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Abstract

In this paper, the probability-guaranteed H∞ finite-horizon filtering problem is investigated for a class of nonlinear

time-varying systems with uncertain parameters and sensor saturations. The system matrices are functions of mutually

independent stochastic variables that obey uniform distributions over known finite ranges. Attention is focused on the

construction of a time-varying filter such that the prescribed H∞ performance requirement can be guaranteed with

probability constraint. By using the difference linear matrix inequalities (DLMIs) approach, sufficient conditions are

established to guarantee the desired performance of the designed finite-horizon filter. The time-varying filter gains can

be obtained in terms of the feasible solutions of a set of DLMIs that can be recursively solved by using the semi-definite

programming method. A computational algorithm is specifically developed for the addressed probability-guaranteed

H∞ finite-horizon filtering problem. Finally, a simulation example is given to illustrate the effectiveness of the proposed

filtering scheme.
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I. Introduction

Due to its clear engineering significance, the filtering problem has attracted a great deal of research attention

in the past few decades. The filtering theory that has been successfully applied in many branches of engineering

systems such as target tracking, mobile robot localization, and computer vision. A rich body of literature has

appeared on the general filtering problem with a variety of performance requirements, see e.g. [1,6,8,9,11,14,

16, 22–24]. It is well known that sensors may not always produce signals of unlimited amplitude due mainly

to the physical constraints or technological restrictions. The sensor saturation, if not properly handled, will

inevitably affect the implementation precision of the designed filtering/control algorithms and may even cause

undesirable degradation of the filter/controller performance. Consequently, the sensor saturation problem has

been gaining an increasing research interest, see e.g. [5,12,15,20]. It is worth mentioning that, because of the

mathematical complexity, most existing results concerning the sensor saturations have been concerned with

time-invariant systems over the infinite-horizon. Unfortunately, in reality, almost all real-time systems should
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be time-varying especially those after digital discretization. Recently, motivated by the practical importance

of the sensor saturation issues, the set-membership filtering problem has been investigated in [20] for a class

of time-varying systems with saturated sensors.

In traditional control theory, the performance objectives of a controlled system are usually required to be met

accurately. However, for many stochastic control problems, due to a variety of unpredictable disturbances,

it is neither possible nor necessary to enforce the system performance with probability 1. Instead, it is

quite common for practical control systems to attain their individual performance objective with certain

satisfactory probability. These kinds of engineering problems have given rise to great challenges for the

realization of multiple control objectives with respect to individual probability constraints. In particular, as

a newly emerged research topic, the probability-guaranteed H∞ controller design problem has been raised

in [18] and then thoroughly investigated in [2–4, 19] in an elegant way. Despite the advances made on the

research topic of probability-guaranteed design, there is still much room for further investigation on more

comprehensive systems in order to cover more engineering practice. For example, in reality, most engineering

systems are nonlinear and time-varying with saturated sensors, where the performances are usually evaluated

over a finite-horizon for time-varying systems. It is, therefore, the purpose of this paper to address the

probability-guaranteed H∞ finite-horizon filtering problem for nonlinear time-varying systems with sensor

saturation so as to complement the excellent results in [2–4,19].

Motivated by the above discussion, in this paper, we aim to investigate the probability-guaranteed H∞

finite-horizon filtering problem for a class of nonlinear discrete time-varying systems with sensor saturations.

The considered uncertain parameters are governed by mutually independent stochastic variables that abide by

uniform distributions over the known finite ranges. A parameter-box is sought for designing the time-varying

H∞ filter such that the H∞ performance requirement is guaranteed with pre-specified probability constraints.

A computational algorithm is presented to characterize the solution to the finite-horizon filtering problem

based on the semi-definite programming method. A simulation example is given to show the effectiveness of

the filtering scheme. The main contributions of this paper can be highlighted as follows: 1) the system model

addressed is quite comprehensive that covers uncertain parameters, nonlinearities as well as sensor saturations,

thereby better reflecting the reality; 2) the filtering problem addressed is dealt with over a finite-horizon with

probability performance constraint; and 3) the algorithm developed is of recursive nature that is suitable for

online applications.

The remainder of this paper is arranged as follows. Section II briefly introduces the problem under con-

sideration. In Section III, the probabilistic performance requirement is expressed as a set of linear matrix

inequalities (LMIs) and the H∞ performance analysis is conducted by means of solving a set of difference

linear matrix inequalities (DLMIs) [7, 13]. Moreover, a computational algorithm is presented to characterize

the design of the probability-guaranteed robust H∞ finite-horizon filter. An illustrative example is utilized in

Section IV to show the effectiveness of the proposed approach. The paper is concluded in Section V.

