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Abstract

In a communication network, asymptotic quality of service metrics specify the probability

that the delay or buffer occupancy becomes large. An understanding of these metrics is

essential for providing worst-case delay guarantees, provisioning buffer sizes in networks, and

to estimate the frequency of packet-drops due to buffer overflow. Second, many network

control tasks utilize queue length information to perform effectively, which inevitably adds to

the control overheads in a network. Therefore, it is important to understand the role played
by queue length information in network control, and its impact on various performance

metrics. In this thesis, we study the interplay between the asymptotic behavior of buffer

occupancy, queue length information, and traffic statistics in the context of scheduling,
flow control, and resource allocation.

First, we consider a single-server queue and deal with the question of how often control

messages need to be sent in order to effectively control congestion in the queue. Our
results show that arbitrarily infrequent queue length information is sufficient to ensure
optimal asymptotic decay for the congestion probability, as long as the control information
is accurately received. However, if the control messages are subject to errors, the congestion
probability can increase drastically, even if the control messages are transmitted often.

Next, we consider a system of parallel queues sharing a server, and fed by a statistically
homogeneous traffic pattern. We obtain the large deviation exponent of the buffer overflow
probability under the well known max-weight scheduling policy. We also show that the queue
length based max-weight scheduling outperforms some well known queue-blind policies in
terms of the buffer overflow probability.

Finally, we study the asymptotic behavior of the queue length distributions when a

mix of heavy-tailed and light-tailed traffic flows feeds a system of parallel queues. We

obtain an exact asymptotic queue length characterization under generalized max-weight

scheduling. In contrast to the statistically homogeneous traffic scenario, we show that max-

weight scheduling leads to poor asymptotic behavior for the light-tailed traffic, whereas a

queue-blind priority policy gives good asymptotic behavior.

Thesis Supervisor: Eytan H. Modiano
Title: Associate Professor
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This dissertation is a humble offering at the Lord's feet.

"Whatever you do, whatever you eat, whatever you sacrifice, whatever you give away, and

whatever austerities you practise - do it as an offering to Me." - Bhagavad Gita 9-27.
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Chapter 1

Introduction

In today's increasingly connected world, data communication networks play a vital

role in practically every sphere of our daily lives. Well established infrastructures such

as satellite communications, trans-continental and inter-continental fiber-optic links,

cellular phones, and wireless internet are taken for granted. An internet connection

is often considered an essential utility in urban households, along with water supply

and electricity. More recently, there has been a tremendous growth in voice-over-

IP (VoIP) applications, and hand held devices that access both voice and data over

cellular networks.

Whatever may be the specific application or the medium, it is essential to design

effective data transport mechanisms in a network, so as to utilize the resources avail-

able in an efficient manner. Network control is the generic and collective term used

to refer to such transport mechanisms in a network.

From a theoretical perspective, the problem of optimally transporting data over

a general network is a staggeringly complex one. Optimal data transmission over a

single communication link has been well understood for over six decades now, since

the inception of Shannon theory [57]. However, the extension of Shannon theoretic

capacity results to the simplest of multi-user network models, such as the broadcast

[17] and relay channels [16], has proved notoriously hard. This being the case, we can

safely assert that a complete theoretical understanding of optimal data transmission

over a general network is well beyond our grasp.



Due to the lack of a unified underlying theory [19], the study and design of com-

munication networks has been dominated by 'divide and conquer' approaches, in

which the various functionalities of a network are treated as separate modules that

come together. This modularity of network design is achieved through layering in

network architecture; see [5]. Layering was envisioned as a means to promote clean

and modularized network design, in which the different layers in a network can treat

the other layers as black boxes. Although layering is somewhat artificial in reality in

the sense that the different layers in a network are invariably coupled, it effectively

discourages 'spaghetti designs' that are less adaptable to future changes. Apart from

promoting modularized and scalable design, layering also facilitates the analysis and

theoretical understanding of communication networks. For example, once the com-

munication links in a network are abstracted away as edges in a graph, standard

results from combinatorics and graph theory can be brought to bear upon routing

and scheduling problems. Queueing theoretic results can be used to characterize the

delay experienced by data packets at various nodes in a stochastic network.

In the context of a layered architecture, various network control tasks are also

thought of as operating within different layers. The most important examples of

network control tasks include scheduling and resource allocation at the link layer,

routing at the network layer, and flow control at the transport layer.

We next review some important results from the literature on network control.

1.1 Network Control and the Max-Weight Frame-

work

The theoretical foundations of network control, including the notions of stability, rate

region, and throughput optimal control of a constrained queueing system were laid out

by Tassiulas and Ephremides in [63]. More importantly from a practical perspective,

the authors also propose a joint scheduling and routing policy which they show can

stably support the largest possible set of rates in any given multi-hop network. Their



policy takes into account the instantaneous channel qualities and queue backlogs to

perform maximum-weight scheduling of links and back-pressure routing of data. This

algorithm is quintessentially cross-layer in nature, combining physical layer channel

qualities and link layer queue lengths to perform link layer scheduling and network

layer routing. An important and desirable feature of this approach is that no a priori

information on arrival or link statistics is necessary to implement it. However, a

centralized network controller is necessary to perform the network control tasks, and

the computational complexity could be exponential for some networks.

The mathematical framework used in [63] for proving the stability of a constrained

queueing network is known as Lyapunov stability. The idea is to define a suitable

Lyapunov function of the queue backlogs in the system, and to prove that the ex-

pected drift in the Lyapunov function is negative, when the queue backlogs are large.

Lyapunov stability theory for queueing networks has been more thoroughly developed

since its novel application in [63], see [42] for example.

As it sometimes happens with papers of fundamental theoretical value and sig-

nificant practical implications, it took a few years for the networking community to

fully realize the potential impact of the above work. However, during the last decade

or so, the max-weight framework has been extended along several conceptual as well

as practical lines. For example, in order to circumvent the potentially exponential

computational complexity of the original algorithm in [63], randomized algorithms

with linear complexity were proposed in [62] and [27]. Polynomial-time approxima-

tion methods were proposed in [58]. Distributed and greedy scheduling approaches

were proposed in [14] and [73].

The max-weight framework was adopted more thoroughly into a wireless setting by

including power allocation in [46]. In [45], it was used to develop an optimal power

control and server allocation scheme in a multi-beam satellite network. Maximum

weight matching has been used to achieve full throughput in input queued switches

[41]. Algorithms developed in [12] for the dynamic reconfiguring and routing of

light-paths in an optical network are also based on back-pressure. Joint congestion

control and scheduling for multi-hop networks was studied in [37,44], and [13], thus



bringing the transport layer task of congestion control also into a cross-layer max-

weight framework.

In [20], queue length based scheduling is generalized to encompass a wide class

of functions of the queue backlogs, and the relationship between the arrival statistics

and Lyapunov functions is explored in detail. This work is directly useful to us in

Chapters 4 and 5, where we use the traffic statistics to design the appropriate queue

length function to be employed within a generalized max-weight framework.

1.2 Performance Metrics for Network Control

There are several performance metrics that gauge the merits of scheduling, routing

and flow control policies. Examples of such performance metrics include throughput,

delay, and fairness. Throughput, which measures the long term average rate at which

data can be transported under a given control policy, is perhaps the most important

performance metric. Throughput is often referred to as a 'first order metric,' due

to the fact that it only depends on the expected values of the arrival and service

processes in a stochastic network. Throughput optimality is the ability of a control

policy to support the largest possible set of rates in a network.

A more discerning performance metric than throughput is delay. In a stochastic

network, the delay experienced by a packet at a node is a random variable, which is

closely related to the buffer occupancy or the queue size at the node. The total end-to-

end delay experienced by a packet is therefore a function of the buffer occupancies at

each node traversed by a packet. Unlike throughput, the delay and buffer occupancy

distributions depend on the complete statistical properties of the arrival and service

processes, and not just on their means.

The requirements imposed on the delay experienced in a network are commonly

referred to as Quality of Service (QoS) requirements. The recent burgeoning of VoIP

applications, and hand-held devices that carry delay-sensitive voice along with delay-

insensitive data on the same network, has made these QoS constraints more important

and challenging than ever before. These QoS requirements can take the form of



bounds on the average delay, or impose constrains on the behavior of the distribution

function of the delay. For example, a worst case delay assurance such as 'the delay

cannot exceed a certain value with at least 99% probability' necessitates the tail

distribution of the delay to fall off sufficiently fast.

This brings us to the concept of asymptotic QoS metrics, which constitutes a

recurring theme in this thesis. Loosely speaking, an asymptotic QoS metric captures

the behavior of the probability that the delay or queue occupancy exceeds a certain

large threshold. The manner in which the above tail probability behaves as a function

of the large threshold sheds light on how 'likely' it is for large deviations from typical

behavior to occur. Apart from being useful in the context of providing worst case

delay assurances, asymptotic QoS metrics have other important applications. In

particular, an understanding of the tail of the queue size distribution is essential

for buffer provisioning in a network, and to estimate the frequency of packet drops

due to buffer overflow. For example, if the tail of the queue occupancy distribution

decays exponentially fast, it is clear that the buffer size needed to ensure a given

probability of overflow, is usually much smaller than if the tail distribution were to

decay according to a power-law.

