753 research outputs found

    Dense, sonar-based reconstruction of underwater scenes

    Get PDF
    Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Mechanical Engineering at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution September 2019.Three-dimensional maps of underwater scenes are critical to—or the desired end product of—many applications, spanning a spectrum of spatial scales. Examples range from inspection of subsea infrastructure to hydrographic surveys of coastlines. Depending on the end use, maps will have different accuracy requirements. The accuracy of a mapping platform depends mainly on the individual accuracies of (i) its pose estimate in some global frame, (ii) the estimates of offsets between mapping sensors and platform, and (iii) the accuracy of the mapping sensor measurements. Typically, surface-based surveying platforms will employ highly accurate positioning sensors—e.g. a combination of differential global navigation satellite system (GNSS) receiver with an accurate attitude and heading reference system—to instrument the pose of a mapping sensor such as a multibeam sonar. For underwater platforms, the rapid attenuation of electromagnetic signals in water precludes the use of GNSS receivers at any meaningful depth. Acoustic positioning systems, the underwater analogues to GNSS, are limited to small survey areas and free of obstacles that may result in undesirable acoustic effects such as multi-path propagation and reverberation. Save for a few exceptions, the accuracy and update rate of these systems is significantly lower than that of differential GNSS. This performance reduction shifts the accuracy burden to inertial navigation systems (INS), often aided by Doppler velocity logs. Still, the pose estimates of an aided INS will incur in unbounded drift growth over time, often necessitating the use of techniques such as simultaneous localization and mapping (SLAM) to leverage local features to bound the uncertainty in the position estimate. The contributions presented in this dissertation aim at improving the accuracy of maps of underwater scenes produced from multibeam sonar data. First, we propose robust methods to process and segment sonar data to obtain accurate range measurements in the presence of noise, sensor artifacts, and outliers. Second, we propose a volumetric, submap-based SLAM technique that can successfully leverage map information to correct for drift in the mapping platform’s pose estimate. Third, and informed by the previous two contributions, we propose a dense approach to the sonar-based reconstruction problem, in which the pose estimation, sonar segmentation and model optimization problems are tackled simultaneously under the unified framework of factor graphs. This stands in contrast with the traditional approach where the sensor processing and segmentation, pose estimation, and model reconstruction problems are solved independently. Finally, we provide experimental results obtained over several deployments of a commercial inspection platform that validate the proposed techniques.This work was generously supported by the Office of Naval Research1, the MIT-Portugal Program, and the Schlumberger Technology Corporation

    Neural Implicit Surface Reconstruction using Imaging Sonar

    Full text link
    We present a technique for dense 3D reconstruction of objects using an imaging sonar, also known as forward-looking sonar (FLS). Compared to previous methods that model the scene geometry as point clouds or volumetric grids, we represent the geometry as a neural implicit function. Additionally, given such a representation, we use a differentiable volumetric renderer that models the propagation of acoustic waves to synthesize imaging sonar measurements. We perform experiments on real and synthetic datasets and show that our algorithm reconstructs high-fidelity surface geometry from multi-view FLS images at much higher quality than was possible with previous techniques and without suffering from their associated memory overhead.Comment: 8 pages, 8 figures. This paper is under revie

    Measurement of Micro-bathymetry with a GOPRO Underwater Stereo Camera Pair

    Get PDF
    A GO-PRO underwater stereo camera kit has been used to measure the 3D topography (bathymetry) of a patch of seafloor producing a point cloud with a spatial data density of 15 measurements per 3 mm grid square and an standard deviation of less than 1 cm A GO-PRO camera is a fixed focus, 11 megapixel, still-frame (or 1080p high-definition video) camera, whose small form-factor and water-proof housing has made it popular with sports enthusiasts. A stereo camera kit is available providing a waterproof housing (to 61 m / 200 ft) for a pair of cameras. Measures of seafloor micro-bathymetrycapable of resolving seafloor features less than 1 cm in amplitude were possible from the stereoreconstruction. Bathymetric measurements of this scale provide important ground-truth data and boundary condition information for modeling of larger scale processes whose details depend on small-scale variations. Examples include modeling of turbulent water layers, seafloor sediment transfer and acoustic backscatter from bathymetric echo sounders

