1,495 research outputs found

    Reliable H∞ filtering for discrete time-delay systems with randomly occurred nonlinearities via delay-partitioning method

    Get PDF
    The official published version can be found at the link below.In this paper, the reliable H∞ filtering problem is investigated for a class of uncertain discrete time-delay systems with randomly occurred nonlinearities (RONs) and sensor failures. RONs are introduced to model a class of sector-like nonlinearities that occur in a probabilistic way according to a Bernoulli distributed white sequence with a known conditional probability. The failures of sensors are quantified by a variable varying in a given interval. The time-varying delay is unknown with given lower and upper bounds. The aim of the addressed reliable H∞ filtering problem is to design a filter such that, for all possible sensor failures, RONs, time-delays as well as admissible parameter uncertainties, the filtering error dynamics is asymptotically mean-square stable and also achieves a prescribed H∞ performance level. Sufficient conditions for the existence of such a filter are obtained by using a new Lyapunov–Krasovskii functional and delay-partitioning technique. The filter gains are characterized in terms of the solution to a set of linear matrix inequalities (LMIs). A numerical example is given to demonstrate the effectiveness of the proposed design approach

    Probability-guaranteed H∞ finite-horizon filtering for a class of nonlinear time-varying systems with sensor saturations

    Get PDF
    This is the Post-Print version of the Article. The official published version can be accessed from the link below - Copyright @ 2012 ElsevierIn this paper, the probability-guaranteed H∞ finite-horizon filtering problem is investigated for a class of nonlinear time-varying systems with uncertain parameters and sensor saturations. The system matrices are functions of mutually independent stochastic variables that obey uniform distributions over known finite ranges. Attention is focused on the construction of a time-varying filter such that the prescribed H∞ performance requirement can be guaranteed with probability constraint. By using the difference linear matrix inequalities (DLMIs) approach, sufficient conditions are established to guarantee the desired performance of the designed finite-horizon filter. The time-varying filter gains can be obtained in terms of the feasible solutions of a set of DLMIs that can be recursively solved by using the semi-definite programming method. A computational algorithm is specifically developed for the addressed probability-guaranteed H∞ finite-horizon filtering problem. Finally, a simulation example is given to illustrate the effectiveness of the proposed filtering scheme.This work was supported in part by the National Natural Science Foundation of China under Grants 61028008, 60825303 and 60834003, National 973 Project under Grant 2009CB320600, the Fok Ying Tung Education Fund under Grant 111064, the Special Fund for the Author of National Excellent Doctoral Dissertation of China under Grant 2007B4, the Key Laboratory of Integrated Automation for the Process Industry (Northeastern University) from the Ministry of Education of China, the Engineering and Physical Sciences Research Council (EPSRC) of the U.K. under Grant GR/S27658/01, the Royal Society of the U.K., and the Alexander von Humboldt Foundation of Germany

    Improved results on fuzzy H ∞ filter design for T-S fuzzy systems

    Get PDF
    The fuzzy H ∞ filter design problem for T-S fuzzy systems with interval time-varying delay is investigated. The delay is considered as the time-varying delay being either differentiable uniformly bounded with delay derivative in bounded interval or fast varying (with no restrictions on the delay derivative). A novel Lyapunov-Krasovskii functional is employed and a tighter upper bound of its derivative is obtained. The resulting criterion thus has advantages over the existing ones since we estimate the upper bound of the derivative of Lyapunov-Krasovskii functional without ignoring some useful terms. A fuzzy H ∞ filter is designed to ensure that the filter error system is asymptotically stable and has a prescribed H ∞ performance level. An improved delay-derivative-dependent condition for the existence of such a filter is derived in the form of linear matrix inequalities (LMIs). Finally, numerical examples are given to show the effectiveness of the proposed method. © 2010 Jiyao An et al

    Non-fragile H∞ control with randomly occurring gain variations, distributed delays and channel fadings