Although the stability region and throughput optimality properties of the max-

weight framework are well studied, there is relatively little literature on the QoS met-

rics under the framework. Delay bounds are derived in [34] for max-weight scheduling

in spatially homogeneous wireless ad hoc networks. In [31], a scheduling algorithm

that simultaneously provides delay as well as throughput guarantees is proposed. In a

parallel queue setting, max-weight scheduling is shown in [43] to attain order optimal

delay for arrival rates within a scaled stability region. Delay analysis for switches

under max-weight matching and related scheduling policies is studied in [54, 55],

and [26]. Large deviation analysis of buffer overflow probabilities under max-weight

scheduling is studied in [6, 56, 60, 65-68] and [76].



1.3 The Role of Control Information

Network control policies generally base their control decisions on the instantaneous

network state, such as channel quality of the various links, and the queue backlogs

at the nodes. For example, congestion control policies regulate the rate of traffic en-

tering a network based on prevailing buffer occupancies. The max-weight framework,

developed in [63] and extended in [46], utilizes instantaneous channel states as well

as queue length information to perform joint scheduling and routing. We use the

phrase 'control information' to denote the information about the network state that

is necessary to operate a control policy.

Since this control information usually shares the same communication medium

as the payload data, the exchange of control information inevitably adds to the sig-

nalling overheads in a network. Therefore, it is important to better understand the

role played by the control information in network control. In particular, we are inter-

ested in understanding how various performance metrics are impacted if the control

information is subject to delays, losses or infrequent updates.

Perhaps the earliest, and certainly the most well known investigation about con-

trol information in data networks was carried out by Gallager in [23]. He derives

information theoretic lower bounds on the amount of protocol information needed for

network nodes to keep track of source and destination addresses, as well as message

starting and stopping times. A paper that is closely related to our work in Chapter 2,

and specifically deals with the role of queue length information in the congestion con-

trol of a single- server queue, is [49]. In that paper, the authors consider the problem

of maximizing throughput in a single-server queue subject to an overflow probability

constraint, and show that a threshold policy achieves this objective.

Since the general max-weight framework utilizes both instantaneous channel states

and queue length information, a question arises as to how the policy would perform

if either the channel state or queue length information is delayed or conveyed imper-

fectly. From the perspective of throughput, it turns out that the role of channel state

information (CSI) is more important than that of queue length information (QLI).



There are several studies in the literature [28,47,74,75] that show that under imper-

fect, delayed, or incomplete CSI, the throughput achievable in a network is negatively

impacted. In contrast, when QLI is arbitrarily delayed or infrequently available, it is

possible to ensure that there is no loss in throughput. However more discerning QoS

metrics such as buffer occupancy and delay could suffer under imperfect or delayed

QLL

In this thesis, we investigate the role played by queue length information in the

operation of scheduling, congestion control, and resource allocation policies. In par-

ticular, we focus on the asymptotic QoS metrics under queue length based scheduling

and congestion control policies in simple queueing networks. In Chapter 2, we consider

a single-server queue with congestion based flow control, and study the relationship

between the tail of the queue occupancy distribution, and the rate of queue length

information available to the flow controller. In Chapters 3, 4, and 5, we consider a

system of parallel queues sharing a server, and study the asymptotic behavior of buffer

overflow probability under various queue-aware and queue-blind scheduling policies,

and under different qualitative assumptions on the traffic statistics.

In Appendix A, we study the problem of scheduling over wireless links, when there

is no explicit CSI available to the scheduler. This work is reported as an appendix

rather than as a chapter, because the contents therein are not directly related to the

rest of the chapters.

An outline of this thesis, including a summary of our main results and contribu-

tions, is given in the following section.

1.4 Thesis Outline and Contributions

The recurring theme in this thesis is the role of control information in network con-

trol, and its impact on the asymptotic behavior of queue occupancy distributions.

We consider simple queueing models such as single server queues and parallel queues

sharing a server, and study the interplay between network control policies, control

information, traffic statistics, and the asymptotic behavior of buffer occupancy. How-



ever, we believe that the conceptual understanding and guidelines that are obtained

from our study are more widely applicable.

1.4.1 Queue length information and congestion control

In Chapter 2, we consider a single server queue and deal with the basic question of

how often control messages need to be sent in order to effectively control congestion in

the queue. We separately consider the flow control and resource allocation problems,

and characterize the rate of queue length information necessary to achieve a certain

congestion control performance in the queue.

For the flow control problem, we consider a single server queue with congestion

based flow control. The queue is served at a constant rate, and is fed by traffic that is

regulated by a flow controller. The arrival rate at a given instant is chosen by a flow

control policy, based on the queue length information obtained from a queue observer.

We identify a simple 'two-threshold' flow control policy and derive the corresponding

tradeoff between the rate of control and congestion probability in closed form. We

show that the two threshold policy achieves the lowest possible asymptotic overflow

probability for arbitrarily low rates of control.

Next, we consider a model where losses may occur in the control channel, possibly

due to wireless transmission. We characterize the impact of control-channel errors

on the congestion control performance of the two threshold policy. We assume a

probabilistic model for the errors on the control channel, and show the existence of a

critical error probability, beyond which the errors in receiving the control packets lead

to a drastic increase in the congestion probability. However, for error probabilities

below the critical value, the congestion probability is of the same exponential order as

in a system with an error free control channel. Moreover, we determine the optimal

apportioning of bandwidth between the control signals and the server in order 'to

achieve the best congestion control performance.

Finally, we study the server allocation problem in a single server queue. In partic-

ular, we consider a queue with a constant input rate. The service rate at any instant

is chosen depending on the congestion level in the queue. This framework turns out



to be mathematically similar to the flow control problem, so that most of our results

for the flow control case also carry over to the server allocation problem.

Our results in Chapter 2 indicate that arbitrarily infrequent queue length informa-

tion is sufficient to ensure optimal asymptotic decay for the buffer overflow probability,

as long as the control information is accurately received. However, if the control mes-

sages are subject to errors, the congestion probability can increase drastically, even

if the control messages are transmitted often.

In the remaining chapters of the thesis, we study a system of parallel queues, served

by a single server. In this setting, we characterize the asymptotic behavior of buffer

overflow events under various scheduling policies and traffic statistics. Specifically,

we compare well known queue-aware and queue-blind scheduling policies in terms of

buffer overflow performance, and the amount of queue length information required to

operate them, if any. We incorporate two different statistical paradigms for the arrival

traffic, namely light-tailed and heavy-tailed, and derive widely different asymptotic

behaviors under some well known scheduling policies.

1.4.2 Queue-aware vs. queue-blind scheduling under sym-

metric traffic

Chapter 3 characterizes and compares the large deviation exponents of buffer overflow

probabilities under queue-aware and queue-blind scheduling policies. We consider a

system consisting of N parallel queues served by a single server, and study the impact

of queue length information on the buffer overflow probability. Under statistically

identical arrivals to each queue, we explicitly characterize the large deviation exponent

of buffer overflow under max-weight scheduling, which in our setting, amounts to

serving the Longest Queue First (LQF).

Although any non-idling scheduling policy would achieve the same throughput

region and total system occupancy distribution in our setting, the LQF policy out-

performs queue blind policies such as processor sharing (PS) in terms of the buffer

overflow probability. This implies that the buffer requirements are lower under LQF



scheduling than under queue blind scheduling, if we want to achieve a given overflow

probability. For example, our study indicates that under Bernoulli and Poisson traf-

fic, the buffer size required under LQF scheduling is only about 55% of that required

under random scheduling, when the traffic is relatively heavy.

On the other hand, with LQF scheduling, the scheduler needs queue length infor-

mation in every time slot, which leads to a significant amount of control signalling.

Motivated by this, we identify a 'hybrid' scheduling policy, which achieves the same

buffer overflow exponent as the LQF policy, with arbitrarily infrequent queue length

information. This result, as well as the ones in Chapter 2, suggests that the large

deviation behavior of buffer overflow can be preserved under arbitrarily infrequent

queue length updates. This is a stronger assertion than the well known result that

the stability region of a queueing system is preserved under arbitrarily infrequent

queue length information.

1.4.3 Queue-aware vs. queue-blind scheduling in the pres-

ence of heavy-tailed traffic

In the next two chapters, 4 and 5, we study the asymptotic behavior of the queue size

distributions, when a mix of heavy-tailed and light-tailed traffic flows feeds queueing

network. Modeling traffic using heavy-tailed random processes has become common

during the last decade or so, due to empirical evidence that internet traffic is much

more bursty and correlated than can be captured by any light-tailed random process

[35]. We consider a system consisting of two parallel queues, served by a single server

according to some scheduling policy. One of the queues is fed by a heavy-tailed arrival

process, while the other is fed by light-tailed traffic. We refer to these queues as the

'heavy' and 'light' queues, respectively.

In Chapter 4, we consider the wireline case, where the queues are reliably con-

nected to the server. We analyze the asymptotic performance of max-weight-a

scheduling, which is a generalized version of max-weight scheduling. Under this

throughput optimal policy, we derive an exact asymptotic characterization of the



queue occupancy distributions. Our characterization shows that the light queue oc-

cupancy is heavier than a power-law curve under max-weight-a scheduling, for all

values of the scheduling parameters. A surprising outcome of our asymptotic charac-

terization is that the 'plain' max-weight scheduling policy induces the worst possible

asymptotic behavior on the light queue tail.