Notations. The notations used throughout the paper are standard. R
n denotes the n-dimensional Eu-

clidean space. For a matrix P , P T and P−1 represent its transpose and inverse, respectively. The notation

P > 0 (P ≥ 0) means that matrix P is real, symmetric and positive definite (positive semi-definite). Prob{·}
is used for the occurrence probability of the event “·”. ‖·‖ denotes the Euclidean norm of a vector. diag{· · · }
stands for a block-diagonal matrix. l2[0, N − 1] is the space of square summable vector-value functions on

an interval [0, N − 1] with the norm ‖ν‖[0,N−1] =
√

∑N−1
k=0 ‖ν(k)‖2. I and 0 represent the identity matrix

and the zero matrix with appropriate dimensions, respectively. In symmetric block matrices or long matrix
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expressions, we use a star “∗” to represent a term that is induced by symmetry. Matrices, if their dimensions

are not explicitly stated, are assumed to be compatible for algebraic operations.

II. Problem Formulation and Preliminaries

In this paper, we consider the following class of nonlinear uncertain time-varying systems defined on k ∈
{0, 1, . . . , N − 1}:















x(k + 1) = A(α)(k)x(k) +B(α)(k)f(x(k)) +D(α)(k)ω(k)

y(k) = σ(C(k)x(k)) + E(k)ω(k)

z(k) = M(k)x(k)

(1)

where x(k) ∈ R
n is the state vector, y(k) ∈ R

m is the measured output, z(k) ∈ R
r is the output vector to be

estimated, ω(k) ∈ R
p is the disturbance input belonging to l2[0, N − 1], f(x(k)) is the nonlinear function, the

initial state x(0) is an unknown vector, α =
[

α1 α2 . . . αL

]T

∈ R
L is the uncertain parameter vector,

and all αi (i = 1, 2, . . . , L) are assumed to be mutually independent random variables. Each αi is uniformly

distributed over [βi, δi] where βi and δi are known endpoints of αi (i = 1, 2, . . . , L). The uncertain parameter

vector α lies in an L-dimensional hyper-rectangle B with the vertices set denoted by

VB =

{

[

α1 α2 . . . αL

]T
∣

∣

∣

∣

αi ∈ {βi, δi} , i = 1, 2, . . . , L

}

. (2)

Following [19], the uncertain matrices A(α)(k), B(α)(k) and D(α)(k) in (1) are described by

A(α)(k) = A0(k) +

L
∑

i=1

αiAi(k), B
(α)(k) = B0(k) +

L
∑

i=1

αiBi(k), C
(α)(k) = C0(k) +

L
∑

i=1

αiCi(k). (3)

For a given sampling instant k, Ai(k), Bi(k), Di(k) (i = 1, 2, . . . , L), C(k), E(k) and M(k) are known

constant matrices with appropriate dimensions. Accordingly, the uncertain matrices in (1) belong to the

following general convex polytope

Ω ,







(A(α)(k), B(α)(k),D(α)(k))

∣

∣

∣

∣

(A(α)(k), B(α)(k),D(α)(k)) =

2L
∑

j=1

fjΩ
(j)(k), 0 ≤ fj ≤ 1,

2L
∑

j=1

fj = 1







(4)

where Ω(j)(k) = (A(j)(k), B(j)(k),D(j)(k)) (j = 1, 2, · · · , 2L) are the vertex matrices. The relation between

Ω(j)(k) and VB is given as follows:

A(j)(k) = A(v
(j)
B

, k) = A(α(j), k)

where v
(j)
B

is the jth vertex of B generated by the parameter vector α(j) =
[

α
(j)
1 α

(j)
2 . . . α

(j)
L

]T

, α
(j)
i ∈

{βi, δi} (i = 1, 2, . . . , L; j = 1, 2, . . . , 2L). B(j)(k) and D(j)(k) have the similar expressions.

The saturation function σ(·) is defined as

σ(v) =
[

σ1(v1) σ2(v2) · · · σm(vm)
]T

(5)

with σi(vi) = sign(vi)min{vi,max, |vi|}, where vi,max is the i-th element of the vector vmax with vmax being the

saturation level.

