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Stability and Dissipativity Analysis of Static
Neural Networks with Time Delay

Zheng-Guang Wu, James Lam, Senior Member, IEEE, Hongye Su, and Jian Chu

Abstract— This paper is concerned with the problems of
stability and dissipativity analysis for static neural networks
(NNs) with time delay. Some improved delay-dependent stability
criteria are established for static NNs with time-varying or time-
invariant delay using the delay partitioning technique. Based on
these criteria, several delay-dependent sufficient conditions are
given to guarantee the dissipativity of static NNs with time delay.
All the given results in this paper are not only dependent upon the
time delay but also upon the number of delay partitions. Some
examples are given to illustrate the effectiveness and reduced
conservatism of the proposed results.

Index Terms— Dissipativity, stability, static neural networks,
time delay.

I. INTRODUCTION

IN RECENT years, there has been increasing research
interest on neural networks (NNs) for their successful appli-

cation in different areas, such as pattern recognition, associate
memory, and combinatorial optimization [1]. According to
whether the neuron states or local field states of the neurons
are chosen as basic variables to describe the evolution rule
of an NN, NNs can be classified as static NNs or local field
NNs [2]. The two models can be transferred equivalently from
one to the other under some assumptions. However, in many
applications, these assumptions cannot always be satisfied [3].
Thus, it is necessary and important to study them separately.
The detailed relationship between static NNs and local field
NNs can be found in [1], [2], and [4].

Recently, much attention has been paid to this paper on
the stability problem of time-delay systems, because time
delays are inherent features of many physical processes such
as chemical reactions, nuclear reactors, and biological sys-
tems, and may lead to instability or significantly deterio-
rated performances for the corresponding closed-loop systems
([5]–[19] and references therein). It should be pointed out that
time-delay NNs have been widely applied in many areas, such
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as signal and image processing, industrial automation, system
identification, and artificial intelligence. Many important the-
oretical results have been obtained for the stability problem
of all kinds of local field NNs with time delay ([20]–[32] and
references therein). In contrast, the corresponding results for
static NNs with time delay are relatively few.

It should be pointed out that the neurons of static NNs
form layered network configurations through only feedforward
interlayered synaptic connections in terms of the neural signal
flow. In general, an individual neuron aggregates its weighted
inputs and yields an output through a nonlinear activation
function with a threshold. As a tool for scientific computing
and engineering application, an obvious characteristic of static
NNs is its capability for implementing a nonlinear mapping
from many neural inputs to many neural outputs [1]. The
static NN model plays an important role in many types of
problems, for example, the linear variational inequality prob-
lem that contains linear and convex quadratic programming
problems and linear complementary problems as special cases.
The stability problem for static NNs with a constant delay
has been investigated in [3], and a sufficient condition is
proposed for ascertaining the global asymptotic stability of
the unique equilibrium of the NNs based on the linear matrix
inequality (LMI) approach. However, the condition proposed
in [3] is delay-independent and thus appears to be somewhat
conservative, especially when the time delay is comparatively
small. Based on the delay partitioning approach and Finsler’s
Lemma, some delay-dependent stability criteria have been
established in [33] to guarantee the global asymptotic stability
of static NNs with a constant delay. It should be pointed
out that the idea of delay partitioning was independently
proposed in [34] and [35], and has been widely applied to
obtain the less conservative delay-dependent results for various
kinds of time-delay systems, [24], [27], [36], [37]. For time-
varying delay, the stability problem has been considered for
static NNs in [38] and [39], where both delay-independent
and delay-dependent criteria were obtained in terms of LMIs.
However, the range of time-varying delays considered in [38]
and [39] is from zero to an upper bound. In practice, a time-
varying interval delay is often encountered, that is, the range
of delay varies in an interval for which the lower bound is
not restricted to zero. In this case, the stability criteria in
[38] and [39] are conservative because they do not take into
account the information of the lower bound of the delay. In
[40], the stability problem for static NNs with time-varying
interval delay has been studied, and a new type of delay-range-
dependent condition was proposed using the free-weighting

2162–237X/$26.00 © 2011 IEEE
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matrix technique to obtain a tighter upper bound on the
derivative of the Lyapunov–Krasovskii functional, which has
less conservatism than those of [38] and [39]. The condition
of [40] can be viewed as an extension of existing result on
local field NNs with time delay proposed in [6] to static NNs
with time delay. It is worth pointing out that the free-weighting
matrix technique was originally proposed in [41] and further
developed in [6], [7], and [42]. However, there still exists
room for further improvement because some useful terms are
ignored in the Lyapunov–Krasovskii functional employed in
[40], which may lead to conservatism to some extent. Thus,
it is important and necessary to further study the stability of
static NNs with time delay, which is the motivation for this
paper.

On the other hand, the theory of dissipative systems plays an
important role in system and control areas, and thus has been
attracting a great deal of attention. It has been shown that
the dissipative theory gives a framework for the design and
analysis of control systems using an input–output description
based on energy-related considerations [43]. It serves as a pow-
erful or even indispensable tool in characterizing important
system behaviors such as stability and passivity, and has close
connections with passivity theorem, the bounded real lemma,
the Kalman–Yakubovich lemma, and the circle criterion. With
the advancement of the LMI approach, many interesting and
important results on dissipativity analysis and synthesis have
been reported for different kinds of dynamic systems. For
example, the problem of reliable dissipative control has been
investigated in [44] for a type of stochastic hybrid systems
in terms of the LMI approach, and linear state feedback con-
trollers and impulsive controllers are designed such that, for all
admissible uncertainties as well as actuator failure occurring
among a prespecified subset of actuators, the stochastic hybrid
system is stochastically robustly stable and strictly (Q,S,R)-
dissipative. In [46], delay-dependent sufficient conditions have
been established in terms of LMIs, which ensure singular
systems with time delay to be admissible and dissipative. Very
recently, the problem of delay-dependent dissipativity analysis
has been investigated for local field NNs with distributed delay
in [45], and a sufficient condition was given to guarantee the
local field NN is dissipative. It should be pointed out that, up
to now, very little attention has been paid to the dissipativity
analysis of static NNs with time delay.

In recent years, the most common way to obtain less
conservative results for time-delay systems is to make use
of the free-weighting matrix method together with the delay
partitioning technique [28], [42], [47]. It should be pointed
out that an obvious drawback of this method is that very
many free-weighting matrices are introduced with the par-
titioning getting thinner. However, some of them have no
effect on reducing the conservatism of the obtained results.
On the contrary, they mathematically complicate the system
analysis and consequently lead to a significant increase in
computational complexity [16]. Naturally, it is meaningful to
consider how to overcome the aforementioned disadvantages
of the combination of the free-weighting matrix method and
the delay partitioning technique. Thus, another purpose of this
paper to introduce fewer free-weighting matrices to achieve

some less conservative conditions to guarantee the delay-
dependent stability and dissipativity of the addressed NNs.

In this paper, the problems of stability and dissipativity
analysis are investigated for static NNs with time delay using
the delay partitioning technique. First, several improved delay-
dependent stability criteria are established for static NNs
with time-varying or time-invariant delay. Then, several delay-
dependent sufficient conditions are given to guarantee the
dissipativity of these networks. All the results gien in this
paper are delay-dependent as well as partition-dependent.
The effectiveness as well as the reduced conservatism of
the derived results is demonstrated by several illustrative
examples.

Notation: The notations used throughout this paper are fairly
standard. R

n denotes the n-dimensional Euclidean space, and
R

m×n is the set of all m×n real matrices. The notation X > Y
(X ≥ Y ), where X and Y are symmetric matrices, means
that X − Y is positive definite (positive semidefinite). I and 0
represent the identity matrix and a zero matrix, respectively.
The superscript “T” represents the transpose, diag{· · · } stands
for a block-diagonal matrix, and L2[0,∞) stands for the space
of square integrable functions on [0,∞). For an arbitrary
matrix B and two symmetric matrices A and C[

A B
∗ C

]

denotes a symmetric matrix, where “∗” denotes the term
that is induced by symmetry. Matrix dimensions, if not
explicitly stated, are assumed to be compatible for algebraic
operations.

