2,558 research outputs found

    Optimal sizes of dendritic and axonal arbors in a topographic projection

    Full text link
    I consider a topographic projection between two neuronal layers with different densities of neurons. Given the number of output neurons connected to each input neuron (divergence) and the number of input neurons synapsing on each output neuron (convergence) I determine the widths of axonal and dendritic arbors which minimize the total volume of axons and dendrites. Analytical results for one-dimensional and two-dimensional projections can be summarized qualitatively in the following rule: neurons of the sparser layer should have arbors wider than those of the denser layer. This agrees with the anatomical data from retinal and cerebellar neurons whose morphology and connectivity are known. The rule may be used to infer connectivity of neurons from their morphology.Comment: 8 pages, 7 figures, submitted to Nature Neuroscienc

    A multi-protein receptor-ligand complex underlies combinatorial dendrite guidance choices in C. elegans.

    Get PDF
    Ligand receptor interactions instruct axon guidance during development. How dendrites are guided to specific targets is less understood. The C. elegans PVD sensory neuron innervates muscle-skin interface with its elaborate dendritic branches. Here, we found that LECT-2, the ortholog of leukocyte cell-derived chemotaxin-2 (LECT2), is secreted from the muscles and required for muscle innervation by PVD. Mosaic analyses showed that LECT-2 acted locally to guide the growth of terminal branches. Ectopic expression of LECT-2 from seam cells is sufficient to redirect the PVD dendrites onto seam cells. LECT-2 functions in a multi-protein receptor-ligand complex that also contains two transmembrane ligands on the skin, SAX-7/L1CAM and MNR-1, and the neuronal transmembrane receptor DMA-1. LECT-2 greatly enhances the binding between SAX-7, MNR-1 and DMA-1. The activation of DMA-1 strictly requires all three ligands, which establishes a combinatorial code to precisely target and pattern dendritic arbors

    The GDNF-GFRα1 complex promotes the development of hippocampal dendritic arbors and spines via NCAM

    Get PDF
    The formation of synaptic connections during nervous system development requires the precise control of dendrite growth and synapse formation. Although glial cell line-derived neurotrophic factor (GDNF) and its receptor GFRα1 are expressed in the forebrain, the role of this system in the hippocampus remains unclear. Here, we investigated the consequences of GFRα1 deficiency for the development of hippocampal connections. Analysis of conditional Gfra1 knockout mice shows a reduction in dendritic length and complexity, as well as a decrease in postsynaptic density specializations and in the synaptic localization of postsynaptic proteins in hippocampal neurons. Gain- and loss-of-function assays demonstrate that the GDNF-GFRα1 complex promotes dendritic growth and postsynaptic differentiation in cultured hippocampal neurons. Finally, in vitro assays revealed that GDNF-GFRα1- induced dendrite growth and spine formation are mediated by NCAM signaling. Taken together, our results indicate that the GDNF-GFRα1 complex is essential for proper hippocampal circuit development.Fil: Irala, Dolores. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Biología Celular y Neurociencia "Prof. Eduardo de Robertis". Universidad de Buenos Aires. Facultad de Medicina. Instituto de Biología Celular y Neurociencia; ArgentinaFil: Bonafina, Antonela. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Biología Celular y Neurociencia "Prof. Eduardo de Robertis". Universidad de Buenos Aires. Facultad de Medicina. Instituto de Biología Celular y Neurociencia; ArgentinaFil: Fontanet, Paula. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Biología Celular y Neurociencia "Prof. Eduardo de Robertis". Universidad de Buenos Aires. Facultad de Medicina. Instituto de Biología Celular y Neurociencia; ArgentinaFil: Alsina, Fernando Cruz. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Biología Celular y Neurociencia "Prof. Eduardo de Robertis". Universidad de Buenos Aires. Facultad de Medicina. Instituto de Biología Celular y Neurociencia; ArgentinaFil: Paratcha, Gustavo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Biología Celular y Neurociencia "Prof. Eduardo de Robertis". Universidad de Buenos Aires. Facultad de Medicina. Instituto de Biología Celular y Neurociencia; ArgentinaFil: Ledda, Maria Fernanda. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Biología Celular y Neurociencia "Prof. Eduardo de Robertis". Universidad de Buenos Aires. Facultad de Medicina. Instituto de Biología Celular y Neurociencia; Argentin