To facilitate our development, we introduce the following definition.
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Definition 1: [10] A nonlinearity Φ(·) is said to satisfy the sector-bounded condition if

(Φ(v) − V1v)
T (Φ(v)− V2v) ≤ 0 (6)

for some real matrices V1, V2, where V = V2 − V1 is a symmetric positive-definite matrix. In this case, we say

that Φ(·) belongs to the sector [V1, V2].

Assumption 1: The nonlinear function f(x(k)) in (1) belongs to the sector [U1(k), U2(k)] where U1(k) and

U1(k) are real matrices of appropriate dimensions.

Noting that there exist the diagonal matrices K1 and K2 such that 0 ≤ K1 < I ≤ K2, the saturation

function σ(C(k)x(k)) in (1) can be written as

σ(C(k)x(k)) = K1C(k)x(k) + Φy(C(k)x(k)) (7)

where Φy(C(k)x(k)) is a nonlinear vector-valued function satisfying the sector-bounded condition with V1 = 0

and V2 = K. In this case, Φy(C(k)x(k)) can be described as follows

ΦT
y (C(k)x(k))(Φy(C(k)x(k)) −KC(k)x(k)) ≤ 0 (8)

where K = K2 −K1.

Remark 1: In (1), the state matrix A(α)(k) includes the uncertainty induced by the parameter α distributed

uniformly over a given interval, and the term B(α)(k)f(x(k)) involves both the uncertainties and the nonlin-

earities. In fact, in system modeling, it is usually the case that the system consists of both the linear part

(e.g. Ax(k)) and the nonlinear part (e.g. Bf(x(k))) according to either the physical law or the linearization

process. The coefficients A and B, however, might be inaccurate due to the unavoidable modeling error, and

this leads to the possible parameter drifts obeying a uniform distribution law. In other words, some system

parameters might be randomly perturbed within certain intervals due probably to the abrupt phenomena

such as random failures and repairs of the components, changes in the interconnections of subsystems, sudden

environment changes, modification of the operating point of a linearized model of nonlinear systems, etc.

Such a kind of stochastic parameter systems can find many applications such as radar control, missile track

estimation, satellite navigation, and digital control of chemical processes, see e.g. [21].

Remark 2: It is worth mentioning that the sensor saturation introduced in (1) reflects the reality more

closely and, in turn, gives rise to additional difficulties in the design of probability-guaranteed H∞ filters over

a finite-time horizon. By using the sector-bounded approach developed in [17,20], a decomposition technique

is utilized in (7) to facilitate the filter design in terms of DLMIs. In this case, the sector [K1,K2] is employed

to quantify the saturation-type nonlinearity. It will be shown later that the decomposition in (7) plays an

important role in the development of the main results.

In this paper, the following time-varying filter is adopted for system (1):
{

x̂(k + 1) = Af (k)x̂(k) +Bf (k)y(k)

ẑ(k) = M(k)x̂(k), x̂(0) = x̂0
(9)

where x̂(k) ∈ R
n is the state estimate, ẑ(k) ∈ R

r is the estimated output, and Af (k), Bf (k) (0 ≤ k ≤ N − 1)

are filter parameters to be determined.

By defining η(k) =
[

xT (k) x̂T (k)
]T

and letting filtering error be z̃(k) = z(k)−ẑ(k), we have the following

augmented system:
{

η(k + 1) = Ā(α)(k)η(k) + B̄(α)(k)f(Hη(k), k) + B̃(k)Φy(C(k)Hη(k)) + D̄(α)(k)ω(k)

z̃(k) = M̄(k)η(k)
(10)
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where

Ā(α)(k) =

[

A(α)(k) 0

Bf (k)K1C(k) Af (k)

]

, B̄(α)(k) =

[

B(α)(k)

0

]

, D̄(α)(k) =

[

D(α)(k)

Bf (k)E(k)

]

,

B̃(k) =

[

0

Bf (k)

]

, H =
[

I 0
]

, M̄(k) =
[

M(k) −M(k)
]

. (11)

We are now in a position to formulate the probabilistic robust H∞ finite-horizon filtering problem.

The Probabilistic Robust H∞ Finite-Horizon Filtering Problem: For a given probability 0 < p < 1,

a specified disturbance attenuation level γ > 0 and a specified R > 0, our aim is to find a time-varying filter

of the structure (9) satisfying

Prob {J ≤ 0} ≥ p (12)

where

J := ‖z̃‖2[0,N−1] − γ2
(

‖ω‖2[0,N−1] + xT (0)Rx(0)
)

.

