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Abstract— A GO-PRO underwater stereo camera kit has been 
used to measure the 3D topography (bathymetry) of a patch of 
seafloor producing a point cloud with a spatial data density of 15 
measurements per 3 mm grid square and an standard deviation 
of less than 1 cm A GO-PRO camera is a fixed focus, 11 mega-
pixel, still-frame (or 1080p high-definition video) camera, whose 
small form-factor and water–proof housing has made it popular 
with sports enthusiasts.  A stereo camera kit is available 
providing a waterproof housing (to 61 m / 200 ft) for a pair of 
cameras. Measures of seafloor micro-bathymetry capable of 
resolving seafloor features less than 1 cm in amplitude were 
possible from the stereo reconstruction. Bathymetric 
measurements of this scale provide important ground-truth data 
and boundary condition information for modeling of larger scale 
processes whose details depend on small-scale variations. 
Examples include modeling of turbulent water layers, seafloor 
sediment transfer and acoustic backscatter from bathymetric 
echo sounders. 

Index Terms—stereo imaging, seafloor bathymetry, acoustic 
backscatter 

I. INTRODUCTION 
In many areas of oceanographic study measures of the 

seafloor on a very small scale (capable of resolving variations 
of just a few mm) are desired. For example, modeling of meso-
scale turbulence across the seafloor requires a statistical 
roughness to accurately predict the bottom boundary layer [1]. 
Similarly, measurements of seafloor sediment transfer also 
depend of the size of the bottom boundary layer and hence, 
seafloor roughness [2]. Acoustic remote sensing methods used 
to characterize the seafloor for habitat and sediment 
composition depend in part of the roughness of the seafloor at 
the carrier wavelength of the ensonifying signal [3]. This last 
application, namely, the characterization of the seafloor by 
remote acoustic methods, has led to consideration of methods 
for measuring the microbathymetry of the seafloor.  

Multibeam echosounders, used throughout the world for the 
routine collection of bathymetric data, commonly also collect 
co-registered seafloor acoustic backscatter. Acoustic 
backscatter of the seafloor may be used to characterize the 
sediment type [4], the presence of gas, and the likely habitat of 
many benthic organisms and bottom dwelling fish [5]. 
However the process of interpreting seafloor backscatter is 
complicated by the fact that a large portion of the returned 
signal at non-normal angles is dependent on the seafloor 

roughness at a scale as small as the wavelength of the acoustic 
carrier frequency [3]. A shallow water system operating at 200 
kHz has a nominal wavelength of just 0.75 cm. This scale is far 
smaller than that resolvable by the sonar’s own bathymetric 
measurements. Therefore variations in seafloor backscatter 
may be recorded due to unknown changes in roughness with no 
change in sediment composition or other factors. Moreover 
because seafloor roughness may not be isotropic, multiple 
measures of seafloor backscatter measured on different 
headings (and hence ensonifying angles) over the same 
seafloor may produce different results.  This paper presents 
preliminary results of the use of a GO-PRO underwater stereo 
camera system to measure the roughness of the seafloor at 
scales comparable to those that affect acoustic backscatter from 
commonly used bathymetric sonar systems. Section II 
describes the cameras and their operation, Section III describes 
the algorithms used to create dense 3D point clouds from pairs 
of stereo images and Section IV provides some preliminary 
results captured thus far.  

II. THE STEREO CAMERA KIT 
A GO-PRO camera is a fixed focus, 11 mega-pixel, still-

frame (or 1080p high-definition video) camera measuring just 
42 mm x 60 mm x 30 mm (Fig. 1). Although the camera has no 
viewfinder or LCD screen, its small form factor combined with 
a standard waterproof enclosure has made it popular with 
sports enthusiasts for underwater and extreme sports footage. 
(The camera is frequently mounted to the chest or head while 
skiing, surfing, sky diving etc.) A stereo camera kit is available 
for the GO-PRO camera, which provides a waterproof 
enclosure (to 200 ft) for a pair of cameras connected by a 
synchronization cable for synchronized video or still 
photography. When connected, pairs of cameras take 
synchronized still photos and an automatic timer setting allows 
the taking of still images at regular intervals (the interval is user 
selectable from 2 to 60 sec) without user interaction.  The 
cameras and kit provided a low cost and easily used system for 
capturing stereo image pairs for micro-bathymetry.  

III. CREATING 3D POINT CLOUDS FROM STEREO CAMERA 
PAIRS 

Stereo cameras take synchronized images of a scene from 
differing vantage points. In general, by knowing the translation 
and rotation of one camera relative to the second, one can 
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Fig. 1.  GOPRO Cameras with stereo housing and synchronization 
cable.  

establish the location of an object in 3D space when the object 
is uniquely identified in both images. Conjugate pixels in each 
image provide pointing vectors from each camera’s focal point 
whose intersection locates the object in question. Challenges to 
stereo camera reconstruction involve methods to match pixels 
corresponding to common objects in both images.  