On the other hand, we show that under the queue-blind priority scheduling for

the light queue, the tail distributions of both queues are asymptotically as good as

they can possibly be under any policy. However, priority scheduling suffers from

the drawback that it may not be throughput optimal in general, and can lead to

instability effects in the heavy queue. To remedy this situation, we propose a log-

max-weight (LMW) scheduling policy, which gives significantly more importance to

the light queue, compared to max-weight-a scheduling. However, the LMW policy

does not ignore the heavy queue when it gets overwhelmingly large, and can be shown

to be throughput optimal.

We analyze the asymptotic behavior of the LMW policy and show that the light

queue occupancy distribution decays exponentially fast. We also obtain the exact

large deviation exponent of the light queue tail under a regularity assumption on

the heavy-tailed input. Thus, the LMW policy has both desirable attributes - it is

throughput optimal in general, and ensures an exponentially decaying tail for the

light queue distribution.

In Chapter 5, we extend the above results to a wireless setting, where the queues

are connected to the server through randomly time-varying links. In this scenario,

we show that the priority policy fails to stabilize the queues for some traffic rates

inside the rate region of the system. However, the max-weight-a and LMW policies

are throughput optimal. Next, from the point of view of queue length asymptotics,

we show that the tail behavior of the steady-state queue lengths under a given policy

depends strongly on the arrival rates. This is an effect which is not observed when the

queues are always connected to the server. For example, we show that under max-

weight-a scheduling, the light queue distribution has an exponentially decaying tail

if the arrival rate is below a critical value, and a power-law like behavior if the arrival



rate is above the critical value. On the other hand, we show that LMW scheduling

guarantees much faster decay of the light queue tail, in addition to being throughput

optimal.

Our results in Chapters 4 and 5 suggest that a blind application of max-weight

scheduling to a network with heavy-tailed traffic can lead to a very poor asymptotic

QoS profile for the light-tailed traffic. This is because max-weight scheduling forces

the light-tailed flow to compete for service with the highly bursty heavy-tailed flow.

On the other hand, the queue length-blind priority scheduling for the light queue

ensures good asymptotic QoS for both queues, whenever it can stabilize the system.

This is in stark contrast to our results in Chapter 3, wherein the max-weight policy

outperforms the queue length-blind policies in terms of the large deviation exponent

of the buffer overflow probability, when the traffic is completely homogeneous.

We also believe that the LMW policy represents a unique 'sweet spot' in the

context of scheduling light-tailed flows in the presence of heavy-tailed traffic. This is

because the LMW policy affords a very favorable treatment to the light-tailed traffic,

without completely ignoring large build-up of the heavy-tailed flow.

1.4.4 Throughput maximization over uncertain wireless chan-

nels

In Appendix A, we consider the problem of scheduling users in a wireless down-link

or up-link, when no explicit CSI is made available to the scheduler. However, the

scheduler can indirectly estimate the current channels states using the acknowledge-

ment history from past transmissions. We characterize the capacity region of such a

system using tools from Markov Decision Processes (MDP) theory. Specifically, we

prove that the capacity region boundary is the uniform limit of a sequence of Linear

Programming (LP) solutions. Next, we combine the LP solution with a queue length

based scheduling mechanism that operates over long 'frames,' to obtain a throughput

optimal policy for the system. By incorporating results from MDP theory within the

Lyapunov-stability framework, we show that our frame-based policy stabilizes the



system for all arrival rates that lie in the interior of the capacity region.

1.4.5 Reading suggestions

Chapters 2 and 3 can be read independently. Although Chapter 4 can also be read

independently, it is recommended that Chapters 4 and 5 be read together, in that

order. In any case, Chapter 5 should be read after Chapter 4. Finally, Appendix A

is independent of the rest of the chapters.
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Chapter 2

On the Role of Queue Length

Information in Congestion Control

and Resource Allocation

2.1 Introduction

In this chapter, we study the role played by queue length information in flow control

and resource allocation policies. Flow control and resource allocation play an impor-

tant role in keeping congestion levels in the network within acceptable limits. Flow

control involves regulating the rate of the incoming exogenous traffic to a network,

depending on its congestion level. Resource allocation, on the other hand, involves

assigning larger service rates to the queues that are congested, and vice-versa. Most

systems use a combination of the two methods to avoid congestion in the network,

and to achieve various performance objectives [38,44].

The knowledge of queue length information is often useful, sometimes even nec-

essary, in order to perform these control tasks effectively. Almost all practical flow

control mechanisms base their control actions on the level of congestion present at

a given time. For example, in networks employing TCP, packet drops occur when

buffers are about to overflow, and this in turn, leads to a reduction in the window size



and packet arrival rate. Active queue management schemes such as Random Early

Detection (RED) are designed to pro-actively prevent congestion by randomly drop-

ping some packets before the buffers reach the overflow limit [21]. On the other hand,

resource allocation policies can either be queue-blind, such as round-robin, first come

first served (FCFS), and generalized processor sharing (GPS), or queue-aware, such

as maximum weight scheduling. Queue length based scheduling techniques are known

to have superior throughput, delay and queue overflow performance than queue-blind

algorithms such as round-robin and processor sharing [6,43,64].

Since the queue lengths can vary widely over time in a dynamic network, queue

occupancy based flow control and resource allocation algorithms typically require

the exchange of control information between agents that can observe the various

queue lengths in the system, and the controllers which adapt their actions to the

varying queues. This control information can be thought of as being a part of the

inevitable protocol and control overheads in a network. Gallager's seminal paper [23]

on basic limits on protocol information was the first to address this topic. He derives

information theoretic lower bounds on the amount of protocol information needed for

network nodes to keep track of source and destination addresses, as well as message

starting and stopping times.

This chapter deals with the basic question of how often control messages need to

be sent in order to effectively control congestion in a single server queue. We sep-

arately consider the flow control and resource allocation problems, and characterize

the rate of control necessary to achieve a certain congestion control performance in

the queue. In particular, we argue that there is an inherent tradeoff between the rate

of control information, and the corresponding congestion level in the queue. That is,

if the controller has accurate information about the congestion level in the system,

congestion control can be performed very effectively by adapting the input/service

rates appropriately. However, furnishing the controller with accurate queue length

information requires significant amount of control. Further, frequent congestion no-

tifications may also lead to undesirable retransmissions in packet drop based systems

such as TCP. Therefore, it is of interest to characterize how frequently congestion



notifications need to be employed, in order to achieve a certain congestion control

objective. We do not explicitly model the packet drops, but instead associate a cost

with each congestion notification. This cost is incurred either because of the ensuing

packet drops that may occur in practice, or might simply reflect the resources needed

to communicate the control signals.

We consider a single server queue with congestion based flow control. Specifically,

the queue is served at a constant rate, and is fed by packets arriving at one of two

possible arrival rates. In spite of being very simple, such a system gives us enough

insights into the key issues involved in the flow control problem. The two input rates

may correspond to different quality of service offerings of an internet service provider,

who allocates better service when the network is lightly loaded but throttles back on

the input rate as congestion builds up; or alternatively to two different video streaming

qualities where a better quality is offered when the network is lightly loaded.

The arrival rate at a given instant is chosen by a flow control policy, based on the

queue length information obtained from a queue observer. We identify a simple 'two-

threshold' flow control policy and derive the corresponding tradeoff between the rate

of control and congestion probability in closed form. We show that the two-threshold

policy achieves the best possible decay exponent (in the buffer size) of the congestion

probability for arbitrarily low rates of control. Although we mostly focus on the

two-threshold policy owing to its simplicity, we also point out that the two-threshold

policy can be easily generalized to resemble the RED queue management scheme.

Next, we consider a model where losses may occur in the control channel, possibly

due to wireless transmission. We characterize the impact of control channel losses

on the congestion control performance of the two-threshold policy. We assume a

probabilistic model for the losses on the control channel, and show the existence of a

critical loss probability, beyond which the losses in receiving the control packets lead to

an exponential worsening of the congestion probability. However, for loss probabilities

below the critical value, the congestion probability is of the same exponential order

as in a system with an loss-free control channel. Moreover, we determine the optimal

apportioning of bandwidth between the control signals and the server in order to



achieve the best congestion control performance.

Finally, we study the server allocation problem in a single server queue. In partic-

ular, we consider a queue with a constant input rate. The service rate at any instant

is chosen from two possible values depending on the congestion level in the queue.

This framework turns out to be mathematically similar to the flow control problem,

so that most of our results for the flow control case also carry over to the server

allocation problem. Parts of the contents of this chapter were previously published

in [32, 33].

The rest of the chapter is organized as follows. Section 2.2 introduces the system

model, and the key parameters of interest in the design of a flow control policy. In

Section 2.3, we introduce and analyze the two-threshold policy. In Section 2.4, we

investigate the effect of control channel losses on the congestion control performance

of the two-threshold policy. Section 2.5 deals with the problem of optimal bandwidth

allocation for control signals in a loss-prone system. The server allocation problem is

presented in Section 2.6, and Section 2.7 concludes the chapter.

2.2 Preliminaries

2.2.1 System description

Let us first describe a simple model of a queue with congestion based flow control.

