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Resumo

Hoje em dia, a tecnologia de jogos está muito avançada e pode ser usada de várias maneiras, in-
cluindo entretenimento, educação e até reabilitação. Os jogos de Realidade Virtual (VR) podem
ser uma forma importante de realizar reabilitação, porque requerem muito mais envolvimento do
utilizador, interagindo com movimentos e com emoções dos jogadores. Este trabalho apresenta o
desenvolvimento de vários métodos para duas tarefas de visão por computador distintas, Recon-
hecimento de Ações Humanas (HAR) e Reconhecimento da Expressão Facial (FER), integradas
como parâmetros de decisão de um módulo de Adaptação Dinâmica de Dificuldade (DDA) no fu-
turo, ajustando assim dinamicamente a dificuldade do jogo com base no desempenho do jogador.
Para executar tarefas de HAR, o trabalho descrito nesta dissertação recorreu a dois algoritmos dis-
tintos, OpenPose (2D) e BlazePose (3D), para extrair o esqueleto humano e depois normalizar e
explorar esta informação, de forma a classificar que ação um humano está a realizar. A pontuação
de F1 mais alta 0.745, utilizando o conjunto de dados N-UCLA, foi conseguida com o algoritmo
de extração do esqueleto OpenPose, seguida da computação dos ângulos entre as articulações mais
próximas.

No que diz respeito ao FER, este trabalho apresenta também o desenvolvimento de um módulo
capaz de detetar expressões faciais, enquanto o utilizador está a usar óculos VR, escondendo as-
sim, parte do rosto. Para executar esta tarefa, três Redes Neuronais Convolutionais (CNNs), uma
ResNet-18, um VGG19 e a combinação de ambas, foram usadas. Concluiu-se que o melhor mod-
elo de classificação foi a combinação de ambas as redes, que obteve uma eficácia de classificação
de 0.649.
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Abstract

Nowadays, games are very advanced being one of the top and fresh technological themes and can
be used in a variety of ways, including entertainment, education, and even rehabilitation. Vir-
tual Reality (VR) games can be an important way to perform rehabilitation because they require
much more involvement from the user, interacting with movements and player’s emotions. This
work presents the development of several methods for two distinct computer vision tasks, Human
Action Recognition (HAR) and Facial Expression Recognition (FER), integrated as decision pa-
rameters of a Dynamic Difficulty Adaptation (DDA) module in the future, dynamically adjusting
the difficulty of the game, based on how the player performs. To perform HAR tasks, the work
described in this dissertation, followed the usage of two distinct algorithms, OpenPose (2D) and
BlazePose (3D), to extract the human skeleton and then normalize and explore this information,
in order to classify which action a human is performing. The highest F1 score 0.745, using the
N-UCLA dataset, was achieved using OpenPose skeleton extraction, followed by the computation
of the angles between the closest joints.

Regarding FER, this work presents also the development of a module capable of detecting
facial expressions, while the user is wearing VR glasses, occluding like this, part of the face.
To perform this task, three Convolutional Neural Networks (CNNs), a ResNet-18, a VGG19 and
the combination of both, were used. It was concluded that the best classifying model was the
combination of both networks, which achieved an accuracy of 0.649.
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“Excellence is an art won by training and habituation. We do not act rightly because we have
virtue or excellence, but we rather have those because we have acted rightly. We are what we

repeatedly do. Excellence, then, is not an act but a habit.”

Aristotle
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Chapter 1

Introduction

1.1 Background

Games, whether in video or VR format, are usually accomplished through a series of levels of

increasing difficulty. When playing games either offline or online, the intuitive approach is to

divide them into three difficulty levels [85], commonly labeled as: easy, medium, and hard [113].

This division in three levels can be seen in several applications, such as educational games [98],

virtual reality games [35], video games for entertainment purposes [121], and even on gamification

systems for educational purposes [73]. Although this division into three levels can be seen as the

standard approach, in some cases it can be extended to accommodate more levels or finer degrees

of difficulty. The authors in [88] concluded that their game should have more than three levels of

difficulty because the player would frequently get stuck on either the lower or higher difficulty.

Many games allow the user to select the desired level of difficulty at the beginning of the game,

that will be kept until the player decides to change it. When the user is playing a game for the

first time, deciding on his/her own can be difficult because they have no idea about the difficulty

of each level and do not know the relative level of their skills [85]. Furthermore, requiring players

to select difficulty levels on a regular basis may be inconvenient and cause game interruptions.

When people engage in an activity that is neither boring nor frustrating, they become engaged

in it, allowing them to work for longer periods of time and remain focused on the task. The flow

channel (Figure 1.1) is a state of mind whose ideas can be applied to a video game [27]. Following

the flow, the idea of using adaptive difficulty mechanisms is to keep the game’s difficulty within a

certain range to prevent the player from getting bored if the game is too easy, or frustrated if the

game is too difficult. In recent years, there has been a lot of research done on Dynamic Difficulty

Adjustment (DDA) applied to games [144].

DDA aims to adapt the difficulty of the game based on the players’ performance, and can be

accomplished by considering not only their in-game performance, but also the associated phys-

iological responses. By measuring and integrating physiological data it is possible to map how

difficult or easy it is for the player to perform a given task [67]. The study in [115], demon-

strated that DDA based on Electroencephalography (EEG) signals improved the players’ game

1



Introduction 2

Figure 1.1: Flow channel [41].

experience.

VR games may necessitate more information than the actual gameplay; one method of obtain-

ing information about how a player is performing in the game is to record the gameplay with a

third-party camera. This can be integrated in real time in a VR game to provide a clear and grateful

gameplay experience. Although substantial research has already been done to construct effective

HAR systems from RGB videos, only a few have dedicated its application in a VR [33]. HAR is a

constantly evolving topic that has received a lot of attention from researchers due to its importance

in a variety of real-world applications, with recent technological advancements allowing for novel

applications [10]. It is critical in unknown environments or situations to automatically detect what

a person is doing. Along with the respective algorithm to detect these actions, data acquisition

is also a critical step, because it is sometimes impossible to use whichever algorithm, even by

pre-processing of the visual data, due to poor acquisition conditions.

Since HAR algorithms can be insufficient to determine if a person is performing well on the

game, the inclusion of the classification of players’ facial expression, can be a crucial factor, to

build a complete and structured DDA system. The classification of human facial expressions in-

dicate whether a given subject is smiling, angry, sad, or others, and may be used to determine

whether or not, a person is in a stressful situation. Facial expressions are often expressed auto-

matically, without the transmitter even realizing that he/she is executing them [127]. Based on

these signals, we adjust our behaviour and make choices according to our perception of the emo-

tional state of the other person. In other words, the interaction may be conditioned by the mutual

interpretation of the emotional state, derived from reading the other’s facial expression (and com-

plemented with body language, voice tone, and others). Extending this possibility to computers,

the automatic identification of human facial expressions introduces several benefits. It has the po-

tential to develop better and more useful human-computer interaction, provide visually impaired

with haptic clues regarding the expression of others [107], monitor the motivation of students

in the classroom [112], among many other applications. Although difficult, Facial Expression
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Recognition (FER) is constantly evolving with several proposed solutions by the scientific com-

munity [143].

1.2 Objectives

The work described in this dissertation aims at the development, testing and validation, of several

methods for two distinct computer vision tasks (FER and HAR), that will be potentially integrated,

in order to fulfill a future DDA module (Figure 1.2). Grounded by previous research [18], the

future DDA module, will consist on the development of a Reinforcement Learning (RL) system,

that will benefit from several inputs as basis for decision (FER, HAR, the gameplay, etc.).

Figure 1.2: Biometric and physiological data sources for DDA [74].

Regarding the recognition of players’ facial expression, two tasks are explored: face detection

and expression recognition. The main objective of this module is to develop a system capable of

evaluating humans facial expression in real-time and, eventually, use this information to assess the

emotional state while playing a virtual reality game. It should be noted that since this work aims to

integrate this module in a DDA system while playing a VR game, it introduces another challenge

to this work: the classification of human facial expressions with a portion of the face occluded.
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The HAR module, aims at quickly classifying the actions a player is performing in a VR

environment. The classification of the task a player is performing may indicate whether he/she

is performing the expected action, struggling with a difficulty or with no difficulty at all. For the

time being, our methodology has only been tested on a public dataset; however, our dataset is

being collected and will include a set of actions performed by a player while playing a VR game.

1.3 Structure

The remaining part of this dissertation is structured in 6 chapters, as follows: Chapter 2, discusses

recent relevant approaches in the field of HAR and FER, detailing different methods and results;

Chapter 3, describes the methodology used in this work to perform HAR; Chapter 4 shows the

methodology used to solve the facial expression recognition task, with and without oclusion of

part of the face; Chapter 5 introduces the datasets used in this work and also the development of

our own dataset, based on several daily basis actions; Chapter 6 shows the results obtained using

the proposed methodology to solve the two distinct tasks; and finally, conclusions are drawn and

future work is proposed, in Chapter 7.



Chapter 2

Related Work

This chapter provides the most relevant state-of-the-art approaches in HAR, HAR in VR games,

FER and also FER with part of the face occluded. Also, supported by our review paper [18],

Table 2.1 provides an overview of the most relevant DDA approaches, showing the game type, the

sensors/data sources used, the respective techniques and their achievements and limitations.