Methods of producing 3D point clouds from stereo camera 
pairs in air are well established [6]. However methods for 
underwater photography are relatively nascent, in part, due to 
the complicating factors related to the light-propagating 
medium. Underwater images often appear blurry due to the 
scattering effects of water molecules and particles in the water 
column. Moreover, ambient lighting can be irregular and the 
displacement between the cameras enhances the effect often 
resulting in different exposures between images. For these 
reasons, color is, in general, an unreliable metric for matching 
pixels between image pairs. Instead images are converted to 
gray scale and the resulting image texture proves more reliable.  

The process of creating 3D point clouds from stereo camera 
pairs first involves calibration of the camera pair to measure the 
distortion of optical system of each camera (intrinsic 
parameters) and to establish the translational rotational offsets 
and between their optical axes (extrinsic parameters). The 
calibration  has been done with the Camera Calibration 
Toolbox for MATLAB [7]. Images of a checkerboard pattern 
were taken at several orientations. Calibration images are taken 
underwater for accurate compensation for lens distortion on 
subsequent underwater imagery.  

A pair of images selected for processing are first cropped 
and  resampled to a smaller size for convenience. GO-PRO 
cameras have a field of view of 170 degrees in air. Such a wide 
field of view imparts severe distortion to portions of the image 
near the edges, which are difficult to capture in the calibration 
process. One eighth of the image is removed from each side, 
reducing a 3840 x 2880 pixel image to 2880 x 2160 pixels.  

Lens related distortion is then compensated for, and images 
are rectified using standard methods [8]. Rectification produces 
two images with epipoles at infinity, such that pixels in each 

horizontal row fall along an epipolar line. Searches for 
conjugate pixels between images may then be simplified to a 
search primarily in one dimension. The distance of a matching 
pixel in one image relative to the other along each row of 
rectified images is termed the horizontal disparity which is 
directly related to the range from the stereo rig to an imaged 
scene. 

Rectified images are next resized to 720 x 540 through an 
averaging process. This step is optional but was undertaken in 
the preliminary tests to reduce the processing time. The step 
involves averaging neighboring pixels rather than simple 
decimation. The distinction is important as decimation aliases 
high frequency texture components reducing the effectiveness 
of attempts to match pixels between images. (Processing of full 
images is possible and will likely result in even a denser point 
cloud.) 

The SIFT algorithm [9] is next used to determine the range 
of likely disparities between the images and to provide seeds 
for the subsequent dense matching algorithm. The SIFT 
algorithm creates a Laplacian pyramid of images and utilizes 
the difference of Laplacians to extract points of interest at 
different spatial scales with subpixel accuracy. Extracted points 
are then matched across the images using the similarity of 
descriptors associated with each point to produce a sparse set of 
matching points. To meet the high-resolution requirements of 
this project dense matching is required. Therefore, matches are, 
when possible, found for all pixels in the image in subsequent 
steps.  

The methodology described above has been developed in 
the framework of the project with NOAA South-West Fisheries 
Science Center with the aim of detection and measurement of 
live fishes [10]. In the current work this research has been 
extended by segmenting the rectified images based on their 
texture [11,12]. The rationale of image segmentation for stereo 
processing is that surfaces, which are smoothly varying in 3D 
space (and hence in disparity space), are likely to have 
homogeneous texture and thus appear in the same segment. 
Also, a sudden change in disparity (due to an occlusion, for 
example) usually manifests itself as textural or colorimetric 
change and thus cause a boundary between neighboring 
segments. Segmentation is performed at different levels of 
granularity, and a level with 600-800 segments is selected for 
further processing. In this case, each segment has area of 
approximately 500 pixels – a sufficient amount to collect 
representative histograms and small enough to guarantee an 
absence of disparity jumps within a single segment. 

Each segment is considered separately. For each pixel P0 in 
a segment a number of potential candidates for its conjugate P0’ 
in the other image are chosen. A window of pixels in the 
vicinity of P0 and P0’ and within the same segment are selected. 
The maximum number of pixels in a window is 7 x 7, but they 
are arranged in variable patterns. The smallest scale consists of 
a 7 x 7 window, the next scale a 13*13 window, and the last, 
the 5-th scale a 31 x 31 window. Thus, with the same 
calculation complexity the similarity between regions can be 
detected on a variety of scales. Normalize cross correlation 
(NCC) scores are calculated for each window. Locations of P0’ 



Image of Towel and Carpet.