More specifically, we are interested in looking for the filter parameter matrices Af (k) and Bf (k) in (9), and

finding a parameter-box BT (BT ⊆ B) such that the following requirements are met simultaneously:

R1) the probability of α ∈ BT is not less than p,

R2) the H∞ performance requirement J ≤ 0 can be guaranteed in the parameter-box BT, where the

parameter-box BT is generated by αi ∈ [ai, bi] ⊆ [βi, δi] (i = 1, 2, . . . , L), and the set of the 2L vertices vBT
of

BT is given by

VBT
:=

{

[

α1 α2 · · · αL

]T
∣

∣

∣

∣

αi ∈ {ai, bi}, i = 1, 2, · · · , L
}

. (13)

Remark 3: It should be pointed out that the requirements R1 and R2 are interconnected by means of the

parameter-box BT. Accordingly, the endpoints ai and bi should be first determined for all αi (i = 1, 2, · · · , L),
and then the vertices vBT

of the parameter-box BT in (13) can be obtained. Actually, the essential relationship

between the requirements R1 and R2 is reflected by the L pairs {ai, bi} (i = 1, 2, . . . , L) of the parameter-

box BT in the requirement R1, which correspond to the vertices A(j)(k), B(j)(k) and D(j)(k) of the H∞

performance requirement in R2.

III. Main Results

In this section, we deal with the probabilistic robust H∞ filtering problem for the nonlinear time-varying

system with a given disturbance attenuation level γ and a prescribed probability constraint p over a finite-

time horizon. A sufficient condition is derived by using the DLMI approach such that the H∞ performance

requirement with probability constraint for system (10) can be guaranteed. Then, a computational algorithm

is proposed to characterize the solution of the time-varying filter which can be readily obtained in a recursive

way.

Let us first discuss the probability issue for requirement R1. Noting that all αi are assumed to uniformly

distribute over [βi, δi] and they are mutually independent, as discussed in [4,19], the probability constraint of

α ∈ BT can be expressed by

L
∏

i=1

(bi − ai) ≥ p̄ (14)
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where p̄ = p
∏L

i=1(δi−βi) and the endpoints ai, bi (i = 1, 2, · · · , L) are the parameters to be determined which

are associated with the parameter-box BT in (13). Based on the algorithm presented in [19], by successively

using the following Lemma, the probability constraint R1 can be converted into another form that is easier

to be handled.

Lemma 1: [19] Let the probability constraint p > 0 be given. The inequality (14) is equivalent to

m1
∏

j=1

s1,j ≥
√
p̄ (15)

where s1,j (j = 1, 2, . . . ,m1) are the positive scalars to be determined. When L is even, we let m1 = L
2 and

then have
[

b2j−1 − a2j−1 s1,j

∗ b2j − a2j

]

≥ 0, j = 1, 2, . . . ,m1. (16)

When L is odd, we set m1 =
L−1
2 + 1 and it follows that (16) holds for j = 1, 2, . . . ,m1 − 1 and

[

bL − aL s1,m1

∗ 1

]

≥ 0. (17)

Remark 4: Both the conditions (16) and (17) in Lemma 1 are related to the H∞ performance requirement

due to the effect of the uncertain parameters αi (i = 1, 2, . . . , L). In the implementation, the conditions

(16) and (17) should be concurrently solved with the H∞ performance requirement. Then, the endpoints ai

and bi for all αi (i = 1, 2, . . . , L) can be determined and the filter parameter matrices {Af (k)}0≤k≤N−1 and

{Bf (k)}0≤k≤N−1 can be designed.

To this end, we introduce the following lemma that will be used in deriving our main results.

Lemma 2: (S-Procedure) Let W0(x), W1(x), . . . , Wl(x) be quadratic functions of x ∈ R
n, i.e. Wi(x) =

xTQix with Qi = QT
i (i = 0, 1, . . . , l). If there exist scalars τ1 ≥ 0, τ2 ≥ 0, . . . , τl ≥ 0 such that

Q0 −
l

∑

i=1

τiQi ≤ 0, (18)

then the following implication is true

W1(x) ≤ 0,W2(x) ≤ 0, . . . ,Wl(x) ≤ 0 =⇒ W0(x) ≤ 0. (19)

A. H∞ Performance Analysis

Having analyzed the requirement R1, we are ready to deal with the requirement R2. The following theorems

present sufficient conditions under which the augmented system governed by (10) satisfies theH∞ performance

requirement.