Table 2.1: Overview of Dynamic Difficulty Adjustment Games

Study Game Type Sensors/ Data Source Techniques Used Achievements Limitations
Huber et al. [49] Virtual Reality Enter-

tainment Game
Head-Mounted Display
(HMD); Electrocardiogram
(ECG) sensor attached to
patient’s upper body

Deep Reinforcement Learn-
ing

Generation of levels based
on player’s skills.

Static user simulation. Gen-
erated levels to slow to allow
for fast adaptation.

Tan et al. [123] Entertainment Com-
puter Game

Keyboard; AI algorithm Reinforcement Learning;
Adaptive Uni-Chromosome;
Duo-chromosome Con-
troller

Training is not required;
adaptation takes place dur-
ing the game session.

The adaptative controller is
only good as its design; un-
able to adapt if a player ex-
ceeds its full potential.

Liu et al. [67] Entertainment Com-
puter Game

Wearable biofeedback sen-
sors

Machine Learning Classi-
fiers Highlited: Regression
Tree

Dynamic difficulty adjust-
ment based on players’ af-
fective state.

Unconfortable sensors.
Training time too long.

Chanel et al. [19] Entertainment Com-
puter Game

Electrodermal Activity sen-
sors

Deep Learning Techniques Dynamic adaptation of the
game, based on two possible
emotional states.

Module just uses physiolog-
ical data, nothing related to
player’s performance.

Blom et al. [12] Entertainment Com-
puter Game

Computer Camera Machine Learning Classi-
fiers; Heuristic Algorithm

Dynamic difficulty adjust-
ment based on players’ fa-
cial expression.

Adaptation based only on
players’ facial expression.
More features could be
added.

Hocine et al. [44] Motor Rehabilitation Computer Mouse; Graphics
tablet

Monte Carlo Tree Search;
Reward Based System;
Computer Vision Algo-
rithms

The game adapts to each
profile in real time.

The number of different sub-
jects and profiles is limited.

Sekhavat [108] Motor Rehabilitation Microsoft Kinect RL; Multiple-Periodic RL Automatic Adaptation based
on real time patient’s skills.

Low accuracy. It only con-
siders players’ skill level.

Ávila et al. [145] Motor Rehabilitation
- Virtual Reality
Based

Abstract definition of the
method; it was unclear how
data was received

Reinforcement Learning;
Markov Decision Process

Online Adaptation during
game.

The therapist needs to be
available during game.

Andrade et al. [4] Motor Rehabilitation Robotic Device Reinforcement Learning Motor Rehabilitation using
robotics.

Small sample size. Just four
players were included.

Pezzera et al. [87] Motor Rehabilitation Microsoft Kinect; Nintendo
Wii Balance Board

Fuzzy Logic Adaptation based not only
on players’ performance but
also on theirs’ physiological
state.

Physiological state extracted
by Virtual Theraphist dur-
ing game, could be im-
proved with other mecha-
nisms, such as cameras, sen-
sors, etc.

Balan et al. [14] Mental Rehabilita-
tion - Virtual Reality
Based

Acticap Xpress Bundle
(EEG data); Shimmers
Multi-Sensory (Heart Rate
and Galvanic Skin Response
data)

Machine Learning classi-
fiers; Deep Neural Networks

Virtual reality game that di-
namically adapts its’ diffi-
culty based on patient cur-
rent level of fear.

Small sample size, possibly
leads to overfitting.

Balan et al. [15] Mental Rehabilita-
tion - Virtual Reality
Based

Two HTC Vive Trackers;
HMDS; EEG Device

Machine Learning classi-
fiers; Deep Neural Networks

Adaptation based on phys-
iological signals, facial ex-
pression and respiration rate.

Small sample size. Discom-
fort in the head by using sen-
sors.

5
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2.1 Human Action Recognition

HAR has received a lot of attention by researchers during recent years [22, 59, 90, 138]. There are

numerous approaches to solve this classification problem. Our application seeks an efficient and

fast classification of which action a human is performing, since this is needed in real time. This

section aims to provide a set of relevant techniques that may be applicable to our specific problem.

In addition, the current advances in HAR in a VR environment were also studied, to analyze what

progresses have been made in this field.

Ullah et al. [126] have proposed an efficient action recognition system for processing data

streams obtained from real-world dynamic scenarios. Their system’s input can come from a va-

riety of sources, including internet surveillance video data streams, websites, social media feeds,

and other visual content resources. The authors used a pre-trained VGG-16 for frame level repre-

sentation of an action in video streams, but in order to reduce computational time, they modified

previous state-of-the-art Convolutional Neural Network (CNN) models by reducing the convo-

lutional kernel size and also the stride. Then, from raw video frame data, an optimized Deep

Autoencoder (DAE) was trained to accurately represent actions (sequence of motion patterns in

consecutive frames). The DAE’s goal was to compress those features so it could associate hid-

den changes in the low-dimensional feature plane from frame to frame. The authors emphasized

the effectiveness of this method in comparison to more complex learning approaches such as Long

Short-Term Memory (LSTM). Then, using a non-linear learning approach, they trained a quadratic

Suport Vector Machine (SVM) to recognize actions from a low-dimensional features plane (DAE

output), at a rate of 25 frames per second. Finally, in the testing phase, an iterative fine-tuning

method was included to update the parameters of the trained model using freshly gathered data

from the non-stationary environment. The authors have tested their method in several datasets

such as: UCF50 [97], UCF101 [114], HMDB51 [61], and YouTube Action dataset [68]. They

demonstrated system efficiency by achieving state-of-the-art accuracy results of 96.4%, 94.33%,

70.3%, and 96.21% respectively, while also reducing running time. The authors concluded that

their system can be extended for video classification, human activity recognition, violent event

recognition, and crowd analysis in dense environments.

Further more, Ullah et al. [125] have proposed an activity recognition framework for indus-

trial surveillance systems. To analyze activity analysis, the authors have only selected the parts

of a video where a human appears. To accomplish this, significant shots were chosen from a

video stream using CNN-based human saliency features. The authors used a pre-trained Mo-

bileNet [105] and trained the feature maps on the INRIA person dataset [28], which learns to

select only the salient regions that are activated for people in a video frame. These regions were

used to extract salient features and segment shots, yielding representative shots suitable for in-

dustrial video stream analysis and activity recognition. Then, the authors used FlowNet2 [50], a

CNN-based optical flow model, to extract temporal features. They chose optical flow because it is

a popular source of motion estimation in video sequences. Due to the greater impact of LSTM in

learning time series data, the authors used a multilayer LSTM to learn the long-term sequences in
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the temporal optical flow features for activity recognition. The authors tested their method using

different benchmark action and activity recognition datasets, achieving an accuracy of 94.45%,

72.21%, 69.5%, 94.9% and 95.8% in the UCF101 [114], HMDB51 [61], HOLLYWOOD2 [77],

UCF50 [97] and YouTube Action dataset [68] respectively. The results in all datasets are very

similar to the ones presented by the same authors in [126].

Rao [96] was able to identify various kinds of human actions (wave, stand, punch, kick, squat,

sit, walk, run and jump). The author started by estimating the human pose with OpenPose [17],

preprocessing the data and scaling the images to deal with images with different sizes. The joints

of the head and the frames where the neck does not appear were discarded. After this, the author

proceeded to the feature extraction step. Using 5 frames, the most salient features were extracted,

calculating the average height of the skeleton to normalize the features, the velocity of the joints

and the length of each limb. Finally, Rao proceeded to classify the actions with the following clas-

sifiers: K-Nearest Neighbour (KNN), SVM, Deep Neural Network (DNN) and Random Forest.

He used a division of 70% for training and 30% for testing. DNN achieved the highest accuracy

(99.4%), due to its ability to deal with large amounts of data.

Zhang et al. [140] proposed a self-regulated view adaptive (VA) scheme who re-posit the ob-

servation in order to facilitate the action recognition. Then, based on a Recurrent Neural Network

(RNN) and a CNN, they created two VA neural networks called VA-RNN and VA-CNN. The

first was based on a subnetwork RNN, which consists of a network capable of transforming the

skeleton into new representations for various observable viewpoints, and an LSTM to recognize

actions from the skeletons. The second was based on a subnetwork CNN to learn and determine

the sequence-level observation viewpoint and a main CNN capable of extracting features from

the skeleton (both networks were trained end-to-end to optimize the classification performance).

After, they fused the scores of the two networks (VA-fusion) to achieve better results and bet-

ter performance to provide the final prediction. They used five different datasets: NTU [109],

SYSU [46], UWA [93], N-UCLA [128], SBU [137] obtaining 95% , 86.7%, 81.4%, 88.1% and

98.3% of classification accuracy respectively. It should be noted that these values were obtained

with the VA-fusion, concluding that it provides better results.

By combining multiple vision cues from an RGB-D sensor, Khaire et al. [56] presented a novel

method for generating pose images from joint sequences that represent motion. They have created

a data processing method, trained on a CNN, which acted as individual classifier to recognize

activity. The authors combined 5 CNN streams (classifiers) of RGB, Depth, and Skeletal data at

the decision level, the last one revealed a critical factor in their approach. For action recognition

they used both pre-trained VGG-16 (large architecture) and VGG-F models (small architecture),

which proved to be competitive models comparing to state-of-the-art. To evaluate the relevance

of their approach, the authors have tested their method in three well known datasets, the CAD-

60 [119], SBU Kinect interaction [137] and UTD-MHAD [20], achieving an accuracy of 95.11%,

96.67% and 94.60% respectively. The authors also highlighted that their method is better suited

for indoor scenes where the background is almost static or constant.

