rhemann, I. Leichter,

A. Vinnikov, Y. Wei, D. Freedman, P. Kohli, E. Krupka, A. Fitzgibbon, and S. Izadi.

Accurate, robust and flexible real-time hand tracking. In CHI, 2015. 24

[170] J. Shi and J. Malik. Normalized cuts and image segmentation. TPAMI, 2000. 97

[171] J. Shotton, A. Fitzgibbon, M. Cook, T. Sharp, M. Finocchio, R. Moore, A. Kipman, and

A. Blake. Real-time human pose recognition in parts from a single depth image. In

CVPR, 2011. 19, 20, 34, 35

[172] J. Shotton, R. Girshick, A. Fitzgibbon, T. Sharp, M. Cook, M. Finocchio, R. Moore,

P. Kohli, A. Criminisi, and A. Kipman. Efficient human pose estimation from single

depth images. TPAMI, 2013. 29, 33, 88

[173] J. Shotton, M. Johnson, and R. Cipolla. Semantic texton forests for image categorization

and segmentation. In CVPR, 2008. 96

[174] A. Shrivastava, T. Pfister, O. Tuzel, J. Susskind, W. Wang, and R. Webb. Learning from

simulated and unsupervised images through adversarial training. In CVPR, 2017. 6, 8,

27, 38, 53, 111

[175] N. Silberman, P. Kohli, D. Hoiem, and R. Fergus. Indoor segmentation and support

inference from RGBD images. In ECCV, 2012. 78

136

[176] T. Simon, H. Joo, I. Matthews, and Y. Sheikh. Hand keypoint detection in single images

using multiview bootstrapping. In CVPR, 2017. 8, 22, 26, 66, 111

[177] K. Simonyan and A. Zisserman. Two-stream convolutional networks for action recogni-

tion in videos. In NIPS, 2014. 27, 28, 32, 34

[178] K. Simonyan and A. Zisserman. Very Deep Convolutional Networks for Large-Scale

Image Recognition. In ICLR, 2015. 21, 27

[179] B. Singh, T. K. Marks, M. Jones, O. Tuzel, and M. Shao. A multi-Stream bi-directional

recurrent neural network for fine-grained action detection. In CVPR, 2016. 34

[180] S. Singh, C. Arora, and C. V. Jawahar. First person action recognition using deep learned

descriptors. In CVPR, 2016. 35

[181] A. Sinha, A. Unmesh, Q. Huang, and K. Ramani. SurfNet: Generating 3D shape surfaces

using deep residual networks. In CVPR, 2017. 65

[182] A. Sinha, A. Unmesh, Q. Huang, and K. Ramani. SurfNet: Generating 3D shape surfaces

using deep residual networks. In CVPR, 2017. 112, 113, 117

[183] A. Spurr, J. Song, S. Park, and O. Hilliges. Cross-modal deep variational hand pose

estimation. In CVPR, 2018. 79, 81

[184] S. Sridhar, F. Mueller, A. Oulasvirta, and C. Theobalt. Fast and robust hand tracking

using detection-guided optimization. In CVPR, 2015. 24

[185] S. Sridhar, F. Mueller, M. Zollhöfer, D. Casas, A. Oulasvirta, and C. Theobalt. Real-time

joint tracking of a hand manipulating an object from RGB-D input. In ECCV, 2016. xviii,

7, 20, 79, 111

[186] S. Sridhar, F. Mueller, M. Zollhöfer, D. Casas, A. Oulasvirta, and C. Theobalt. Real-time

joint tracking of a hand manipulating an object from rgb-d input. In ECCV, 2016. 26

[187] S. Sridhar, A. Oulasvirta, and C. Theobalt. Interactive markerless articulated hand motion

tracking using RGB and depth data. In ICCV, 2013. 15

[188] H. Su, S. Maji, E. Kalogerakis, and E. Learned-Miller. Multi-view convolutional neural

networks for 3D shape recognition. In ICCV, 2015. 4

137

[189] M. Sun, P. Kohli, and J. Shotton. Conditional Regression Forests for Human Pose

Estimation. In CVPR, 2012. 20

[190] X. Sun, Y. Wei, S. Liang, X. Tang, and J. Sun. Cascaded hand pose regression. In CVPR,

2015. 20, 21, 24, 25, 38, 42, 53

[191] J. Sung, C. Ponce, B. Selman, and A. Saxena. Human activity detection from RGBD

images. In AAAI workshop on Pattern, Activity and Intent Recognition, 2011. x, 3

[192] J. Sung, C. Ponce, B. Selman, and A. Saxena. Unstructured human activity detection

from RGBD images. In ICRA, 2012. 92, 100

[193] D. J. Tan, T. Cashman, J. Taylor, A. Fitzgibbon, D. Tarlow, S. Khamis, S. Izadi, and

J. Shotton. Fits like a glove: Rapid and reliable hand shape personalization. In CVPR,

2016. xv, 84

[194] D. Tang, H. Chang, A. Tejani, and T.-K. Kim. Latent regression forest: structural

estimation of 3D articulated hand posture. TPAMI, 2016. 20, 21, 25, 38, 42, 53

[195] D. Tang, J. Taylor, P. Kohli, C. Keskin, T.-K. Kim, and J. Shotton. Opening the black

box: hierarchical sampling optimization for estimating human hand pose. In ICCV, 2015.