    Get PDF
    This study is concerned with the non-fragile H∞ control problem for a class of discrete-time systems subject to randomly occurring gain variations (ROGVs), channel fadings and infinite-distributed delays. A new stochastic phenomenon (ROGVs), which is governed by a sequence of random variables with a certain probabilistic distribution, is put forward to better reflect the reality of the randomly occurring fluctuation of controller gains implemented in networked environments. A modified stochastic Rice fading model is then exploited to account for both channel fadings and random time-delays in a unified representation. The channel coefficients are a set of mutually independent random variables which abide by any (not necessarily Gaussian) probability density function on [0, 1]. Attention is focused on the analysis and design of a non-fragile H∞ outputfeedback controller such that the closed-loop control system is stochastically stable with a prescribed H∞ performance. Through intensive stochastic analysis, sufficient conditions are established for the desired stochastic stability and H∞ disturbance attenuation, and the addressed non-fragile control problem is then recast as a convex optimisation problem solvable via the semidefinite programme method. An example is finally provided to demonstrate the effectiveness of the proposed design method

    Quantized passive filtering for switched delayed neural networks

    Get PDF
    The issue of quantized passive filtering for switched delayed neural networks with noise interference is studied in this paper. Both arbitrary and semi-Markov switching rules are taken into account. By choosing Lyapunov functionals and applying several inequality techniques, sufficient conditions are proposed to ensure the filter error system to be not only exponentially stable, but also exponentially passive from the noise interference to the output error. The gain matrix for the proposed quantized passive filter is able to be determined through the feasible solution of linear matrix inequalities, which are computationally tractable with the help of some popular convex optimization tools. Finally, two numerical examples are given to illustrate the usefulness of the quantized passive filter design methods

    Robust L2 - L∞ filtering for a class of dynamical systems with nonhomogeneous Markov jump process

    Get PDF
    This paper investigates the problem of robust L2 - L∞ filtering for a class of dynamical systems with nonhomogeneous Markov jump process. The time-varying transition probabilities which evolve as a nonhomogeneous jump process are described by a polytope, and parameter-dependent and mode-dependent Lyapunov function is constructed for such system, and then a robust L2 -L8 filter is designed which guarantees that the resulting error dynamic system is robustly stochasticallystable and satisfies a prescribed L2 - L∞ performance index. A numerical example is given to illustrate the effectiveness of the developed techniques

    Integral partitioning approach to stability analysis and stabilization of distributed time delay systems

    Get PDF
    In this paper, the problems of delay-dependent stability analysis and stabilization are investigated for linear continuous-time systems with distributed delay. By introducing an integral partitioning technique, a new form of Lyapunov-Krasovskii functional (LKF) is constructed and improved distributed delay dependent stability conditions are established in terms of linear matrix inequalities (LMIs). Based on the criteria, a design algorithm for a state feedback controller is proposed. The results developed in this paper are less conservative than existing ones in the literature, which is illustrated by several examples. © 2011 IFAC.postprintThe 18th World Congress of the International Federation of Automatic Control (IFAC 2011), Milano, Italy, 28 August-2 September 2011. In Proceedings of the 18th IFAC World Congress, 2011, v. 18 pt. 1, p. 5094–509

    Stability and dissipativity analysis of static neural networks with time delay

    Get PDF
    This paper is concerned with the problems of stability and dissipativity analysis for static neural networks (NNs) with time delay. Some improved delay-dependent stability criteria are established for static NNs with time-varying or time-invariant delay using the delay partitioning technique. Based on these criteria, several delay-dependent sufficient conditions are given to guarantee the dissipativity of static NNs with time delay. All the given results in this paper are not only dependent upon the time delay but also upon the number of delay partitions. Some examples are given to illustrate the effectiveness and reduced conservatism of the proposed results.published_or_final_versio

    Multiobjective nonfragile fuzzy control for nonlinear stochastic financial systems with mixed time delays

    Get PDF
    In this study, a multiobjective nonfragile control is proposed for a class of stochastic Takagi and Sugeno (T–S) fuzzy systems with mixed time delays to guarantee the optimal H2 and H∞ performance simultaneously. Firstly, based on the T–S fuzzy model, two form of nonfragile state feedback controllers are designed to stabilize the T–S fuzzy system, that is to say, nonfragile state feedback controllers minimize the H2 and H∞ performance simultaneously. Then, by applying T–S fuzzy approach, the multiobjective H2/H∞ nonfragile fuzzy control problem is transformed into linear matrix inequality (LMI)-constrained multiobjective problem (MOP). In addition, we efficiently solve Pareto optimal solutions for the MOP by employing LMI-based multiobjective evolution algorithm (MOEA). Finally, the validity of this approach is illustrated by a realistic design example
    corecore