    Underwater Exploration and Mapping

    Get PDF
    This paper analyzes the open challenges of exploring and mapping in the underwater realm with the goal of identifying research opportunities that will enable an Autonomous Underwater Vehicle (AUV) to robustly explore different environments. A taxonomy of environments based on their 3D structure is presented together with an analysis on how that influences the camera placement. The difference between exploration and coverage is presented and how they dictate different motion strategies. Loop closure, while critical for the accuracy of the resulting map, proves to be particularly challenging due to the limited field of view and the sensitivity to viewing direction. Experimental results of enforcing loop closures in underwater caves demonstrate a novel navigation strategy. Dense 3D mapping, both online and offline, as well as other sensor configurations are discussed following the presented taxonomy. Experimental results from field trials illustrate the above analysis.acceptedVersio

    Underwater inspection using sonar-based volumetric submaps

    Get PDF
    We propose a submap-based technique for mapping of underwater structures with complex geometries. Our approach relies on the use of probabilistic volumetric techniques to create submaps from multibeam sonar scans, as these offer increased outlier robustness. Special attention is paid to the problem of denoising/enhancing sonar data. Pairwise submap alignment constraints are used in a factor graph framework to correct for navigation drift and improve map accuracy. We provide experimental results obtained from the inspection of the running gear and bulbous bow of a 600-foot, Wright-class supply ship.United States. Office of Naval Research (N00014-12-1-0093)United States. Office of Naval Research (N00014-14-1-0373

    Active SLAM for autonomous underwater exploration

    Get PDF
    Exploration of a complex underwater environment without an a priori map is beyond the state of the art for autonomous underwater vehicles (AUVs). Despite several efforts regarding simultaneous localization and mapping (SLAM) and view planning, there is no exploration framework, tailored to underwater vehicles, that faces exploration combining mapping, active localization, and view planning in a unified way. We propose an exploration framework, based on an active SLAM strategy, that combines three main elements: a view planner, an iterative closest point algorithm (ICP)-based pose-graph SLAM algorithm, and an action selection mechanism that makes use of the joint map and state entropy reduction. To demonstrate the benefits of the active SLAM strategy, several tests were conducted with the Girona 500 AUV, both in simulation and in the real world. The article shows how the proposed framework makes it possible to plan exploratory trajectories that keep the vehicle’s uncertainty bounded; thus, creating more consistent maps.Peer ReviewedPostprint (published version

    CaveSeg: Deep Semantic Segmentation and Scene Parsing for Autonomous Underwater Cave Exploration

    Full text link
    In this paper, we present CaveSeg - the first visual learning pipeline for semantic segmentation and scene parsing for AUV navigation inside underwater caves. We address the problem of scarce annotated training data by preparing a comprehensive dataset for semantic segmentation of underwater cave scenes. It contains pixel annotations for important navigation markers (e.g. caveline, arrows), obstacles (e.g. ground plain and overhead layers), scuba divers, and open areas for servoing. Through comprehensive benchmark analyses on cave systems in USA, Mexico, and Spain locations, we demonstrate that robust deep visual models can be developed based on CaveSeg for fast semantic scene parsing of underwater cave environments. In particular, we formulate a novel transformer-based model that is computationally light and offers near real-time execution in addition to achieving state-of-the-art performance. Finally, we explore the design choices and implications of semantic segmentation for visual servoing by AUVs inside underwater caves. The proposed model and benchmark dataset open up promising opportunities for future research in autonomous underwater cave exploration and mapping.Comment: submitted for review in ICRA 2024. 10 pages, 9 figure

    Change detection in combination with spatial models and its effectiveness on underwater scenarios

    Get PDF
    This thesis proposes a novel change detection approach for underwater scenarios and combines it with different especially developed spatial models, this allows accurate and spatially coherent detection of any moving objects with a static camera in arbitrary environments. To deal with the special problems of underwater imaging pre-segmentations based on the optical flow and other special adaptions were added to the change detection algorithm so that it can better handle typical underwater scenarios like a scene crowded by a whole fish swarm
    • …
    corecore