Theorem 1: Let the disturbance attenuation level γ > 0, the probability constraint p > 0, the initial

matrix R > 0 and the filter parameters {Af (k)}0≤k≤N−1, {Bf (k)}0≤k≤N−1 be given. The H∞ performance

requirement J ≤ 0 holds if there exist two families of positive scalars {τi(k)}0≤k≤N−1 (i = 1, 2) and a family

of positive definite matrices {P (k)}0≤k≤N satisfying the initial condition

ηT (0)P (0)η(0) ≤ γ2ηT (0)R̂η(0) (20)
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and the matrix inequality

Ξ(k) =













Ξ11(k) Ξ12(k) Ξ13(k) Ā(α)T (k)P (k + 1)D̄(α)(k)

∗ Ξ22(k) B̄(α)T (k)P (k + 1)B̃(k) B̄(α)T (k)P (k + 1)D̄(α)(k)

∗ ∗ B̃T (k)P (k + 1)B̃(k)− τ2(k)I B̃T (k)P (k + 1)D̄(α)(k)

∗ ∗ ∗ D̄(α)T (k)P (k + 1)D̄(α)(k)− γ2I













≤ 0 (21)

where

Ξ11(k) = Ā(α)T (k)P (k + 1)Ā(α)(k)− P (k) + M̄T (k)M̄ (k)− τ1(k)
ŪT
1 (k)Ū2(k) + ŪT

2 (k)Ū1(k)

2
,

Ξ12(k) = Ā(α)T (k)P (k + 1)B̄(α)(k) + τ1(k)
ŪT
1 (k) + ŪT

2 (k)

2
,

Ξ13(k) = Ā(α)T (k)P (k + 1)B̃(k) + τ2(k)
HTCT (k)KT

2
,

Ξ22(k) = B̄(α)T (k)P (k + 1)B̄(α)(k)− τ1(k)I,

Ū1(k) =
[

U1(k) 0
]

, Ū2(k) =
[

U2(k) 0
]

, R̂ = diag{R, 0}. (22)

Proof: By defining

J(k) = ηT (k + 1)P (k + 1)η(k + 1)− ηT (k)P (k)η(k), (23)

it can be obtained from (10) that

J(k) = ξT (k)ΥT (k)P (k + 1)Υ(k)ξ(k) − ηT (k)P (k)η(k) (24)

where

ξ(k) =
[

ηT (k) fT (Hη(k), k) ΦT
y (C(k)Hη(k)) ωT (k)

]T

,

Υ(k) =
[

Ā(α)(k) B̄(α)(k) B̃(k) D̄(α)(k)
]

.

Adding the zero term z̃T (k)z̃(k)− γ2ωT (k)ω(k) − z̃T (k)z̃(k) + γ2ωT (k)ω(k) to the right side of (24) yields

J(k) = ξT (k)Θ(k)ξ(k) − z̃T (k)z̃(k) + γ2ωT (k)ω(k) (25)

where

Θ(k) =













Θ11(k) Θ12(k) Ā(α)T (k)P (k + 1)B̃(k) Ā(α)T (k)P (k + 1)D̄(α)(k)

∗ Θ22(k) B̄(α)T (k)P (k + 1)B̃(k) B̄(α)T (k)P (k + 1)D̄(α)(k)

∗ ∗ B̃T (k)P (k + 1)B̃(k) B̃T (k)P (k + 1)D̄(α)(k)

∗ ∗ ∗ D̄(α)T (k)P (k + 1)D̄(α)(k)− γ2I













,

Θ11(k) = Ā(α)T (k)P (k + 1)Ā(α)(k)− P (k) + M̄T (k)M̄ (k),

Θ12(k) = Ā(α)T (k)P (k + 1)B̄(α)(k),

Θ22(k) = B̄(α)T (k)P (k + 1)B̄(α)(k).

Subsequently, summing up (25) on both sides from 0 to N − 1 with respect to k leads to

N−1
∑

k=0

J(k) = ηT (N)P (N)η(N) − ηT (0)P (0)η(0)

=
N−1
∑

k=0

ξT (k)Θ(k)ξ(k) −
N−1
∑

k=0

[z̃T (k)z̃(k)− γ2ωT (k)ω(k)] (26)



FINAL VERSION 8

and therefore

J =

N−1
∑

k=0

[z̃T (k)z̃(k)− γ2ωT (k)ω(k)] − γ2xT (0)Rx(0)

=

N−1
∑

k=0

ξT (k)Θ(k)ξ(k) − ηT (N)P (N)η(N) + ηT (0)(P (0) − γ2R̂)η(0). (27)

Noting P (N) > 0 and the initial condition (20), we know that J ≤ 0 is true if the following inequality

ξT (k)Θ(k)ξ(k) ≤ 0 (28)

holds. On the other hand, it follows from the sector-bounded condition of the nonlinear function f(x(k)) that

ξT (k)Φf (k)ξ(k) ≤ 0 (29)

where

Φf (k) =













ŪT
1
(k)Ū2(k)+ŪT

2
(k)Ū1(k)

2 − ŪT
1
(k)+ŪT

2
(k)

2 0 0

∗ I 0 0

∗ ∗ 0 0

∗ ∗ ∗ 0













with Ū1(k) and Ū2(k) defined in (22).