II. PRELIMINARIES

Consider the following static NN with time delay:{
ż(t) = −Az(t) + f (W z(t − d(t)) + J )

z(t) = φ(t), t ∈ [− max{d(t)}, 0] (1)

where A = diag{a1, a2, . . . , an} > 0, W = [Ŵ T
1 Ŵ T

2 · · ·
Ŵ T

n ]T is the delayed connection weight matrix, J =
[J1 J2 · · · Jn]T represents the external inputs, z(t) =[
z1(t) z2(t) · · · zn(t)

]T is the state vector associated
with the n neurons, f (W z(t)) = [ f1(Ŵ1z(t)) f2(Ŵ2z(t)) · · ·
fn(Ŵnz(t))]T is the activation function of neurons, φ(t) is
the initial condition, and d(t) is the time delay and satisfies
the following three cases:

C1) time-varying delay: 0 < d1 ≤ d(t) ≤ d2, ḋ(t) ≤ μ;
C2) time-varying delay: 0 < d1 ≤ d(t) ≤ d2;
C3) time-invariant delay: d(t) ≡ d > 0;

where d1, d2, μ, and d are known real constants, and d2 > d1.
It is assumed that each activation function fi (·) in (1) is

bounded and satisfies

0 ≤ fi (s1) − fi (s2)

s1 − s2
≤ li , s1 �= s2 ∈ R (2)

where li>0 are known real constants. This assumption guar-
antees that there is an equilibrium point u∗ of the NN (1).
Let x(t) = z(t) − u∗, g(W x(t)) = f (W (x(t) + u∗) + J ) −
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f (Wu∗ + J ), and ϕ(t) = φ(t) − u∗. Then NN (1) can be
expressed as

{
ẋ(t) = −Ax(t) + g(W x(t − d(t)))

x(t) = ϕ(t), t ∈ [− max{d(t)}, 0]. (3)

It can be shown that the activation function gi (·) is bounded
and satisfies

0 ≤ gi(s)

s
≤ li , gi(0) = 0. (4)

Remark 1: The NN (3) is called a static NN. It is inter-
esting that, when the delayed connection weight matrix W is
nonsingular and W A = AW , by defining ŷ(t) = W x(t), NN
(3) can be transformed into

˙̂y(t) = −Aŷ(t) + Wg(ŷ(t − d(t)))

which is called a local field NN, which has been extensively
studied in the literature. However, most static NNs do not
satisfy the transformation condition. It is thus necessary and
important to study such NNs.

One aim in this paper is to investigate the stability of the
static NN (3) and establish some new delay-dependent stability
criteria that are better than the existing ones.

When an external disturbance appears in the NN (3), we
have the following NN:

⎧⎪⎨
⎪⎩

ẋ(t) = −Ax(t) + g(W x(t − d(t))) + ω(t)

y(t) = g(W x(t))

x(t) = ϕ(t), t ∈ [− max{d(t)}, 0]
(5)

where y(t) is the output of the NN, and ω(t) is the disturbance
input which cannot be fully measured and is not completely
known beforehand. In this paper, it is assumed that ω(t) ∈
L2[0,∞), which implies that it is a function of finite energy.

We are now in a position to introduce the definition on
dissipativity. Let the energy supply function of the NN (5) be
defined by

G(ω, y, τ ) = 〈y,Qy〉τ + 2〈y,Sω〉τ + 〈ω,Rω〉τ ∀τ ≥ 0

(6)

where Q, S, and R are real matrices with Q, R symmetric,
and 〈a, b〉τ = ∫ τ

0 aTb dt . Without loss of generality, it is
assumed that Q ≤ 0 and that −Q = QT−Q− for some Q−.

Definition 1: NN (5) is said to be strictly (Q,S,R)-γ -
dissipative if, for some scalar γ > 0, the inequality

G(ω, y, τ ) ≥ γ 〈ω,ω〉τ ∀τ ≥ 0 (7)

holds under zero initial condition for any nonzero disturbance
ω ∈ L2[0,∞).

Another aim of this paper is to establish delay-dependent
condition such that the NN (5) is globally asymptotically stable
and strictly (Q,S,R)-γ -dissipative.

Before moving on, the following results are required.
Lemma 1 (Jensen Inequality) [13], [48]: For any matrix

W>0, scalars γ1 and γ2 satisfying γ2 > γ1, a vector

function ω: [ γ1, γ2 ] → R
n such that the integrations∫ γ2

γ1
ω(α)TWω(α) dα and

∫ γ2
γ1

ω(α) dα are well defined, then

(γ2 − γ1)

γ2∫
γ1

ω(α)TWω(α) dα

≥
⎡
⎣

γ2∫
γ1

ω(α) dα

⎤
⎦

T

W

⎡
⎣

γ2∫
γ1

ω(α) dα

⎤
⎦. (8)

Lemma 2 [49]: For any matrix
[

M S∗ M

] ≥ 0, scalars
d1, d2, d(t) satisfying d1 ≤ d(t) ≤ d2, vector function
ẋ(t + ·): [ −d2,−d1 ] → R

n such that the integrations∫ t−d1
t−d2

ẋ(α)T Mẋ(α) dα,
∫ t−d1

t−d(t) ẋ(α) dα, and
∫ t−d(t)

t−d2
ẋ(α) dα

are well defined, then

−d̂

t−d1∫
t−d2

ẋ(α)T Mẋ(α) dα ≤ �(t)TΩ�(t) (9)

where d̂ = d2 − d1 and

�(t) = [
x(t − d1)

T x(t − d(t))T x(t − d2)
T
]T

Ω =
⎡
⎣−M M − S S

∗ −2M + S + ST −S + M
∗ ∗ −M

⎤
⎦.

Remark 2: Lemma 2 is a special case of [49, Th. 1],
which is presented in a form more convenient for the present
application.

III. STABILITY ANALYSIS

In this section, the delay partitioning technique will be
developed to investigate the stability problem for the NN (3).
For convenience of presentation, we denote

η1(t) =

⎡
⎢⎢⎢⎢⎢⎣

x(t)
x

(
t − 1

m d1
)

x
(
t − 2

m d1
)

...

x
(
t − m−1

m d1
)

⎤
⎥⎥⎥⎥⎥⎦

, η2(t) =

⎡
⎢⎢⎢⎢⎢⎣

g(W x(t))
g

(
W x

(
t − 1

m d1
))

g
(
W x

(
t − 2

m d1
))

...

g(W x(t − m−1
m d1))

⎤
⎥⎥⎥⎥⎥⎦

θ1(t) =
[

η1(t)
x(t − d1)

]
, θ2(t) =

[
η2(t)

g(W x(t − d1))

]

L = diag{l1, l2, . . . , ln}
W1 = [

Imn 0mn×n
]

W2 = [
0mn×n Imn

]
eι = [

0n×(ι−1)n In 0n×(m+1−ι)n
]
, ι = 1, 2, . . . , m + 1

and η̂1(t) = η1(t)|d1=d , η̂2(t) = η2(t)|d1=d , θ̂1(t) =
θ1(t)|d1=d , θ̂2(t) = θ2(t)|d1=d , and d̃ = d2 − d1.

Theorem 1: Given an integer m > 0, the NN (3) with C1
is globally asymptotically stable if there exist matrices P > 0,
Zi > 0 (i = 1, 2, . . . , m),

[
Q1 V
∗ Q2

]
> 0,

[
Y1 U1∗ Y2

]
> 0,[

Y3 U2∗ Y4

]
> 0,

[
Zm+1 U3∗ Zm+1

]
≥ 0, and diagonal matrices
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S = diag{s1, s2, . . . , sn} > 0, R = diag{r1, r2, . . . , rn} > 0,
Di > 0 (i = 1, 2, . . . , m + 3) such that

Ξ =

⎡
⎢⎢⎢⎢⎢⎢⎣

Ξ11 Ξ12 Ξ13 Ξ14 Ξ15 0
∗ Ξ22 Ξ23 0 Ξ25 0
∗ ∗ Ξ33 0 0 Ξ36
∗ ∗ ∗ Ξ44 Ξ45 0
∗ ∗ ∗ ∗ Ξ55 0
∗ ∗ ∗ ∗ ∗ Ξ66

⎤
⎥⎥⎥⎥⎥⎥⎦

< 0 (10)

where

Ξ11 = −eT
1 P Ae1 − eT

1 APe1 + W T
1 Q1W1 − W T

2 Q1W2

+
(

d1

m

)2

eT
1 A

(
m∑

i=1

Zi

)
Ae1 + eT

1 Y1e1 + eT
1 Y3e1

−
m∑

i=1

(ei − ei+1)
T Zi (ei − ei+1) + d̃2eT

1 AZm+1 Ae1

−eT
m+1 Zm+1em+1 − eT

1 W T L RW Ae1

−eT
1 AW T RLWe1

Ξ12 = eT
m+1 Zm+1 − eT

m+1U3

Ξ13 = eT
m+1U3

Ξ14 = −eT
1 AW T Se1 + W T

1 V W1 − W T
2 V W2 + eT

1 U1e1

+eT
1 U2e1 +

m+1∑
i=1

eT
i W T L Di ei + eT

1 AW T Re1

Ξ15 = eT
1 P −

(
d1

m

)2

eT
1 A

(
m∑

i=1

Zi

)
− d̃2eT

1 AZm+1

+eT
1 W T L RW

Ξ22 = −(1 − μ)Y1 − 2Zm+1 + U3 + UT
3

Ξ23 = Zm+1 − U3

Ξ25 = −(1 − μ)U1 + W T L Dm+2

Ξ33 = −Y3 − Zm+1

Ξ36 = −U2 + W T L Dm+3

Ξ44 = W T
1 Q2W1 − W T

2 Q2W2 + eT
1 Y2e1 + eT

1 Y4e1

−2
m+1∑
i=1

eT
i Di ei

Ξ45 = eT
1 SW − eT

1 RW

Ξ55 =
(

d1

m

)2 m∑
i=1

Zi − (1 − μ)Y2 + d̃2 Zm+1 − 2Dm+2

Ξ66 = −Y4 − 2Dm+3.