Kamel et al. [54], presented a new HAR method that used three channels (RGB - Red, Green
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and Blue) of deep CNNs from posture data and depth maps. To represent body posture sequences,

the authors have used a Moving Joints Descriptor (MJD). This descriptor provides crucial infor-

mation about the joints’ movement directions, as well as changes in joint poses, based on the size

of angles. To represent depth maps sequences the authors have used a Depth Motion Image (DMI)

descriptor. This descriptor was used to represent changes in action depth from the front view only,

rather than two views as in [57]. This was possible with the help of the MJD descriptor, which

also reduced computation complexity. Three CNN channels were used in the action recognition

process, which were trained with DMI and MJD descriptors for feature extraction and classifi-

cation. DMI was used to train the first channel, and the second channel is a link between two

sub-channels. DMI was used to train one sub-channel, while MJD was used to train the other.

Only MJD was used to train the third channel. To maximize the score value of the right action, the

authors employed score fusion operations. In a nutshell, each CNN channel assigns a score to each

action, with the highest score indicating the correct action. To evaluate their approach, they used

three public datasets: MSRAction3D [66], UTD-MHAD [20], and MAD dataset [48], achieving a

competitive accuracy comparing to state-of-the-art, of 94.50% (a little lower than state-of-the-art),

88.14% and 91.86% respectively.

Jaouedi et al. [51], proposed a fully automated scheme for HAR using a fusion of DNN and

multiview features. The majority of cutting-edge techniques use deep learning to focus on a single

view of human representation. The recognition of multi-view actions is a difficult task due to a

variety of factors such as illumination, human styles (walking, jogging, listing phones, punching,

etc.), and the quality of selected videos. The authors extracted multiview features by using gradient

information from both the x- and y-axes and then combining this information. They used the en-

tropy max activation function to perform transfer learning on original pre-trained models (VGG19)

in order to improve classification accuracy. Three metrics, relative entropy, mutual information,

and high correlation coefficient, were used to choose the best features (SCC). Furthermore, us-

ing a higher probability based threshold function, these parameters were used to choose the best

subset of characteristics. For final recognition, the final selected characteristics were provided

to the Naive Bayes classifier. To compare their work with state-of-the-art methods, the authors

have used five datasets: HMDB51 [61], UCF Sports [101], YouTube [68], IXMAS [131], and

KTH [68]. They have achieved better results than state-of-the-art, with a classification accuracy

of 93.7%, 98%, 99.4%, 95.2%, and 97%, respectively.

Recently in 2021 Mroz et al. [82], performed a comparing study between OpenPose [17] and

BlazePose [9] to determine if these models can produce clinically valid body keypoints for virtual

motion evaluation. The authors of this study assessed the efficacy of detecting keypoints using

Pearson correlation and root mean square error metrics. When compared to OpenPose, BlazePose

exhibited more instances where keypoints strayed from anatomical joint centers, indicating that

the BlazePose was not yet the ideal solution for clinically meaningful evaluations. The BlazePose

runtime, on the other hand, was significantly quicker than OpenPose (approximately 6 times faster)

and generated metrics that could be used in a smartphone application. The authors concluded that

for their application the OpenPose was the best model for pose estimation. However, BlazePose
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has also the z coordinate which can represent significant information about human pose.

In order to provide a brief overview of the efficacy of the detailed studies, the Table 2.2 shows

all state-of-the-art methods described and also their respective accuracy.

Table 2.2: Accuracy State-of-the-Art HAR methods on different datasets

Author UCF50
[97]

UCF101
[114]

HMDB
[61]

Youtube
[68]

HOLLY
[77]

NTU
[110]

SYSU
[47]

UWA
[94]

N-
UCLA
[129]

CAD-
60
[119]

SBU
[137]

UTD-
MHAD
[20]

MSR3D
[66]

MAD
[48]

UCF
Sports
[101]

IXMAS
[131]

KTH
[68]

Ullah
et al.
[126]

96.4% 94.33% 70.3% 96.21% - - - - - - - - - - - - -

Ullah
et al.
[125]

94.9
%

94.45% 72.21% 95.8% 69.5% - - - - - - - - - - - -

Zhang
et al.
[140]

- - - - - 95% 86.7% 81.4% 88.1% - 98.3% - - - - - -

Khaire
et al.
[56]

- - - - - - - - - 95.11% 95.11% 94.60% - - - - -

Kamel
et al.
[54]

- - - - - - - - - - - 88.14% 94.50% 91.86% - - -

Jaouedi
et al.
[51]

- - 93.7% 99.4% - - - - - - - - - - 98% 95.2% 97%

2.2 HAR in a VR environment

Earlier in 2008, Choi et al. [24], proposed a real-time system that robustly tracks multiple people

and recognizes their actions using image sequences acquired from a single fixed camera, allowing

multiple people in a virtual environment to interact with virtual agents simultaneously and conve-

niently. They did this by processing each frame individually, extracting blobs using the Mixture

of Gaussian technique [13], and removing shadows and highlights to get a more accurate object

silhouette. Finally, they model an action as a Motion History Image (MHI) based on specified ob-

ject tracks, normalize the MHI, reduce the MHI using Principal Component Analysis (PCA), and

categorize an action using a multi-layer perceptron. To demonstrate their approach, they used it in

an Augmented Reality (AR) application where numerous people could interact with a virtual pet,

demonstrating that the system works. However, they did not test their system with any available

dataset.

Kwon et al. [62], presented a virtual training simulator that used multiple Kinect sensors to

provide a trainee with an interactive training environment (military training). To this goal, a 360-

degree multiview human action identification system including coordinate system transformation,

front-view Kinect sensor tracking, multi-skeleton fusion, skeleton normalization, orientation ad-

justment, feature extraction, and an SVM to perform classification was used. This enabled trainees

to enjoy a realistic and immersive virtual training by recognizing their actions and synchronizing

them with VR information. They tested their system with their own database, demonstrating its

utility in military training, achieving an average accuracy of 96.5%.

Fangbemi et al. [33], presented a novel AR and VR interaction interface based on HAR with

a new binary motion descriptor that can describe and recognize different actions in videos quickly
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and accurately. To accomplish this, they claim to have developed a new compact patch pattern

(PP pattern) that includes all pixel information in the closest vicinity of a keypoint to describe its

motion between three consecutive frames. With this, they created the Binary Proximity Patches

Ensemble Motion (BPPEM) descriptor, which computes the change in texture at the same point

from three consecutive frames using the PP pattern, as opposed to previous works that computed

the descriptors using different positions. They used the Weizmann and KTH [68] datasets to

compare their method to state-of-the-art spatio-temporal binary descriptors in order to evaluate

their approach (through the use of an SVM, to perform the classification). They achieved lower

classification accuracy than most state-of-the-art methods, despite being the faster method and

having a good classification accuracy of 92.22 % for the Weizmann dataset [11] and 91.14 % for

the KTH dataset [68].

Since the reality of VR is based primarily on human-computer interaction, which is closely

related to human action recognition technology, Ma in [76] has explored HAR algorithms to im-

prove smart cultural tourism in a VR environment. The author proposed an action recognition

algorithm based on a Self-Organizing Mapping network (SOM). A SOM is a low-dimensional

discrete mapping produced by learning the data in the input space and gradually optimizing the

network using a competitive learning strategy, which has the self-organizing properties of the hu-

man brain and is capable of identifying the intrinsically related characteristics in a problem [58].

Due to this useful properties, the authors used a SOM neural network to obtain the key frame of

tourists’ actions, shortens recognition time, and combined it with multi-feature recognition method

to improve action recognition accuracy. They have evaluated their method with the UT-Kinect ac-

tion dataset [133], achieving an accuracy of 93.68%, the highest among the methods they tested

(Histograms of 3D joints, Skeleton joint features, Random forest fusion STIP feature method).

When dealing with HAR classification problems, it is possible to conclude that skeleton-based,

image-based, shallow-based, and deep-based methodologies can all be successful. Some of these

methods combine skeleton information with deep learning methods that analyze the entire im-

age rather than just the detected skeleton. This can be very effective because the two pieces of

information can complement each other.

2.3 Facial Expression Recognition

Over the centuries there have been several attempts to organize emotions into several categories.

Cicero [91], held that they should be divided into four categories: fear (metus), pain (aegritudo),

lust (libido) and pleasure (laetiti). Darwin and Prodger [92], for example, have used twenty-two

categories, including anxiety, joy, love, devotion, anger, helplessness, surprise, fear, among others.

More recently, Plutchik has introduced the wheel of emotions (Figure 2.1), with 8 primary

dimensions of emotion, namely joy, trust, fear, surprise, sadness, disgust, anger, anticipation [31].

The distance to the center dimension represents the intensity, that is, the emotions are intensifying

as they move from the outside to the center. For example, boredom can intensify to disgust, and

from this to loathe, if not controlled. Each sector has an opposite emotion (the opposite of joy
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is sadness, the opposite of anger is fear, and so on). Emotions that have no corresponding color

represent an emotion that is the mixture of two primary emotions, for example, the combination

of joy and trust results in love.

optimism love

aggressiveness submission

contempt awe

remorse disapproval

annoyance anger rage

vigilance

anticipation

interest

ecstasy

joy

serenity

admiration

trust

acceptance

terror fear apprehension

amazement

surprise

distraction

pensiveness

sadness

grief

boredom

disgust

loathing

Figure 2.1: Wheel of emotions [31].

