262 research outputs found

    Traffic control mechanisms with cell rate simulation for ATM networks.

    Get PDF
    PhDAbstract not availabl

    Introduction to Queueing Theory and Stochastic Teletraffic Models

    Full text link
    The aim of this textbook is to provide students with basic knowledge of stochastic models that may apply to telecommunications research areas, such as traffic modelling, resource provisioning and traffic management. These study areas are often collectively called teletraffic. This book assumes prior knowledge of a programming language, mathematics, probability and stochastic processes normally taught in an electrical engineering course. For students who have some but not sufficiently strong background in probability and stochastic processes, we provide, in the first few chapters, background on the relevant concepts in these areas.Comment: 298 page

    Quality of service optimization of multimedia traffic in mobile networks

    Get PDF
    Mobile communication systems have continued to evolve beyond the currently deployed Third Generation (3G) systems with the main goal of providing higher capacity. Systems beyond 3G are expected to cater for a wide variety of services such as speech, data, image transmission, video, as well as multimedia services consisting of a combination of these. With the air interface being the bottleneck in mobile networks, recent enhancing technologies such as the High Speed Downlink Packet Access (HSDPA), incorporate major changes to the radio access segment of 3G Universal Mobile Telecommunications System (UMTS). HSDPA introduces new features such as fast link adaptation mechanisms, fast packet scheduling, and physical layer retransmissions in the base stations, necessitating buffering of data at the air interface which presents a bottleneck to end-to-end communication. Hence, in order to provide end-to-end Quality of Service (QoS) guarantees to multimedia services in wireless networks such as HSDPA, efficient buffer management schemes are required at the air interface. The main objective of this thesis is to propose and evaluate solutions that will address the QoS optimization of multimedia traffic at the radio link interface of HSDPA systems. In the thesis, a novel queuing system known as the Time-Space Priority (TSP) scheme is proposed for multimedia traffic QoS control. TSP provides customized preferential treatment to the constituent flows in the multimedia traffic to suit their diverse QoS requirements. With TSP queuing, the real-time component of the multimedia traffic, being delay sensitive and loss tolerant, is given transmission priority; while the non-real-time component, being loss sensitive and delay tolerant, enjoys space priority. Hence, based on the TSP queuing paradigm, new buffer managementalgorithms are designed for joint QoS control of the diverse components in a multimedia session of the same HSDPA user. In the thesis, a TSP based buffer management algorithm known as the Enhanced Time Space Priority (E-TSP) is proposed for HSDPA. E-TSP incorporates flow control mechanisms to mitigate congestion in the air interface buffer of a user with multimedia session comprising real-time and non-real-time flows. Thus, E-TSP is designed to provide efficient network and radio resource utilization to improve end-to-end multimedia traffic performance. In order to allow real-time optimization of the QoS control between the real-time and non-real-time flows of the HSDPA multimedia session, another TSP based buffer management algorithm known as the Dynamic Time Space Priority (D-TSP) is proposed. D-TSP incorporates dynamic priority switching between the real-time and non-real-time flows. D-TSP is designed to allow optimum QoS trade-off between the flows whilst still guaranteeing the stringent real-time component’s QoS requirements. The thesis presents results of extensive performance studies undertaken via analytical modelling and dynamic network-level HSDPA simulations demonstrating the effectiveness of the proposed TSP queuing system and the TSP based buffer management schemes