Figure 2-1 depicts a single server queue with a constant service rate P. We assume that

the packet sizes are exponentially distributed with mean 1. Exogenous arrivals are

fed to the queue in a regulated fashion by a flow controller. An observer watches the

queue evolution and sends control information to the flow controller, which changes

the input rate A(t) based on the control information it receives. The purpose of the

observer-flow controller subsystem is to change the input rate so as to the control

congestion level in the queue.

We assume that the input rate at any instant is chosen to be one of two distinct

possible values, A(t) c {A, A2 }, where A2 < A, and A2 < P. Physically, this model
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Figure 2-1: A single server queue with input rate control.

may be motivated by a DSL-like system, wherein a minimum rate A2 is guaranteed,

but higher transmission rates might be intermittently possible, as long as the system

is not congested.

Our assumption about the flow control policy choosing between just two arrival

rates is partly motivated by a theoretical result in [49]. In that paper, it is shown

that in a single server system with flow control, where the input rate is allowed to

vary continuously in the interval [A2, Al], a 'bang-bang' solution is optimal. That is,

a queue length based threshold policy that only uses the two extreme values of the

possible input rates, is optimal in the sense of maximizing throughput for a given

congestion probability constraint. Since we are interested in the rate of control in

addition to throughput and congestion, a solution with two input rates may not be

optimal in our setting. However, we will see that our assumption does not entail any

sub-optimality in the asymptotic regime.

The congestion notifications are sent by the observer in the form of information-

less control packets. Upon receiving a control packet, the flow controller switches

the input rate from one to the other. We focus on Markovian control policies, in

which the input rate chosen after an arrival or departure event is only a function of

the previous input rate and queue length. Note that due to the memoryless arrival

and service time distributions, there is nothing to be gained by using non-Markovian

policies.



2.2.2 Markovian control policies

We begin by defining notions of Markovian control policies, and its associated con-

gestion probability.

Let t > 0 denote continuous time. Let Q(t) and A(t) respectively denote the

queue length and input rate (A, or A2) at time t. Define Y(t) = (Q(t), A(t)) to be

the state of the system at time t. We assign discrete time indices n E {0, 1, 2, ... }
to each arrival and departure event in the queue ("queue event"). Let Q, and A,

respectively denote the queue length and input rate just after the nth queue event.

Define Y, = (Q,, A,). A flow control policy assigns service rates A, after every queue

event.

Definition 2.1 A control policy is said to be Markovian if it assigns input rates A,

such that

P1 {An+1|IQn+1, Yn, --- ,Yo} = P {An+1|JQn+1, Yn} , (2.1)

Vn = 0, 1, 2 ....

For a Markovian control policy operating on a queue with memoryless arrival and

packet size distributions, it is easy to see that Y(t) is a continuous time Markov

process with a countable state space, and that Yn is the imbedded Markov chain

for the process Y(t). For a control policy under which the Markov process Y(t) is

positive recurrent, the steady-state queue occupancy exists. Let us denote by Q the

steady-state queue occupancy under a generic policy, when it exists.

Definition 2.2 The congestion probability is defined as P {Q > M}, where M is

some congestion limit.

2.2.3 Throughput, congestion, and rate of control

We will focus on three important parameters of a flow control policy, namely, through-

put, congestion probability, and rate of control. There is usually an inevitable tradeoff

between throughput and congestion probability in a flow control policy. In fact, a



good flow control policy should ensure a high enough throughput, in addition to ef-

fectively controlling congestion. We assume that a minimum throughput guarantee

-y should be met. Observe that a minimum throughput of A2 is guaranteed, whereas

any throughput less than min(Ai, pu) can be supported, by using the higher input rate

A, judiciously. Loosely speaking, a higher throughput is achieved by maintaining the

higher input rate A, for a longer fraction of time, with a corresponding tradeoff in

the congestion probability.

In the single-threshold policy, the higher input rate A, is used whenever the queue

occupancy is less than or equal to some threshold 1, and the lower rate is used for

queue lengths larger than 1. It can be shown that a larger value of I leads to a

larger throughput, and vice-versa. Thus, given the throughput requirement 7, we can

determine the corresponding threshold I to meet the requirement. Once the threshold

I has been fixed, it can be easily shown that the single-threshold policy minimizes

the probability of congestion. However, it suffers from the drawback that it requires

frequent transmission of control packets, since the system may often toggle between

states I and I + 1. It turns out that a simple extension of the single threshold policy

gives rise to a family of control policies, which provide more flexibility with the rate of

control, while still achieving the throughput guarantee and ensuring good congestion

control performance.

2.3 The Two-Threshold Flow Control Policy

As suggested by the name, the input rates in the two-threshold policy are switched at

two distinct thresholds 1 and m, where m > 1 + 1, and 1 is the threshold determined

by the throughput guarantee. As we shall see, the position of the second threshold

gives us another degree of freedom, using which the rate of control can be fixed at a

desired value. The two-threshold policy operates as follows.

Suppose we start with an empty queue. The higher input rate A, is used as long

as the queue length does not exceed m. When the queue length grows past m, the

input rate switches to the lower value A2 . Once the lower input rate is employed,
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Figure 2-2: The Markov process Y(t) corresponding to the two-threshold flow control
policy.

it is maintained until the queue length falls back to 1, at which time the input rate

switches back to A,. We will soon see that this 'hysteresis' in the thresholds helps us

tradeoff the control rate with the congestion probability. The two-threshold policy is

easily seen to be Markovian, and the state space and transition rates for the process

are shown in Figure 2-2.

Define k = m - I to be the difference between the two queue length thresholds.

We use the short hand notation I+ iu) and I+ i(2) in the figure, to denote respectively,

the states (Q(t) = l + i, A(t) = A) and (Q(t) = l + i, A(t) =A), i = 1, . . ., k - 1.

For queue lengths I or smaller and m or larger, we drop the subscripts because the

input rate for these queue lengths can only be A, and A2 respectively. Note that

the case k = 1 corresponds to the single threshold policy. It can be shown that the

throughput of the two-threshold policy for k > 1 cannot be smaller than that of the

single threshold policy. Thus, given a throughput guarantee, we can solve for the

threshold 1 using the single threshold policy, and the throughput guarantee will also

be met for k > 1. We now explain how the parameter k can be used to tradeoff the

rate of control and the congestion probability.

2.3.1 Congestion probability vs. rate of control tradeoff

Intuitively, as the gap between the two-thresholds k = m -1 increases for a fixed 1, the

rate of control packets sent by the observer should decrease, while the probability of

congestion should increase. It turns out that we can characterize the rate-congestion



tradeoff for the two-threshold policy in closed form. We do this by solving for the

steady state probabilities in Figure 2-2. Define P2= pi = L, and q1 = 1/pi. Note

that by assumption, we have P2 < 1 and pi > P2.

Let us denote the steady state probabilities of the non-superscripted states in

Figure 2-2 by pj, where j 1, or j > m. Next, denote by p (p ) the steady state

probability of the state 1 + i(l) (1 + i( 2)), for i = 1, 2,. . ., k - 1. By solving for the

steady state probabilities of various states in terms of pi, we obtain:

p = pi-7 -

pm-j =71 ,j =1 ,...,k -1
p j

P- = pi1 - pp 1,j = 1, 2, ... , k- 1,12 -i p 2 1 2 k

and

pg =p m1 - p ().

1 - P2

The value of pi, which is the only remaining unknown in the system can be determined

by normalizing the probabilities to 1:

k(1-p2r71) _ +1
.11(1 _ )(1-P2) 1-1

p; = (2.2)

[ + k+ + ] , 1 = 1

Using the steady-state probabilities derived above, we can compute the probability

of congestion as

IP{Q 2 M} = 1p = p(1-)p _ 2P 1. (2.3)

j>M P1.2 )2 Pm-

We define the control rate simply as the average number of control packets trans-

mitted by the queue observer per unit time. Since there is one packet transmitted by



the observer every time the state changes from m - 1) to m or from 1 ) to 1, the

rate (in control packets per second) is given by

R = ApL 1 + pp .

Next, observe that for a positive recurrent chain, AlpL 1  (2) Thus,

RM1 
12A=pjI k '

where pi was found in terms of the system parameters in (2.2).

It is clear from (2.3) and (2.4) that k determines the tradeoff between the con-

gestion probability and rate of control. Specifically, a larger k implies a smaller rate

of control, but a larger probability of congestion, and vice versa. Thus, we conclude

that for the two-threshold policy, the parameter I dictates the minimum throughput

guarantee, while k trades off the congestion probability with rate of control packets.

Next, we show that the increase in the congestion probability with k can be made

slower than exponential in the buffer size.

2.3.2 Large deviation exponents

In many queueing systems, the congestion probability decays exponentially in the

buffer size M. Furthermore, when the buffer size gets large, the exponential term

dominates all other sub-exponential terms in determining the decay probability. It

is therefore useful to focus only on the exponential rate of decay, while ignoring all

other sub-exponential dependencies of the congestion probability on the buffer size

M. Such a characterization is obtained by using the large deviation exponent (LDE).

For a given control policy, we define the LDE corresponding to the decay rate of the

congestion probability as

E= lim - logP >{Q M},



when the limit exists. Next we compute the LDE for the two-threshold policy.