Proof: Construct the following Lyapunov–Krasovskii
functional candidate for NN (3):

V (x(t)) =
6∑

i=1

Vi (x(t)) (11)

where

V1(x(t)) = x(t)T Px(t) + 2
n∑

i=1

si

∫ Ŵi x(t)

0
gi(s) ds

+2
n∑

i=1

ri

∫ Ŵi x(t)

0
(li s − gi(s)) ds

V2(x(t)) =
∫ t

t− d1
m

[
η1(s)
η2(s)

]T [
Q1 V
∗ Q2

] [
η1(s)
η2(s)

]
ds

V3(x(t)) = d1

m

m∑
i=1

∫ − i−1
m d1

− i
m d1

∫ t

t+α
ẋ(s)T Zi ẋ(s) ds dα

V4(x(t)) =
∫ t

t−d(t)

[
x(s)

g(W x(s))

]T [
Y1 U1
∗ Y2

] [
x(s)

g(W x(s))

]
ds

V5(x(t)) =
∫ t

t−d2

[
x(s)

g(W x(s))

]T [
Y3 U2
∗ Y4

] [
x(s)

g(W x(s))

]
ds

V6(x(t)) = d̃
∫ −d1

−d2

∫ t

t+α
ẋ(s)T Zm+1 ẋ(s) ds dα.

Evaluating the derivative of V (x(t)) along the solution of NN
(3), we obtain

V̇1(x(t)) = 2x(t)T Pẋ(t) + 2g(W x(t))T SW ẋ(t)

+2(LW x(t) − g(W x(t)))T RW ẋ(t)

= 2θ1(t)
TeT

1 P(−Ae1θ1(t) + g(W x(t − d(t))))

+2θ2(t)
TeT

1 SW (−Ae1θ1(t) + g(W x(t − d(t))))

+2(LWe1θ1(t) − e1θ2(t))
T RW

×(−Ae1θ1(t) + g(W x(t − d(t))))

= −2θ1(t)
TeT

1 P Ae1θ1(t) − 2θ2(t)
TeT

1 SW Ae1θ1(t)

+2θ1(t)
TeT

1 Pg(W x(t − d(t)))

+2θ2(t)
TeT

1 SWg(W x(t − d(t)))

−2θ1(t)
TeT

1 W T L RW Ae1θ1(t)

+2θ2(t)
TeT

1 RW Ae1θ1(t)

+2θ1(t)
TeT

1 W T L RWg(W x(t − d(t)))

−2θ2(t)
TeT

1 RWg(W x(t − d(t))) (12)

V̇2(x(t)) =
[
η1(t)
η2(t)

]T [
Q1 V
∗ Q2

] [
η1(t)
η2(t)

]

−
[
η1

(
t − d1

m

)
η2(t − d1

m )

]T [
Q1 V
∗ Q2

]⎡
⎣η1

(
t − d1

m

)
η2

(
t − d1

m

)
⎤
⎦

=
[

W1θ1(t)
W1θ2(t)

]T [
Q1 V
∗ Q2

] [
W1θ1(t)
W1θ2(t)

]

−
[

W2θ1(t)
W2θ2(t)

]T [
Q1 V
∗ Q2

] [
W2θ1(t)
W2θ2(t)

]

=
[
θ1(t)
θ2(t)

]T

×
[

W T
1 Q1W1 − W T

2 Q1W2 W T
1 V W1 − W T

2 V W2

∗ W T
1 Q2W1 − W T

2 Q2W2

]

×
[
θ1(t)
θ2(t)

]
(13)

V̇3(x(t)) =
(

d1

m

)2

ẋ(t)T

(
m∑

i=1

Zi

)
ẋ(t)

−d1

m

m∑
i=1

∫ t− i−1
m d1

t− i
m d1

ẋ(s)T Zi ẋ(s) ds

≤
(

d1

m

)2

θ1(t)
TeT

1 A

(
m∑

i=1

Zi

)
Ae1θ1(t)
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−2

(
d1

m

)2

θ1(t)
TeT

1 A

(
m∑

i=1

Zi

)
g(W x(t − d(t)))

+
(

d1

m

)2

g(W x(t − d(t)))T

(
m∑

i=1

Zi

)
g(W x(t − d(t)))

−
m∑

i=1

∫ t− i−1
m d1

t− i
m d1

ẋ(s)T ds Zi

∫ t− i−1
m d1

t− i
m d1

ẋ(s) ds

=
(

d1

m

)2

θ1(t)
TeT

1 A

(
m∑

i=1

Zi

)
Ae1θ1(t)

−2

(
d1

m

)2

θ1(t)
TeT

1 A

(
m∑

i=1

Zi

)
g(W x(t − d(t)))

+
(

d1

m

)2

g(W x(t − d(t)))T

(
m∑

i=1

Zi

)
g(W x(t − d(t)))

−
m∑

i=1

θ1(t)
T(ei − ei+1)

T Zi (ei − ei+1)θ1(t) (14)

where Lemma 1 is applied

V̇4(x(t)) ≤
[

x(t)
g(W x(t))

]T [
Y1 U1
∗ Y2

] [
x(t)

g(W x(t))

]

−(1 − μ)

[
x(t − d(t))

g(W x(t − d(t)))

]T [
Y1 U1
∗ Y2

]

×
[

x(t − d(t))
g(W x(t − d(t)))

]

=
[

e1θ1(t)
e1θ2(t)

]T [
Y1 U1
∗ Y2

] [
e1θ1(t)
e1θ2(t)

]

−(1 − μ)

[
x(t − d(t))

g(W x(t − d(t)))

]T [
Y1 U1
∗ Y2

]

×
[

x(t − d(t))
g(W x(t − d(t)))

]

=
[
θ1(t)
θ2(t)

]T [
eT

1 Y1e1 eT
1 U1e1

∗ eT
1 Y2e1

] [
θ1(t)
θ2(t)

]

−(1 − μ)

[
x(t − d(t))

g(W x(t − d(t)))

]T [
Y1 U1
∗ Y2

]

×
[

x(t − d(t))
g(W x(t − d(t)))

]
(15)

V̇5(x(t)) =
[

x(t)
g(W x(t))

]T [
Y3 U2
∗ Y4

] [
x(t)

g(W x(t))

]

−
[

x(t − d2)
g(W x(t − d2))

]T [
Y3 U2
∗ Y4

] [
x(t − d2)

g(W x(t − d2))

]

=
[

e1θ1(t)
e1θ2(t)

]T [
Y3 U2
∗ Y4

] [
e1θ1(t)
e1θ2(t)

]

−
[

x(t − d2)
g(W x(t − d2))

]T [
Y3 U2
∗ Y4

] [
x(t − d2)

g(W x(t − d2))

]

=
[
θ1(t)
θ2(t)

]T [
eT

1 Y3e1 eT
1 U2e1

∗ eT
1 Y4e1

] [
θ1(t)
θ2(t)

]

−
[

x(t − d2)
g(W x(t − d2))

]T [
Y3 U2
∗ Y4

] [
x(t − d2)

g(W x(t − d2))

]

(16)

V̇6(x(t)) = d̃2 ẋ(t)T Zm+1 ẋ(t) − d̃
∫ t−d1

t−d2

ẋ(s)T Zm+1 ẋ(s) ds

≤ d̃2θ1(t)
TeT

1 AZm+1 Ae1θ1(t)

−2d̃2θ1(t)
TeT

1 AZm+1g(W x(t − d(t)))

+d̃2g(W x(t − d(t)))T Zm+1g(W x(t − d(t)))

−
⎡
⎣ x(t − d1)

x(t − d(t))
x(t − d2)

⎤
⎦

T

×
⎡
⎣Zm+1 −Zm+1 + U3 −U3

∗ 2Zm+1 − U3 − UT
3 U3 − Zm+1

∗ ∗ Zm+1

⎤
⎦

×
⎡
⎣ x(t − d1)

x(t − d(t))
x(t − d2)

⎤
⎦

≤ d̃2θ1(t)
TeT

1 AZm+1 Ae1θ1(t)

−2d̃2θ1(t)
TeT

1 AZm+1g(W x(t − d(t)))

+d̃2g(W x(t − d(t)))T Zm+1g(W x(t − d(t)))

−
⎡
⎣ θ1(t)

x(t − d(t))
x(t − d2)

⎤
⎦

T ⎡
⎣em+1 0 0

0 I 0
0 0 I

⎤
⎦

T

×
⎡
⎣Zm+1 −Zm+1 + U3 −U3

∗ 2Zm+1 − U3 − UT
3 U3 − Zm+1

∗ ∗ Zm+1

⎤
⎦

×
⎡
⎣em+1 0 0

0 I 0
0 0 I

⎤
⎦

⎡
⎣ θ1(t)

x(t − d(t))
x(t − d2)

⎤
⎦ (17)

where Lemma 2 is used. On the other hand, by (4), we have

2
m+1∑
i=1

g

(
W x

(
t − i − 1

m
d1

))T

Di

×
(

LW x

(
t − i − 1

m
d1

)
− g

(
W x

(
t − i − 1

m
d1

)))
≥ 0.

