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Abstract 

The Asynchronous Transfer Mode (ATM) is a multiplexing and switching technique for 
telecommunication networks. In principle, ATM supports any service (computer data, 
video, speech, ... ). ATM is based on short fixed length packets, called cells, that follow a 
predefined route through the network. This route is called a virtual connection (VC). 

To design and operate an ATM network and the equipment that is connected to it, the 
quality of the service offered by the network must be known. The quality is expressed in 
terms of the probability that a cell is lost and the probability distribution of the waiting 
time of cells. This thesis presents two methods to approximate the end-to-end cell waiting 
time distribution on a VC through an ATM network. 

We model an ATM network as a network of queues. Each queue represents the multi
plexing of traffic streams on a single transmission link. Congestion occurs in the multiplex
ers, because the demand for transmission bandwidth may temporarily exceed the capacity. 
Congestion is the cause of the cell waiting times that we are interested in. 

Almost all existing methods to determine ATM VC performance analyze the queues of 
the network model in isolation, i.e., they do not take the Queuing Network Phenomena 
(QNP) into account. In this thesis, we study the QNP by simulation and by numerical 
analysis. We conclude that (depending on the parameters of the network) they may have 
a relevant effect on VC performance. The VC performance evaluation methods developed 
in this thesis take the QNP into account, where appropriate. 

The most relevant QNP describes that the waiting times of a cell in the queues of the 
network are correlated (most often, positively correlated). If this QNP is neglected, the 
assessment of the cell waiting time distribution on a VC is too optimistic, so it is important 
that it is taken into account. The other two QNP describe that the characteristics of the 
traffic stream on a VC change due to queueuing in the network and that VC traffic streams 
become correlated when they are multiplexed on the same transmission link. 

The first VC performance evaluation method concerns smooth VC traffic streams, i.e., 
VC traffic streams that vary little in time. The second method concerns bursty VC traf
fic streams, i.e., VC traffic streams that vary considerably in time. Both methods take 
into account the QNP where relevant. They provide more accurate results than existing 
methods. The methods are validated by simulation results. 
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Chapter 1 

Introduction 

Due to deregulation and privatisation, the global telecommunications market place is 
changing rapidly. The increase of competition coincides with and is further fertilized 
by a demand for new services and rapid technological progress in the areas of integrated 
electronic circuits and optical communications, see e.g. [White et al., 1987; de Prycker, 
1991]. 

Traditional telecommunications networks are optimized for a specific service (telephony, 
data, TV distribution, etc.) and can often only inefficiently, if at all, support other or new 
services. These networks do not allow flexible service provisioning. Further, maintaining 
networks in parallel is inefficient, because they are each dedicated to a single service and do 
not share resources. In the now more dynamic market for telecommunication services, this 
state of affairs was no longer economically acceptable and has motivated the international 
telecommunication standards institute, the CCITT1 to define first the Integrated Services 
Digital Network (ISDN) and later the Broadband Integrated Services Digital Network (B
ISDN). ISDN and B-ISDN allow flexible service provisioning. The concept of B-ISDN is 
an extension of the concept of ISDN to services that require high bandwidth. In addition, 
service integration is taken much further in B-ISDN than in ISDN, where it is essentiaHy 
restricted to the interface between user and network. The switching and multiplexing 
techniques used in ISDN and B-ISDN are completely different. We will consider only the 
B-ISDN. The CCITT issued the first and still very rough standards on the B-ISDN in 1988 
([l.113, 1988; I.121, 1988]). Since then, standardization work has been going on. 

The ability to provide, at least in principle, any service requires the B-ISDN to support 
a very wide range of service characteristics and performance requirements. The switching 
and multiplexing technique the CCITT expects to comply with these requirements most 
efficiently, is the Asynchronous Transfer Mode (ATM), see [I.121, 1988]. ATM achieves 
integration of the access to the network, of transmission and of switching. It is a packet 
switching technique in which as many network functions as possible have been transferred 
to the edges of the network in order to allow the network speed to be increased, so that 
high bandwidth and low delay services can be supported. The reduction of the network 

1After it started working on B-ISDN, the CCITT has been renamed ITU-T (International Telecommu
nication Union, Telecommunication Standardization Sector). 
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CHAPTER 1. INTRODUCTION 

Public Network Customer Premises 

Figure 1.1: Generic network model 

functionality is possible because of the low bit error probability in optical transmission 
systems. The packet switching nature of ATM enables more efficient support of bursty 
traffic sources than circuit switching. 

ATM has gained wide acceptance among vendors of telecommunication equipment. 
This is illustrated by the success of ATM Forum. ATM Forum is an organization (es
tablished in 1991) of mainly vendors that intends to accelerate the use of ATM products 
and services. It does so by selecting standards, resolving differences among standards, and 
recommending new standards. ATM has also made its way into local area networks, see 
[Leslie et al., 1993]. 

Fig. 1.1 shows a generic model of a telecommunication network. The customer's view 
of the network is described by the Quality of Service (QOS). The QOS comprises the 
performance of the terminal equipment, of the customer premises network and of the public 
network. The network provider has to guarantee the QOS in the public part of the network. 
He does so by traffic engineering (when designing the network) and by traffic control (when 
operating the network). The subscriber may enhance the QOS by implementing end-to-end 
protocols and end-terminal functions. 

In an ATM network, all information that is transmitted from one customer to another 
customer follows the same path through the network during the entire session. This path 
is called a Virtual Connection (VC). This thesis is about the quality of information trans-
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mission on VCs. It intends to provide a set of methods to evaluate VC performance. 
Applications of these VC performance evaluation methods include traffic engineering and 
the design of traffic control rules, of end-to-end protocols and of terminal functions. 

This chapter introduces and motivates the problem addressed in this thesis: VC per
formance evaluation. The first two sections give a more detailed description of telecom
munication services and of ATM. Sect. 1.3 shows possible applications of VC performance 
evaluation methods. Sect. 1.4 describes the approach towards VC performance evaluation 
that we have taken. The last section gives an outline of the thesis. 

1.1 Services 

B-ISDN supports a very wide range of services. The services differ with respect to their 
traffic characteristics and QOS requirements. In this section, we first make some general 
remarks on service characteristics and QOS, and then discuss the most important types of 
service (namely, speech, date and video) in more detail. The purpose is to illustrate the 
requirements on an ATM network. 

Traffic characteristics may be divided into characteristics associated with the estab
lishment and release of connections and characteristics during the information transfer 
phase of a connection. The VC performance evaluation methods devised in this thesis 
concern the information transfer phase. The main characteristics in the connection estab
lishment/ release phase are the connection request rate and the holding time. The main 
characteristic in the information transfer phase is the bit rate at which a source transmits. 
If the bit rate is variable, the variation of the rate should also be described. 

Ref. [E.800, 1988] provides a formal framework to discuss QOS. For our purposes, the 
relevant aspects of QOS are trafficability performance and transmission performance. Traf
ficability performance addresses performance in the connection establishment/release phase 
of a connection (like e.g. the connection blocking probability). Transmission performance 
addresses performance in the information transfer phase of a connection. Transmission per
formance concerns corruption, loss, and delivery to the wrong destination of information 
and information delay and delay variation. 

1.1.1 Speech services 

The common code rate for telephone speech is 64 Kbit/s, although excellent quality can 
also be achieved at 16 Kbit/s, see [Keshav, 1992]. Due to the alternation between speakers 
and short periods of silence during speech, telephone speech shows an on-off behavior that 
can be exploited in the network. A speaker is typically active only 40 3 of the time, and 
speech bursts typically last 1 second on the average. 

Telephony is particularly sensitive to delay. Without echo cancellation2, an end-to-end 

2 A telephone set is connected to the network by two wires. This set of wires carries two signals, one in 
each direction. At the receiving (analog) telephone set, the arriving signal is retransmitted to the sending 
telephone set in attenuated form. This effect occurs because the receiving set does not perfectly separate 
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delay of less than 25 ms is required; with echo cancellation, it should not exceed 400 ms 
(CCITT recommendation G.164). On the other hand, speech is rather insensitive to bit 
errors: a bit error rate of up to 1 % can be tolerated. 

1.1.2 Data services 

Data traffic may take many different forms. Often, data traffic shows on·off behavior. The 
fraction of time a source is active, the activity factor, may be very small, but also very 
high. The bit rate during on·periods may be low, but also high. The main distinction is 
between interactive data (either person-to-machine or machine-to-machine) and bulk data 
(machine-to-machine), see [Chen et al., 1988]. Interactive data is bursty and asymmetric 
of character; bulk data is continuous, unidirectional and high speed. Images form a special 
type of data. They are coded at 96 Kbit to 300 Kbit for facsimile to 64 Mbit for X·ray 
images ([Hluchyj et al., 1992]). 

In general, data is intolerant to loss. Bit error probabilities down to 10-12 are required, 
depending on the application, see e.g. [Armbruester et al., 1992]. Interactive data is (by 
definition) relatively intolerant to delay, although the delay and delay jitter requirements 
for data communication are less severe than for telephone speech, see e.g. [Armbruester et 
al., 1992]. 

1.1.3 Video services 

In order to reduce the transmission bandwidth of a video signal, one can exploit the spatial 
and temporal correlation in a video sequence and the way in which the human perception of 
video works. Among others, entropy coding3 may be applied. The bit rate of the resulting 
signal varies continuously. 

The characteristics and the required QOS of a video signal depend on the application 
and the applied coding scheme. CCITT standards exist for reduced quality video telephony 
and video conferencing at 64-128 Kbit/s and 384 Kbit/s - 2 Mbit/s, respectively (recom
mendation H.261). Video standards from the Moving Pictures Expert Group (MPEG) exist 
at 1.5 Mbit/s for video cassette recorder quality and at 4 Mbit/s for standard TV quality, 
see [Armbruester et al., 1992]. According to [Keshav, 1992] the minimum rate required 
is 1.5 Mbit/s. For High Definition TV distribution at most 50 Mbit/s is required ([Arm
bruester et al., 1992]), and 20 Mbit/s is required using state-of-the-art coding ([Keshav, 
1992]). 

The bit error requirements for video are inversely proportional to the degree of com
pression and vary between l0-6 and 10-12 , see [Armbruester et al., 1992]. The delay and 

the two signals carried by the wires that connect it to the network. As a result, a speaker hears an echo 
of its own speech. 

3 The best known example of entropy coding is Morse. Symbols that occur often are represented by 
efficient symbols in the code. Reversely, symbols that occur seldom are represented by inefficient symbols 
in the code. 



1.2. THE ASYNCHRONOUS TRANSFER MODE 5 

delay jitter requirements for video telephony and video conferencing are the same as for 
telephony. For video distribution delay may be much higher. 

Finally, several services may be combined into a multi-media service, see e.g. [Arm
bruester et al., 1992]. These services may be carried on parallel connections or on a single 
connection in the network (i.e. the media are multiplexed at the terminal). If parallel 
connections are used, the traffic streams on these connections are correlated (e.g. image 
and sound of a single scene) and at the receiving end the streams have to be synchronized 
(e.g. the image of a speaking person and the sound of his speech may be shifted in time 
by at most 50 ms). 

1.2 The Asynchronous Transfer Mode 

In this section, we provide a brief introduction to ATM networks. A basic understanding 
of ATM is required before the problem addressed in this thesis can be described. We 
successively discuss the basic ideas behind ATM, the ATM protocol reference model and 
the causes of performance degradation in an ATM network. 

1.2.1 ATM 

The essential structure and working of ATM was agreed upon within the CCITT in 1990, 
see [de Prycker, 1991; Anderson, 1991; Kano et al., 1991; Boudec, 1992). In essence, ATM 
is a packet switching technique that is enhanced with some circuit switching-like features, 
so that it can provide services that are sensitive to delay. ATM can be summarized as 
follows: 

• Packet routing is based on virtual connections. This allows reservation of network 
resources and thus alleviates the problem of flow control. As a consequence, special 
measures have to be taken to support connectionless services. 

• Error and flow control are not performed link-by-link, like in a traditional network as 
X.25. Error control intends to mask transmission errors by retransmission of packets 
in which an error is detected. Flow control throttles the flow of packets into a network 
node in order to avoid buffer overflow. Due to the increased quality of optical fiber 
networks, adequate error performance can be achieved without link-by-link error 
control. End-to-end error performance may be enhanced by forward error correction 
or an end-to-end automatic repeat request protocol. Flow control can essentially be 
achieved by a preventive traffic control scheme, see 1.3_2. 

• The packets have a fixed, small length; they are called cells. Fixed packet length 
is slightly less bandwidth efficient than variable packet length, but gives more time 
for header processing, facilitates buffer management, and eases buffer dimensioning. 
Small size packets have been chosen, because of the reduced packetization and queu
ing delay. Cells consist of a 5 byte header and a 48 byte payload field. The reduction 
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ATM Adaptation Layer 

ATM Layer 

Physical Layer 

Figure 1.2: B-ISDN/ATM Protocol Reference Model 

of the network functionality (i.e., no link-by-link error and flow control) has allowed 
reduction of the header size to essentially identification of the virtual connection to 
which the cell belongs. Small header size provides high bandwidth efficiency. 

1.2.2 ATM protocol reference model 

The CCITT recommendations on B-ISDN relate to two interfaces (see Fig. 1.1 ): 

• UNI: the user-network interface between terminal and network. 

• NNI: the network node interface between nodes in the network. 

It was attempted to develop identical interfaces, and this has largely been achieved. The 
protocol reference model (see Fig. 1.2) is a way to describe the protocols across these 
interfaces. 

The protocol reference model is structured into (vertical) planes and (horizontal) layers. 
The planes are used to distinguish between: 

• User functions, that take care of the information transfer phase of a virtual connec
tion. 

• Control functions, that set up and break down a virtual connection. 

• Network management functions, that we will not consider further. 

The layers divide the protocols into independent sets. Similar to the OSI-model, the refer
ence model distinguishes between the physical layer, the ATM layer, the ATM adaptation 
layer, and higher layers. In the physical layer and the ATM layer, there is no distinction 
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between the user plane and the control plane. In the ATM adaptation layer, the user plane 
and the control plane may use different protocols (out of the same set of protocols defined 
by the layer). The higher layer protocols are different in the user plane and the control 
plane. 

The user plane of the NNI comprises only the physical layer and the ATM layer. The 
user plane of the UNI however comprises all layers. So, in the user plane the protocols 
operate end-to-end (i.e., between the terminals) in the ATM adaptation layer and in the 
higher layers. 

Next, we discuss the three lower layers of the reference model in more detail. The VC 
performance evaluation methods developed in this thesis pertain to the ATM layer. The 
ATM layer relies upon the physical layer for the transport of cells and provides a service 
to the adaptation layer. 

Physical layer 

The physical layer provides to the ATM layer the transport of valid cells and timing 
information. Standardized transmission rates are 155.520 Mbit/s and 622.080 Mbit/s. 

The header of ATM cells is protected by header error control {HEC). HEC operates in 
one of two modes. In the first mode it corrects single header bit errors and detects multiple 
header bit errors. After HEC has detected a header containing bit errors, it switches to the 
second mode. In the second mode, HEC only detects header bit errors. After a number 
of correct headers have been received, HEC again switches to the first mode. Apart from 
error detection and correction, HEC is also used for synchronization at the cell level. 

As the ATM cell stream carries its own synchronization information, in principle any 
transmission system can be used in the physical layer, subject to QOS requirements. At the 
UNI, two transmission systems have been standardized: a system based on the Synchronous 
Digital Hierarchy and a cell based system. The former is a standardized transmission 
system for digital networks and is chosen to achieve identity with the NNI. In case of a 
cell based interface, the ATM is also used as a transmission technique. The transmission 
overhead is then carried in ATM cells. 

ATM layer 

In the ATM layer, cell multiplexing and switching are performed. ATM is connection 
oriented. Before cells are transmitted a Virtual Connection (VC) between source and 
destination is established. All cells of a connection pass through the network via the same 
route. The VC of a cell is identified by the label field in the cell header. 

The header of an ATM cell comprises several fields: 

• the label, 

• the HEC field previously discussed, 

• a single bit to indicate the cell loss priority, 
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• a payload type field, 

• the Generic Flow Control field (only at the UNI). 

The priority bit indicates which cells on a VC are less eligible to drop in case of network 
congestion. The payload type distinguishes between user and network internal cells on 
a VC. Network internal cells may for example be used for performance monitoring. The 
Generic Flow Control field can be used to implement the medium access control mechanism 
of the customer premises network. 

ATM adaptation layer 

Several protocols have been defined for the ATM adaptation layer (AAL), and the defini
tion of this layer is still under discussion. The AAL provides at least segmentation and 
reassembly of the higher layer information units into ATM cells. Further it may (see also 
section 1.3.3): 

• detect loss and insertion of cells. 

• recover lost cells by retransmission or forward error correction. 

• provide flow control between source and destination. 

• recover the timing of the cell stream by time stamping of cells or a smoothing buffer. 

• multiplex higher layer traffic streams into a single ATM stream. 

Most of these functions require exchange of information between the source and destination 
AALs. Together with the higher layer information units that information forms the cell 
payload, thus reducing the effective bandwidth. 

1.2.3 ATM network performance 

The performance of a VC in an ATM network is essentially determined by the ATM layer. 
VC performance is described in terms of loss and delay of cells (see [Takahashi et al., 1989; 
de Prycker, 1991; Nagarajan et al., 1992; Yokoi et al., 1992; Murakami et al., 1992]). It 
indicates the quality of the service that the ATM layer offers to the ATM adaptation layer. 
Performance on a VC is of course also determined by the physical layer, but the physical 
layer performs much better than the ATM layer and does not play an essential role in the 
application of the VC performance evaluation methods developed in this thesis. These 
methods apply to design of the network in the ATM layer. 

Next, we first consider the causes of performance degradation in the three lower layers 
of the protocol reference model, then describe measures of performance, and finally indicate 
values of some performance measures. 
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Causes of performance degradation 

In the physical layer, bit errors cause performance degradation. They may occur randomly 
(mainly due to noise) or in bursts (in optical fiber networks, mainly due to maintenance 
actions). The bit error rate in optical fiber networks is less than 10-s ([de Prycker, 1991, p. 
42]). Further, the physical layer introduces fixed delays due to propagation, transmission 
and processing. 

Cell headers are protected against bit errors by header error correction {HEC), because 
cell header bit errors would cause error multiplication (an entire cell would be lost instead 
of one bit). As HEC may correct single bit errors, the transmission system should have a 
low burst error rate. The net cell loss rate due to header errors is then very low. 

In the ATM layer, cell buffers in switches and multiplexers may overflow due to con
gestion, and thus cause cell loss. The buffers also introduce variable queuing delay. Loss 
and especially delay in cell buffers is the main topic of this thesis. Further, switches also 
introduce a fixed processing delay. 

In the adaptation layer, additional delay is introduced by cell segmentation and re
assembly of higher layer protocol units into ATM cells. If variable cell delay is smoothed 
at the receiving side by a smoothing buffer, overflow or underflow of this buffer also results 
in cell loss. (In case of underflow, a cell arrives too late and is no longer relevant.) 

Performance measures 

ATM layer network performance measures can be categorized into the classes speed, accu
racy and dependability. 

As far as speed is concerned, cell transfer capacity and cell delay are important. Cell 
transfer capacity is the maximum mean cell transfer rate that the network supports for 
a specific service. In principle, a user can transmit cells at a rate up to the transmission 
capacity of the UNI. However, traffic control (see 1.3.2) restricts the cell transfer rate. 
Cell transfer delay is a random variable. Not only the mean cell transfer delay is relevant, 
but also cell delay variation or jitter. Several measures of jitter can be envisioned, see 
[Anagnostou et al., 1991]: cell delay variance, a percentile of the cell delay distribution, or 
a percentile of {the distribution of) the difference between the delays of consecutive cells. 

Accuracy performance is measured by the errored cell ratio, i.e. the fraction of cells 
that arrives at the destination with a bit error in the cell payload. 

Dependability is determined by the cell loss ratio (i.e., the fraction of transmitted cells 
that does not reach the destination) and by the cell insertion rate (i.e., the rate at which 
cells not intended for a destination reach that destination). Next to mean values of these 
performance measures, the distribution of impairments over cells or in time is also relevant, 
because the user or the AAL may depend on it. 4 

4 ln [Noorchahrn et al., ig92], the rnultiply-errored-cell-block ratio partly covers this need. A cell block 
is defined as a set of cells that are consecutively transmitted by a source. A rnultiply-errored-cell-block 
occurs when at the receiver more than a given number of errored, lost, or misinserted cells are observed 
in a cell block. The multiply-errored-cell-block ratio denotes the fraction of such blocks. 



10 CHAPTER 1. INTRODUCTION 

Performance measure values 

After the network performance measures have been established, values have to be at
tributed to them. The end-to-end cell delay on a VC is for long connections dominated 
by the propagation delay(;::,, 5µs/km) and for low bit rate services by the cell assembly 
delay (6 ms at 64 Kbit/s). The delays in the ATM layer are small due to high transmission 
rate and small cell length. A buffer of 100 cells gives a maximum delay of 0.3 ms at 150 
Mbit/s transmission rate and 53 byte cell length. Note, however, that variable cell delays 
are entirely due to queuing in buffers. 

The errored cell ratio is directly determined by the performance of the physical layer. 
This also holds for the probability of cell loss due to header errors. The probability of cell 
loss due to a header error is determined by the probability of more than one bit error in 
the header (HEC restores a single bit error in the header, if it is the first header received 
in error) and is usually very small. 

The errored cell ratio and the header error probability give a lower bound on the design 
goal for the probability of cell loss due to buffer overflow, see [Anagnostou et al., 1991]. 
It is useless to have a probability of cell loss due to congestion that is considerably lower 
than the cell loss probability in the physical layer. 

1.3 Applications of VC performance models 

The subject of this thesis is ATM virtual connection (VC) performance modeling. As 
described earlier, a VC indicates the route that the cells of a connection between source 
and destination take through the network. In this section, we show where VC performance 
models can be applied: network design, traffic control, and design of end-to-end protocols 
and end-terminal functions. 

1.3.1 Network Design 

Network design intends to choose the topological structure (i.e. geographical locations 
of nodes and their interconnections) and capacity of the network such that the costs are 
minimized while the required QOS is still achieved. It takes long term decisions based 
on forecasts of traffic load and traffic characteristics. Design of ATM networks differs 
considerably from the design of circuit switched networks. In ATM networks, there is a 
very complex relationship between traffic load on the one hand and bandwidth and buffer 
size required to support that load on the other hand. 

As noted in [Roosma, 1991], dimensioning methods (i.e., choosing capacities) for circuit 
switched networks are based on four models: 

• A network traffic model that determines the traffic load on each link based on the 
end-to-end traffic load. 

• A network performance model that determines the required performance on each link 
based on the end-to-end performance. 
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• A link model that relates traffic load, capacity, and performance at the call level. 

• An optimization model that describes how to optimize the network by using the other 
three models. 

These models provide a convenient way of network dimensioning. They allow to separately 
consider each link in the network. 

Application of these methods to ATM networks would require extension of the four 
models from the circuit-level (or, in case of ATM, rather the VC-level) to the cell-level, 
see [Roosma, 1991]. This entails several problems that are the subject of VC performance 
modeling: 

• When determining the traffic load on each link, should it be neglected that traffic 
characteristics change due to multiplexing in the network ? 

• When distributing the end-to-end performance requirements over the nodes in the 
network, should the performance in each node be assumed to be independent ? 

• How should the appropriate cell-level capacity of a link be determined given the 
traffic load ? 

The relationship between traffic load and link capacity is structured in [Uose et al., 
1992]. It comprises two levels5

: 

• VC-level dimensioning determines the required capacity in terms of the number of 
VCs. Much in the same way as the number of circuits required in circuit switching. 

• Cell-level dimensioning determines the required capacity in terms of transmission 
bandwidth. 

The complexity of these dimensioning procedures depends on the degree to which sta
tistical multiplexing is applied in the network and on the number of service classes that 
is supported. At the VC-level, capacity may be dedicated to service classes or it may be 
shared between service classes. At the cell-level, capacity may be dedicated to VCs, it 
may be shared between VCs in the same service class, or it may be shared between VCs 
in different service classes. The larger the extent to which resources are shared, the higher 
resource utilization becomes, however, at expense of increasingly complex dimensioning 
and traffic control. 6 

5 A third level could be distinguished in between the VG-level and the cell-level, namely the Virtual 
Path-level. A Virtual Path (VP) is a clustering of a number of VCs that collectively pass through a part 
of the ATM network. Inside the network, the VCs that make up a single VP need not be addressed 
individually. VPs facilitate the management of the network. We do not consider VPs any further, because 
they do not require special attention with respect to VC performance models. 

0There are two alternatives to full resource sharing (see [Lea, 1992; Leslie et al., 1993]). The first 
alternative assumes that resources are dedicated to service classes (at the VC-level) and to VCs (at the 
cell-level) Any free capacity that is observed is again handed· out, however, without performance guarantee. 
In the second alternative, resources that are dedicated to service cl<'-sses are reallocated at a slow rate. 
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1.3.2 Traffic Control 

Traffic control intends to guarantee the QOS on all VCs and simultaneously to achieve 
high utilization of network resources. Unlike design, traffic control is a real-time function. 

Traffic control in ATM networks is the subject of intense study, see e.g. the survey 
articles [Bae et al., 1991; Burgin et al., 1991; Cooper et al., 1990; Doshi et al., 1991; 
Eckberg et al., 1989; Eckberg et al., 1990; Eckberg et al., 1991; Eckberg, 1992; Gilbert 
et al., 1991; Guen et at., 1992; Habib et al., 1991; Roberts, 1991b; Saito et al., 1991; 
Uose et al., 1992; Wernik et al., 1992; Woodruff et al., 1988; Woodruff et al., 1990; Yazid 
et al., 1992]. Traffic control entails a trade-off between bandwidth efficiency and buffer sizes 
on the one hand and processing complexity and signaling complexity on the other hand. 
Further, it should not present a bottleneck to the versatility of the network, and thus be 
flexible with respect to traffic characteristics and performance requirements. In comparison 
with traffic control in packet switched networks, traffic control in ATM networks presents 
many new problems: 

• Traffic characteristics and quality requirements differ widely between the services 
that are offered by a single network. 

• Many services concern real-time traffic that is less controllable than traditional data 
traffic. (It is no use to delay the out put of a video source, because information that 
arrives too late is worthless.) 

• Due to the increased transmission rate, the bandwidth-delay product (i.e. the amount 
of data in transit) is very high. As a result, the data flow is very inert, and reactive 
control schemes are often not fast enough to prevent oncoming congestion.7 So, traffic 
control in ATM networks mainly consists of preventive control that intends to avoid 
congestion. As a result, bandwidth utilization will be lower. 

• The high cell transmission rate requires processing associated with traffic control at 
the cell level to be simple. 

• In contrast to most data networks, an ATM network is a public network, in which 
the cooperation of network users is not guaranteed. 

Traffic control in ATM networks may be subdivided according to the subject of control, 
or, equivalently, according to the time scales in which control actions occur: traffic control 
at the virtual connection, burst, and cell levels, respectively. The burst level is the level 
that describes the on-off behavior of voice and data sources and the frame-level of video 
sources, see Ll and 2.1.l. This categorization is used subsequently to briefly discuss the 
traffic control functions that have been proposed in the literature. Note that no agreement 
exists on the necessity and feasibility of some of these functions. 

7 Note, however, that the effect of increased transmission rates might be offset by also increasing memory 
chip size and processor speed, see [Fta.ser, 1991]. 
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Virtual connection level 

VC level traffic control is applied at connection set-up time in each network node through 
which a projected VC passes. The main element of VC level traffic control is the connection 
admission control (CAC) algorithm. It decides whether a new connection can be carried 
on a transmission link without violating the QOS of existing VCs and the new VC. If 
VCs of different service classes are multiplexed on the same link (which significantly adds 
to the complexity of the CAC algorithm), CAC should also guarantee the VC blocking 
probabilities in the different classes. 

Inputs to the CAC-algorithm are a description of the traffic stream on the requested 
VC and the state of the link. The traffic description should be sufficiently detailed to allow 
evaluation of the QOS of the multiplexed VCs. On the other hand, it should be controllable 
at the UNI (see cell level control) and the user-terminal should be able to present it. 

There are two approaches to describing a VC traffic stream: 

• Stochastic description: 

A VC traffic stream is described by a stochastic model that is characterized by a few 
parameters (e.g., the mean burst length). The performance guarantees obtained by 
the CAC-algorithm are stochastic (e.g., the probability that a cell has to wait longer 
than a given time). 

• Deterministic description: 

A VC traffic stream is characterized by its worst case behavior (e.g., the maximum 
burst length). The performance guarantees obtained by the CAC-algorithm are de
terministic (e.g., a cell does not wait longer than a given time). 

Due to multiplexing, traffic characteristics change at each network node. Whether and how 
the change of traffic characteristics should be considered at connection set-up is an open 
issue. Also, the distribution of end-to-end performance requirements over the network 
nodes is to be studied. In the same way as for design, this requires a VC performance 
model. 

If connection set-up is successful, bandwidth and possibly also buffer space is allocated 
to the VC. If it is not, other routes will be tried according to the routing algorithm. If 
none of the routes is successful, the connection is blocked. 

Burst level 

(The VC performance models developed in this thesis are not designed to evaluate burst 
level traffic control. This section is included for reasons of completeness.) The combination 
of VC and cell level control is adequate for traffic sources with known burst characteristics 
and a peak source rate that is low· relative to the transmission rate. Many such sources 
may share the transmission bandwidth, so a reasonable utilization of that bandwidth can 
be combined with a low probability of burst blocking. In other cases, a traffic control 
scheme at the burst level is required, see [Doshi et al., 1991; Roberts, 1991b]. 
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Two different concepts may be considered: 

• either the traffic source requests additional allocation of resources before each burst 
(This is called in-call parameter negotiations or fast reservation protocol), 

• or the traffic source is permanently aware of the network congestion state and decides 
for itself when a new burst can be transmitted. (The mechanism Available Bit Rate 
(ABR) ([Saunders, 1994]) is an example of this method.) 

Burst level traffic control is not very efficient due to the large bandwidth-delay product 
in ATM networks. The bandwidth-delay product is a measure for the number of cells 
in transit between the sources connected to the network and a (congested) node in the 
network. (The delay is the time it takes for a cell to reach the congested node from the 
source.) The large bandwidth-delay product makes that a congestion situation has to be 
predicted long before it. (possibly) occurs for reactive measures taken by the sources to be 
effective. All cells in transit will arrive at the congested node before any measures taken 
by the sources will become noticeable. Further, the state of the node may have changed in 
the meantime. 

Cell level 

An important traffic control function at the cell level is usage parameter control (UPC) (or 
policing). At the access to the network, the VC cell stream into the network is monitored to 
detect incompatibility between the observed traffic characteristics and the characteristics 
agreed upon at connection set-up. UPC is required to protect the network from malicious 
customers that could send too many cells into the network and thus endanger the QOS. 

The UPC algorithm has to compromise between speed with which it responds to in
compatibilities and the probability of undeservedly indicating violations. Obviously, the 
balance has to be on the side of the user. Violating cells may be discarded or, preferably, 
tagged and discarded in the network only in case of congestion. 

UPC should be performed as dose to the source as possible, but inside the public part 
of the network. It should be taken into account that traffic characteristics may change 
before the traffic reaches the UPC unit. 

A second traffic control function at the cell level is performed in the network nodes. 
Resource utilization may be enhanced by buffer management. and scheduling of cells while 
still meeting the QOS requirements. Loss priority may be given to individual cells or to 
all cells of a VC. Delay priority may be given to all cells of a VC. (The ATM cell header 
does not provide for delay priorities for individual cells.) 

1.3.3 Enhancing ATM End-To-End Performance 

In this section, we consider the enhancement of VC performance by the receiving terminal. 
We especially consider error correction and restoration of the time relation between the 
cells of a VC. 
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An ATM network provides the in-sequence transport of cells. Although the network is 
very reliable, the cells of a VC may be mutilated, lost, or inserted into other VCs. Further 
the time relation among the cells of a VC is disturbed by the network, because in general 
cells endure different delays. For services like video and speech it is important that this 
time relation is maintained. 

If the service offered by the ATM layer does not meet the requirements of the ap
plication, it may be enhanced by AAL or higher layer protocols and by functions in the 
terminal of the user. We will consider two examples: error correction and jitter control. 
These protocols and functions may work on ATM cells but also on (higher layer protocol) 
packets that comprise several ATM cells, see [Boudec, 1992]. 

Error correction 

(The VC performance models developed in this thesis are not designed to evaluate er
ror correction. This section is included for reasons of completeness.) Error detection is 
performed by sequence numbers (detecting missing, duplicated, or out-of-sequence items), 
length fields (detecting incomplete delivery), and checksums (detecting transmission er
rors). Some applications, like e.g. voice, allow replacement of detected errors by a fixed 
bit pattern. Other applications require correction. Two schemes are available for error 
correction: automatic repeat request (ARQ) and forward error correction (FEC). 

In ARQ (see e.g. [Doeringer et al., 1990; Bae et al., 1991; Doshi et al., 1992]), the 
receiver requests the transmitter to retransmit items that have been received in error or 
have not been received at all. Two variants of ARQ exist: 

• In the go-back-n protocol, all items from the requested item onwards are repeated. 

• In the selective repeat protocol, only the requested item is retransmitted and the 
order of the sequence is restored at the receiver. 

The go-back-n protocol uses bandwidth inefficiently. The selective repeat protocol requires 
a resequencing buffer at the receiver. Both disadvantages aggravate if the bandwidth-delay 
product increases. Decreasing loss rate, however, works in the advantage of go-back-n. 
Which ARQ protocol to choose and on which item (cell or packet) it is to operate depends 
on the relative costs of bandwidth and memory and on the error characteristics of the VC. 
The more errors are. correlated the less bandwidth inefficient go-back-n is. Most papers 
([Doeringer et al., 1990; Doshi et al., 1992]) plead for protocols that can work in either 
way. 

The second error correction scheme, FEC, adds redundancy to the information trans
mitted, so that !ost information can to some extent be restored at the receiver (see e.g. 
[Biersack, 1992]). FEC is the only solution if the application requires low latency. It re
quires processing at the sender and at the receiver, and it decreases bandwidth efficiency. 
The error correction capability depends on the error characteristics of the VC: the less 
errors are correlated the higher the probability that they can be corrected by FEC. 

The efficiency of error correction schemes depends on the pattern in which errors occur 
on VCs. It is a task of VC performance evaluation methods to determine this pattern. 
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Jitter control 

Some services (e.g. voice and video) require the time intervals between cells to be preserved 
by the network. This is called jitter control, pacing, or intra stream synchronization8

. 

Jitter control is performed at the receiver by buffering cells before they are played out 
to the application. This buffer does not only have the task of compensating for variable 
network delay, but should also compensate for imperfect transmitter clock recovery at the 
receiver and, if applicable, restore the variable bit rate signals that have been (partly) 
smoothed at the sender, see [Lau et al., 1992]. If the buffer overflows, cells are lost. If 
it underflows (i.e., a cell is not available in the buffer at the moment it should have been 
played out), cells will have to be repeated or dummy cells have to be inserted. Dimensioning 
and initializing this buffer requires knowledge of the end-to-end cell delay distribution. A 
VC performance model provides this distribution. 

Especially if the service rate is high, differences between the transmitter clock and 
the receiver clock may cause significant slip. Cells are played out too fast (so that the 
buffer underflows) or too slow (so that the buffer overflows). Independent clocks of nomi
nally equal frequency in transmitter and receiver would require expensive clock circuits to 
achieve the required accuracy. If both source and destination are connected to the same 
synchronous network (in general, they are not), the terminal clocks could be derived from 
the network clock. The most universal solution is therefore to derive the receiver clock from 
the transmitted signal (see e.g. [Boudec, 1992; de Prycker, 1991]). This can be achieved 
by a phase locked loop fed by the (low pass filtered) filling level of the dejittering buffer 
or by time stamps transmitted by the sender. Design of the clock recovery circuit again 
requires knowledge of the cell delay process, that a VC performance evaluation method 
could provide. 

1.4 The modeling technique 

The performance evaluation methods that are used for more traditional networks do not 
apply to ATM, because ATM differs from traditional networks in many essential respects. 
In this section, we describe our approach to ATM VC performance modeling. 

ATM VC performance modeling is motivated by its application in the design of the 
network, of traffic control rules and of end-terminal functions. For network design and 
traffic control rule design, a VC performance model should show the trade-off between 
QOS on the one hand and bandwidth and buffer size on the other hand. For end-terminal 
design, a VC performance model should provide the performance characteristics of the VC. 

The QOS presents the user perspective of a service. The for the network provider more 
useful measures are collectively referred to as network performance9

• Generic network 

8 Intra stream synchronization is to be contrasted with inter stream synchronization that refers to the 
time relation between different streams that together form a single service, e.g. a multi-media service. 

9 ln [l.350, 1988; E.800, 1988], network performance is defined as the ability of a network (or network 
portion) to provide the functions related to communications between users 
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performance parameters (see [I.350, 1988]) can be categorized according to two dimensions: 
the three phases of switched connections (i.e. establishment, information transfer and 
release) on the one hand and the performance aspects of service speed, accuracy and 
dependability on the other hand. The parameters are specialized to ATM in [Anagnostou 
et al., 1991; Noorchahm et al., 1992], see Sect. 1.2.3. Network performance parameters 
should relate to individual VCs as it is the performance on VCs that is to be guaranteed 
by the network provider. 

We restrict ourselves to the information transfer phase of a connection. Far more than 
during connection establishment or connection release, it is during this phase that the 
special characteristics of an ATM network show. So, new techniques for design and control 
are especially required for this phase. The VC models we present concern the user plane 
of the ATM protocol reference model. 

1.4.1 ATM is different 

Although an ATM network resembles a packet switched network, it differs from it in several 
respects. The applicability of existing models for packet switched networks to the analysis 
of ATM networks is hampered by the following differences between them: 

• ATM cells have short, fixed length. As a consequence, the transmission time of a cell 
is equal for each cell. In more traditional networks, packets have in general arbitrary 
length and thus also different transmission times. The transmission time of packets 
is almost universally assumed to be an independent and exponentially distributed 
random variable. This assumption is obviously inaccurate for ATM cells. 

• ATM is a loss system: a cell that arrives at a full buffer is lost. In more traditional 
networks, link level flow control protocols throttle the arrival of new packets when 
buffers have become full. 

• The characteristics of the traffic to be expected in an ATM network differ considerably 
from the commonly assumed Poisson process. Often, the traffic stream on a VC is 
bursty. 

• Much more detailed performance measures and much more severe performance mea
sure values are required: cell loss probability, distribution of the cell loss period, 
distribution of end-to-end delay, . . . . Throughput and mean delay are no longer 
sufficient, but accurate estimates of the tails of buffer occupancies distributions are 
required. 

• An ATM network is synchronous (slotted) at the cell level. So, it is more accurately 
modeled by a discrete time model (with the slot size as basic interval) than by a 
continuous time model. 
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1.4.2 Approach towards VC performance modeling 

Distinction should be made between deterministic and statistical performance guarantees, 
see [Nagarajan et al., 1992; Kurose, 1993]. A deterministic guarantee ensures the perfor
mance of all cells. A statistical guarantee, on the other hand, ensures the performance 
for a given fraction of the cells. Statistical guarantees may be further divided into steady
state guarantees, that average over an infinite period of time, and guarantees on intervals 
of time, that guarantee that in at least a given fraction of these time intervals the per
formance will be better than a reference value. The latter measure is more appropriate 
because connections are normally established for finite duration and temporal degradation 
during the connection should also be considered. 

There are three approaches to providing performance guarantees in ATM networks (see 
also Kurose [1993]): 

• Deterministic guarantees: 

Deterministic guarantees for the network are obtained by adding the deterministic 
guarantees for the nodes (queues) that make up the network. In order to be able to 
calculate the guarantees for the individual nodes, two approaches can be taken: 

The first approach is to explicitly account for the change, due to queuing, of the 
(rather generally described) traffic characteristics. 

The second approach is to make sure that the traffic characteristics do not 
change by the introduction of a special queuing discipline. Such a queuing 
discipline is complex and uses transmission bandwidth inefficiently. 

Deterministic guarantees mostly guarantee performance at a level that is much worse 
than the performance achieved with statistical guarantees. 

• Statistical guarantees: 
The traffic streams are characterized by mathematically tractable models that allow 
statistical guarantees to be determined for the nodes of the network. In order to 
achieve guarantees for the network, the guarantees for the individual nodes cannot 
be accumulated in a straightforward way. It should be accounted for that the traffic 
characteristics change in the network, that traffic streams become dependent, and 
that the guarantees for the individual nodes are dependent. Most methods do not ac
count for these phenomena, however, so that they do not provide guarantees, strictly 
speaking. 

The advantages of these guarantees is that they are relatively simple and that they 
allow the application of statistical multiplexing, which increases bandwidth efficiency 
(see chapter 3). 

• Observation-based "guarantees": 
Traffic is characterized by measurements of the traffic stream itself or of previous 
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streams of the same type. Connection admission control is based on these measure
ments and on the measured behavior of the other traffic. This approach allows a high 
network utilization. The QOS will, however, be subject to deviations in the traffic 
characteristics from the measured values and thus cannot be guaranteed firmly. 

We consider the statistical guarantees superior to the other guarantees. They have the 
potential to provide accurate performance estimates leading to high bandwidth efficiency. 
Further, they do not require the network operation to be adapted like some of the deter
ministic guarantees. The disadvantage of existing statistical methods is that they are not 
very accurate. In this thesis, we intend to increase their accuracy by incorporating where 
required the phenomena described (i.e., dependence between the guarantees in different 
nodes, changing traffic characteristics, and dependence between traffic). 

A statistical approach can be based on either simulation or on mathematical analysis. 
Both require the development of a model that captures the essential part of the system 
behavior. If the model is to be solved analytically, system behavior is captured in a set of 
equations. This requires a mathematically tractable modeling technique. Especially the 
size of the model state space is a limiting factor. The simplification required to achieve 
mathematical tractability may introduce inaccuracies. On the other hand, the need to 
reduce the model to the bare necessities may provide valuable insight into the problem. 
If the model is to be solved by simulation, system evolution in time is imitated by a 
computer. In general simulation allows a higher level of detail than mathematical analysis, 
but requires more computer time. 

We choose an analytical approach to statistical performance guarantees. The approxi
mations required in the model are validated by simulation. Relying entirely on simulation 
impedes an extensive design study, in which wide ranges of parameter values are consid
ered. Single simulation runs take much time even if fast computers and advanced simulation 
techniques are used, because of the rarity of the events involved (typically a probability 
of io-9 of loosing a cell). Further, the insight in the problem provided by the analytical 
approach is also valuable. 

In summary, we identified the need for an ATM VC performance evaluation method. 
Performance evaluation methods for traditional networks do not apply to ATM. Perfor
mance evaluation in ATM can be addressed in three different ways, of which we consider the 
statistical approaches most promising. Existing statistical approaches are however rather 
rough. In this thesis, we will improve these approaches by approximately incorporating 
the effects previously neglected. 

1.5 Outline of the Thesis 

In this chapter, we have established the subject of the thesis, namely ATM VC performance 
modeling, and the approach that we take to it. We will develop a model or, rather, 
two models that allow accurate VC performance evaluation. The models are stochastic 
descriptions of ATM VCs, and they are mathematically analyzed. The models differ from 
existing models by the incorporation of phenomena previously neglected. 
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l. Introduction 

2. Traffic models 3. Multiplexing 

~~ 
4. VC performance evaluation methods 

9. Conclusions 

Figure 1.3: Thesis outline 

The outline of the thesis is as follows (see Fig. 1.3): 

• Chapter 2 provides a survey of the literature on traffic modeling in ATM networks. 
Its contribution to the development of the field is to categorize and assess the work 
by others. Traffic models are a basic building block of the ATM VC model. This 
chapter provides a basis for the ensuing chapters. 

It introduces the important difference between traffic description at the burst. level 
and at the cell level. The burst level describes the instantaneous rate of cell gener
ation and is usually associated with the internal state of the traffic source. If the 
instantaneous cell generation rate varies considerably, a source is said to be bursty. 

There exist models for the traffic generated by a single source and for the traffic 
generated by a set of sources (i.e., aggregate traffic models). Two important aggregate 
traffic models are identified, one for bursty traffic sources and one for smooth (i.e., 
non-bursty) traffic sources. 

• Chapter 3 provides a survey of the literature on statistical multiplexing. It reviews 
the work by others on this subject. Statistical multiplexing is a basic operation in 
an ATM network. This chapter provides a basis for the ensuing chapters. 

The basic operations performed in an ATM network are multiplexing of traffic streams 
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on a transmission link and, the other way round, splitting of the traffic stream on a 
link into separate streams. Chapter 3 focuses on multiplexing, especially on statistical 
multiplexing. 

In statistical multiplexing, the instantaneous aggregate cell arrival rate at the mul
tiplexer occasionally exceeds the cell transmission rate of the multiplexer. If such 
(temporary) overload periods are not allowed to happen, we call the type of multi
plexing deterministic. Statistical multiplexing only applies to bursty traffic sources. 
It allows efficient use of the transmission bandwidth, however at the expense of ad
ditional buffering in the multiplexer in order to cope with periods of overload. 

• Chapter 4 provides a survey of the literature on VC performance evaluation. Perfor
mance evaluation methods are categorized and compared. With respect to ATM, VC 
performance evaluation has received little attention in the literature. This chapter 
identifies deficiencies in existing models and methods for VC performance evaluation. 
In the following chapters, these deficiencies are addressed. 

From our point of view, an ATM network is a network of multiplexers through which 
VCs pass. There are three effects (we cat! them queuing network phenomena, QNP) 
that describe the influence of one multiplexer in the network on another: 

1. QNP waiting time correlation: correlation between the waiting times of a single 
cell in subsequent multiplexers. 

2. QNP traffic characteristics change: change of the characteristics of a VC traffic 
stream due to multiplexing. 

3. QNP traffic stream correlation: correlation between VC traffic streams that have 
been multiplexed on a single transmission link. 

Existing VC performance evaluation methods essentially neglect these queuing net
work phenomena, especially the QNP waiting time correlation. There is a need to 
study the QNP more carefully. 

• Chapter 5 describes and assesses the three QNP for both smooth traffic and bursty 
traffic. The description and analysis of the QNP in the context of ATM is an original 
contribution. This chapter provides the motivation for the two VC performance 
evaluation methods that are developed in the following chapters. 

The QNPs are relevant to VC performance in certain cases. In general, the QNP 
waiting time correlation and the QNP traffic stream correlation are relevant if fan 
out is small (i.e., if the output stream of a multiplexer is divided over a small number 
of downstream multiplexers); the QNP traffic characteristics change is relevant if the 
rate of the traffic stream is high. In case of smooth traffic, the QNP that should 
be accounted for by an ATM VC performance evaluation method is waiting time 
correlation. In case of bursty traffic, the QNP traffic stream correlation should be 
accounted for, next to the QNP waiting time correlation. 
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• Chapter 6 presents a method to assess the end-to-end cell waiting time distribution 
on an ATM VC. The method applies to smooth VC traffic streams. The method is 
original and is more accurate than existing methods, because it takes the relevant 
QNPs into account. 