Proposition 2.1 Assume that k scales with M sub-linearly, so that limm,o -M

0. The LDE of the two-threshold policy is then given by

E = log . (2.5)
P2

The above result follows from the congestion probability expression (2.3) since the

only term that is exponential in M is pIm = pI-l-k Note that 1 is determined

based on the throughput requirement, and does not scale with M. We pause to make

the following observations:

* If k scales linearly with M as k(M) = OM for some constant /3> 0, the LDE

becomes
1

P2

" The control rate (2.4) can be made arbitrarily small, if k(M) tends to infinity.

This implies that as long as k(M) grows to infinity sub-linearly in M, we can

achieve an LDE that is constant (equal to - log P2) for all rates of control.

" As k becomes large, the congestion probability will increase. However, the

increase is only sub-exponential in the buffer size, so that the LDE remains

constant.

In what follows, we will be interested only in the LDE corresponding to the conges-

tion probability, rather than its actual value. The following theorem establishes the

optimality of the LDE for the two-threshold policy.

Theorem 2.1 The two-threshold policy has the best possible LDE corresponding to

the congestion probability among all flow control policies, for any rate of control.

This result is a simple consequence of the fact that the two-threshold policy has the

same LDE as an M/M/1 queue with the lower input rate A2, and the latter clearly

cannot be surpassed by any flow control policy.



2.3.3 More general Markovian policies and relationship to

RED

In the previous section, we analyzed the two-threshold policy and concluded that

it has the optimal congestion probability exponent for any rate of control. This

is essentially because the input rate switches to the lower value deterministically,

well before the congestion limit M is reached. In this subsection, we show that

the two-threshold policy can be easily modified to a more general Markovian policy,

which closely resembles the well known RED active queue management scheme [21].

Furthermore, this modification can be done while maintaining the optimal exponent

behavior for the congestion probability.

Recall that RED preemptively avoids congestion by starting to drop packets ran-

domly even before the buffer is about to overflow. Specifically, consider two queue

thresholds, say 1 and m, where m > 1. If the queue occupancy is no more than 1, no

packets are dropped, no matter what the input rate is. On the other hand, if the

queue length reaches or exceeds m, packets are always dropped, which then leads to

a reduction in the input rate (assuming that the host responds to dropped packets).

If the queue length is between I and m, packets are randomly dropped with some

probability q.1

Consider the following flow control policy, which closely resembles the RED scheme

described above:

For queue lengths less than or equal to 1, the higher input rate is always used. If

the queue length increases to m while the input rate is A,, a congestion notification

is sent, and the input rate is reduced to A2 . If the current input rate is A, and the

queue length is between 1 and m, a congestion notification occurs with probability 2

q upon the arrival of a packet, and the input rate is reduced to A2 . With probability

1 - q, the input continues at the higher rate. The Markov process corresponding to

this policy is depicted in Figure 2-3.

'Often, the dropping probability is dependent on the queue length.
2We can also let this probability to depend on the current queue length, as often done in RED,

but this makes the analysis more difficult
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Figure 2-3: The Markov process corresponding to the control policy described in
subsection 2.3.3 that approximates RED.

We can derive the tradeoff between the congestion probability and the rate of

congestion notifications for this policy by analyzing the Markov chain in Figure 2-

3. Once the lower threshold I has been determined from the throughput guarantee,

the control rate vs. congestion probability tradeoff is determined by both q and m.

Further, since the input rate switches to the lower value A2 when the queue length

is larger than m, this flow control policy also achieves the optimal LDE for the

congestion probability, equal to log I. We skip the derivations for this policy, since
P2

it is more cumbersome to analyze than the two-threshold policy, without yielding

further qualitative insights. We focus on the two-threshold policy in the remainder

of the chapter, but point out that our methodology can also model more practical

queue management policies like RED.

2.4 The Effect of Control Errors on Congestion

In this section, we investigate the impact of control errors on the congestion proba-

bility of the two-threshold policy. We use a simple probabilistic model for the losses

on the control channel. In particular, we assume that any control packet sent by the

observer can be lost with some probability 6, independently of other packets. Using

the decay exponent tools described earlier, we show the existence of a critical value of

the loss probability, say P*, beyond which the losses in receiving the control packets

lead to an exponential degradation of the congestion probability.
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Figure 2-4: The Markov process Y(t) corresponding to the loss-prone two-threshold
policy. Only a part of the state space (with Q(t) > M) is shown.

2.4.1 The two-threshold policy over a loss-prone control chan-

nel

As described earlier, in the two-threshold policy, the observer sends a control packet

when the queue length reaches m = 1 + k. This packet may be received by the flow

controller with probability 1 - 6, in which case the input rate switches to A2 . The

packet may be lost with probability 6, in which case the input continues at the higher

rate A,. We assume that if a control packet is lost, the observer immediately knows

about it3 , and sends another control packet the next time an arrival occurs to a system

with at least m - 1 packets.

The process Y(t) = (Q(t), A(t)) is a Markov process even for this loss-prone two-

threshold policy. Figure 2-4 shows a part of the state space for the process Y(t), for

queue lengths larger than m - 1. Note that due to control losses, the input rate does

not necessarily switch to A2 for queue lengths greater than m-1. Indeed, it is possible

to have not switched to the lower input rate even for arbitrarily large queue lengths.

This means that the congestion limit can be exceeded under both arrival rates, as

shown in Figure 2-4. The following theorem establishes the LDE of the loss-prone

two-threshold policy, as a function of the loss probability J.

3This is an idealized assumption; in practice, delayed feedback can be obtained using ACKS.
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Figure 2-5: LDE as a function of 6 for pl > 1.

Theorem 2.2 Consider a two-threshold policy in which k grows sub-linearly in M.

Assume that the control packets sent by the observer can be lost with probability 6.

Then, the LDE corresponding to the congestion probability is given by

log 1 , 6 < 6*,P2

E(6) = (2.6)

log 2  , p > 6*,
1+pi-- vl(pi+1)2_46pl

where 6* is the critical loss probability given by (2.10).

Before we give a proof of this result, we pause to discuss its implications. The the-

orem shows that the two-threshold policy over a loss-prone channel has two regimes

of operation. In particular, for 'small enough' loss probability (6 < 6*), the exponen-

tial rate of decay of the congestion probability is the same as in a loss-free system.

However, for 6 > *, the decay exponent begins to take a hit, and therefore, the

congestion probability suffers an exponential increase. For this reason, we refer to 6*

as the critical loss probability. Figure 2-5 shows a plot of the decay exponent as a

function of the loss probability 6, for p1 > 1. The 'knee point' in the plot corresponds



to * for the stated values of pi and P2.

Proof: The balance equations for the top set of states in Figure 2-4 can be written as

Pdipi A - (A1 + )p + 6Ap 1 , i = m, m + 1,... (2.7)

Solving the second order recurrence relation above, we find that the top set of states

in Figure 2-4 (which correspond to arrival rate A,) have steady state probabilities

that satisfy

p +i = s~OYpMi = 1, 2, ...

where

1+ Pi - (+ p) 2 - 4pg (2.8)
2

Similarly, the balance equations for the bottom set of states are

p1p - (A2 + P)P()+ A2P) + (1 - 6)AipW1 , i m, m +1...

from which we can deduce that the steady state probabilities have the form

p(_) Api + Bs(6)', i = 1, 2, ...,

where A, B are constants that depend on the system parameters Pi, P2, and 6. Using

the two expressions above, we can deduce that the congestion probability has two

terms that decay exponentially in the buffer size:

P {Q > M} = Cs(6 )M-1-k + Dp -1-, (2.9)

where C, D are constants.

In order to compute the LDE, we need to determine which of the two exponential

terms in (2.9) decays slower. It is seen by direct computation that s(6) < P2 for

6 < *, where

6* p2(1pi- p2). (2.10)



Thus, for loss probabilities less than 6*, P2 dominates the rate of decay of the conges-

tion probability. Similarly, for 6 > *, we have s(6) > P2, and the LDE is determined

by s(6). This proves the theorem.

Remark 2.1 Large deviation theory has been widely applied to study congestion and

overflow behaviors in queueing systems. Tools such as the Kingman bound [24] can

be used to characterize the LDE of any G/G/1 queue. Large deviation framework also

exists for more complicated queuing systems, with correlated inputs, several sources,

finite buffers etc., see for instance [25]. However, for controlled queues, where the

input or service rates can vary based on queue length history, simple large deviation

formulas do not exist. It is remarkable that for a single server queue with Marko-

vian control, we are able to obtain rather intricate LDE characterizations such as in

Figure 2-5, just by applying 'brute force' steady state probability computations.

2.4.2 Repetition of control packets

Suppose we are given a control channel with a loss probability 6 that is greater

than the critical loss probability in (2.10). This means that a two-threshold policy

operating on this control channel has an LDE in the decaying portion of the curve in

Figure 2-5. In this situation, adding error protection to the control packets will reduce

the effective probability of loss, thereby improving the LDE. To start with, we consider

the simplest form of adding redundancy to control packets, namely repetition.

Suppose that each control packet is transmitted n times by the observer, and that

all n packets are communicated without delay. Assume that each of the n packets

has a probability 6 of being lost, independently of other packets. The flow controller

fails to switch to the lower input rate only if all n control packets are lost, making the

effective probability of loss 6". In order to obtain the best possible LDE, the operating

point must be in the flat portion of the LDE curve, which implies that the effective

probability of loss should be no more than 6*. Thus, 6n < 6*, so that the number of

transmissions n should satisfy

n log (2.11)
log 6



in order to obtain the best possible LDE of log i!. If the value of 6 is close to 1, the
P2

number of repeats is large, and vice-versa.