 

Fig. 2.  One of a pair of stereo camera images used for initial in-air 
testing of the system’s ability to generate dense 3D point clouds 

of textured surfaces.  

with the highest NCC scores are recorded. Pixels with 
conjugates detected by SIFT matching are considered to have 
the highest NCC score of 1, but other potential candidates are 
found for them too. 

Next, histograms of disparities for each individual segment 
are constructed. Two histograms are created: one consists of 
only top-scoring candidates, while the second contains all 
recorded candidates for all pixels in the segment. In most cases 
disparities for incorrect matches are distributed uniformly 
within the search range, while correct disparities are localized 
in a narrow interval, so that each histogram has a distinct peak. 
When the texture in the image is rich and distinct, the 
histogram of top scorers usually contains a single peak 
corresponding to the correct match for the segment as a whole. 
However when the texture is not well pronounced the 
histogram of top scorers is less reliable. In this case a histogram 
of all recorded candidates better represent the disparity of the 
segment. Both histograms are processed and the dominant 
peaks are determined. In the case of a single, co-located peak in 
both histograms, it is accepted as a final solution for a segment. 
In cases of several peaks with comparable dominance each 
associated solution is investigated individually. 

To resolve cases of multiple histogram peaks showing no 
agreement to the correct disparity the candidate values are 
compared to the seed values (from SIFT matching). First 
disparities corresponding to the seed values and those 
corresponding to the peak maximum are set. In an iterative 
process, the neighboring disparities for resolved disparities are 
chosen such that the difference with already set values are 
minimized, resulting in the smoothest possible solution. As a 
check of these results two quantitative characteristics are 
considered: average NCC score of chosen disparities and 
average roughness of disparities  within a segment, where 

roughness is defined as the sum of absolute differences 
between neighbor disparities divided by number of neighboring 
pairs of pixels. Practice shows that the correct solution does not 
necessarily have the highest NCC score and the lowest 
roughness, so discarding all but the best solution might lead to 
a wrong result. Hence if a few top solutions minimizing the 
transition from seed values have comparable scores they are all 
kept to make the final decision at a final stage. 

When histograms of disparities within a segment, 
comparison with SIFT determined seeds, amplitude of NCC 
scores and local roughness of NCC scores all fail to definitively 
resolve the correct disparity, the candidates are compared to 
those in adjacent segments. Disparity ranges in successful 
segments neighboring the one with several equally good 
solutions are compared. Again the assumption of local 
smoothness is utilized. The investigated segment is likely to 
have smooth transition of disparities with the majority of its 
neighbors. If this condition is not fulfilled for any of the kept 
solutions the segment is considered an outlier and invalidated 
(its pixels are not used in triangulation). 

Methods described thus far determine the disparity between 
matching pixels in the two images with the resolution of a 
single pixel. To gain subpixel resolution, a parabola is fit to the 
disparities of neighboring pixels centered on the pixel of 
interest and the peak of the paraboloid is chosen for the final 
disparity measure.   

The camera calibration along with the calculated disparities 
between matching pixels are used to calculate the location of 
each object in 3D space by triangulating the intersection which 
originate at each camera’s focal point and whose direction is 
determined by their disparity using standard methods [6]. 
These results produce a point cloud, which is used to generate 
the surfaces presented in the next section. 

IV. RESULTS 
Preliminary tests were conducted in air to test the setup and 

method. Figure 1 shows the left camera image of an office 
carpet and blue towel laid flat on the surface. Figure 2a shows a 
3 mm x 3 mm median grid of the point cloud data after 
subtracting the point heights from a plane fit to the portion of 
the data associated with the carpet. The RMS deviation of the 
data to the plane is 9 mm. Careful examination of the surface 
shows two artifacts. The first is a slight curvature to the surface 
revealed as a lightening of the gray-scale shaded image in the 
center of the grid. This curvature results from an imperfect 
correction for lens distortion and was left uncorrected for to 
illustrate the effect. The second is a small 5 mm irregularity in 
the surface creating bands in the gray-scale height. This results 
from an inability of the sub-pixel disparity algorithm to 
discriminate disparities at the sub-pixel level for the textures 
provided by these surfaces.  



 

a) 

 

b)  

Fig. 4.  The surface in a) is a grid of the residuals to a plane fit to the 
3D point cloud calculated from stereo reconstruction of the 

towel and carpet scene shown in Figure 2. A cross-section of 
the surface is shown in b) showing the towel’s 7 mm height 
relative to the floor. Residual curvature in the surface results 

from an imperfect camera calibration, left uncorrected to 
illustrate the effect. 