The method is an enhancement of traditional decomposition methods, in which the 
waiting times of a cell in different multiplexers are assumed to be independent. Corre
lation between waiting times in the multiplexers through which a cell passes is caused 
by correlation between the arrival processes at these multiplexers. The enhanced 
method takes correlation between arrival processes into account by conditioning the 
waiting time of a cell in a multiplexer on the arrival process at that multiplexer. 

• Chapter 7 also presents a new method to assess the end-to-end cell waiting time 
distribution on an ATM VC, but now for bursty VC traffic streams. Again it takes 
the relevant QNP into account. 

The method is based on the observation that the relevant part of the end-to-end 
waiting time distribution on a VC is determined by the occurrence of simultaneous 
overload of 1 or 2 multiplexers. The method exploits this observation and reduces the 
ATM network to a network of 2 multiplexers in tandem while maintaining the relevant 
overload behavior of the entire VC. The method accounts for the QNP waiting time 
correlation and traffic stream correlation. 

• Chapter 8 applies the VC performance evaluation methods to switch design, usage 
parameter control, and smoothing buffer design. The chapter shows that the methods 
can be applied to realistic design problems and that the results obtained by using 
the methods provide a valuable contribution to the solution of these problems. 

• Chapter 9 provides conclusions. It describes the claims of this thesis. Essentially, 
the claims are the analysis of the three QNP in chapter 5 and the two VC perfor
mance evaluation methods of the chapters 6 and 7. Further, chapter 9 describes the 
limitations of the two methods and indicates topics for further research. 



Chapter 2 

Traffic Models 

In this thesis, we develop models to evaluate ATM VC performance. Any ATM VC per
formance evaluation model requires that the process of cell arrivals to the network be 
described. In fact, this description is part of the model. 

In this chapter, we review traffic models for ATM networks presented in the literature. 
See [Kawashima et al., 1990; Bae et al., 1991; Roberts, 199la; Roberts et al., 1991a; 
Habib et al., 1992] for general surveys on traffic modeling in ATM networks. We compare 
the models and identify models that are particularly useful for our purposes. 

We focus on models for traffic entering the network. These models may, however, 
also be used to describe the traffic processes inside the network, after the influence of the 
network on the traffic processes has been taken into account, see chapter 5. 

Traffic models form the outcome of a compromise between mathematical convenience 
and accuracy. A model may be more or less appropriate, depending on its application. 
During the operational phase of an ATM network, traffic models are applied in traffic 
control. It is required that a user (or his terminal) can in some way specify values for the 
parameters of the traffic model, so that the traffic control algorithms of the network can 
(quickly) decide whether or not to support a request by the user. During the design phase 
of a network, traffic models may be more complex, because no real-time decisions need to 
be taken and no network users are involved. We focus on more complex and stochastic 
traffic models. 

This chapter is divided into three parts, see Tab. 2.1. In the first part, we describe 
characteristics of traffic processes. Traffic characteristics form the connection between on 
the one hand a traffic model and on the other hand a traffic process that can be observed in 
the real world and that is to be modeled. In ATM, especially important is the distinction 
between the cell level and the burst level of a traffic description. 

In the second part, we consider models for the stream of ceils that is generated by a 
single source. This is the traffic process on a virtual connection (VC). These models are 
especially applied in the analysis of stand alone multiplexers, see chapter 3. Multiplexers 
are a basic building block in any ATM network. A multiplexer receives cells from several 
sources and retransmits these cells (one after the other} on a link in the network. The 
arriving cell streams and the departing cell stream are slotted and synchronized to each 
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Table 2.1: Structure of chapter 2 

2.1 Traffic characteristics 
2.Ll Levels of detail 
2.1.2 Burstiness 
2.1.3 Correlation 

2.2 Models for a single traffic source 
2.2.1 Two-state Markov chain 
2.2.2 Multiple-state Markov chain 

2.3 Models for aggregate source traffic 
2.3.1 Markovian arrival process 
2.3.2 Poisson burstarrival process 
2.3.3 Renewal process 
2.3.4 Two-state Markov chain 

other. In each slot, a single cell can be transmitted by the multiplexer. If more than 'one 
cell arrives at the multiplexer in a single slot, the number of cells waiting in the multiplexer 
buffer increases and, if the buffer is full, cells get lost. 

In the third part, we study models that describe the aggregate traffic process generated 
by a set of sources. This is typically the traffic process that arrives at a multiplexer. In this 
thesis, we consider performance on a VC. This requires analysis of more than one multi
plexer, see chapter 5. In order to keep the complexity of the ATM VC model manageable, 
it is attractive if aggregate cell arrival processes can be described by a simple model. In 
the ensuing chapters, we will extensively use the techniques for modeling aggregate source 
traffic, especially Baiocchi 's method. This chapter ends with conclusions. 

2.1 Traffic characteristics 

A traffic stream is described by its characteristics. A model of a traffic stream should 
incorporate those characteristics of the actual traffic stream that have a considerable effect 
on the performance measure under study. Before we can start modeling traffic streams (in 
the next two sections), we should first become acquainted with traffic characteristics. 

Two approaches to traffic modeling can be taken, see e.g. [Roberts, 199la, sect. 2.2.3]. 
In the first, the traffic model tries to capture the behavior of the source. The states of the 
source itself are represented in the traffic model. Each source state is then associated with 
a traffic process. In the second, the source is considered a as black box and the cell stream 
generated by a source is considered as a point process1

. The characteristics of the point 
process are measured, and the characteristics of the traffic model are chosen in compliance 
with them. 

1 A point process is a stochastic process of which the state changes at discrete points in time. 
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Figure 2.1: General ATM source level model 

In this section, we consider first the levels of detail at which a source may be modeled 
(the first approach referred to above) and then two important point process characteristics 
(the second approach referred to above): burstiness and correlation. 

2.1.1 Levels of detail 

One may study the behavior of traffic sources at different time scales.. The smaller the 
time scale the more detail a source description shows. It is, however, important to model 
a source at the right level of detail: enough detail to properly model the effect under 
study, but not more than that in order not to hamper or even prohibit analysis of the 
model. In each time scale a set of source states may be distinguished. Often two states 
are distinguished: an active state and an inactive state. In the next smaller time scale, 
the source behavior during the active state is refined. Sometimes it is useful to distinguish 
more states in a given level. These states may then for example represent different level of 
activity at the next lower level. 

It has become very common to model ATM sources at several levels; to the earliest 
references belong [Hui, 1988; Filipiak, 1988; Schoute, 1988]. The level model of ATM 
sources is not only important in performance modeling, but also in traffic control, as was 
already alluded to in section 1.3.2. 

Fig. 2.1 shows the general level model of an ATM source. Three levels are distinguished: 
a connection ·level, a burst level, and a cell level. The top level describes the presence and 
absence of a virtual connection. Connection holding times of switched connections may 
range from hours to seconds. Above the connection level, one might situate a subscription 
level with the obvious interpretation. In circuit switching, the connection level would be 
the most detailed level. In ATM switching, we need to consider more levels. 
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The burst level represents the structure of the communication process. It describes the 
internal source behavior at a high level. In conversational speech, it describes the alter
nation between speakers and the short silences between words. In video communication, 
it describes the succession of scenes and, given a scene, the succession of frames. In data 
communication, it may describe the alternation between partners in interactive commu
nication and the transmission of single packets. As indicated in the examples above, it 
is often possible to distinguish more than two states at the burst level. The differences 
between states concern sojourn time distribution and rate. (Alternatively, the burst level 
might be split into sublevels.) 

With each state at the burst level we associate a cell arrival rate, namely the mean cell 
arrival rate given the source is in that burst level state. We call this rate the instantaneous 
cell arrival rate, as opposed to the cell arrival rate. The cell arrival rate is the mean cell 
arrival rate measured over the entire duration of the connection. 

The burst level is the lowest level of detail in packet switching. Another example of 
the how the burst level is used to describe traffic streams is TASI (Time Assigned Speech 
Interpolation) in telephony. In TASI, a number of speech sources share a smaller number 
of circuits. A circuit is assigned to an active speech source, unless the number of active 
sources exceeds the number of circuits, in which case 'clipping' occurs. 

The cell level constitutes the lowest level. The behavior in the higher levels depends 
on the individual user; the behavior in this level mostly follows immediately from the 
burst level: cells are transmitted at deterministic intervals given by the instantaneous 
transmission rate at the burst level. (An exception form video sources without frame 
buffer that transmit cells as soon as they are filled without spreading them over the entire 
frame duration.) Before such a deterministic cell stream reaches the access to the public 
network, it may have been disturbed due to its transport through the customer premises 
network, see Fig. 1.1. 

A traffic source should be modeled down to and including the level that determines the 
effect under study. The behavior in lower levels may then be represented by the average 
of the actual behavior. 2 

This principle is often applied to statistical multiplexers in ATM networks, see 3.3. The 
burst level states of the traffic sources being multiplexed determine the (aggregate) instan
taneous cell arrival rate at a multiplexer. In a statistical multiplexer, the instantaneous 
arrival rate occasionally exceeds the output rate of the multiplexer. This is called burst 
level congestion. If the occurrence of burst level congestion determines the performance of 
the multiplexer, there is no need to model the cell level of the traffic streams in detail. 

2If, in addition, the time scales in successive levels differ several orders of magnitude, the system under 
study may reach a steady-state in the lower level long before a state change in the higher level occurs. The 
system is then appropriately modeled applying a quasi-stationary approach, in which higher level states 
are assumed to be fixed. Afterwards, the lower level behaviors at the different higher level states are to be 
averaged. 
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2.1.2 Burstiness 

It may be advantageous not to separately describe burst and cell levels, but to merge both 
levels and describe the cell arrival process as a point process. In this and the next section, 
we describe two measures that can be used to describe point processes. 

Burstiness describes the degree to which the cell interarrival interval length varies over 
time. The arrival process is said to be more bursty if this variation is larger. Larger bursti
ness has a detrimental effect on multiplexer performance, hence the need to characterize 
it in the first place. 

When qualitatively assessing the burstiness of a cell stream, the Poisson process is 
usually taken as a reference process, see e.g. [Habib et al., 1992]. A cell stream is bursty, if 
the cell interarrival intervals vary more than in a Poisson process. A cell stream is smooth, 
if the cell interarrival intervals vary less than in a Poisson process. A cell stream with fixed 
length cell interarrival intervals would be characterized as a process without burstiness. 

There is no general agreement on a quantitative measure of burstiness. Possible mea
sures include the coefficient of variation3 of the cell interarrival time and, especially for 
on-off sources, the ratio of peak and mean cell generation rate, see [Bae et al., 1991]. The 
coefficient of variation is 1 for a Poisson process. A process would be called bursty if its 
coefficient exceeds 1. 

2.1.3 Correlation 

When studying point processes, one may take either of two approaches: count the number 
of arrivals as a function of time or measure the interval lengths between successive arrivals. 
The former approach has the considerable advantage over the latter that it can easily be 
derived for a superposition of traffic sources once it is given for each individual source. 
For a general ATM source, both the numbers of arrivals in disjoint intervals and the 
cell interarrival times are correlated. Correlation has a considerable effect on multiplexer 
performance. Positive correlation (i.e. two random variables (rv's) tend to deviate from 
their mean values in the same direction) makes multiplexer performance worse; negative 
correlation (i.e. two rv's tend to deviate from their mean values in opposite directions) 
improves multiplexer performance. The cell stream generated by an ATM source is mostly 
positively correlated, because the burst level state fixes the cell level behavior for a relatively 
long period of time. 

Often used second order measures of correlation are indices of dispersion, see [Gusella 
et al., 1991] for a survey. They come in two variants, corresponding to the above noted 
approaches: the index of dispersion for counts (!DC) and the index of dispersion for interval 
(IOI). Let Xn denote then-th interarrival time of a weakly stationary stochastic process4

• 

3The coefficient of variation, ex, of a random variable X is the ratio of the square root of its variance 

d
. v'VafrX) 

an its mean: Cx = ~ 
4A stochastic process {Xn} is said to be weakly stationary, if the first two moments, E(X,,) and E(X~ ), 

and the autocovariance function, Cov(X,,,Xn+m) = E(Xn · Xn+m) - E(Xn)· E(Xn+m), are independent 
of n. Autocorrelation is autocovariance normalized by variance. 
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The IDI at n is defined as (see [Gusella et al., 1991]): 

IOI( ) = Var(Xi+1 + ... + Xi+n) = 2[l + 2 ~(l _ i_) ] 
n nEz(X) ex {;:i n PJ ' (2.1) 

where Pi is the autocorrelation of Xn at lag j. For renewal point processes, IDI(n) equals 
c; for all n, because p;,j?: 1 is 0 by definition. The IDI may have a limiting value, which 
is e.g. the case when the autocorrelation is 0 after a certain lag. The IDI is a generalization 
of the coefficient of variation from a single interval to an arbitrary number of intervals. It 
captures in a single number the relative variation of the arrival process during an interval 
of given length. If correlation is positive, the IDI increases; if correlation is negative, the 
ID I decreases. 

The IDC at time tis defined as (see [Gusella et al., 1991]): 

IDC( ) = Var(Ne) 
t E(Ne) ' 

(2.2) 

where N, is the number of arrivals in [O, t). If the time axis is slotted into intervals of 
length T and the number of arrivals in successive intervals is denoted by the presumed 
weakly stationary stochastic process Cn, the IDC at slot boundaries is: 

Var(C) n-i j 
IDC(nr) = E(C) [l + 2 j;(l - ;;: )C.i], (2.3) 

where (j is the autocorrelation of C. at lag j. The IDC is constant if the numbers of 
arrivals in the intervals are independent and identically distributed. As far as a limiting 
value is concerned, the same conditions as for the IDI apply. If they exist, the limits of the 
IDI and the IDC are equal. 

2.2 Models for a single traffic source 

Modeling a traffic source comes down to equating the characteristics that are relevant to 
performance between the modeled traffic and the traffic model. The heart of the matter is 
choosing the right characteristics to equate. 

The purpose of traffic modeling is to devise a stochastic model of an ATM multiplexer 
that is mathematically tractable (i.e., the state space of the model should be as small as 
possible). The number of tractable traffic models is small. This section describes the most 
relevant models: a two-state Markov chain and a multiple-state Markov chain. 

2.2.1 Two-state Markov chain models for on-off sources 

Many ATM traffic sources show on-off behavior at the burst level. In the off-state, no cells 
are generated; in the on-state, cell generation is periodic. Examples of such sources are 
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speech sources with activity detection and computers. We describe how to model such a 
traffic source. 

The alternation between on-periods a.nd off-periods ha.s given rise to the two-state 
Markov chain model. The discrete-time5 Markov chain comprises two states, an 'on-state' 
and an 'off-state'. State transitions occur periodically, where the period corresponds to 
a cell transmission slot of the multiplexer to which the traffic stream is applied. With 
a certain probability a state transition occurs from the current state to itself. With the 
complementary probability a state transition occurs from the current state to the other 
state. This probability depends on the state. 

At a transition of the two-state Markov chain into the off-state, no cell is generated. 
At a transition into the on-state, one cell is generated with a certain probability, and no 
cell is generated with the complementary probability. So while in reality cell generation in 
the on-state is most often periodic, it is stochastic in the two-state Markov chain model. 

This completely describes the two-state Markov chain model. The sojourn times in the 
states of the model are geometrically distributed. While the model is in the on-state, the 
cell generation process is a Bernoulli process6

. The model is completely specified by its 
three parameters: mea.n sojourn time in the on-state, mean sojourn time in the off-state, 
and cell generation rate in the on-state. 

The remainder of this section concerns the choice of the model parameter values: 

• Model parameters according to a burst level traffic description: 

The model is obviously inspired by its resemblance to on-off traffic. So, the first 
approach is to equate the model parameters (i.e., the mean sojourn times in the states 
and the cell generation rate in the on-state) to measurements of the corresponding 
values in the traffic stream to be modeled. The model parameters describe the traffic 
stream at the burst !eve!. 

• Model parameters according to a point process traffic description: 

However, the model parameters may also be set by equating traffic characteristics 
(like burstiness and correlation) between model and source. These characteristics 
consider the traffic stream as a point process of cells and do not distinguish a burst 
level. 

It will be shown that the second approach is more accurate. 

Model parameters according to a burst level traffic description 

The two-state Markov cha.in model has a certain structure, notably geometrically dis
tributed sojourn times in the states and Bernoulli cell generation in the on-state. When 

5We describe the discrete-time two-state Markov chain model. A similar model could however easily 
be drawn up in continuous-time. 

6 A discrete-time stochastic process is a Bernoulli process if the rv's that constitute the process take the 
values 0 (no cell) and l (1 cell) and are independent and identically distributed 
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the model parameters are based on the mean sojourn times in the states, it is implicitly 
assumed that the traffic source also has this structure or that the structure is not relevant 
to performance. We look into the structure of the traffic source, first into the sojourn times 
and then into the cell generation process. 

Geometrically distributed sojourn times In two cases it is accurate to assume that 
the sojourn times in on· and off-state are geometrically distributed: 

• In some types of sources, sojourn times are indeed geometrically distributed. 

Brady [1969] shows that for conversational speech the burst length is approximately 
exponentially distributed. Silence periods are not, mainly because of the existence of 
two different kinds of silence (see 2.1.1). In traditional data networks, data packets 
are usually assumed to have geometrically distributed length. 

• Consider statistical multiplexing of on-off sources. If too many sources are simulta
neously in the on-state, the buffer starts to fill. If the buffer is small and overflows 
shortly after the start of overload, the probability that the buffer overflows (and the 
probability of cell loss) is essentially determined by the probability that a source is 
in the on-state. It is not determined by the distribution of the sojourn time in the 
on-state, so it is accurate to assume a geometric distribution (or any other distribu
tion). 

Sheng et al. [1993] verify this argument by experiments. They show that the coeffi
cients of variation of the sojourn times have little effect on queuing performance, if 
the mean sojourn times are long relative to the time to transmit a full buffer load. 
They also show that correlation between sojourn times is irrelevant under the same 
condition. 

Eliazov et al. [1990] simulate a multiplexer in which the mean sojourn times arc 
small relative to the time to transmit a full buffer (mean on-time 25 slots; mean 
off-time 46 slots; buffer size: 100 cells). So this is exactly the opposite case, and they 
indeed show that in this case queue lengths are longer if the sojourn times are more 
variable, so that the sojourn time distributions are relevant. 

Bernoulli cell generation In an ATM traffic source, the cell generation process in 
the on-state is most often periodic. In the two-state Markov chain model however, cell 
generation in the on-state is modeled by a Bernoulli process. 

Qi Li et al. [1991] show that, due to this approximation, the queue length distribution 
in a statistical multiplexer is only slightly overestimated. In a statistical multiplexer, 
the effects that determine performance occur at the burst level. It is not important to 
accurately model the cell generation process in an on-state (see also 3.3). 
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Model parameters according to a point process traffic description 

The second approach to establishing model parameter values is to consider source traffic 
as a point process of cells. The measured characteristics of the source traffic are imposed 
upon the traffic model.7 

Ide [1988] approximates a voice source (with silent detection and periodic cell generation 
during speech) by the two-state Markov chain model. He uses three different methods of 
approximation, that differ with respect to the parameters that are equated between traffic 
model and source traffic: 

• The method that we previously described: equating the mean sojourn times and the 
cell generation rate in the on-state. 

• The three moments method: equating the first three moments of the cell interarrival 
interval length distribution. 

• The two moments and peakedness method: equating the first two moments of the cell 
interarrival interval length and the exponential peakedness8 (with the mean service 
time equal to the mean interarrival time). 

The motivation for choosing exactly these parameters is not given or is at least vague. The 
three traffic models (all of the two-state Markov chain type, but with different parameter 
values) are used to estimate the mean delay in a statistical multiplexer. The two moments 
and peakedness method provides the most accurate approximation of the mean delay. 

Also Andrade et al. [1991] compare the accuracy of several sets of parameters. They 
finally come up with the following set: 

1. the mean cell arrival rate, 

2. the variance of the number of cell arrivals during a mean cell interarrival interval, 

3. and the maximum value of the Index of Dispersion for Counts. 

It is not entirely clear why this particular set provides an accurate approximation of the 
delay distribution in a multiplexer. The second parameter captures the burstiness of the 
traffic stream; the third parameter captures correlation. 

In conclusion, the two-state Markov chain model is more accurate if its parameters are 
determined by the burstiness and correlation of the source traffic rather than by the mean 
sojourn times in the burst level states. The way in which burstiness and correlation could 
best be described is still not clear. Some solutions are presented that work well for the 
examples tried, but they lack a sound theoretical basis. 

7This approach makes it also possible to model other than on-off source traffic by a two-state Markov 
chain model. 

8The exponential peakedness is the variance to mean ratio of the number of busy servers of a queue 
with infinitely many exponential servers to which the arrival process is hypothetically offered. 
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2.2.2 Multiple-state Markov chain models 

The traffic model considered in this section represents the traffic stream generated by 
a single source, but it might also represent the aggregate traffic stream generated by a 
number of on-off traffic sources. It forms an appropriate transition to the next section that 
describes models for aggregate traffic. 

Multiple-state Markov chain models are mainly used as models for video traffic. The 
characteristics of the traffic stream generated by a video coder depend on the type of the 
video sequence and on the coding algorithm. Video traffic is an isochronous sequence 
of frames (or images), e.g. 25 frames per second. Usually interframe coding is applied, 
i.e. only the difference between consecutive frames is transmitted. This makes traffic 
characteristics dependent on the amount of movement during scenes and on the number 
of scene changes. 

Traffic models presented in the literature distinguish between video without and video 
with scene changes. Scene changes may be modeled separately; they cause a burst of 
cell arrivals. During a single scene, traffic of a video source can be characterized by the 
distribution of the number of cells per frame, ,\(n), and its autocorrelation function. 9 In 
case of video-telephony and video-conferencing, the distribution of ,\( n) is bell-shaped and 
its autocorrelation function is roughly exponential1°, see e.g. [Roberts, 199la, sect. 2.3]. 

We consider a frame (burst) level model for video sources and a scene level model. 

A frame level model for video 

For video without scene changes, Magliaris et al. [1987] present a birth-death Markov chain 
model. It consists of the superposition of a number of independent and identical two-state 
Markov chain source models ('mini-sources'). The state of the multiple-state Markov chain 
denotes the number of mini-sources that is in the on-state.11 The probability distribution 
of the state space is binomial: each source of a fixed number of sources is in the on-state 
with a certain probability. The state directly determines the cell generation rate. So, 
also the cell generation rate is binomially distributed. So, it is bell-shaped, as required. 
Further, it can be shown that the autocorrelation function of the cell rate is exponential, 
as required. 

There are several extensions to this model: 

• Shan Huang [1988] allows arbitrary transition probabilities in the birth-death source 
model, which gives a more flexible model. 

9 A further concern is when during the frame interval cells are transmitted: during the entire frame 
interval at equally spaced distance) during the entire frame interval as soon as they are generated, or at 
peak rate starting at the beginning of the frame interval. 

10 However1 periodic or quasi-periodic movement will show in the autocorrelation function, see [shan 
Huang, 1989]. 

11The mini-sources are not entirely independent: in a slot at most one mini-source ca.n change state_ 
This is an approximation that simplifies the model: in a slot the state of the multiple-state Markov chain 
can change by at most 1 point. 
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• Sen et al. [1989] add a second dimension to the birth-death Markov chain. The state 
of the model indicates the number of mini-sources of type 1 in the on-state and the 
number of mini-sources of type 2 in the on-state. The second dimension describes 
a basic level of cell generation within a scene, and the first dimension describes the 
variation of the cell generation rate during the scene. 

• Blondia et al. [1992] extend the model of Sen et al. by incorporating a state that 
is visited between scene changes. This state represents the burst of cells required to 
refresh the state of the receiver at scene changes. 

A scene level model for video 

Yasuda et at. [1989] outline a model that focuses on scene changes and neglects the frame 
structure of video traffic. During a scene, cells are generated according to a Poisson process 
with a given rate. These rates and scene durations are determined by a continuous-time 
Markov chain. In order to account for the burst of information transmitted at scene change, 
each scene change is accompanied by a batch of cell arrivals. 

2 .3 Models for aggregate source traffic 

The aggregate traffic stream that arrives at a multiplexer consists of the traffic streams 
generated by individual sources. Straightforward description of the aggregate traffic stream 
by a Markov chain easily leads to a large state space. A large state space of the aggregate 
traffic model hampers analysis of the multiplexer. 

In order to reduce the state space of the traffic model, the aggregate traffic stream 
may be approximated by a traffic model. This section describes two such approximations: 
approximation by a renewal process and by a two-state Markov chain. First however, we 
discuss two aggregate traffic models that are not simplified. 

2.3.1 Markovian arrival processes 

In 2.2.2 we considered the traffic model of a single video source; a multiple~state Markov 
chain of the birth-death type. The birth-death model represented the aggregate traffic 
stream generated by a number of identical two-state Markov chains ('mini-sources'). So, 
the birth-death Markov chain is not only a model for a single video source, but also a model 
for the aggregate traffic stream generated by a number of independent traffic sources, each 
modeled by a two-state Markov chain. 

If the traffic stream of each single source is modeled by a Markov chain, the aggregate 
traffic stream of a number of sources can be modeled by the combination of the correspond~ 
ing Markov chains. In case of the birth-death Markov chain, the combination of Markov 
chains is considerably simplified by: 

• the assumption that the contributing Markov chains are identical and 
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• the approximation that in a single slot at most one of the contributing Markov chains 
changes state. 

The birth-death Markov chain model is an instance of a very versatile class of traffic 
models called discrete-time batch Markovian arrival process (D-BMAP) (see [Lucantoni 
et al., 1990; Neuts, 1992; Blondia, 1991]). In a D-BMAP, the burst level model of an 
(aggregate) traffic source is an arbitrary discrete-time Markov chain. At each slot boundary, 
a state transition occurs in this Markov chain. (Most transitions are from a state into the 
same state.) The cell level is incorporated in the model by associating a batch of cell arrivals 
with each transition. In general, the distribution of the number of cells in the batch in 
general depends on the transition_ (So it depends on the state before the transition and 
the state after the transition.) 

A special case of the D-BMAP is the Markov modulated Poisson process (MMPP). We 
will extensively use the MMPP in the ensuing chapters. In an MMPP, at each transition 
in the Markov chain a Poisson distributed batch of cells is generated. Moreover, the 
distribution of the batch is entirely determined by the next state. (So the previous state 
is not relevant in this respect.) 

2.3.2 A Poisson burst-arrival process 

A particularly simple aggregate traffic model is obtained if many traffic sources contribute 
bursts of cells to an aggregate stream (see e.g. [Descloux, 1989]). During a burst cells 
are generated with a certain rate. The duration of a burst is typically geometrically 
distributed. The contribution of each individual source (in terms of number of bursts 
per second) should be small. If these conditions are fulfilled, the aggregate burst arrival 
process is approximately Poisson. 12 

The aggregate traffic model is described by an infinite birth-death Markov chain, where 
the state of the Markov chain denotes the number of active bursts. In this Markov chain, 
the birth-rate is state independent. The death-rate is determines by the number of active 
bursts and the burst length distribution. (The assumption again is that at most 1 burst 
arrives in a slot and that at most 1 active burst ends in a slot.) 

The parameters of the aggregate traffic model (i.e. burst arrival rate, cell arrival rate 
during bursts, and mean burst length) are set in essentially the same way as the parameters 
of the two-state Markov chain model, see section 2.2.1 and [Lindberger, 1991; Delbrouck, 
1991]. 

2.3.3 Approximation by a renewal process 

The models of aggregate traffic streams reviewed above have a large state space. A large 
state space seriously hampers analysis of the multiplexer behavior. This is the motivation 

12This is the ATM version of the well known traffic model for packet switched networks, in which packets 
arrive according to a Poisson process and packet length is exponentially distributed 1 see e.g. [Kleinrock 1 

1976]. In an ATM network, a higher-layer-protocol packet is divided into a number of cells, so a packet 
gives rise to a burst of cells. The Poisson approximation is based on the Palm-Khintchine theorem 
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to devise simple aggregate traffic models, i.e. models that are considerably less complex 
than the combination of the traffic models for the individual sources. We consider two 
simple aggregate traffic models: in this section a renewal process and in the next section a 
two-state Markov chain. 

Sriram et al. [1986] consider the aggregate traffic stream formed by the superposition 
of independent and identical two-state Markov chain sources with deterministic cell gen
eration in the on-state. They would like to approximate this aggregate traffic stream by a 
renewal process, but are not able to provide clear method. Note that the cell generation 
process of a single source is a renewal process, but the aggregate process is not. 

The method of Sriram et al. is based on the mean cell arrival rate and the IDl(n) 
traffic characteristic. IDI(n) is a description by one number of the serial correlation in 
n consecutive cell inter arrival intervals (see {2.1) ). The nature of this description is to 
accumulate in some way all correlation in the interval. The IDI(n) of the aggregate traffic 
stream can be calculated. It is an increasing function of n. The IDI(n) of a renewal process 
is by definition independent of n. The IOI of the approximating renewal process is to be 
chosen at the appropriate value relative to IDI(n) of the superposition. 

Correlation between cell interarrival intervals affects multiplexer performance only if 
the corresponding cells interfere with each other in the buffer of a multiplexer. (The idea 
is roughly: if the buffer is empty, the waiting time of subsequent cells is not affected by 
preceding cells.) The degree of interference depends for example on the load of the server. 

Using the above argument, Sriram et al. conclude that the IDI(n) of the aggregate 
traffic stream is only relevant up to a maximum value of n (say, n = m). This maximum 
value n = m is determined by the degree to which different cell interarrival intervals of the 
aggregate traffic stream interfere in the multiplexer. The IDI of the approximating renewal 
process should be chosen equal to the IOI of the aggregate stream at n = m. Sriram et al. 
are not able, however, to provide an expression form. 

2.3.4 Approximation by a two-state Markov modulated process 

A two-state Markov chain is the most simple traffic model that can generate a correlated 
traffic stream. It is therefore an obvious starting point in the quest to approximate an 
aggregate traffic stream. 

In this section, ,;.e consider in particular the aggregate traffic stream formed by the 
superposition of independent and identical two-state Markov chain sources. This aggregate 
traffic stream is the input stream to a statistical multiplexer. The approximating two-state 
Markov chain is not an on-off model but a high-low model, i.e., in both states cells are 
generated. This Markov chain is described by four parameters: the mean sojourn time and 
the cell generation rate in each state. We describe a number of methods that choose the 
parameters of the approximating two-state Markov chain in different ways. Especially the 
method by Baiocchi et al. is very promising. 

Heffes et al. [1986] base the approximation on the IDC. The following characteristics 
are matched between the aggregate and the approximating traffic stream: 
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• the mean arrival rate, 

• IDC(t1 ), 

• !DC( oo ), and 

• E(N3(t 2)). 

The time epochs t1 and t 2 are chosen such that the IDC(t) functions of the aggregate traffic 
stream and of the approximating traffic stream coincide as much as possible. Comparison 
with simulation results shows that the mean and variance of the cell delay in the multiplexer 
are accurately estimated by this method. The tail of the delay distribution, however, is 
not. 

Ramaswarni [1988b] comments on the method of Heffes et al.. He argues that the 
traffic characteristic !DC( oo) is not relevant (see the discussion on IDI(n) in 2.3.3). Fur
thermore, Ramaswarni et al. [1991] observe by simulation that the method of Heffes et al. 
is inaccurate and does not react properly to changes of traffic source parameters. 

Liao et al. [1989] comment that the method of Heffes et al. may fail to represent periods 
during which the instantaneous arrival rate at the multiplexer exceeds the cell transmission 
rate from the multiplexer, i.e. overload periods. Overload periods determine the tail of 
the waiting time distribution and the cell loss probability in a statistical multiplexer (see 
3.3). Therefore, they propose to replace the traffic characteristic E(N3 (t2 )) by the mean 
of the instantaneous cell arrival rate at the multiplexer during overload periods. After 
this modification, one state of the approximating two-state Markov chain models overload 
of the statistical multiplexer and the other state models underload. This method more 
accurately estimates the mean waiting time in the multiplexer. 

Delbrouck [1991] also notes the failure of the method of Heffes et al. to appropriately 
incorporate overload periods. A straightforward approach to incorporate overload periods 
is to let the two states of the approximating Markov chain correspond to underload and 
overload of the statistical multiplexer, respectively. He matches the following characteris
tics between the aggregate and the approximating traffic st.ream: 

• mean sojourn time in underload 

• mean sojourn time in overload 

• mean arrival rate in underload 

• mean arrival rate in overload 

Then again he rejects this method, because the coefficients of variation of the sojourn 
times in the overload and underload states are far larger in the aggregate traffic stream 
than in the approximating two-state Markov chain. Further, the mean sojourn time in the 
underload state is much higher than the mean sojourn time in the overload state, which 
presents numerical problems. 
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Baiocchi et al. [199la] [199lb] represent overload and underload of the multiplexer 
each by a separate state. They concentrate on long overload periods. If the buffer size is 
large, cell loss is almost entirely due to these long periods of overload: loss of cells while the 
multiplexer is underloaded is very unlikely and short periods of overload are accommodated 
by the buffer. Baiocchi et aL match the following characteristics between the aggregate 
traffic stream and the approximating traffic stream (We will go into more detail on this in 
section 7.2.1.): 

• the mean cell arrival rate. 

• the slope (at infinity and on a log scale) of the survivor function of the sojourn time 
in an overload period. 

• the slope (at infinity and on a log scale) of the survivor function of the number of 
cells generated in an overload period. 

• the probability of a long overload period. 

This method is claimed to provide a lower bound (for large buffer size: an asymptotically 
exact bound) on the cell loss probability. Baiocchi et al. also provide an accurate approx
imation and presumed upperbound for the cell loss probability. Instead of the probability 
above (the fourth characteristic), they match the probability of cell loss in a bufferless 
multiplexer. This sets the probability of being in the overload state in a different way. 
Baiocchi et al. show by simulation that their method is very accurate. 

2.4 Conclusions 

In an ATM network, traffic is both bursty and correlated. 
The two-state Markov chain is a generic building block in traffic models. Initially, 

the two-state Markov chain model was proposed for its obvious resemblance to on-off 
source traffic. It is however more accurate to set the parameters of the two-state Markov 
chain according to measured traffic characteristics. These characteristics should reflect the 
burstiness and correlation of the traffic stream. It is not clear which characteristics always 
provide accurate results. 

The state space of the aggregate arrival stream at a multiplexer may easily become 
very large, if each constituent arrival stream is described by a two-state Markov chain of 
its own. Hence the need to model the aggregate arrival stream by a much simpler model. 

We found two methods. The first method models the aggregate arrival stream by a 
renewal process. This method is not very well developed, and it is difficult to assess its 
accuracy when applied to ATM. In the second group of methods, the aggregate arrival 
stream is modeled by a two-state Markov chain. These methods have been developed to 
a large extent with application to ATM (namely, statistical multiplexing) in mind. They 
have been shown to achieve accurate results, especially the method by Baiocchi et al. 
[1991a]. 
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Chapter 3 

Multiplexing 

In a communication network, efficient use of resources entails merging and split ting of traffic 
flows in multiplexers and switches. Further, it should be allowed that the instantaneous 
demand for bandwidth occasionally exceeds capacity. These observations also hold for an 
ATM network. 

The purpose of this chapter is to study the basic operation in an ATM network: mul
tiplexing. The multiplexer is a building block in ATM VC performance analysis. We will 
show that an ATM switch can be modeled as a set of multiplexers. In the next chapter, we 
will then interconnect ATM switches and study the network of multiplexers that is thus 
obtained. In this chapter, we will also study statistical multiplexing. The characteristics of 
a statistical multiplexer are very important in the understanding of the VC peroformance 
evaluation method for bursty traffic that we will describe in chapter 7. 

In this chapter, we first model ATM switches as networks of multiplexers, then describe 
ATM multiplexers, and finally consider multiplexer performance. The chapter ends with 
conclusions. In appendix A, we review the very extensive literature on stochastic models 
of ATM multiplexers and their analysis. 

3.1 ATM Switches 

This section describes ATM switches. Like all switches, ATM switches essentially perform 
two operations: splitting and multiplexing of traffic streams. Splitting is distributing the 
switch input streams over the switch output links. Multiplexing is merging the split input 
streams into a single switch output stream. Multiplexing occasionally causes congestion: 
during a given time interval more cells arrive at a multiplexer than can be transmitted by 
that multiplexer. Multiplexing determines the extent of cell delay and loss in a switch. 

In the remainder of this section, we describe switch types. Switch types differ in the 
way in which splitting and multiplexing are implemented. Many ATM switch designs 
have been proposed in the literature, see e.g. the survey papers [Ahmadi et al., 1989; 
Degan et al., 1989; Newman, 1992] and [de Prycker, 1991, Ch. 4]. After the current 
section we will focus on switches of a specific type. These switches show ideal behavior. 
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Figure 3.1: Generic functional ATM switch model 

The generic functional switch model consists of a switch fabric, input modules, output 
modules, and a control and management block, see Fig. 3.1 and [de Vries, 1992; Newman, 
1992]. The switch fabric is the main part of the switch1 . It transports cells from input 
port to output port. It operates synchronously: each input port is ready to accept a new 
cell at the same moment (unless input blocking occurs, as explained later on). Most large 
switch fabrics are networks themselves. They are built from smaller switch fabrics, called 
switch elements. 

The quality of a switch design is measured by the total traffic load it can carry, at given 
performance requirements (loss and delay of cells). This load depends on the characteristics 
of the traffic and on the distribution of the traffic load over the switch input ports and 
output ports. 

Newman [1992] provides a particularly clear classification of switch fabrics. He categ~
rizes switch fabrics according to three dimensions: topology, contention resolution mech
anism and buffering strategy. We will separately consider each dimension. For each di
mension, we will indicate the optimal switch fabric (from a performance point of view). 
As said, after this section we will consider only ideal switches that implement the optimal 
solution in each dimension. 

3.1.1 Switch fabric topology 

Time-division topologies are distinguished from space-division topologies. In a time
division topology, all cells cross a shared memory or a shared transmission medium. So, 

1The input and output modules essentiaily perform the foliowing functions: synchronization of trans
mission links, translation of cell headers, addition of switching tags to ceils, and control of the order of the 
ceils on a VC. If applied, a switching tag controls routing of ceIIs inside the switch fabric. 
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the capacity of the shared resource determines (and restricts) the throughput. This type 
of design is mainly used in switch elements. 

In space-division topologies, not all cells pass through a single point. Two variants 
exist. In single-path networks, there is a single path through the switch fabric for each 
input-output pair. (The paths of different input-output pairs do not all pass through 
a single point however, like in the time-division topologies.) In multiple-path networks, 
several paths through the fabric exist for each input-output pair. 

In general, multiple-path networks show improved performance and reliability in com
parison with single-path networks. Multiple-path networks do not preserve the order of 
the cells on a VC, if cell routing through the switch fabric itself is connectionless. 

The optimal switch fabric topology is a special case of the single-path network: each 
input-output pair is connected by a dedicated path. 

3.1.2 Contention resolution 

In a switch occasionally contention (i.e., blocking) occurs: cells compete for a single re
source (an output port or an internal link). Distinction is made between output blocking 
and internal blocking. Output blocking occurs if two or more cells are simultaneously 
arrive at the same switch output port. Internal blocking is that a cell at an input port 
cannot be transported to the required output port even though it is the only cell destined 
to that output port. 

Contention may be resolved in several ways: by buffering (either at the point of con
tention or upstream of the point of contention), by loss of cells and by routing the excess 
of cells along an alternative path. Loss of cells is obviously not the preferred solution. 
Re-routing is either impossible or possible only on a limited scale, depending on the archi
tecture of the switch fabric. 

In a network with dedicated paths between input-output pairs, the optimal contention 
resolution mechanism is buffering. 

3.1.3 Buffering 

Distinction is made between internal buffering and external buffering of switch fabrics. 
We will only describe external buffering, because internally buffered switch fabrics are 
networks of externally buffered switch elements. (There is one other type of internally 
buffered switch fabric: the time-division shared memory topology discussed previously.) 

Several forms of external buffering should be distinguished, see also [Karol et al., 1987; 
Hluchyj et al., 1988]. optimal performance is achieved by output buffering, in which cells 
are buffered only if they content for the same output port. To realize output buffering 
without internal blocking a dedicated path should be available for each input-output pair. 
If less paths are available, this will be at the expense of (some) loss. Output buffers may 
be shared by all output ports, they may be dedicated to output ports, and they may even 
be dedicated to input-output pairs. 
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The alternative to output buffering is input buffering, in which a cell is inserted into 
the switch fabric only if no blocking will occur. As a consequence, in a slot all but one of 
the cells destined to the same output port are retained in their buffers at the input ports 
of the switch fabric. In case of FIFO buffering, blocked cells may in their turn block other 
cells in the buffers that are destined to free output ports (i.e., head of line blocking). 

The optimal buffering mechanism is output buffering. 

3.1.4 Model of the ideal switch 

Combining the optimal solutions in the three dimensions, the ideal switch fabric has a 
dedicated path from each switch input port to each switch output port, so only output 
blocking will occur. Further, output blocking is resolved by output buffering. So, in the 
ideal switch splitting is performed at the input ports, multiplexing is performed at the 
output ports, and splitters are connected to multiplexers by dedicated paths. 

In the switch models that we will use, it is assumed that buffer capacity is not shared 
between output ports: each output buffer is dedicated to an output port. Sharing of buffer 
capacity between output ports reduces the probability that a cell is lost due to buffer 
overflow. On the other hand, sharing makes the switch design and buffer dimensioning more 
complex. It requires much faster memory and more complicated memory management. 
Further, sharing can never be complete, because it has to be prevented that an output 
port is deprived of all its buffer space by other output ports. 

By dedicating a buffer to a switch output port, output buffers can be studied indepen
dently of each other. The interaction between the traffic streams that pass through the 
switch fabric is limited to a minimum. 

The ideal switch can be modeled by a set of splitters (one at each input port) and a set 
of multiplexers (one at each output port). The output buffer is a part of the multiplexer. 
There is a dedicated path from each splitter to each multiplexer. A splitter distributes the 
traffic stream that arrives at an input port over dedicated paths to the multiplexers at the 
output ports. The splitters do not cause delay or loss of cells, so they are no subject for 
performance analysis. A multiplexer merges the traffic streams that it receives from the 
splitters into a single output stream. The multiplexers determine the performance of the 
switch. We will examine them in more detail. 

3.2 ATM multiplexer 

Multiplexing is the process of collecting the cells of different traffic streams and retrans
mitting them on a link in the network. When the retransmission capacity is temporarily 
insufficient to accommodate all arriving cells, the excess of cells is buffered. As indicated 
in the previous section, multiplexing is performed at the output ports of the ideal ATM 
switch. It is however also used at the edges of the network to concentrate the traffic streams 
generated by individual users (see Fig. 1.1). 
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Figure 3.2: Multiplexer 

In order to assess performance in ATM networks, we need to model multiplexers. Con
tention for transmission capacity in a multiplexer causes delay and (occasionally) loss of 
cells. Fig. 3.2 depicts the queue model of an ATM multiplexer. The service process of the 
queue models the transmission of cells on the output link of the multiplexer. As all ATM 
cells have equal length, cell transmission takes equally long for each cell, and the service 
time is deterministic. In an ATM network, cell transmission is slotted. So, time is divided 
into slots, and the transmission of a cell can only start at the beginning of a new slot. The 
duration of a slot equals the time to transmit a single cell. 

Cells arrive at the multiplexer via a number of transmission links. The transmission 
rate on the input links of the multiplexer is assumed to equal the rate on the output link. 
The slot structures of input and output links are synchronized. 

The size of the buffer is finite, i.e., the number of cells that can simultaneously be 
accommodated in the buffer is finite. In queuing theory parlance, buff er sometimes denotes 
storage space sufficient for only one customer/packet/cell. We have chosen to refer to the 
entire storage space of a multiplexer as buffer. So, a multiplexer has one buffer and this 
buffer can store cells up to a specific maximum number. 

If bursty VC traffic streams are multiplexed, a multiplexer can be operated in two ways. 
To explain the ways of operation, consider the multiplexing of a number of statistically 
identical on-off VC traffic streams. The instantaneous cell arrival rate at the multiplexer 
is by definition the cell arrival rate that is determined by the number of VC traffic streams 
that is in the on-state at a certain point in time. The cell arrival rate on the other hand 
is determined only by the number of sources that is multiplexed. 

• Statistical multiplexing 
In statistical multiplexing, the instantaneous cell arrival rate at the multiplexer occa
sionally exceeds the cell transmission rate from the multiplexer. During these periods 
of overload the multiplexer buffer fills with the excess of cells. It is especially during 
overload that cells are severely delayed and, eventually, get lost. Hence our special 
interest in periods of overload in statistical multiplexers. 
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• Deterministic multiplexing 
In the complementary case, the number of multiplexed sources is kept so low that the 
instantaneous cell arrival rate never exceeds the cell transmission rate. In this case, 
congestion is only due to variation of cell arrival epochs at given cell arrival rate. 

Statistical multiplexing allows that transmission bandwidth is used more efficiently. This 
comes however at the expense of longer cell waiting times and (if the buffer capacity is 
insufficient) at the expense of lost cells. 

Appendix A presents a survey of methods to calculate multiplexer performance, i.e., the 
probability distribution of cell delay and the probability of cell loss. In the next section, we 
will examine multiplexer performance itself, especially in case of statistical multiplexing. 

3.3 Statistical multiplexer performance 

The typical statistical multiplexer studied in the literature multiplexes independent and 
identical on-off sources. Each of the sources is described by a two state Markov chain 
(see Ch. 2). The sojourn time in the on-state and the sojourn time in the off-state are 
geometrically distributed. The cell generation process in the on-state is deterministic. An 
on-off source is described by three parameters: 

• 7, the ratio of the source rate in the on-state and the output rate of the multiplexer, 

• t, the fraction of time that a source is in the on-state, and 

• T, the mean sojourn time in the on-state. 

N denotes the number of sources. 
In this section, we examine the influence of buffer size and of source characteristics on 

cell delay and loss in a multiplexer and on bandwidth efficiency. Bandwidth efficiency is 
the fraction of slots of the multiplexer output link that is occupied by a cell. 

Fig. 3.3 shows a typical example of the relation between cell loss probability and buffer 
size (see e.g. [Kroener, 1991; Roberts, 199lc; Baiocchi et al., ·1991a; Liao et al., 1990; 
Norros et al., 1991]). A similar curve describes the survivor function of the cell waiting 
time, i.e., the probability that a cell has to wait longer than an indicated value. The curve 
can be divided into two parts: 

• Cell level congestion: 
The upper part describes cell loss due to cell level congestion, i.e. due to simultaneous 
cell arrivals while the instantaneous cell arrival rate at the multiplexer does not exceed 
the output rate of the multiplexer. Cell loss due to this kind of congestion cah be 
diminished effectively by increasing the buffer size. 