2.5 Optimal Bandwidth Allocation for Control Sig-

nals

As discussed in the previous subsection, the LDE operating point of the two-threshold

policy for any given 6 < 1, can always be 'shifted' to the flat portion of the curve

by repeating the control packets sufficiently many times (2.11). This ignores the

bandwidth consumed by the additional control packets.

While the control overheads constitute an insignificant part of the total com-

munication resources in optical networks, they might consume a sizeable fraction of

bandwidth in some wireless or satellite applications. In such a case, we cannot add

an arbitrarily large amount of control redundancy without sacrificing some service

bandwidth. Typically, allocating more resources to the control signals makes them

more robust to losses, but it also reduces the bandwidth available to serve data. To

better understand this tradeoff, we explicitly model the service rate to be a function

of the redundancy used for control signals. We then determine the optimal fraction of

bandwidth to allocate to the control packets, so as to achieve the best possible decay

exponent for the congestion probability.

2.5.1 Bandwidth sharing model

Consider, for the time being, the simple repetition scheme for control packets outlined

in the previous section. We assume that the queue service rate is linearly decreasing

function of the number of repeats n - 1:

p (n) = y 1 - . (2.12)

The above model is a result of the following assumptions about the bandwidth

consumed by the control signals:



" t corresponds to the service rate when no redundancy is used for the control

packets (n = 1).

* The amount of bandwidth consumed by the redundancy in the control signals

is proportional to the number of repeats n - 1.

" The fraction of total bandwidth consumed by each repetition of a control packet

is equal to 1/4, where 1 > 0 is a constant that represents how 'expensive' it is

in terms of bandwidth to repeat control packets.

Thus, with n - 1 repetitions, the fraction of bandwidth consumed by the control

information is "-, and the fraction available for serving data is 1- n-1

Let us denote by f the fraction of bandwidth consumed by the redundancy in the

control information, so that f = or n = 11f + 1. From (2.12), the service rate

corresponding to the fraction f can be written as

p-(f) = p[1 - f]

In what follows, we do not restrict ourselves to repetition of control packets, so that

we are not constrained to integer values of n. Instead, we allow the fraction f to take

continuous values, while still maintaining that the loss probability corresponding to

f is 6f+1. We refer to f as the 'fraction of bandwidth used for control', although

it is really the fraction of bandwidth utilized by the redundancy in the control. For

example, f = 0 does not mean no control is used; instead, it corresponds to each

control packet being transmitted just once.

2.5.2 Optimal fraction of bandwidth to use for control

The problem of determining the optimal fraction of bandwidth to be used for control

can be posed as follows:

Given the system parameters pi, P2 and 4, and a control channel with some

probability of loss 6 C [0, 1), find the optimal fraction of bandwidth f*(3) to be used

for control, so as to maximize the LDE of the congestion probability.



Let us define

p = 1 if 1, 2, (2.13)

as the effective server utilization corresponding to the reduced service rate p(f).

Accordingly, we can also define the effective knee point as

J*() = 12 + P P2(2.14)
P1 1 -f

which is analogous to (2.10), with p(f) replacing pi, i 1, 2.

First, observe that for the queueing system to be stable, we need the effective

service rate to be greater than the lower input rate A2. Thus, we see that A2 < p[1-f],

or f < 1 - P2. Next, we compute the LDE corresponding to a given probability of

loss 6, and fraction f of bandwidth used for control.

Proposition 2.2 For any 6 C [0, 1) and f E [0, 1 - P2), the corresponding LDE is

given by

log 1 +f +1 < * (,) P2(f)'

E(6, f) = (2.15)

log 1 Oef+1 > 6*(f),

where
1 + p1(f) - I(p1(f) + 1)2 - 46++pi f)s(f, 6) =~~plf

- 2

The derivation and expression for E(6, f) are analogous to (2.6), except that pi is

replaced with p(f), i = 1, 2, and 6 is replaced with the effective probability of loss

6gf+1.

Definition 2.3 For any given 6 E [0,1), the optimal fraction f*(6) is the value of f

that maximizes E(6, f) in (2.15). Thus,

f*(6) = argmaxfE[0 1 P2)E(6, f). (2.16)

Recall that the value of 1/<D represents how much bandwidth is consumed by

each added repetition of a control packet. We will soon see that <b plays a key role



in determining the optimal fraction of bandwidth to use for control. Indeed, we

show that there are three different regimes for 4) such that the optimal fraction f* (6)

exhibits qualitatively different behavior in each regime as a function of 6. The three

ranges of 4) are: (i) 4D < D, (ii) ;D > 4b, and (iii) 4D < 4D < 4, where

P2 - -*

S log(6*)(1 +p -P P2)

P1 > 1
(2.17)

00 P < 1

It can be shown that 4) <4) for P2 < 1.

We shall refer to case (i) as the 'small 4D regime', case (ii) as the 'large 4b regime',

and case (iii) as the 'intermediate regime'. We remark that whether a value of 4) is

considered 'small' or 'large' is decided entirely by p1 and P2. Note that the large 4D

regime is non-existent if pi < 1, so that even if 4) is arbitrarily large, we would still

be in the intermediate regime.

The following theorem, which is our main result for this section, specifies the

optimal fraction of bandwidth f*(6), for each of the three regimes for 4D.

Theorem 2.3 For a given pi and P2, the optimal fraction of bandwidth f*( 5) to be

used for control, has one of the following forms, depending on the value of 4):

(i) Small 4) regime (4 < _): f*((6) = 0, V 6 E (0,1).

(ii) Large 4) regime (4) ;> T):

f * 6) - 0, 6 E[0, 6*]f*(5) 0,=e0(*
f (f), o C (()*, 1)

where f((6) is the unique solution to the transcendental equation

64 j + 1 .p_2 i + . (2.18)

(iii) Intermediate regime (_) < 4 < T): there exist 6' and 6" such that * < (' <



6" < 1, and the optimal fraction is given by

0, 6 E [0, *]

f*(6) = () c(*/
6(6), 6 E (6',6")

0, 6 (6", 1)

where f(6) is given by (2.18) and f(6) is the unique solution in (0,1 - P2) to

the transcendental equation

6 [D1- f) log 6* + 1] s(f, 6). (2.19)

The proof of the above theorem is not particularly interesting, and is postponed

to Chapter Appendix 2.A. Instead, we provide some intuition about the optimal

solution.

2.5.3 Discussion of the optimal solution

Loss probability less than 6*

In all three regimes, we find that f*(6) = 0 for 6 E [0, 6*]. This is because, as shown

in Figure 2-5, the LDE has the highest possible value of - log P2 for 6 in this range,

and there is nothing to be gained from adding any control redundancy.

Small 4D regime

In case (i) of the theorem, it is optimal to not apply any control redundancy at all.

That is, the best possible LDE for the congestion probability is achieved by using a

single control packet every time the observer intends to switch the input rate. In this

regime, the amount of service bandwidth lost by adding any control redundancy at

all, hurts us more than the gain obtained from the improved loss probability. The

plot of the optimal LDE as a function of 6 for this regime is identical to Figure 2-5,

since no redundancy is applied.



Large 'I regime

Case (ii) of the theorem deals with the large D regime. For J > P*, the optimal f*((5)

in this regime is chosen as the fraction f for which the knee point *(f) equals the

effective loss probability 6("f+1. This fraction is indeed f, defined by (2.18). Figure 2-

6(a) shows a plot of the optimal fraction (solid line) as a function of 6. In this example,

pi 1.2, P2 0.3, and J = 10. The resulting optimal LDE is equal to log for

( > P*. The optimal LDE is shown in Figure 2-6(b) with a solid line.

Comparison with naive repetition

It is interesting to compare the optimal solution in the large D regime to the 'naive'

redundancy allocation policy mentioned in Equation (2.11). Recall that the naive

policy simply repeats the control packets to make the effective loss probability equal

to the critical probability *, without taking into account any service bandwidth

penalty that this might entail. Let us see how the naive strategy compares to the

optimal solution if the former is applied to a system with a finite (D. This corresponds

to a network with limited communication resources in which the control mechanisms

are employed without taking into account the bandwidth that they consume.

The fraction of bandwidth occupied by the repeated control packets can be found

using (2.11) to be
1 (log 6* \

S'log( ,i'

where we have ignored integrality constraints on the number of repeats. A plot of

this fraction is shown in Figure 2-6(a), and the corresponding LDE in Figure 2-6(b),

both using dashed lines. As seen in the figure, the naive strategy is more aggressive in

adding redundancy than the optimal strategy, since it does not take into account the

loss in service rate ensuing from the finiteness of 4). The LDE of the naive strategy

is strictly worse for ( > *. In fact the naive strategy causes instability effects for

some values of 6 close to 1 by over-aggressive redundancy addition, which throttles

the service rate p(f) to values below the lower arrival rate A2 . This happens at the

point where the LDE reaches zero in Figure 2-6(b). The naive strategy has even worse
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consequences in the other two regimes. However, we point out that the repetition

strategy approaches the optimal solution as 41 becomes very large.