Similarly, considering the sensor saturation constraint (8), we have

ξT (k)Ψy(k)ξ(k) ≤ 0 (30)

where

Ψy(k) =













0 0 −1
2H

TCT (k)KT 0

∗ 0 0 0

∗ ∗ I 0

∗ ∗ ∗ 0













.

Let us now prove that, with the conditions (29)-(30), (28) is true. For this purpose, we rewrite inequality

(21) into the following form:

Θ(k)− τ1(k)Φf (k)− τ2(k)Ψy(k) ≤ 0. (31)

By applying Lemma 2, (28) follows from (29)-(30) immediately. The proof of this theorem is now complete.

After the H∞ performance analysis conducted in Theorem 1, we proceed to address the design problem

of the finite-horizon H∞ filter for the time-varying system with sensor saturation by employing the DLMI

approach.

Theorem 2: Let the disturbance attenuation level γ > 0, the probability constraint p > 0 and the initial

matrix R > 0 be given. The H∞ performance requirement J ≤ 0 holds if there exist two families of positive

scalars {τi(k)}0≤k≤N−1 (i = 1, 2), positive definite matrix P (0) = diag{P1(0), P2(0)} > 0, families of positive
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definite matrices {Q1(k)}1≤k≤N and {Q2(k)}1≤k≤N , and families of real-valued matrices {Af (k)}0≤k≤N−1 and

{Bf (k)}0≤k≤N−1 satisfying the following initial condition

ηT (0)P (0)η(0) ≤ γ2ηT (0)R̂η(0) (32)

and the recursive linear matrix inequalities

Ω(k) =



























Ω11(k) −MT (k)M(k) Ω13(k) Ω14(k) 0 A(j)T (k) CT (k)KT
1 B

T
f (k)

∗ Ω22(k) 0 0 0 0 AT
f (k)

∗ ∗ −τ1(k)I 0 0 B(j)T (k) 0

∗ ∗ ∗ −τ2(k)I 0 0 BT
f (k)

∗ ∗ ∗ ∗ −γ2I D(j)T (k) ET (k)BT
f (k)

∗ ∗ ∗ ∗ ∗ −Q1(k + 1) 0

∗ ∗ ∗ ∗ ∗ ∗ −Q2(k + 1)



























≤ 0,

j = 1, 2, . . . , 2L (33)

where

Ω11(k) = −P1(k) +MT (k)M(k) − τ1(k)
UT
1 (k)U2(k) + UT

2 (k)U1(k)

2
,

Ω13(k) = τ1(k)
UT
1 (k) + UT

2 (k)

2
,

Ω14(k) = τ2(k)
CT (k)KT

2
,

Ω22(k) = −P2(k) +MT (k)M(k),

and the parameters are updated by

P1(k + 1) = Q−1
1 (k + 1), P2(k + 1) = Q−1

2 (k + 1). (34)

Here, R̂ is defined in (22), A(j)(k), B(j)(k) and D(j)(k) are the j-th vertex matrices of the polytope Ω

corresponding to the parameter-box BT.

Proof: Considering (4) and replacing B with BT, we can see that (21) is true if the following matrix

inequalities hold

Ξ̂(j)(k) =

















Ξ̂11(k) Ξ̂12(k) Ξ̂13(k) 0 Ā(j)T (k)

∗ −τ1(k)I 0 0 B̄(j)T (k)

∗ ∗ −τ2(k)I 0 B̃T (k)

∗ ∗ ∗ −γ2I D̄(j)T (k)

∗ ∗ ∗ ∗ −P−1(k + 1)

















≤ 0, j = 1, 2, . . . , 2L (35)

where

Ξ̂11(k) = −P (k) + M̄T (k)M̄ (k)− τ1(k)
ŪT
1 (k)Ū2(k) + ŪT

2 (k)Ū1(k)

2
,

Ξ̂12(k) = τ1(k)
ŪT
1 (k) + ŪT

2 (k)

2
, Ξ̂13(k) = τ2(k)

HTCT (k)KT

2
,

Ā(j)(k) =

[

A(j)(k) 0

Bf (k)K1C(k) Af (k)

]

, B̄(j)(k) =

[

B(j)(k)

0

]

, D̄(j)(k) =

[

D(j)(k)

Bf (k)E(k)

]

,
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and Ūi(k) (i = 1, 2) are defined in (22).