• Burst level congestion: 
The lower part describes cell loss due to burst level congestion, i.e. due to an instan
taneous cell arrival rate at the multiplexer that exGeeds the multiplexer output rate. 
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Figure 3.3: Typical behavior of the cell loss probability as a function of the buffer size 

(Note that by definition burst level congestion occasionally occurs in a statistical 
multiplexer.) Increasing buffer size is only effective against cell loss if the congestion 
situation is likely to end before the buffer actually starts overflowing. Otherwise, it 
gives only postponement of buffer overflow. 

Depending on the buffer size, either of the two forms of congestion dominates cell loss and 
cell delay. At low buffer size, cell level congestion dominates; at high buffer size, burst 
level congestion dominates. 

The exact form of the cell loss curve is of course a function of the source characteristics: 

• The cell scale congestion part is essentially determined by the traffic load (i.e., /·E·N). 

• The cell loss probability due to burst level congestion is easily obtained for the special 
case of buffer size zero, see e.g. [Baiocchi et al., 199la]. This cell loss probability 
(the intersection of the burst scale curve and the vertical axis in Fig. 3.3) provides 
the starting point for the burst level congestion part of the cell loss curve: 

L;!:,o (~)Ei(l - E)N-i(ir -1)+ 

Nq 

This equation is based on the observations that: 

(3.1) 

the instantaneous cell arrival rate at the multiplexer is binomially distributed, 

burst level congestion occurs when at least 1-1 sources are simultaneously in 
the on-state, and 
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- in case of burst level congestion, the normalized cell loss rate2 is (i1- l). (This 
cell loss rate is an approximation of the actual cell loss rate. It does not take 
into account cell loss due to variations in the cell arrival process at given instan
taneous cell arrival rate.) 

• During burst level congestion, the buffer fills to a larger extent if T, the mean sojourn 
time in the on-state, is larger, see e.g. [Kroener, 1991; Roberts, 1991c]. At this point, 
the dynamic behavior of the sources is relevant. 

As noted in e.g. [Kroener, 1991; Roberts, 199Ic], a statistical multiplexer can be 
operated in either of the two congestion regions. Operation in the cell region is roughly 
achieved if the buffer size is chosen so low that the probability of burst level congestion 
is smaller than the cell loss probability. Operation in the cell level congestion region has 
several advantages relative to operation in the burst level region: 

• Cell delay performance is better. 

• Buffers are smaller, so that they are less expensive. 

• Network design and traffic control are much simpler, because essentially the only 
relevant traffic characteristic is the mean rate. 

The disadvantage of operation in the cell level congestion region is that the bandwidth 
efficiency is relatively low. Especially if / is high (e.g., 0.1 ), the multiplexing gain3 that 
can be achieved in the cell level region is low. High I means that a small number of sources 
can cause overload. The gain can be increased by operating the statistical multiplexer in 
the burst level congestion region. 

If a statistical multiplexer is operated in the burst level congestion region, burst level 
congestion is explicitly taken into account as part of the normal operation of the multi
plexer. A large buffer is installed to account for periods of overload. Dimensioning of 
the buffer requires detailed knowledge of the dynamic behavior of the sources (mainly the 
sojourn time in the on-state). This means that the dynamic source behavior should be 
accounted for in all traffic control rules. 

Very long periods of overload cannot effectively be accommodated by a buffer, because 
the buffer would become unpractically large. Overload periods tend to be difficult to buffer 
if the source parameters T and / are large (i.e., if the number of cells generated during the 
on-period of a traffic source is large on average). 

In summary, statistical multiplexing allows that bandwidth efficiency is increased in 
comparison with deterministic multiplexing. In statistical multiplexing, there are two 
modes of operation. Operation in the cell level congestion region is only effective if I 

2 The normalized cell loss rate is the cell loss rate divided by the multiplexer output link rate. 
3 The multiplexing gain is the ratio of the maximum instantaneous cell arrival rate at a multiplexer 

and the rate of the output transmission link. In a statistical multiplexer the gain exceeds 1 by definition. 
The gain measures the increase in bandwidth efficiency due to statistical multiplexing in comparison with 
deterministic multiplexing. 
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is small. Still higher bandwidth efficiency is achieved by operation in the burst level 
congestion region. Operation in the burst level congestion region is however only effective 
if both I and T are small. 

3.4 Conclusions 

Multiplexing is the basic operation performed in an ATM network. At the edge of the 
network and in switches, multiplexers are used to increase the efficiency of cell transmission. 

An ATM switch or switch element can be modeled as a network of multiplexers. Each 
of these multiplexers can be studied independently of the other multiplexers in the switch 
model. In the next chapter, we will model the entire ATM network as a network of 
multiplexers and splitters. A splitter distributes the output stream of a multiplexer. 

If on-off traffic sources are multiplexed, the multiplexer can be operated as a statistical 
multiplexer: the instantaneous cell arrival rate at the multiplexer occasionally exceeds the 
multiplexer output rate. (The instantaneous cell arrival rate is the cell arrival rate that is 
indicated by the states - either on or off- of the sources.) Statistical multiplexing allows to 
more efficiently use transmission bandwidth. The gain in efficiency comes at the expense 
of worse performance (namely, longer cell waiting times and higher cell loss probability), 
more complex traffic control rules, and larger buffers. The gain achieved depends on the 
characteristics of the traffic sources. If the peak source rate is high and the mean sojourn 
time in the on-state is long, statistical multiplexing is not feasible. 

The VC performance evaluation method for bursty VC traffic presented in chapter 7 
extensively uses the characteristics of a statistical multiplexer that are summarized in Fig. 
3.3: if a multiplexer is operated in the burst level congestion region, the tail of the cell 
loss (or waiting time) survivor function is determined by overload, but the probability of 
overloaded is small. 

Appendix A surveys stochastic multiplexer models and their analysis. 
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Chapter 4 

Survey of ATM VC Performance 
Evaluation Methods 

In the previous chapter, we studied performance in individual multiplexers. In this chapter, 
we classify and assess methods that have been reported in the literature to determine 
performance on a VC in an ATM network. The relevant ATM VC end-to-end performance 
metrics are essentially the end-to-end cell loss probability and the end-to-end cell waiting 
time distribution. 1 z We will conclude that existing VC performance evaluation methods 
do not take into account the so-called queuing network phenomena. In the next chapter, 
we will study the queuing network phenomena in detail. 

In order to assess ATM VC performance, a VC has to be described in terms that are 
amenable to mathematical analysis. So this chapter starts with modeling the ATM queuing 
network (see 4.1). The ATM queuing network model will be used throughout the rest of 
the thesis. 

General surveys of the analysis of queuing networks can be found in [Sauer et al., 1981; 
Lavenberg, 1983; Heidelberger et al., 1984; Gelenbe et al., 1987; Kurose et al., 1988; de 
Souza e Silva et al., 1990; Boxma, 1990]. There is no performance evaluation method that 
provides a (more or less) closed form solution for the ATM queuing network model. The 
few queuing networks for which a closed form solution is available (essentially, product 
form networks) differ from the ATM queuing network model with respect to such essential 
features as traffic model and service time distribution. Further, the ATM queuing network 
model is also numerically complex. The state space size of a Markov chain description 
of the model easily grows out of reach of any computer when the number of queues in 

1 Next to the waiting time and loss probability for single cells, one would also like to know the joint 
distribution of waiting or loss for several consecutive cells. These more advanced performance metrics are, 
however. hard to obtain and will not be considered further. 

2The end-to-end cell loss probability provides a loose upper bound on the end-to-end cell waiting times 
that need to be taken into consideration. Waiting times that occur with a probability that is, say, ten 
times lower than the cell loss probability are not important. Loss of cells that wait extremely long only 
m~rginally increases the number of lost cells. So, we may consider these cells lost and need not consider 
their waiting time. 
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the model exceeds a net.work of 2 or a.t the very most 3 queues. So, we have to resort to 
approximate performance evaluation methods. 

In order to assess the approximate performance evaluation methods, we first describe 
the queuing network phenomena (QNP) in Sect. 4.2. The QNP specify the interaction 
between queues in a queuing network. They make a queuing network differ from a collection 
of independent queues and should, in principle, be accounted for by any performance 
evaluation method. The QNP provide us with a framework to compare VC performance 
evaluation methods. 

Most approximate methods are based on decomposition. In decomposition, the wait
ing times of a cell in different queues are assumed to be independent (i.e., one of the 
QNP is neglected). Decomposition in general is discussed in 4.3, and two ways to apply 
decomposition to the ATM queuing network model in 4.4 and 4.5, respectively. 

Some approximate methods try to avoid decomposition. We consider them in 4.6. 

4.1 ATM network model 

In this section, we model ATM networks. The model will be used in the coming chapters 
to develop performance evaluation methods for virtual connections in ATM networks. In 
this chapter, the model is used to discuss performance evaluation methods that have been 
found in the literature. 

The ATM network model is a network of queues, each queue representing a multiplexer 
(see 4.1.1). The traffic stream on each VC is described by a stochastic process. A VC 
traffic stream follows a route through the network of queues. We consider two types of 
traffic: smooth traffic (see 4.1.2) and bursty traffic (see 4.1.3). Between them smooth and 
bursty traffic cover all traffic types that can be expected in an ATM network. 

4.1.1 The queuing network model of an ATM network 

We model an ATM network as a network of queues. The queuing network model consists 
of identical queues, each queue modeling an ATM multiplexer. The queue model of an 
ATM multiplexer was extensively discussed in App. A. The queue service time is fixed, 
and the buffer size is finite. In the following paragraphs, the queuing network model wiH 
be developed. 

The queuing network model concerns the ATM layer (see 1.2.2) of the protocol reference 
model. Below the ATM layer, the physical layer takes care of the transmission of ATM 
cells. The physical layer is not reflected in the queuing network model due to assuming 
ideal cell transmission: 

• cells are transmitted in contiguous slots, 

• cells are not corrupted or lost during transmission, 

• there is neither propagation delay nor transmission dela.y, and 



4.1 A.TM NETWORK MODEL 51 

• cell transmission is synchronous: after deletion of propagation delays, cell transmis
sion starts and ends at exactly the same moment on all links of the network. 

ln the queuing network model, we will almost always assume that ATM cell transmission 
rates are equal throughout the network. This assumption likely holds for at least parts of 
the network, and it facilitates model analysis. If the assumption does not hold throughout 
the network, the network may be split up into separate sub-networks, that are analyzed 
independently. The analyses of the sub-networks may them be combined to form the 
analysis of the original network. 

The service provided by the ATM layer is the transfer of cells through the network. 
The model does not account for priorities of cells or adaptive traffic control protocols3 in 
the ATM layer. The way in which we model the ATM layer is the way it was intended to 
be at its conception. 

Above the ATM layer, the ATM adaptation layer provides end-to-end protocols that 
enhance the service offered by the ATM layer. The model does not account for the relation 
between end-to-end protocols in the ATM adaptation layer and the traffic streams in the 
ATM layer. It is assumed that end-to-end protocols work in a much larger time scale than 
congestion in an ATM network, so that they do not have influence on congestion in the 
ATM network. (As a result, end-to-end protocols cannot be used to alleviate congestion 
in an ATM network.) 

Because the model does not account for adaptive traffic control protocols in the ATM 
layer or end-to-end protocols in the ATM adaptation layer, there is no feedback from 
downstream queues to upstream queues, and the model is an open queuing network. Fig. 
4.1 shows the relationship between the queuing network model of an ATM network and 
the ATM network model at the level of multiplexers and switches (see Fig. Ll). The 

Mulliplexer Switch Switch Demulti
plexer 

Figure 4.1: Relation between the ATM network model at the abstraction level of multiplexers 
and switches and the queuing network model of an ATM network, that consists of queues 
and splitters 

3 An adaptive traffic control protocol influences the traffic stream that a user offers to the network in 
order to alleviate congestion inside the network, see 1.3.2. 
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figure shows the multiplexers and switches that are on the route through the network of 
a designated VC, the VC under study. Cells flow through the network from left to right. 
The queuing network model of an ATM network represents a detailed view: the internal 
structure of the switches is taken into account. 

The route of the VC under study through the ATM network is formed by a multiplexer, 
several switches and a demultiplexer. The multiplexer increases the utilization of the input 
ports of the first switch. It multiplexes the traffic stream on the VC under study with 
the traffic streams of other VCs, that originate from the same or from a nearby customer 
premises. After the multiplexer, the VC passes through several switches. The last element, 
a demultiplexer, makes possible a high utilization of the output port of the last switch. 

The queuing network model takes into account the internal structure of the switches 
(see Sect. 3.1), multiplexers and demultiplexers. In the switch model (or in the switch 
element model if applicable), there is a dedicated connection from each switch input port 
to each switch output port. At each output port, the traffic streams that arrive from 
the different input ports are multiplexed on a transmission link. A switch in the ATM 
network model is represented in the queuing network model by the concatenation of a set 
of parallel splitters and a set of parallel queues. A multiplexer in the ATM network model 
is represented by a queue in the queuing network model. A demultiplexer in the ATM 
network model is represented by a splitter in the queuing network model. 

The dispersion of traffic in the network will prove important later. It describes that 
the VC traffic streams on a transmission link tend to choose different routes through 
the network after that link. To explain and roughly quantify dispersion, assume that all 
switches in the network are identical, each having n input ports and n output ports. 4 

Further assume that the traffic load at a switch input port is evenly spread over all output 
ports. Consider a route through i consecutive switches. The route starts at an input port 
of the first switch and ends at an output port of the i-th switch. The traffic load on this 
route is a fraction n-; of the total traffic load at the designated input port of the first 
switch. As this example shows, the number of VCs that follows the same route through a 
moderate number of consecutive switches is likely very small. This conclusion should be 
slightly adjusted if we realize that some switch output ports may be chosen more often 
than others, so that traffic is not evenly spread. 

4.1.2 A smooth traffic model 

In order to study an ATM network, we need to model the traffic streams on VCs. The 
traffic models pertain to the traffic offered to the ATM layer by the ATM adaptation layer, 
see Fig. l.2. The choice of a traffic model is a delicate choice. A traffic model should 
capture the traffic characteristics that determine performance in an ATM network, see 

4The value of n varies according to the switch architecture. Several manufactures currently offer single 
chip switching elements that can be interconnected in a multi-stage switching network. The measure
ments of these switching elements vary between 4x4 and 32x32 (Source: Christian Pa.et.z, TU-Chemnitz, 
Germany). 
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Ch. 2. Further, the traffic model determines to a large extent the method to evaluate 
performance in the queuing network model, see the following chapters. 

We will consider two types of traffic streams. In this subsection, we consider a stochastic 
model for a smooth traffic stream. In the next subsection, we will consider a stochastic 
model for a bursty traffic stream, namely, an on-off traffic stream. 

The most likely type of smooth source traffic has fixed length cell interarrival intervals at 
the entry into the queuing network. Variable cell interarrival interval length may originate 
inside the network when the traffic stream is disturbed by queuing. A smooth traffic model 
by definition allows only small variability of the cell interarrival interval length. 

Next to the obvious application (i.e., modeling smooth traffic), the smooth traffic model 
also has two applications in modeling on-off VC traffic streams: 

1. Quasi-stationarity: 
By assuming quasi-stationarity (see A.4) a queuing network with on-off VC traffic 
streams reduces to a set of queuing networks with fixed rate VC traffic streams. The 
smooth traffic model may represent the fixed rate VC traffic streams. 

2. Statistical multiplexing in the cell level congestion region or deterministic multiplex
ing: 
For some types of on-off traffic streams, a multiplexer cannot be operated as a sta
tistical multiplexer in the burst level congestion region (see 3.3). It should instead 
be operated as a statistical multiplexer in the cell level congestion region or as a 
deterministic multiplexer. 5 In both cases, multiplexer performance is determined by 
cell level congestion at the instantaneous cell arrival rate that is at most allowed. 

Pascal distributed cell interarrival intervals 

As an example of a smooth VC traffic stream model we consider the following stochastic 
process: a renewal process with Pascal distributed cell interarrival interval length. This 
model will be used in the next chapter to study queuing networks. It allows us to change 
the characteristics of the VC traffic strean model in an efficient way. 

The defining characteristic of a renewal process is that the intervals between arrivals 
(in casu, cell arrivals) are independent and identically distributed. In the case considered 
here, the distribution of the cell interarrival interval length is the Pascal distribution. 

The Pascal distribution is the discrete-time analogy of the continuous-time Erlang dis
tribution. A Pascal-distributed random variable is equal to the sum of n independent 
and identically distributed random variables, n ?: 1. The distribution of these constituent 
variables is geometric: Pr(k) = (1 ~ p)pk-1, k ?: 1, 0 ~ p < 1. A Pascal distribution is 
completely characterized by its mean ( 1 ~P) and variance (( 1 ~';,) 2 ). If p = 0, the Pascal 

5 As noted in 3 3, buffering overload periods is ineffective if the cell generation rate during an on-period 
or the number of cells generated in an on-period is high. In these cases, a multiplexer should be operated 
etther as a statistical multiplexer in the cell level congestion region or as a deterministic multiplexer. In a 
statistical multiplexer operated in the cell level congestion region. the probability of overload is so small 
that overload does not determine performance. In a deterministic multiplexer, overload is not allowed. 
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distribution becomes a deterministic distribution, and cell interarrival interval lengths are 
fixed at the value n. 

In the Pascal distribution (like in the Erlang distribution), the coefficient of variation 

( .{f) 6 is less than 1, which is a characteristic of smooth traffic. 

4.1.3 A bursty traffic model 

As concluded in chapter 2, the on-off traffic model forms a generic building block for 
variable bit rate ATM traffic sources. As far as bursty traffic is concerned, the traffic 
stream on a VC may be represented by either a single instance of the on-off traffic model 
or by a superposition of identical and independent instances of the on-off traffic model. 

The on-off traffic model that is most often assumed is the interrupted Poisson process 
(IPP) or a closely resembling stochastic process. We will also use this model in the ensuing 
chapters. In chapter 2, the IPP model was shown to be accurate and tractable in assessing 
the performance in a single multiplexer. 

In the IPP model, the alternation between on- and off-periods is determined by a two
state Markov chain. In case of a continuous-time model, the sojourn times in the states 
of this Markov chain are exponentially distributed; in case of a discrete-time model, the 
sojourn times in the states are geometrically distributed. In case of a continuous-time 
model, cell generation in the on-state is modeled by a Poisson process of cell arrivals; in 
case of a discrete-time model, cell generation in the on-state is represented by the arrival 
of a batch of cells in each slot. The number of cells in a batch is Poisson distributed (so 
there can be zero cells in a batch). 

An IPP is described by three parameters: 

• /, the ratio of the source rate in the on-state and the output rate of the multiplexer, 

• c, the fraction of time that a source is in the on-state, and 

• T, the mean sojourn time in the on-state expressed in slots (or, equivalently, cell 
transmission times). 

The bursty traffic model is relevant only if the multiplexers in the queuing network are 
operated as statistical multiplexers in the burst level congestion region. If the multiplexers 
are operated as statistical multiplexers in the cell level congestion region or as deterministic 
multiplexers, the smooth traffic model addressed previously is the relevant model. Statis
tical multiplexing in the burst level congestion region is possible only if the cell generation 
rate in the on-state (i.e., 1) and the number of cells generated in an on-period (i.e., T · 1) 
are both low, see Sect. 3.3. 

6 The coefficient of variation of a random variable X is the ratio of the square root of the variance of X 

and the mean of X: ex ~ ~. 
mx 
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4.2 Queuing Network Phenomena 

The ATM queuing network model is not just a collection of independent queues. The queues 
in this model influence each other via the VC traffic streams that pass through them. This 
influence is described by three effects. We call them Queuing Network Phenomena, QNP7 . 

We introduce the QNP at this point, because they form the framework for the ensuing 
review of VC performance evaluation methods presented in the literature. In the next 
chapter, the QNP will be studied in detail; it will be shown that they really occur in the 
ATM queuing network model. 

The QNP are important, because performance on a VC is influenced by them. The 
performance on a VC is not only determined by each of the queues that the VC passes 
through, but also by the relation between the queues. 

1. QNP waiting time correlation: 

When a cell passes through a number of queues in the ATM queuing network model, 
the waiting times of that cell in these queues are not independent. The waiting times 
are correlated. 

Correlation between the waiting times of a cell is caused by the fact that VC traffic 
streams pass through several queues in the network. Put in another way, the queues 
in the network partly process the same traffic streams. 

Cell waiting times are mostly positively correlated. (In the next chapter, we will also 
see an example of negatively correlated cell waiting times.) As a consequence, the 
probability of long cell waiting times is underestimated if this QNP is neglected. The 
performance on a VC would be worse than expected. 

2. QNP VG traffic characteristics change: 

When a VC traffic stream passes through a queue in the ATM queuing network 
model, the characteristics of this traffic stream change. This change affects queuing 
behavior in downstream queues. 

VC traffic stream most often become smoother due to queuing. (In the next chapter, 
we will see examples.) As a results, congestion is less severe in any queue this VC 
subsequently passes through. If a model does not take this QNP into account, the 
model results will be pessimistic. 

3. QNP VG traffic stream correlation: 

When several VC traffic streams have been multiplexed on a single transmission link, 
they have become correlated. The traffic streams have been merged in such a way 
that they can be transported on a single transmission link. 

At a downstream queue (that has the same service time as the queue that merged the 
traffic streams), these VC traffic streams do not directly interfere with each other. 

7 We will use QNP to denote both Queuing Network Phenomena and Queuing Network Phenomenon. 
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If they were the only traffic streams at that queue, they would pass without any 
congestion at all. 

Due to this QNP, congestion in the downstream queue decreases. 

4.3 Decomposition 

The most frequently applied performance evaluation method is decomposition of the queu
ing network into single, supposedly independent queues. In the ATM queuing network 
model, decomposition does not provide exact results, and it is applied as an approxima
tion. The approximation is that the QNP correlation between the waiting times of a cell is 
neglected. In this section, decomposition is outlined. In the next two sections, two specific 
forms of decomposition are discussed in detail. 

Decomposition provides exact results in networks of the product-form type. The ATM 
queuing network model is not a product-form network. The exact results concern the 
joint distribution of queue lengths Pr(X1 , ... , Xn) and the joint distribution of waiting 
times Pr( W1, ... , Wn), where X; and W;, i E { 1, ... , n} are respectively the queue length 
and the cell waiting time in queue i. In networks of the product-from type, the queue 
lengths X 1 , ... , Xn (all at the same epoch) and, under certain conditions, the waiting 
times W1, ... , Wn (all for the same cell) are independent. So, the joint distribution of the 
queue lengths equals the product of the queue length distributions: 

( 4.1) 

A similar expression holds for the waiting times. 
The product-form property holds only for some very specific types of network, and 

the ATM queuing network model is not one of them. The best known type of product
form network is the network of continuous-time -/M/l/FCFS queues, see [Jackson, 1957; 
Baskett et al., 1975; Kelly, 1979; Walrand, 1988] .8 If a traffic stream arrives at a queue in 
this network from the outside, it is a Poisson process of cells. The cells that have received 
service in a queue are routed either to another queue or leave the network. The destination 
of such a cell is an independent random variable. The distribution of this variable depends 
on the queue in which the cell has been served. 

This network of )M/l/FCFS queues has the product-form property: the states of the 
in di vi dual queues are independent. Further, the distribution of the state of a queue can be 
obtained by considering the queue in isolation. The cell arrival process at the queue is then 
an independent Poisson process. The rate of this Poisson process equals the cell arrival 
rate at the queue when it is incorporated in the network. So, the queue length distribution 

8 Some other continuous-time product-form networks are described in [Baskett et al., 1Q75; Kelly, 1979; 
Walrand, 1988]; some discrete-time product"form networks are described in [Hsu et al., 1976; Bharath
Kumar, 1980; Pujolle et al., 1992]. In discrete-time queuing networks, the cell interarrival time distribution 
and the service time distribution are defined in terms of the same basic time unlt (slot), and the service 
processes are slotted and synchronized. In a slotted service process 1 service of a cell only starts at slot 
boundaries even if the server is empty. 
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can be determined easily. In this network, the product-form property also holds for the 
cell waiting time distribution if an additional property is fulfilled. 9 In such a network, the 
waiting times of a cell in the queues of the network are independent. 

Decomposition greatly facilitates analysis of a queuing network: techniques for single 
queues can be applied to the analysis of a network of queues. If the network under scrutiny 
is not a product-form network (like in our case), decomposition can be applied as an 
approximation. As we have seen, the decomposition technique to determine the end-to
end queuing network performance requires three subsequent steps: 

I. Modeling of the traffic streams inside the network. 

2. Evaluation of performance in the individual queues, using the traffic stream models 
developed in step 1. Performance evaluation in single queues has been discussed at 
length in App. A and will not be discussed further here. 

3. Estimation of the end-to-end performance in the queuing network assuming that the 
queues are independent. For the end-to-end cell waiting time distribution on a VC, 
this means convolution of the cell waiting time distributions in the queues that make 
up the route of the VC. 

Decomposition correctly determines performance in each individual queue, if both traf
fic stream modeling (step 1) and single queue performance evaluation (step 2) are exact. 
However, only in (overtake-free) product-form networks the assumption in step 3 (namely, 
that queues are independent) is exact, so that also performance in a network is correctly 
determined. 

Remark that dependence of queues is irrelevant for some performance measures, notably 
the end-to-end cell loss probability and the mean end-to-end cell waiting time. So also in 
non-product-form networks these measures are exactly determined by decomposition. The 
mean end-to-end cell waiting time is obtained as follows: 

E(W1 + ... + Wn) = E(W1) + ... + E(Wn). 

This equation is a property of the 'mean value'-operator. It holds when the random 
variables W; are independent and also when they are dependent. The end-to-end cell loss 
probability can also be considered as a mean value, so that a similar equation holds: 

E(Li,t + ... + Ln,t) = E(L1,t) + ... + E(Ln,t), 
N, N, N, 

where N, is the number of cells transmitted on the VC under study in an interval of length 
t, and L,,, is the number of cells in the group of N1 cells that is lost in queue i. 

9 This additional property is that the queues concerned should form an overtake free path, see [Walrand, 
1988]. In an overtake-free path, a cell does not influence the waiting time of an other cell ahead of it on 
the path, neither directly nor indirectly. Directly by overtaking the cell ahead. This is for example possible 
if more than one route exists between two queues on the path under study. Indirectly when the influence 
of a cell overtakes the cell ahead. This influence can be transferred by other cells. 
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Step 3 in the decomposition method relates to the QNP waiting time correlation. In an 
overtake-free product-form network, the waiting times of a cell are independent, and the 
QNP waiting time correlation does not occur. All performance evaluation methods that 
apply decomposition as an approximation neglect the QNP waiting time correlation. In 
the next two sections, we will discuss these decomposition methods. 

In step 2, decomposition performance evaluation methods apply a single-queue-performance 
evaluation method to the successive queues on the route of the VC under study. In order 
to allow repeated use of the same single-queue-performance evaluation method, the output 
stream of a queue should be modeled by the same stochastic model as the input stream of 
a queue. Traffic stream characterization (i.e., step 1) is most often only approximate, so 
that additional inaccuracy is introduced in the performance evaluation method. 

The performance evaluation methods that apply decomposition as an approximation 
differ with respect to the implementation of step l. Step 1 relates to the other two QNP, 
namely QNP VC traffic characteristics change and QNP VC traffic stream correlation. We 
distinguish between two groups of decomposition methods. The first group focuses on the 
traffic streams on transmission links; the second focuses on the traffic streams on VCs: 

• Modeling traffic streams on links (Sect. 4.4): 

Decomposition methods in the first group focus on traffic streams on transmission 
links in contrast with traffic streams on VCs. They account for the QNP VC traffic 
stream correlation. They do not however accurately model the traffic streams on 
individual VCs, let a.lone the QNP VG traffic characteristics change. 

These decomposition methods model the output stream of a queue and the cell 
routing process. A queue output stream is the flow of cells that leave the queue after 
service completion. It is the cell stream on a. transmission link in the network. The 
cell routing process describes the distribution of the cells on a transmission link over 
the queues in the network model and the world outside the network model. 

• Modeling traffic streams on VCs (Sect. 4.5): 

Decomposition methods in the second group focus on traffic streams on VCs in con
trast with traffic streams on transmission links. They account for the QNP VG traffic 
characteristics change. They do not however account for the QNP VC traffic stream 
correlation. 

The method is to model the output stream from a queue that is due to a single VC. 
Because in this case the traffic stream on each VC is known, there is no need to 
model the cell routing process. 

4.4 Decomposition: modeling queue output streams 

The first approach to modeling traffic streams in the network is to model queue output 
streams. We outline this approach in three subsections. The first subsection shows how to 
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characterize queue output streams. The second subsection shows how to model splitting of 
a queue output stream due to routing. The third subsection surveys performance evaluation 
methods that work according to the approach of this section. 

4.4.1 Characterizing the queue output stream 

Characterizing a queue output stream means that a description is given for the cell stream 
that leaves a queue. In general, this description cannot be exact. Apart from some ex
ceptional cases, a stochastic model that exactly describes a queue output stream has a 
very large state space. Only the output streams of some very special queues are stochas
tic processes that can be described by a small number of states, see, e.g., [Daley, 1976; 
Hsu et al., 1976]. ATM multiplexers do not have simple output streams. So, we have 
to describe a queue output stream by an approximate model that shares some important 
characteristics with the actual queue output stream. 

In Ch. 3, we saw that the predominant way to analyze multiplexers is to model them 
as Markov chains. The Markov chain multiplexer model can also be used to analyze the 
queue output traffic stream. Saito [1990] studies the output stream of the continuous-time 
BMAP/G/l/L queue (see also Sect. A.l) in this way. He pays special attention to the 
case of a deterministic service process and obtains the transform of the aggregate length 
of a number of cell interdeparture intervals. Takine et al. [1993] analyze the discrete
time BMAP/D/l/L queue in the same way. King [1971] derives an expression for the 
autocorrelation function of the output process from the continuous-time M/G/1/L queue. 
Pack [1975] derives for the continuous-time M/D/l queue the distribution of the aggregate 
length of a given number of consecutive cell inter~departure intervals. 

Based on the Markov chain description, a characterization of the queue output stream 
can be obtained. The characterization is then used to choose the parameters of the traf
fic model approximating the output stream. This is part of the performance evaluation 
method, see 4.4.3. 

A very generic, but not very efficient characterization is given by Stavrakakis [1990; 
199lb]. He reduces the state space of a Markov chain describing the queue output stream 
by aggregating the less likely states in this Markov chain. By incorporating sufficiently 
many states, any desired degree of accuracy can be achieved. To achieve high accuracy, 
however, a considerable number of states has to be taken into account. 

The output stream of an ATM multiplexer alternates between idle periods and peri
ods during which cells depart contiguously. So, the output stream can be modeled by 
representing the alternation between idle and busy periods of the queue. 

This approach is taken by Baiocchi et al. [1992a]. They do not, however, present 
a stochastic model for the queue output stream. Baiocchi et al. study the N-IDP/D/1 
queue by simulation. Each of the N VC cell arrival streams is an interrupted deterministic 
process (IDP), i.e., a periodic cell arrival stream that is turned on and off according to 
the state of a two-state Markov chain. Baiocchi et al. conclude from the simulation study 
that the lengths of busy and idle periods in the output stream are not nearly geometrically 
distributed, which would facilitate modeling the alternation between idle and busy periods. 
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10 The distribution of busy periods is bi·modal, where the mode indicates whether the 
instantaneous aggregate cell arrival rate at the queue exceeds the cell service rate. Also the 
distribution of idle periods is bi·modal, where the mode indicates whether the instantaneous 
cell arrival is zero. 

As a final characterization of the output stream, note that the total number of depar· 
tures from an underloaded, infinite buffer queue in an interval [O, t] will (for large t and 
relatively to t) be very close to the number of arrivals during the same interval. So if the 
long term behavior is relevant, the output stream of a queue can be modeled by its input 
stream, see, e.g., [Daley, 1976; Whitt, 1984]. 

4.4.2 Modeling cell routing 

The route of a cell through the queuing network model is determined by the route of the VC 
to which the cell belongs. So, the cells that make up a queue output stream are destined 
to (in general) different queues in the network model. The queue output stream is split up 
according to the routes of the VCs that arc multiplexed in the queue output stream. This 
subsection describes how to model cell routing. 

The problem in modeling cell routing is that multiplexer models do not account for the 
VCs of the cells waiting in the buffer. Incorporating these VCs in the state description of 
the queue would tremendously increase the size of the state space, so that analysis of the 
queue would be impractible if not impossible. As a consequence, cell routing can only be 
modeled by approximation, as cell routes are directly determined by the VCs. This means 
that VC traffic streams essentially loose their meaning, if the queuing network model is 
analyzed by the method present under study (i.e., by decomposition and modeling queue 
output streams). 

Stavrakakis [199la] proposes to model cell routing by an independent Markov chain. 
The evolution of the state of this (discrete.time) Markov chain describes the routes that are 
taken by the consecutive cells in the queue output stream. This approach allows modeling 
of the bursty character of the cell routing process even if VC identifiers are no longer 
represented in the traffic model. Stavrakakis observes that a complex cell routing process 
(modeled by the Markov chain) can in general not be replaced by a simple cell routing 
process (modeled by Bernoulli cell routing). He does not however indicate how to choose 
the parameters of the Markov chain, so that an essential part of the routing model is still 
missing. 

The almost universally used routing model is a special case of the Markov chain model. 
In this routing model, cell routes are independent and identically distributed: a cells takes 
a certain route with a certain fixed probability independently of the routes of preceding or 
succeeding cells. In this model, the routing probabilities are chosen in such a way that the 
mean cell rates on all routes are correct. We previously called this model Bernoulli routing. 

10 Bonomi et al. [1992] draw similar conclusions for the N·IBP/D/l/L queue_ The N VC cell arrival 
processes at an N·IBP /D/1/L queue are Bernoulli cell arrival processes that are turned on and off according 
to the state of a two.state Markov chain. 
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This model is only an accurate approximation, if the queue output stream multiplexes many 
thin VC traffic streams. 

4.4.3 Decomposition methods 

Finally, we review performance evaluation methods that are based on the form of decompo
sition presently discussed. The methods that we consider can be divided into two groups: 
methods that model queue output streams by renewal processes and methods that model 
queue output streams by on-off processes. 

Renewal queue output streams 

The best known decomposition method is to model the traffic streams in the network 
by renewal processes that are characterized by the first two moments of the interarrival 
interval length, see, e.g., the review papers [Kouvelis et al., Hl91; Bitran et al., 1992]. The 
method was initiated by Reiser et al. [1974], it has developed over time, and for general 
applications it seems to have reached a more or less final state in the form of the Queuing 
Network Analyzer (QN A) developed by Whitt [1983]. 

The QNA decomposes a queuing network into GI/GI/1 queues that are approximately 
analyzed. The output stream from each queue is approximated by a renewal process. This 
renewal process is specified by only the first two moments of the length of the interval 
between cells, see [Whitt, 1984]. So the approximation does not account for correlation 
between intervals or for details of the interval length distribution. Cell routing is modeled 
by a Bernoulli routing process. The aggregate arrival process at a queue is formed by the 
superposition of several renewal processes (namely, output processes from other queues -
after they have been filtered by a routing process - and cell streams that newly arrive at 
the network). The method again approximates the aggregate arrival process at a queue by 
a renewal process. This approximation was outlined in Sect. 2.3.3. 

Shroff et al. [1991] apply QNA to a VC in an ATM network. They model the ATM 
network by a network of GI/D/l queues. End-to-end ce!l retransmission is applied to cope 
with ce!l loss due to buffer overflow and due to transmission errors. In order to estimate 
the cell loss probability in a queue, Shroff et al. have to assume a distribution for the 
length of the interval between cells. (Remember that QNA works only with the first two 
moments.) The cell loss probability that is obtained in this way depends however strongly 
on the type of distribution that is assumed. So QN A does not allow accurate analysis of 
the loss probability. 

Abo-Taleb et al. [1985] also apply QNA to ATM (or, rather, to a network of queues 
with equal and deterministic service times), and they also focus on the interval between 
cells in the queue output stream. They explicitly account for the QNP VG traffic stream 
correlation. In ATM the minimum distance between two cells in the queue output stream 
equals the cell transmission time (i.e., the service time of the queue). As a consequence, the 
output stream of a queue would pass through a subsequent queue without congestion. In 
QNA however, there is no minimum distance between cells, because QNA has been devised 
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for queues with stochastic service times. So in QN A congestion occurs that does not occur 
in an ATM network. Abo-Taleb et al. [1985] tailor the two-moment method of QNA to 
ATM by choosing a specific distribution for the interval length between cells in the queue 
output stream. This distribution does not allow intervals smaller than the service time. 
The chosen distribution gives exact results for the output stream of an M/D /1 queue and 
(it is claimed) 'favorable' results for other queues. 

Bitran et al. [1988] propose an enhancement of the cell routing model of QNA. In 
QNA, cell routing is modeled by a Bernoulli process. A Bernoulli process does not allow 
that the burstiness of the cell routing process is taken into account. Bitran et al. model 
cell routing by a renewal process, that they characterize by the first two moments. They 
give simple expressions for the two moments of the queue output stream after application 
of the renewal cell routing process, so that QNA does not need any further modifications. 

On-off queue output streams 

Viterbi [1986], Stavrakakis [1991a], Merchant [1991], and Meliksetian et al. [1993] all model 
queue output streams as discrete-time on-off processes with contiguous cell generation in 
the on-state. They determine the parameters of the traffic model in three different ways: 

• Viterbi only takes the mean cell rate into account. The two parameters that describe 
the on-off traffic stream are heuristically chosen on the basis of the rate. 

• Merchant and Meliksetian et al. characterize traffic streams by their mean cell rate 
and by the probability that an empty slot is followed by another empty slot. 

• Stavrakakis uses the mean rate and the probability of two consecutive occupied slots. 

It holds for all methods that their accuracy is not well evaluated. 

4.5 Decomposition: modeling VC traffic streams 

The second way to model traffic streams inside an ATM queuing network is to focus on the 
traffic streams on VCs. Characterizing the traffic stream on a VC after queuing avoids the 
need to separately model cell routing. The main purpose of this approach is to take into 
account the QNP VC traffic characteristics change. The disadvantage of this approach is 
that the QNP VC traffic stream correlation is not accounted for. 

Consider a queue in the ATM queuing network model. Let {An}, {Wn}, and {Dn} 
denote respectively the arrival epochs at the queue of cells on the VC under study, the 
waiting times in the queue of these cells, and the departure epochs of these cells. dn = 
Dn+l - Dn is the departure process, and an = An+l - An is the arrival process. Taking 
into account the cell service time of 1 slot, the following holds: 

dn Dn+l -Dn 

An+l + Wn+1+1 - (An+ Wn + 1) 

an + Wn+i - Wn- (4.2) 
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For a particular VC, this equation relates the cell departure process (output stream) from 
a queue to the cell arrival process at that queue. 

If the queue is described by a Markov chain, the VC output stream is determined by 
the Markov chain embedded in this Markov chain at cell arrivals on the VC under study. 
The embedded Markov chain describes the relation between an, Wn+l, and W,, in 4.2. In 
general the embedded Markov chain has a large state space, so that it cannot directly serve 
as a description of the queue output stream. We consider three cases. 

First, it is reasonable to assume that the waiting times of the cells on the VC under 
study are independent and identically distributed, if the server is lightly loaded and the load 
on the VC under study is low. See [Roberts, 1991a, Sect. 9.1] and [Diks, 1993]. Assuming 
that a,,, W,,+i, and Wn are independent, the distribution of the dn is easily obtained on 
the basis of 4.2 once the distributions of the arrival process (a,,) and the cell waiting time 
(W,,+1 and W0 ) are known. The cell waiting time distribution follows from the embedded 
Markov chain. These observations are, however, only relevant if the VC traffic stream 
passes through many queues, so that the changes of traffic characteristics in the queues 
add up. If in a network of underloaded queues the load of the traffic stream on a single 
VC is small, the traffic characteristics of this VC will hardly change. As noted in [Whitt, 
1988], the waiting times will be small relative to the cell interarrival interval length. 

Second, for some specific queues the state space of the embedded Markov chain consists 
only of the number of cells in the queue and does not need to account for the state of the cell 
arrival process. An example is the discrete-time Gl+Bx /D /1 queue. The cell stream on the 
VC under study is a renewal process, and the cell streams on all other VCs are collectively 
modeled by a Bx process (i.e., in each slot the number of cell arrivals is independent and 
identically distributed). Roberts [1992] studies the case in which the renewal process is a 
periodic process and the number of interfering cell arrivals in a slot is Poisson distributed. 

Third, for most queues the state space of the embedded Markov chain consists of the 
number of cells in the queue and the state of the cell arrival process. Ohba et al. [1991] 
study the Gi+N-IPP+Bx /D/1 queue, where the GI process models the traffic stream on 
the VC under study, and the N-IPP process11 and the Bx process model the traffic streams 
on interfering VCs. It is cumbersome to obtain the distribution of dn by this method. 

4.6 Partial decomposition 

Performance evaluation methods based on decomposition of a queuing network do not 
account for the QNP waiting time correlation. Some authors have tried to adapt decompo
sition performance evaluation methods in such a way that correlation between cell waiting 
times is partly taken into account. We consider, respectively, an approach for on-off VC 
traffic and an approach for smooth VC traffic. 

llThe N-IPP is a superposition of N interrupted Poisson processes (IPPs). Each IPP is described by 
a discrete-time two-state Markov chain. In one state of this Markov chain, no cells are generated; in 
the other state, a batch of cells is generated in each slot. The number of cells in the batch is Poisson 
distributed. See also 4. 1.3 
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4.6.1 On-off VC traffic streams 

The performance evaluation method proposed by Kroener et al. [1992] partly takes into ac
count the QNP waiting time correlation, but it neglects the QNP VC traffic characteristics 
change and the QNP VC traffic stream correlation. 

The method applies to an ATM queuing network model in which all VC traffic streams 
are identical on-off traffic streams. The purpose of the method is to assess the end-to-end 
cell waiting time distribution. An important concept in the method is the instantaneous 
cell arrival rate at a queue. The instantaneous cell arrival rate is the cell arrival rate that 
complies with the number of on-off VC traffic streams that is in the on-state. 

To understand the method, we have to distinguish between three causes of correlation 
between the waiting times of a cell in different queues. (We will extensively discuss this 
subject in the next chapter): 

• correlation between the instantaneous cell arrival rates at different queues 

The waiting time distribution of a cell in a queue depends on the instantaneous cell 
arrival rate at that queue. If a cell passes through two queues and the instantaneous 
cell arrival rates at these queues are (positively) correlated, the waiting times of the 
cell in these queues are (positively) correlated as well. 

• in general increasing cell waiting times in temporarily overloaded queues 

If a queue is temporarily overloaded, the number of cells in the buffer increases 
steadily (until the buffer is full). So if two cells of a single VC pass through two 
overloaded queues, the first cell likely waits less long in both queues than the second 
cell. So given that both queues are overloaded, cell waiting times are positively 
correlated. 

• correlation between the cell arrival processes at different queues at given instanta
neous cell arrival rates 

Consider two queues at given instantaneous cell arrival rates. Suppose that at least 
one VC passes through both queues. The waiting times of a single cell that passes 
through both queues are correlated due to variations of the cell process on the VC( s) 
that pass through both queues. 

Kroener et al. only take the first cause of the QNP waiting time correlation into 
account and neglect the other two causes. They first determine the cell waiting time 
distribution in each individual queue conditioned on the instantaneous cell arrival rate. 
Then they calculate the end-to-end cell waiting time distribution essentially by determining 
the convolution of the cell waiting time distributions of the individual queues. In this last 
step, they account for the joint probability distribution of the instantaneous cell arrival 
rates at different queues. 

So, the method of Kroener et al. applies to the case of bursty VC traffic. It partly 
accounts for the QNP cell waiting time correlation, and it does not account for the other 
two QNP (i.e., VG traffic characteristics change and VC traffic stream correlation). 
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4.6.2 Smooth VC traffic streams 

Kruskal et aL [1988] study the end-to-end cell waiting time distribution in a network of 
ATM multiplexers for the case of smooth traffic streams. All multiplexers (or, queues) in 
the network have equal load and the output stream from each queue12 is distributed among 
an equal number of other queues. 

Kruskal et al. study by simulation the correlation between the waiting times of a cell 
in two different queues. It drops approximately geometrically as a function of the distance 
between the queues. (The distance indicates that the queues immediately follow upon each 
other, or that there is l queue in between, or 2 queues, etc .. ) 

This observation allows to approximate the correlation of the waiting times in any pair 
of queues, once the correlation in one pair of queues is known. In this way, an approximation 
for the variance of the end-to-end cell waiting time distribution can be obtained (see 5.1. l). 

4. 7 Conclusions 

In this chapter, we have surveyed ATM VC performance evaluation methods. There are 
no performance evaluation methods that fully account for all queuing network phenomena 
(QNP) in the ATM queuing network model, so we have to resort to approximate methods. 

The predominant approximation is to neglect the QNP waiting time correlation. Per
formance methods based on this approximation are decomposition methods. We have 
categorized decomposition methods into two groups. 

Methods in the first group separately model the queue output traffic stream and the cell 
routing process. These methods focus on the traffic streams on transmission links. They 
account for the QNP VC traffic stream correlation, but (in practice) neglect the QNP 
VG traffic chamcteristics change. There are several characterizations of the queue output 
stream. The methods still have problems to represent this stream as a stochastic process. 
Characterization of the routing process has hardly been considered in the Ii terature, let 
alone representing it as a stochastic process. Also the relation between the queue output 
stream and the cell routing process has not been studied. The decomposition methods in 
this group can in fact only be applied if it is reasonable to assume Bernoulli routing. In 
case of bursty VC traffic, this assumption does not hold. If Bernoulli cell routing is applied 
to an on-off traffic stream, the result is a thinned on-off traffic stream. In an ATM network 
however, either the traffic stream passes completely or it does not pass at all. 

Methods in the second group model traffic streams on VCs and the changes in these 
streams due to queuing. They account for QNP VG traffic characteristics change, but 
neglect the QNP VG traffic stream correlation. Characterization of the queue output 
stream due to a single VC is slightly more difficult than characterization of the aggregate 
queue output stream. These characterizations exist, but there are few examples of methods 
that represent this stream as a stochastic process. 

12The output streams of some queues leave the network 
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Some VC performance evaluation methods to some extent take the QNP waiting time 
correlation into account. They are in fact decomposition methods that do something 
extra to account for the QNP waiting time correlation. We have called them partial 
decomposition methods. 

A partial decomposition method for on-off VC traffic streams neglects all QNP ex
cept for the QNP waiting time correlation as far as it is due to correlation between the 
instantaneous cell arrival rates at different queues. 