The sole analysis of facial expressions is not enough to assess a person’s sentiment. However,

55% of information is communicated by facial expressions, 38% by other gestures and signals

(such as voice and sound) and 7% by spoken language [78]. Based on this, FER account as an

important factor for human sentiment recognition. With constantly improving of the computing

power, jointly with the development of big data processing technology and algorithms, the auto-

matic classification of facial expressions have been growing in accuracy and interest.

Devries et al. [30], demonstrated that a system trained to reason about facial geometry while

recognizing expressions outperforms one trained solely to recognize expressions (Figure 2.2).

Since facial landmark prediction has many publicly implementations available, the authors de-

cided to use Zhu and Ramanan’s facial landmark detector, which uses coordinates for 68 reference

points per face. All of these points are used to outline facial features like the mouth, nose, eyes,

and eyebrows. The authors simplified the problem by focusing on the most expressive features of

humans facial expression: the eyebrows and mouth (rough reference points). Each of the positions

of the left brow, right brow, and mouth were represented by a binary mask image.

The authors have used a CNN that was based on the winning architecture of the 2013 ICML

Facial Expression Recognition Competition [124]. They opted for a CNN with 3 convolutional

layers fully connected, each with a ReLU activation function and max pooling. The network’s



Related Work 12

Figure 2.2: Facial landmarks for expression recognition: 1) image with 68 facial landmarks; 2)
left eyebrow created by aggregating the red landmarks; 3) right eyebrow; 4) mouth; 5) overlay
aggregated landmarks on the original image [30].

output consisted of three binary output maps (one for each of the reference locations), and it was

thus in charge of modeling the location and shape of each of its features. Two datasets were

used in their work: ICML Dataset [40] and TFD database [120]. The ICML dataset consists of

28709 48x48 training images, each with 7 labels and 7177 test images. Since the images were

taken from a wild environment, the faces have different orientations and are not always facing

forward. In this dataset, the authors evaluated 2 different techniques: CNN with 3 convolutional

layers fully connected and a Multi-task CNN. TFD database is also made up of 48x48 images and

7 labels, however, all faces are looking directly at the camera. It contains 4178 images, 70% of

the images were used for training, 10% for validation, and 20% for testing. The authors used the

same evaluation techniques applied in the ICML dataset. The authors achieved the best results

by employing the multi task network, which resulted in a classification accuracy of 67.21% in the

IMCL dataset and 85.13% in the TFD database.

Baltrusaitis et al. [5] use the OpenFace facial behavior analysis pipeline (Figure 2.3), which

includes the following algorithms: facial landmark detection, head pose tracking, eye gaze and

facial Action Units. For the facial landmark detection and tracking, the authors have used the

Conditional Local Neural Fields (CLNF), with 2 main components: Point Distribution Model

(PDM) and patch experts. The PDM was been trained in 2 datasets, the LFPW and Helen. The

CLNF patch experts has been trained in 3 datasets, including the ones used in the PDM and also

the Multi-Pie dataset [42].

Figure 2.3: OpenFace behavior analysis pipeline [5].

In order to estimate the head pose, information about the position of the head (translation

and orientation) was extracted, as well as the detection of facial landmarks. This information

was obtained thanks to the CLNF, which internally uses a 3D facial landmark representation and
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projects it to the image using orthographic camera projection. To train their model the authors

have used the Mpiigaze [141] dataset.

Regarding the eye gaze estimation, CLNF and PDM were also used, since they allow detecting

reference points of the eye region, such as the eyelids, iris and pupil. The PDM was trained with

the Syntheseyes [132] dataset. The information obtained by the CLNF was used to compute the

eye gaze vector individually for each eye (lightning is fired from the camera’s source through the

center of the pupil in the image plan, and its intersection is computed to determine the pupil’s

location in 3D camera coordinates). Finally, Openface predicts AU presence using a linear (SVM)

kernel and AU intensity using a linear Support Vector Regression (SVR) kernel.

Loizou [71] proposed and evaluated a system for analyzing automated speech signals and

images for seven different human emotions: normal, happy, sad, dislike, fear, anger, and surprise.

Voice and image recordings of more than 70000 people aged twenty to seventy-four years old were

organized. The authors have used multi-classification models to select the features that identify the

seven emotions through an SVM with a 10-fold cross validation, using a Gaussian Radial Basis

Function with c=1 and γ=0.01. Statistically, a correct classification score of 93% was obtained.

Mindlink-Eumpy [65], an open-source toolbox, was designed to detect emotions by integrating

information from EEG and facial expressions. First, a set of tools was used to automatically

collect physiological data, which was then used to analyze user facial expressions and EEG data.

Regarding the analysis of user’s facial expression, they used a multitask CNN pre-trained with the

FER2013 dataset [40].

On the surface, the idea of using a pre-trained CNN, is to transfer the labeled data or knowl-

edge from some domains (previously performed tasks - Source Tasks), to help the Machine Learn-

ing (ML) algorithm to perform better in the domain of interest. Regarding the EEG analysis,

MindLink-Eumpy [65] uses two different algorithms: SVM and LSTM. In the decision-level fu-

sion, Weight enumerator and Adaboost techniques were applied to combine the predictions of the

CNN and the SVM. The authors have achieved an accuracy of 71% for SVM and 78.56% for the

LSTM.

Almeida and Rodrigues [3], developed a system capable of capturing real-time images and

alerting the user if there are any signs of stress. The system was divided into several modules,

such as (Figure 2.4):

1. Real-time image capture, via computer camera, sending the images to the next module.

2. Determining the user’s face position by the Haar-like feature. The image is further read-

justed and normalize.

3. After properly training the classification model, the model is able to classify each face and

return a list of seven classification probabilities, one for each facial expression.

4. The facial expression most likely to be embedded in this module determines whether or not

the person is under stress.
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Figure 2.4: Real face detection scheme [3]

The authors have used a CNN previously trained (transfer learning), that was applied using

two different techniques: Global Average Pooling (GAP) and Convolution Layer. The classifi-

cation took into account seven emotions (as in [71]). The authors used two multi-classification

models, using them to predict facial expressions and binary classification to classify images with

stress/non-stress. They achieved an accuracy of 92% in the best model (VGG16 [122]).

2.4 Occlusion

In [8], Bartlett et al. developed a real-time face recognition system that can recognize faces in

a video sequence and encode each frame with one of the seven corresponding emotions. All the

recognized faces were converted into images of the same size, using Gabor energy filters and were

later analyzed by Adaboost, which encodes facial expressions in 7 dimensions (corresponding to 7

emotions). The system was trained and tested with an SVM in the DFAT-504 dataset [55], which

is constituted by 100 university students between the ages of 18 and 30: 65% were female, 15%

African American, and 3% Asian or Latino. To validate their approach the authors combined

an SVM with Adaboost and named it as Adasvm, which produced an accuracy of 93.3%. By

themselves, Adaboost achieved an accuracy of 90.1% and SVM 89%, so both were used simulta-

neously.

Considering situations where the face is partially hidden, mainly the eyes, Cheng et al. [23]

used the following approach:

1. Images containing faces are segmented from human images of the same size;

2. The result obtained in the first step is then used to normalize and transform the images into

figures of Gabor magnitude through multi-scale and multi-orientation of the Gabor filters.
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Through these filters the low-level image characteristics of facial figures are reinforced, such

as the edges, peaks, contours of crests, eyes, nose and mouth, which are considered to be

the main components of the face;

3. The Gabor characteristics are extracted to form a 2D matrix, and the sampling completed

downwards to slightly reduce the dimension;

4. The samples are divided into mini-batches and the weights are updated to speed up the pre-

training of each Restricted Boltzmann Machine (RBM), which is a bipartite structure with

a visible layer and a hidden layer;

5. According to the dimension of the features, set the size of each layer from three layers

network (in general);

6. Generate weights and adjust them by fine-tuning;

7. The deep structure training process is divided into two stages: pre-tuning, which treats

the data labelled as unmarked for unsupervised training to provide each weight from the

lower layer to the top, and fine-tuning which is a simple process of gradient descent under

supervision;

8. The test is carried out in number 6 until convergence.

In addition to the Gabor filter, the authors also used other methods that use this filter to compare

with the proposed method: Local Gabor Binary Pattern Histogram Sequence (LGBHPS), modi-

fied LGBHPS, with the KNN Classification method respectively. The authors used the JAFFE

dataset [34], which consists of 213 images of 10 different individuals with seven different fa-

cial expressions: happiness, anger, sadness, fear, surprise, disgust and neutral. Considering that

this dataset is not available with natural partial occlusion facial images, the authors simulated the

occlusion by overlay graphic masks in the images of this dataset (Figure 2.5).

Figure 2.5: Partial occlusion process made in the JAFFE dataset [23]

The resulting images are divided into 2 parts: 143 images for training and 70 images for

testing (images containing occlusion of the eyes, mouth, upper and lower parts of the face). They

obtained an accuracy of 85.71% with no occlusion, 82.86% with occlusion of the eyes, 77.14%

with occlusion of the upper part of the face and 82.86% with occlusion of the lower part of the

face. These results are superior to all other methods used for comparison by the authors, although
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the reduced number of individuals in the dataset could be increased, which will be an impacting

factor in the classification process.