    Asymptotic performance of queue length based network control policies

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2010.Cataloged from PDF version of thesis.Includes bibliographical references (p. 199-204).In a communication network, asymptotic quality of service metrics specify the probability that the delay or buffer occupancy becomes large. An understanding of these metrics is essential for providing worst-case delay guarantees, provisioning buffer sizes in networks, and to estimate the frequency of packet-drops due to buffer overflow. Second, many network control tasks utilize queue length information to perform effectively, which inevitably adds to the control overheads in a network. Therefore, it is important to understand the role played by queue length information in network control, and its impact on various performance metrics. In this thesis, we study the interplay between the asymptotic behavior of buffer occupancy, queue length information, and traffic statistics in the context of scheduling, flow control, and resource allocation. First, we consider a single-server queue and deal with the question of how often control messages need to be sent in order to effectively control congestion in the queue. Our results show that arbitrarily infrequent queue length information is sufficient to ensure optimal asymptotic decay for the congestion probability, as long as the control information is accurately received. However, if the control messages are subject to errors, the congestion probability can increase drastically, even if the control messages are transmitted often. Next, we consider a system of parallel queues sharing a server, and fed by a statistically homogeneous traffic pattern. We obtain the large deviation exponent of the buffer overflow probability under the well known max-weight scheduling policy. We also show that the queue length based max-weight scheduling outperforms some well known queue-blind policies in terms of the buffer overflow probability. Finally, we study the asymptotic behavior of the queue length distributions when a mix of heavy-tailed and light-tailed traffic flows feeds a system of parallel queues. We obtain an exact asymptotic queue length characterization under generalized max-weight scheduling. In contrast to the statistically homogeneous traffic scenario, we show that max-weight scheduling leads to poor asymptotic behavior for the light-tailed traffic, whereas a queue-blind priority policy gives good asymptotic behavior.by Krishna Prasanna Jagannathan.Ph.D

    Simulation and analytical performance studies of generic atm switch fabrics.

    Get PDF
    As technology improves exciting new services such as video phone become possible and economically viable but their deployment is hampered by the inability of the present networks to carry them. The long term vision is to have a single network able to carry all present and future services. Asynchronous Transfer Mode, ATM, is the versatile new packet -based switching and multiplexing technique proposed for the single network. Interest in ATM is currently high as both industrial and academic institutions strive to understand more about the technique. Using both simulation and analysis, this research has investigated how the performance of ATM switches is affected by architectural variations in the switch fabric design and how the stochastic nature of ATM affects the timing of constant bit rate services. As a result the research has contributed new ATM switch performance data, a general purpose ATM switch simulator and analytic models that further research may utilise and has uncovered a significant timing problem of the ATM technique. The thesis will also be of interest and assistance to anyone planning on using simulation as a research tool to model an ATM switch

    A Slotted Ring Test Bed for the Study of ATM Network Congestion Management

    Get PDF
    This thesis addresses issues raised by the proposed Broadband Integrated Services Digital Network which will provide a flexible combination of integrated services traffic through its cell-based Asynchronbus Transport Mode (ATM). The introduction of a cell-based, connection-oriented, transport mode brings with it new technical challenges for network management. The routing of cells, their service at switching centres, and problems of cell congestion not encountered in the existing network, are some of the key issues. The thesis describes the development of a hardware slotted ring testbed for the investigation of congestion management in an ATM network. The testbed is designed to incorporate a modified form of the ORWELL protocol to control media access. The media access protocol is analysed to give a model for maximum throughput and reset interval under various traffic distributions. The results from the models are compared with measurements carried out on the testbed, where cell arrival statistics are also varied. It is shown that the maximum throughput of the testbed is dependent on both traffic distribution and cell arrival statistics. The testbed is used for investigations in a heterogeneous traffic environment where two classes of traffic with different cell arrival statistics and quality of service requirements are defined. The effect of prioritisation, media access protocol, traffic intensity, and traffic source statistics were investigated by determining an Admissible Load Region (ALR) for a network station. Conclusions drawn from this work suggest that there are many problems associated with the reliable definition of an ALR because of the number of variable parameters which could shift the ALR boundary. A suggested direction for further work is to explore bandwidth reservation and the concept of equivalent capacity of a connection, and how this can be linked to source control parameters

    ATM virtual connection performance modeling

    Get PDF

    Application of learning algorithms to traffic management in integrated services networks.

    Get PDF
    SIGLEAvailable from British Library Document Supply Centre-DSC:DXN027131 / BLDSC - British Library Document Supply CentreGBUnited Kingdo
    corecore