A partial decomposition method for smooth VC traffic streams describes a heuristic 
way to account for the QNP waiting time correlation. The heuristic is based on simulation 
results. 

The overall conclusion is that existing VC performance evaluation methods neglect 
one or more of the QNP. Especially the QNP waiting time correlation is almost always 
neglected. In the next chapter, we will show that - depending on the parameter values of the 
ATM queuing network model - the QNP can have a considerable effect on VC performance. 
So, there is a need to study the QNP more carefully and to devise performance evaluation 
methods that account for the QNP. 



Chapter 5 

Queuing Network Phenomena 

The subject of this thesis is ATM Virtual Connection (VC) performance evaluation and 
especially evaluation of the end-to-end cell waiting time distribution. The previous chapter 
surveyed existing ATM VC performance evaluation methods. It was observed that these 
methods almost universally do not account for the interaction between the multiplexers 
that make up an ATM VC. This interaction is the subject of this chapter. 

The interaction between multiplexers is described in terms of the three queuing network 
phenomena (QNP). The study of queuing network phenomena provides a basis for the ATM 
VC performance evaluation methods that we will develop in the next two chapters. 

In order to study the queuing network phenomena, we use the ATM queuing network 
model introduced in the previous chapter. In this model al1 VC traffic streams are of the 
same type (either smooth or bursty). In almost all our examples the VC traffic streams 
will be identical. 

The queuing network phenomena make performance evaluation in an ATM network 
difficult. If they would not exist, performance evaluation would come down to repeated 
performance evaluation of a single multiplexer. Performance evaluation of a single mul
tiplexer is well understood, see chapter 3. On the basis of an understanding of queuing 
network phenomena, it can be decided whether the influence of a QNP should be accounted 
for in a performance evaluation method. If it should, the study of the QNP might provide 
a first indication how to incorporate it. In this chapter, we establish that the queuing 
network phenomena actually occur and assess their relevance to VC performance. 

Performance on a VC is determined by congestion in the multiplexers that make up 
that VC. More precisely, performance on a VC is determined by congestion in the individ
ual multiplexers and by the relation between the multiplexers. This is where the queuing 
network phenomena come into play. There are three QNP: waiting time correlation, VC 
traffic characteristics change, and VG traffic stream correlation. The first queuing network 
phenomenon directly concerns the relation between multiplexers. The other two phenom
ena concern the influence that other multiplexers have on congestion in a multiplexer; they 
indirectly concern the relation between multiplexers. 

The QNP waiting time correlation (see 5.1) describes that the waiting times of a single 
cell in different queues of the ATM queuing network model are dependent. This dependence 
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makes that the end-to-end cell waiting time distribution cannot be determined on the basis 
of only the cell waiting time distributions of the individual queues. For an exact result, it 
is required to take correlation between cell waiting times into account as well. 

The QNP VC traffic characteristics change (see 5.2) describes that the characteristics of 
the traffic stream on a VC change due to queuing. The QNP VG traffic stream correlation 
(see (5.3) describes that VC traffic streams become correlated if they are multiplexed on a 
single link. 

Table 5.1: Structure of chapter 5 

5.1 QNP waiting time correlation 
5.Ll Smooth VC traffic 
5.1.2 Bursty VC traffic 

5.2 QNP VG traffic characteristics change 
5.2.1 Smooth VC traffic 
5.2.2 Bursty VC traffic 

5.3 QNP VG traffic stream correlation 
5.3.l Smooth VC traffic 
5.3.2 Bursty VC traffic 

5.1 QNP waiting time correlation 

The QNP waiting time correlation describes that the waiting times of a single cell in the 
queues of the ATM queuing network model are correlated. The QNP is relevant when 
determining the end-to-end cell waiting time distribution on a VC. We will show that 
correlation between cell waiting times is most often positive, so that leaving the QNP out 
of consideration causes underestimation of the probability of long end-to-end cell waiting 
times. In this section, we will study the QNP in detail. We will show that it occurs, study 
its causes, and assess its relevance. 

The cause of correlation between cell waiting times is dependence of the cell arrival 
processes at the queues through which the cell under study passes. This dependence is 
clue to both the traffic stream of the VC under study (i.e., the VC to which the cell under 
study belongs) and traffic streams of interfering VCs, that (partly) follow the same route 
through the queuing network as the VC under study. 

We study the QNP by means of two queues of the ATM queuing network model. The 
two queues are two consecutive queues on the path of the VC under study through the 
ATM queuing network model. Fig. 5.1 shows the possible streams of cells through two 
queues in tandem. 

Three different cell streams through the two tandem queues are conceivable: 

• stream 1 of cells that pass only through the first or upstream queue, 
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stream 1 stream 2 

Figure 5.1: Two tandem queues 

• stream 2 of cells that pass only through the second or downstream queue, and 

• stream 1-2 of cells that pass through both queues. 

The QNP pertains to cells that follow stream 1-2. So, the VC under study is part of stream 
1-2. Possibly, also other VCs are part of this stream. 

In the remainder of this section, we will separately study the QNP for both the types of 
VC traffic stream that we previously distinguished: smooth VC traffic streams and bursty 
VC traffic streams. 

5.1.1 QNP waiting time correlation for smooth traffic 

In this section, we study the QNP for smooth VC traffic streams. We first describe the 
cause of the QNP, then present quantitative results, and finally draw conclusions. 

The cause of the QNP 

For smooth VC traffic, the cause of the QNP waiting time correlation is that the length 
of the interval between the cells on a VC varies. This cause is described in this section. 
Variation of the interval length may be a property of the traffic source, but is in addition 
due to the QNP VC traffic characteristics change (see 5.2). 

We describe the cause of the QNP on the basis of Fig. 5.1. Each VC traffic stream is 
smooth, but the interval length between cells varies. The cell under study belongs to a VC 
that passes through both queues (i.e., a VC on stream 1-2). 

Suppose that (shortly before the cell under study arrives at the first queue) the interval 
lengths on the VCs of stream 1-2 are so small that the first queue becomes congested and 
that the cell under study has to wait long. Then, the cell under study is expected to wait 
longer than average in the second queue as well. This is because the cells on stream 1-2 
that caused long waiting times in the first queue also pass through the second queue before 
the cell under study. A similar mechanism increases the probability of small waiting times 
in both queues. 

The described mechanism indicates that the waiting times in both queues of a cell on 
stream 1-2 are positively correlated: if in the first queue a cell waiting time deviates from 
its mean value in a given direction (longer or shorter), the cell waiting time in the second 
queue is more probable than average to deviate from its mean value in that direction 
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as well. This is the QNP. If the QNP is neglected, the probabilities of long and short 
end-to-end cell waiting times are underestimated. 

We should, however, refine the mechanism of the QNP by taking into account that the 
interval lengths change due to congestion in the first queue. If the first queue is congested, 
temporarily the cell arrival rate at the queue exceeds the cell departure rate from the 
queue. So, the cell waiting times tend to increase from one cell on a VC to the next. As 
a result, the interval length between two cells on a VC is shorter before the queue than 
after the queue. This effect obviously reduces the positive correlation between cell waiting 
times described above, because that is based on the interval lengths being more or less the 
same at both queues. It is difficult to determine in advance net result of both effects. 

Results 

In this section, we present numerical results on the QNP in the two tandem queues model 
of Fig. 5.1. 

We use the following notation: 

• The random variable W1 denotes the waiting time of the cell under study in the first 
queue. 

• The random variable W2 denotes the waiting time of the cell under study m the 
second queue. 

• The random variable W = W1 + W2. 

• The random variable W is the approximation of W that is obtained by neglecting 
the QNP (i.e., by assuming that W1 and W2 are independent). 

• w"' is the end-to-end waiting time that is exceeded with probability a:, the a-percentile 
of W: Pr(W ::0- w,,) = a:. 1 

We quantify the QNP by three measures of the correlation between W 1 and W2: 

• Cor(W1 , W 2 ) = y'VCov(WVW,) , the traditional 'correlation'. 
ar(Wi) ar(W2) 

• w";;,ws, the (relative) error of the waiting time percentile (if the QNP is neglected). 

• a-Pr(~bw.J, the (relative) error of the waiting time survivor probability (if the QNP 
is neglected) 2 . 

The last two measures give more detailed information on the tail distribution of the end
to-end waiting time than the first measure. In case of independent waiting times W1 and 
W2 , each of the correlation measures is zero. 

'We have obtained w" by linear interpolation of the function log(Pr(W :;> x)), x E {O, I, ... }. 
2 Remember that by definition a= Pr(W :;> w,) 



5.1. QNP WAITING TIME CORRELATION 71 

Below we present results on the correlation between W1 and W2 . We show respectively 
the influence on correlation of server load and fan out and the influence on correlation of 
traffic characteristics. App. B describes the QNP in networks of more than two queues in 
tandem. 

The effects of server load and fan out We first consider the effects of server load3 

and fan out4 on the QNP. 
We consider the model of Fig. 5.1, i.e., two consecutive queues of the ATM queuing 

network model. The two queues are equal and synchronized. In the numerical examples 
that follow, the loads of both queues are set to the same value (either 0.5 or 0.9), and the 
maximum cell waiting time in each queue is 49 slots. 

Table 5.2: Correlation between W1 and W2 as a function of server load and fan out. 

Load Fan Out Cor Wa 
Wo--Wn a-Pr(lV>wa) 

w. a 

°' = 10-0 °' = 10 ·.j °' = 10 -.j 

0.5 2 1.19. 10 l 7.447 7.75· 10, 0.49 
0.5 4 6.30 -10-2 7.518 4.46. 10-2 0.32 
0.9 2 1.52. 10-1 45.47 7.41. 10-2 0.50 
0.9 4 7.58. 10-2 45.46 3.96. 10-2 0.30 
0.9 8 3.82-10-2 44.90 2.03. 10-2 0.17 
0.9 16 UJ2 -10-2 44.52 1.03. 10-2 0.09 
0.9 32 9.64. 10-3 44.31 5.19. 10-3 0.05 
0.9 64 4.83. 10-3 44.20 2.49. 10-3 0-02 

Load Fan Out Cor Wa 
Wey-We, a-Pr[W>wa) 

w. a 

a=10-0 °' = 10 -o DI= lQ ·O 

0.5 2 1.19. 10-1 14.05 1.00. 10-1 0.82 
0.5 4 6.30. 10-2 13.94 6.03. 10-2 0.63 
0.9 2 1.52. 10-1 79.29 1.02. 10-1 0.88 
0.9 4 7.58. 10-2 77.76 5.86. 10-2 0.69 
0.9 8 3.82. 10-2 76.01 3.24. 10-2 0.47 
0.9 16 1.92. 10-2 74.91 1.71 -10-2 0.28 
0.9 32 9.64. 10-3 74.30 8.75 .10-3 0.15 
0.9 64 4.83. 10-3 73.98 4.46 .10-3 0.08 

In each slot a batch of cells arrives at the first queue, where the number of cells in the 
batch is independent and Poisson distributed. Often the batch contains no cells at all. So 
the aggregate cell stream on stream 1 and stream 1-2 is a discrete-time Poisson process. 

3 Server load is the fraction of time that the server is occupied, assuming that no cells are lost. 
4 Fan out is the number of streams into which a queue output stream is spliti assuming all streams get 

an equal share. 
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The aggregate cell arrival stream on stream 2 is also a discrete-time Poisson process. The 
cell routing process after the first queue is a Bernoulli cell routing process, i.e., cell routes 
are independent. In the numerical examples, fan out varies between 2 and 64. 

The Markov chain description of this model is simple. We have solved it for the joint 
distribution of W1 and W2 .

5 

Tab. 5.2 shows the calculated results for this model at different values for server load 
and fan out. 

For all cases considered, correlation between W 1 and W2 is positive according to each of 
the three measures. For the cases considered, server load has little influence on correlation. 
Fan out, on the contrary, is important: correlation roughly halves when fan out doubles. 
Correlation is more important at longer end-to-end waiting times (compare the correlation 
measures at a= 10-3 and at a= 10-6 ). 

Depending on the parameters of the model, correlation may have a considerable effect 
on the end-to-end waiting time distribution. For example at fan out = 2 and a = 10-6

, 

the effect on the waiting time ( w,-wg) is more than 10 % and the effect on the waiting 

time probability ("-Pr(~hw.J) is :ore than 80 %. At fan out = 4 and a= 10-6 , these 
figures reduce to 6 % and 60 %, respectively. 

The results comply with the description of the cause of the QNP given previously. If fan 
out increases, th.e load on stream 1-2 decreases relative to the server load. Traffic stream 
1-2 is the cause of correlation between cell waiting times. So, it is obvious that correlation 
(whether positive or negative) should decrease with decreasing importance of this traffic 
stream. 

For Poisson traffic, the QNP has a considerable effect on the end-to-end cell waiting 
time distribution, especially if fan out is low. Correlation is positive. The effect is larger 
for higher end-to-end cell waiting times. 

The effect of traffic characteristics We next consider the effects of VC traffic char
acteristics on the QNP. 

We again consider the model of Fig. 5.1, i.e., two consecutive queues of the ATM 
queuing network model. The two queues are equal and synchronized. In the numerical 
examples that follow, the loads of both queues are set to 0.9. 

The traffic stream on each VC is a renewal process with Pascal distributed cell interar
rival interval length (see 4.1.2). The Pascal distribution is determined by its mean value and 
coefficient of variation. In the numerical examples, all VC traffic streams are equal. Each 
of the streams 1, 2, and 1-2 comprises the same number of VCs (i.e., Ni = N2 = N1_ 2 ), so 
fan out is 2 and the load on each stream is 0.45. In the examples, N, varies between 1 and 
00. 

The first free parameter of the numerical examples is Ni = N 2 = N 1 _ 2 , and the second 
parameter is the coefficient of variation of the Pascal distribution (ex). (The mean value of 

°First, the steady-state probability distribution of the Markov chain is determined by iteration. Next, 
the joint distribution of Wi and W2 is calculated by considering all possible evolutions of the Markov chain 
starting from each state in the steady-state distribution. 
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the Pascal distribution is implicitly determined by the load on the stream and the number 
of VCs in the stream). 

Tab. 5.3 shows the numerical results for this model at different values of N1 = N2 = 
N1 _ 2 and ex. The results have been obtained by simulation. 95 % confidence intervals 
( c.i.) are shown. The buffer sizes were chosen at 99 cells, and not a single cell was lost 
during the simulation. 

The case N 1 = N2 = N1 _ 2 = oo is special: at given load on the stream, the contribution 
of each single VC is negligibly small. For ever increasing N1 = N 2 = N1_ 2 the aggregate 
cell stream on each stream is accurately approximated by a Poisson process. The Poisson 
model was considered in the previous section, so that we have copied the results instead 
of simulating this special case as well. 

Table 5.3: Correlation between W1 and W 2 as a function of VG traffic characteristics. 
N1 = N2 = N12 = N 

N ex Car (±95%c.i.) W10-s(±95%c.i.) w1Q-J -W10 -s 10-'-Pr(W2w,
0
_,) 

lrl1n-3. 10 3 

00 l 0.152 45.47 0.07 0.50 
10 0.98 0 150 (±0.007) 42.63 (±1.10) 0.07 0.50 
10 0.39 0.081 (±0.003) 11.80 (±0.08) 0.03 0.30 
10 0.07 0.058 (±0.003) 10.25 (±0.06) 0.02 0.23 
l 0.74 0.132 (±0.006) 23.67 (±0.55) 0.07 0.45 

For the cases considered, correlation between W 1 and W 2 is positive according to all 
three measures. The number of VCs on a stream has virtually no influence on correlation 
(compare the cases (N1 = oo,ex = 1), (10,0.98), and (1,0.74)). Remark that it has 
considerable influence on the waiting time percentile. The coefficient of variation however 
is important: smaller ex gives considerably smaller correlation between cell waiting times 
(compare the cases (10, 0.98), (10, 0.39), and (10, 0.07)). 

The results comply with the previously indicated cause of the QNP. The QNP is due 
to the variability of the cell interarrival interval length on the VCs of stream 1-2. ex is 
a measure of this variability. If ex increases, the variability increases, and the effect of 
the QNP increases. The influence of the variability of the VC traffic streams is clearly 
noticeable. 

Conclusions 

We have shown that for smooth traffic, the QNP waiting time correlation is caused by 
variation of the cell interarrival interval length on VCs. The correlation is predominantly 
positive, so that neglecting this QNP causes underestimation of long end-to-end cell waiting 
times. 

Depending on parameter values, the effect of the QNP may be considerable, especially 
on the ta.ii of the end-to-end waiting time distribution. Correlation between the waiting 
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times of a cell increases if fan out decreases or burstiness of the VC traffic streams increases. 
Server load has little influence on correlation (it has of course considerable influence on the 
waiting times in the individual queues). 

5.1.2 QNP waiting time correlation for bursty traffic 

In this subsection, we study the QNP waiting time correlation for the case of bursty VC 
traffic streams. We first describe the cause of the QNP, then present quantitative results, 
and finally draw conclusions. 

The cause of the QNP 

For bursty traffic, correlation between the waiting times of a cell is mainly due to the 
alternation between the on- and off-state of the traffic stream on each VC. In addition, for 
bursty traffic also the effects observed for smooth traffic occur. 

We describe the cause of the QNP on the basis of the two tandem queues network of 
Fig. 5.1. Unlike previously, each VC traffic stream is now a bursty traffic stream that 
alternates between an on-state and an off-state. To obtain numerical results, we will later 
model each VC traffic stream by an IPP, see also 4.1. The cell under study belongs to a 
VC that passes through both queues (i.e., a VC on stream 1-2). 

The instantaneous cell arrival rate at a queue is the rate indicated by the states of 
the VC traffic streams.6 If the instantaneous cell arrival rate exceeds the service rate, the 
queue is said to be overloaded. During overload, the buffer of the queue fills quickly. 

The queues in Fig. 5.1 are operated as statistical multiplexers in the burst level con
gestion region. Operation as a statistical multiplexer implies that the instantaneous cell 
arrival rate at a queue occasionally exceeds the service rate. Operation in the burst level 
congestion region implies that the buffer of the queue is designed to accommodate the 
excess traffic during overload periods. If an overload period persists too long, the buffer 
will of course in the end overflow anyway. 

Next, we will further detail the cause of the QNP. The effects that we observed at 
smooth traffic of course also occur at bursty traffic. We have however considered them 
previously and will not consider them anew here. For the multiplexers that we consider 
(i.e., statistical multiplexers operated in the burst level congestion region), performance 
is determined by overload periods, so we wit! concentrate on the QNP during overload 
periods. 

There are two causes for the QNP. The first cause is dependence of the instantaneous 
cell arrival rates at queues. The instantaneous cell arrival rate at a queue is a stochastic 
process. This process describes that VC traffic streams turn on and off. The processes 
describing the instantaneous arrival rates at the two queues in Fig. 5.1 are dependent, 

6 In the off-state, a bursty VC traffic stream does not generate cells; in the on-state, it generates cells at 
a predetermined rate. The instantaneous cell arrival rate due to a single VC equals zero in the off-state, 
and it equals the cell generation rate in the on~state. The instantaneous cell arrival rate at a queue is the 
sum of the instantaneous cell arrival rates due to the individual VCs. 
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because the VC under study (and possibly also other VCs) passes through both queues. 
The cell arrival rate largely determines the waiting time distribution of a cell in a queue. 
So, the waiting times of a cell in the two queues are dependent and positively correlated. 
An important consequence of this effect is an increase of the probability that both queues 
in Fig. 5.1 are simultaneously overloaded. 

The second cause of the QNP applies only to the case that both queues in Fig. 5.1 are 
overloaded. One might call this cause 'the order effect'. During overload of a queue, the 
number of cells in the buffer tends to increase. As a result, waiting times in an overloaded 
queue tend to increase from one cell on the VC under study to the next cell. When both 
queues are simultaneously overloaded, this effect occurs in both queues simultaneously. So 
if a number of consecutive cells passes through the two overloaded queues, the waiting 
times of a cell in both queues tend to increase from one cell to the next cell. This effect 
occurs, because the order of cell arrivals is the same at both queues. (Hence the 'order
effect ')Due to this effect, the waiting times of a single cell are positively correlated: when 
a cell waits (relatively) long in the first queue, it likely waits (relatively) long in the second 
queue (if both queues are overloaded). 

Results 

We next present simulation results on the QNP waiting time correlation for the case of 
bursty VC traffic streams and multiplexers operated as statistical multiplexers in the burst 
level congestion region. 

The simulation model is the two tandem queues model of Fig. 5.1. The service intervals 
of the queues coincide. Cells that arrive at a queue in the same slot are put into the buffer 
in random order. All VC traffic streams are independent and identical interrupted Poisson 
processes (IPPs). The number of VC traffic streams on a stream is Ni,i E {1,2, 1 - 2}. 
Each IPP is described by the parameters: 

• 1: the cell generation rate in the on-state measured in cells per slot, 

• T: the mean sojourn time in the on-state measured in slots, and 

• c: the fraction of time that the IPP is in the on-state. 

The simulation results are presented in the form of the survivor function 7 of the end
to-end cell waiting time. The end-to-end cell waiting time is the sum of the waiting time 
of a cell in the first queue and the waiting time of the same cell in the second queue. 

Next to the actual end-to-end waiting time survivor function, we also show an approx
imate end-to-end waiting time survivor function. The approximate function is also based 
on simulation results. It is obtained by assuming that the waiting times of a cell in the two 
queues are independent. The difference between the actual and the approximate function 
is entirely due to the QNP waiting time correlation. 

7The survivor function Pr(X > x) of a random variable X is the complement of the probability 
distribution: Pr(X > x) = 1 - Pr(X :<:; x). 
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The simulation results concern three sets of model parameters. We compare a basic 
system with systems that differ from the basic system with respect to, respectively, server 
load and fan out. In all sets of parameters, the maximum cell waiting time in each queue 
separately is 149 cell transmission times. The parameters of the !PP VC traffic stream 
are equal to values chosen by Kroener et al. [1992] (see chapter 4): /' == 0.1 cells per slot, 
T == 500 slots, and E == 0.2. 

In the basic system, N1 == N2 == N12 == 15, so that the server loads are 30 VCs 
and fan out is 2. Fig. 5.2 shows simulation results including 95 % confidence intervals. 8 

The solid lines are the actual functions (i.e., without the assumption that W1 and W2 are 
independent), and the dashed lines are the approximate function (i.e., with the assumption 
that W1 and W2 are independent). The unit of the end-to-end cell waiting time (D) is a 
slot. 

t•'~-------------~ 

ll:l-6 h-~~,->---h---h-~---h-~ 

' 100 "' "' '" ,., 

Figure 5.2: Actual (i.e., W 1 and W 2 are not assumed to be independent) (solid) and ap
proximate (i.e., W1 and W 2 are assumed to be independent) (dashed) end-to-end waiting 
time survivor functions. 95% confidence intervals are shown. Basic system: N 1 == N 2 = 
N 12 = 15. Server loads: 0.60 

We first discuss the survivor function itself and then consider the QNP. (When consid
ering the survivor function for two queues, it is convenient to keep the survivor function for 
one queue in mind, see Fig. 3.3.) The waiting time survivor function shows three distinct 
regions, each characterized by a different slope and corresponding to a different number of 
overloaded queues. 

• For small waiting times (say, up to 10 slots), the situation in which both queues in 
the model are underloaded determines queuing behavior. 

8 Each time, three curves are shown. The middle curve describes the result that is expected on the basis 
of the simulation. The actual result lies with probability 0.95 in the area bounded by the two outer curves. 
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• For intermediate waiting times (say, between 11 and 149 slots), the situation in 
which one queue is overloaded and the other queue is underloaded dominates. The 
probability that one of the queues is overloaded is much smaller than the probability 
that none of the queues is overloaded. However, if one of the queues is overloaded 
long waiting times are much more likely than when none of the queues is overloaded. 
As a result, the state of one overloaded queue dominates the state of no overloaded 
queue, except at small waiting times. The same behavior can be observed for a single 
multiplexer (see 3.3). 

• For long waiting times (say, longer than 149 slots), the situation in which both queues 
are overloaded dominates. 149 slots is (approximately) the maximum cell waiting 
time in one queue. The probability that two queues are overloaded is much smaller 
than the probability that one queue is overloaded. However, when two queues are 
overloaded waiting times longer than 149 slots are more likely than when one queue 
is overloaded. As a result, the state of two overloaded queues dominates the state of 
one overloaded queue for long waiting times. 

The maximum end-to-end waiting time is 298 slots. 

In the basic system (Fig. 5.2), the QNP is shown to have a considerable effect for 
end-to-end waiting times that are determined by overload in both queues (waiting times 
longer than 149 slots). The effect of the QNP is that long end-to-end cell waiting times are 
more likely, i.e., the waiting times of a cell in the two queues are positively correlated. The 
QNP has only a small effect for end-to-end waiting times that are determined by overload 
of only one queue. If one queue is overloaded, the end-to-end cell waiting time distribution 
is almost entirely determined by the overloaded queue, so that the effect of correlation 
between the waiting times of a cell is small. 

Like for the case of smooth traffic, the curves in Fig 5.2 can be compared 'vertically' 
(i.e., comparing probabilities) and 'horizontally' (i.e., comparing waiting times). 

Not all cell waiting time probabilities are relevant. Waiting times that occur with a 
probability that is much smaller than the end-to-end cell loss probability are not relevant. 
We might as well say that these cells are lost, without really changing the end-to-end VC 
performance. Cell loss occurs when a cell arrives at a completely filled buffer. This is 
roughly equally probable as the occurrence of a maximum cell waiting time in the same 
queue. This means that we are interested in end-to-end cell waiting times that are not 
much larger than the maximum waiting time in a single queue. See also Sect. 7.1.3. 

The two causes of the QNP (see 5.1.2) are clearly visible in Fig. 5.2: 

• First, the probability of double overload increases due to the dependence of the 
instantaneous cell arrival rates at the queues. This can be observed in the figure 
by comparing the waiting time probabilities at 149 slots. The actual waiting time 
probability (solid curve) is much higher than the approximate probability (dashed 
curve). 

• Second, during double overload the waiting times of a cell are positively correlated 
due to three causes simultaneously: 
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dependence of the instantaneous cell arrival rates at the queues, 

the order-effect previously described, and 

the kind of correlation we observed for smooth traffic sources. 

This can be observed in the figure by comparing the slopes of the survivor functions. 
For double overload, the actual waiting time survivor function (solid curve) decreases 
more slowly than the approximate function (dashed curve). 

The purpose of the second system is to study the effect of the server load on the QNP. 
To this end, the number of multiplexed sources is decreased from 30 to 28: N1 = N2 = 

N12 = 14. Fig. 5.3 shows the results. Due to decreased server loads, the probability 

,,, ______________ _ 

Figure 5.3: Actual {solid) and approximate (dashed) end-to-end waiting time survivor Junc
tions. 95% confidence intervals are shown. Second system: N 1 = N2 = N12 = 14. Server 
loads: 0.56 

of overload is smaller and overload periods are more easily buffered. Fig. 5.3 shows the 
same QNP effects as previously described. Careful comparison of the Figs. 5.2 and 5.3 
shows even that the effects are relatively larger at lower server loads. So, the QNP is more 
important at lower server loads. In an ATM network, the server loads will have to be 
smaller than in the present simulation models in order to ensure sufficiently small cell loss 
probabilities. 

The purpose of the third system is to study the effect of fan out on the QNP. To 
this end, the VC traffic streams are redistributed between the streams l, 2, and 1-2: 
N1 = N2 = 22, N12 = 8. So, fan out is N'J,~" = 3~, instead of 2 in the basic system. Fig. 
5.4 shows the results. For smooth VC traffic, we observed that fan out is an important 
parameter. This observation is confirmed here for bursty VC traffic as well. Comparison 
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Figure 5.4: Actual (solid) and approximate (dashed) end-to-end waiting time survivor func
tions. 95% confidence intervals are shown. Third system: N1 = N2 = 22, N 12 = 8. Server 
loads: 0.60 

of the Figs. 5.2 and 5.4 shows that increasing fan out considerably decreases the effect of 
the QNP on the end-to-end cell waiting time distribution. 

Conclusions 

For bursty VC traffic, the QNP waiting time correlation is mainly due to 

• the alternation between an on- and an off-state of each VC traffic stream and 

• (during overload of more than one queue on the route of the VC) the 'order-effect'. 

In addition, for bursty VC traffic also the effects observed for smooth VC traffic occur. 

Correlation between the waiting times of a single cell in different queues is positive. This 
means that long end-to-end cell waiting times are more likely due to the QNP. Depending 
on the parameter values in the model, the effect of the QNP may be considerable for long 
end-to-end cell waiting times. The effect is relatively more important at lower server loads. 
It is less important at larger fan out. 

This concludes the study of the QNP waiting time correlation. In the next two sections, 
we will respectively study the QNP VG traffic characteristics change and the QNP VG 
traffic stream correlation. 
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5.2 QNP VC traffic characteristics change 

In this section, we study the QNP VG traffic characteristics change. It describes the 
influence of queuing on the characteristics of the traffic stream on a VC. In a queue, the 
cells of a VC endure stochastic, so in general different waiting times. As a result, traffic 
characteristics change. A change of VC traffic characteristics influences the behavior of 
the queues through which the VC subsequently passes. In this way, upstream queues9 in 
the ATM queuing network model influence downstream queues. 

In the ATM queuing network model, VC traffic streams in general pass through several 
queues. A queue may - at least in principle - not be analyzed on the basis of the VC traffic 
characteristics that apply at the entrance to the network, because these characteristics 
change when the traffic stream passes through the queues in the network. This is the QNP 
we are discussing. So, it is important to assess the extent of the QNP in order to determine 
its relevance in VC performance evaluation. 

We again split the study of the QNP into two parts, one for smooth VC traffic and one 
for bursty VC traffic. 

5.2.1 QNP VC traffic characteristics change for smooth traffic 

We study the QNP on the basis of the smooth VC traffic model that was introduced in 
4.1.2. In this model, the intervals between consecutive cells are independent and Pascal 
distributed. So, VC traffic forms a renewal process. The Pascal distribution is completely 
described by the mean value and the variance. 

We first describe the cause of the QNP and then present numerical results. 

The cause of the QNP 

Queuing has the effect 

• that the distribution of the interval between consecutive cells on a VC changes and 

• that previously independent intervals become correlated. 

We describe each effect separately. 

Interval distribution The Pascal distribution is described by its first two moments (i.e., 
mean and variance). The mean does not change due to queuing (except for an occasional 
cell loss), so we further concentrate on the variance of the interval between consecutive 
cells. 

Consider two consecutive cells of the same VC. If the waiting times of these cells in 
a queue were independent, the variance of the interval would increase. Independence of 
cell waiting times is a reasonable assumption, if the rate of the VC is very low. In general 

9 An upstream queue is a queue from which the traffic stream is coming. A downstream queue is a 
queue towards which the traffic stream is going. 
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however, the cell waiting times are positively correlated, i.e., they tend to be either both 
small or both large. This correlation obviously reduces the increase of the variance due to 
queuing. Nevertheless, there is a mechanism that increases the variance of the interval. 

However, the waiting time of the second cell depends to some extent on the length of the 
interval itself. If the interval is short (so that the second cells arrives at the queue shortly 
after the first cell), an increase of the waiting time of the second cell due to congestion 
caused by the first cell is noticeable. So, the short interval tends to become longer. On 
the other hand, if the interval is long (so that the second cell arrives long after the first 
cell), a decrease of the waiting time of the second cell due to a relative lack of congestion 
due to the first cell is noticeable. The long interval tends to become shorter. So, there is a 
second mechanism that reduces the variance of the interval: short intervals become longer, 
and long intervals become shorter. 

It is difficult to determine which mechanism prevails. It is clear that the mean in
terval length plays an important role: if the mean interval becomes longer, the increase
mechanism is becomes important, and the decrease-mechanism becomes less important. It 
should, however, be noticed that a given change of variance is relatively less important at 
longer mean interval length. 

At given mean of the cell interval, higher variance causes more congestion in a queue. 

Correlation between intervals The smooth VC traffic model that we assume is a 
renewal process. The intervals between cells are independent at the entrance into the 
network. Due to queuing however, these intervals become correlated: if a cell of the 
VC under study is relatively much delayed, the interval that is ended by this cell tends 
to become longer, and the interval that is started by this cell tends to become shorter. 
The opposite holds if a cell is relatively little delayed. So, consecutive intervals become 
negatively correlated due to queuing. The effect of queuing on non-consecutive intervals is 
not clear. 

At given mean and variance of the cell interval, a VC with negatively correlated con
secutive intervals causes less congestion in a queue. 

Results 

In this section, we present simulation results on the QNP. The QNP is measured by com
paring the cell waiting time distributions in two queues, see Fig. 5.5: 

• In the left hand side system, VC traffic streams are directly fed to the queue under 
study. So the QNP does not occur. 

• In the right hand side system, the queue under study is fed by VC traffic streams that 
were previously multiplexed. (Each VC traffic stream has previously passed through 
a different multiplexer.) So, the QNP influences the cell waiting time distribution in 
the queue under study. 
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N Sources N Queues 

N Queues 

N Sources N Queues 

Figure 5.5: System models to assess the QNP VC traffic characteristics change. Left: no 
change and no correlation. Right: Change, but no correlation. 

The difference between the waiting time distributions of the left system and the right 
system is a measure of the QNP. 

The cell waiting time distributions in the models of Fig. 5.5 are determined by 
simulation. 10 At the entrance into the network, each VC traffic stream is an independent 
renewal process with Pascal distributed intervals. The Pascal distribution is characterized 
by mean mx and coefficient of variation ex. In each queue, an equal number of N VCs is 
multiplexed. Cells that arrive at a queue in the same slot are put into the buffer in random 
order. The buffer sizes are high enough for cell loss to have no influence on the results. 

We study the influence of the traffic parameters mx and ex. Each time N is chosen 
such that the server load is high, namely 0.9. At higher server load, cell waiting times vary 
more so that the effect of the QNP is larger. 

The influence of mx To study the influence of mx, we set ex at a fixed value, namely 
the highest value possible for a Pascal distribution. The Pascal distribution then becomes 
the geometric distribution, so that the VC traffic streams are Bernoulli processes. By 
choosing a high value for ex, the effect of the QNP is maximized. (See also the study of 
the influence of ex that follows next.) 

The Figs. 5.6 - 5.8 each compare the waiting time survivor functions for the left system 
(no influence of the QNP) and the right system (influence of the QNP) in Fig. 5.5. The 
solid line is the numerical result for the left system, and the dashed lines are the simulation 
result (including 95 % confidence interval) for the right system. The traffic parameters in 
the figures are respectively: mx = 2.22, N = 2, ex = 0. 74; mx = 6.67, N = 6, ex = 0.92; 
and mx = 11.11, N = 10, ex = 0.95. 

10 An exception forms the left hand side model for the special case of Bernoulli VC traffic streams, which 
is solved numerically. The Bernoulli VC traffic stream is a special case of the renewal VC traffic stream 
with Pascal distributed intervals. 
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Figure 5.6: Waiting time survivor function for previously multiplexed VG traffic streams 
and 95 % confidence intervals (dashed lines) and waiting time survivor function for previ
ously not multiplexed VG traffic streams (continuous lines). N = 2, mx = 2.22, ex = 0.74. 

,.·~--------------~ 

' 
' 

Figure 5.7: Waiting time survivor function for previously multiplexed VG traffic streams 
and 95 % confidence intervals (dashed lines) and waiting time survivor function for previ
ously not multiplexed VG traffic streams {continuous lines). N = 6,mx = 6.67,cx = 0.92. 
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Figure 5.8: Waiting time survivor function for previously multiplexed VG traffic streams 
and 95 % confidence intervals (dashed lines) and waiting time survivor function for pre
viously not multiplexed VG traffic streams (continuous lines). N = 10, mx = 11.11, ex = 

0.95. 

For all sets of parameter values the same effect can be observed, although the extent 
of the effect is smaller at larger mx. If VC traffic streams have been multiplexed before, 
waiting times tend to be shorter. The effect is relatively more important at longer waiting 
times. 

The explanation for this observation is that VC traffic streams are less bursty after 
multiplexing than before due to the combined effect of the congestion reducing mechanisms 
described previously: reduced variance of the interval and negative correlation between 
consecutive intervals. The extent of the effect decreases if mx increases. Even at mx = 
6.67, the effect is small already. 

The influence of ex The second traffic parameter that we consider is the coefficient 
of variation ex of the interval length. We again compare the cell waiting time survivor 
function for the left system and the right system of Fig. 5.5. The results are obtained by 
simulation. 

Given mx, ex is chosen as low as possible for a Pascal distribution. Fig. 5.9 gives 
results for mx = 6.67, N = 6, and ex = 0.13. Solid lines again represent simulation results 
for the case of unchanged traffic characteristics; dashed lines again represent simulation 
results for the case of changed traffic characteristics. 95 3 confidence intervals are shown, 
but hardly discernible. 

It can be observed that at these traffic parameter values multiplexing has almost no 
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Figure 5.9: Waiting time distribution for previously multiplexed VG traffic streams and 
95 % confidence intervals (dashed lines) and waiting time distribution for previously not 
multiplexed VG traffic streams and 95 % confidence intervals (continuous lines). N = 
6,mx = 6.67,cx = 0.13. 

effect on traffic characteristics. There is virtually no difference between the two sets of 
curves. Fig. 5.9 should be compared with Fig. 5.7, where ex = 0.92. In Fig. 5.7, there 
is a clear effect of multiplexing. The explanation is that cell waiting times vary less if 
the VC traffic streams are less variable. In the extreme case of an nD/D/1 queue, traffic 
characteristics do not change at all, because all cells of a given VC wait equally long (see 
Sect. A.4). 

Conclusions 

For smooth VC traffic streams, we showed that the QNP VG traffic characteristics change 
has only a discernible effect if the rate and the burstiness of the VC traffic stream are very 
high. This QNP is hardly relevant to VC performance. 

If these conditions are fulfilled, the VC traffic stream becomes less bursty, so that 
congestion in downstream queues becomes less severe. 

Change of traffic characteristics for smooth traffic is hardly relevant in VC performance 
analysis. If it is not taken into account, performance estimates will be slightly pessimistic, 
which is what you would like to have. 
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5.2.2 QNP VC traffic characteristics change for bursty traffic 

In this subsection, we study the QNP VC traffic characteristics change for the case of 
bursty VC traffic streams. The multiplexers in the ATM network are operated as statistical 
multiplexers in the burst level congestion region. Each VC traffic stream is modeled by an 
IPP or by a similar model, and r is small. (I is the maximum instantaneous cell generation 
rate on a VC relative to the cell transmission rate on the links in the network). 11 

We will not present new simulation results to quantify the QNP, but we will instead refer 
to a paper from the literature. However, we first describe the cause of the phenomenon. 

The cause of the QNP 

To describe the QNP, consider the multiplexing of one on-off VC traffic stream and other 
VC traffic streams. The instantaneous cell arrival rate at the multiplexer is on average 
higher when the on-off stream is in the on-state than when it is in the off-state. So, the 
mean cell waiting time at the moment the stream turns off exceeds the mean cell waiting 
time at the moment the stream turns on. As a result, the on-period of the on-off stream 
is stretched: the period during which the cells of an on-period leave the multiplexer is on 
average longer than the period during which these cells arrived at the multiplexer. The 
difference between the mean waiting times at the end and at the beginning of the on-period 
is added to the mean length of the on-period. For the same reason, the mean length of the 
off-period decreases. The effect is also described in e.g. [Roberts, 199la, Sect. 9.2]. 

To describe the effect more precisely, recall that an IPP traffic stream is characterized 
by the parameters 1, T, and E. The increase of the mean length of an on-period T comes 
with a reduction of the mean cell rate during an on-period rand an increase of the fraction 
of time that the stream is in the on-state L The mean cell rate of the traffic stream is of 
course not affected by these changes. 

These changes of the VC traffic stream characteristics make it less bursty. Cells are 
spread more evenly in time, and as a result congestion in downstream queues is less severe. 

If T is high or r is low, the expansion of the on-period is small relative to T. The 
expansion occurs however anew in ea.ch queue, so that in the end it might be considerable. 

Next to the change of the mean length of the on-period, the distribution of the length 
becomes more variable, because the first and the last cells of the on-period endure stochastic 
and in general different delays. 

A further detail is that the lengths of successive on- and off-periods become correlated. 
The mechanism described indicates that the growth of an on-period is at the expense of the 
ensuing off-period. So if an on-period grows more than average, the following off-period is 
likely to shrink more than average. So, successive on- and off-periods become negatively 
correlated. 

11 For statistical multiplexing in the burst level congestion region to be effective, it is required that I is 
small. See 4.1.3. 
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Results 

Lau et al. [1993] extensively study this QNP by simulation. They consider the multiplexing 
of independent and identically distributed VC traffic streams. Each VC traffic stream is 
an interrupted Bernoulli process12 . 

Lau et al. study the QNP by analyzing the traffic characteristics of one of the VCs in 
the output stream of the multiplexer. The traffic characteristics that they consider are the 
sojourn times in the on- and off-states. More specifically, they study the first two moments 
of the sojourn times and correlation between sojourn times. 

The results of Lau et al. indicate that, if"( < 0.05, the relative change of the moments 
is smaller than 2.5 % and that correlation between sojourn times is smaller than 0.025. 
This holds even if other parameter values are unfavourable, e.g., if the server load is high. 
The above conclusions are shown to remain valid for non-identical VC traffic streams and 
for non-geometric sojourn time distributions in the states of the on-off process. 

A special case is change of traffic characteristics due to an overloaded multiplexer. In 
case of overload, on-periods of VC traffic streams are spread considerably. This does not 
show in the simulation results of Lau et al., because in a well dimensioned multiplexer 
overload is very rare. If one is especially interested in overload, as we are, it may be wise 
to take this effect into account. 

Conclusions 

For bursty VC traffic streams, traffic characteristics change appreciably only if the cell 
generation rate in the on-state is high. For statistical multiplexing in the burst level 
congestion region to be effective, this rate is just required to be low. So in VC performance 
analysis, the QNP VG traffic characteristics change is hardly relevant for bursty traffic. 

5.3 QNP VC traffic stream correlation 

In this section, we consider the QNP VG traffic stream correlation. In the ATM queu
ing network model, VC traffic streams are multiplexed. If VC traffic streams have been 
multiplexed into a single stream, they no longer directly interfere with each other when 
they pass through another multiplexer. The reason for this effect is that all multiplexers 
(or, queues) have equal, deterministic servers. So, the VC traffic streams have become 
correlated. 

A somewhat different way to look at this QNP is to consider it as change of the collective 
traffic characteristics of the VC traffic streams that pass through a multiplexer. 

The QNP influences congestion in a single queue of the ATM queuing network model 
and thus also to end-to-end performance on a VC. Its effect is to reduce congestion. 

12 An interrupted Bernoulli process (IBP) is a disnete-time on-off process, that is very similar to the 
interrupted Poisson process. The alternation between on- and off-states is described by a discrete-time 
two-state Markov chain. In the on-state, cells are generated according to a Bernoulli process: the number 
of cells generated in a slot (either 0 or I) is independent and identically distributed. 
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Figure 5. 10: System models to assess the QNP VC traffic stream correlation. Left: Change, 
but no correlation. Right: Change and correlation. 

To analyze the QNP, we again use simulation to compare the waiting time distributions 
in two queues, see Fig. 5.10. In the left system, the VC traffic streams that arrive at 
the queue under study (i.e., at the downstream queue) are uncorrelated. Their traffic 
characteristics have changed due to multiplexing in the upstream queues they have passed 
through13 • In the right hand side system of Fig. 5. 10, the VC traffic streams that arrive at 
the queue under study (i.e., at the downstream queue) are correlated due to multiplexing in 
upstream queues. Fan out f is smaller than N. In addition, the VC traffic characteristics 
have changed. Comparison of the waiting time distributions in the two systems indicates 
the effect of the QNP. 

The parameters of Fig. 5.10 are fan out f, the number of VCs multiplexed in each 
queue N, and the characteristics of the VC traffic streams. Fan out f determines the 
degree of traffic concentration. In the right hand side system, the number of VCs that is 
multiplexed on each of the links between an upstream queue and the queue under study is 
y· For f = N the right system equals the left system. For f = 1, there is no congestion 
in the queue under study because of the effect of the QNP. 

We again split the analysis of the QNP for the two traffic types, smooth and bursty 
traffic. 

13 We neglect this change of characteristics for bursty VC traffic streams. So for bursty traffic the left 
system reduces to a single queue, the left system in Fig. 5.5. 
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5.3.1 QNP VC traffic stream correlation for smooth traffic 

The cause of the QNP 

The cause of the QNP is that in a single slot at most one cell leaves a queue iu the ATM 
queuing network model. So all cells that arrive at a queue in the same slot leave that 
queue in consecutive slots. In this way, clustering of cells is reduced, so that congestion in 
downstream queues is less severe. 

For the effect to occur, it is required that the queue is congested. So the QNP is more 
important if the load of the queue is higher or if VC traffic streams are more bursty. 

The output stream of a queue is distributed between other queues in the ATM queuing 
network model. (Of course, cells may also leave the network.) The parameter fan out f 
determines the degree to which the output stream is thinned. Obviously, thinning of the 
output stream diminishes the effect of the QNP. If fan out increases, less VC traffic streams 
pass from the same upstream queue to the queue under study, so that correlation between 
these VC traffic streams is smaller. 

Results 

The smooth VC traffic stream model is again a renewal process with Pascal distributed 
intervals between cells. The Pascal distribution is characterized by mean mx and coefficient 
of variation ex. 

As said, we study the QNP on the basis of Fig. 5.10, and the results are obtained by 
simulation. More in detail, we study the effect on the QNP of fan out J and server load 
_}I_ 
mx 

The effect of fan out First, we consider the influence of fan out. Traffic parameters 
are set at N = 6, mx = 6.67 and ex = 0.92. So, in all queues server load is 0.9. Fig. 
5.11 compares the waiting time survivor functions at fan out j = 2 (dashed lines) and 
at f = N (solid lines). Remember that at f = N VC traffic streams are independent. 
Fig. 5.12 shows results for J = 3 (dashed lines) and f = N (solid lines). All results were 
obtained by simulation. Confidence intervals at 95 % are shown. 

Fig. 5.11 shows that the effect of the QNP is considerable at low fan out. The effect is 
as expected: reduced congestion or lower cell waiting times. As expected, increasing fan 
out from 2 to 3 greatly reduces the effect (compare Figs. 5.11 and 5.12). So, the QNP is 
relevant only at small fan out. 