Intermediate regime

Case (iii) in the theorem deals with the intermediate regime. For J > 6*, the optimal

fraction begins to increase along the curve f(6) exactly like in the large D regime (see

Figure 2-7). That is, the effective loss probability is made equal to the knee point.

However, at a particular value of loss probability, say 6', the optimal fraction begins

to decrease sharply from the f(J) curve, and reaches zero at some value 6". Equation

(2.19) characterizes the optimal fraction for values of 6 in (6', 6"). No redundancy

is applied for 6 E (6", 1). For this range of loss probability, the intermediate regime

behaves more like the small D regime (case(i)). Thus, the intermediate D regime

resembles the large 1 regime for small enough loss probabilities 6 < 6', and the small

4 regime for large loss probability 6 > 6". There is also a non empty 'transition

interval' in between the two, namely (6', 6").

2.6 Queue Length Information and Server Alloca-

tion

In this section, we discuss the role of queue length information on server allocation

policies in a single server queue. We mentioned earlier that queue aware resource

allocation policies tend to allocate a higher service rate to longer queues, and vice-

versa. Intuitively, if the controller is frequently updated with accurate queue length

information, the service rate can be adapted to closely reflect the changing queue

length. However, if the queue length information is infrequently conveyed to the con-

troller, we can expect a larger queue length variance, and hence a higher probability

of congestion. We study this tradeoff between the probability of congestion and the

rate of queue length information in a single server queue.

Figure 2-8 depicts a single server queue with Poisson inputs of rate A. An observer
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Figure 2-8: A single server queue with service rate control.

watches the queue evolution and sends control information to the to the service rate

controller, which changes the service rate S(t) based on the control information it

receives. The purpose of the observer-controller subsystem is to assign service rates

at each instant so as to control congestion in the queue.

For analytical simplicity, we assume that the service rate at any instant is chosen

to. be one of two distinct values: S(t) E {pi, 9 2}, where p 2 > y1 and P 2 > A. The

control decisions are sent by the observer in the form of information-less packets.

Upon receiving a control packet, the rate controller switches the service rate from

one to the other. As before, we only focus on Markovian control policies, which are

defined analogously to (2.1).

Note that if there is no restriction imposed on using the higher service rate P2, it

is optimal to use it all the time, since the congestion probability can be minimized

without using any control information. However, in a typical queueing system with

limited resources, it may not be possible to use higher service rate at all times. There

could be a cost per unit time associated with using the faster server, which restricts

its use when the queue occupancy is high. Alternately, one could explicitly restrict

the use of the faster server by allowing its use only when the queue occupancy is over

a certain threshold value. In this section, we impose the latter constrain, i.e., when

the queue length is no more than some threshold 1, we are forced to use the lower

service rate p1. If the queue length exceeds 1, we are allowed to use the higher rate

p2 without any additional cost until the queue length falls back to .4

It turns out that this model is, in a certain sense, dual to the flow control problem

4Recall that in the flow control problem, the threshold 1 was derived from a throughput constraint.
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Figure 2-9: The Markov process corresponding to the two-threshold server allocation
policy.

considered earlier in this chapter. In fact, for every Markovian flow control policy

operating on the queue in Figure 2-1, it is possible to identify a corresponding server

allocation policy which has identical properties. For example, we can define a two-

threshold server allocation policy analogously to the flow control policy as follows:

The service rates are switched at two distinct queue length thresholds 1 and m.

Specifically, when the queue length grows past m, the service rate switches to p2.

Once the higher service rate is employed, it is maintained until the queue length falls

back to 1, at which time the service rate switches back to p1. The Markov process

corresponding to the two-threshold server allocation policy is depicted in Figure 2-9.

Evidently, the Markov chain in Figure 2-9 has the same structure as the chain

in Figure 2-2, and therefore can be analyzed in the same fashion. In particular, we

can derive the control rate vs. congestion probability tradeoff, along the same lines

as Equations (2.3) and (2.4). The following result regarding the two-threshold server

allocation policy, can be derived along the lines of Proposition 2.1 and Theorem 2.1.

Theorem 2.4 Suppose that k goes to infinity sub-linearly in the buffer size M, in a

two-threshold server allocation policy. Then, the LDE can be maintained constant at

E = log ,

while the control rate can be made arbitrarily small. Further, the two-threshold policy

has the largest possible congestion probability LDE among all server allocation policies,

for any rate of control.



The above result shown the optimality of the two-threshold policy with respect to

the congestion probability exponent. Next, if the control signals that lead to switching

the service rate are subject to losses (as detailed in Section 2.4), we can show that

the LDE behaves exactly as in Theorem 2.2, with the critical loss probability given

by (2.10).

In essence, we conclude that both flow control and resource allocation problems

in a single server queue lead to the same mathematical framework, and can thus be

treated in a unified fashion.

2.7 Conclusions

The goal of this chapter was to study the role played by queue length information in

flow control and resource allocation policies. Specifically, we deal with the question

of how often queue length information needs to be conveyed in order to effectively

control congestion. To our knowledge, this is the first attempt to analytically study

this particular tradeoff. Since this tradeoff is difficult to analyze in general networks,

we consider a simple model of a single server queue in which the control decisions are

based on the queue occupancy. We learned that in the absence of control channel

losses, the control rate needed to ensure the optimal decay exponent for the conges-

tion probability can be made arbitrarily small. However, if control channel losses

occur probabilistically, we showed the existence of a critical loss probability thresh-

old beyond which the congestion probability undergoes a drastic increase due to the

frequent loss of control packets. Finally, we determine the optimal amount of error

protection to apply to the control signals by using a simple bandwidth sharing model.

For loss probabilities larger than the critical value, a significant fraction of the system

resources may be consumed by the control signals, unlike in the loss free scenario.

We also pointed out that allocating control resources without considering the band-

width they consume, might have adverse effects on congestion. Finally, we observed

that the sever allocation problem and the flow control problem can be treated in a

mathematically unified manner.



2.A Proof of Theorem 2.3

Given <b and 6 we want to find the fraction f that satisfies (2.16). As shown in figure

5, the LDE curve for f = 0 is flat and has the highest possible value of - log P2 for

6 E [0, 6*]. Indeed, for 6 in the above range, using any strictly positive fraction f
would reduce the LDE to log 1f. This implies that the optimal fraction

P2

f*(6) = 0, 6 E [0,6*1.

Thus, the problem of finding the optimal f*(6) is non-trivial only for 6 E (6*, 1). We

begin our exposition regarding the optimal fraction with two simple propositions.

Proposition 2.3 For any given 6 E (6*, 1), the optimal fraction f*(6) is such that

the effective loss probability P'f*+1 cannot be strictly lesser than the knee point of the

curve E(6, f*). That is, 6*(f*) < 6"*+1, 6 E (6*, 1).

Proof: Suppose the contrary, i.e, for some 6 E (6*, 1), the optimal f* is such that

6*(f*) > 6of*+1. The optimal LDE would then be E(6, f*) = log p2(f*) =log f*P2

Continuity properties imply that ] ( > 0 for which 6*(f* - () > 64(f*0+1. Thus,

if we use the smaller fraction f* - ( for control, the LDE would be E(6, f* -
log 1- *+. Since this value is greater than the "optimal value" E(6, f*), we arrive at

P2

a contradiction. l

Proposition 2.4 For a given 6 G (6*, 1), there exists a unique fraction f (6) E

(0, 1 - P2) such that the knee point 6*(f) equals the effective loss probability 6"f+1.

Furthermore, the optimal fraction f*(6) lies in the interval [0, f (6)].

Proof: The knee point corresponding to any fraction f is given by (2.14). Therefore,

if there exists a fraction f for which 6*(f) = 6f++1, then f satisfies

6+/+ P_ + .^ (2.20)
Pi \ 1- f )

The transcendental equation in (2.20) has a solution in (0, 1 - P2) for any given

6 E (6*, 1). This can be shown by applying the intermediate value theorem to the



difference of the right and left hand side functions in the equation. The uniqueness of

f follows from the monotonicity properties of the right and left hand side functions.

To prove the second statement, suppose that f* > f. Since the knee point (2.14)

is monotonically strictly increasing in f, we have 6*(f*) > 6*(f) = oj+1 > 64f*+1.

This contradicts Proposition 2.3. El

The above proposition shows that the optimal fraction lies in the interval [0, f()].

Thus, for a given 6 > 6*, we seek f*(6) E [0, f(6)] for which s(f, 6) (defined in

Proposition 2.2) is minimized. In particular, if s(f, 6) is monotonically decreasing in

[0, f(6)] for some 6, then clearly, f*(6) - f(6). The following proposition asserts the

condition under which s(f, 6) is monotonically decreasing.

Proposition 2.5 For some 6 > 6*, suppose the following inequality holds

6++ 1 [(1 - f)log 6 + 1] < . (2.21)
1-f

Then, f*(6) = f (6).

Proof: Fix 6 > 6*. By direct computation, we find that

s'(f,6) 0 - 6f+1[(1 - f) log 6 + 1] < s(f,6).