Image of Pen on Wet Beach

 

Fig. 5.  One of a pair of stereo camera images used for initial in-air 
testing of the system’s ability to generate dense 3D point 

clouds. Here a pen was laid on a sandy beach to further test the 
resolving capability of the method. 

 

a) 

 

b) 

Fig. 3.  The surface in a) is a 3 mm grid of the 3D point cloud 
calculated from stereo reconstruction of the beach and pen 

scene in Fig. 4. A cross-section of the surface is shown in b) 
where the pen is clearly evident as a 1 cm bump on the 

surface. 

Figure 2b shows a cross-section of the data set in which the 
towel is clearly visible as a 7 mm increase in surface height at a 
distance of 150 mm from the edge of the plot. While errors in 
our calibration methods left residual curvature to the surface 
these results were sufficiently promising to continue 
investigation of the method.  

Figure 4 shows the left image for a second test photo in air, 
in which a pen was imaged on a wet sandy beach. The grain 
size and texture of the beach provided a means to test the 
algorithms in a real-world scenario and to adjust the methods to 
obtain the best image for stereo reconstruction. Here the pen is 
clearly recognizable in the surface plot and cross-section 
provided in Figures 5a and 5b respectively.  
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a) 

 

b) 

Fig. 7.  Here the number of points per 3 mm grid node and their 
standard deviation are plotted for the surface shown in Fig. 
4a. The images used for this reconstruction were taken at 

approximately 0.7 m above the surface and were decimated 
by a factor of 4 prior to stereo reconstruction.  

Underwater Test Image

 

a) 

 

b) 

Fig. 6.  After underwater calibration of the stereo system, an 
underwater scene was taken shown in a) above. A 3 mm grid 

of the resulting point cloud is shown in b).   

Figures 6a and 6b show the number of data points per grid 
node and their standard deviation respectively for this image. 
The image was taken approximately 0.7 m from the surface, 
which is commensurate with the altitude from which we expect 
to take images in subsequent field experiments, allowing for 
adequate light and water clarity.  While the surfaces generated 
from stereo image pairs can be noisy, dense matching of all 
available pixels generally provides sufficient data density to 
remove much of the noise in subsequent averaging.    

Figures 7a and 7b show an underwater test image and the 
resulting surface generated from the stereo reconstruction. The 
cameras were recalibrated underwater for this test and although 
no man-made structures exist in this image to provide a 
measure that the scene is generated correctly, a qualitative 
analysis is possible. Major features (large stones and cobles) in 
the scene are well represented. Segments that fall in a shadow 

(and therefore have not texture) or are occluded from the view 
of either camera produce outliers. These are shown as small 
white patches in this vertical view of the surface as the outliers 
are invariably shallow with respect to the surface and off the 
color scale. Objects on the order of 1 cm are resolved, although 
spaces between objects are often smoothed, in part due to the 
gridding algorithm.  

 
 

V. CONCLUSION 
A GO-PRO underwater camera stereo camera rig has been 

used to generate 3 mm resolution grids of seafloor bathymetry 
for the purposes of seafloor characterization. Measurements at 
this scale allow characterization of the micro-roughness of an 
area, which is critical in the modeling of many processes 
including laminar and turbulent flow, seafloor sediment 
transport and acoustic backscatter.  



Images taken less than 1 m from the surface with an 
orientation nearly normal were found to provide adequate 
resolution and uniform density of the resulting point cloud. 
Underwater stereo imagery is generally more challenging than 
that in air, as light emanating from a point on the seafloor is 
scattered by the water column producing blurring or hazing 
effect that complicates matching of pixels between images.  
This blurring effect combined with homogeneous fine grain 
sediments (silt and mud) requires images as close as 20-30 cm 
for the cameras to resolve individual grains for matching. Large 
objects imaged from a stereo camera pair produce typically 
produce rich texture, but complicate processing with occlusions 
(portions of a scene viewable in one image but not in the other) 
which produce outliers.  

The GO-PRO underwater camera stereo system is not 
found to be ideal, having a quite short baseline (3.5 cm), which 
limits resolution of the resulting point cloud. When the scene 
has poor texture the sub-pixel algorithm used here can fail to 
improve the resolution of the system beyond that produced by 
the baseline alone. The final point cloud may appear to have 
discrete steps corresponding to integer pixel disparities as a 
result. Moreover, the cameras require high light levels to take 
adequately illuminated images. At deeper depths artificial 
lighting may be required. None-the-less, great convenience is 
found in the relatively low cost, prepackaged system and 
measures of seafloor micro-bathymetry capable of resolving 
seafloor features less than 1 cm in amplitude were possible. 
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