The effect of server load Second, we consider the effect of server load on correlation 
between VC traffic streams. Fig. 5.13 shows 4 cell waiting time survivor functions. All 
were obtained by simulation, and 95 % confidence intervals are shown. Like previously, 
mx = 6.67 and ex = 0.92. The server load is varied by varying N. The two right hand side 
curves represent the high load case: N = 6 at fan out 2 (dashed) and fan out N (solid), 
respectively. The two left hand side curves represent the low load case: N "' 4 at fan out 
2 (dashed) and fan out N (solid), respectively. 
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Figure 5.11: Waiting time survivor function for COT'T'elated traffic streams (f = 2) and 95 
% confidence intervals (dashed lines) and waiting time survivor Junction for uncorrelated 
traffic streams and 95 % confidence intervals (continuous lines). N = 6, mx = 6.67, ex = 
0.92. 
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Figure 5.12: Waiting time survivor function for correlated traffic streams (f = 3) and 95 
% confidence intervals (dashed lines) and waiting time survivor function for uncorrelated 
traffic streams and 95 % confidence intervals (continuous lines). N = 6, mx = 6.67, ex = 
0.92. 
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Figure 5.13: Waiting time survivor function for correlated traffic processes {f = 2) and 95 
% confidence intervals (dashed lines) and waiting time survivor function for uncorrelated 
traffic processes and 95 % confidence intervals (solid lines). mx = 6.67, ex = 0.92. Left 
set of lines: N = 4. Right set of lines: N = 6. 

Comparison of the two sets of curves in Fig. 5.13 shows that, as expected, the effect 
of the QNP on the waiting time percentile is smaller if the server load is lower. (More 
precisely: the absolute effect is smaller, but the relative effect is more or less unchanged.) 
If the server load decreases, dispersion of increased activity on a set of VCs is less likely to 
occur. This is because increased activity is less likely to cause congestion in an upstream 
queue. 

Conclusions 

The QNP has been shown to occur for smooth traffic. The effect of the QNP is to reduce 
congestion in downstream queues. The QNP is relevant only at very low fan out. 

5.3.2 QNP VC traffic stream correlation for bursty traffic 

In this section, we study the QNP VG traffic stream correlation for on-off VC traffic streams. 
Each VC traffic stream is modeled as an !PP. The multiplexers in the ATM queuing 
network model are operated as statistical multiplexers in the burst level congestion region. 
We concentrate on the effect of the QNP on periods of overload, because overload periods 
determine performance. 
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The cause of the QNP 

During an overload period of an upstream queue in the ATM queuing network model, the 
instantaneous cell arrival rate from that queue to a downstream queue is throttled. The 
excess of cells is first buffered, and later, when the buffer of the upstream queue has become 
full, it is lost. There are two effects of overload in upstream queues on congestion in the 
downstream queue: 

• If fan out is low, overload of an upstream queue is rather likely to coincide with 
overload of the downstream queue. If overload periods coincide, the extent of overload 
in the downstream queue is reduced due to the reduction of the instantaneous cell 
arrival rate by the upstream queue. 

• The second effect concerns the probability that the downstream queue is overloaded. 
If the upstream queue is overloaded, it reduces the instantaneous cell arrival rate at 
the downstream queue. The reduction may be large enough to make the difference 
between overload and underload of the downstream queue. On the other hand, due 
to buffering in the upstream queue the cell arrival rate remains relatively high for 
a longer period of time. The first effect decreases the probability of overload of 
the downstream queue, but the second effect increases the probability of overload of 
the downstream queue. The net effect on the probability of overload is not clear in 
advance. 

Results 

We again study the QNP on the basis of Fig. 5.10. The cell waiting time distribution in 
the downstream queue of the left hand side system accounts for the case of independent 
VC traffic streams. The cell waiting time distribution in the downstream queue of the 
right system accounts for the case of correlated VC traffic streams. The cell waiting time 
distribution for the left system of Fig. 5.10 has been approximated by a single queue, which 
was numerically analyzed on the basis of its Markov chain description. The cell waiting 
time distribution for the right system is obtained by simulation. 

All VC traffic streams are stochastically equal IPPs. The server load is equal in all 
queues. The parameters of the system are fan out f, number of VCs N, and the IPP 
traffic characteristics (i.e., T, /, t). 

Fig. 5.14 compares the waiting time distributions for independent VC traffic streams 
(solid line) and correlated VC traffic streams (dashed lines, 95 % confidence intervals 
shown). The system parameters are: N = 30, r = 0.1, c = 0.2, T = 500, fan out f = 2, 
and buffer size B = 100. 

We observe in Fig. 5.14 that the essential effect of the QNP is to shift the overload 
part of the cell waiting time survivor function downward. So the probability of overload 
is reduced, but during overload the behavior is essentially unchanged. The effect is rather 
small, even at the low fan out value 2. 
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Figure 5.14: Waiting time survivor Junctions and 95 % confidence intervals. Solid: no 
previous multiplexing. Dashed: previous multiplexing at fan out 2. N = 30,-)' = 0.1, t = 
0.2, T = 500, B = 100 

The decreased probability of overload is due to the second point described above (i.e., 
a lower probability of overload due to reduction of the instantaneous cell arrival rate at the 
downstream queue in case of overload of an upstream queue). The first point described 
above (i.e., changed overload behavior in the downstream queue due to reduction of the 
instantaneous cell arrival rate at the downstream queue in case of overload of an upstream 
queue) is not observed. 

Conclusions 

The QNP VC traffic stream correlation has been shown to occur for bursty traffic. Its 
effect is to reduce the probability that a downstream queue is overloaded. The effect is 
rather small, even at the low fan out value 2. 

5.4 Conclusions 

In this chapter, the three queuing network phenomena (QNP) have been described and 
analyzed. 

Smooth VC traffic For smooth VC traffic, the QNP waiting time correlation is due 
to variation of the cell interarrival interval length on VCs. Depending on the parameter 
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values, it has a considerable effect. The effect may cause both underestimation and over
estimation of the probability of long end-to-end cell waiting times. Especially at low fan 
out, the effect is relevant to VC performance. 

The QNP VC traffic characteristics change has little effect, unless (at relatively bursty 
VC traffic streams) the rate of the VC traffic stream is high. The effect of t:he QNP is to 
reduce congestion in downstream queues. 

The QNP VC traffic stream correlation has little effect, unless fan out is low. It reduces 
congestion in downstream queues. 

Bursty VC traffic For bursty VC traffic, the QNP waiting time correlation is mainly 
due to the burstiness of the VC traffic streams and the 'order-effect'. The QNP causes 
underestimation of the probability of long end-to-end cell waiting times. Depending on 
the parameter values, the effect of the QNP is considerable. The effect is relevant to VC 
performance especially at low fan out. 

The QNP VC traffic characteristics change has little effect for the kind of multiplexing 
that we consider, namely statistical multiplexing in the burst level congestion region. Its 
effect is to reduce congestion. 

The QNP VG traffic stream correlation has little influence. Its effect is to reduce the 
probability that a downstream queue is overloaded. 

In the chapters 6 and 7.1, we will present two new VC performance evaluation methods 
for smooth and bursty VC traffic respectively. These methods take into account the three 
queuing network phenomena. In this chapter we have shown that the influence of the 
queuing network phenomena depends especially on the fan out of the queue output streams. 
Of the three queuing network phenomena, the QNP waiting time correlation has a rather 
large and negative effect on VC performance, so that this QNP is especially relevant. 



Chapter 6 

ATM VC performance evaluation 
for non-bursty traffic 

In this chapter, we present a new ATM virtual connection (VC) performance evaluation 
method for non-bursty traffic. An example of non-bursty traffic in an ATM network is 
circuit emulation, in which the cell interarrvival interval is fixed. The method evaluates 
the end-to-end cell waiting time distribution on a VC through an ATM network. The 
method accounts for all three queuing network phenomena (QNP) and, of course, for 
congestion. Its accuracy is shown by comparison with simulation results. 

The method concerns non-bursty VC traffic streams. (In the next chapter, a method 
is developed for the case that every VC traffic stream is bursty.) Non-bursty (or, smooth) 
traffic is characterized by the absence of distinct periods of high and low activity and by 
small variation of the cell interarrival time1. In the examples in this chapter, we assume a 
periodic traffic stream on the VC under study, but the method may also be applied to other 
types of traffic. The traffic streams on other VCs are described by Poisson processes. In 
the method, the ATM network is modeled by the ATM queuing network model described 
previously in 4.L 

The performance evaluation method that we present differs from methods presented in 
the literature (see Ch. 4) by the incorporation of all three QNP (see Ch. 5). The main mo
tivation for the method is however the incorporation of the QNP waiting time correlation. 
No performance evaluation method in the literature takes into account correlation between 
cell waiting times, except a heuristic method based on interpolation between simulation 
results (see Sect. 4.6). In addition, the methods in the literature either neglect the QNP 
VG traffic stream correlation (see Sect. 4.5) or assume a very rough cell routing model (see 
Sect. 4.4). Our method does neither. 

The method is based on conditional decomposition of the tandem queuing network 
model of an ATM VC into single queues, where traditional methods assume straightforward 
decomposition. Conditional decomposition exploits that - by definition - the waiting times 
of a cell in different queues are conditionally independent, if the condition eliminates the 

1The coefficient of variation is typically much smaller than l. 
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dependence between the waiting times. In Sect. 5.1.1, we showed that dependence between 
waiting times is due to dependence bet ween the cell arrival streams at the corresponding 
queues. So, the method is based on conditions that describe the cell arrival processes at 
the queues. 

The organization of this chapter is as follows. Sect. 6.1 presents the model of a VC 
through the ATM queuing network model. The VC model is subsequently analyzed by 
the conditional decomposition method, first conceptually (6.2) and then in detail (6.3). 
Numerical results on the accuracy of the conditional decomposition method are shown in 
Sect. 6.4. The chapter ends with conclusions. 

6.1 A tandem queuing network model of the virtual 
connection under study 

In this section, we model a virtual connection (VC) in the ATM queuing network model 
(see Sect. 4.1.1). The VC model allows to evaluate the end-to-end cell waiting time on 
the VC under study, without explicitly taking into account all queues in the ATM queuing 
network model. In the next section, the VC model will be analyzed using the conditional 
decomposition performance evaluation method. 

The VC model represents only the queues of the ATM queuing network model through 
which the VC under study passes. So, it is a network of queues in tandem, a tandem 
queuing network. It models in detail the traffic stream on the VC under study, but it 
models roughly the traffic stream on every other VC. The model assumes that all VC 
traffic streams are smooth. 

6.1.1 The traffic stream on the VC under study 

At the entry point into the ATM queuing network, the most realistic stochastic model 
for smooth VC traffic is a periodic process, in which a new cell is generated after a fixed 
number of slots. The performance evaluation method that we develop in this chapter is 
not constrained to VC traffic of this type. 

The model of the traffic stream on the VC under study is based on the lengths of cell 
interarrival intervals. More precisely, it is the joint distribution of the lengths of a fixed 
number of consecutive cell interarrival intervals. We will use the traffic model to describe 
the traffic stream on the VC under study both at the entrance into the network and inside 
the network. 

This traffic model is very detailed. It can represent any distribution of the cell interar
rival interval length. Further, it can account for correlation between the lengths of different 
cell interarrival intervals, if they are not further apart than the number of intervals in the 
model. The traffic description is an obvious extension of a description that confines itself 
to a single interval and assumes that the traffic process is and remains a renewal process. 

The main motivation for using this traffic stream model is that it matches well with the 
condition on the cell waiting time distribution that we will use in the conditional decom-
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position method, as explained farther on. The traffic stream model captures correlation 
between interarrival intervals. This is however not the main motivation for this particular 
choice of model. Correlation between intervals is usually small. It is either a characteristic 
of the traffic source, or it is due to the QNP VG traffic charncteristics change. This QNP 
was shown in the previous chapter to be of rather little importance. 

A disadvantage of the traffic model is its possibly large complexity. In order to reduce 
the complexity, we truncate the distribution of the interval length and confine the descrip
tion to a small number of consecutive intervals. As a consequence, correlation between cell 
interarrival intervals is only taken into account if these intervals are not far apart. This 
hardly affects the accuracy of the traffic model, because - as explained - this correlation 
is small. Note however that even when the number of intervals is small, this model is still 
more accurate than the renewal model. 

6.1.2 The traffic streams on other VCs 

The VC model represents only the queues of the ATM queuing network model through 
which the VC under study passes. It is a tandem queuing network. The traffic stream 
on the VC under study is disturbed by the traffic streams on other VCs. These VCs are 
interfering VCs. In this subsection, we model the traffic streams on interfering VCs at 
the moment that they enter the tandem network. (The traffic streams on interfering VCs 
inside the tandem network will be modeled in Sect. 6.3.) 

At each queue of the VC model, interfering VCs arrive at the tandem network. The 
traffic streams of these VCs are collectively modeled by a single stochastic process. As
suming an aggregate traffic stream and neglecting the VC to which a cell belongs reduces 
the complexity of the performance evaluation method. 

The stochastic model for the aggregate traffic stream is a Poisson process. 2 The Poisson 
model is not essential to the performance evaluation method. A more complex model is in 
principle easily incorporated in the method. The reasons for choosing the Poisson model 
are that it is at least fairly accurate and that it is simple. 

Accuracy of the Poisson model 

The Poisson model is an accurate approximation for the aggregate traffic stream if first 
many independent traffic streams each contribute little to the aggregate traffic stream and 
second a short period of time is considered, see 2.3.3. The Poisson model is, however, a 
less accurate approximation if a long period of time is considered. It does not account for 
periodicity of the individual traffic streams. Periodicity of a VC traffic stream shows in 
the aggregate traffic stream. 

2 A Poisson process is a continuous-time stochastic process. The ATM queuing network model is a 
discrete-time model, in which the unit of time is a cell transmission slot. The Poisson model is incorporated 
in the ATM queuing network model by registering cell arrivals of the Poisson process during a slot only 
at the next slot boundary. 
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In a realistic ATM network model the periodicity of the aggregate traffic streams is 
reduced by four effects: 

1. There are likely to be non-periodic VC traffic streams among the streams that con
tribute to an aggregate stream, e.g. traffic streams of the on-off type. 

2. VCs cease to exist and new VCs come into existence. 

3. The periodicity of a periodic VC traffic stream is disturbed due to queuing in the 
network. 

4. The periods on individual VCs in general differ widely. The period of an aggre
gate stream is the least common multiple of the periods of the individual VC traffic 
streams. So, formally the period of an aggregate stream is large. 

Cell routing 

After each queue of the VC model, the cells of the VC under study proceed to the next 
queue in the model. Cells of all other (i.e. interfering) VCs either proceed to the next 
queue in the VC model or leave the model. If all interfering cells leave after each queue, we 
speak of crossing interference. If no interfering cell leaves, we speak of joining interference. 
If only some of the interfering cells leave, we speak of partly joining interference. 

In case of partly joining interference, we have to represent the cell routing process, that 
decides which interfering cells proceed to the next queue and which cells leave the tandem 
network. In compliance with the Poisson model for interfering traffic, we assume that the 
routing decision is independent and identically distributed for each interfering celL The cell 
leaves with a fixed probability and proceeds with the complementary probability. Joining 
and crossing interference are two special cases of partly joining interference. 

6.1.3 Summary of the tandem queuing network model 

In summary, the VC model is a network of queues in tandem. All queues are identical: 
the service time is 1 slot and the buffer size is finite. The traffic stream on the VC under 
study is modeled by the joint distribution of a fixed number of cell interarrival intervals. 
At each queue, newly arriving interfering traffic is modeled by a Poisson process. After 
each queue, routing of interfering cells is independent and identically distributed for each 
cell. All queues and sources are synchronized at slot boundaries. 

In the next section, we will present conditional decomposition. Conditional decompo
sition allows accurate evaluation of the end-to-end cell waiting time distribution of cells on 
the VC under study. 

6.2 Conditional decomposition 

In this section, we describe a new method to evaluate the end-to-end waiting time of a 
cell in the VC model. The method is called conditional decomposition (CD). It obtains 
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accurate results on the end-to-end cell waiting time distribution and accounts for the QNP 
waiting time correlation. 

The waiting times of a cell in the queues of the VC model are correlated (see Sect. 
5.1). This correlation is due to correlation between the cell arrival processes at the queues. 
Some of the cells that arrive at a queue before the cell under study also passed through 
upstream queues in the tandem network. So, these cells influence the waiting time of the 
cell under study in more than one queue. They are the cause of correlation between cell 
waiting times. 

This observation forms the basis of the CD performance evaluation method. CD ac
counts for correlation between cell waiting times by conditioning the waiting time of the 
cell under study in a queue on the arrival process at this queue from the upstream queue. 
After conditioning, the waiting times of a cell are independent. 

In the remainder of this section, we will shape these observations. First, we will describe 
ideal CD. Then, we will describe practical conditional decomposition (PCD), in which the 
cell waiting time is conditioned on only the most recent part of the cell arrival stream at 
the corresponding queue. In the next section, we will describe in detail the calculations 
that are required in PCD. 

6.2.1 Ideal conditional decomposition 

To describe ideal CD, we first introduce three random variables: 

• W;: the waiting time of the cell under study in queue i, 1 :; i :; n, where n is the 
number of tandem queues. (Propagation time and transmission time are not taken 
into account, because they are fixed and known in advance.) 

• S,: the sum of the waiting times of the cell under study in the queues 1 to i inclusive. 
S, = 2:}~ 1 Wj. 

• A;: the realization of the cell arrival process at queue i from queue i - l in a!I slots 
up to the arrival of the cell under study at queue i. A; comprises both cells on the 
VC under study and interfering cells. For the moment A. covers all cells up to the 
cell under study and is exact. As such a description is practically impossible, we will 
have to revise A;, but this is deferred till later. 

The following equation describes conditional decomposition of the distribution of S; 
into the distributions of S,_ 1 and W; (of course, S, = S,_1 + W,). It allows to recursively 
calculate the distribution of S;, 1 < i :; n:3 

Pr( Si = s, A;+1 = a;+1 ) 

' 
= 2:: 2:: Pr(S;-1 = s - w;, W; = w;, A; =a;, A;+1 = a;+1) 

a, w 1 =0 

3 ln this derivation we consecutively applied: the law of total probability (i.e. Lr Pr(X = x) = !); 
Bayes' rule (i.e. Pr(X, Y) = Pr(X)Pr(Y IX)); and the essential step described in detail in the text. 
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' I: I: Pr(S,_, = s - w,, A;= a,)Pr(W, = w,, A.+1 = a;+1 I s,_1 = s - Wi, A;= a;) 

' I: L Pr(S,_1 = s - w,, A,= a;)Pr(W, = w;, A;+l = a;+l I A;= a,) (6.1) 
a, w 1 =0 

The essential step in this derivation is to realize that Pr(W;, A1+1 I S;- 1 , Ai) equals Pr(W;, 
A;+1 I A;). The condition A, is the complete description of the traffic that arrives at queue 
i from queue i - 1 up to the arrival of the cell under study. So by definition A; contains all 
information that S;_1 might provide on W; and A;+1 , and S;_1 may be deleted from the 
condition. 

Interfering cell arrivals at queue i other then from queue i - l are not incorporated in 
A;. In the VC model these cell arrivals are modeled by a Poisson process. They are not 
the cause of correlation. On the contrary, if the traffic load due to these arrivals at queue 
i is large, correlation between the cell waiting times in queue i - 1 and queue i is small. 

Equation 6.1 provides a recursive procedure to calculate the distribution of Sn, the 
end-to-end cell waiting time. Pr(S;, A;+1) is determined on the basis of Pr(S,_1 , A;) and 
Pr(W,,A,+1 I A,),2 ~ i <; n. The problem in this procedure is the traffic description A;. 

In a practical performance evaluation method, the traffic description A; cannot comprise 
all cells preceding the cell under study. Also, it may be too complex to exactly describe 
the realization of the traffic process in the slots that are comprised by A;. So, we have to 
resort to an approximate traffic description. The recursive procedure 6.1 is then no longer 
exact, and we consider it as an approximation. 

The remainder of this section concerns PCD. The main issue is the effect on accuracy of 
reducing the length of the traffic description A,. The next section will focus on the traffic 
description itself. 

6.2.2 Practical conditional decomposition 

The length of the traffic description A, has to be rather small for CD to be a viable 
performance evaluation method. Because the traffic description Ai cannot comprise all 
cells preceding the cell under study, the CD method has to be reconsidered. The solution 
is that we describe only the part of the traffic stream from queue i - 1 to queue i that 
immediately precedes the cell under study. The traffic description of reduced length is 
indicated by A;. The far away part of the traffic stream is not incorporated in A, but is 
modeled by a stochastic process. 

The reduction of A; does not affect the waiting time distribution in individual queues. 
Correlation between the waiting times of the cell under study is however approximated. 
We first consider both effects and then the accuracy of PCD. 

Waiting times in individual queues are unaffected 

In ideal CD the cell waiting time distribution in queue i is determined by considering 
all possible cell arrival patterns A,. The influence of a particular pattern on the cell 
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waiting time distribution is determined by its probability. In PCD the length of the traffic 
description Ai is much smaller. It is however possible to retain the cell waiting time 
distribution even in PCD. 

This is achieved by considering the state of queue i (at the moment that the traffic 
description Ai begins) as a random variable, denoted by Q;. The distribution of Q; is the 
steady-state distribution of queue i, given that A; is the coming cell arrival pattern at 
queue i from queue i - 1. In this modified procedure, the cell waiting time distribution 
in queue i is again determined by considering all cell arrival patterns A; and queue states 
Q;. The influence of a combination of A; and Q; is given by its probability. So if the 
distribution of Q; is exactly known, the cell waiting time distribution is also exact. 

Correlation between the waiting times of a cell is approximated 

As previously remarked, reduction of the length of A; also affects the CD method as far 
as correlation between the waiting times of a cell is concerned. This second effect is more 
important and we will discuss it at length. 

The CD method is no longer exact, but is applied as an approximation. As previously 
indicated, the part of the traffic stream from queue i - I to queue i that is not incorporated 
in the traffic description A, is accounted for by the random variable Q;, representing the 
state of queue i at the moment that A; starts to apply. 

Correlation between the waiting times of a cell in different queues is due to dependence 
between the cell arrival streams at these queues. The waiting time of a cell is, however, 
only determined by the part of the arrival stream that immediately precedes the cell under 
study. It suffices that A, allows to correctly construct the busy period4 to which the cell 
under study belongs. Previous busy periods do not contribute to the waiting time of the 
cell under study. Mostly a busy period comprises a rather small number of cells. So if the 
length of A, is almost always sufficient to reconstruct the busy period of the cell under 
study, it is acceptable that the CD method does not account for correlation between Q, 
and Qj,J # i, 1 :S i,j :Sn. 

PCD is a combination of decomposition (to determine the Q;'s) and considering the 
whole tandem network (by means of the A,'s to determine the cell waiting times). Next, 
we elaborate this idea. 

After reduction of the traffic description length, the CD method is applied as an approx
imation. In (6.1), the conditional probability Pr(W;,Ai+l I A;) no longer exactly equals 
Pr(Wi, A1+1 J 51_ 1 , A;), but it does so approximately. A; no longer necessarily incorporates 
all relevant information on the cell arrival stream at queue i. So, S,_1 might add new 
information to the condition and may not be left out just like that. 

To examine the accuracy of this approximation and to clarify the PCD procedure, we 

4 A busy period of a queue is a period in time during which the server is occupied without interruption. 
Immediately before and after a busy period, the server is empty. 
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take a closer look at the approximation by incorporating Q; into Pr(W" A,+1 I S;_1, A.,) 5 
: 

;::,; 

Pr(W; = w;,A;+l = a,+1 I S;-1 = .5;-1,A; =a;) 

z .. 
Lq; 
Lq, 
Lq, 
z .. 
Pr 

Pr(W; = w;, A.+1 = a;+1, Q; = q; I Si-I = s;_,, A;= ii;) 

Pr(Q; = q; I Si-1 = Si-1 o A; = a,)Pr(W; = w" A;+i = ii,+1 I s,_I = s,_1, Ai =a,, Q, =' 
Pr( Q; = q; I s,_1 = Si-], A; = a;)Pr(W; = W;, A;+1 = ii;+1 I A; =a;, Q; =qi) 

Pr(Q; = q; I A;= ai)Pr(W; = w,, A;+1 = ii;+l I A;= a;, Q; = q;) (6. 

Pr(W; = w;,Ai+l = ii;+1,Q; = q; I A;= a;) 

(W, = w,, A.i+1 = a,+i I A; = a;) 

The approximation is that Pr(Q, I 5;_1 ,A;) is approximated by Pr(Q; I A.1). We will in a 
moment examine its accuracy, but first present the PCD method in its entirety. 

The PCD procedure is obtained by substituting (6.2) for Pr(W;, A;+1 Is,_,, A,) in the 
ideal CD procedure: 

s 

I: I: Pr(S;_, = s - w;, A;= a;) 

I: Pr(Q; =qi I A;= a;)Pr(W; = w;, A;+1 = ai+1 I A;= a,, Q, = q,) (6.3) 
qi 

Correlation between cell arrival streams is embodied in the conditional probability Pr(Wi, 
A;+l I A,, Q,). The calculation of the probabilities in (6.3) is deferred till the next section. 

Accuracy of practical conditional decomposition 

The approximation in PCD is that Pr(Q; I S;_i, A,) is replaced by Pr(Q, I Ai). It is more 
accurate if the cell waiting times (embodied by Si-i) are to a lesser extent determined by 
the early part of the cell arrival stream (embodied by Q;). If a queue empties in the interval 
that the traffic description A applies, Q does not influence the waiting time of the cell under 
study. When the length of the traffic description A increases, the probability that a queue 
empties while it applies increases as well, and the accuracy of the approximation increases 
accordingly. 

We obtain numerical results on the accuracy of the approximation by comparing the 
length of A and the age of the busy period at the moment that the cell under study arrives. 
If the age of the busy period is smaller than the length of A, the queue becomes empty 
while A applies. 

We simplify the analysis by considering a non-slotted M/D /1 queue. At unchanged 
server load, busy periods in this queue are longer than in a queue in which the arrival 

5In this derivation, we applied consecutively: the law of total probability; Bayes' rule; the fact that, 
conditioned on Ar and Qt, Wi and Ai+l are independent of Si-l; the approximation; Bayt:s) rule; and, 
finally. again the law of total probability. 
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Table 6.1: Survivor function of the age of the busy period in an M/D/1 queue at two values 
for the traffic load, p. # denotes the number of service times 

# p = 0.80 p = 0.95 
0 0.80 0.95 
5 0.46 0.74 

10 0.32 0.63 
20 0.18 0.47 
30 0.11 0.35 
40 0.07 0.26 
50 0.05 0.19 

process is more smooth than a Poisson process, because a more smooth arrival process 
decreases congestion. The busy period distribution in an M/D /1 queue provides an up· 
perbound on the busy period distribution in the queues that we consider in this chapter. 
So, we are considering a worst case situation. 

Kleinrock [1975] gives an expression for the distribution of the busy period length in 
an M/D /1 queue. He also gives the relation between the distribution of the age of the 
busy period at an arbitrary point in time and the distribution of the busy period length 
itself. Further, according to the PASTA-property (i.e. Poisson arrivals see time averages) 
the state of the M/D /1 queue at the moment of cell arrival is in distribution equal to the 
state at an arbitrary point in time. This allows calculation of the distribution of the age 
of the busy period at the moment of cell arrival. 

Tab. 6.1 shows the survivor function of the age of the busy period (i.e. the probability 
that the age is longer than indicated). The results in the table show that the traffic 
description A may be confined to a small number of slots and still exceed the age of the 
busy period in most cases. For example, the probability that the age of the busy period 
exceeds 20 slots is 0.18 if the server load is 0.8. So if the traffic description length is 20 
slots, correlation (between the waiting time in the queue under study and the waiting 
times in upstream queues) is correctly modeled in 82 % of all cases. In the other 18 % 
of the cases, a part of the correlation is captured and PCD is still more accurate than 
straightforward decomposition. Increasing the server load increases the required length of 
the traffic description. 

In this section, CD has been described and analyzed. Later in this chapter (in Sect. 
6.4), we will confirm the accuracy of the PCD method by comparison with simulation 
results. In the next section, we will first outline the calculations that are required to apply 
PCD to the VC model (see Sect. 6.1). 
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6.3 Application of practical conditional decomposi
tion to the VC model 

In this section, we will show how to apply the PCD method to the VC modeL The descrip
tion of PCD in the previous section was rather abstract and needs further clarification. 

For reference purposes we repeat the PCD method (6.3) at this point: 

Pr(S; = s, A;+1 = a;+l) ~ 
' L L Pr(S,_, = s - w;, A;= a;) 

ii, w,=O 

L Pr( Qi= q; I A;= a;)Pr(W; = w., A,+1 = a,+1 I A.,= a,, Q; = q;) 
q, 

We consider the cases of crossing interference and partly joining interference. (In case of 
completely joining interference, the methods for partly joining interference can be applied 
after the cell routing probability has been chosen appropriately.) 

6.3.1 Crossing interference 

In case of crossing interference, the traffic stream from a queue in the VC model to the 
next queue consist only of cells of the VC under study. 

In step i of the PCD method (6.3) the probability distribution Pr(S;, Ai+l) is deter
mined, 1-::; i-::; n. Calculation of Pr(S1,A;+l) requires that the following distributions are 
known: Pr(Si-1 ,A,), Pr(Q; I Ai), and Pr(W;,A;+1 I Qi, A;). Pr(S;_ 1,A;) is obtained in 
step i - 1 of the PCD method. The other two distributions have to be calculated. 

We first describe a Markov chain model of queue i that is required in the calculation 
of the two distributions. Then we indicate how the distributions are obtained from the 
Markov chain. 

A Markov chain description of queue i 

Queue i in the VC model is described by a Markov chain. The purpose of this Markov 
chain is twofold. As far as step i of the PCD method is concerned, it allows to calculate the 
two missing distributions. It should however also allow to characterize the traffic stream 
from queue i to queue i + 1, so that a similar Markov chain can be drawn up for queue 
i + 1. We first focus on the second purpose. 

The traffic stream from queue i - 1 to queue i of the VC model is modeled by the joint 
distribution of a fixed number (say m) of cell interarrival interval lengths: 

Pr(L;,n, Li,n-1, · · ·, Li,n-(m-1)), (6.4) 

where n counts the cells on the VC under study, m is the number of cell interarrival intervals 
in the model of the traffic stream on the VC under study, and L;,n is the interarrival interval 
length on the VC under study at queue i between the cells n and n - 1. 
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The QNP VG traffic characteristics change does occur, i.e. queue i changes the char
acteristics of the traffic stream on the VC under study. The effect is however small and 
has little impact on the waiting time in a single queue, unless the rate on the YC is high 
(see Sect. 5.2). We do account for the effect however, because it plays a role in the QNP 
waiting time correlation. 

The appropriate value of m is determined by correlation between cell interarrival in
tervals in the traffic stream. As previously indicated, the amount of correlation that is 
caused by queuing in the network is small. So, the number of cell interarrival intervals in 
the traffic description may be small as well. 

The Markov chain describes queue i in the slots that a YC cell arrives from queue i -1-
The state of queue i is indicated by the waiting time Wi,n of the arriving YC cell (in this 
case, cell n). The waiting time completely describes the state of the queue, because we 
assume that the YC cell is put into the buffer of the queue before any interfering cells that 
arrive in the same slot. 

The discrete-time Markov chain describing queue i is: 

{(W,,n, W,_n-1, .. - , Wi,n-(m- 1 ), L;,., L;,n-1, ... , L;,n-(m-2J), n E {1, 2, ... } } , (6.5) 

where n counts the cells on the VC under study, m is the number of cell interarrival 
intervals in the model of the traffic stream on the VC under study, W;,n is the waiting time 
of cell n in queue i, L,,n is the interarrival interval length on the VC under study at queue 
i between the cells n and n - 1. Note that the number of cell interarri val intervals in the 
Markov chain is m - 1 instead of m. 

This Markov chain describes a possibly very large state space, which might be an 
impediment for the practical application of the method. The size of the state space is 
essentially determined by m. In the examples that follow, we will set m to 2, and we will 
show that this provides an accurate traffic description. 

The transition probabilities in the Markov chain are easily obtained: 

L.,(n+l)-(m-2) L;,n-(m-3) 

L;,(n+1)-1 

The distribution of L;,(n+I) conditioned on (Li,(n+1)-l, ... , Li,(n+l)-(m- 2J) follows from the 
description (6.4) of the VC traffic stream from queue i - 1 to i. 

w .. {n+l)-(m-1) W;,n-(m-2) 

W;,(n+1J-1 

The distribution of W;,(n+I) is obtained by analyzing the evolution of queue i between the 
arrivals of VC cell n and cell n + !. W.,n is the waiting time of cell n. In the slot that 
cell n arrives, also interfering cells arrive at queue i. In the following Li,(n+l) - 1 slots only 
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interfering cells arrive. W,,(n+t) is the waiting time of cell n + 1 that arrives at queue i 
Li,(n+l) slots after cell n. 

The fully specified Markov chain (6.5) can be solved for its steady-state distribution. 
The first application of the Markov chain is to establish the traffic description of the 

VC traffic stream from queue i to queue i + l, The traffic description can be derived from 
the random variable: 

This random variable is the state of the Markov chain extended with 1 cell interarrival 
interval. Its distribution is obtained by considering the Markov chain at two consecutive 
epochs. The relation between the random variable and the random variable describing the 
traffic stream on the VC under study is: 

(L,+i,n, ·. ·, Li+l,n-(m-1)) = 
(L,,n - Wi,n-1 + W,,,,, ... , Li,n-(m-1) - W;,n-m + W;,n-(m-1J) 

We next indicate how the two probability distributions required by PCD can be derived 
from the Markov chain (6.5). 

Calculation of Pr(Q; I A;) 

The traffic description A; describes the traffic stream from queue i - 1 to queue i during 
the interval that immediately precedes the cell under study. The traffic description is again 
a fixed number k of cell interarrival interval lengths: 

Pr(A,) = 

limn~00 Pr(L;,,,, ... , L;,n-(k-1)) 

The appropriate number k is determined by considerations on the QNP waiting time cor

relation. If k is larger, the QNP is taken into account more accurately. Normally, we would 
choose k ::'.':'. m. The number of slots that the traffic description A., comprises varies. 

Q; is the waiting time in queue i of the first cell in A.,: Q, = Wi,n-k· 

Pr(Q; I A,)= 
limn~00 Pr(W,,n-k I L;,n, Li,n-1, .. ·, Li,n-(k-1)) 

Pr(Q; I A;) is derived from the steady-state distribution of: 

(6.6) 

which is obtained by considering m - k + l consecutive epochs of the Markov chain (6.5). 
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Calculation of Pr(Wi, Ai+i I Qi, A;) 

Pr(W;, A.+1 I Qi, Ai)= 
Ji,r;,;, Pr(W;,n, Li+J,n, · ·, L;+J,n-(k-1) J Wi,n-k, L;,n, · · ·, Li,n-(k-1)) 

The probability distribution follows again by considering m - k + 1 consecutive epochs 
in the Markov chain (6.5). 

6.3.2 Partly joining interference 

In case of partly joining interference, the traffic stream from queue i to queue i + 1 in the 
VC model consists of cells of the VC under study a.nd interfering cells. 

To apply the PCD method to the VC model at partly joining interference, we have to 
modify the description of the traffic stream between queues. To this end, we extend the 
model for the traffic stream on the VC under study to include a description of interfering 
cells. 

We first describe the model and its accuracy. Then we present the Markov chain model 
of a queue in the VC model at partly joining interference. The Markov chain forms the 
basis for the calculations in the PCD method. Finally, a simplified model for the internal 
traffic stream is given. 

Internal traffic stream model 

The ideas that have formed the internal traffic stream model are first that it extends the 
model of the traffic stream on the VC under study and second that it is as simple as 
possible and yet captures the QNP waiting time correlation. 

We modeled the traffic stream on the VC under study by the joint distribution of a 
number of cell interarrival interval lengths. We add interfering traffic to this model by 
indicating the rate of interfering cells during each cell interarrivaI interval on the VC under 
study. So, the internal traffic stream is described by the joint distribution of a number of 
paired random variables. Each pair of random variables describes respectively the length 
of a cell interarrival interval on the VC under study and the rate of interfering cells during 
that interval. It is essential that the rate of interfering cells is allowed to change after each 
cell on the VC under study. This change captures the QNP waiting time correlation. 

By accounting only for the rate of interfering cells, we neglect any details and confine 
ourselves to a minimum traffic description. We do not indicate the cell positions in the 
interval or even the exact number of cells. The internal traffic stream model assumes that 
interfering cells form a Bernoulli process6• The rate of the Bernoulli process is the rate of 
interfering cells indicated by the traffic description. So, it is in general different in each 
cell interarri val interval on the VC under study. 

6 In the present context, a stochastic process is a Bernoulli process if the probability that a cell appears 
in a slot is independent and identically distributed. Either one or no cell appears. The probability that a 
cell appears equals the rate of the process. 
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The internal traffic stream model approximately accounts for the three QNP. The model 
accounts for the QNP waiting time correlation (due to interfering cells) and the QNP 
(interfering) traffic characteristics change by changing the rate of interfering cells after 
each cell on the VC under study. The model incorporates the QNP VC traffic stream 
correlation by representing the VCs that form the internal traffic stream in a single model. 
The model allows at most one cell in each slot and simultaneously changes the traffic 
characteristics of all VCs. 

Accuracy of the internal traffic stream model 

The output stream of a queue is an on-off process: during a busy period of the server 
cells are transmitted in contiguous slots, during an idle period no cells are transmitted. 
All cells of the VC under study in the output stream are routed to the next queue in the 
VC model. Interfering cells are routed to the next queue at random. The essential point 
concerning the accuracy of the internal traffic model is that only the rate of interfering 
cells is indicated. The number of interfering cells and the slots in which they occur are not 
indicated. 

In the next section, we will show that the internal traffic model is sufficiently accurate 
for the PCD method. With respect to the PCD method, it is important that the QNP 
waiting time correlation is accurately captured. Here, we argue that the internal traffic 
model allows accurate estimation of the cell waiting time in a single queue of the VC 
model. We show that the traffic model is exact at three extremes, so that it is reasonable 
to assume that the model is accurate near those extremes. 

Heavy and light traffic The internal traffic model is exact at two extremes: heavy and 
light interfering traffic. In heavy traffic, no idle periods occur in the queue output stream, 
so the traffic model is exact. In the light traffic limit, never two cells simultaneously 
arrive at the queue. So, the queue output stream is the superposition of the input streams 
(namely, the internal traffic stream and newly arriving interfering cells). In the light traffic 
limit, the Poisson process model for interfering cells equals a Bernoulli process. So, the 
internal traffic model is again exact. 

Few interfering cells in the internal traffic stream The probability that an inter
fering cell in the queue output stream proceeds to the next queue in the VC model tends 
to be rather small. (A part of the internal traffic stream has to be attributed to the VC 
under study.) If the probability approaches O, the internal traffic model is exact. The nu
merical results that follow show that the internal traffic model is accurate at small routing 
probability. 

For the sake of the argument, we consider an extreme case of the VC model at partly 
joining interference: 2 queues and the rate on the VC under study is 0. The internal traffic 
stream model is a Bernoulli process, without rate changes. Obviously, the accuracy of the 
internal traffic model is better if the rate on the VC under study is high and the rate of 
interfering cells changes. 
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Figure 6.1: Comparison between the waiting time in the second queue of two tandem queues 
(solid) and in an B+M/D/1 queue (dashed). Server loads are 0.5. Lower pair of lines: 
fan out is 2 and load Bernoulli process is '¥, respectively; upper pair of lines: Jan out is 4 
and load Bernoulli process is 2:f, respectively. 

The complexity of this extreme case is small. So small that the Markov chain describing 
it can be solved numerically (see also Ch. 4). In this way, we determine the cell waiting 
time distribution in the second queue for cells that pass through both queues. 

The internal traffic model for the traffic stream from the first to the second queue is 
a Bernoulli process. So, the approximation of the second queue is an B+M/D/1 queue, 
where the Poisson process (M) represents newly arriving interfering cells. The Markov 
chain describing the B+M/D/1 queue is also easily solved numerically. In this way, we 
approximate the cell waiting time distribution in the second queue for cells that pass 
through both queues. 

Comparison of the two cell waiting time distributions gives an indication of the accuracy 
of the internal traffic model. In the examples that follow, the 2 tandem queues are equally 
highly loaded. Cells that simultaneously arrive at a buffer are put into the buffer in random 
order. Buffer sizes are finite: 50 cells. 

Figs. 6.1 and 6.2 show waiting time survivor functions for server loads 0.5 and 0.9, 
respectively. In each figure, two different values for the fan out from the first to the second 
queue are considered. Comparison of the solid (exact) and dashed (internal traffic model) 
curves shows that the internal traffic model provides a lower bound on the actual cell 
waiting time distribution. The explanation is that the output stream from the first queue 
in the two tandem queues is more bursty than a Bernoulli process. The figures show that 
the internal traffic model becomes more accurate if fan out increases. (Remark that if 
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Figure 6.2: Comparison between the waiting time in the second queue of two tandem queues 
(solid) and in an B+M/D/1 queue (dashed). Server loads are 0.9. Lower pair of lines: 
fan out is 2 and load Bernoulli process is 9;[, respectively; upper pair of lines: fan out is 4 
and load Bernoulli process is ¥, respectively. 

fan out increases both distributions approach the waiting time distribution in an M/D/l 
queue.) 

A Markov chain description of queue i 

In case of partly joining interference the calculations in the PCD method closely resemble 
the calculations in case of crossing interference. The main adjustment to be made is an 
extension of the Markov chain describing a queue in the VC model. 

The traffic stream from queue i - 1 to queue i of the VC model is modeled by the joint 
distribution of m cell interarrival interval lengths and m rates of interfering cells: 

Pr(L,.n, · · ·, Li,n-(m-1), R;,n, · · ·, Ri,n-(m-1)), 

where R;,n is the rate of interfering cells in the internal traffic stream from queue i - 1 to 
queue i in the interval between the VC cells n - 1 and n. 

The extended Markov chain describing queue i is: 

{ ( W,,n, W;,n-1, ... , VV.,n-(m-1)1 

Jt,n, 11-,n~l, · · · 1Ji,-n-(m-2)1 

Li,n, Li,n-h · · ·, Li1n-(m-2))~ 
Ri.n, Ri,n-1, ... , R;,n-(m-2), n E { 1, 2, ... } }, 
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where Ii,n is the number of arrivals of interfering cells at queue i in the interval between 
the arrivals of VC cells n - 1 and n. Ii,n includes cells that arrive from queue i - 1 and 
newly arriving interfering cells. It is required to determine R(i+l],n· 

The transition probabilities in this Markov chain are again easily obtained. The distri
bution of (Li,(n+i), Ri,(n+i) follows from the description of the internal traffic stream. The 
distribution of (W;,(n+J), Ii,(n+i) follows from the evolution of queue i between the arrivals 
of the cells n and n + 1 on the VC under study. 

The model of the internal traffic stream from queue i to queue i + 1 is obtained by 
considering that: 

L;,n - W.,n-1 + W"" 

R;+l,n 
1 f;,n 

f . L,+i,n - 1' 

where J is the fan out from queue i to queue i + 1. J accounts for cell routing. 

A simplified model of the internal traffic stream 

The internal traffic model developed in this section is still too complex in case of partly 
joining interference. The model is the joint distribution of a fixed number of VC cell 
interarrival interval lengths and the rates of interfering cells during these intervals. This 
traffic description easily becomes too complex for numerical evaluation of (6.3), regarding 
both storage space and calculation time in a computer. In order to circumvent this problem, 
we introduce a rougher and less costly traffic model. In the next section, we will show that 
it is accurate. 

The idea behind the simplified traffic model is that it is not required to indicate the 
exact value of the rate of interfering traffic during a VC cell interarrival interval, but that 
- to capture correlation between cell waiting times - it suffices to indicate essentially the 
direction into which the rate deviates from its mean value. Moreover, as the description 
of interfering traffic is approximate anyway, it is not useful to maintain a false idea of 
accuracy by allowing the rate to vary virtually continuously. 

In the simplified traffic model, the range of possible values of the rate R of interfering 
traffic during a VC cell interarriva! interval is divided into non~overlapping areas, e.g. 
0 ::; R < r1(ow)> 1'/(ow) ::; R < rh(igh), rh(igh) ::; R. The simplified traffic model indicates the 
area in which R lies, instead of R itself. 

The probability that a particular area is selected is the probability that the actual rate 
lies in this area, e.g. Pr(r1 <:'. R < rh) = Lr,Sr<r, Pr(R = r). When calculating cell waiting 
times, we have to choose a rate for each area. We have chosen the mean rate in the area, so 
that the rate of interfering traffic is not changed by the simplification of the traffic model. 
E.g. the rate corresponding to the area r1 ::; R < rh is: Lr,Sr<rh r · Pr(R = r)/Pr(ri S 
R < rh)· 
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6.4 Accuracy of conditional decomposition 

In this section, we consider the end-to-end cell waiting time distribution in the ATM 
VC model. We compare numerical results obtained. by the PCD performance evaluation 
method with simulation results. The purpose of this comparison is to asses the accuracy 
of the PCD method. 

The tail of the end-to-end cell waiting time distribution cannot be estimated accurately 
by simulation at the extremely low cell loss probabilities that are required in an ATM 
network. So, we validate the PCD method at a relatively high loss probability. A lower 
cell loss probability can be achieved in two ways: lower server loads or longer buffers. If 
server loads are lower, the PCD method is more accurate, so that the validation at high 
loss probability is sufficient. If buffers are longer, the PCD method might be less accurate, 
so that in that case a somewhat longer traffic description may be required than expected 
on the basis of the validation that follows. 

The ATM VC model is a tandem network of queues. The service time in each queue 
is 1 slot. The servers are synchronized and service operation is slotted. Buffer sizes are 
finite. The cell interarrival time on the VC under study is fixed. At each queue, interfering 
cells that newly arrive at the tandem network form a Poisson process. Their routes are 
independent and identically distributed. 

Next, we consider crossing and partly joining interference, respectively. 

6.4.1 Crossing interference 

In this subsection, we consider the case of crossing interference. We compare with simula
tion results the assessment by the PCD performance evaluation method of the end-to-end 
cell waiting time in the VC model. 

In the present example, the VC model consists of 5 queues in tandem. The server load 
(i.e., the fraction of slots in which the server would be occupied if there were no cell loss) is 
0.8 for all queues. The traffic stream on the VC under study is initially (i.e., at the entrance 
into the tandem network) periodic with period 10. So, the rate of the Poisson interfering 
traffic is 0. 7 at each queue. We consider two buffer sizes: 10 and 20, respectively. 

The Figs. 6.3 and 6.4 show the survivor function of the end-to-end waiting time in the 
VC model at queue buffer size 10. Fig. 6.3 shows results obtained by simulation. In this 
figure, two end-to-end waiting time distributions are shown together with the corresponding 
95 3 confidence intervals. The solid, lower set of lines represents the actual end-to-end 
waiting time distribution. The dashed, upper set of lines represents the approximation of 
the end-to-end waiting time distribution that is obtained by neglecting correlation between 
the waiting times of a cell in different queues. The end-to-end distribution is the convolution 
of the distributions for the individual queues. Note that the confidence interval is so small 
that it is hardly discernible. 