Houshmand and Mefraz [45] focused essentially on facial expression identification in the pres-

ence of a severe occlusion while the subject is utilizing a head-mounted display in a Virtual Re-

ality (VR) environment. Since display measurements are known, the authors were able to repli-

cate occlusion caused by these headsets using face detection applied to grayscale images using a

modification to the conventional Histogram of Oriented Gradients (HOG) and Linear SVM-based

approach for object detection. The authors estimated 68 reference coordinates that map the face

anatomy on the iBUG 300-W dataset [104]. Because the dataset contains images with varying

sizes, the distance between the two temporal bones of the temporal landmarks was used as the

reference length, and the polygonal occlusion patch was generated using the midpoint of the line

that passes through the center points of the eye as the VR headset’s central coordinate (Figure 2.6).

Figure 2.6: VR occlusion patch [45].

The authors have evaluated the effectiveness of two different architectures: VGG and ResNet.

They chose three datasets that cover different scales of face images and contain images with mo-

mentary occlusions to test these two architectures, namely FER+ [7], RAF-DB and Affectnet. The

authors have defined a rescale factor of 224*224 at the input of the CNNs, which meant that all

images used for training, testing, and validation were rescaled for the same measurements and

normalized using min-max normalization. The training procedure was carried out by optimizing

the multinomial logistic regression objective, which employs mini-batch gradient descent based

on momentum back propagation. To regularize the train phase in the ResNet, a max-norm kernel

restriction was added. The best result obtained by the authors was 79.98% of accuracy in the

ResNet model with transfer learning in the FER+ dataset.

Cornejo et al. [95] have structured their approach in 5-steps. First, pre-processing on all im-

ages. This includes the automatic detection of the facial fiducial point, and then the coordinates

of the eyes are extracted, the image is rotated, and the image is aligned. Still at this stage, facial

expression regions are cut through an appropriate bounding rectangle, RGB images are converted

to grayscale, and then randomly generated rectangles are applied over various regions of the face,

such as the left lower eye, right eye, both eyes, right lower side, or lower side. Next, occluded

facial expression is reconstructed with the Dual Algorithm based on the principles of the Robust

Principal Component Analysis (RPCA) where the Contrast-Limit Adaptive Histogram Equaliza-

tion (CLAHE) is subsequently applied to reconstructed facial regions, to increase image contrast

levels (Figure 2.7). Third, a set of facial expression characteristics were extracted through 3 strate-

gies: Weber Local Descriptor (WLD) - applied over the entire facial expression image for extrac-

tion of textural features, Local Binary Patterns (LBP) - applied over the entire image to extract
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histograms of LBP and HOG - applied to the entire image, to extract the HOG features. Fourth,

reduction of dimensionality of the characteristics extracted in the previous step, and the resulting

descriptor is transferred in a lower dimensional space through PCA and LDA, applied sequentially.

Finally, occluded facial expressions are recognized through KNN and SVM classifiers.

Figure 2.7: (a) Cropped images without occlusions from the MUG dataset [2] and Jaffe dataset
[34]; (b) faces with occlusive areas; (c) reconstructed faces via RPCA; (d) filling the occluded
facial regions from (c) [95].

The authors have tested the proposed method on three datasets: CK+ [75], JAFFE [34] and

Facial MUG Expression [2] and obtained results of 91.01% accuracy in CK+ dataset with KNN,

92.86% in the JAFFE dataset with SVM and 90.1% in MUG with KNN, in occluded images.

The work described in this dissertation builds on these, to study the impact of occlusion caused

by VR goggles in the identification of facial expressions.



Chapter 3

Human Action Recognition

A proper and structured methodology is one of the most important components of a successful

application. This chapter will go over each of the methods used to perform HAR, such as feature

extraction, image normalization (based on angles, MJD, keypoint normalization and graph em-

bedding) and the deep neural network used for classification. Figure 3.1 shows an overview of the

methodology that will be detailed in this chapter.

3.1 Feature Extraction

To process video sequences, AI algorithms typically treat them frame by frame, applying the

algorithms throughout the sequence. One of the key elements for an algorithm to succeed in

HAR, is the correct detection of a human as well as the ability to identify the motion patterns.

Many algorithms have been proposed over the years to accomplish this [84, 106], some of which

are open source and easy to be adapted. Although skeleton-based approaches are very popular in

HAR, there are also other options for dealing with this classification problem [25,43,52,118,130];

however, this dissertation relies solely on the use of these skeleton algorithms.

3.1.1 OpenPose

Due to its popularity, OpenPose [17] is currently one of the most adopted algorithms to perform

this detection. OpenPose sequences (video), are processed frame by frame to obtain the entire

skeleton, which is then represented by 18 points, using the COCO and MPII models [16]. Open-

Pose (Figure 3.2) employs a multistage feedforward CNN to identify the locations of anatomical

bodypoints for each person in the image. Part Affinity Fields were used by the authors to repre-

sent the limb probabilities between each pair of connected part-types. The original algorithm was

implemented in Caffe [53], however to synchronize it with the rest of the project, it was adapted

to Pytorch [116].

1Source: https://www.istockphoto.com/pt/foto/a-young-bearded-man-in-casual-wear-
stands-with-hands-on-his-sides-on-a-white-background-gm965662288-263521418?phrase=
standing%20straight
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Model evaluation and selection

Dataset
N-UCLA

Skeleton based

OpenPose BlazePose

LSTM LSTM LSTM LSTM

Coordinates Angles MJD Graph 
Embedding

Evaluation Evaluation Evaluation Evaluation

Figure 3.1: HAR Methodology Scheme.

Figure 3.2: OpenPose Skeleton Detection1.
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Figure 3.2 shows OpenPose’s perfect detection on a front-facing person. This algorithm rec-

ognizes the human skeleton using 18 keypoints ranging from the head to the legs. The OpenPose

algorithm is limited, since it can only detect x and y coordinates and cannot extract a 3D represen-

tation of the skeleton (no depth information).

3.1.2 BlazePose

BlazePose [9], introduced by Google in 2020, is a 3D skeleton detector algorithm designed for

real-time inference on mobile devices. This model is a ML method for high-fidelity body posture

tracking, that uses RGB video frames to infer 33 3D landmarks and a background segmentation

mask for the entire body. For inference, current state-of-the-art algorithms rely on powerful desk-

top environments, but their solution delivers real-time performance on most recent mobile phones,

desktops/laptops, using Python, and even on the web. To forecast heatmaps for all joints, the

authors employed an encoder-decoder network architecture, followed by another encoder that re-

gresses straight to the coordinates of all joints. Figure 3.3, represents the topology of the keypoints

detector.

Figure 3.3: BlazePose Keypoint Topology [9].

3.2 Image Normalization

Four different approaches were investigated for describing the detected skeleton, in order to feed

the DL models with representative and useful information. The first technique is based on the

normalization of the keypoints, the second on the calculation of angles between joints, the third,

the MJD descriptor (based on the work of Kamel et al. [54]) and finally the fourth is a graph repre-

sentation approach. The coordinates of each skeleton joint were used in all described algorithms.

It should be noted that not all methods described in this section, were applied to both algorithms’

extracted skeletons. The keypoints were only normalized in the OpenPose algorithm because the
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coordinates are already normalized in BlazePose. The computation of the angles between joints

was limited to the OpenPose skeleton (2D), since the 3D formulation would be much more com-

plex. The MJD was only applied to BlazePose normalized coordinates because this descriptor

relies on 3D information for classification. The Graph Embedding approach was applied to both

skeletons, extracting the connection of the keypoints, forming edges.

3.2.1 Keypoints normalization

The OpenPose algorithm outputs its 18 joints, represented in image coordinates. One way to

normalize them, is to find lowest x and y in the image, the maximum x and y. Having these

four points, it is possible to normalize each real coordinate. Using the same image used before,

Figure 3.2 illustrates this referential on a standing still person.

Figure 3.4: OpenPose Rectangle Referential.

The new coordinates will be then computed as follows (Equation 3.1 and Equation 3.2). For

each joint:

newx =
x−minx

maxx−minx
(3.1)

newy =
y−miny

maxy−miny
(3.2)

where:

min x - Minimum x of all joints.
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min y - Minimum y of all joints.

max x - Maximum x of all joints.

max y - Maximum y of all joints.

3.2.2 Angles between joints

As shown in Figure 3.2, the detected OpenPose skeleton contains 18 keypoints (vertexes). The

angles formed by the skeleton are one way to potentially extract important information from a

human’s action. To this end, 12 angles have been defined, being them the angle formed by a set of

3 vertices:

1. 0, 1, 2;

2. 1, 2, 3;

3. 2, 3, 4;

4. 0, 1, 5;

5. 1, 5, 6;

6. 5, 6, 7;

7. 0, 1, 8;

8. 1, 8, 9;

9. 8, 9, 10;

10. 0, 1, 11;

11. 1, 11, 12;

12. 11, 12, 13;

It is then necessary to develop a method for computing the angles formed by the three points using

these vertexes sequences. To accomplish this, two new vertexes were designed, which are defined

as:

New Vertex1:

x = vertex2[x]− vertex1[x] (3.3)

y = vertex2[y]− vertex1[y] (3.4)

New Vertex2:

x = vertex3[x]− vertex2[x] (3.5)

y = vertex3[y]− vertex2[y] (3.6)



3.2 Image Normalization 23

For example, in the first set of three vertexes, vertex1 would be keypoint 0, vertex2 would

represent keypoint 1 and vertex3, the keypoint 2. Having these new vertexes, a normalization is

performed in order to translate the real coordinates to a unit vector (0 or 1). The angles are then

calculated with numpy’s arccos function, which computes the inverse of a cosine. Figure 3.5,

illustrates how the angle was computed.

Figure 3.5: Angle calculation.

3.2.3 Moving Joint Descriptor

The MJD in our work is inspired by the work of Kamel et al. [54], although with some adaptations.