(18)

That is

Υ1 = 2
m+1∑
i=1

θ2(t)
TeT

i Di (LWeiθ1(t) − eiθ2(t)) ≥ 0. (19)

We can also get from (4)

Υ2 = 2g (W x(t − d(t)))T Dm+2

× (LW x(t − d(t)) − g (W x(t − d(t)))) ≥ 0 (20)

and

Υ3 = 2g (W x(t − d2))
T Dm+3

× (LW x(t − d2) − g (W x(t − d2))) ≥ 0. (21)

Thus, we have from (12)–(17) and (19)–(21)

V̇ (x(t)) ≤ V̇1(x(t)) + V̇2(x(t)) + V̇3(x(t)) + V̇4(x(t))

+V̇5(x(t)) + V̇6(x(t)) + Υ1 + Υ2 + Υ3

≤ ρ(t)TΞρ(t) (22)
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where

ρ(t) = [
ρ1(t)T ρ2(t)T

]T

ρ1(t) = [
θ1(t)T x(t − d(t))T x(t − d2)

T
]T

ρ2(t) = [
θ2(t)T g(W x(t − d(t)))T g(W x(t − d2))

T
]T

.

Clearly, if Ξ < 0, V̇ (x(t)) < 0 holds, which implies that
NN (3) is globally asymptotically stable. This completes the
proof.

Remark 3: In terms of the delay partitioning technique,
a new delay-range-dependent and delay-derivative-dependent
sufficient condition is proposed in Theorem 1 for the global
asymptotical stability of NN (3) with time-varying interval
delay. When ri = 0, V = Q2 = 0, Q1 = Im ⊗ Q̂1,
Zi = (m/d1)Ẑ1, U1 = Y4 = U2 = 0, and Zm+1 =
d−1

12 (Ẑ1 + Ẑ2), the Lyapunov–Krasovskii functional candidate
(11) reduces to that of [40]. Thus, our Lyapunov–Krasovskii
functional candidate is much more general than that of [40],
and Theorem 1 in this paper has less conservatism than [40,
Th. 2]. Moreover, the conservatism reduction of Theorem 1 in
this paper becomes more obvious with the partitioning getting
thinner (i.e., m becoming larger), which will be demonstrated
in Section V.

Remark 4: It is worth pointing out that, if we utilize the
free-weighting matrix method together with the delay parti-
tioning technique to deal with the delay-dependent stability
problem of NN (3), a great many free-weighting matrices will
be introduced with increasing number of partitions, which will
make the obtained result rather complicated and consequently
lead to computational burden [50]. But in this paper, we make
use of integral inequalities (8) and (9) instead of the free-
weighting matrix method. An obvious and important merit of
such an approach is that only one matrix is introduced no
matter how large the partitioning is, and thus we can achieve
a condition with fewer decision variables.

As for C2, we can get the following stability criterion
for NN (3) via the following Lyapunov–Krasovskii functional
candidate:
V (x(t)) = V1(x(t))+V2(x(t))+V3(x(t))+V5(x(t))+V6(x(t))

(23)
where V1(x(t)), V2(x(t)), V3(x(t)), V5(x(t)), and V6(x(t))
follow the same definitions as those in (11).

Theorem 2: Given an integer m>0, NN (3) with C2 is glob-
ally asymptotically stable if there exist matrices P > 0, Zi > 0
(i = 1, 2, . . . , m),

[
Q1 V
∗ Q2

]
> 0,

[
Y3 U2∗ Y4

]
> 0,

[
Zm+1 U3

∗ Zm+1

]
≥

0, and diagonal matrices S = diag{s1, s2, . . . , sn} > 0, R =
diag{r1, r2, . . . , rn} > 0, Di > 0 (i = 1, 2, . . . , m + 3) such
that (10)|Y1=Y2=U1=0 holds.

Proof: By using a similar method as employed in
Theorem 1, we can easily obtain Theorem 2. This completes
the proof.

Remark 5: Theorem 2 proposes a delay-range-dependent
and delay-derivative-independent sufficient condition for the
global asymptotical stability of NN (3) with time-varying
interval delay. It should be pointed out that, when μ ≥ 1,[

Y1 U1∗ Y2

]
will no longer be helpful to improve the conservatism

of Theorem 1, since −(1 − μ)
[

Y1 U1∗ Y2

]
≥ 0. Therefore,

Theorem 1 with μ ≥ 1 is equivalent to Theorem 2.
As for C3, we can get the stability criterion for NN (3) via

the following Lyapunov–Krasovskii functional candidate:
V (x(t)) = V1(x(t)) + V2(x(t)) + V3(x(t)) (24)

where V1(x(t)) follows the same definition as that in (11) and

V2(x(t)) =
∫ t

t− d
m

[
η̂1(s)
η̂2(s)

]T [
Q1 V
∗ Q2

] [
η̂1(s)
η̂2(s)

]
ds

V3(x(t)) = d

m

m∑
i=1

∫ − i−1
m d

− i
m d

∫ t

t+α
ẋ(s)T Zi ẋ(s) ds dα.

Theorem 3: Given an integer m > 0, NN (3) with C3 is
globally asymptotically stable if there exist matrices P > 0,
Zi > 0 (i = 1, 2, . . . , m),

[
Q1 V
∗ Q2

]
> 0, and diagonal matrices

S = diag{s1, s2, . . . , sn} > 0, R = diag{r1, r2, . . . , rn} > 0,
Di > 0 (i = 1, 2, . . . , m + 1) such that[

Ψ11 Ψ12
∗ Ψ22

]
< 0 (25)

where

Ψ11 = −eT
1 P Ae1 − eT

1 APe1 + W T
1 Q1W1 − W T

2 Q1W2

+
(

d

m

)2

eT
1 A

(
m∑

i=1

Zi

)
Ae1

−
m∑

i=1

(ei − ei+1)
T Zi (ei − ei+1)

−eT
1 W T L RW Ae1 − eT

1 AW T RLWe1

Ψ12 = −eT
1 AW T Se1 + W T

1 V W1 − W T
2 V W2

+
m+1∑
i=1

eT
i W T L Di ei + eT

1 AW T Re1

−
(

d

m

)2

eT
1 A

(
m∑

i=1

Zi

)
em+1

+eT
1 Pem+1 + eT

1 W T L RWem+1

Ψ22 = W T
1 Q2W1 − W T

2 Q2W2 + eT
m+1W T Se1

−2
m+1∑
i=1

eT
i Di ei + eT

1 SWem+1 − eT
m+1W T Re1

+
(

d

m

)2

eT
m+1

(
m∑

i=1

Zi

)
em+1 − eT

1 RWem+1.

Proof: Evaluating the derivative of V (x(t)) along the
solution of NN (3), we obtain

V̇1(x(t))

= 2x(t)T Pẋ(t) + 2g(W x(t))T SW ẋ(t)

+ 2(LW x(t) − g(W x(t)))T RW ẋ(t)

= − 2θ̂1(t)
TeT

1 P Ae1θ̂1(t) − 2θ̂2(t)
TeT

1 SW Ae1θ̂1(t)

+ 2θ̂1(t)
TeT

1 Pem+1θ̂2(t)

+ 2θ̂2(t)
TeT

1 SWem+1 θ̂2(t)

− 2θ̂1(t)
TeT

1 W T L RW Ae1θ̂1(t)

+ 2θ̂2(t)
TeT

1 RW Ae1θ̂1(t)
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+ 2θ̂1(t)
TeT

1 W T L RWem+1 θ̂2(t)

− 2θ̂2(t)
TeT

1 RWem+1 θ̂2(t) (26)

V̇2(x(t)) =
[
η̂1(t)
η̂2(t)

]T [
Q1 V
∗ Q2

] [
η̂1(t)
η̂2(t)

]

−
[
η̂1(t − d

m )

η̂2(t − d
m )

]T [
Q1 V
∗ Q2

] [
η̂1(t − d

m )

η̂2(t − d
m )

]

=
[
θ̂1(t)
θ̂2(t)

]T

×
[

W T
1 Q1W1 − W T

2 Q1W2 W T
1 V W1 − W T

2 V W2

∗ W T
1 Q2W1 − W T

2 Q2W2

]

×
[
θ̂1(t)
θ̂2(t)

]
(27)

V̇3(x(t)) =
(

d

m

)2

ẋ(t)T

(
m∑

i=1

Zi

)
ẋ(t)

− d

m

m∑
i=1

∫ t− i−1
m d

t− i
m d

ẋ(s)T Zi ẋ(s) ds

≤
(

d

m

)2

θ̂1(t)
TeT

1 A

(
m∑

i=1

Zi

)
Ae1θ̂1(t)

−2

(
d

m

)2

θ̂1(t)
TeT

1 A

(
m∑

i=1

Zi

)
em+1θ̂2(t)

+
(

d

m

)2

θ̂2(t)
TeT

m+1

(
m∑

i=1

Zi

)
em+1θ̂2(t)

−
m∑

i=1

θ̂1(t)
T(ei − ei+1)

T Zi (ei − ei+1)θ̂1(t) (28)

where Lemma 1 is applied. Thus, we have from (26)–(28) and
(19)|d1=d

V̇ (x(t)) ≤
[
θ̂1(t)
θ̂2(t)

]T [
Ψ11 Ψ12
∗ Ψ22

] [
θ̂1(t)
θ̂2(t)

]
. (29)

Clearly, if (25) holds, V̇ (x(t)) < 0 holds, which implies
NN (3) is globally asymptotically stable. This completes the
proof.