Comparison of the two sets of curves in Fig. 6.3 shows that the waiting times of the 
cell under study are negatively correlated. Long end-to-end waiting times are less likely in 
reality (solid lines) than predicted by assuming independent waiting times (dashed lines). 
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Figure 6.3: End-to-end cell waiting time distribution in 5 tandem queues. Crossing inter
ference only. Period traffic under study: 10. Rates interfering Poisson traffic: 0. 7. Buffer 
size: 10. Simulation results with 95 % c.i. (solid lines: no decomposition; dashed lines: 
decomposition). 

Long waiting times in one queue are likely to be followed by short waiting times in a 
subsequent queue and vice versa. Negative correlation is entirely due to change of traffic 
characteristics on the VC under study. So, change of VC traffic characteristics is relevant 
to the end-to-end waiting time. Change of YC traffic characteristics does, however, not 
significantly influence the waiting time in a single queue (see Sect. 5.2). 

Fig. 6.4 repeats the simulation results of Fig. 6.3 (without confidence intervals) and 
adds results obtained by the PCD performance evaluation method and by straightforward 
decomposition. The results obtained by calculation are indicated by crosses (lower set 
of crosses: conditional decomposition, upper set of crosses: decomposition). The traffic 
descriptions used in the PCD method comprise 2 VC cell interarrival intervals. This holds 
for both the traffic description to determine Q and for A in (6.3). 

The calculated results give a perfect approximation of the simulation results. For the 
case of decomposition, this implies that the waiting time distribution in an individual 
queue can accurately be obtained on the basis of a VC traffic description that is the joint 
distribution of 2 YC cell interarrival intervals. For the case of the PCD performance 
evaluation method, this implies that it is sufficient if the condition comprises 2 VC cell 
interarrival intervals. 

In the preceding example we assumed a buffer size of 10 cells. The numerical complexity 
of the PCD method increases considerably with increasing buffer size. Buffer size 10 is 
rather small, so the probability that a cell is lost is high, namely approximately io-3 in 



114 CHAPTER 6. PERFORMANCE EVALUATION FOR NON-BURSTY TRAFf!C 

,.·~-=:-----------------, 

" \ ' \ 
' 

;I),;\-~ 

\ 
x 

\ 

' \ 
\< 

\ 

10-4 f-r-~~f-r-~~<-r-~~+--,-~~+--,-~~ 

• 10 15 

Figure 6.4: End-to-end cell waiting time distribution in 5 tandem queues. Crossing inter
ference only. Period traffic under study: 10. Rates interfering Poisson traffic: 0. 7. Buffer 
size: 10. Simulation results (solid line: no decomposition; dashed line: decomposition). 
Calculated results (lower set of crosses: conditional decomposition; upper set of crosses: 
decomposition). 
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Figure 6.5: End-to-end cell waiting time distribution in 5 tandem queues. Crossing inter
ference only. Period traffic under study: 10. Rates interfering Poisson traffic: 0. 7. Buff er 
size: 20. Simulation results {solid line). Results calculated by PCD {dashed: 1 interval in 
condition; point-dash: 2 intervals in condition). 

each queue. Loss of cells reduces the length of a busy period. A busy period of which 
the length is reduced by loss is likely to be a long busy period. Reduction of the length 
of busy periods increases the accuracy of the PCD method. Next, we consider the same 
VC model, however, with buffer sizes doubled to 20 cells. The probability of cell loss is 
then much lower, namely approximately 10-5 in each queue. As a result, the results of the 
performance evaluation method are less accurate. 

Fig. 6.5 shows the survivor function of the end-to-end cell waiting time in the VC model 
at buffer size 20. It compares simulation results (solid line) with results calculated according 
to the PCD method. In the PCD method, the traffic description used to determine Q 
comprises 2 VC cell interarrival intervals. The dashed line is the result if the condition A 
is a traffic description of 1 VC cell interarrival interval. The point-dash line is the result if 
the condition A is a 2 VC cell interarrival interval description. 

Comparison of the point-dash and dashed curves with the solid curve shows that the 
PCD method is clearly less accurate at buffer size 20 than at buffer size 10. Accuracy can 
be improved by increasing the length of the traffic description in the condition, as follows 
by comparing the curves at a 1 interval description (dashed) and at a 2 interval description 
(point-dash). 
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Figure 6.6: End-to-end cell waiting time distribution in 3 tandem queues. Partly joining 
interference. Fan out: 2. Period traffic under study: 10. Rates interfering traffic: 0. 1. 
Buffer size: 10. Simulation results with 95 % c.i. (solid lines: no decomposition; dashed 
lines: decomposition). 

6.4.2 Partly joining interference 

In this subsection, we consider the case of partly joining interference. We compare with 
simulation results the assessment of the end-to-end waiting time survivor function obtained 
by the PCD method. 

In the present example, the VC model consists of 3 queues in tandem. The server load 
is 0.8 in all queues. Fan out is 2. The traffic stream on the VC under study is initially 
periodic. We consider two periods: 10 and 15, respectively. Buffer size is 10 in all queues. 
The main issue is the accuracy of the description of interfering cells in the internal traffic 
stream. 

The Figs. 6.6 and 6.7 show the survivor function of the end-to-end cell waiting time in 
the VC model for period 10 on the VC under study. Fig. 6.6 shows simulation results. The 
solid lines give the end-to-end waiting time survivor function and 95 % confidence intervals. 
The dashed lines give the approximation for the end-to-end waiting time survivor function 
(and 95 % confidence intervals) that is obtained by neglecting correlation between the 
waiting times of a cell in different queues. 

Correlation between cell waiting times is observed to be positive, i.e. high waiting 
times are likely followed by high waiting times in subsequent queues. In Fig. 6.6, positive 
correlation shows by the decrease of waiting times if independence is assumed. Note that 
positive correlation is due to the interfering cells. The traffic on the VC under study 
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Figure 6. 7: End-to-end cell waiting time distribution in 3 tandem queues. Partly join
ing interference. Fan out: 2. Period traffic under study: 10. Rates interfering traffic: 
O. 1. Buffer size: 10. Simulation results (solid line: no decomposition; dashed line: de
composition). Calculated results (upper point-dash line: conditional decomposition; lower 
point-dash line: decomposition). 

causes negative correlation, as observed in the previous subsection. In case of partly joining 
interference, both effects are simultaneously active. In this example, positive correlation 
prevails. 

Fig. 6.7 repeats the simulation results of Fig. 6.6 (without confidence intervals) and 
adds results obtained by the PCD method and by straightforward decomposition. The 
upper point-dash line is the result of the PCD method. The lower point-dash line is 
the result obtained by assuming independent queues. The traffic description used in the 
performance evaluation method is of the simplified type. It comprises 2 VC cell interarrival 
intervals. This holds for the traffic description to calculate Q and for A in (6.3). The rate 
of interfering cells during a VC cell interarrival interval is indicated by one of three areas. 
Before cell routing, the mean rate of interfering cells during an interval is 0. 7 · !§! = ~ 
cells/slot. 7 The 3 areas are rather arbitrarily chosen: smaller than ~ - 0.2, larger than 
~ + 0.2, and the center area. 8 

7The rate of interfering traffic is 0.7. The rate of the VC understudy is 0.1. So if we only consider slots 
that are not occupied by the VC under study, the rate of interfering traffic in the queue output stream is 
7 
9-

8We tried several other divisions into areas: a less wide <.:enter area, a wider center area, and 5 areas. 
The result of the method is hardly sensitive to the choice of the areas, except that accuracy is much worse 
for the wide center area case that we considered: smaller than t - 0.3, larger than t + 0.3, and the center 
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Figure 6.8: End-to-end cell waiting time distribution in 3 tandem queues. Partly joining 
interference. Fan out: 2. Period traffic under study: 15. Rates interfering traffic: 0. 733. 
Buffer size: 10. Simulation results and 95 % confidence intervals (solid lines: no decompo
sition,· dashed lines: decomposition). Calculated results (upper point-dash line: conditional 
decomposition; lower point-dash line: decomposition). 

For the case of decomposition, the results in Fig. 6. 7 are very close to each other. So, 
the traffic model is sufficiently accurate to capture the cell waiting time distribution in a 
single queue. The result of the PCD method closely resembles simulation results. So, also 
correlation between cell waiting times is accurately captured. 

Fig. 6.8 repeats Fig. 6.7, however the period on the VC has been increased from 10 to 
15. The results in the figure show that the accuracy of the method is virtually unaffected, 
if the rate on the VC under study is decreased. Decrease of the rate on the VC under 
study makes the description of internal traffic more rough for interfering cells. 

Note that fan out 2, as assumed in this example, is low. At higher fan out, results are 
more accurate due tO the filtering effect of cell routing. 

6.5 Conclusions 

We have shown that the PCD method provides a powerful tool in the analysis of end-to
end cell waiting times in the ATM VC model. Most importantly, it captures the QNP 
waiting time correlation. In case of crossing interference, this correlation is negative. In 

area. If the center area is too narrow or too wide, the effect of correlation between cell waiting times is 
not captured. 
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case of partly joining interference, it is positive. Moreover the method incorporates the 
QNP change of VC traffic characteristics and correlation between VC traffic steams. 

The method allows a trade-off between accuracy of the results and complexity of the 
description of traffic inside the VC model. The traffic description is used to condition 
the waiting times of the cell under study in the queues of the VC model. It is the joint 
distribution of a number of cell interarrival interval lengths on the VC under study and 
the rates of interfering cells during these intervals. 

As far as the QNP VC traffic characteristics change is concerned, the accuracy of the 
PCD method can be increased by incorporating more cell interarrival intervals in the traffic 
description (i.e., larger m) or by describing interfering traffic in more detail. 

As far as the QNP waiting time correlation is concerned, the accuracy of the PCD 
method can be increased by incorporating more cell interarrival intervals in the condition 
on the waiting time (i.e., larger k) or by describing interfering traffic in more detail. The 
numerical complexity of the method hardly depends on k, and is essentially determined by 
m. So, the method is capable of taking the QNP waiting time correlation into account. 

Further, the accuracy of the method is higher if the busy periods of queues are shorter, 
e.g. due to lower server load or due to decreased buffer size. We have examined the 
accuracy of the PCD method in several examples. Conditioning the waiting time on a 
traffic description of 2 cell interarrival intervals is sufficient at small buffer size, say smaller 
than 20 cells. (This holds at parameter values that are typical for ATM: server load not 
larger than 0.8, fan out not smaller than 2, rate on VC under study not larger than 0.1.) 
For larger buffer size, more interarrival intervals should be incorporated in the condition 
on the waiting time (i.e., k should be larger). 

While we demonstrated the application of the method to the case of periodic traffic 
on the VC under study and Poisson interfering traffic, the basic idea of the method can 
be applied to many more types of traffic processes. Extension of the method to other VC 
traffic models is straightforward. In case of partly joining interference, application of the 
method to other cell routing methods than independent and identically distributed cell 
routes is however more difficult. It is difficult to devise other realistic cell routing models. 
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Chapter 7 

VC performance evaluation for 
bursty traffic 

In this chapter, we present a new ATM VC performance evaluation method for bursty 
traffic. An early version of this work can be found in [van Rijnsoever, 1993]. In bursty 
traffic, distinct periods of high and low activity can be distinguished. Examples are many 
forms of computer data and video. 

The performance evaluation method takes into account the queuing network phenomena 
(QNP) as far as they are due to overload of the multiplexers on the VC under study. The 
main motivation for the method is the QNP waiting time correlation. The restriction 
to overload is accurate, because during underload the QNP are much less relevant than 
during overload, and performance is mainly determined by overload. The accuracy of the 
performance evaluation method is shown by comparison with simulation results. 

The method that we present differs from methods presented in the literature (see Ch. 
4) by the incorporation of all three QNP. Most performance evaluation methods presented 
in the literature neglect correlation between cell waiting times. In addition, they either 
neglect correlation between VC traffic streams (see 4.5) or assume a very rough cell routing 
model (see 4.4). One method partly takes into account correlation between cell waiting 
times (see [Kroener et al., 1992] and 4.6). The method presented here fully accounts for 
this QNP. 

We model the traffic streams on the VCs in the network by independent and identical 
on-off processes of the interrupted Poisson process (IPP) type. The performance evaluation 
method requires that the multiplexers that form the ATM VC model are operated as 
statistical multiplexers in the burst level congestion region. 1 All multiplexers are identical, 
and they have equal loads. 2 

1 A multiplexer is a statistical multiplexer if the demand for transmission capacity is allowed to occa
sionally exceed the transmission capacity of the multiplexer during a relatively long period of time. Such a 
period is called an overload period. Operation in the burst level congestion region means that an attempt 
is made to buffer all excess traffic during an overload period. 

2If the multiplexers are not identical, the performance evaluation method can independently be applied 
to the parts of the VC that do have identical multiplexers. It is not possible to take into account the QNP 
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The basic operation in the performance evaluation method is to reduce the VC model 
of, say, n queues in tandem to only two queues in tandem. The traffic streams through 
these two queues are chosen such that the overload behavior of the two queues models 
the relevant part of the overload behavior of then queues that form the ATM VC model. 
Modeling of the traffic streams is based on a traffic aggregation technique. The two tandem 
queues model is solved numerically. 

This chapter is outlined in such a way that the ATM VC performance evaluation method 
is gradually developed. First it presents the VC model. Then it extends traffic aggregation 
and performance analysis first from a single statistical multiplexer to two queues in tandem 
and then to more than two queues in tandem. The chapter ends with conclusions. 

7.1 A tandem queuing network model of the VC un
der study 

ln this section, we model a VC through the ATM queuing network model for the case of 
bursty VC traffic streams (see 4.1.1). (Smooth VC traffic streams have been addressed in 
the previous chapter.) The VC model allows to evaluate the end~to~end cell waiting time 
distribution on the VC under study, without explicitly taking into account all queues in the 
ATM queuing network model. It represents only the queues of the ATM queuing network 
model through which the VC under study passes. So, it is a network of queues in tandem, 
a tandem queuing network. 

The ATM VC model is a tandem network of, say, n identical queues. In each queue the 
service time is fixed and the buffer size is finite. To simplify the model, we assume that 
the queues are synchronized. The VC under study passes through all n queues. Other {i.e. 
interfering) VCs join the tandem queuing network at one of the queues and depart from 
the tandem network after this queue or after a subsequent queue. So, we consider the case 
of partly joining interference or of crossing interference. 

We assume that the same number of VCs passes through each queue in the VC mod. In 
addition we assume that the same number of VCs passes through each pair of consecutive 
queus. This is less restrictive than it seems, because network design will be based on a 
maximum load of the network. Further, fan out3 should not be very small (e.g., not smaller 
than 2). 

In the remainder of this section, we model traffic streams on VCs, describe the mode 
in which the multiplexers in the network operate, and indicate the performance measure 
of interest. 

waiting time correJation between queues that are in different parts. 
3 Fan out is the ratio of the number of VCs multiplexed by a queue and the number of VCs that remains 

in the VC model after that queue. 
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Figure 7.1: Interrupted Poisson Process 

7.1.1 IPP model of a VC traffic stream 

This chapter concerns bursty VC traffic. The type of bursty traffic that we consider is 
on-off traffic. On-off traffic is a generic building block in traffic modeling (see Ch. 2). 
Several on-off traffic sources may together represent a single, more complex traffic source. 
The specific on-off YC traffic model that we use is the interrupted Poisson process (IPP). 
(See also 4.1 for a motivation of the IPP model.) 

The traffic stream on each VC is modeled by an independent and identical !PP. In an 
IPP, the alternation between on- and off-periods is described by a two-state discrete-time 
Markov chain. In the on-state cells are generated; in the off-state no cells are generated. 
The lengths of on- and off-periods are geometrically distributed. In the on-state, cells are 
generated according to a Poisson process4

• 

The !PP model is described by three parameters (see Fig. 7.1): T the mean sojourn 
time in the on-state (unit: cell transmission time or, equivalently, service time), I the cell 
generation rate in the on-state (unit: cell transmission rate), and t the fraction of time 
that the IPP is in the on-state. 

VC traffic streams that newly arrive at the VC model may previously have passed 
through queues of the ATM queuing network model that do not belong to the YC model. 
These traffic streams have been influenced by the QNP traffic characteristics change and 
the QNP VG traffic stream correlation (see Ch. 5). The performance evaluation method 
neglects both effects if they occur in queues that do not belong to the VC model. As 
a result, all VC traffic streams entering the VC model can be described by the same, 
independent IPP. 

Neglecting QNP that are due to queues outside the YC model is accurate: 

4 The VC model is a discrete-time model in which all events occur at slot boundaries. We describe cell 
generation in the on-state of the IPP model by a Poisson process. The Poisson process is a continuous-time 
process. In order to make the IPP traffic model compatible with the VC model, we register cell arrivals 
not until the next slot boundary. This is equivalent to assuming that in each slot of an on-period a batch 
of cells is generated, where the number of cells in a batch is independent and Poisson distributed. 
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• In 5.2, we concluded that the QNP VG traffic characteristics change is only relevant 
if the rate of the VC traffic stream in the on-state is high (relative to the cell trans
mission rate). This does not apply to the VC model that we consider". So, this QNP 
is not relevant and is justifiably neglected. 

• In 5.3, we showed that the QNP VG traffic stream correlation is relevant only if a 
very small number of upstream queues contributes to the traffic load in the queue 
under study. The effect of the phenomenon is ~ssentially to reduce the probability of 
overload of the queue under study. In the performance evaluation method presented 
in this chapter, the QNP is neglected if it is due to queues that do not belong to the 
VC model. It is however incorporated if it is caused by a queue in the VC model. 
We are especially interested in correlation between the waiting times of a cell in the 
queues of the VC model. Simultaneous overload of two queues of the VC model is 
important in this respect. 

7.1.2 Statistical multiplexing 

Each queue in the VC model represents a multiplexer. The multiplexers operate as statis
tical multiplexers in the burst level congestion region (see 3.3). This implies that cell loss 
is determined by burst level congestion. Congestion at the burst level (or, equivalently, 
overload) occurs when the instantaneous cell arrival rate at a multiplexer exceeds the cell 
transmission rate of that multiplexer. The instantaneous cell arrival rate is determined by 
the number of VC traffic streams in the on-state. (In contrast, the mean cell arrival rate 
is determined by the mean number of VC traffic streams in the on-state.) 

The performance evaluation method presented in this chapter assumes that the prob
ability of m + l simultaneously overloaded queues in the VC model is much smaller than 
the probability of m simultaneously overloaded queues, l S m S n - L As we will show 
later, this is ensured if first the probability of overload of a queue is small (e.g., smaller 
than 10-3

) and second fan out is not extremely small (e.g., not smaller than 2). These 
requirements are usually fulfilled in an ATM network. 

7.1.3 Performance measures 

The performance evaluation method presented in this chapter concerns the end-to-end cell 
waiting time distribution in the VC model. Large end-to-end cell waiting times are not 
relevant if they occur with a probability much smaller than the probability of cell loss. (One 
might consider a cell as lost if it has to wait extremely long.) We examine the relation 
between waiting time and cell loss, first in a single queue and then in the VC model. 

5The performance evaluation method developed in this chapter applies to a tandem network of statistical 
multiplexers that operate in the burst level congestion region, see the next subsection. In 3.3, we showed 
that effective application of statistical multiplexing requires the source rate in the on-state to be low 
relative to the cell transmission rate. 
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The probability that a cell is lost in a specific queue of the VC model is of the same 
order of magnitude as the probability that the cell waiting time in that queue is maximum. 
When a queue is overloaded, the excess of cells is first accommodated in the buffer. If 
the overload state persists and the buffer has become completely full, the excess of cells is 
lost. Maximum cell waiting time occurs if one place is left in the buffer of the queue at 
the moment of cell arrival. Loss occurs if no place is left in the buffer. 6 The probability 
of maximum cell waiting time in a queue and the cell loss probability in that queue are of 
the same order of magnitude. 

The probability that a cell is lost in the VC model approximately equals the sum of 
the cell loss probabilities of the individual queues. The end-to-end cell loss probability is 
of the same order of magnitude as the probability that a cell waits for the maximum time 
possible in one of the queues of the VC model. So, we are not interested in end-to-end cell 
waiting times that are much less likely to occur than the waiting time that is caused by a 
single full buffer. 

7.1.4 Summary of the ATM VC model 

In summary, the VC model is a network of queues in tandem, each queue representing a 
multiplexer operating as statistical multiplexer in the burst level congestion region. All 
queues are identical: the service time is l slot and the buffer size is finite. All VC traffic 
streams are modeled by independent and identical IPPs. All queues and traffic streams 
are synchronized at slot boundaries. Through each queue the same number of YCs passes, 
and also through each pair of queues the same number of VCs passes. 

In the next sections, we will gradually develop the performance evaluation method. 
The method allows accurate evaluation of the end-to-end cell waiting time distribution in 
the VC model. It is based on aggregation of the VC traffic streams that are multiplexed by 
a queue. The Sects. 7.2, 7.3 and 7.4 concern respectively a single queue in the VC model, 
two consecutive queues in the VC model and all queues in the VC model. 

7.2 Single queue 

In this section, we consider an arbitrary queue in the VC model. The issue is not analysis 
of the queue itself, but the way in which traffic is modeled. The VC traffic streams that 
arrive at the queue are collectively modeled by an aggregate traffic model. The aggregate 
traffic model is a simple stochastic process. It allows to describe the queue by a Markov 
chain that has a small state space size. Reduction of the state space size is especially 
important when considering several queues in tandem (see the next sections). 

The YC traffic streams that arrive at a queue are aggregated by a slight variant of the 
aggregation procedure for IPPs developed by Baiocchi et al. (see 2.3.4). Baiocchi's aggre-

6If the instantaneous cell arrival rate during an overload period is p (cells/ service time), on average 
p cells arrive at the queue in each slot. Roughly 1 of p cells is put into the buffer, and p - 1 of p cells are 
lost. So the ratio of cell loss probability and probability of maximum cell waiting time is roughly p - 1. 
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gation method approximates the superposition of, say, m independent and identical IPPs 
by a two-state Markov modulated Poisson process (MMPP(2))7

. The aggregation method 
was developed to assess cell loss in a statistical multiplexer. One state of the MMPP(2) 
corresponds to queue overload; the other state to queue underload. The parameters of the 
MMPP(2) are chosen such that the behavior that is most relevant, namely overload behav
ior, is accurately captured. In this section, we first summarize Baiocchi's method and then 
propose a slight modification to better approximate the cell waiting time distribution. 

7.2.1 Summary of Baiocchi's method 

In contrast with our VC model, Baiocchi's aggregation method applies to continuous-time 
VC traffic stream models. In order to apply Baiocchi's method, we first interpret the VC 
traffic streams as continuous-time processes, then apply the method, and finally interpret 
the aggregate traffic stream model as a discrete-time process. This hardly influences the 
accuracy of the method. 

Baiocchi's method approximates an m-IPP /D /1/K queue by an MMPP(2)/D/l/K 
queue. It focuses on overload periods, i.e. on periods during which the instantaneous 
cell arrival rate exceeds the service rate. The overload periods of the MMPP(2) repre
sent the overload periods of the m-IPP that do most harm and determine performance. 
Harmful overload periods last long and comprise many cells. The frequency of overload 
periods in the MMPP(2) is however chosen smaller than in the m-IPP, in order not to 
exaggerate the probability that a cell is lost. The frequency reduction is such that the cell 
loss probability in a queue without buffer is the same for the MMPP(2) and for the m-IPP. 
8

. The aggregation method gives a tight upperbound on the cell loss probability in a queue 
with buffer. 

In the m-lPP, the number of VC traffic streams in the on-state is described by the 
continuous-time Markov chain {M,,t 2:: O,M, E {0,1, ... ,m}}. The overload states are: 
{ i I i-y > 1 }. Overload of the queue starts at the transition of {Mt} from i = l~J to i = I~ l · 
It ends at the reverse transition. The sojourn of the queue in overload is described by the 
sojourn of {Mt} in the states i > l~J. This is a phase-type distribution. 

The aggregation method uses the sojourn time in overload and the number of cell 
arrivals during overload. To determine the distribution of the number of arrivals it assumes 
fluid-flow given the state of {Me}. The distribution of the number of arrivals is obtained 
by modeling the number of cell arrivals in a state of {Mt} instead of the sojourn time. 

The aggregation method equates the following parameters between the m-IPP and the 
MMPP(2): 

• the mean cell arrival rate. 
7The MMPP(2) type of stochastic process closely resembles the IPP type of stochastic process. The 

alternation between the two states of the MMPP(2) is again described by a two-state Markov chain. In 
contrast to the IPP, in the MMPP(2) cells are generated in both states, where the cell generation rate 
depends on the state. 

8 In this step of the procedure a fluid-flow traffic model (see A.3) is assumed, which considerably sim
plifies the calculations. 
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• the slope (at infinity and on a log scale) of the survivor function of the sojourn time 
in an overload period. 

• the slope (at infinity and on a log scale) of the survivor function of the number of 
cells generated in an overload period. Fluid-flow is assumed. 

• the probability of cell loss in a bufferless queue. Fluid-flow is assumed. 

Assuming that it exists, the slope (at infinity and on a log scale) of the survivor function 
of random variable X is: 

Jim dd (ln(Pr(X:,, x))). 
r-oo x 

If X is exponentially distributed (i.e., Pr(X :,, x) = e~>-x, this evaluates to ->.. The 
MMPP(2) approximation represents the most harmful overload behavior of the m-IPP 
process by copying the asymptotic distribution of overload periods. 

As said, the distributions of sojourn time and number of cell arrivals in overload are 
phase-type distributions. The slope (at infinity and on a log scale) of the survivor function 
of a phase-type distribution is relatively easily obtained. (It is the smallest eigenvalue of 
the matrix that describes the distribution see [Neuts, 1989]). 

7.2.2 Modification of Baiocchi's method 

Baiocchi's method was developed to estimate the cell loss probability. The performance 
evaluation method developed in this chapter is about cell waiting times. We found that a 
slight variant of Baiocchi's method provides more accurate results for the cell waiting time 
distribution. The variant is that instead of the cell loss probability in a queue without 
buffer, we equate the probability of cell arrival at an overloaded queue. In calculating this 
probability, we also assume fluid flow. 

The probability of cell arrival at an overloaded queue is important, because it determines 
the transition from cell scale congestion to burst scale congestion in a queue (see 3.3). 
This transition is marked by the 'knee' in the cell waiting time distribution. The modified 
aggregation method ensures that the knee is accurately modeled. 

Figs. 7.2 and 7.3 compare the cell waiting time distributions in an m-IPP /D/1/K queue 
and an MMPP(2)D/1/K queue at different buffer sizes. The MMPP(2) approximates the 
m-IPP according to the modified method described above. The results shown in the figures 
are obtained by solving the Markov chain descriptions of the queues. The Markov chains 
are solved by iteration. The parameters of each IPP are set to values chosen by Kroener 
et al. [1992] (see Ch. 4): T = 500,/ = 0.1,~ = 0.2. 

Comparison of the solid and dashed curves in the Figs. 7.2 and 7.3 shows that the 
modified aggregation method is accurate for the relevant part of the distribution (i.e., the 
tails) and that it slightly overestimates the probability of long cell waiting times. 
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Figure 7.2: Waiting time distribution for an m-IPP/D/1/K queue (solid} and the approx
imating MMPP(2)/D/1/I< queue (dashed}. Parameters: m = 30 (top) or 20 (bottom), 
T = 500, 1 = 0.1, E = 0.2, I<= 100 (top) or 90 (bottom). 
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Figure 7.3: Waiting time distribution for an m-IPP/D/1/K queue (solid) and the approx
imating MMPP(2)/D/1/K queue (dashed). Parameters: m = 30 (top) or 20 (bottom), 
T = 500, I= 0.1, E = 0.2, J( = 200. 
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stream 1 stream 2 

Figure 7 .4: Two tandem queues 

7 .3 Two tandem queues 

In this section, we take the next step in the development of the VC performance evaluation 
method. We extend the method from a single queue in the VC model (see 7.2) to two 
consecutive queues in the VC model. The purpose of simultaneously analyzing two queues 
is to incorporate the QNP waiting time correlation. In the next section, we will analyze 
the entire VC model. 

Fig. 7.4 shows the two tandem queues model. The queues are two consecutive queues 
in the VC model (see 7.1). The VCs that pass through the two queues are classified into 
three streams: VCs that pass only through the first, upstream queue; VCs that pass only 
through the second, downstream queue; and VCs that pass through both the first and the 
second queue. The streams are indicated by, respectively, stream 1, stream 2, and stream 
1-2. 

The main point in this section is the extension of the traffic aggregation method from 
a single queue to two queues in tandem. The purpose of traffic aggregation is to describe 
all VC traffic streams in the two tandem queues model by a simple stochastic model. 
Traffic aggregation should considerably facilitate (numerical) analysis of the Markov chain 
describing the two tandem queues model. Traffic aggregation is even more important in 
the next section when we consider the entire VC model. 

This section is organized as follows. The first subsection describes the approach to 
traffic aggregation. The traffic streams through the two tandem queues are described by a 
four-state Markov modulated Poisson process (MMPP(4)). The following two subsections 
describe how to choose the parameters values of the MMPP( 4). The fourth subsection 
summarizes the choice of parameters. The final subsection shows the accuracy of the 
traffic aggregation method by comparison with simulation results. 

7.3.1 Approach to traffic aggregation 

The VC traffic streams through the two tandem queues are described by the Markov chain 
{(M1.n,M2 .• ,M12,n),M1,n E {O, ... ,md,M2,n E {O, ... ,m2},M12.n E {O, ... ,m,2},n E 
{ 0, 1, ... } } , where Mi,n, i E { 1, 2, 12} is the number of VC traffic streams on stream i that 
is in the on-state in slot n. The state space of this Markov chain is in general too large to 
allow numerical analysis of a Markov chain description of the two tandem queues model. 
The purpose of traffic aggregation is to reduce the state space size. 

The traffic aggregation method for single queues can be extended to two tandem queues 
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Figure 7.5: MMPP(4) model for the aggregate arrival traffic and cell routing in a two 
tandem queues network. 

in two 'obvious' ways. Each of them comes however with problems: 

• represent the VC traffic streams on each stream by an independent MMPP(2): 
Application of the single queue traffic aggregation method is now difficult at both 
queues for the same reason. 

• represent the VC traffic streams on stream 1 and stream 1-2 by an MMPP(2) and 
the VC traffic streams on stream 2 by an other MMPP(2): 
Application of the single queue traffic aggregation method to stream 2 is not straight
forward at all, because there is no fixed arrival rate on stream 2 that marks the 
overload state of the second queue. 

Therefore, we have chosen a less obvious way to model the traffic streams 1, 2 and 1-2. The 
cell arrival rates on the streams are described by a single, four-state Markov modulated 
Poisson process (MMPP(4)), see Fig. 7.5. In te remainder of this section, the MMPP(4) 
model is elaborated. In the following sections we will describe how to choose the parameters 
of the MMPP(4). 

States of the MMPP(4) 

The traffic aggregation method is again based on the distinction between overloaded and 
underloaded queues, because overload essentially determines the cell waiting time distri
bution in the two queues. Each state of the MMPP( 4) corresponds to a specific overload 
situation of the two queues: 

• ( u, u ): both queues underloaded, 

• (u,o): queue 1 underloaded and queue 2 overloaded, 

• (o,u): queue 1 overloaded and queue 2 underloaded, and 
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• (o, o): both queues overloaded. 

A queue is overloaded if the aggregate instantaneous cell arrival rate at the queue 
exceeds the service rate. This definition of overload cannot be applied directly when 
considering queues in tandem. The problem is the span of time that passes between the 
arrival of a cell at queue 1 and its arrival at queue 2. While a cell is waiting in the first 
queue, the number of active sources on stream 2 may change and overload of queue 2 may 
turn into underload. 

The traffic aggregation method requires unambiguous mapping of {(M1 ,n, M2,n, M 12,n)} 
onto the states of the MMPP(4). This is not possible with the above definition of overload. 
We resolve this issue by defining overload of queue 2 at the moment that the cell under 
study arrives at queue 1 (instead of at arrival at queue 2). Taking into account that the 
traffic on stream 1-2 is throttled by an overloaded queue 1, the mapping of { (M1 , M2 , M12 )} 

onto MMPP(4) is: 

(u,u) 
(u,o) 

(o,u) 

(o,o) 

{(i1,i2,i12l I (i1 + i12h:::; i /\ (i2 + i12h::; l} 
{(ii, i2, i12) I (ii + i12h s i A ( iz + i12h > i} 

{(i1,i2,i12) I (i1 + i12h > i A (in+ ~ls i} 
i1+112 

{(i,,i,,il2) I (i1 + iizl1 > i A (in+ ~J > i} 
i1 + i12 

Not all transitions between states in the MMPP(4) model are taken into account. Tran
sitions between the single overload states (o, u) and (u, o) are so unlikely that their effect 
on performance is negligible. These transitions comply with two simultaneous transitions 
in { (M1,n, M2,n, M 12,n) }, namely of {M1,n} and {M2,n}. Two simultaneous transitions are 
improbable, and we neglect them. 

Cell routing 

Next to traffic modeling, modeling cell routing is also an impediment in the numerical 
analysis of the two tandem queues model. Cells that have received service in the first 
queue are either routed to the second queue or they leave the model. The appropriate cell 
route is determined by the route of the VC to which the cell belongs. The VC-identity 
of cells buffered by the first queue can, however, not be incorporated in a Markov chain 
description of the two tandem queues, because the state space size would become much 
too large. The solution to this problem is to device a stochastic model for cell routing, 

If the VC traffic streams in the streams 1 and 1-2 were Poisson processes and cells that 
arrive at queue 1 in a single slot were put into the buffer in random order, cell routing 
would be modeled exactly by a Bernoulli process. In Bernoulli routing, the routing decision 
is independent and identically distributed for each cell. In the model under study however, 
VC traffic streams are modulated Poisson processes, so Bernoulli routing is not exact. 

The cell routing model that we will use is based on and used in conjunction with 
the MMPP( 4) aggregate traffic model. We let the MMPP( 4) determine the cell routing 
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probability. Given the state of the MMPP( 4) the routing process is a Bernoulli process, 
but when the MMPP(4) changes state the routing probability changes accordingly. 

We expect this routing model to be accurate and validate it together with the traffic 
aggregation method by comparison with simulation results. The routing model only falters 
at state transitions of the MMPP( 4). The cell routing probability is determined by the 
state of the MMPP( 4) at the moment that a cell is served. The state of the MMPP( 4) may 
however have changed in the interval between cell arrival at queue 1 and cell departure 
from queue 1. The cells waiting in queue 1 at the moment the MMPP( 4) changes state 
are routed according to a Bernoulli process with incorrect routing probability. 

Calculation of the cell waiting time distribution 

Traffic aggregation and the cell routing model considerably reduce the complexity of the 
two tandem queues model. The state space of the corresponding Markov chain description 
is now small enough to allow calculation of the steady-state distribution. 

The end-to-end cell waiting time distribution is calculated on the basis of the steady
state distribution of the two tandem queues model at arrival of a cell on stream 1-2. The 
cell waiting time distribution is derived from the steady-state distribution by considering 
all possible evolutions of the two tandem queues after the cell under study has arrived. 
In this part of the procedure, a trick is applied that ensures that at least the cell under 
study is routed according to the correct cell routing probability. When considering the 
evolutions of the two tandem queues between arrival of the cell under study and service 
of this cell in queue 1, the routing probability remains fixed at its initial value, so that 
the cell under study and immediately preceding cells are routed according to the correct 
probability distribution. (So in the last part of the calculation, the cell routing probability 
no longer changes according to the state of the MMPP(4).) 

The traffic aggregation method has now been described in principle. What remains is 
to choose the parameters of the MMPP( 4) in such a way that the performance evaluation 
method accurately assesses the end-to-end cell waiting time distribution. 

In the remainder of this section, we first separately consider the parameters of the 
double overload and single overload states of the MMPP(4). We then list all parameters 
that determine the MMPP( 4). The section ends with results on the accuracy of the traffic 
aggregation method. 

7.3.2 Double overload 

In this subsection, we model double overload in two tandem queues. Double overload was 
defined as a state in which the instantaneous arrival rates on the streams 1, 2, and 1-2 
indicate that both queues are overloaded. Throttling of the traffic on stream 1-2 due to 
overload of queue 1 is to be taken into account. In the MMPP( 4) aggregate traffic model, 
double overload is represented by a single state, state ( o, o). 
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We model double overload in essentially the same way as overload in a single queue 
(see 7.2). So the (o, o)-state of the MMPP(4) represents the asymptotic behavior of double 
overload in { (M1,n, M1,n, M1:1,n) }. In order not to overestimate the effect of double overload, 
we reduce the frequency of double-overload periods, so that the probability that a cell 
arrives in double overload is retained. 

The following parameters are equated between the MMPP( 4) and the unaggregated 
traffic: 

• the slope (at infinity and on a log scale) of the survivor function of the sojourn time 
in double overload. 

• the slope (at infinity and on a log scale) of the survivor function of the number of 
cells generated during double overload on, assuming fluid flow 9 : 

stream 1 plus stream 1-2 

stream 2 plus stream 1-2 

stream 1 plus stream 2 plus stream 1-2 

• the probability that a cell arrives during double overload. 

The slopes are obtained in the same way as for a single queue (see 7.2). The distributions 
of the sojourn time and of the number of generated cells in double overload are again of 
the phase type. They are three-dimensional, each dimension describing one of the traffic 
streams. 

7.3.3 Single overload 

Single overload refers to the state that one of the two queues in the two tandem queues 
model is overloaded and the other queue is underloaded. Single overload is relevant by 
itself as a form of congestion, but it also occurs in combination with double overload. 

The MMPP( 4) model describes single overload by two states, namely ( o, u) and ( u, o). 
In this subsection, we consider how to choose the parameters of the MMPP(4) that concern 
single overload. We first focus on the most likely form of single overload: single overload 
preceded and succeeded by double under!oad (double underload =no overload). We then 
cater for single overload in combination with double overload. 

•we need to know the number of cells generated during double overload on each stream We do 
not calculate these number directly but derive them from the parameters indicated. The reason is that 
even during double overload, it is possible that no cells are generated on a stream in some states of 
the unaggregated cell arrival process. By considering combinations of streams this is avoided, which 
considerably facilitates the calculation of the slopes 
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Single overload preceded and succeeded by double underload 

To model single overload preceded and succeeded by double underload, we again use the 
technique that we used in modeling overload of a single queue: the asymptotic behavior of 
overload periods is represented and the frequency of overload periods is reduced in order 
not to overestimate the effect of overload. 

Single overload corresponds to a set of states in the Markov chain {(M1,n, M2,n, M12,n) }. 
The sojourn time and the number of cells generated in a single-overload period depend on 
the state (either a double underload state or a double overload state) that precedes the 
period and the state that succeeds the period. The asymptotic behavior depends however 
only on the succeeding state. 

In order to simplify the traffic aggregation method, we do not distinguish between single 
overload followed by double underload and single overload followed by double overload when 
calculating the asymptotic behavior. Instead the asymptotic behavior is approximated by 
the asymptotic overload behavior in a single queue. The single queue is either the first or 
the second queue of the two tandem queues model, while the other queue is neglected. This 
approach is equivalent to considering the Markov chain { (Mi,n, M12,,,)} (or {(M2,,,, M12,,,)}) 
instead of {(M1,n, M2,n, M12,n)}. 

The approximation provides an upperbound, because the state of overload in the single 
queue includes the state of double overload in the two tandem queues. It is however 
accurate because succession of single overload by double overload is improbable in a well 
designed ATM network. 

The frequency of single-overload periods is determined by the probability that a cell 
arrives at the two tandem queues during a single-overload period. (Note that not the state 
probabilities are used, but the probabilities at the moment of cell arrival.) This probability 
is easily calculated on the basis of the unaggregated traffic description. So, double overload 
is not neglected in this part of the aggregation method. 

In summary, the following parameters determine single overload in the MMPP ( 4 ): 

• the slope (at infinity and on a log scale) of the survivor function of the sojourn time 
in overload of queue 1. 

• the slope (at infinity and on a log scale) of the survivor function of the number of 
cells generated on stream 1 and stream 1-2 during overload of queue 1, assuming 
fluid-flow. 

• the probability that a cell on stream 1-2 arrives at overload of queue 1 and underload 
of queue 2. 

• the slope (at infinity and on a log scale) of the survivor function of the sojourn time 
in overload of queue 2. 

• the slope (at infinity and on a log scale) of the survivor function of the number of 
cells generated on stream 2 and stream 1-2 during overload of queue 2, assuming 
fluid-flow. 
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• the probability that a cell on stream 1-2 arrives at underload of queue 1 and overload 
of queue 2. 

In addition, the aggregate arrival rate at an overloaded queue is attributed to the two 
streams involved in proportion to the number of VCs on each stream. 

Single overload in combination with double overload 

The parameters of the single overload states in the MMPP(4) are almost completely de
termined by the case of single overload preceded and succeeded by double underload. The 
sojourn time distribution, the cell arrival rate at the overloaded queue, and the probability 
that a cell arrives at an overloaded queue have already been established. The parameters 
not yet established are the probabilities that single overload is preceded by double un
derload or by double overload and that single overload is succeeded by double underload 
or by double overload. These probabilities correspond to the transitions to and from the 
states (o,u) and (u,o) in Fig. 7.5. They can be used to represent in the MMPP(4) single 
overload periods preceded or succeeded by double overload. 

In the aggregate traffic model, we have modeled double overload periods by their asymp
totic behavior. The contribution to congestion of a single overload period (in the unaggre
gated traffic model) that precedes or succeeds such a double overload period is most often 
very small in comparison with the contribution of the asymptotic period itself. 

In the aggregate traffic model we have modeled both single overload periods and double 
overload periods by their asymptotic behavior. So if in the aggregate traffic model a 
single and a double overload period occur one after the other, they are both very long. 
Unlike previously however, this effect can only partly be compensated for by reducing the 
frequency with which these combinations occur. 

The frequency of consecutive overload periods can be reduced so that the probability 
is retained that a cell belongs to a (single or double) overload period that is preceded 
by another (double or single) overload period. This is achieved by properly choosing the 
transition probabilities in the MMPP(4) from single to double overload and vice versa. 
What cannot be compensated for in this way however is that the preceding (single or 
double) overload period has the asymptotic distribution. As a result, the aggregate traffic 
model provides a rough upperbound. 

EspeciaI!y in case of double overload succeeded by single overload the bound is not tight, 
as we will show in the results section. An asymptotic double overload period needs to be 
compensated for by frequency reduction. As this is not possible in the model, we choose 
not to incorporate in the MMPP(4) the possibility of transitions from double to single 
overload. The MMPP( 4) can then no longer be guaranteed to provide an upperbound. 
It still gives a good approximation (and most likely an upperbound) because the case of 
single overload after double overload contributes relatively little to congestion, as explained 
previously. 
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7 .3.4 Parameters 

In the previous subsections, we described how to obtain the pmameter values of the 
MMPP(4) traffic model. The treatment was directed towards arguing which metrics of 
the unaggregated traffic model should determine the parameters of the MMPP( 4) traffic 
model. In this subsection, we list all these metrics in order to provide an overview of the 
traffic aggregation method for two tandem queues. We add some metrics not mentioned 
previously: the mean arrival rates on the three streams through the two tandem queues; 
the mean arrival rate on stream 1 in (u, o); the mean arrival rate on stream 2 in (o, u). 

An MMPP( 4) is fully described by the transition rates between the states and the cell 
generation rates on each stream in each state. There are four states ( ( u, u ), ( u, o), ( o, u ), ( o, o)) 
and three streams (1, 2, 1-2). We do not allow transitions from (o, o) to (a, u), from (o, o) to 
( u, o), and transitions between ( o, u) and ( u, o ). So, the MMPP( 4) has 20 free parameters. 

The 20 parameters of the MMPP(4) are determined by matching the 18 metrics of the 
MMPP( 4) to the corresponding 18 metrics of the unaggregated traffic. The remaining 2 
parameters of the MMPP(4) are determined by the assumption that in state (o,u) the 
arrival rate at queue l is distributed over stream 1 and stream 1-2 in proportion to the 
numbers of traffic sources in these streams. A similar assumption holds for the state (u, o). 
The metrics of the unaggregated traffic are listed below: 

L Double overload: 

(a) slope (at infinity and on a log scale) of the survivor function of the sojourn time 
in (o,o). 

(b) slope (at infinity and on a log scale) of the survivor function of the number of 
cell arrivals to queue 1 in (o,o). Fluid-flow is assumed. 

( c) slope (at infinity and on a log scale) of the survivor function of the number of 
cell arrivals to queue 2 in (o,o), not taking into account cell throttling by the 
first queue. Fluid-flow is assumed. 

( d) slope (at infinity and on a log scale) of the survivor function of the number of 
cell arrivals to the network formed by queue 1 and queue 2 in (o,o). Fluid-flow 
is assumed. 

(e) Probability that a stream 1-2 cell arrives during (o,o). 

(f) Probability that (o,o) was preceded by (u,o). 

(g) Probability that (o,o) was preceded by (o,u). 

2. Single overload: 

(a) slope (at infinity and on a log scale) of the survivor function of the sojourn time 
in overload of queue 1. 
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(b) slope (at infinity and on a log scale) of the survivor function of the number of 
cell arrivals to queue 1 during overload. Fluid-flow is assumed. 

(c) slope (at infinity and on a log scale) of the survivor function of the sojourn time 
in overload of queue 2 (neglecting any influence of queue 1). 

(d) slope (at infinity and on a log scale) of the survivor function of the number of 
cell arrivals to queue 2 during overload (neglecting any influence of queue 1 ). 
Fluid-flow is assumed. 

(e) Probability that a stream 1-2 cell arrives during (o, u). 

(f) Probability that a stream 1-2 cell arrives during (u, o). 

(g) Mean cell arrival rate on stream 2 during (o,u). 

(h) Mean cell arrival rate on stream 1 during (u,o). 

3. Mean rates: 

(a) Mean rate on stream L 

(b) Mean rate on stream 2. 

(c) Mean rate on stream 1-2. 

7.3.5 Results 

In order to validate the traffic aggregation method for two tandem queues, we compare 
model results with results obtained by simulation. The model results concern the MMPP( 4) 
aggregate traffic model: the two tandem queues are described by a Markov chain that is 
solved by iteration. The simulation results concern unaggregated VC traffic streams. Model 
and simulation results are compared for two examples that differ with respect to the number 
of VC traffic streams. By comparing model and simulation results at different traffic loads, 
we can assess whether the model is accurate at the different cell loss probabilities that 
correspond to these traffic loads. 