    In vivo development of dendritic orientation in wild-type and mislocalized retinal ganglion cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Many neurons in the central nervous system, including retinal ganglion cells (RGCs), possess asymmetric dendritic arbors oriented toward their presynaptic partners. How such dendritic arbors become biased during development <it>in vivo </it>is not well understood. Dendritic arbors may become oriented by directed outgrowth or by reorganization of an initially unbiased arbor. To distinguish between these possibilities, we imaged the dynamic behavior of zebrafish RGC dendrites during development <it>in vivo</it>. We then addressed how cell positioning within the retina, altered in <it>heart-and-soul </it>(<it>has</it>) mutants, affects RGC dendritic orientation.</p> <p>Results</p> <p><it>In vivo </it>multiphoton time-lapse analysis revealed that RGC dendrites initially exhibit exploratory behavior in multiple directions but progressively become apically oriented. The lifetimes of basal and apical dendrites were generally comparable before and during the period when arbors became biased. However, with maturation, the addition and extension rates of basal dendrites were slower than those of the apical dendrites. Oriented dendritic arbors were also found in misplaced RGCs of the <it>has </it>retina but there was no preferred orientation amongst the population. However, <it>has </it>RGCs always projected dendrites toward nearby neuropil where amacrine and bipolar cell neurites also terminated. Chimera analysis showed that the abnormal dendritic organization of RGCs in the mutant was non-cell autonomous.</p> <p>Conclusions</p> <p>Our observations show that RGC dendritic arbors acquire an apical orientation by selective and gradual restriction of dendrite addition to the apical side of the cell body, rather than by preferential dendrite stabilization or elimination. A biased arbor emerges at a stage when many of the dendritic processes still appear exploratory. The generation of an oriented RGC dendritic arbor is likely to be determined by cell-extrinsic cues. Such cues are unlikely to be localized to the basal lamina of the inner retina, but rather may be provided by cells presynaptic to the RGCs.</p

    New insights into the classification and nomenclature of cortical GABAergic interneurons.

    Get PDF
    A systematic classification and accepted nomenclature of neuron types is much needed but is currently lacking. This article describes a possible taxonomical solution for classifying GABAergic interneurons of the cerebral cortex based on a novel, web-based interactive system that allows experts to classify neurons with pre-determined criteria. Using Bayesian analysis and clustering algorithms on the resulting data, we investigated the suitability of several anatomical terms and neuron names for cortical GABAergic interneurons. Moreover, we show that supervised classification models could automatically categorize interneurons in agreement with experts' assignments. These results demonstrate a practical and objective approach to the naming, characterization and classification of neurons based on community consensus

    Detailed morphological study of layer 2 and layer 3 pyramidal neurons in the anterior cingulate cortex of the rhesus monkey