They have only used 13 joints (out of 20) and in this work, the original 33 joints that the BlazePose

algorithm outputs were used. Furthermore, they used the hip joint as a central keypoint, which

BlazePose does not recognize. To overcome this, our hip estimation, can be calculated by the mid-

point between the closest joints (Figure 3.6). The hip center, since it is usually the most stable in

the body, it is chosen as the spherical coordinates origin, which means that all the other joints will

be described by two angles and a distance to this reference.

Figure 3.6: Hip Center - BlazePose.

Because the z coordinate has a significant impact on the entire process, this algorithm was only

used to normalize BlazePose’s coordinates since it is ineffective without the three coordinates

(x, y, and z). Since the BlazePose algorithm normalizes the real coordinates of each joint, it

was necessary to convert them back to real coordinates. After this process it was then possible

to convert the coordinates, to spherical ones. Equations 3.7, 3.8 and 3.9, represent how it was

processed the conversion of real coordinates to spherical.
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r =
√

x2 + y2 + z2 (3.7)

θ = arccos(z/r) (3.8)

φ = arctan2(y,x) (3.9)

Following this process it was then necessary to compute the MJD. For each joint, the hip

location was estimated and subtracted from the coordinates of each joint.

3.2.4 Graph Embedding

Graph embedding techniques attempt to reproduce an entire graph as a single vector. Since neural

networks expect vectors rather than graph data, this transformation can be very useful as an input

to DL techniques. The conversion to vector format is extremely useful when comparing two graphs

and computing the differences between them.

Graph2Vec [83] is a graph embedding approach inspired by word2vec [80] that treats a whole

graph as a document and the rooted subgraphs surrounding each node as words that make up the

document, and extends document embedding neural networks to learn representations of entire

graphs. Graph2Vec has also the ability to learn the embedding of arbitrary graph sizes, which

means that there is no need to respect a fixed or limited size. It is worth noting that since

graph2vec’s embeddings are learned unsupervised, there is no need to specify the graph’s label.

Graph2Vec is an open source Python algorithm provided by the KarateClub library [102], which

provides the necessary tools to convert a list of edges to a graph format. It is expect that these

graphs will then be used as input for the Graph2Vec model, that will embed the input graphs.

FeatherGraph [103] is a graph embedding descriptor that uses a characteristic function to gen-

erate node-level feature vectors and combines them to form graph embeddings. The authors proved

that FEATHER is resilient to data corruption and defines isomorphic graphs with the same repre-

sentation. Using node feature characteristic functions, they defined parametric models where the

function evaluation points are learned parameters of supervised classifiers. This algorithm can be

considered as a node embedding technique since it generates a mapping of nodes to Euclidean

space by simply evaluating the characteristic function for metadata-based generic, neighborhood,

and structural node attributes.

With these algorithms in mind for embedding graph information, the OpenPose algorithm and

BlazePose were used to generate the list of graphs responsible for converting each frame of each

video to a list of edges. By taking into account the coordinates of each respective vertex of the

detected skeleton, all vertices were looped and then the euclidean distance between the actual and

all the vertices was computed; Then, the edges are formed by connecting the two closest vertices to

the actual one. Also note, that the graphs are weighted based on the normalization of all euclidean

distances (having higher weights when this distance is closer to the actual point). Following this

algorithm, and since the OpenPose skeleton has 18 vertices, each graph will have 36 edges. On
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(a) Person standing still. (b) Person picking a bottle.

Figure 3.7: Graph Detection Examples [128].

the other hand, since BlazePose has 33 vertexes, each graph will have 66 edges. Figure 3.7, shows

the detected graph of a random frame.

For example, it is possible to see in Figure 3.7a, that when a person is standing still, the

vertices representing the legs and ankles are only connected with each other and separated from

the rest of the body. The graph representation can be very useful in determining whether a person

is crouching, as it is visible in Figure 3.7b. The graph connections in this figure are very different

from a person standing still, representing the possible benefits of using a graph representation.

3.3 Deep Neural Network Classification

The DNN classification method is also an important step in the HAR process, as it requires a quick

and accurate response after training. Because of its ability to deal with sequences, LSTM can be

viewed as a critical component when dealing with videos.

LSTM is a type of RNN used in Deep Learning which has memory to keep information it needs

and forget the things who are no longer applicable. RNN uses an input gate that is processed by

the hidden state, sigmoid and tanh functions and subsequently reaches an output. That output is

calculated recursively, as a loop, added into a new input until the classifier reaches the final output.

The LSTM classifier uses the logic of RNN, but it is also composed by a cell that consists of 3

gates that are forget gate, input gate and output gate. As the name says, the forget gate defines what

information can be forgotten because is not longer relevant, the input gate says what information

could be added into the cell and the output gate is what information should be output in an instance

of the loop. Each gate is capable of sending part or the complete information. It means that the

forget gate can forget all the information or part of that, for example [39].
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Facial Expression Recognition

Another goal of this dissertation is to study the impact of occlusion in the classification of facial

expressions for the dynamic adaptation of the difficulty level in cognitive rehabiliation serious

games [72]. To achieve this, this chapter describes the methods used to perform the occlusion as

well as the algorithms used to perform FER with and without occlusion.

4.1 Without occlusion

The architecture of the classifier is defined starting with the dataset without occlusion.

According to the related work Sections (Section 2.3 and Section 2.4), the followed approach in

this work is based on CNN ensemble, composed of a ResNet-18 and a VGG19 (Figure 4.1) [136].

The weights were initialized with the Imagenet [29] weights for both ResNet-18 and VGG19, with

Xavier initialization for the final fully connected layer.

Figure 4.1: Ensemble between ResNet-18 and VGG19, with a Fully Connected Layer as output.

26
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The same architecture was used in both scenarios: without occlusion and with occlusion. The

chosen dataset was FER2013, composed of 28709 48x48 grayscale images for training and 3589

for testing, with seven categories (0=Angry, 1=Disgust, 2=Fear, 3=Happy, 4=Sad, 5=Surprise,

6=Neutral). Since the ResNet-18 and VGG19 expect 224x224 RGB images in the input, it was

necessary to scale the images up and replicate a single channel image to the remaining two (Figure

4.2).

Figure 4.2: Sample of the FER2013 dataset.

4.2 Introducing occlusion

To simulate the presence of VR goggles, it was necessary to hide the upper part of the face,

namelly, the eyes. Considering that the face can assume different tilt and yaw positions, the relative

position of the eyes change, so the algorithm to calculate the goggles position should contemplate

this. To achieve this, it was necessary to obtain the location of the face as well as facial landmarks,

composed of the position of the eyes, nose and mouth. For that, Multi-task Cascade Convolutional

Neural Networks (MTCNN) were used [134, 139]. It consists essentially of 3 parts:

1. A network of proposals (P-NET - Figure 4.3) that foresees potential face positions and their

bounding boxes. This process results in a large number of facial detections, many of which

are false;

2. A refined network (R-Net - Figure 4.4) which makes use of the result from step i), thereby

refining the result to eliminate most false detection and limiting aggregates;

3. A network similar to the one used in step ii), called O-Net - Figure 4.5, further refines the

forecasts and adds facials forecasts to the implementation of MTCNN.

With the position of the eyes, the algorithm starts by calculating the middle point between

the eyes, and the distance between them (Algorithm 1). It continues by estimating the width and

height of the goggles as 20% larger than the distance between the eyes and 150% the distance

between the eye line and the nose. The tilt angle is also calculated and, with these, the rectangle is
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Figure 4.3: P-Net Structure [60].

Figure 4.4: R-Net Structure [60].

Figure 4.5: O-Net Structure [60].
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drawn in gray on top of the sample image. When the landmarks is empty, meaning that the facial

features could not be found, the goggles are not drawn (Some examples are shown in Figure 4.6).

Algorithm 1 Occlusion algorithm.

1: procedure MAKEGOGGLES(sample, landmarks)
2: le f t_eye_x, le f t_eye_y← landmarks[0][0], landmarks[0][5]
3: right_eye_x,right_eye_y← landmarks[0][1], landmarks[0][6]
4: nose_x,nose_y← landmarks[0][2], landmarks[0][7]
5: middle_x,middle_y← right_eye_x+le f t_eye_x

2 , right_eye_y+le f t_eye_y
2

6: googles_width = 2.2∗
√

(righteyey− le f teyey)2 +(righteyex− le f teyex)2

7: googles_height = 1.5∗
√

(middleeyesy−nosey)2 +(middleeyesx−nosex)2

8: rectangle = (0,0,googles_width,googles_height)
9: middle_rectangle_x,middle_rectangle_y = googleswidth

2 , googlesheight
2

10: angle = righteyey−le f teyey
righteyex−le f teyex

∗ 180
π

11: rectangle = rectangle.rotate(−angle,(middlerectanglex,middlerectangley))
12: f inalsize = rectangle.size
13: sample.paste(rectangle, middleeyesx− f inalsize[0]

2 ,
middleeyesy− f inalsize[1]

2 )

Figure 4.6: Sample of the FER2013 dataset with the occlusion algorithm.

The accuracy of the classification was measured through the confusion matrix and accuracy of

each class.
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Experimental Setup

To be able to validate HAR and FER methods, it is crucial to test the methods in a dataset. Public

datasets are the ideal solution to compare the efficacy of the actual method with state-of-the-art.