The two tandem queues are consecutive queues in the VC model (see 7.1). Service time 
is 1 slot, and buffer size is 150 cells. The VC traffic streams are described by the same 
parameter values as previously (see 7.2): T = 500, "( = 0.1, f = 0.2. The number of VC 
traffic streams, m, that feeds each queue is 30 and 28 in, respectively, the first and the 
second example. Fan out is 2, i.e. half the VC traffic streams multiplexed by queue 1 
proceeds to queue 2 

Fig. 7.6 shows the cell waiting time distribution for m = 30. The solid lines show 
the end-to-end waiting time survivor function obtained by simulation. 95 3 confidence 
intervals are also shown. The dashed lines also show the end-to-end waiting time survivor 
function obtained by simulation, however assuming independent waiting times of a cell in 
the two queues. Comparison of the two sets of curves clearly shows the influence of the 
QNP waiting time correlation (see 5.1). 
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Figure 7.6: Waiting time survivor Junction in two tandem queues. m = 30, T = 500, I = 
0.1, E = 0.2, B = 150, fan out = 2. Simulation results with 95 % confidence intervals 
(solid: no decomposition; dashed: decomposition) and results for the traffic aggregation 
method (upper point-dash and lower point-dash: see text). Server loads: 0.6 

The point-dash curves in Fig. 7.6 show the end-to-end waiting time survivor function in 
case the aggregate traffic model is applied. The upper point-dash curve concerns the case 
that transitions from double overload to single overload are allowed. The lower point-dash 
curve concerns the case that after double overload always double underload follows. As 
noted before, allowing transitions from double to single overload considerably overestimates 
the probability of long waiting times. We will not allow these transitions in the aggregate 
traffic model. Fig. 7.6 shows that the simulation results are then closely approximated. 

As previously remarked (see 7.1.3), we are only interested in end-to-end waiting times 
that are not much more improbable than the probability that a cell is lost in any of the 
two queues. As cell loss is determined by overflow of a buffer, the probability of cell loss is 
related to and of the same order of magnitude as the probability that a cell is delayed by 
a buffer-worth of cells (in the present example, 150 cells). 

At very small waiting times, the aggregation method is not accurate. However, small 
waiting times are hardly interesting. The aggregation method provides a very rough up
perbound on the cell waiting time if single overload after double overload is allowed. If such 
transitions are banned, the method provides an accurate estimate of the end-to-end waiting 
time survivor function in the area that is relevant. It can however not be guaranteed to 
provide an upperbound on the tail of the cell waiting time distribution, due to neglecting 
direct transitions from double to single overload. The latter version of the method should 
obviously be preferred over the former, and we will hold on to it in the remainder of this 
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Figure 7.7: Waiting time survivor function for two tandem queues. m = 28, T = 500, / = 
0.1, E = 0.2, B = 150, fan out = 2. Simulation results with 95 % confidence intervals 
(solid: no decomposition; dashed: decomposition) and results for the traffic aggregation 
method (point-dash). Server loads: 0.56 

chapter. 
In order to show that the traffic aggregation method retains its accuracy if the proba

bility of cell loss decreases, Fig. 7.7 shows results form= 28. All other parameters values 
are unchanged. The simulation time required to achieve accurate results increases steeply 
if m decreases. So, we confine ourselves to m = 28. Comparison between the figures shows 
already clear differences, however. Fig. 7.7 complies with Fig. 7.6. The figure shows that 
the accuracy of the method is maintained if the server load (and the cell loss probability) 
is decreased. 

7.4 n tandem queues 

In the previous section, we described the performance evaluation method for two consecu
tive queues in the VC model. In this section, we extend the performance evaluation method 
to the entire VC model, a network of n queues in tandem (see 7.1). 

The main point made in this section is a reduction of the VC model (a network of n 

tandem queues) to a network of two queues in tandem. The queues in the two tandem 
queues model are of the same type as the queues in the VC model. The traffic streams in the 
reduced model are described by an MMPP(4), like in the previous section. The MMPP(4) 
is chosen such that the reduced model represents the relevant part of the overload behavior 
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in the VC model. (End-to-end cell waiting times in the VC model are not relevant if they 
occur with a probability much smaller than the cell loss probability.) 

The reduction of the VC model to two queues is accurate if the probability that a 
multiplexer is overloaded is small and fan out is not very smalL These requirements are 
fulfilled in almost any ATM network in which (as in the VC model) multiplexers operate 
as statistical multiplexers in the burst level congestion region. 

All three QNP are partly taken into account when reducing the VC model to two tandem 
queues. The incorporation of the QNP is restricted to the effects that are due to overload 
of a queue of the VC model. The QNP are however most relevant during overload, and 
we are interested in performance during overload. So, the performance evaluation method 
incorporates the essential elements of the QNP. 

This section first describes why it is possible to reduce the VC model to two tandem 
queues. The second subsection indicates how to choose the parameters of the MMPP(4) 
traffic model. In a final subsection, the performance evaluation method is validated by 
comparison with simulation results. 

7.4.1 Reduction of the number of queues 

The VC performance evaluation method reduces a tandem queuing network of n queues 
to a tandem network of only 2 queues. This reduction maintains the relevant overload 
behavior of the n tandem queues. It is based on two propositions that we make plausible 
in this section: 

• simultaneous congestion of more than two queues in the VC model is not relevant to 
the performance measures of interest. 

• two queues are sufficient to represent the VC model up to double overload. 

For these propositions to hold, it is required that the probability that a multiplexer in the 
VC model is overloaded is small and that fan out in the VC model is not very small. 

Simultaneous congestion of more than two queues is not relevant to the per
formance measures of interest 

The first proposition is that simultaneous congestion of more than 2 of then tandem queues 
in the ATM VC model is not relevant to the end-to-end cell waiting time distribution. For 
this proposition to hold, it is required that fan out is not very small (e.g., at least 2). 
A second requirement for the proposition to hold is that the probability that a queue is 
overloaded is small (e.g., at most 10-3

). Both requirements are very likely fulfilled in an 
ATM network. 

In support of the proposition, we will elaborate the following argument. Let ]( denote 
the buffer size of the queues in the VC model. The maximum cell waiting time in a single 
queue is then(/{~ 1). For waiting times up tom· (K - 1), simultaneous overload of at 
most m queues, 1 :::; m:::; n, dominates simultaneous overload of (m + 1) queues. 
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To see how the argument supports the proposition, recall that in 7.1.3 it was observed 
that the cell loss probability in the VC model is of the same order of magnitude as the 
probability that a cell is delayed by an almost full buffer of cells in a queue of the VC 
model. End-to-end cell waiting times much less probable than cell loss are not relevant. 
So, we need only consider single and double overload (m = 1 and m = 2). 

The argument is elaborated in two steps. In the first step, we will show that the 
probability of (m + l )-fold overload is much smaller than the probability of m-fold overload. 
In the second step, we will show that the increase of the end-to-end cell waiting time is 
approximately equal during m-fold overload and during (m + 1)-fold overload. Both parts 
add up to the conclusion that, unless the accumulation of cells during m-fold overload is 
blocked by full buffers, m-fold overload predominates (m + 1)-fold overload as far as the 
cell waiting time distribution is concerned. 

Pr((m + 1)-fold overload)~ Pr(m-fold overload) In a well designed and controlled 
ATM network, the probability that a queue in the VC model is overloaded is small. At 
first, we will neglect correlation between the instantaneous cell arrival rates at the queues 
(see Sect. 5.1); then we will take this correlation into account. Correlation between 
instantaneous cell arrival rates at the queues increases the probability of multiple overload. 

At first, we neglect correlation between instantaneous cell arrival rates at the queues 
in the VC model, i.e. we assume that the states of the queues (overload or underload) are 
independent. Note that queues far apart in the VC model are approximately independent 
at the moment that a cell under study arrives. Denote by p the probability that a queue 
is overloaded. The mean number of overloaded queues in the VC model is much smaller 
than 1: np ~ l. Assuming independence, the number of overloaded queues is binomially 
distributed with parameters n and p: 

Pr( i queues overloaded) 

Pr(i + 1 queues overloaded) 

Pr( i queues overloaded) 

n-i p 
----
i+ll-p 

< np 
1-p 

~l 

So the probability of (i + 1)-fold overload is much smaller than the probability of i-fold 
overload. 

Next, we present an example that takes into account correlation between the instan
taneous cell arrival rates at the queues. We consider the joint distribution of the instan~ 
taneous cell arrival rates at 5 queues in tandem: n = 5. Through each queue, 16 VCs 
pass. The traffic stream on each VC is modeled by an independent IPP. When 10 VCs 
are simultaneously in the on-state, the server load is 1 (i.e., I = 0.1). The probability 
that an IPP is in the on-state is 0.2 (i.e., ~ = 0.2). Fan out is 2. 10 We assume bufferless 

1°Fan out 2 means that the number of VCs that entered the tandem network at a specific queue and 
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Table 7.1: Probability of multiple overload for five tandem queues, N = 16, f = 0.2, "f = 0.1, 
fan out= 2 

dependent queues 
0 9.99 · 10 I 

1 1.16. 10-3 

2 3.55. 10-5 

3 1.02. 10-6 

4 2.47. 10-8 

5 4.12 . 10-10 

independent queues 
9.99. 10 1 

1.24 . 10-3 

6.13 . 10-1 

1.52. 10- 10 

1.89. 10- 14 

9.31 . 10- 19 

queues. This allows us to neglect lengthening of on-periods due to queuing, so that the 
joint distribution of instantaneous cell arrival rates can be determined numerically. Tab. 
7.1 shows the probability of multiple overload among the 5 tandem queues, both for de
pendent queues and for independent queues. The results in the table show that, even for 
this low fan out case, the probability of multiple overload is small and decreases sharply if 
the number of overloaded queues increases. 

The increase of end-to-end waiting time during overload is almost independent 
of the number of overloaded queues The sum of the queue lengths in the VC model 
may serve as an indication of the end-to-end cell waiting time. The increase of this sum is 
approximately equal during m-fold overload and during (m + 1)-fold overload. 

We first assume that the queues are independent and that their overload periods are 
identically distributed. We further assume that the cell arrival process at an overload 
queue is a fixed rate (r) fluid-flow and the distribution of the sojourn time in overload is 
exponential (a:). Assuming this model, the increase of the sum of the queue lengths during 
an overload period is independent of the multiplicity of the overload period. It does not 
matter whether m or ( m + 1) queues are overloaded during the multiple overload period. 
While overload lasts, the sum of queue lengths grows faster in case of ( m + 1 )-fold overload. 
However because in ( m + 1 )-fold overload more queues are involved, the sojourn in this type 
of overload is shorter than in m-fold overload. (mr ·~a = (m + l)r · (m~l)<>) Both effects 
cancel ea.ch other, so that the net result is independent of the multiplicity of overload. 

In ATM VC model, simultaneous overload periods in different queues are not inde
pendent. The increase of the sum of queue lengths is not proportional to the number of 
overloaded queues, because the cell arrival rate at downstream queues is throttled by over
loaded upstream queues. This decreases the growth of the sum of queue lengths. Due to 
correlation between the instantaneous cell arrival rates at the queues, the sojourn time in 

remains inside the tandem network is halved after this queue and after each subsequent queue. For example: 
at the first queue, 16 VCs enter the network; of these 16 VCs, ~ = 1 VC (i.e., the VC under study) passes 
through the fifth queue. Through each queue 16 VCs pass. In this example, the total number of VCs is 
48. So, the joint probability distribution comprises 248 states. 
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a multiple overload state is not inversely proportional to the number of overloaded queues. 
It is longer than when assuming independent queues. This effect increases the growth of 
the sum of queue lengths during a multiple overload period. Both effects described work 
against each other, so that it may be expected that at least the order of the increase of the 
sum of queue lengths is independent of the number of simultaneously overloaded queues. 
The validity of this conclusion increases if fan out increases. 

Two queues are sufficient to represent the VC model up to double overload 

The second proposition is that two queues are sufficient to model single and double overload 
in the VC model. For this proposition to hold, it is required that the probabilities of single 
and double overload are small. This requirement will be fulfilled in a well designed and 
controlled ATM network that operates on the basis of statistical multiplexing in the burst 
level congestion region. 

After a period of single or double overload in the tandem queuing netwo<k, the over
loaded queues will likely empty (almost) completely befme a next overload period starts 
in the same or other queue(s) of the tandem. For this to hold, it is required that the 
probability of single or double overload is small, so that the interval between overload 
periods is long. (Baiocchi's technique of modeling overload periods even further reduces 
the frequency of overload periods.) As a result, there is no need to distinguish between 
the overload periods of different queues in the performance evaluation method. It is not 
relevant that an overloaded queue through which a cell passes is the first or the last or any 
other queue in the tandem network. It is only relevant that it passes through an overloaded 
queue. Single overload periods of different queues in the tandem queuing network may be 
modeled by a single queue in the performance evaluation method; double overload periods 
of different pairs of queues in the tandem queuing network may be modeled by a single 
pair of queues in the performance evaluation method. 

If the buffers have not emptied completely at tbe start of a next overload period, the 
performance evaluation method gives an upper bound. In the VC model, the not yet fully 
emptied queue continuous to empty, while the newly overloaded queue starts to fill. In the 
reduced system of two queues, emptying of a buffer stops as soon as a new overload period 
starts. 

Outline of the performance evaluation method 

The performance evaluation method comprises two steps. In the first step essentially the 
relevant overload behavior of the ATM VC model is addressed. In the second step, the 
overload behavior is expanded with the underload behavior. 

The first step of the performance evaluation method is to represent single and double 
overload in the VC model by the overload behavior in two tandem queues. The two tandem 
queues model is the model described in 7.3. The parameters of the MMPP( 4) traffic model 
are chosen such that matching of the overload behavior is achieved. This is discussed at 
length in the next section. In this procedure, the three QNP are accounted for as far as 
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they relate to overload. 
In the second step of the performance evaluation method, the end-to-end waiting time 

in the two tandem queues obtained in the first step is added to the waiting times inn - 2 
independent M/D/1/K queues. The two tandem queues represent the overload behavior in 
then tandem queues and the underload behavior in 2 of then tandem queues. In order to 
account for the underload behavior in the remaining n - 2 queues, we add the waiting times 
in n-2 M/D /1/K queues. We do not account for the QNP in underload, so we may assume 
that the queues are independent. As performance is determined by the overload behavior, 
neglecting QNP in underload is accurate. Further, the aggregate arrival process at a queue 
in underload is modeled by a Poisson process, like in the traffic aggregation method for 
a single queue. Note that, like in the first step, there is no one-to-one correspondence 
between the queues in the VC model and then - 2 M/D/1/K queues. 

7.4.2 Parameters 

The performance evaluation method reduces the n queues of the ATM VC model to two 
tandem queues, while maintaining single and double overload behavior. The two tandem 
queues model and its analysis were discussed in 7.3. In this subsection, we show how to 
choose the parameters of the MMPP( 4) traffic model in the two tandem queues in such a 
way that the overload behavior in then tandem queues is accurately captured. We consider 
the following aspects of the VC model: overload behavior, probabilities of cell arrival in a 
specific state, probability that double overload is preceded by a specific state, and mean 
rates on the streams through the two tandem queues. 

Overload behavior 

Like for a single queue and for two tandem queues, the asymptotic behavior during single 
and double overload inn tandem queues is represented. For single overload, the asymptotic 
behavior is equal in each of the n queues, so we choose this behavior also in the two tandem 
queues model. For double overload, asymptotic behavior of two overloaded queues depends 
on which two of the n queues are overloaded. We study double overload in more detail. 

The pairs of queues in the ATM VC model differ with respect to the number of VCs 
that passes through both queues, i.e., the number of VCs on stream 1-2 (see Fig. 7.4). 
If queues are further apart, the number of VCs on stream 1-2 is lower, and the double 
overload behavior will be different. 

As an example, we consider the asymptotic behavior of double overload in two tandem 
queues at different numbers of VCs on stream 1-2. Through each of the two queues m = 16 
VCs pass. The traffic process on each VC is an IPP, described by ( = 0.2, / = 0.2. (T 
has no influence in this example.) We reduce the asymptotic double overload behavior to 
two figures, namely the mean increase of the length of each queue during an asymptotic 
double overload period. Double overload is defined as in Sect. 7.3, i.e., two queues are 
in double overload if the instantaneous arrival rates on the streams through these queues 
indicate that the two queues are overloaded. Traffic throttling because of the overloaded 
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Table 7.2: Asymptotic mean increase of the queue length during a double overload period. 
Traffic throttling by the first queue is taken into account. m = 16, e = 0.2,} = 0.2 

fan out 
2 
4 
16 

mean increase queue l 
200.4 
189.0 
177.6 

mean increase queue 2 
183.5 
179.5 
172.1 

sum 
383.9 
368.5 
349.7 

first queue is taken into account. Tab. 7.2 shows numerical results as a function of fan 
out. The number of VCs on stream 1-2 is la~~ut. 

If fan out increases, two relevant effects occur: 

• The duration of double overload periods becomes shorter. This 1s because more 
sources are involved in double overload if fan out is larger. 

• The number of VCs on stream 1-2 decreases, while the numbers of VCs on the streams 
1 and 2 increase. As a result the effect of traffic throttling decreases, because traffic 
throttling applies to stream 1-2. 

The first effect reduces the mean increase of the first queue; the second effect does not have 
influence on the first queue. Both effects work in opposite directions for the second queue. 
Both effects are confirmed by the results in the table. that the net 

In the two tandem queues model, a single state is available to model the double overload 
behavior of all pairs of queues in the ATM VC model. We choose to represent in the two 
tandem queues model the asymptotic double overload behavior that corresponds to the 
lowest fan out in the n tandem queues network. There are two reasons for this choice: 

• Double overload behavior is worse if fan out is lower. So, the behavior at low fan out 
provides an upper bound on behavior at higher fan out. This bound is not too bad. 

• The probability that a pair of queues is doubly overloaded decreases if fan out in
creases. In the n tandem queues network, fan out between two queues increases, if 
the number of queues between the two queues under study increases. So, the most 
likely double overload behavior is the behavior at the smallest fan out. 

Probability of cell arrival in a specific state 

As the second set of parameters of then tandem queues model, we consider the probabilities 
that a cell under study arrives at the n tandem queues while they are in a specific state. 
These states correspond to the states of the MMPP(4) traffic model: universal underload, 
single overload, and double overload. Arrival at the n tandem queues is negligible for the 
case that more than 2 queues are overloaded, because it has no discernible influence on the 
performance measure of interest. 
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Exact evaluation of these probabilities in the n tandem queuing network requires con
sideration of a prohibitively large state space. Therefore, we provide an approximate 
procedure that is based on the observation that overload of more than two queues is im
probable enough to be neglected. The procedure may be characterized as a decomposition 
procedure, because it considers all possible pairs of queues in then tandem queues network. 
We consider the probability of cell arrival at double and at single overload, respectively. 

First, we consider the probability of cell arrival at two overloaded queues: 

Pr( A cell arrives at two overloaded queues) 
n-1 n 

L L Pr( A cell arrives at overloaded queues i and j and further at underloaded queues) 

11-l n 

:<: L L Pr( A cell arrives at overloaded queues i and j) 
i::::l j=i+l 

n-l n 

::'. L L Pr (A cell arrives at double overload in a two tandem queues system 
i=l j;;;i+l 

modeled after the queues i and j) 

We have found an upper bound on the probability that a cell arrives at two overloaded 
queues in the n tandem queues model. This upperbound is accurate. We started by 
applying the law of total probability. The first inequality is also based on the law of total 
probability. The upper bound is tight, because the probability of more than 2 overloaded 
queues is small relative to the probability of 2 overloaded queues. The second inequality 
is approximate. What it does is that it takes the queues i and j out of the network of n 
tandem queues and considers them in isolation. Together they form a two tandem queues 
network, like we previously analyzed. When you consider overload of the queues i and j 
in isolation, you neglect the possibility of traffic throttling caused by overload of any of 
the other queues. Hence the upperbound. Also this upperbound is tight, again because 
the probability of more than double overload is small relative to the probability of double 
overload. 

Second, we consider the probability of cell arrival at one overloaded queue: 

Pr( A cell arrives at one overloaded queue) 
n 

L Pr( A cell arrives at overloaded queue i and further at underloaded queues) 
l=l 

n 

L Pr( A cell arrives at overloaded queue i) -
i=l 

n 

L Pr( A cell arrives at overloaded queue i and at at least one other overloaded queue) 

n 

<; L Pr( A cell arrives at overloaded queue i) -
i=l 
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" L Pr(A cell arrives at overloaded queue i and at one other overloaded queue) 
i=l 

" L Pr( A cell arrives at overloaded queue i) -
1~1 

2 Pr( A cell arrives at two overloaded queues) 

::; Pr( A cell arrives at overloaded queue 1) + t P (Cell arrives at overloaded queue 2 in two tandem queues) _ 
r modeled after the queues i-1 and i 

i=2 

2 Pr(A cell arrives at two overloaded queues) 

14 7 

We have found an approximation for the probability that a cell arrives at one overloaded 
queue in the n tandem queues model. This approximation is good. We started by ap
plying the law of total probability twice. Then, we neglected the occurrence of more 
than double overload. Subsequently, we substituted the probability that a cell arrives at 
two overloaded queues. Note that we previously assessed this probability. Finally, we 
neglected traffic throttling in other than the immediately upstream queue. It may be 
expected that traffic throttling in the immediately upstream queue is far more important 
than traffic throttling in other upstream queues, because of dispersion of traffic due to rout
ing. Note that this la.st step indicates how we incorporate correlation between VC traffic 
streams. If we would neglect this correlation, we would have approximated the proba
bility of cell arrival at one overloaded queue by n Pr( A cell arrives at overloaded queue 1) -
2 Pr(A cell arrives at two overloaded queues). 

We have distributed the probability of cell arrival at a single overloaded queue equally 
among the first and the second queue in the two tandem queues model. The difference 
between single overload of the first and of the second queue is only relevant if single 
overload is succeeded by double overload. The probability of these events is determined 
by the probabilities discussed next. 

Probability that double overload is preceded by single overload 

The probability that a double overload period is preceded by single overload (i.e., (u, o) or 
(o,u)) are again determined by decomposing the VC model into pairs of queues. For each 
pair, the probabilities are determined. Then, they are weighted with the probability that 
a cell arrives at such a pair, given that it arrives at two overloaded queues. 

Mean rates on the streams 

The queues in then tandem queues network are all equally highly loaded, but the distribu
tion of the loads among the streams 1, 2, and 1-2 differs depending on the pair of queues. 
The mean rate on stream 1-2 is higher and, correspondingly, the mean rates on stream l 
and stream 2 are lower if there are less queues between the two queues under consideration. 

In the traffic aggregation method, the mean rates on the streams are used to establish 
the arrival rates on the streams in the state (u, u). Further, the mean rate on stream 1-2 
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is also used to establish the state probabilities in the MMPP( 4). The state ( u, u) has no 
important effect on the performance measures of interest. Nor have the state probabilities 
of the MMPP(4). (The probabilities of cell arrival in a specific state are very important, 
but they have been dealt with previously.) So, the choice of the mean rates on the streams 
is not very relevant. 

The mean rates on the streams are set to values that correspond to a pair of adjacent 
queues. This has the advantage that the probability of sojourn in state ( 11, u) of the 
MMPP(4) model is relatively small. This probability tends to be very high, which impedes 
fast numerical solution of the two tandem queues model. 

7.4.3 Results 

In the previous subsections, the performance evaluation method was described completely. 
We are now in the position to actually use the method to determine the end-to-end waiting 
time distribution in a tandem queuing network. In this subsection, we compare numeri
cal results obtained by the performance evaluation method with simulation results. The 
purpose of this comparison is to show the accuracy of the performance evaluation method. 

We consider a tandem network comprising three tandem queues: n = 3. The traffic 
stream on each VC is, at its entry into the network, an IPP described by the following 
parameters (see also 7.2): T = 500, 1' = 0.1, £ = 0.2. Buffer sizes of all queues equal 150 
cells. The number of VCs that passes through each queue is 32: N = 32. Fan out after 
each queue is 2. 11 

A network of 3 tandem queues is the smallest network we can use to validate our method. 
The reason for restricting us to 3 queues is that it is difficult to obtain accurate simulation 
results for larger networks. When the number of queues in the tandem is increased, the 
time required for the simulation increases for two reasons: 

• The added queues have to be simulated as well. 

• The rate of the cell stream that passes through all queues in the tandem decreases 
because of fan out. To maintain the number of events in the simulation (i.e., the 
number of cells that passes through all queues in the tandem), the duration of the 
simulation has to be increased by a factor that corresponds to the fan out. 

So the simulation time grows exponentially as a function of the number of queues, if (as 
usual) fan out thins the rate of the traffic stream that passes through all queues. The cell 
loss probability in the simulation is higher than in an ATM network. This is also to keep 
simulation time manageable. 

Fig. 7.8 shows the end-to-end waiting time survivor function obtained by the perfor
mance evaluation method and by simulation. The solid lines represent simulation results 

11The distribution of VC streams in the network is given by the following parameters: N = 32, fan out 
= 2, and n = 3. The complete enumeration of VC streams is as follows: 8 VCs pass through queue 1, 2, 
and 3; 8 VCs pass through queue 1 and 2; 16 VCs pass through queue I; 8 VCs pass through queue 2 and 
3; 8 VCs pass through 2: 16 VCs pass through queue 3 
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Figure 7.8: Waiting time distribution for 3 tandem queues. Simulation results with 95 % 
confidence interval (solid lines: no decomposition; dashed lines: decomposition). Method 
results (point-dash line). Parameters: N = 32, T = 500, / = 0.1, E = 0.2, B = 150, fan out 
= 2. Server loads: 0.64 

and 95 % confidence intervals. The dashed lines also represent simulation results and 95 
% confidence intervals, however, with the additional assumption that waiting times in dif
ferent queues are independent. The positive correlation between cell waiting times shows 
dearly for waiting times exceeding one buffer size. See Sect. 5.1 for a discussion of this 
queuing network phenomenon. The point-dash result was obtained by the performance 
evaluation method. 

The method is shown to be accurate in the area that is relevant for our purpose, i.e., 
for waiting times around the buffer size of a single queue (150 cells).12 For waiting times 
little lower than twice the buffer size in a single queue, the method waiting time survivor 
function sharply declines relative to the simulation results. This is a consequence of the 
reduction of the tandem queuing network from n to 2 queues by the performance evaluation 
method. 

12We are not interested in cell waiting times that are much less probable than cell loss. As previously 
observed, the cell loss probability is roughly equal to the probability that a cell waits for the maximum 
time in one of the queues. 



150 CHAPTER 7. VC PERFORMANCE EVALUATION FOR BURSTY TRAFFIC 

7 .5 Conclusions 

We have presented a new ATM VC performance evaluation method. The multiplexers that 
form the VC operate on the basis of statistical multiplexing in the burst level congestion 
region. VC traffic is bursty and is described by an interrupted Poisson process (!PP). The 
performance evaluation method takes into account the QNP (i.e. waiting time correlation, 
traffic characteristics change, and VG traffic stream correlation) as far as they are due to 
overload of a multiplexer on the VC under study. So, the QNP are taken into account 
when they have appreciable influence on performance. 

The method is based on two propositions. For these propositions to hold, it is required 
that the probability of overload of a multiplexer is low and that there is dispersion of 
traffic in the network (i.e. fan out from one multiplexer to the next may not be very 
small, say, not smaller than 2). In an ATM network operated on the basis of statistical 
multiplexing in the burst level congestion region, these conditions are virtually always 
fulfilled. The first proposition is that simultaneous overload of more than two of the n 
queues in the VC model is not relevant to performance. The second proposition is that 
single and double overload in the n tandem queues of the VC model may be represented 
by a single pair of queues, even though in the n tandem queues network different queues 
become overloaded. The method reduces the VC model of n tandem queues to essentially 
two queues in tandem. The aggregate cell arrival streams at these two queues are described 
a four-state Markov-modulated Poisson process (MMPP( 4)). The states of the modulating 
Markov chain correspond to the overload state of the two queues. 

The performance evaluation method represents the QNP waiting time correlation by 
analyzing two queues at once. 

The method was shown to accurately assess the end-to-end waiting time survivor func
tion for waiting times that are relevant. When correlation between cell waiting times is 
relevant, it is much more accurate than assuming independent cell waiting times. 



Chapter 8 

Application of VC waiting time 
evaluation methods 

In chapter 1, the need for ATM VC performance evaluation methods was identified. VC 
performance evaluation, was said, is required in network design, traffic control, and design 
of end-to-end protocols and of end-terminal functions. In the chapters 2 to 7, two VC 
waiting time evaluation methods have been developed, one for smooth VC traffic and 
one for bursty VC traffic. In this chapter, the methods will be applied to three design 
problems. The purpose of this chapter is first to show that the methods are applicable 
to ATM design problems and second to show that the methods are more accurate than 
conventional methods when the Queuing Network Phenomena (see Ch. 5) play a role. 

The waiting time evaluation methods apply to VCs, virtual connections between two 
end-terminals. They apply however equally well to a part of a VC, and the design problems 
in this chapter show several examples. The design problems that we study are1 : 

• Usage Parameter Control: 

Checking that the traffic stream on a VC complies with the characteristics agreed 
upon between user and network at connection set-up. The traffic characteristic that 
we focus on is the peak cell rate. 

• Smoothing Buffer: 

Restoring the interval between the cells in a VC traffic stream. Sometimes it is 
required that the network does not disturb the lengths of the intervals between the 
cells of a VC. At the receiving side, the intervals are restored by a smoothing buffer. 

• Switch Design: 

Designing a multi-stage switch. In switch design, there is a limited budget for the 
end-to-end delay through the switch. The methods accurately assess this delay, so 
that the delay budget can be used entirely. 

1The problems apply to both smooth a.nd bursty VC traffic streams. 
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Before addressing the three design problems, we first present numerical results obtained 
by the two methods. These results will be used to illustrate the application of the methods 
to the design problems. 

8.1 Results 

We use the two methods to determine the end-to-end cell waiting time distribution in a 
network of queues in tandem in case of, respectively, smooth and bursty VC traffic streams. 
In the next sections, the results of this section will be applied to the three design problems. 

8.1.1 Smooth VC traffic 

The results in this subsection concern the end-to-end cell waiting time distribution in 20 
tandem queues for the case of smooth VC traffic streams. The waiting time distribution 
is obtained by the method presented in Ch. 6. 

The VC model consists of 20 queues in tandem. The buffer size of each queue is 20 
cells, and the maximum cell waiting time in a queue is 19 cell transmission intervals. At 
the entrance into the network, the traffic stream on the VC under study is periodic: the 
interval between two consecutive cells is 15 slots long. Interfering VCs only cross the VC 
under study: they leave the tandem queuing network immediately after the queue at which 
they entered the network. The aggregate load of the interfering VCs at a queue is 0.63, so 
the total load of a queue is 0.63 + ft = 0. 7, and fan out is 0. 7 /ft = 10.5. For a description 
of the interfering traffic, see Ch. 6. 

Fig. 8.1 shows the end-to-end cell waiting time distribution in the VC model after 5 
queues and after 20 queues. The solid curves are the result of the conditional decomposition 
method (see Ch. 6) 2 . Where appropriate, this method takes into account the QNP and 
especially correlation between the waiting times of a cell in the queues of the VC model. The 
dashed curves are obtained by applying decomposition instead of conditional decomposition 
to the VC model. The dashed curves differ from the solid curves only because the QNP 
waiting time correlation is neglected. 

As expected on the basis of the conclusions of Ch. 5 and 6, comparison between the 
solid and dashed curves in Fig. 8.1 shows that in this example correlation between the 
waiting times of a cell is negative: end-to-end cell waiting times tend to be smaller when 
correlation between cell waiting times is taken into account (or, equivalently, the dashed 
curves are above the solid curves). The effect is larger after 20 queues than after 5 queues. 
Other VC performance evaluation methods do not take this effect into account. 

The cell loss probability in the tandem queuing network is 3.3 · 10-7 after 5 queues and 
1.4 . rn- 6 after 20 queues. 

2 In the present instance of the conditional decomposition method, the waiting time of the cell under 
study in a queue is conditioned on the lengths of the 2 preceding cell interarrival intervals on the VC under 
study. Also the joint probability distribution of adjacent cell interarrival intervals on the VC under study 
is incorporated. 
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Figure 8.1: End-to-end cell waiting time distribution in the VC model for smooth traffic. 
Deterministic traffic on the VC under study (period: 15). Crossing interference. Load of 
each queues: 0. 7. Solid curves: dependent cell waiting times; dashed curves: independent 
cell waiting times. Upper set of curves: 20 tandem queues; lower set of curves: 5 tandem 
queues. 
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8.1.2 Bursty VC traffic 

The results in this subsection concern the end-to-end cell waiting time distribution in 5 
tandem queues for the case of bursty VC traffic streams. The waiting time .distribution is 
obtained by the method presented in Ch. 7. 

The VC model consists of 5 queues in tandem. The buffer size of each queue is 150 
cells, so the maximum cell waiting time in a queue is 149 cell transmission intervals. Each 
VC traffic stream is an interrupted Poisson process (!PP) with the parameters (see Ch. 
4): T = 500, 1 = 0.1, E = 0.2. m = 20 VC traffic streams pass through each of the queues, 
so the total load of each queue is 1 · E • m = 0.4. The case of partly joining interference is 
considered: interfering VCs may pass through more than one queue of the VC model. 

To describe the organization of interfering VC traffic streams, we number the queues 
in the VC model consecutively 1 through 5. If Ii - j 12 3, the queues i and j share 1 VC 
(namely, the VC under study) (fan out 'f = 20). If Ii - j I= 2 they share 2 VCs (fan out 
~ = 10), and if Ii - j I= 1 they share 5 VCs (fan out ~ = 4). 

Fig. 8.2 shows the end-to-end cell waiting time distribution in the VC m~del. The solid 
curve is the result of the waiting time evaluation method for bursty traffic VC streams (see 
Ch. 7). This method takes into account the queuing network phenomena (QNP), especially 
correlation between the waiting times of a cell in the queues of the VC model. The dashed 
curve is obtained by neglecting all QNP: the cell waiting time distribution in the first queue 
of the VC model (i.e., in an m-IPP /D/l/K queue) is determined, and subsequently the 
waiting times in the queues 1 through 5 are assumed to be independent and identically 
distributed. 

As expected on the basis of the conclusions of Ch. 5 and 7, comparison between the 
solid and dashed curves in Fig. 8.2 shows that correlation between the waiting times of a 
cell is positive. The effect is clearly visible in the double overload part of the cell waiting 
time distribution (say for waiting times exceeding 150). 

The cell loss probability in the tandem queuing network is 5.3 · 10-1
. 

8.2 Usage Parameter Control and Smoothing Buffer 

The purpose of Usage Parameter Control (UPC) is: verification and enforcement of the 
traffic characteristics on a VC. The traffic characteristics on a VC are mutually agreed upon 
between subscriber and network provider at the establishment of a VC. For the network 
provider, they are the basis for Connection Admission Control (i.e., the decision if the 
VC is admitted to the network) and for charging the subscriber. So the subscriber has 
an interest to offer more cells to the network than the traffic characterization allows, and 
the network provider should verify and enforce the traffic characteristics. The problem 
that the provider encounters is that the traffic characteristics on a VC may have changed 
between terminal (where the subscriber measures them) and the entry into the network 
(where the provider measures them). This change is caused by queuing in the network on 
the user premises. 
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Figure 8.2: Cell waiting time distribution in the VG model (5 tandem queues). !PP VG 
traffic streams: T = 500,; = 0.1, f = 0.2. Partly joining interference. m = 20. Load of the 
queues: 0.4. Solid curves: dependent waiting times; dashed curves: independent waiting 
times. 

We focus on a simple traffic characteristic, namely, the peak cell rate, and on a specific 
UPC algorithm, namely, the Leaky Bucket algorithm. 

The purpose of a Smoothing Buffer is: removal of the variable delay that the cells on a 
VC have encountered while they were passing through the network A Smoothing Buffer 
can fulfill this task if (in case of smooth traffic) the traffic stream on a VC is initially 
periodic or if (in case of on-off traffic) the traffic stream on a VC is periodic during on
periods. The Smoothing Buffer may be part of the network, so that the network provider 
can offer a VC of which the cells all take equally long to pass through the network. (This 
is a so called circuit emulation service, in which circuit switching - that has constant delay 
- is emulated.) The Smoothing Buffer may on the other hand also be part of the receiving 
terminal. For example for telephony, it is important that the cell stream that enters the 
speech decoder (in the receiving terminal) is equal to the cell stream that left the speech 
encoder (in the sending terminal). If this condition is not fulfilled by a Smoothing Buffer), 
the continuity of speech is disturbed. 

We will address each of the design problems UPC and Smoothing Buffer in a separate 
subsection. Both problems are however based on the same queue, and we wit! first address 
that queue. The queue consist of a buffer that can contain ]( cells. The traffic stream 
on the VC under study is fed into this buffer, and periodically (with period T) one cell is 
removed from the buffer. The queuing discipline is first-in first-out. 

For UPC by means of the Leaky Bucket algorithm, T corresponds to the enforced peak 



156CHAPTER 8. APPLICATION OF VC WAITING TIME EVALUATION METHODS 

cell rate on the VC under study (i.e., the peak cell rate is fraclT cells per slot). A cell is 
assumed not to comply with the designated peak rate (f raclT), if the buffer is completely 
full when it arrives at the queue. The issue is the choice of I<: 

• If]{ is too large, the peak rate on the VC may (temporarily) exceed fraclT. 

• If K is too small, cells may unjustly be considered non-conforming. 

We will go into more detail later. 
For the Smoothing Buffer, Tis the interval between cells on the VC under study (or, 

in case of on-off traffic, T is the interval between cells during on-periods). The issue is the 
choice of ]{ and of R. R is the artificial delay between arrival of the first cell in the buffer 
and reading of the first cell from the buffer. After the first cell, cells are read out of the 
buffer periodically (period: T). R ensures that the buffer is filled to some extent at the 
moment that the playing out of cells starts. 

• If I< is too small, the buffer may overflow and cells may get lost. 

• Large I< means that the storage space of the Smoothing Buffer is large, which is 
more expensive. 

• If R is too small, the buffer may underflow3 , so that dummy cells have to be inserted 
into the cell stream on the VC. 

• Large R means that all cells on the VC are artificially delayed by R (slots). 

We will go into more detail later. 

8.2.1 Inequalities for buffer overflow and underflow 

We follow the development in [Cravey and Blaabjerg, 1994]. A periodic cell stream (period: 
T) is offered to the ATM network. In the network, the cells encounter stochastic delays 
{Wn, n :2'. O}, where n counts the cells. After the network, the cell stream arrives at a queue. 
The arrival epochs are denoted by {an,n 2': O}. The traffic stream, the network, and the 
queue are all synchronized. The relation between an and Wn is: an = ao - Wo + n · T + Wn. 

The queue has a buffer of size K. Cells are read out of the buffer every T slots. The 
first cell however is read out R slots after its arrival. { dn, n :2'. O} denotes the cell departure 
epoch from the buffer. Assuming that the buffer has not overflown or underflown, the 
following holds: dn = d0 + n · T = a0 + R + n · T. 

The buffer does not underflow due to cell n if it is not empty at dn (see [Gravey and 
Blaabjerg, 1994]): 

an :S dn 

ao - Wo + n · T + Wn :S ao + R + n · T 

Wn :S R+ Wo (8.1) 

3 'Underflow' means that the buffer is empty at the moment that a cell should be read out of the buffer. 
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The buffer does not overflow due to cell n if it is not full at dn (see [Cravey and Blaabjerg, 
1994]): 

an 2 dn-K 

ao - Wo + n · T + Wn 2 ao + R + (n - K) · T 

Wn + K · T 2 R + Wo (8.2) 

R and ]( can be chosen on the basis of requirements for the probabilities of overflow 
and underflow. For UPC, underflow is not an issue, so that R = 0 suffices. For the 
Smoothing Buffer, R can be set on the basis of (8.1) by requiring that the probability of 
buffer underflow is sufficiently small: 

Pr(W,. :=' R + W0) > 1 - T/R 

Pr(W,. - Wo > R) < T/R, (8.3) 

where Wn and W0 may be considered as independent random variables if n is sufficiently 
large. W0 is the waiting time distribution of the first cell generated on the VC under study. 
The waiting time of this cell is on average lower than of ensuing cells, because the first cell 
of a VC does not meet congestion that is due to the VC itself. A worst case is obtained 
by assuming that the distributions of W0 and Wn are equal. 

]( can be set on the basis of (8.2) and the previously calculated value of R: 

Pr(Wn + K · T 2 R + Wo) > l - T/K 

Pr(W,. - W0 < R - I< · T) < T/K 

Pr(Wo - W. > J{ · T- R) < T/K· (8.4) 

If Rand K are chosen as low as possible and T/K = T/R, it follows from (8.3) and (8.4) that 
K= r2n 
8.2.2 Usage Parameter Control 

The design problem that we consider is UPC of the peak cell rate on a VC by means of 
the Leaky Bucket algorithm. The Leaky Bucket algorithm is based on the queue that we 
have described. The main problem in verifying the peak cell rate is that the length of the 
interval between cells is disturbed due to queuing in the user premises network. The Leaky 
Bucket algorithm solves this problem by allowing smaller intervals between cells up to the 
point that the buffer overflows. 

Inequality 8.4 (where R should be set to 0), describes the probability that a cell is 
designated as non-conforming to the cell peak rate, even though the traffic source strictly 
adheres to the peak rate. This event may occur only rarely (i.e., T/K is a very small 
probability). We will use the methods developed in this thesis to determine the distribution 
of W0 - W •. On the basis of the required value of T]K, the appropriate value of K · T can 
then be established. 

It is important that J( is set to the right value, and the accurate methods developed in 
this thesis are important tools in this respect: 
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• If I< is too small, too many conforming cells are unjustly marked as non-conforming. 
The performance of UPC is a part of the Quality of Service (QOS) offered by the 
network.4 If the probability of unjust marking is too large, the QOS is degraded. 

• If I< is too large, a malicious subscriber can offer more cells than agreed at connection 
set-up. A network operator needs to guarantee the QOS. Such a guarantee is only 
possible, if a worst case scenario is assumed with respect to the traffic streams on VCs: 
the operator should assume that traffic streams behave as badly as they possibly can, 
and the traffic streams are only restricted by UPC. 

At given mean rate, the worst type of traffic stream is an on-off traffic stream in 
which cells are sent back-to-back in the on-period. If the on-period is longer, the 
traffic stream is worse and the efficiency of the network is lower. If a traffic source 
offers such a traffic stream to a Leaky Bucket, the buffer size ]( directly determines 
the length of the on-period (and thus how bad the traffic stream is). 

This means that the value of ]( plays a crucial role in the efficiency of the network 
and that relatively small changes in this value can have considerable effect. 

The numerical results presented in 8.1 allow calculation of the distribution of (Wo- Wn) 
in (8.4). As an example, we set the value of 1/K at 10-7 and 10-s for smooth and bursty 
traffic respectively. These values are well below the respective cell loss probabilities. The 
quantiles of (Wo - Wn) are shown in Tab. 8.1 5

. 

Table 8.1: Quantiles of (W0 - Wn) in the VG model. indep. is independent waiting times 
of a cell in different queues. dep. is dependent waiting times of a cell in different queues. 

smooth; 10-7 quantile indep. dep. 
5 queues 29 28 
20 queues 46 43 

bursty; 10-8 quantile indep. dep. 
5 queues 168 180 

For the case of smooth traffic, conventional methods overestimate the required value 
of ]( · T: 29 in stead of 28 after 5 queues and 46 in stead of 43 after 20 queues. In the 
examples we used, T was 15 slots. Conventional methods, obtain the correct value of ]( 
after 5 queues (namely, r~l = r*l = 2), but a too high value of ]( after 20 queues: 
rm = 3 in stead of rm = 2. 

The methods presented in this thesis allow a more efficient use of the network by 
providing more accurate and lower values for the buffer size in the Leaky Bucket algorithm. 

4 So, the probability of unjust marking should be of the order of the cell loss probability (if non
conforming cells are deleted). 

5The a-quantile of a random variable Xis the smallest value x such that Pr(X ~ x) $a. 
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In the example given, the buffer size (and as a consequence the burst length of the worst 
case traffic) is reduced from 3 to 2 cells. 

For the case of bursty traffic, conventional methods underestimate the required value 
of I< · T: 168 in stead of 180. At K · T = 168, conventional methods, underestimate the 
probability of unjustified cell marking: 10-s in stead of 2.1·10-8 • 

The methods in this thesis ensure that the Quality of Service is maintained. In the 
example given, conventional methods allow that the probability of unjustified cell marking 
is increased by a factor 2. 

8.2.3 Smoothing Buffer 

We consider the design problem of compensating for variable delays in the network by 
means of a Smoothing Buffer. The delay of a cell in the smoothing buffer should exactly 
complement the delay of that cell in the network, so that a fixed delay results for all the cells 
of a VC. The smoothing buffer is described by the queue that we previously introduced. 

Inequality 8.3 describes the probability that the smoothing buffer is empty at a moment 
that a cell should have been played out (i.e., underflow). Inequality 8.4 describes the 
probability that the smoothing buffer overflows. The probabilities concern the distribution 
of W0 - Wn (Wn - W0 ), and we will use the methods developed in this thesis to determine 
this distribution. On the basis of the required values of T/K and T/R, the appropriate values 
of I< · T and R can then be established. 

The values of f( and R should be chosen carefully, because they determine when the 
mechanism of the smoothing buffer fails: 

• Cell delay in the network may become so large that the buffer is not filled in time: 
at the moment that a next cell should have been played out, this cell has not arrived 
yet (see 8.3). Instead, a dummy cell is played out, which will have an effect on the 
quality of the service similar to the loss of a cell. Larger R reduces this effect, at the 
expense of additional delay. 

• Cell delay in the network may become so small that many cells arrive at the buffer 
shortly after each other. In this way, the buffer may overflow: an arriving cell cannot 
be accommodated in the buffer and is lost (see 8.4). Larger J( reduces this effect, at 
the expense of additional buffer size. 

For the probability distribution of the waiting time, we again use the numerical results 
of section 8.1 that were repeated in Tab. 8.l. We set T/K = 1/R, so that we rate buffer 
overflow equally heavy as buffer underflow. As a result J( = 12~1, as observed previously. 

For the case of smooth traffic, conventional methods overestimate the value of R: 29 
and in stead of 28 after 5 queues and 46 in stead of 43 after 20 queues. 

The methods developed in this thesis provide a lower value of R. The consequences 
of a slightly overestimated value of R are however small: a slightly increased cell waiting 
time in the smoothing buffer. 
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For the case of bursty traffic, conventional methods underestimate the required value 
of Rand K: 168 and 34 in stead of 180 and 36. At R = 168 and I< = 34, conventional 
methods underestimate the probabilities of buffer underflow and overflow: 10-8 in stead 
of 2.1 · lo-s. 

The methods developed in this thesis ensure the QOS. In the example given, conven
tional methods make that the probabilities of buffer underflow and buffer overflow are both 
increased by a factor 2. 