Noticing (11) and setting

P (k) = diag{P1(k), P2(k)}, P−1(k) = diag{Q1(k), Q2(k)},

it follows that (35) is implied by (33). To this end, the proof of this theorem follows readily from Theorem 1

together with the initial condition (32).

Remark 5: In Theorem 2, a sufficient condition is proposed to ensure the existence of the desired filter

gains by verifying the feasibility of a set of DLMIs (33). It is worth emphasizing that, as discussed in Remark

3, the vertices A(j)(k), B(j)(k) and D(j)(k) in (33) are unknown that depend on the parameters ai and bi

(i = 1, 2, . . . , L). It should be mentioned that, according to (15)-(17) in Lemma 1, the probability constraint

p is implicitly reflected in (14)-(17) (in Lemma 1) and (35) (in Theorem 2). More specifically, the determined

endpoints ai and bi are essentially related to the probability constraint p in (14), which have close connection

with the requirements R1 and R2. In this sense, the probability constraint p has been reflected in the main

results.

B. Computational Algorithm

According to Lemma 1 and Theorem 2, a recursive algorithm can be given to obtain the time-varying filter

matrices {Af (k)}0≤k≤N−1 and {Bf (k)}0≤k≤N−1. Since the inequalities (16), (17) and (33) are linear with

respect to all unknown variables, they can be easily solved by using the semi-definite programming method.

The following algorithm shows how to design the time-varying filter parameters.

Algorithm 1: (Probability-guaranteed H∞ finite-horizon filtering recursive algorithm)

Step 1. Set the H∞ performance index γ, the required probability p, the positive definite matrix R, the

initial state η(0) and the recursive time N . Select the initial values for matrices P1(0) and P2(0) satisfying the

initial condition (32). For k = 0, solve (16), (17) and (33) to obtain the values of ai and bi (i = 1, 2, . . . , L)

for VBT
, Q1(1) and Q2(1) as well as the desired filter parameter matrices Af (0) and Bf (0). Compute P1(1),

P2(1) by using the parameter update formula (34) and set k = 1.

Step 2. Solve (33) at VBT
to obtain the values of matrices Q1(k+1), Q2(k+1) as well as the filter parameter

matrices Af (k), Bf (k).

Step 3. Set k = k + 1 and obtain P1(k + 1), P2(k + 1) by using the parameter update formula (34).

Step 4. If k = N , then stop, else go to Step 2.

Remark 6: Based on the recursive algorithm developed above, we can obtain the filter gains {Af (k)}0≤k≤N−1

and {Bf (k)}0≤k≤N−1 step by step at every sampling instant k. The proposed scheme is of a form suitable for

recursive computation in online applications. In the case that the algorithm is not feasible in some sampling

instant k, we can adjust the initial pre-specified parameters’ values and repeat the iterative algorithm. On the

other hand, it can be observed from (14) that, the less the probability constraint p, the better the feasibility of

(14), and therefore the easier the addressed probability-constrained filter design problem is feasible. Moreover,

the bigger the disturbance attenuation level γ, the better the feasibility of (33).

Remark 7: The system (1) under consideration is quite comprehensive that covers uncertain stochastic

variables, time-varying nature, nonlinearities, sensor saturations and external disturbances. Furthermore, two

performance indices (p and γ) are used for the finite-horizon filter design problems to guarantee that the

H∞-requirement can be achieved with a pre-specified probability. Note that the main results established in

Theorem 2 contain all the information of the addressed general systems including the physical parameters,

the probability constraint, the H∞ attenuation level, sector-bounds of the nonlinearities and the amplitudes



FINAL VERSION 11

of the sensor saturations. In the next section, a simulation example is provided to show the usefulness of the

proposed time-varying filtering technique.

Remark 8: In this paper, we endeavor to answer the following three questions. 1) How to establish a model

that is as comprehensive as possible to reflect the engineering practice? 2) How to evaluate the system

performance with probability constraint for time-varying system? 3) How to develop an effective yet easy-to-

implement algorithm to achieve the main objectives? In the end, the designed time-varying filter gains can

be obtained in terms of the feasible solutions of a set of DLMIs that can be recursively solved by using the

semi-definite programming method, and a computational algorithm is specifically developed for the addressed

probability-guaranteed H∞ finite-horizon filtering problem.