Remark 6: Theorem 3 presents a new delay-dependent sta-
bility criterion for NN (3) with constant delay by employing
the Lyapunov–Krasovskii functional candidate (24). When
ri = 0, V = 0, Q1 = diag{Q̂1, Q̂2, . . . , Q̂m}, Q2 =
Im ⊗ Q̂m+1, and Zi = (m/d)Ẑ , the Lyapunov–Krasovskii
functional candidate (24) reduces to that applied in [33, Corol-
lary 4]. Thus, our Lyapunov–Krasovskii functional candidate
is much more general than that of [33], and Theorem 3 in this
paper improves [33, Corollary 4].

IV. DISSIPATIVITY ANALYSIS

In this section, we will give the results on dissipativity
analysis for NN (5) based on the stability conditions that were
proposed in Section III.

Theorem 4: Given a scalar γ>0 and an integer m>0,
NN (5) with C1 is globally asymptotically stable and
strictly (Q,S,R)-γ -dissipative if there exist matrices P>0,

Zi>0 (i = 1, 2, . . . , m),
[

Q1 V
∗ Q2

]
> 0,

[
Y1 U1∗ Y2

]
> 0,[

Y3 U2∗ Y4

]
> 0,

[
Zm+1 U3

∗ Zm+1

]
≥ 0, and diagonal matrices

S = diag{s1, s2, . . . , sn} > 0, R = diag{r1, r2, . . . , rn} > 0,
Di > 0 (i = 1, 2, . . . , m + 3) such that

Ξ̂ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ξ11 Ξ12 Ξ13 Ξ14 Ξ15 0 Ξ17
∗ Ξ22 Ξ23 0 Ξ25 0 0
∗ ∗ Ξ33 0 0 Ξ36 0
∗ ∗ ∗ Ξ̂44 Ξ45 0 Ξ47
∗ ∗ ∗ ∗ Ξ55 0 Ξ57
∗ ∗ ∗ ∗ ∗ Ξ66 0
∗ ∗ ∗ ∗ ∗ ∗ Ξ77

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

< 0 (30)

where Ξ11, Ξ12, Ξ13, Ξ14, Ξ15, Ξ22, Ξ23, Ξ25, Ξ33, Ξ36,
Ξ45, Ξ55, and Ξ66 follow the same definitions as those in
Theorem 1, and

Ξ̂44 = W T
1 Q2W1 − W T

2 Q2W2 + eT
1 Y2e1 + eT

1 Y4e1

−2
m+1∑
i=1

eT
i Di ei − eT

1Qe1

Ξ17 = eT
1 P + eT

1 W T L RW −
(

d1

m

)2

eT
1 A

(
m∑

i=1

Zi

)

−d̃2eT
1 AZm+1

Ξ47 = eT
1 SW − eT

1 RW − eT
1S

Ξ57 =
(

d1

m

)2
(

m∑
i=1

Zi

)
+ d̃2 Zm+1

Ξ77 =
(

d1

m

)2
(

m∑
i=1

Zi

)
+ d̃2 Zm+1 − R + γ I.

Proof: It is clear that (30) holds implies (10) holds.
Therefore, NN (5) with ω(t) = 0 is stable according to The-
orem 1. To prove the dissipativity performance, we consider
the Lyapunov–Krasovskii functional candidate (11) and the
following index for NN (5):

Jτ,γ =
∫ τ

0

(
y(t)TQy(t) + 2y(t)TSω(t)

+ ω(t)T(R − γ I )ω(t)
)

dt . (31)

Applying a similar analysis method employed in the proof of
Theorem 1, we have∫ τ

0
V̇ (x(t)) dt − Jτ,γ ≤

∫ τ

0
θ̄ (t)TΞ̂ θ̄ (t) dt (32)

where

θ̄ (t) =
[
ρ(t)
ω(t)

]

and ρ(t) follows the same definition as that in (22). We can
get from (30) ∫ τ

0
V̇ (x(t)) dt ≤ Jτ,γ (33)

which implies

V (x(τ )) − V (x(0)) ≤ Jτ,γ . (34)
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Thus, (7) holds under zero initial condition. Therefore, NN
(5) is strictly (Q,S,R)-γ -dissipative. This completes the
proof.

Remark 7: Based on Theorem 1, a delay-dependent suffi-
cient condition is proposed in Theorem 4 to ensure NN (5)
with time-varying interval delay to be globally asymptoti-
cally stable and strictly (Q,S,R)-γ -dissipative. It should be
pointed out that, for given m, d1, d2, and μ, by setting δ = −γ
and minimizing δ subject to (30), we can obtain the optimal
dissipativity performance γ ∗ (by γ ∗ = −δ).

By using a similar analysis method employed in Theorem 4,
we have the following results on dissipativity analysis of
NN (5) with C2 or C3, respectively.

Theorem 5: Given a scalar γ > 0 and an inte-
ger m > 0, NN (5) with C2 is globally asymptot-
ically stable and strictly (Q,S,R)-γ -dissipative if there
exist matrices P > 0, Zi > 0 (i = 1, 2, . . . , m),[

Q1 V
∗ Q2

]
> 0,

[
Y3 U2∗ Y4

]
> 0,

[
Zm+1 U3∗ Zm+1

]
≥ 0,

and diagonal matrices S = diag{s1, s2, . . . , sn} > 0, R =
diag{r1, r2, . . . , rn} > 0, Di > 0 (i = 1, 2, . . . , m + 3) such
that (30)|Y1=Y2=U1=0 holds.

Theorem 6: Given a scalar γ > 0 and an integer m > 0,
NN (5) with C3 is globally asymptotically stable and strictly
(Q,S,R)-γ -dissipative if there exist matrices P > 0, Zi > 0
(i = 1, 2, . . . , m),

[
Q1 V
∗ Q2

]
> 0, and diagonal matrices

S = diag{s1, s2, . . . , sn} > 0, R = diag{r1, r2, . . . , rn} > 0,
Di > 0 (i = 1, 2, . . . , m + 1) such that

⎡
⎣Ψ11 Ψ12 Ψ13

∗ Ψ̂22 Ψ23
∗ ∗ Ψ33

⎤
⎦ < 0 (35)

where Ψ11 and Ψ12 follow the same definitions as those in
Theorem 3, and

Ψ̂22 = W T
1 Q2W1 − W T

2 Q2W2 + eT
m+1W T Se1 − eT

1Qe1

−2
m+1∑
i=1

eT
i Di ei + eT

1 SWem+1 − eT
m+1W T Re1

+
(

d

m

)2

eT
m+1

(
m∑

i=1

Zi

)
em+1 − eT

1 RWem+1

Ψ13 = eT
1 P + eT

1 W T L RW −
(

d1

m

)2

eT
1 A

(
m∑

i=1

Zi

)

Ψ23 = eT
1 SW − eT

1 RW − eT
1S +

(
d

m

)2

eT
m+1

(
m∑

i=1

Zi

)

Ψ33 =
(

d

m

)2
(

m∑
i=1

Zi

)
− R + γ I.

V. NUMERICAL EXAMPLES

In this section, we will make use of some numerical
examples to illustrate the advantages of the proposed results
in this paper.