21, 53, 54

[196] D. Tang, T.-H. Yu, and T.-K. Kim. Real-time articulated hand pose estimation using

semi-supervised transductive regression forests. In ICCV, 2013. 20, 21

[197] J. Taylor, J. Shotton, T. Sharp, and A. Fitzgibbon. The vitruvian manifold: Inferring

dense correspondences for one-shot human pose estimation. In CVPR, 2012. 36, 54

[198] B. Tekin, F. Bogo, and M. Pollefeys. H+O: Unified egocentric recognition of 3D hand-

object poses and interactions. In CVPR, 2019. 35

[199] B. Tekin, P. Marquez-Neila, M. Salzmann, and P. Fua. Learning to fuse 2D and 3D image

cues for monocular body pose estimation. In ICCV, 2017. 23

[200] A. Tilmax and M. Shah. Actions sketch: A novel action representation. In CVPR, 2005.

28

[201] A. Tkach, M. Pauly, and A. Tagliasacchi. Sphere-meshes for real-time hand modeling

and tracking. ACM Transactions on Graphics, 2016. 15

138

[202] A. Tkach, M. Pauly, and A. Tagliasacchi. Sphere-meshes for real-time hand modeling

and tracking. In SIGGRAPH Asia, 2016. 18

[203] A. Tkach, A. Tagliasacchi, E. R. M. Pauly, and A. Fitzgibbon. Online generative model

personalization for hand tracking. ACM Trans. on Graphics, 2017. 18

[204] D. Tome, C. Russell, and L. Agapito. Lifting from the deep: Convolutional 3D pose

estimation from a single image. In CVPR, 2017. 23

[205] J. Tompson, M. Stein, Y. Lecun, and K. Perlin. Real-time continuous pose recovery of

human hands using convolutional networks. TOG, 2014. 21, 24, 25, 39, 42, 67

[206] J. J. Tompson, A. Jain, Y. LeCun, and C. Bregler. Joint training of a convolutional

network and a graphical model for human pose estimation. In NIPS, 2014. 22

[207] A. Toshev and C. Szegedy. Deeppose: Human pose estimation via deep neural networks.

In CVPR, 2014. 22

[208] S. Tulsiani, S. Gupta, D. F. Fouhey, and A. A. Efros. Factoring shape, pose and layout

from the 2D image of a 3D scene. In CVPR, 2018. 31

[209] H.-Y. F. Tung, H.-W. Tung, E. Yumer, and K. Fragkiadaki. Self-supervised learning of

motion capture. In NIPS, 2017. 18, 66, 68, 69, 115

[210] M. Valstar, B. Martinez, X. Binefa, and M. Pantic. Facial point detection using boosted

regression and graph models. In CVPR, 2010. 20

[211] G. Varol, I. Laptev, and C. Schmid. Long-term temporal convolutions for action recogni-

tion. TPAMI, 2017. 33

[212] V. Veeriah, N. Zhuang, and G. Qi. Differential recurrent neural networks for action

recognition. In ICCV, 2015. 31

[213] R. Vemulapalli, F. Arrate, and R. Chellappa. Human action recognition by representing

3D skeletons as points in a lie group. In CVPR, 2014. 30, 89, 93

[214] C. Wan, T. Probst, L. V. Gool, and A. Yao. Crossing nets: dual generative models with a

shared latent space for hand pose estimation. In CVPR, 2017. xiii, 53, 59, 60

139

[215] C. Wan, A. Yao, and L. V. Gool. Hand Pose Estimation from Local Surface Normals. In

ECCV, 2016. 20, 21

[216] C. Wang, Y. Wang, and A. Yuille. An approach to pose-based action recognition. In

CVPR, 2013. 30

[217] C. Wang, Y. Wang, and A. L. Yuille. An Approach to Pose-Based Action Recognition. In

CVPR, 2013. 27, 29

[218] C. Wang, Y. Wang, and A. L. Yuille. Mining 3d key-pose-motifs for action recognition.