8.3 Switch design 

In 3.1, we reviewed ATM switch architecture. A well-known switch architecture is a multi
stage network with internal buffering. In such a switch architecture, the switch input 
ports are connected to the output ports by a network of multiplexers. The multiplexers 
are grouped into stages. A cell passes from a multiplexer in one stage to a multiplexer 
in the next stage, until it has passed through all stages. The multiplexers of a stage are 
connected to the multiplexers of the next stage by a network that has some regular pattern. 
The route through the switch of a VC forms a tandem network of multiplexers. 

A multi-stage switch is typically built from identical building blocks, where a building 
block comprises a fixed number of multiplexers out of the same stage. 

The design of a multi-stage switch comprises three steps: 

1. Establish the switch architecture: the number of stages, the number of multiplexers 
in each stage, and the network that interconnects the multiplexers in the stages. 

2. Determine the routes of cells through the network. Depending on the network, there 
may be only a single route from a switch input port to a switch output port. In that 
case, this step is trivial. 

3. Choose the cell transmission rate inside m the switch and the buffer size of the 
multiplexers. 

After the design has been completed, the end-to-end performance in the switch should be 
determined and compared with the requirements. The end-to-end performance of a switch 
is the cell loss probability and the ceII waiting time distribution as a function of the traffic 
applied to the switch. If the end-to-end performance is not satisfactory, the design should 
be adjusted. If the end-to-end performance is satisfactory, the design may be optimized. 

After the switch itself has been designed, rules for Connection Admission Control have 
to be established. This is closely related to switch design. 

If all cells of a single VC follow the same route through the switch, this route forms a 
tandem network of queues. If in addition the cell transmission rate inside the switch equals 
the cell transmission rate outside the switch6, the end-to-end waiting time distribution in 
the tandem network can be determined by the two methods provided in Ch. 6 and 7.1). 

6If the transmission rate inside the switch differs from the transmission rate outside the switch, there 
are two different service times in the queues of the tandem network. The service time in the last queue 
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The end-to-end cell waiting time in a switch should be smalL The most important 
measure of the cell waiting time is the waiting time that is exceeded with a certain prob
ability, i.e. the quantile of the waiting time. The probability is comparable with the cell 
loss probability. If a cell waits longer than the quantile of the waiting time this is as bad 
as loss of a cell. Typically the quantile of the waiting time in a switch should be of the 
order of 100 µs (see [de Prycker, 1993]). At a transmission rate of 150 Mbit/s and a cell 
size of 53 · 8 bits, 100 µs is equivalent to approximately 35 cell transmission slots. At 600 
Mbit/s, it is equivalent to approximately 142 slots. 

Table 8.2 shows the quantiles of the end-to-end cell waiting times in the models of 
Sect. 8.1. Consider the case that a switch achieves the required waiting time performance 

Table 8.2: Quantiles of Wn in the VC model. indep. is independent waiting times of a cell 
in different queues. dep. is dependent waiting times of a cell in different queues. 

smooth; 10-7 quantile indep. dep. 
5 queues 31 30 
20 queues 54 51 

bursty; 10-s quantile indep. dep. 
5 queues 170 182 

according to the conventional methods, that assume independent waiting times. 

• For smooth traffic, this means that a 10-1 -quantile of 31 (54) slots is acceptable. The 
method developed in this thesis however shows that the actual end-to-end waiting 
time is lower: 30 in stead of 31 slots (51 in stead of 54). This means that the switch 
load can be increased. 

The new method allows the design of a more efficient switch. 

• For bursty traffic, this means that a 10-8 -quantile of 170 slots is acceptable. The 
new method shows however that the actual 10-8 -quantile is higher, namely 182 slots. 
So that the conventional methods accept a switch design that in reality exceeds the 
waiting time budget by 12 slots or 7%. 

The new method avoids that the delay budget is exceeded. 

The performance requirements on a switch are tight. To design an efficient switch 
that meets the performance requirements, it is important that delay performance can be 
examined carefully as a function of traffic load. The two waiting time evaluation methods 
serve this purpose. 

of the tandem represents transmission of cells between switches; the service times in the other queues 
of the tandem represent transmission of cells inside the switch. In a multi-stage switch without internal 
buffering, the internal cell transmission rate is often higher than the external rate, in order to reduce the 
probability that a cell is blocked inside the switch. In a multi-stage switch with internal buffering, internal 
cell bloc.king is alleviated by buffering 1 so it is not required to increase the internal cell transmission rate, 
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8.4 Conclusions 

The methods developed in this thesis have been shown to be applicable to rather realistic 
design problems. The results obtained show that the methods make possible the design of 
more accurate and more efficient ATM systems. 

In Usage Parameter Control (UPC) design, the methods allow tighter control over the 
traffic characteristics on a VC. This may in turn lead to a more efficient use of network 
resources. Further, they ensure that UPC respects the Quality of Service and does not 
unjustly mark cells that are compliant with the agreed traffic characteristics. 

In Smoothing Buffer design, the methods allow shorter delay in the smoothing buffer 
and guard that the Smoothing Buffer maintains the Quality of Service. 

In Switch design, the methods allow more efficient switches and switches that meet 
their delay budget. 

The methods have been developed to incorporate the influence of the three Queuing 
Network Phenomena (QNP) on the end-to-end cell waiting time distribution. This means 
that, in comparison with conventional methods, the methods provide significantly more 
accurate results only when the QNP have a noticeable effect on the end-to-end cell waiting 
time. (Otherwise they are neither more accurate nor less accurate.) 

Already in chapter 5, we observed that fan out (i.e., the degree to which the output 
stream of a queue is distributed over different destinations) is decisive for the relevance 
of all three QNP. Fan out should by the way be interpreted in terms of the loads of the 
actually realized traffic streams and not in terms of the rates of the transmission links. 

The numerical results in this chapter clearly show that the methods of this thesis 
perform better than conventional methods. The improvement is rather large in some cases 
and small in other cases. This confirms that the methods should predominantly be applied 
to queuing network models in which fan out from one queue to the next is small. 



Chapter 9 

Conclusions 

The subject of this thesis is performance analysis of a Virtual Connection (VC) in an ATM 
network. VC performance is measured in terms of cell loss and delay (of which delay by far 
receives most attention in this thesis). VC performance is part of the contract between the 
provider and the user of a VC. The provider needs performance estimates in the design and 
control of the network. The user needs performance estimates in the design and control of 
his private network and terminal equipment. 

The problem addressed in this thesis is that performance analysis of ATM VCs is not 
well understood and that existing performance evaluation methods are not accurate in 
specific circumstances. An ATM network can be modeled as a network of multiplexers 
through which VC traffic streams pass. VC traffic models and multiplexer models are well 
understood in the literature. ATM VC performance evaluation itself has however received 
little attention. In the literature it is almost always assumed that the multiplexers that 
make up the ATM network model are independent. The performance evaluation methods 
developed in this thesis are not based on this assumption. 

The approach taken in this thesis towards ATM VC performance analysis is stochastic 
modeling. The behavior of an ATM VC is represented in a stochastic model (namely, a 
Markov chain), and this model is subsequently analyzed with respect to the waiting time 
of a cell on the VC under study. The distribution of the end-to-end cell waiting time allows 
to give a statistical guarantee on the performance on a VC. 

This chapter first lists the claims that follow from the work in this thesis. Then, it 
discusses the limitations of the work. Finally, it describes related research issues that have 
not been considered. 

9.1 Claims 

This thesis presents two new methods to determine the end-to-end cell waiting time dis
tribution on an ATM VC. One method applies to smooth VC traffic ; the other method 
to bursty VC traffic. The methods are more accurate than existing methods, because they 
take the three Queuing Network Phenomena into account. 
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For our purposes an ATM network may be modeled as a network of queues, where each 
queue represents a multiplexer. We assume that the queues are identical and synchronized. 
The VC under study passes through a given subset of the queues. This subset forms a 
tandem network of queues. This tandem network forms the VC model, together with a 
description of the traffic streams on the VCs that pass through it. In the thesis, the VC 
model is analyzed step by step: 

• The chapters 2, 3 and 4 provide a survey of the literature on respectively traffic 
modeling, multiplexer modeling and VC performance evaluation. These chapters 
provide the basis for the ensuing chapters. Their contribution to the development 
of the field is that they provide a framework to categorize and assess the work by 
others on the subject. Especially, VC performance evaluation in the context of ATM 
has received little attention in the literature. 

The conclusion from chapters 2 and 3 is that traffic models and multiplexer models 
are well developed. Two multiplexer models should be distinguished: determinis
tic multiplexing of smooth traffic and statistical multiplexing of bursty traffic1. In 
case of deterministic multiplexing, the smooth VC traffic streams that arrive at the 
multiplexer may collectively be modeled by a Poisson process. In case of statisti
cal multiplexing, the bursty VC traffic streams that arrive at the multiplexer may 
collectively be modeled by a two-state Markov-modulated Poisson process. 

The conclusion from chapter 4 is that existing VC performance evaluation methods 
essentially neglect the queuing network phenomena (QNP) and that the influence of 
the QNP on VC performance should be studied. Three QNP have been distinguished: 

1. QNP waiting time correlation: correlation between the waiting times of a single 
cell in different queues of the network. 

2. QNP traffic characteristics change: change of the characteristics of a VC traffic 
stream due to queuing. 

3. QNP traffic stream correlation: correlation between VC traffic streams that have 
been multiplexed on a single transmission link. 

• Chapter 5 describes and assesses the three QNP for both smooth traffic and bursty 
traffic (i.e., deterministic multiplexing and statistical multiplexing, respectively). The 
description and analysis of the QNP in the context of ATM is original (except for 
the QNP traffic characteristics change at bursty traffic). It provides the motivation 
for VC performance evaluation methods that account for the QNP. 

The main conclusion of this chapter is that the effect of the QNP on VC performance 
is relevant in certain cases. In general, the QNP waiting time correlation and the 
QNP traffic stream correlation are more relevant if fan out is smailer (i.e. if the 

1 In deterministic multiplexing, the instantaneous cell arrival rate at a multiplexer never exceeds the 
cell transmission rate from that multiplexer. In statistical multiplexing, the instantaneous cell arrival rate 
occasionally exceeds the cell transmission rate. 
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output stream of a multiplexer is divided over a smaller number of downstream 
multiplexers); the QNP traffic characteristics change is more relevant if the rate of 
the traffic stream is higher. For both smooth and bursty traffic, the most important 
QNP is waiting time correlation. It should be accounted for by VC performance 
evaluation methods. 

• Each of the chapters 6 and 7.1 describes a new method to assess the end-to-end 
cell waiting time distribution on a VC. The method in chapter 6 applies to smooth 
VC traffic (i.e., deterministic multiplexing); the method in chapter 7.1 to bursty VC 
traffic (i.e., statistical multiplexing). The methods approximately solve a stochastic 
model of a VC. The methods are an original contribution. They are more accurate 
than existing numerical methods, because they take all relevant QNP into account. 

The method for smooth VC traffic (Ch. 6) is an enhancement of the traditional 
decomposition method, that assumes independence of the waiting times of a cell in 
the queues of the VC model. Correlation between cell waiting times is caused by 
correlation between the arrival processes at the corresponding queues. The enhanced 
method takes correlation between arrival processes into account by conditioning the 
cell waiting time in a queue on the arrival process at that queue. 

The method for bursty traffic (Ch. 7.1) is based on the observation that the rele
vant part of the end-to-end waiting time distribution on a VC is determined by the 
occurrence of simultaneous overload of 1 or 2 queues in the VC model. The method 
exploits this observation and reduces the VC model to a network of 2 queues in tan
dem while maintaining the relevant overload behavior of the VC model. The method 
accounts for the QNP waiting time correlation and traffic stream correlation during 
overload of a queue. 

• Chapter 8 shows the application of the methods developed in the two preceding 
chapters to the design of ATM networks. 

9.2 Limitations 

The two methods are useful tools in the design of ATM networks. Their development 
has however required limitations in three areas: VC model, performance measures and 
computation time. 

9.2.1 Limitations regarding the VC model 

Smooth VC traffic 

• The method for smooth VC traffic applies to a VC model of identical queues. The 
method can easily be adapted to a VC model of non-identical queues, after the 
synchronization of these queues has been given some thought. 
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• In the VC model, interfering traffic2 is collectively modeled by a Poisson process, and 
the routes of interfering cells are supposedly independent and identically distributed. 

The Poisson model is generally accepted as an accurate model for aggregate traffic 
stremas that are composed of many small contributions. Only if a high-rate non" 
Poisson traffic source contributes to the interfering traffic, the Poisson model may be 
1 ess accurate. 

Other processes may be chosen for both the cell arrival process and the cell routing 
process, but a useful choice would require new research. The method can model cell 
routing only by a stochastic process. It is not possible that the route of a cell is 
determined at the moment that it arrives at a queue. The route of a cell after a 
queue is determined at departure from that queue by a stochastic process. 

Bursty VC traffic 

• The method for bursty VC traffic applies to a VC model of identical queues and 
cannot account for the occurrence of different cell transmission rates in an ATM 
network. The method represents then queues in the VC model by only 2 queues, so 
it is essential that the queues are identical. 

• The method applies to a VC model in which all VC traffic streams (on the VC under 
study and on interfering VCs) are identical and the loads of all queues are equally 
high. The method cannot account for different VC traffic streams. Again, this is a 
result of the method that reduces the number of queues in the VC model. 

In the VC model, VC traffic streams are modeled as interrupted Poisson processes 
(IPP). The choice of the IPP type of traffic model is essential to the traffic aggregation 
technique. 

• The multiplexers in the VC model should be operated as statistical multiplexers in 
the burst level congestion region. The probability that a multiplexer is overloaded 
should be small, for the reduction of the number of queues to be accurate. This 
requirement hardly limits the applicability of the method. 

9.2.2 Limitations regarding performance measures 

The two performance evaluation methods assess the end-to-end waiting time distribution 
of a single cell. They do not consider the joint end~to~end waiting time distribution of 
several cells on the VC under study. They also do not consider cell loss. 

The joint distribution of cell waiting times is not a very important performance measure. 
It determines the probability that a number of consecutive cells are lost in a smoothing 
buffer or in UPC/NPC. The joint cell loss probability is important for some source coding 

2 The description of the traffic stream on the VC under study is already very versatile, so it does not 
provide a limitation. 
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techniques. It also determines the probability of packet loss, where a packet is a data unit 
that is divided into a number of cells that are transported via an ATM network. 

The cell loss probability is very important. The end-to-end cell loss probability is 
obtained by adding the cell loss probabilities in the queues that make up the VC model. In 
the end-to-end cell loss probability (unlike in the end-to-end cell waiting time distribution), 
correlation between the queues of the VC model does not play a role. So, decomposition 
of the queuing network is an appropriate approach in determining the cell loss probability. 
Correlation between queues does play a role in the joint probability of cell loss. 

9.2.3 Limitations regarding computation time 

Both methods require a considerable amount of computation, so that they cannot be used 
in the control of an ATM network. In control, real-time decisions have to be taken on e.g. 
the admission to the network of a requested VC. The methods should be applied to the 
design of ATM networks (including traffic control rules), where the computation time is 
relatively unimportant. 

9.3 Future research 

Future research may be directed towards alleviation of limitations of the methods and, 
more importantly, towards application of the methods to the design of ATM networks. 

9.3.1 Alleviation of the limitations 

• The main limitation of the method for smooth traffic resides in the trade off between 
accuracy of the results and computation time. Possibly, an improvement of this trade 
off is achieved by simplification of the traffic description. 

• The main limitations of the method for bursty traffic are (1) that the queues in 
the VC model should be identical and (2) that the VC traffic streams should be 
identical IPPs. Removal of these limitations would allow application of the method 
to configurations that more closely resemble real life ATM networks. 

9.3.2 Application of the methods 

Application of the methods to the design of ATM networks is an interesting topic for 
future research. The role of the methods is to provide accurate results on the end-to-end 
cell waiting time distribution. Future research should concern the implications of these 
results to the design of ATM networks and of traffic control rules. 
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Appendix A 

Multiplexer Models 

In Sect. 3.2, an ATM multiplexer was described as a queue. In this appendix, several 
methods to analyze ATM multiplexers are discussed. Earlier versions of this text are [van 
Rijnsoever, 199la; van Rijnsoever, 1991b]. Focus is on statistical multiplexers. 

Mostly, it is straightforward to obtain the cell delay distribution and the cell loss prob
ability once you know the joint distribution of queue length and source state. We will 
therefore concentrate on the queue length distribution. 

Let the number of cells in the multiplexer, i.e. buffer and server, be denoted by the 
stochastic process Xn, and denote by the random variable Ln+i the number of cell arrivals 
to the multiplexer in slot n + 1. f{ is the maximum number of cells in the multiplexer. To 
describe the operation of the multiplexer, we have to determine the relative order of three 
events that are repeated endlessly in that order: arrival of a batch of new cells, departure of 
a cell from the multiplexer after service, and loss of cells due to buffer overflow. (Of course 
not all three events will actually occur in each slot.) There are basically two different orders. 
(Other orders differ from the two basic orders only w.r.t. the position of the observation 
moment relative to the events.) We call them the arrivals-first and departures-first orders 
of events. They, respectively, give rise to the following stochastic equations for Xn+i: 

Xn+1 = min[max(Xn+Ln+l - 1,0),K] 

Xn+l = min[max(Xn - 1, 0) + Ln+1, K]. 

Both orders describe essentially the same system. 

(A.l) 

(A.2) 

The queue model of an ATM multiplexer can be solved in several ways. The evolution 
of the queue length in a multiplexer is described by either a Markov chain (like in A.1 and 
A.2) or by a set of differential equations. Both can, in principle, be solved numerically. 
(See [Krieger et al., 1990] for a survey on the numerical solution of Markov chains.) We will 
however not consider purely numerical techniques. They do not provide insight into the 
problem at hand and - although they are getting more sophisticated, and computing power 
and storage capacity are increasing steadily - the model state space may easily exceed the 
problem size they can handle. The techniques that we do consider try to exploit the 
structure of the problem under scrutiny. The ideal of a fully explicit solution is, however, 
almost never attained. 
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Sects. A.I and A.2 solve the Markov chain multiplexer description. Sect. A.I pro
vides an algorithmic solution method; the methods in sect. A.2 are based on probability 
generating functions. Sect. A.3 solves the fluid-flow model of an ATM multiplexer. This 
model describes a multiplexer in terms of differential equations. The basic problem that 
all these methods encounter is how to determine the probability distribution at the edge of 
the state space, i.e., at an empty queue (most method assume infinite buffer size). Finally, 
Sect. A.4 solves a multiplexer that multiplexes periodic traffic streams. 

A.1 Algorithmic solution of the D-BMAP /D/1 queue 

In this section, we consider an algorithmic technique to solve the D-BMAP/D/1 queue 
for its steady-state probability distribution. A more general version of this technique is 
extensively described by Neuts [1989]. The treatment here is very short and confined to 
the context of ATM. 

We consider respectively the D-BMAP /D /1 queue, its solution, and solution of the 
D-BMAP /D/l/K queue. 

A.1.1 The D-BMAP /D/1 queue 
The Discrete-time Batch Markovian Arrival Process (D-BMAP) was introduced in 2.3.1. 
It is a discrete-time Markov renewal process in which an event is the arrival of a batch of 
cells. The events of a Markov renewal process coincide with transitions in a Markov chain, 
see [Cinlar, 1975, Chap. 10, Def. 1.1]. In a D-BMAP, the transition that induces an event 
also determines the distribution of the number of cells in the batch associated with that 
event. The distribution depends on the states that precede and succeed the transition. 

A D-BMAP can be described as follows, see [Blondia, 1991]. The Markov chain that 
induces the D-BMAP has transition probabilities matrix D. D is an irreducible\ finite 
stochastic matrix2 • The state of this Markov chain is called the phase of the D-BMAP. 
To describe the batch size distribution, the transition probabilities matrix D is split up 
into a set of substochastic matrices Dk, k 2'. 0, such that D = l::/;;0 Dk, and I - Do is 
non-singular. Entry (z,j) in matrix Dk is the probability that, given that the phase in the 
current slot is i: 

• the phase in the next slot is j and 

• a batch of k cells is generated during the transition from phase i to phase j. 

The D-BMAP describes the aggregate cell arrival process at an ATM multiplexer. In the 
context of ATM, the traffic stream on a single VC is often an on-off process with periodic 

1 A Markov chain is said to be irreducible if its only closed set is the set of all states. A set of states is 
closed if no state outside it can be reached from any state in it. See [Cinlar, 1975, p. 127). 

2 A square matrix is stochastic if its elements are non-negative and each row sums up to 1. The transition 
probabilities matrix of a discret~time Markov chain is stochastic. 
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cell generation in the on-state. The alternation between on- and off-states is described by 
a two-state Markov chain. In case of identical VC traffic streams, the burst level state of 
the aggregate arrival process is then a birth-death process, which is easily represented in 
a D-BMAP. Periodic cell generation however cannot easily be represented in a D-BMAP. 
So for the sake of tractability, it is mostly assumed that cell generation in the on-state is 
Bernoulli instead of periodic. As noted in [qi Li et al., 1991; Rama.swami et al., 1991], this 
hardly affects the accuracy of the model. 

The D-BMAP is synchronized to the service process of the multiplexer: both processes 
have a slot structure and these structures coincide. The multiplexer is described by the 
Markov chain {(Xn,Jn)}, where X,, denotes the number of cells in the system in slot n, 
and Jn denotes the phase of the D-BMAP in slot n. 

If the states of {(Xn,Jn)} are ordered lexicographically, the transition probabilities 
matrix has a block matrix structure: it can be written down in terms of the smaller 
matrices Dk. It is given below for, respectively, the arrivals-first and departures-first orders 
of events: 

( 

Do + Di D2 D3 D4 · · · 1 
Do D, D2 D3 ··· 
0 Do D1 D1 ... 
0 0 Do D1 · · · 
. . . . 

(A.3) 

[ Do 
Di D2 D3 

l Do Di D2 D3 ... 

0 Do D, D2 
0 0 Do D, 

(A.4) 

A.1.2 Algorithmic solution 

Assuming steady-state exists, denote the steady-state probabilities of { (X., J,,)} by 7r;1 = 
limn~00 Pr(Xn = i,Jn = j), and form the vectors 11'i = (7r;1,7r;2, ... ,7rim), where mis 
the number of states of the phase process. Obviously, 11' = I;;>o 11'; is the steady-state 
probability distribution of the phase process, i.e. 11=11D. -

For the arrivals-first order of events, the vectors 11'; are related by (see also equation 
A.1): 

•+l 
1ri = l:::: 1rjDi+1-3 ) 

j:O 

(A.5) 

(A.6) 

For the departures-first order of events, the vectors 11'; are related by (see also equation 
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A.2): 

i+l 

1t'i = 1t'oDi + L 1t'jDi+l-n 
j=l 

i:::: 0 (A.7) 

The Markov processes described by the matrices A.3 and A.4 are of the M/G/l-type3
, 

see [Neuts, 1989]. The essential characteristics of these processes are that the behavior is 
independent of the number of cells in the system (the leveQ, except when the level is 0, 
and that the level may decrease only in single steps. The transition of the Markov chain 
from a level to the next lower level is called the fundamental period; fundamental because 
it is independent of the level. 

The algorithmic solution determines 1!'0 . 1!';, i > 0, may then be obtained in an iterative 
algorithm based on A.l or A.2, see [Ramaswami, 1988a]. 

The algorithm examines the fundamental period of the process. The distribution of the 
fundamental period is the joint distribution of: 

• the number of slots required to reach the next lower level for the first time and 

• the phase in which this level is reached. 

The distribution of the fundamental period is described by a recursive matrix-equation 
based on the observations that the level may decrease only in single steps and that system 
behavior is independent of the level from level 1 onwards. 

To calculate 1t' 0 , it is not required to determine the distribution of the fundamental 
period. It suffices to determine less complex measures: the distribution of the phase 
transition in the fundamental period and the mean number of slots in the fundamental 
period, given the initial phase. The computationally most intensive part of the algorithm 
is the recursive solution of the polynomial matrix equation that describes the distribution 
of the phase transition. 

A.1.3 Algorithmic solution of the D-BMAP /D/1/K queue 

The transition probabilities matrix of the D-BMAP /D/1/K queue is easily obtained from 
the transition probabilities matrix of the D-BMAP/D/1 queue. In comparison with the 
D-BMAP /D/1 queue, in the D-BMAP /D/1/K queue a transition into a state is impossible 
if the number of cells in this state exceeds I<. A transition into a state with more than 
]{ cells in the infinite queue is 'translated' to a transition into a state with ]( cells in the 
finite queue. For the departures-first order of events, the following transition probabilities 

3 The Markov chain embedded immediately after departure moments in the M/G/1 queue is also of this 
type, hence the name. 
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matrix is obtained: 
Do D1 D2 Dx-1 ih 
Do D1 D2 Dx-1 bx 
0 Do D1 Dx-2 Dx-1 
0 0 Do Dx-s bx-2 

0 0 Do D1 

where D; = y::;_i D,. 
This queuing model can be solved numerically. One may, however, exploit the structure 

of the transition matrix in an algorithmic solution procedure to obtain a more efficient 
solution method. Such procedures are outlined in [Blondia, 1991; Baiocchi et al., 1993]. 
The notation is most clear in [Baiocchi et al., 1993], and this procedure will be outlined. 
Equation A.7 still holds for 11'0 to 11'K_,. This allows expressing all probability vectors in 
11'a: 11'; = 11'0 C;, i E {O, ... , I<}, where 

c, 
i-1 

[C,_1 - D;_i - L C;Di-i]D01 

i=l 

11'0 follows from the normalization equation: 

K K 

11' = L11'i = 11'oLCi, 
i=O i=O 

(A.8) 

(A.9) 

(A.IO) 

(A.11) 

where 11' is the steady-state distribution of the phase process. If several buffer sizes are to 
be considered, the matrices C, can be used repeatedly. 

A.2 Transform solutions 

This section surveys application of the well-known probability generating function (PGF) 
technique to the determination of the steady-state probability distribution of ATM multi
plexers. Focus is on the D-BMAP /D /1 queue. 

A general overview of PGFs is given in, e.g., [Kleinrock, 1975, App. I]. Only in a small 
number of cases an explicit expression for the PGF is known. The PGF of an integer, 
non-negative random variable X is defined as: 

00 

x """ . E(z ) = L.. Pr(X = i)z'. (A.12) 
i=O 

The simple PGF E(zx) is not well suited to analyze a queue like the D-BMAP/D/l 
queue, that is described by the two-dimensional Markov chain {(X, J)}. There are two 
more advanced PGFs: 
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• The vector PGF (E(zx I J = 0), E(zx I J = 1), ... , E(zx I J = m)). 

This PGF is used to study D-BMAP/D/1-like queues in e.g. [Daigle et al., 1990]. 
We will subsequently address it in two separate subsections. 

An expression for the PG F is obtained that contains constants that are the roots of 
a set of equations. 

• The multi-dimensional PGF E(zx · y1 ). 

The series of papers [Xiong et al., 1993; Bruneel, 1993; Bruneel, 1988; Xiong et al., 
1992] uses a multi-dimensional PG F to study queuing behavior when multiplexing on
off traffic streams. In the on-state, cells arrive in contiguous slots at the multiplexer. 

A functional equation for E(zx · y1 ) is found, from which explicit expressions for the 
moments of X can be derived. However, the algebra involved is very complex except 
for the first moment. 

A.2.1 Vector probability generating functions 

In section A.1, the D-BMAP/D/1 queue was solved according to an algorithmic method. 
This section addresses its solution by transform methods, see e.g. [Daigle et al., 1990]. 

Consider the departures-first D-BMAP /D/1 queue. Its transition probabilities matrix 
is given in A.4. Define for each state of the phase process a generating function G1(z) and 
form the vector of generating functions G(z) = ( G1 (z ), ... , Gm( z )). 

G(z) = L;11'iZi 

i~O 

(A.13) 

(A.14) 

The functions G, (z) are not called probability generating fnnctions, because they are not 
constructed from a complete probability distribution. Multiplying equation A.7 by z' and 
summing over all i, readily yields4

: 

G(z)[zI - D(z)] = (z - l)7r0 D(z), (A.15) 

where D(z) = l:;>oDizi. G(z) is now completely determined up to the vector 1T'0 , which 
denotes the joint p-robability that the system is empty and in a given phase_ (Note, however, 
that even when 11'0 is known determination of G(z) and of the probability distribution is 
not straightforward at all.) 

Postmultiplying both sides of equation A.15 by e = ( 1, ... , 1 f, taking derivatives with 
respect to z, and substituting z = 1 yields: 

1 -1t'D1(l)e = 7r0 e, (A.16) 

4 For the arrivals-first order of events, the equation is: G(z)[zl - D(z)] ~ (z - l)1r-0Do. 
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where 11' the steady-state probability distribution of the phase process. 11 = G( 1 ). This 
equation states that 1 minus the mean number of cell arrivals pe< slot equals the probability 
of an empty system. 

In some systems, the D-BMAP is such that there is only one phase that allows the 
system to be empty (i.e. there is only one phase that can be entered without generating a 
cell). The unknown vector Tr0 then follows immediately from A.16. 

A more general way to obtain 110 in A.15 is the following. The matrix [z/ - D(z)] 
is singular for some complex values of z. 5 For values of z that are inside or on the unit 
circle in the complex plane ({I z I«:: l,z EC}},\ G(z) I«::\ G(l) \=111' I, because in A.13 
11';; > 0. The essential point is that I G(z) \ is bounded inside and on the unit circle of 
the complex plane. If [z/ - D(z)] is singular for a value of z that is inside or on the unit 
circle in the complex plane, the right hand side of equation A.15 has to equal 0, because 
only then G(z) is bounded. Values of z for which [z/ - D(z)] is singular are the roots of 
Det( zl - D( z )) = 0. The set of linear equations that is obtained in this way, together with 
the normalization equation A.16, should allow determination of Tr0 • 

Qi Li et al. [1991] show how to obtain 11'0 and solve A.15 by an alternative procedure 
that uses eigenvalues and eigenvectors. In their procedure, one may take advantage of the 
structure of the matrix D(z) if the D-BMAP is formed by superposition of independent 
traffic processes. 

A.2.2 Other probability generating functions 

We consider three types of PGF that resemble vector PGFs. 
Rashida et al. [1991] apply transform methods to the D-BMAP(2)/G/1 queue, and 

Liao et al. [1989] to the D-BMAP(2)/D/l queue. The D-BMAP(2) is a D-BMAP in which 
the phase process has 2 states. They take a somewhat different approach and determine 
the two PGFs of the queue length at state changes of the phase process. 

Murata et al. [1990] study the discrete-time G+GEOA /D/l queue by transform meth
ods. The G-stream represents traffic of which the performance is required; interfering 
traffic is represented by a GEOA process. In a GEOA process, a batch of cells arrives in a 
slot with a certain probability and with the complementary probability no batch arrives. If 
a batch arrives, the number of cells in the batch is distributed according to distribution A. 
In steady-state, the PGF of the queue length at an arrival moment on the G-stream, Gk(z), 
depends on the number of slots k since the last arrival on the G-stream. The PGF of the 
queue length at arrival moments on the G-stream equals the weighted sum of the Gk(z)'s, 
where the weighting factor is given by the interarrival time probability distribution of the 
G-stream. This expression entails the infinite set of unknowns {Gk(O), k;:: 1}. After con
siderable manipulation, this expression is converted into an expression with finitely many 
unknowns that can be solved for by requiring that G0 (z) is analytic in the unit circle of 
the complex plane. 

5 [zJ -D(z)] is singular for z = 1, because '11'[1 -D(l)] ='II'- 'll'D = 0. This value of z is of no use here, 
however, because the right hand side of A.15 has a factor (z - I). 
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Brown et al. [1988] consider a special case of the previous model: the D+GEOA /D/1 
queue. The set { Gk(z), 0 :S k :S d - 1} is to be determined, where dis the period of the 
D-stream. The unknowns { Gk(O), 1 :S k :S d - 1} can now be determined directly from the 
expression for Go(z). 

A.3 Fluid flow models 

If congestion mainly occurs when the instantaneous aggregate arrival rate at the multiplexer 
exceeds the multiplexer output rate, the arrivals of individual cells need not be taken into 
account to accurately estimate the multiplexer performance. Fluid-flow models represent 
the arrival and service processes by continuous-streams of information (see also Sect. 2.1.1). 
As a result, buffer content and waiting time are no longer integer values. Fluid flow models 
account for the net flow of information into a buffer. They only consider burst level 
congestion and do not model cell level congestion, see Sect. 3.3. If burst level congestion 
prevails, however, they are remarkably accurate and underestimate the cell loss probability 
only slightly. In this section, we will focus on fluid-fl.ow models in which the arrival rate is 
modulated by a continuous-time Markov chain. A survey of fluid-flow models is given in 
[Roberts, 199la, sect. 7.2]. 

Most results pertain to the case in which the modulating Markov chain is a birth· 
death process. Kosten [1974] studies the case of a Poisson process of burst arrivals (rate 
,\). The burst length is exponentially distributed (rate /3), and the arrival rate during a 
burst (r) is fixed. See also section 2.3.2. Anick, Mitra and Sondhi (AMS) [1982] model 
the arrival process as the traffic generated by the superposition of N independent and 
identically distributed on-off sources, that have exponentially distributed on- and off-times 
(rate off-times: a) and a fixed generation rate in the on-state. The model is to be solved 
for F,(x) = 1im1~=Pr(J, = i,X, :S x). A set of differential equations is drawn up by 
allowing in an infinitesimal interval only one of the following events: a step upwards or 
downwards in the birth-death chain or a change in the buffer filling level: 

Pr(Ji+at = i, Xt+at :S x) = 
µ,+i di Pr( J, = i + 1, X, :S x) 

+ >.;~ 1 dtPr(J, = i-1,X,::; x) 

+ (1 - (,\; + µi+1) dt )Pr(J1 = i, X, + (ri - 1) dt :S x) 

+ o(dt), 0 :Si :SN, 

where A, is the birth-rate in state i (,\ in the Kosten model; (N -i) ·°'in the AMS model); 
µ; is the death-rate ( i - /3); and r, is the arrival rate (i · r ). The service rate is 1. Parameters 
with an index value out of range are zero. Subtraction of Pr( J, = i, X, :S x) at both sides 
of the equation, division by dt and rearranging yields: 

Pr(Jt+dt = i,Xi+dt :S x)- Pr(J, = i,X,::; x) 
dt 
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µ;+ 1Pr(J1 = i + l,X, :S x) 
+ ,\;-1Pr(J1 = i - l,X1 :S x) 

(,\; + µ;+1)Pr(J1 = i,X1 + (r; - l)dt :S x) 

Pr(J1 = i,X, + (r;- l)dt :S x)- Pr(J, = i,X, :S x) 
+ dt 
+ o(dt) 

-----;ft' O:Si:SN. 
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Next, let t approach oo and dt approach 0. In the steady-state, the derivative of the joint 
probability with respect to time (i.e. left hand side of equation) is 0. Substitution of 
dx = (r; - l)dt and rearrangement gives: 

0 :Si :SN. (A.17) 

The set of differential equations can be cast into matrix format: 

DdF(x) =MF 
dx ' 

(A.18) 

where F(x) = (F0 (x),F1(x), ... ,FN(x)JT, D = diag(ro - l,r1 -1, ... ,rN -1), and M 
is the infinitesimal generator matrix of the birth-death process. In a stable system, the 
generic solution of this model is: 

F(x)=F(oo)+ L a;ef;>;e'•x, 
{ilRe(zi)<O) 

(A.19) 

where z; is a (complex valued) eigenvalue of n-1 M, ef>; the corresponding right eigenvector, 
and the parameters a, are set to comply with the boundary conditions. Eigenvalues with 
positive real part cannot be part of the solution, because they would give unbounded 
probabilities for large enough x. Eigenvalues zero give the steady-state distribution of the 
phase process. The asymptotic behavior of F(x) in xis determined by the largest negative 
eigenvalue. 

For the Kosten model only an algorithmic solution is known. For the AMS model, 
however, an explicit solution is given in [Anick et al., 1982]. There are one eigenvalue 
zero and N - l ~ J negative eigenvalues, where rmux denotes the multiplexer rate, that is 
assumed not to be a multiple of r. 

Tucker [1988] study the AMS model in case of a finite buffer. For a finite buffer, the 
positive eigenvalues cannot be discarded. The set of unknown constants a., 0 :S i :S N is 
solved numerically from a set of linear equations that ensures that the boundary conditions 
are fulfilled. These boundary conditions are that the buffer can never be empty if the phase 
process is in an overload state and that the buffer can never be full if the phase process is 
in an underload state. 

Kosten [rn84] studies the AMS model with heterogeneous traffic sources, i.e. traffic 
sources are divided into groups of independent and identically distributed sources. An 
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explicit solution is not found, but equations for and properties of the eigenvalues are given. 
In [Baiocchi et al., 1992b] this model is further analyzed for the finite buffer case. It is 
shown that the calculation of the eigenvectors can be decomposed according to the groups 
of sources. The set of equations that determines the constants in the solution according to 
the boundary conditions readily becomes too large to solve. An approximation for the loss 
probability is proposed that (1) leaves out the contributions from the positive eigenvalues 
and (2) sets the constants corresponding to the negative eigenvalues to their values at 
buffer size zero. The latter values can be determined relatively easy. Comparison with 
exact results shows that this approach yield an upper bound on the cell loss probability. 
The relative error is less than 10% if the server load does not exceed 0.7. 

Suruagy Monteiro et al. [1991] show that in the AMS model the loss probability depends 
on the buffer size and on the mean burst length only through their ratio. So, a model with 
small buffer size may replace a model with large buffer size in performance studies if the 
burst length is proportionally decreased. 

A.4 Multiplexing periodic traffic sources 

If the arrival process to a queue with a deterministic server is periodic and the queue is not 
overloaded or the buffer size is finite, the queue length distribution will, after a transition 
period, be periodic as well (see Sect. 2.3.3). This phenomenon may lead to widely different 
performance for otherwise statistically indistinguishable sources. The period equals the 
smallest common multiple of the periods of the individual sources. It is commonly assumed 
that the phase of the sources is chosen randomly. 

Especially the nD/D/l queue has received much attention. Roberts et al. [1991b] 
and Humblet et al. [1993] give explicit expressions for the queue length distribution of 
the nD /D /1 queue. The expressions differ with respect to their complexity. Dron et al. 
!1991] give an approximate expression for the queue length distribution that is shown 
to be accurate for high load and large n. It is shown in e.g. [Roberts et al., 1991b; 
Dron et al., 1991] that the M/D/1 queue is a good approximation (slight overestimation 
of the queue length) for the nD/D/1 queue, if the system load is small and n is large, see 
also section 2.3.3. 

In the nD/D/1/K queue, a buffer size exceeding n will not contribute to a lower cell 
loss probability, independently of whether the queue is overloaded or not. Cidon et al. 
(see [Roberts, 199la, sect. 6.5.2]) and Huebner et al. [1991) solve the nD/D/1/K queue 
by considering all possible cell arrival patterns. The queue length regenerates once each 
period. In case of an underloaded queue, the queue is empty in the regeneration point; 
in case of an overloaded queue, the queue is full in the regeneration point. ·The queue 
length distribution is determined by following the queue length evolution starting in a 
regeneration point for all possible arrival patterns in a single period. 

Roberts et al. [1991b] give upper and lower bounds on the queue length distribution 
for the Zi' n;D;/D/l queue. 
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A.4.1 Quasi-stationary approximation 

The quasi-stationary approximation can be applied to multiplexing on-off sources with 
periodic cell generation in the on-state, see [Fuhrmann et al., 1991; Huebner et al., 1991; 
Norros et al., 1991; Chen, 1993; Kamitake et al., 1989). The approximation applies only 
to the case of underload: the instantaneous cell arrival rate at the multiplexer should be 
smaller than the output rate of the multiplexer. 

If the source states change slowly, the queue length distribution reaches a limit distribu
tion long before the next change, and it is reasonable to assume that this limit distribution 
holds during the entire sojourn time in the corresponding states. The 'overall' queue length 
distribution can be assessed by first determining the steady-state distribution correspond
ing to each set of source states, and subsequently averaging these distributions according 
to the probability of each set. 

An alternative to the quasi-stationary approximation is approximation by a M/D/1/K 
queue. It is rather accurate, see e.g. [Kroener, 1991; Baiocchi et al., 199la]. 
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Appendix B 

Waiting time correlation for more 
than two queues 

This appendix describes the QNP waiting time correlation if more than two queues are 
involved for the case of smooth VC traffic. 

The model that we study is a network of n queues in tandem. These are n queues of 
the ATM queuing network model that are passed (one after the other) by the VC under 
study (and possibly also by other VCs). All queues are identical and synchronized. 

In the numerical examples that we consider, the loads of all queues are equal. After 
each queue in the tandem except after the last queue, cells are routed according to a 
Bernoulli model. A fraction y of the cells passes on to the next queue in the tandem, and 

a fraction 1 - y of the cells leaves the tandem network. So f is the fan out. At each queue 
new cells join the tandem network. The traffic stream that they comprise is modeled by a 
discrete-time Poisson process1 . 

For two reasons, the QNP is in general less important if it refers to two non-consecutive 
queues in the tandem network: · 

• Decreased traffic load: 

The traffic load on the route that passes through two queues in general decreases if 
there are other queues in between. In 5.1.1 it is shown that a lower load on this route 
decreases correlation between waiting times. 

• Disturbance of traffic stream: 

Previously, it was argued that the QNP is due to the similarity of the traffic arrival 
streams at two queues. The traffic stream on the route that passes through the two 
queues is however disturbed by any queues in between. 

We argued that the effect of the QNP is smaller if the queues concerned are further 
apart. This does not mean that the QNP may be neglected for far apart queues. If the 
number of tandem queues n in the model grows, the number of pairs that can be formed 

1 In each slot an independent and Poisson distributed batch of cells arrives 
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(~) rapidly increases. Each pair of queues contributes its own, possibly small share to the 
effect of the QNP on the end-to-end cell waiting time distribution. The number of pairs of 
adjacent queues is only a linear function of n, namely, n - 1. 

We break the numerical study down into two parts, according to the two points above. 
At first we neglect the second point above (i.e., the disturbance of the traffic stream) and 
take into account only the first point. This allows us to study arbitrarily long networks. 
Then we take into account both points. 

B.1 The effect of decreased traffic load 

If we neglect the disturbance of the traffic stream, the QNP is the same for consecutive 
queues and non-consecutive queues, as long as the load of the traffic stream through the 
queues concerned is adjusted. We will use this observation to approximate the variance 
of the end-to-end waiting time in an arbitrary number of tandem queues. In 5.1.1, we 
analyzed the QNP for two tandem queues and Poisson traffic. We will use exactly these 
results here again. 

Let Wi, i E {l, ... , n }, be a random variable denoting the waiting time of the cell 
under study in the i-th queue of the n tandem queues in the model. The variance of the 
end-to-end waiting time can be approximated as follows 2 3 : 

n 

Var(L W,) 
:1~1 

n n-1 n 

I:Var(W,)+2L L Cov(Wi,W5) 
i:::l i::::l j=-i+l 

n-1 n-i 

""=' n · Var(Wi) + 2I: I:Cov(W1, W1+5). 
:i=1 j=1 

(B.1) 

In order to obtain a compact expression, we make a further approximation by inserting 
into B.l approximate values for Cov(W1 , W1+;) = Cor(W1 , W1+;) · Var(W1). 

Tab. B.l shows correlation between the waiting times of a cell in two tandem queues, 
for server loads of 0.9. We used the two tandem queues model with Poisson traffic of 5.1.1 
and copied the results from Tab. 5.2. The column labeled ratio shows the ratio between 
correlation at fan out 2•- 1 and at fan out 2i, 2 ::; i ::; 6. It is observed that an increase of 
fan out by a factor 2 corresponds to a decrease of correlation by a factor ~. So, correlation 
is inversely proportional to fan out. This observation was also made by others (see 4.6). 

In the tandem queuing network model, we have chosen a special fan out rule: the 
load of the traffic stream through two queues is proportional to Jd, where f is fan out 
from one queue to the next queue and d is the distance between the two queues. (For 
consecutive queues, d = 1). In combination with the observation that correlation is in
versely proportional to fan out, we obtain the following approximation: Cov(W1 , WJ+d) = 
Cor(W1, W1+d) · Var(Wi) ,:,, Cor(W1 , W2) · 1-d+i · Var(Wi), d 2: 1. 

2Cov(W;. W;) = E(W; · W;)- E(W;) · E(W1 ) 
3The appro"imation is due to neglecting disturbance of the traffic stream: Var(Wi) = Var( W,), 1 < 

i :Sn and Cov(W;, W, + j) = Cov(W1, Wi+;), I :Si :S n-1, 1 :S j :Sn - i. 
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Table B. l: Correlation between cell waiting times in a two tandem queues network as a 
function of fan out. Traffic processes are Poisson. Cell routing is Bernoulli. 

Fan out 2; Cor(W1, W2) ratio 
1 2 1.52. 10-1 

2 4 7.58. 10-2 2.01 
3 8 3.82. 10-2 1.98 
4 16 1.92 . 10-2 1.99 
5 32 9.64. 10-3 1.99 
6 64 4.83. 10-3 2.00 

Insertion of this approximation into B.1 gives: 

(B.2) 

Equation B.2 is the result we were looking for. It allows us to obtain numerical results on 
the correlation between cell waiting times. 

The variance of the end-to-end cell waiting time in the tandem queuing network is 
Var(I:Wi)· If the waiting times were independent (i.e., if the QNP would not exist), 
this would equal Var(I:;W;) = I:Var(W;) = nVar(W1 ). Tab. B.2 shows the (relative) 
underestimation of the variance of the end-to-end waiting time if the QNP is neglected, 

i.e., Var( v:()-~'~r(WI). This is a measure of the QNP. The results in B.2 are based on B.2 

and Tab. B.l. 

Table B.2: Relative underestimation of end-to-end waiting time variance as a/unction of 
the number of queues n and fan out f. 

n f =2 f =4 f = 16 
2 0.13 0.07 0.02 
3 0.20 0.10 0.03 
10 0.32 0.15 0.04 
00 0.38 0.17 0.04 

The results in Tab. B.2 show that correlation between cell waiting times is positive and 
may have a considerable effect on the end-to-end waiting time, depending on the system 
parameters. The effect increases with decreasing fan out for increasing number of queues 
n. The increase is, however, less than proportional to n. If fan out is high, the effect 
increases slowly as a function of n. 
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B.2 The effect of decreased traffic load and distur
bance of the traffic stream 

We simulated a network of three queues in tandem, in order to take into account the effect 
of disturbance of the traffic stream on the QNP. The model is the model we previously 
used. Fan out is 2, and server loads are 0.9. 

The simulation shows that the actual value of the previously introduced measure of 
correlation Var( v:;)-~)r(W,) is 0.18. Assuming the simpler model, we found the approxi

mate value 0.20 (entry for n = 3, f = 2 in Tab. B.2). So, disturbance of the traffic stream 
occurs and has the influence that was expected: a decrease of correlation. The influence 
is, however, rather small. 
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