IV. A Numerical Example

In this section, a simulation example is presented to illustrate the effectiveness of the time-varying filter

developed in this paper.

Consider the discrete time-varying nonlinear system (1) with the system parameters as follows:

A0(k) =

[

−0.6 0.38

0.2 sin(3k) −0.5

]

, B0(k) =

[

0.05 −0.28

0.3 sin(2k) −0.6

]

, D0(k) =

[

0.2 sin(3k)

0.3

]

,

A1(k) = B1(k) =

[

0 1

0 0

]

, D1(k) =

[

0

1

]

, C(k) =
[

−1.3 2 sin(3k)
]

,

M(k) =
[

0.15 0.13
]

, E(k) = 0.28.

The sensor saturation function σ(·) is described as















σ(C(k)x(k)) = Vyj,max, if C(k)x(k) > Vyj,max;

σ(C(k)x(k)) = C(k)x(k), if − Vyj,max ≤ C(k)x(k) ≤ Vyj,max;

σ(C(k)x(k)) = −Vyj,max, if C(k)x(k) < −Vyj,max.

(36)

The nonlinear function f(x(k)) is chosen as

f(x(k)) =





−0.1x1(k) + 0.15x2(k) +
0.1x2(k) sin(x1(k))√

x2

1
(k)+x2

2
(k)+10

−0.05x1(k) + 0.05x2(k)



 ,

which belongs to the sector [U1(k), U2(k)] with

U1(k) =

[

−0.4 0

−0.2 −0.3

]

, U2(k) =

[

0.2 0.3

0.1 0.4

]

.

In this example, let Vyj,max = 0.03, K = 1.8, K1 = 0.01 and p = 0.90. The uncertain parameter α obeys

the uniform distribution over [−0.05, 0.15]. The external disturbance input is selected as ω(k) = 0.3 sin(2k)
k+1 .

Setting γ = 1.2, η(0) =
[

−0.22 0.08 0.04 −0.12
]T

and R = diag{1.8, 1.8}, we can find the initial

matrices P1(0) = diag{1.2, 1.2} and P2(0) = diag{0.52, 0.53} satisfying the initial condition (32). The desired

filter parameters can be solved recursively according to Algorithm 1, and the results are listed in Table I from

k = 0 to k = 6.

The corresponding simulation results are presented in Figs. 1-6, where the actual states x1(k), x2(k) and

their estimates x̂1(k), x̂2(k) are given in Fig. 1 and Fig. 2, respectively. The output z(k) and its estimate
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ẑ(k) are plotted in Fig. 3. The estimation error z̃(k) is shown in Fig. 4. The ideal measurements and actual

measurements are depicted in Fig. 5. For the clarity, here, only the case of noise-free sensor is presented.

Moreover, the l2 norms of the estimation error z̃(k) and the external disturbance ω(k) can be calculated,

respectively. Accordingly, the actual l2-gain from the external disturbance to the estimation error can be

obtained. The actual H∞ performance is plotted in Fig. 6, which is significantly lower than the given per-

formance level γ = 1.2. Note that the traditional H∞ problem can be recovered by setting the probability

constraint p as 1. Under the same conditions, the traditional H∞ problem (i.e., the case when p = 1) is

infeasible, which further shows the advantage of our algorithm. The simulation results have demonstrated the

effectiveness of the time-varying H∞ filter strategy presented in this paper.

V. Conclusions

In this paper, we have studied the probability-guaranteed robust H∞ finite-horizon filtering problem for a

class of nonlinear time-varying systems with sensor saturation. The uniform distribution has been used to

characterize the statistical characteristics of the uncertain parameters. A time-varying filter has been designed

and a parameter-box has been sought such that the disturbance attenuation level and the required probability

are simultaneously guaranteed. A computational algorithm has been proposed for the design of the robust

H∞ time-varying filter. Finally, the effectiveness of the developed filtering approach has been illustrated by

a simulation example.
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Fig. 1. The state x1(k) and its estimate x̂1(k)
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Fig. 2. The state x2(k) and its estimate x̂2(k)
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Fig. 3. Output z(k) and its estimate ẑ(k)
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Fig. 4. The estimation error z̃(k)
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Fig. 5. The measurements (without noise)
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Fig. 6. The actual H∞ performance