    Full text link
    The anterior cingulate cortex (ACC) can influence emotional and motivational states in primates by its dense connections with many neocortical and subcortical regions. Pyramidal neurons serve as the basic building blocks of these neocortical circuits, which have been extensively studied in other brain regions, but their morphological and electrophysiological properties in the primate ACC are not well understood. In this study, we used whole-cell patch clamp and high-resolution laser scanning confocal microscopy to reveal the general electrophysiological properties and detailed morphological features of layer 2 and 3 pyramidal neurons in ACC (area 24/32) of the rhesus monkey. Neurons from both layers had similar passive membrane properties and action potential properties. Morphologically, dendrites of layer 3 ACC neurons were more complex than those of layer 2 neurons, by having dendrites with longer total dendritic lengths, more branch points and dendritic segments, spanning larger convex hull volumes. This difference in total dendritic morphology was mainly due to the apical dendrites. In contrast, the basal dendrites displayed mostly similar features between the two groups of neurons. However, while apical dendrites extend to the same layer (layer 1), the basal dendrites of layer 3 extended into deeper layers than layer 2 because of the difference in soma-pia distance. Thus, basal dendrites of the two groups of neurons receive different laminar inputs. Analysis of spines showed that more spines were found in neurons of layer 3 apical dendritic arbors than layer 2 neurons. However, the apical spine densities were similar between neurons in the two layers. Thus, while higher spine number suggests that layer 3 neurons receive more excitatory input than layer 2 neurons, the similar spine density suggests similar spatial and temporal summation of these inputs. The combined effects of increased number of excitatory input and higher dendritic complexity in layer 3 than in layer 2 ACC neurons suggest the additional information received by layer 3 neurons, especially in the apical dendrites, might undergo more complex integration

    Pyramidal Cells, Patches, and Cortical Columns: a Comparative Study of Infragranular Neurons in TEO, TE, and the Superior Temporal Polysensory Area of the Macaque Monkey

    Get PDF
    The basal dendritic arbors of layer III pyramidal neurons are known to vary systematically among primate visual areas. Generally, those in areas associated with "higher" level cortical processing have larger and more spinous dendritic arbors, which may be an important factor for determining function within these areas. Moreover, the tangential area of their arbors are proportional to those of the periodic supragranular patches of intrinsic connections in many different areas. The morphological parameters of both dendritic and axon arbors may be important for the sampling strategies of cells in different cortical areas. However, in visual cortex, intrinsic patches are a feature of supragranular cortex, and are weaker or nonexistent in infragranular cortex. Thus, the systematic variation in the dendritic arbors of pyramidal cells in supragranular cortex may reflect intrinsic axon projections, rather than differences in columnar organization. The present study was aimed at establishing whether cells in the infragranular layers also vary in terms of dendritic morphology among different cortical areas, and whether these variations mirror the ones demonstrated in supragranular cortex. Layer V pyramidal neurons were injected with Lucifer yellow in flat-mounted cortical slices taken from cytoarchitectonic areas TEO and TE and the superior polysensory area (STP) of the macaque monkey. The results demonstrate that cells in STP were larger, had more bifurcations, and were more spinous than those in TE, which in turn were larger, had more bifurcations and were more spinous than those in TEO. These results parallel morphological variation seen in layer III pyramidal neurons, suggesting that increasing complexity of basal dendritic arbors of cells, with progression through higher areas of the temporal lobe, is a general organizational principle. It is proposed that the differences in microcircuitry may contribute to the determination of the functional signatures of neurons in different cortical areas. Furthermore, these results provide evidence that intrinsic circuitry differs across cortical areas, which may be important for theories of columnar processing

    Synaptic Pattern of KA1 and KA2 upon the Direction-Selective Ganglion Cells in Developing and Adult Mouse Retina

    Get PDF
    The detection of image motion is important to vision. Direction-selective retinal ganglion cells (DS-RGCs) respond strongly to stimuli moving in one direction of motion and are strongly inhibited by stimuli moving in the opposite direction. In this article, we investigated the distributions of kainate glutamate receptor subtypes KA1 and KA2 on the dendritic arbors of DS-RGCs in developing (5, 10) days postnatal (PN) and adult mouse retina to search for anisotropies. The distribution of kainate receptor subtypes on the DS-RGCs was determined using antibody immunocytochemistry. To identify their characteristic morphology, DS-RGCs were injected with Lucifer yellow. The triple-labeled images of dendrites, kinesin II, and receptors were visualized by confocal microscopy and were reconstructed from high-resolution confocal images. We found no evidence of asymmetry in any of the kainate receptor subunits examined on the dendritic arbors of both the On and Off layers of DS-RGCs in all periods of developing and adult stage that would predict direction selectivity
    corecore