In CVPR, 2016. 31

[219] H. Wang, S. Gould, and D. Koller. Discriminative Learning with Latent Variables for

Cluttered Indoor Scene Understanding. In ECCV, 2010. 31

[220] H. Wang, A. Klaser, C. Schmid, and C.-L. Liu. Action Recognition by Dense Trajectories.

In CVPR, 2011. 29

[221] H. Wang, M. M. Ullah, A. Klaser, and I. Laptev. Evaluation of local spatio-temporal

features for action recognition. In BMVC, 2009. 29

[222] J. Wang, Z. Liu, Y. Wu, and J. Yuan. Learning actionlet ensemble for 3D human action

recognition. TPAMI, 2014. 30, 33, 89, 92, 101, 102

[223] P. Wang, W. Li, Z. Gao, J. Zhang, C. Tang, and P. Ogunbona. Action Recognition from

Depth Maps Using Deep Convolutional Neural Networks. In IEEE Transactions on

Human Machine Systems, 2015. 29, 89, 100, 101, 102

[224] R. Y. Wang and J. Popovic. Real-time hand-tracking with a color glove. ACM Transactions

on Graphic, 2009. 16, 19

[225] X. Wang, R. Girshick, A. Gupta, and K. He. Non-local neural networks. In CVPR, 2018.

33

[226] S.-E. Wei, V. Ramakrishna, T. Kanade, and Y. Sheikh. Convolutional pose machines. In

CVPR, 2016. x, 3, 6, 16, 21, 22, 35, 69

[227] D. Wu and L. Shao. Leveraging hierarchical parametric networks for skeletal joints based

action segmentation and recognition. In CVPR, 2014. 34

140

[228] M.-Y. Wu, Y. H. Tang, P.-W. Ting, and L.-C. Fu. Hand pose learning: combining deep

learning and hierarchical refinement for 3D hand pose estimation. . In BMVC, 2017. 25

[229] Z. Wu and R. Leahy. An optimal graph theoretic approach to data clustering: theory and

its application to image segmentation. TPAMI, 1993. 97

[230] L. Xia and J. K. Aggarwal. Spatio-Temporal Depth Cuboid Similarity Feature for Activity

Recognition Using Depth Camera. In CVPR, 2013. 101, 102

[231] L. Xia, C.-C. Chen, and J. K. Aggarwal. View invariant human action recognition using

histograms of 3D joints. In CVPR Workshop on Human Activity Understanding from 3D

Data, 2012. 33

[232] D. Xiang, H. Joo, and Y. Sheikh. Monocular total capture: posing face, body, and hands

in the wild. In CVPR, 2019. 15

[233] X. Yang, C. Zhang, and Y. Tian. Recognizing Actions Using Depth Motion Maps-based

Histograms of Oriented Gradients. In ACM Multimedia, 2012. 29

[234] Y. Yang, C. Fermuller, Y. Li, and Y. Aloimonos. Grasp type revisited: a modern

perspective on a classical feature for vision. In CVPR, 2015. 35

[235] A. Yao, J. Gall, G. Fanelli, and L. V. Gool. Does Human Action Recognition Benefit

from Pose Estimation? In BMVC, 2011. 20, 30, 34

[236] A. Yao, J. Gall, G. Fanelli, and L. J. Van Gool. Does human action recognition benefit

from pose estimation?. In BMVC, 2011. 19

[237] M. Ye and R. Yang. Real-time simultaneous pose and shape estimation for articulated

objects using a single depth camera. In CVPR, 2014. 20

[238] Q. Ye, S. Yuan, and T.-K. Kim. Spatial attention deep net with partial PSO for hierarchical

hybrid hand pose estimation. In ECCV, 2016. 22, 67

[239] R. Yu, H. Wang, A. Li, J. Zheng, V. I. Morariu, and L. S. Davis. Layout-induced video

representation for recognizing agent-in-place actions. In ICCV, 2017. 31

[240] T.-H. Yu, T.-K. Kim, and R. Cipolla. Real-time action recognition by spatiotemporal

semantic and structural forests. In BMVC, 2010. 32

141

[241] T.-H. Yu, T.-K. Kim, and R. Cipolla. Unconstrained monocular 3D human pose estimation

by action detection and cross-modality regression forest. In CVPR, 2013. 6, 30

[242] S. Yuan, G. Garcia-Hernando, B. Stenger, G. Moon, J. Y. Chang, K. M. Lee, P. Molchanov,

J. Kautz, S. Honari, L. Ge, J. Yuan, X. Chen, G. Wang, F. Yang, K. Akiyama, Y. Wu,

Q. Wan, M. Madadi, S. Escalera, S. Li, D. Lee, I. Oikonomidis, A. Argyros, and T.-K.

Kim. Depth-based 3D hand pose estimation: From current achievements to future goals.