TABLE I

ADMISSIBLE DELAY UPPER BOUND d2

μ 0.05 0.5

[40] 0.5341 0.3388

Theorem 1 (m = 1) 0.5342 0.3390

Theorem 1 (m = 2) 0.5434 0.3523

Theorem 1 (m = 3) 0.5451 0.3543

Theorem 1 (m = 4) 0.5457 0.3550

TABLE II

ADMISSIBLE DELAY UPPER BOUND d2

[40] 0.5142

Theorem 2 (m = 1) 0.5163

Theorem 2 (m = 2) 0.5265

Theorem 2 (m = 3) 0.5282

Theorem 2 (m = 4) 0.5287

Example 1: Consider the NN (3) with

A =
⎡
⎣7.3458 0 0

0 6.9987 0
0 0 5.5949

⎤
⎦

W =
⎡
⎣13.6014 −2.9616 −0.6936

7.4736 21.6810 3.2100
0.7920 −2.6334 −20.1300

⎤
⎦

L = λ

⎡
⎣0.3680 0 0

0 0.1795 0
0 0 0.2876

⎤
⎦

where the parameter λ > 0 in matrix L can take different
values for comparison purpose.

1) We assume that the involved time-delay in the under-
lying NN satisfies C1, and choose λ = 1.1229 and
d1 = 0.2. The admissible delay upper bound d2 for
various μ values computed by [40, Th. 1] proposed in
this paper can be found in Table I. It is obvious that
our method gives a less conservative result than that in
[40]. It can also be seen from Table I that, with the
partitioning becoming thinner, the conservatism of our
method decreases.

2) We assume that the involved time delay in the underlying
NN satisfies C2, and choose λ = 0.86 and d1 = 0.3. The
admissible delay upper bound d2 computed by [40] is
0.5142, which can be found in Table II. Table II also
gives the admissible delay upper bound d2 computed
by Theorem 2 proposed in this paper. It is clear that
our approach can obtain a larger d2 than the approach
of [40].

3) We assume that the involved time delay in the underlying
NN satisfies C3, and choose λ = 1. Table III gives the
admissible delay upper bound d for different m values
via the approach introduced in [33, Th. 3] proposed in
this paper. It is obvious that our method improves that
in [33].
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TABLE III

ADMISSIBLE DELAY UPPER BOUND d

m 2 5 10

[33] 1.7683 1.9025 1.9221

Theorem 3 1.7733 1.9099 1.9299

TABLE IV

OPTIMAL DISSIPATIVITY PERFORMANCE γ ∗

μ 0.3 0.5 0.7 0.9 ≥ 1.0

Theorem 4 (m = 1) 1.3292 1.2910 1.2094 1.0237 0.8328

Theorem 4 (m = 2) 1.3355 1.2966 1.2137 1.0260 0.8338

Theorem 4 (m = 3) 1.3367 1.2976 1.2145 1.0264 0.8340

Theorem 4 (m = 4) 1.3371 1.2980 1.2148 1.0266 0.8341

TABLE V

OPTIMAL DISSIPATIVITY PERFORMANCE γ ∗

d2 0.30 0.35 0.40 0.45 0.50

Theorem 5 (m = 1) 0.8328 0.7392 0.5952 0.3959 0.0901

Theorem 5 (m = 2) 0.8338 0.7421 0.5998 0.4027 0.1033

Theorem 5 (m = 3) 0.8340 0.7425 0.6004 0.4036 0.1052

Theorem 5 (m = 4) 0.8341 0.7427 0.6006 0.4039 0.1058

Example 2: Consider the NN (5) with

A =
[

7.0214 0
0 7.4367

]
, W =

[−6.4993 −12.0275
−0.6867 5.6614

]
,

L =
[

0.4 0
0 0.4

]
.

In this example, we choose

Q =
[−1 0

0 −1

]
, S =

[
1 0
1 1

]
, R =

[
3 0
0 3

]
.

We first assume that the involved time delay in the under-
lying NN satisfies C1. Choosing d1 = 0.1 and d2 = 0.3, we
can get the optimal dissipativity performance γ ∗ for different
m and μ, which is listed in Table IV. It is obvious from
Table IV that the optimal dissipativity performance γ ∗ depends
on m and μ. Specifically, when m is fixed, the larger μ(≤ 1)
corresponds to the smaller γ ∗, when μ(≤ 1) is fixed, the larger
m corresponds to the larger γ ∗. Furthermore, when μ ≥ 1, the
conservatism of Theorem 4 is dependent on m and independent
of μ.

Next, we assume that the involved time delay in the
underlying NN satisfies C2, and choose d1 = 0.1. Table V
gives the optimal dissipativity performance γ ∗ for different
m and d2 values. It can be found from Table V that the
optimal dissipativity performance γ ∗ depends on m and d2.
Specifically, when m is fixed, a larger d2 corresponds to a
smaller γ ∗, when d2 is fixed, a larger m corresponds to a
larger γ ∗.

From Tables IV and V, we can see that, when d1 = 0.1
and d2 = 0.3, Theorem 4 with μ ≥ 1.0 and Theorem 5
give the same optimal dissipativity performance γ ∗, that is,
for the same delay upper bound d2 and lower bound d1, the
conservatism of Theorem 4 with μ ≥ 1.0 is the same as that
of Theorem 5.
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Fig. 1. State responses of m(t) of genetic regulatory network (36).
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Fig. 2. State responses of p(t) of genetic regulatory network (36).

Example 3: In this example, we will show the application
of the proposed result to a biological network, which has been
presented as the mathematical model of the repressilator and
experimentally studied in Escherichia coli| [51]. Here, we take
the time-varying delay into account and consider the following
genetic regulatory network [52], [53]:

{
ṁ(t) = − Âm(t) + B f (p(t − d(t))) + l̄

ṗ(t) = − Cp(t) + Dm(t − d(t))
(36)

where m(t) = [m1(t) m2(t) · · · mn(t)]T, p(t) = [p1(t)
p2(t) · · · pn(t)]T, Â = diag{â1, â2, . . . , ân} > 0, C =
diag{c1, c2, . . . , cn} > 0, and D = diag{d1, d2, . . . , dn} > 0,
l̄ = [l̄1 l̄2 · · · l̄n]T, f (p(t)) = [ f1(p1(t)) f2(p2(t)) · · ·
fn(pn(t))]T, and satisfies

0 ≤ fi (s1) − fi (s2)

s1 − s2
≤ li , s1 �= s2 ∈ R. (37)

In this example, we consider a three-gene network, that is,
n = 3. Choose fi (s) = s2/(1 + s2) for any i , which implies
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li = 0.65 for any i , and

Â =
⎡
⎣1 0 0

0 1 0
0 0 1

⎤
⎦ , B =

⎡
⎣ 0 0 −0.8

−0.6 0 0
0 −0.6 0

⎤
⎦

C =
⎡
⎣1 0 0

0 1 0
0 0 1

⎤
⎦ , D =

⎡
⎣0.6 0 0

0 0.4 0
0 0 0.5

⎤
⎦ , l̄ =

⎡
⎣0.8

0.6
0.6

⎤
⎦.

Assume (m∗, p∗) be the equilibrium point of (36). By using
the transformation α(t) = m(t) − m∗, β(t) = p(t) − p∗, and
h(β(t)) = f (β(t) + p∗) − f (p∗), we can transform genetic
regulatory network (36) in the following genetic regulatory
network: {

α̇(t) = − Âα(t) + Bh(β(t − d(t)))

β̇(t) = −Cβ(t) + Dα(t − d(t)).
(38)

Letting

y(t) =
[
α(t)
β(t)

]
, g(y(t − d(t))) =

[
α(t − d(t))

h(β(t − d(t)))

]

A =
[

Â 0
0 C

]
, W =

[
0 B
D 0

]

and x(t) = W−1 y(t), we can find that genetic regulatory
network (38) can be transformed in static NN (3).

It is assumed that d(t) = 0.4+0.2 sin(t). A straightforward
calculation gives d1 = 0.2, d2 = 0.6, and μ = 0.2. Applying
Theorem 1 with m = 2, it can be checked that the NN (3) is
globally asymptotically stable, which implies the steady-state
(m∗ = [

0.738 0.501 0.576
]T

, p∗ = [
0.443 0.200 0.288

]T
)

of genetic regulatory network (36) is a stable and unique
equilibrium.

Figs. 1 and 2 show the the trajectories of the system states
m(t) and p(t), respectively, with the initial states chosen as
m(t) = [

1.3 + 0.5 sin(t) 1.2 + 0.2 cos(t) 1 + 0.6 sin(t)
]T and

p(t) = [
1.5 + 0.5 cos(t) 1.4 − 0.2 sin(t) 0.8 + 0.4 cos(t)

]T,
t ∈ [−0.6 0

]
, from which we find that the corresponding

state responses converge to (m∗, p∗). The corresponding phase
diagrams of m(t) and p(t) are given in Figs. 3 and 4,
respectively.

VI. CONCLUSION

The problems of stability and dissipativity analysis were
investigated In this paper for static NNs with time-delay. By
taking advantage of the delay partitioning technique, some
novel Lyapunov–Krasovskii functional candidates were intro-
duced to arrive at the delay-dependent sufficient conditions
that warrant the global stability and dissipativity of NNs. The
obtained delay-dependent results also rely upon the partition-
ing size. Finally, three numerical examples were given to
demonstrate the reduction of conservatism and effectiveness
of the developed approaches.