Nevertheless, for specific applications the use of a personal dataset is enough, when a reasonable

accuracy is reached. This chapter goes over the experimental setup used in this work, detailing

each dataset used, the development of our own and also the configuration of the methods described

in Chapters 3 and 4.

5.1 HAR Dataset

By using known datasets, it is possible to compare the accuracy of our method with the state-of-

the-art. The main goal of this project is not to achieve higher performance than state-of-the-art,

instead, this project focuses on the development of prompt and efficient methods, that will be

further applied in our specific application. Since our own dataset is not finished, the N-UCLA

Dataset [129], was used to test and validate the proposed HAR methodology.

5.1.1 VR-ACT Dataset

The VR-ACT is currently under development, being recorded at the Polytechnic Institute of Bra-

gança (IPB). For the development of this dataset a set of several students of the Bachelor in Com-

puter Science of IPB, is being used. The dataset will consist on a set of several actions, being

performed while the student is using VR glasses and playing a very simple game. An example of

the actions that will be recorded, is shown on Figure 5.1.

5.1.2 N-UCLA Dataset

Most HAR datasets contain videos recorded outdoors with a variety of different actions. The N-

UCLA dataset [129] contains ten action categories: picking up with one hand, picking up with two

hands, dropping trash, walking around, sitting down, standing up, donning, doffing, throwing, and

30
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Figure 5.1: Samples of VR-ACT Dataset activities.

carrying (Figure 5.2). Each action was performed by ten actors. This dataset has the particularity

that most videos are straight to the performing action, being very short.

5.2 Facial Expression Dataset

For the recognition of humans facial expression, the FER-2013 dataset was used, as it is a common

choice to evaluate these approaches [26, 36, 89]. It is composed by 32298 images, belonging to a

set of 7 different classes (Angry - 4953, Disgust - 547, Fear - 5121, Happy - 8989, Sad - 6077,

Surprise - 4002, Neutral - 6198). Figure 5.3 shows an example of each of the classes.

5.3 HAR Setup

Following the methodology described in Chapter 3, this work proposes several different techniques

to classify a action a human is performing:

1. OpenPose skeleton extraction, followed by the normalization of the real coordinates. The

frame sequence extracted from each video was used as the input of the LSTM;

2. OpenPose skeleton extraction, then the selected sets of joints were used to compute the

angles that they form. The sequence of frames extracted from each video was used as the

input of the LSTM;

3. BlazePose skeleton extraction, followed by the normalization of the real coordinates. The

frame sequence extracted from each video was used as the input of the LSTM;
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(a) One hand pick. (b) Two hand pick. (c) Put in trash. (d) Walking.

(e) Sitting Down. (f) Standing up. (g) Donning. (h) Doffing.

(i) Throw. (j) Carry.

Figure 5.2: N-UCLA Dataset - Class samples.

(a) Angry. (b) Disgust. (c) Fear. (d) Happy.

(e) Sad. (f) Surprise. (g) Neutral.

Figure 5.3: FER-2013 Dataset - Class samples.
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(a) BlazePose full topology [9]. (b) BlazePose simplified topology.

Figure 5.4: Full and Partial topologies.

4. BlazePose skeleton extraction, followed by the computation of the MJD descriptor. The

frame sequence extracted from each video was used as the input of the LSTM;

Since BlazePose’s original skeleton has many keypoints, in order to try to keep the most rel-

evant information about human motion, a simplification of this model (14 keypoints), was also

done (Figure 5.4).

In this work, a very simple LSTM capable of learning and classifying data sequences, was

used. To classify a given sequence as one of the ten possible actions of the N-UCLA dataset, it

was only used an LSTM followed by a linear layer to extract the classification head. Some tests

were made, with different hidden sizes for this RNN, including 48, 100, and 300 (different hidden

sizes were tested although these sizes proved to be the best solution). To evaluate the performance

of HAR methods, the F1 metric was used. The F1 metric is the harmonic mean of Precision and

Recall, and it measures erroneously categorized instances accurately. When the class distribution

is similar, accuracy can be useful, but when there are imbalanced classes, F1-score is a preferable

metric. Also, regarding training purposes, all HAR methods used a learning rate of 0.001, a batch

size of 16, the Adam optimizer, and a total of 300 epochs for training. For all HAR methods, a

split of 80% for training and 20% for testing was used. Several different configurations were also

tested, although this setup leaded to an optimal solution. Regarding the software, for this task, a

AMD Ryzen Threadripper 3970X 32-Core Processor with an NVIDIA GeForce RTX 3090 with

64GB RAM, was used.

It should be noted that the graph embedding approach was not tested. With the extraction

of the graphs, the next step was the embedding of the graphs. This is indeed possible, however

Karateclub library [102], does not offer the require methods to do so, yet. The authors have

been contacted, and the process of inferring a new, previously unseen graph embedding from a
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previous set of graphs is currently impossible. Although the authors invited us to participate in

the development of a method capable of doing so. Doc2Vec [63] offers this possibility, although

neither Graph2Vec or FeatherGraph, have this ability. This promising approach will be tested

when it is implemented at Karateclub.

5.4 FER Setup

For the FER, two identical versions of the classification network were trained for 50 epochs with

the mini batch of 64 on a AMD Ryzen Threadripper 3970X 32-Core Processor with an NVIDIA

GeForce RTX 3090 with 64GB RAM.

The same training and validation datasets were used in both situations, although on the second,

all the examples were changed to introduce an occlusion over the eyes. The training process

happened in three steps: i) training of the ResNet18; ii) training of the VGG19; iii) training of the

full assembly. Both CNNs were initialized with the pretrained ImageNet-1K weights, although all

the parameters were allowed to change.



Chapter 6

Results and Discussion

This chapter shows the classification capacity of the proposed methodologies, to solve the pro-

posed tasks: Action and Facial Recognition. This chapter also includes a comparison of our

results with state-of-the-art as well as a discussion of the developed work.

6.1 Human Action Recognition

Table 6.1, shows all the considered methods and variations tested using the OpenPose algorithm.

Table 6.1: OpenPose - F1 score on N-UCLA dataset

LSTM Keypoints Normalization Angles
48 0.733 0.745

100 0.722 0.711
300 0.711 0.703

As Table 6.1 presents, the best result was obtained with a hidden size of 48, achieving an F1

score of 0.745.

Table 6.2, presents the tests performed using the BlazePose algorithm.

Table 6.2: BlazePose - F1 score on N-UCLA dataset

LSTM Coordinates Normalization MJD
48 0.584 0.476
100 0.536 0.511
300 0.557 0.444

Regarding MediaPipe’s classification capability it can be seen by the analysis of Table 6.2, that

this skeleton extraction method was not enough to surpass the methods using OpenPose.

Table 6.3, shows the F1 Score achieved using the simplified version of BlazePose skeleton

(shown in Section 5.3).

The F1-Score did not improve by using only 14 parts of BlazePose’s detected skeleton, with

0.574 being the best F1 score.

35



Results and Discussion 36

Table 6.3: BlazePose with 14 keypoints - F1 score on N-UCLA dataset

LSTM Coordinates Normalization MJD
48 0.521 0.456
100 0.562 0.464
300 0.501 0.574

How it is possible to analyze from Tables 6.1, 6.2 and 6.3, OpenPose outperformed BlazePose

by a wide margin. There is not a single approach using BlazePose that exceeds an F1 of 0.60,

which is quite low for our application. Although more information about the extracted skeleton

was expected to improve accuracy, OpenPose proved to be much more robust and consistent,

achieving F1 scores higher than 0.70.

To better understand the best model’s recognition capability, Figure 6.1 shows the prediction

and true labels of the best methods using the OpenPose skeleton.

(a) Keypoints Normalization. (b) Angles.

Figure 6.1: Confusion matrix of the best methods - OpenPose.

By comparing the confusion matrix of the Keypoints Normalization method (Figure 6.1a) with

the Angles method (Figure 6.1b), it is possible to conclude that distinct and different classification

abilities were achieved by using the same method for extracting the skeleton, but using a different

normalization method. Although it should be noted that due to the similar characteristics of these

classes, both configurations struggle to predict ’donning’ and ’doffing,’ and the same can be veri-

fied for ’sit down’ and ’stand up’, ’one hand pick’ and ’two hand pick’, and also ’walk’ and ’put

trash’, since in both activities the walking action is performed.

In order to compare our approach with state-of-the-art, Table 6.4 illustrates the accuracy

achieved by several methods using N-UCLA dataset. As most state-of-the-art approaches use

accuracy instead of F1-score, this table also presents the accuracy achieved by our best solution.

By the analysis of Table 6.4, we can conclude that our method is a way far of achieving state-

of-the-art results. Most of these studies rely on the use of Graph Convolutional Networks (GCNs),

which work in a similar way to our graph embedding approach, but this approach could not be
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Table 6.4: Comparison of proposed approach with state-of-the-art methods on N-UCLA dataset

Methods Accuracy F1-Score

HBRNN-L [32] 0.805
Glimpse Clouds [6] 0.876
GCN–HCRF [70] 0.915

VE-GCN [69] 0.918
AGC-LSTM [111] 0.933

CTR-GCN [21] 0.965
LST [135] 0.972

Our method 0.746 0.745

validated due to a lack of implemented libraries. It should be also noted that GCNs has also some

limitations that leaded to the use of the LSTM network, for example, robustness to coordinates,

interoperability with other inputs and scalability to multi-person.

6.2 Facial Expression Recognition

A division of 80% for training and 20% for testing, was used. In the training process, there

is a slightly better result with the no occlusion dataset, as expected, since we loose part of the

information (Figure 6.2).