In CVPR, 2018. 1, 7, 8, 21

[243] S. Yuan, Q. Ye, G. Garcia-Hernando, and T.-K. Kim. The 2017 hands in the million

challenge on 3d hand pose estimation. arXiv preprint arXiv:1707.02237, 2017. 113

[244] S. Yuan, Q. Ye, B. Stenger, S. Jain, and T.-K. Kim. Big hand 2.2M benchmark: hand

pose data set and state of the art analysis. In CVPR, 2017. x, xi, xiii, 2, 3, 7, 8, 15, 21, 25,

26, 39, 41, 42, 46, 47, 52, 53, 54, 59, 60, 111

[245] A. R. Zamir, A. Sax, W. Shen, L. Guibas, J. Malik, and S. Savarese. Taskonomy:

Disetangling task transfer learning. In CVPR, 2018. 7, 108

[246] M. Zanfir, M. Leordeanu, and C. Sminchisescu. The moving pose: an efficienct 3D

kinematics descriptor for low-latency action recognition and detection. In ICCV, 2013.

30

[247] M. Zanfir, M. Leordeanu, and C. Sminchisescu. The moving pose: an efficient 3D

kinematics descriptor for low-latency action recognition and detection. In ICCV, 2013.

30, 93

[248] J. Zhang, J. Jiao, M. Chen, L. Qu, X. Xu, and Q. Yang. A hand pose tracking benchmark

from stereo matching. In ICIP, 2017. xviii, 26, 79, 111, 118, 119

[249] S.-H. Zhang, R. Li, X. Dong, P. L. Rosin, Z. Cai, H. Xi, D. Yang, H.-Z. Huang, and S.-M.

Hu. Pose2Seg: detection free human instance segmentation. In CVPR, 2019. 6

[250] X. Zhang, Y. Wang, M. Gou, M. Sznaier, and O. Camps. Efficient temporal sequence

comparison and classification using gram matrix embeddings on a riemannian manifold.

In CVPR, 2016. 31, 89

142

[251] S. Zhou, H. Fu, L. Liu, D. Cohen-Or, and X. Han. Parametric reshaping of human bodies

in images. TOG, 2010. 16

[252] X. Zhou, Q. Wan, W. Zhang, X. Xue, and Y. Wei. Model-based deep hand pose estimation.

In IJCAI, 2016. 21

[253] J.-Y. Zhu, T. Park, P. Isola, and A. A. Efros. Unpaired image-to-image translation using

cycle-consistent adversarial networks. In ICCV, 2017. 49, 50

[254] X. Zhu, X. Jia, and K.-Y. K. Wong. Pixel-level hand detection with shape-aware structured

forests. In ACCV, 2014. 20

[255] Y. Zhu, W. Chen, and G. Guo. Fusing spatiotemporal features and joints for 3D action

recognition. In CVPR Workshop, 2013. 32, 93, 101, 102

[256] C. Zimmermann and T. Brox. Learning to estimate 3D hand pose from single RGB

images. In ICCV, 2017. xviii, 22, 23, 26, 66, 69, 73, 74, 76, 79, 80, 81, 83, 107, 111,

118, 119

143

	List of Figures
	List of Tables
	Acronyms
	Glossary
	1 Introduction
	1.1 Problem definition
	1.2 Challenges
	1.3 Our focus and solutions
	1.4 Thesis outline and contributions
	2 Background
	2.1 Pose estimation
	2.2 Action recognition
	2.3 Evaluation criteria

	3 Coarse Pose Estimation via Explicit 2.5D Data Reconstruction and Augmentation
	3.1 Motivation
	3.2 Hand pose estimation by skeleton augmentation
	3.3 Experiments
	3.4 Qualitative evaluation
	3.5 Conclusion

	4 Dense Pose Estimation via Explicit Full 3D Data Reconstruction and Augmentation
	4.1 Motivation
	4.2 Proposed dense hand pose estimator
	4.3 Experiments
	4.4 Conclusion

	5 Action Recognition using the 3D Geometry (Body Skeleton, Scene Layouts)
	5.1 Motivation
	5.2 PATIENT dataset
	5.3 Kinematic-Layout-aware Random Forests
	5.4 Experiments
	5.5 Conclusion

	6 Conclusion
	6.1 Summary of thesis achievements
	6.2 Future Work

	A BigHandMesh: A novel multimodal synthetic dataset
	A.1 Motivation
	A.2 BigHandMesh Generation
	A.3 Experiments: Dataset quality analysis
	A.4 Conclusion
	References