ACKNOWLEDGMENT

The authors would like thank the Associate Editor and
reviewers for their constructive suggestions and comments
which helped us greatly to improve the presentation of this
paper.

REFERENCES

[1] M. M. Gupta, L. Jin, and N. Homma, Static and Dynamic Neural
Networks: From Fundamentals to Advanced Theory. New York: Wiley,
2003.

[2] Z. Xu, H. Qiao, J. Peng, and B. Zhang, “A comparative study of two
modeling approaches in neural networks,” Neural Netw., vol. 17, no. 1,
pp. 73–85, Jan. 2003.

[3] J. Liang and J. Cao, “A based-on LMI stability criterion for delayed
recurrent neural networks,” Chaos Solitons Fractals, vol. 28, no. 1,
pp. 154–160, Apr. 2006.

[4] H. Qiao, J. Peng, Z. Xu, and B. Zhang, “A reference model
approach to stability analysis of neural networks,” IEEE Trans. Syst.,
Man, Cybern., Part B: Cybern., vol. 33, no. 6, pp. 925–936, Dec.
2003.

[5] B. Du, J. Lam, and Z. Shu, “Stabilization for state/input delay systems
via static and integral output feedback,” Automatica, vol. 46, no. 12,
pp. 2000–2007, Dec. 2010.

[6] Y. He, G. Liu, D. Rees, and M. Wu, “Stability analysis for neural
networks with time-varying interval delay,” IEEE Trans. Neural Netw.,
vol. 18, no. 6, pp. 1850–1854, Nov. 2007.

[7] Y. He, Q. Wang, C. Lin, and M. Wu, “Delay-range-dependent stability
for systems with time-varying delay,” Automatica, vol. 43, no. 2,
pp. 371–376, Feb. 2007.

[8] X. He, Z. Wang, and D. Zhou, “Robust H∞ filtering for time-delay
systems with probabilistic sensor faults,” IEEE Signal Process. Lett.,
vol. 16, no. 5, pp. 442–445, May 2009.

[9] C. Lin, Q. Wang, T. Lee, and B. Chen, “H∞ filter design
for nonlinear systems with time-delay through T-S fuzzy model
approach,” IEEE Trans. Fuzzy Syst., vol. 16, no. 3, pp. 739–746, Jun.
2008.



WU et al.: STABILITY AND DISSIPATIVITY ANALYSIS OF STATIC NNs WITH TIME DELAY 209

[10] C. Lin, Z. Wang, and F. Yang, “Observer-based networked control
for continuous-time systems with random sensor delays,” Automatica,
vol. 45, no. 2, pp. 578–584, Feb. 2009.

[11] C. Peng and T. Yang, “Improved delay-dependent robust stabil-
ity criteria for uncertain systems with interval time-varying delay,”
IET Control Theory Appl., vol. 2, no. 9, pp. 752–761, Sep.
2008.

[12] C. Peng and T. Yang, “Communication-delay-distribution-dependent
networked control for a class of T-S fuzzy systems,” IEEE Trans. Fuzzy
Syst., vol. 18, no. 2, pp. 326–335, Apr. 2010.

[13] Z. Shu and J. Lam, “Exponential estimates and stabilization of uncertain
singular systems with discrete and distributed delays,” Int. J. Control,
vol. 81, no. 6, pp. 865–882, Jun. 2008.

[14] Z. Wang, D. W. C. Ho, Y. Liu, and X. Liu, “Robust H∞ control
for a class of nonlinear discrete time-delay stochastic systems with
missing measurements,” Automatica, vol. 45, no. 3, pp. 684–691, Mar.
2009.

[15] Z. Wang, Y. Liu, and X. Liu, “H∞ filtering for uncertain stochastic time-
delay systems with sector-bounded nonlinearities,” Automatica, vol. 44,
no. 5, pp. 1268–1277, 2008.

[16] S. Xu and J. Lam, “On equivalence and efficiency of certain stability
criteria for time-delay systems,” IEEE Trans. Autom. Control, vol. 52,
no. 1, pp. 95–101, Jan. 2007.

[17] S. Xu, J. Lam, T. Chen, and Y. Zou, “A delay-dependent approach
to robust H∞ filtering for uncertain distributed delay systems,”
IEEE Trans. Signal Process., vol. 53, no. 10, pp. 3764–3772, Oct.
2005.

[18] S. Xu, J. Lam, and X. Mao, “Delay-dependent H∞ control and filter-
ing for uncertain Markovian jump systems with time-varying delays,”
IEEE Trans. Circuits Syst. I, vol. 54, no. 9, pp. 2070–2077, Sep.
2007.

[19] L. Zhang, E. K. Boukas, and J. Lam, “Analysis and synthesis of Markov
jump linear systems with time-varying delays and partially known
transition probabilities,” IEEE Trans. Autom. Control, vol. 53, no. 10,
pp. 2458–2464, Nov. 2008.

[20] J. Cao, K. Yuan, and X. Li, “Global asymptotical stability of generalized
recurrent neural networks with multiple discrete delays and distributed
delays,” IEEE Trans. Neural Netw., vol. 17, no. 6, pp. 1646–1651, Nov.
2007.

[21] H. Li, B. Chen, Q. Zhou, and W. Qian, “Robust stability for uncer-
tain delayed fuzzy Hopfield neural networks with Markovian jumping
parameters,” IEEE Trans. Syst., Man, Cybern., Part B: Cybern., vol. 39,
no. 1, pp. 94–102, Feb. 2009.

[22] X. Liao, G. Chen, and E. N. Sanchez, “LMI-based approach for
asymptotically stability analysis of delayed neural networks,” IEEE
Trans. Circuits Syst. I: Fundam. Theory Appl., vol. 49, no. 7, pp. 1033–
1039, Jul. 2002.

[23] X. Liao, G. Chen, and E. N. Sanchez, “Delay-dependent exponential
stability analysis of delayed neural networks: An LMI approach,” Neural
Netw., vol. 15, no. 7, pp. 855–866, Sep. 2002.

[24] S. Mou, H. Gao, J. Lam, and W. Qiang, “A new criterion of delay-
dependent asymptotic stability for Hopfield neural networks with time
delay,” IEEE Trans. Neural Netw., vol. 19, no. 3, pp. 532–535, Mar.
2008.

[25] Z. Wang, Y. Liu, K. Fraser, and X. Liu, “Stochastic stability of uncertain
Hopfield neural networks with discrete and distributed delays,” Phys.
Lett. A, vol. 354, no. 4, pp. 288–297, Jun. 2006.

[26] Z. Wang, Y. Liu, L. Yu, and X. Liu, “Exponential stability of delayed
recurrent neural networks with Markovian jumping parameters,” Phys.
Lett. A, vol. 356, no. 4, pp. 346–352, May 2006.

[27] L. Wu, Z. Feng, and W. Zheng, “Exponential stability analysis for
delayed neural networks with switching parameters: Average dwell time
approach,” IEEE Trans. Neural Netw., vol. 21, no. 9, pp. 1396–1407,
Sep. 2010.

[28] R. Yang, H. Gao, and P. Shi, “Novel robust stability criteria for
stochastic Hopfield neural networks with time delays,” IEEE Trans.
Syst., Man, Cybern., Part B: Cybern., vol. 39, no. 2, pp. 467–474, Apr.
2009.

[29] H. Zhang, Z. Liu, and G. Huang, “Novel delay-dependent robust stability
analysis for switched neutral-type neural networks with time-varying
delays via SC technique,” IEEE Trans. Syst., Man, Cybern., Part B:
Cybern., vol. 40, no. 6, pp. 1480–1491, Dec. 2010.

[30] H. Zhang, Z. Wang, and D. Liu, “Global asymptotic stability of recurrent
neural networks with multiple time-varying delays,” IEEE Trans. Neural
Netw., vol. 19, no. 5, pp. 855–873, May 2008.

[31] B. Zhang, S. Xu, and Y. Zou, “Improved delay-dependent exponential
stability criteria for discrete-time recurrent neural networks with time-
varying delays,” Neurocomputing, vol. 72, nos. 1–3, pp. 321–330, Dec.
2008.

[32] B. Zhang, S. Xu, G. Zong, and Y. Zou, “Delay-dependent exponential
stability for uncertain stochastic Hopfield neural networks with time-
varying delays,” IEEE Trans. Circuits Syst. I, vol. 56, no. 6, pp. 1241–
1247, Jun. 2009.

[33] B. Du and J. Lam, “Stability analysis of static recurrent neural networks
using delay-partitioning and projection,” Neural Netw., vol. 22, no. 4,
pp. 343–347, May 2009.

[34] J. Lam, H. Gao, and C. Wang, “Stability analysis for continuous systems
with two additive time-varying delay components,” Syst. Control Lett.,
vol. 56, no. 1, pp. 16–24, Jan. 2007.