(a) Occlusion. (b) No occlusion.

Figure 6.2: Evolution of RMSE during training.

The accuracy also improves with the epochs (Figure 6.3). In the occlusion dataset (Figure

6.3a) the highest accuracy is obtained with the multiple model. However, in the no occlusion

situation (Figure 6.3b) it is the lowest. Looking at the progress during the epochs, it seems that the

increase in the number of epochs would achieve better accuracy.

To illustrate the classification capacity of the three models in predicting the seven facial ex-

pressions in the FER-2013 dataset, confusion matrices were built comparing the situation between

occlusion and no occlusion datasets (Figures 6.4, 6.5 and 6.6). The true labels correspond to the

labels displayed on the left side of the figures and the predicted ones, to the labels displayed on

the lower side.
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(a) Occlusion. (b) No occlusion.

Figure 6.3: Evolution of the accuracy during training.

(a) Occlusion. (b) No occlusion.

Figure 6.4: Confusion matrix for the ResNet18.
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As Figure 6.4a displays, the angry class presents 72 wrong classifications that belong to fear

class, 51 as sad and 49 as surprise. The fear class has 69 wrong classifications of sad class and

68 of surprise. The class sad also has 85 wrong classifications of examples of surprise class and

finally the class surprise presents 124 wrong classifications in sad class.

These values can be also verified in Figure 6.4b, highlighting in general, values a little bit

superior of correct classifications. For example, while the angry class, in the confusion matrix

without occlusion, presents 234 classifications performed correctly, in the confusion matrix with

no occlusion, it presents 280 of correct classifications.

(a) Occlusion. (b) No occlusion.

Figure 6.5: Confusion matrix for the VGG19.

In the confusion matrix with occlusion, of the VGG-19 network (Figure 6.5a), there is the same

tendency of classifications performed incorrectly and in the same classes of the matrix in Figure

6.4a. It is also noteworthy that, in the aforementioned classes, compared to the confusion matrix

with occlusion from Resnet18, this matrix presents higher values of higher accurate classifications

in angry (232), sad (380) and surprise (327) and lower in the fear class (295).

The matrix represented in Figure 6.5b also follows the correct classifications of the matrix in

Figure 6.4b. It can be observed that, in relation to the confusion matrix without occlusion, the

classifications performed correctly, in general, is superior. For example, the angry class presents

276 correct classifications in the matrix with occlusion, while in the matrix without occlusion it

shows 232 of correct classified samples. It contains superior values of true classifications, within

the same 4 classes already mentioned and in relation to the same matrix of the Resnet18 network,

in classes fear (276) and surprise (382) and lower values in the remaining two classes.

In the confusion matrix represented in Figure 6.6a, it is possible to verify the same situation

mentioned in the confusion matrices of Figures 6.4a and 6.5a. In the confusion matrix represented

in Figure 6.6b, there is a general increase in correctly performed classifications, in relation to the

confusion matrix of the model combined with no occlusion (for example, in the angry class, there

is an increase from 237 ratings to 278 ratings). When compared with the matrices of the networks

without occlusion, mentioned above, there is a decrease in classifications performed correctly in

the sad class.
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(a) Occlusion. (b) No occlusion.

Figure 6.6: Confusion matrix for the combined model.

The classes are not balanced so, intra-class normalization was also performed (Table 6.5). The

impact of occlusion of the eyes is, apparently, marginal. The highest F1-Score in both situations

(occlusions and no occlusion) is in the class ‘neutral’, immediately followed by ‘happy’ in the oc-

clusion and ‘sad’/‘surprise’ for the no occlusion. The lowest F1-Score was in the classes ‘disgust’

and ‘fear’, respectively. According to the previous confusion matrices, the ‘disgust’ class is often

misclassified as ‘angry’ or ‘surprise’.

The overall F1-Score of the combined model was 0.649 for the occlusion and 0.628 for the no

occlusion, which is far from the state of the art result. Nevertheless, the purpose of this work was

to assess the impact of occlusion and the results confirm that most of the classification is performed

with the mouth and chin. Note also that our method presents very low accuracy in some classes

comparing to others. For example, in the fear class the accuracy is very low, although in the neutral

class, the results are a way better. This is a consequence of the imbalanced classes of this dataset.

This issue can be overcomed by balancing this classes, based on data augmentation. Although, the

primary goal of this study, was to evaluate the impact of the occlusion of VR glasses in FER.

The chosen architecture combines two different models with different internal organization

and dimension. We hope that each performs better in different aspects, each can lead to an overall

better result. The overall result is obtained in a fully connected layer that has input the results of

both.

To compare our best method with state-of-the-art, it is only possible to compare the F1-Score

of the best method without occlusion (Table 6.6), since there are no studies that performed a similar

occlusion and used the FER-2013 dataset. [37] is the most similar study to our FER module,

though they used the FER+ dataset [7], achieving a result of 0.828 accuracy, with occlusion of

part of the face. The FER+ dataset is a new version of the FER-2013 dataset that was relabeled

and added a new class of emotion, "contempt," while maintaining the other 7 classes of FER-2013.

It is worth noting that, according to recent studies [38,79, 142], it is possible to extract an average

of 0.153 of improved classification in the FER+ dataset.

As shown in Table 6.6, our method was not able to surpass most of the methods. This was not

our primary goal, which was to study and interpret the impact of the occlusion; in future work,
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Table 6.5: F1-Score per class

(a) Occlusion

Class ResNet18 VGG19 Combined

angry 0,501 0,497 0,508
disgust 0,625 0,536 0,446
fear 0,508 0,595 0,518
happy 0,811 0,782 0,771
sad 0,61 0,626 0,715
surprise 0,461 0,501 0,525
neutral 0,814 0,824 0,829

F1-Score 0,627 0,645 0,649
(b) No occlusion

Class ResNet18 VGG19 Combined

angry 0,6 0,591 0,595
disgust 0,607 0,607 0,589
fear 0,514 0,508 0,55
happy 0,808 0,844 0,598
sad 0,639 0,629 0,623
surprise 0,556 0,585 0,623
neutral 0,805 0,822 0,798

F1-Score 0,663 0,673 0,628

Table 6.6: Comparison of proposed approach with state-of-the-art methods on FER 2013 dataset

Methods Accuracy F1-Score

VCNN [1] 0,657
DeepEmotion [81] 0,700
CNN-MNF [64] 0,703

EXNET [99] 0,735
LHC-Net [86] 0,744

CNNs and BOVW + local SVM [38] 0.754
GLFCNN+SVM [117] 0,844

Our method 0.675 0,673
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the improvement of this accuracy will be the focus, with the goal of achieving competitive results

with the state-of-the-art. Note that by improving our method without any occlusion, will certainly

lead to a better capacity of classification under occlusion.



Chapter 7

Conclusions and Future Work

The present dissertation aimed at the development of two distinct computer visions tasks, that will

be important components of a DDA system. To achieve this, several methods to perform HAR and

the recognition of humans facial expression, were developed.

For the FER task, this work presents the development of 3 CNNs, in order to be able to

make comparisons between them, in order to select the network that obtained the best values.

Regarding the networks that were trained with the original dataset (FER-2013), F1-score of 0.663

was obtained for ResNet 18, 0.673 for VGG19 and the combination of these networks has resulted

in a F1-score of 0.628. When trained with the modified dataset (dataset FER-2013 to which the

occlusion algorithm was applied), ResNet18 obtained a F1-Score of 0.627, VGG19 of 0.645 and

0.649 for the combined model. Thus, the model selected for this work was the combined model

(with occlusion). The results obtained are below expectations (since, when compared to the state

of the art, a lower classification accuracy was achieved). Regarding the occlusion algorithm, it

does not correctly perform the occlusion in some occasions. Sometimes the MTCNN does not

find the facial features, which means that the landmarks are empty and therefore occlusion is not

performed. It should be noted that the development of FER methods described in this dissertation,

has already resulted in an accepted publication [100].

Regarding HAR, this dissertation proposes several HAR recognition methods, with the goal of

incorporating the best method into a future application. A skeleton based approach was followed,

using one algorithm to extract 2D information (OpenPose) and also other algorithm to extract 3D

information of the detected human skeleton (BlazePose). The keypoints of the detected skeletons

were extracted, using these two methods and then the extracted coordinates were processed using

several techniques, including coordinate normalization, the use of the MJD descriptor, and the

computation of the angles between joints.

Our results did not achieve state-of-the-art results, but that was not our primary goal, which

was to develop simple and fast real-time techniques that allowed understanding the challenges

and possibilities to address HAR. OpenPose (2D) proved to be much more robust than BlazePose

(3D), achieving a reasonable F1-Score of 0.745 on the N-UCLA dataset.

43
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A graph embedding approach was also developed, altough KarateClub (a Python graph li-

brary) did not support the embedding of previously unseen graphs. In the future, it is expected our

collaboration with the KarateClub authors, to develop a method capable of doing it. The acquisi-

tion of our dataset was already been started, with the goal of creating a dataset that can be applied

to a final application, which will consist of a VR game.

The work described in this dissertation will be improved in the context of the GreenHealth

project [74], integrated in a Phd plan, by doing the follow future work:

• Finalize our dataset, with humans using VR glasses and performing daily basis actions;

• Test different methods to perform the recognition of humans facial expression;

• Achieve better results by creating new versions of the skeleton, like the 14-joint skeleton;

• Using different Deep Learning networks to classify the actions, like image-based methods

and the combination of them with skeletal information.
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