[35] D. Peaucelle, D. Arzelier, D. Henrion, and F. Gouaisbaut, “Quadratic
separation for feedback connection of an uncertain matrix and an implicit
linear transformation,” Automatica, vol. 43, no. 5, pp. 795–804, May
2007.

[36] H. Gao, Z. Fei, J. Lam, and B. Du, “Further results on exponential esti-
mates of Markovian jump systems with mode-dependent time-varying
delays,” IEEE Trans. Autom. Control, vol. 56, no. 1, pp. 223–229, Jan.
2011.

[37] Y. Wang, Z. Wang, and J. Liang, “On robust stability of stochastic
genetic regulatory networks with time delays: A delay fractioning
approach,” IEEE Trans. Syst., Man, Cybern., Part B: Cybern., vol. 40,
no. 3, pp. 729–740, Jun. 2010.

[38] H. Shao, “Delay-dependent stability for recurrent neural networks
with time-varying delays,” IEEE Trans. Neural Netw., vol. 19, no. 9,
pp. 1647–1651, Sep. 2008.

[39] H. Shao, “Less conservative delay-dependent stability criteria for neural
networks with time-varying delays,” Neurocomputing, vol. 73, nos. 7–9,
pp. 1528–1532, Mar. 2010.

[40] Z. Zuo, C. Yang, and Y. Wang, “A new method for stability analy-
sis of recurrent neural networks with interval time-varying delay,”
IEEE Trans. Neural Netw., vol. 21, no. 2, pp. 339–344, Feb.
2010.

[41] M. Wu, Y. He, J. She, and G. Liu, “Delay-dependent criteria for robust
stability of time-varying delay systems,” Automatica, vol. 40, no. 8,
pp. 1435–1439, Aug. 2004.

[42] H. Zeng, Y. He, M. Wu, and C. Zhang, “Complete delay-decomposing
approach to asymptotic stability for neural networks with time-varying
delays,” IEEE Trans. Neural Netw., vol. 22, no. 5, pp. 806–812, May
2011.

[43] B. Brogliato, R. Lozano, B. Maschke, and O. Egeland, Dissipative
Systems Analysis and Control: Theory and Applications. London, U.K.:
Springer-Verlag, 2007.

[44] H. Zhang, Z. Guan, and G. Feng, “Reliable dissipative control for
stochastic impulsive systems,” Automatica, vol. 44, no. 4, pp. 1004–
1010, Apr. 2008.

[45] Z. Feng and J. Lam, “Stability and dissipativity analysis of distributed
delay cellular neural networks,” IEEE Trans. Neural Netw., vol. 22, no. 6,
pp. 976–981, Jun. 2011.

[46] Z. Feng, J. Lam, and H. Gao, “α-dissipativity analysis of singular
time-delay systems,” Automatica, vol. 47, no. 11, pp. 2548–2552, Nov.
2011.

[47] X. Meng, J. Lam, B. Du, and H. Gao, “A delay-partitioning approach
to the stability analysis of discrete-time systems,” Automatica, vol. 46,
no. 3, pp. 610–614, Mar. 2010.

[48] K. Gu, V. K. Kharitonov, and J. Chen, Stability of Time-Delay Systems.
Boston, MA: Birkhauser, 2003.

[49] P. Park, J. W. Ko, and C. Jeong, “Reciprocally convex approach to
stability of systems with time-varying delays,” Automatica, vol. 47,
no. 1, pp. 235–238, Jan. 2011.

[50] S. Xu and J. Lam, “A survey of linear matrix inequality techniques in
stability analysis of delay systems,” Int. J. Syst. Sci., vol. 39, no. 12,
pp. 1095–1113, Dec. 2008.

[51] M. B. Elowitz and S. Leibler, “A synthetic oscillatory network of
transcriptional regulators,” Nature, vol. 403, no. 6767, pp. 335–338, Jan.
2000.

[52] P. Li, J. Lam, and Z. Shu, “On the transient and steady-state esti-
mates of interval genetic regulatory networks,” IEEE Trans. Syst.,
Man, Cybern., Part B: Cybern., vol. 40, no. 2, pp. 336–349, Apr.
2010.

[53] Z. Wang, H. Gao, J. Cao, and X. Liu, “On delayed genetic regu-
latory networks with polytopic uncertainties: Robust stability analy-
sis,” IEEE Trans. Nanobiosci., vol. 7, no. 2, pp. 154–163, Jun.
2008.



210 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 23, NO. 2, FEBRUARY 2012

Zheng-Guang Wu was born in 1982. He received
the M.S. degree from Zhejiang Normal University,
Jinhua, China, in 2007, and the Ph.D. degree from
Zhejiang University, Hangzhou, China, in March
2011.

He was a Research Assistant with the Department
of Mathematics, City University of Hong Kong,
Kowloon, Hong Kong, from February 2010 to June
2010, and a Research Associate the Department of
Mechanical Engineering, University of Hong Kong,
from December 2010 to February 2011. He is cur-

rently with the Institute of Cyber-Systems and Control, Zhejiang University.
His current research interests include robust controls and systems theory.

James Lam (SM’99) received the B.Sc. (first class)
degree in mechanical engineering from the Uni-
versity of Manchester, Manchester, U.K., and the
M.Phil. and Ph.D. degrees from the University of
Cambridge, Cambridge, U.K.

He held lectureships at the City University of
Hong Kong, Kowloon, Hong Kong, and the Uni-
versity of Melbourne, Melbourne, Australia, prior to
joining the University of Hong Kong, Hong Kong
in 1993. He has held guest professorships in many
universities in China. His current research interests

include model reduction, robust controls and filtering, delay, singular systems,
Markovian jump systems, multidimensional systems, networked control sys-
tems, vibration controls, and biological networks.

Prof. Lam is a Chartered Mathematician, a Chartered Scientist, a fellow
of the Institute of Mathematics and its Applications, and a fellow of the
Institution of Engineering and Technology. Apart from serving as Subject
Editor of the Journal of Sound and Vibration, he is Associate Editor of
an Asian Journal of Control, the International Journal of Systems Science,
the International Journal of Applied Mathematics and Computer Science,
and the Journal of the Franklin Institute, Automatica, and Multidimensional
Systems and Signal Processing, and is on the Editorial Board of IET Control
Theory and Applications, Dynamics of Continuous, Discrete and Impulsive
Systems: Series B (Applications & Algorithms), and Proc. IMechE Part I:
Journal of Systems and Control Engineering. He was an Editor-in-Chief of
the IEE Proceedings: Control Theory and Applications, an Associate Member
of the IEEE TRANSACTIONS ON SIGNAL PROCESSING, and a member of the

International Federation of Automatic Control Technical Committee on Con-
trol Design. He has served on the Engineering Panel of the Research Grants
Council, Hong Kong Special Administrative Region. He is a co-recipient
of the International Journal of Systems Science Prize Paper Award, and a
recipient of the A. H. Gibson Prize awarded by the Ashbury Scholarship,
the H. Wright Baker Prize for academic performance, the Outstanding
Researcher Award of the University of Hong Kong, and a Distinguished
Visiting Fellowship of the Royal Academy of Engineering. His doctoral and
post-doctoral research projects were supported by the Croucher Foundation
Scholarship and Fellowship.

Hongye Su was born in 1969. He received the B.S.
degree in industrial automation from the Nanjing
University of Chemical Technology, Jiangsu, China,
in 1990, and the M.S. and Ph.D. degrees from
Zhejiang University, Hangzhou, China, in 1993 and
1995, respectively.

He was a Lecturer with the Department of Chem-
ical Engineering, Zhejiang University, from 1995 to
1997. From 1998 to 2000, he was an Associate
Professor with the Institute of Advanced Process
Control, Zhejiang University. Currently, he is a Pro-

fessor with the Institute of Cyber-Systems and Control, Zhejiang University.
His current research interests include robust controls, time-delay systems, and
advanced process control theory and applications.

Jian Chu was born in 1963. He received the B.S.,
M.S., and Ph.D. degrees from Zhejiang University,
Hangzhou, China, in 1982, 1984, and 1989, respec-
tively.

He joined the Institute of Advanced Process
Control, Zhejiang University, as a Post-Doctoral
Researcher. In 1991, he was made an Associate
Professor and in 1993 a Full Professor. In 1994, he
was approved as a Doctorial Advisor. His current
research interests include control theory and applica-
tions, research and development of computer control

systems, and advanced process control software.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /ComicSansMS
    /ComicSansMS-Bold
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /Impact
    /Kartika
    /Latha
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaConsole
    /LucidaSans
    /LucidaSans-Demi
    /LucidaSans-DemiItalic
    /LucidaSans-Italic
    /LucidaSansUnicode
    /Mangal-Regular
    /MicrosoftSansSerif
    /MonotypeCorsiva
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /MVBoli
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Raavi
    /Shruti
    /Sylfaen
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Vrinda
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 400
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Required"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