However, since the left side of the inequality above is strictly increasing in f, we find

that s(f, 6) is monotonically decreasing whenever

oof+1[((1 - f) log6 + 1] 1 s(f(6) 6) - P2

1-f

where the last equality follows from the definition of f. Thus, if (2.21) is satisfied for

a particular 6, s(f, 6) is decreasing in f, and hence the optimal fraction is given by

f*(6) = f (6). l

Now, suppose that b > _D. Upon rearrangement, this implies that 6*[1 log 6*+1] <

P2. In other words, (2.21) is satisfied with strict inequality, at 6 = 6*. By continuity,



we can argue that there exist a range 6 e (6*, 6') for which (2.21) is satisfied. By

Proposition 2.5, we have f*(6) = f(), 6 C (6*, 6'), which partially proves part (iii)

of the theorem. Note that 6' is the smallest value of the loss probability, if any, for

which the strict monotonicity of s(f, 6) (as a function of f) is compromised. As argued

in Proposition 2.5, this implies (2.21) holds with equality. A simple rearrangement

yields a transcendental equation for 6'

Pi=1 I + @(1 - f(6')) log 6' (2.22)
Pi - P2 + 1 - f(6')

Using basic calculus, it is possible to show that there always exists a solution 6' < 1

to (2.22) if pi < 1. However, if p1 > 1, there exists a solution iff 1 < I = . In

particular, if 4 > 4, we have that s(f, 6) is monotonically decreasing in f for all 6,

so that f*(6) = f(6) for all 6 E (6*, 1]. This proves part (ii) of the theorem.

On the other hand suppose that _< < 1 < T. (It is straightforward to show that

'1 < '1.) Then a solution 6' < 1 to (2.22) exists, and for 6 > 6', the optimal fraction is

no longer equal to f(6). It can also be shown that the existence of 6' < 1 guarantees

the existence of another 6" > 6' such that s(f, 6) is increasing in f for each 6 E (6", 1).

In such a case, f*(6) would be equal to zero.

Proposition 2.6 For some 6 > 6*, suppose the following inequality holds

6[p log 6 + 1] > +pi (1+pi)2 _46  (2.23)
2

Then, f*(6) = 0.

The proof is similar to Proposition 2.5. The value of 6" is obtained as a solution to

the transcendental equation

1 + p1 - (1 + pi) 2 _4 p
6"[4) log 6" + 1] = (2.24)

2

Again using basic calculus, we can show there exits a solution 6" < 1, to (2.24) if

D< , which is the same condition as for the existence of 6'. Thus, in the intermediate



regime, there exists (i) 6' C (6*, 1) such that f*(6) = f(6) for 6* < 6 < 6', and (ii)

6" > 6' such that f * (6) = 0 for 6 > 6". For 6 E (6', 6"), the function s(f, 6) has

a minimum in (0, f), so that the optimum fraction is obtained by setting s'(f, 6) to

zero. This condition is the same as (2.19), and part (iii) of the theorem is thus proved.

We finally show that it is optimal to not use any redundancy in the small D regime.

Proposition 2.7 For 4 < _b, s(f, 6) is monotone increasing in f C [0, f(6)] for each

6 > 6*.

Proof: Simple rearrangement shows that the condition D < _@ is equivalent to saying

that 6" < 6*. Since no redundancy is used for values of loss probability greater than

6", it follows that no redundancy is used in the small D regime.
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Chapter 3

The Impact of Queue Length

Information on Buffer Overflow in

Parallel Queues

3.1 Introduction

Scheduling is an essential component of any queueing system where the server re-

sources need to be shared between many queues. The most basic requirement of a

scheduling algorithm is to ensure the stability of all queues in the system, whenever

feasible. Much research work has been reported on throughput optimal scheduling

algorithms that achieve stability over the entire capacity region of a network [45,64].

While stability is an important and necessary first-order metric, most practical queue-

ing systems have more stringent Quality of Service (QoS) requirements. For example,

voice and video streams are delay sensitive. Further, due to the finiteness of the buffers

in practical systems, maintaining a low buffer overflow probability is an important

objective.

In this chapter, we consider a system consisting of N parallel queues and a single

server. A scheduling policy decides which of the queues gets service in each time slot.

Our aim is to better understand the relationship between the amount of queue length



information required to operate a scheduling policy, and the corresponding buffer

overflow probability. The scheduling decisions may take into account the current

queue lengths in the system, in which case we will call the policy 'queue-aware.' If

the scheduling decisions do not depend on the current queue lengths, except to the

extent of knowing whether or not a queue is empty, we will call it a 'queue-blind'

policy.

We analyze the buffer overflow probability of the widely studied max-weight

scheduling policy in the large buffer regime. In our simple setting, max-weight

scheduling amounts to serving the longest queue at every instant, and we refer to

it as the Longest Queue First (LQF) policy. We assume that the queues are fed

by statistically identical arrival processes. However, the input statistics could oth-

erwise be quite general. Under such a symmetric traffic pattern, we show that the

large deviation exponent of the buffer overflow probability under LQF scheduling is

expressible purely in terms of the total system occupancy exponent of an m queue

system, where m < N is determined by the input statistics. We also characterize the

likeliest overflow trajectories, and show that there are at most N possible overflow

modes that dominate.

Although any non-idling policy (such as LQF, processor sharing (PS) or random

scheduling) will achieve the same throughput region and total system occupancy

distribution, the LQF policy outperforms queue-blind policies in terms of the buffer

overflow probability. Equivalently, this implies that the buffer requirements are lower

under LQF scheduling than under queue-blind scheduling, if we want to achieve a

given overflow probability. For example, our study indicates that under Bernoulli

and Poisson traffic, the buffer size required under LQF scheduling is only about 55%

of that required under random scheduling, when the traffic is relatively heavy. On the

other hand, with LQF scheduling, the scheduler needs queue length information in

every time slot, which leads to a significant amount of control signalling. Motivated by

this, we identify a "hybrid" scheduling policy, which achieves the same buffer overflow

exponent as the LQF policy, with arbitrarily infrequent queue length information.



3.1.1 Related work

To our knowledge, Bertsimas, Paschalidis and Tsitsiklis [6] were among the first to

analyze the large deviations behavior of parallel queues. They consider the case of

two parallel queues, and characterize the buffer overflow exponents under two im-

portant service disciplines, namely Generalized Processor Sharing (GPS) and Gener-

alized Longest Queue First (GLQF). We also refer to the related papers [56,67,76]

where the authors analyze a system of parallel queues, with deterministic arrivals

and time-varying connectivity. In [60], the authors study large deviations for the

largest weighted delay first policy, and [61] deals with large deviations of max-weight

scheduling for general convex rate regions. In each case, the optimal exponent and

the likeliest overflow trajectory are obtainable by solving a variational control prob-

lem. Often, the optimal solution to the variational problem can be found by solving

a finite dimensional optimal control problem [6, 60]. In [65, 66], an interesting link

is established between large deviation optimality, and Lyapunov drift minimizing

scheduling policies. Large deviations of total end-to-end buffer overflow probability

in a multi-hop network with fixed routes is studied in [68].

The remainder of this chapter is organized as follows. In Section 3.2, we present the

system description, and some preliminaries on large deviations. Our main result on

the large deviation behavior of LQF scheduling is presented in Section 3.3. Section

3.4 compares LQF scheduling to queue-blind scheduling in terms of the overflow

probability and buffer scaling. In Section 3.5, we study scheduling with infrequent

queue length information.

3.2 System Description and Preliminaries

Figure 3-1 depicts a system consisting of N parallel queues, served by one server.

We assume that time is slotted, and the server is capable of serving one packet per

slot. Within each queue, packets are served on a first come, first served (FCFS) basis.

Arrivals occur according to a random process Ai [t], i = 1, . . . , N, which denotes the

number of packets that arrive at queue i during slot t. The arrival processes to the



Figure 3-1: N parallel queues served by one server

different queues are independent. We assume a symmetric traffic pattern, i.e., the

arrival processes to each queue are statistically identical to each other. For ease of

exposition, let us assume that the arrivals are independent across time slots, although

our results hold under more general assumptions1 . The average arrival rate to a queue

is E [Ai [t]] = A packets/slot for each i. For stability, we assume that the condition

A < is satisfied. Let us also define

t2

Si [t1,t2] = ZAi[r], tl < t 2

as the number of arrivals to queue i between time slots ti to t 2.

The log-moment generating function of the input process to each queue, defined

by 2

A(0) = log E [exp(OAi[t])].

is assumed to exist for some 0 > 0. The Fenchel-Legendre transform or the convex

dual of A(0) is defined by

A*(x) = sup[Ox - A(0)]. (3.1)
0

A* (x) is referred to as the rate function of the large deviation principle (LDP) satisfied

by each input process.

'We only need the input processes to satisfy a sample path large deviation principle (LDP), as
detailed in [6].

2This definition applies when the inputs are independent across time. If the inputs are correlated
across time slots, we define A(9) = limeoc logE [exp(0 S> Ai[t])].



We are interested in the steady state probability of a buffer overflow, under a given

scheduling policy . The queues are assumed to be initialized such that Qi[-MT] =

0, 1 < i < N for some T > 0. As M - oc with T fixed, the distribution of Qj[O]
will approach the steady-state distribution. More specifically, we are interested in the

exponent of the above probability under the large-buffer scaling, which is defined as

1
Erv = lim - log IP max Q,[0] > M (3.2)

M-+oo M i=l,...,N

when the limit exists. We emphasize that this exponent depends on the scheduling

policy I, as well as the system size N and the input statistics. We also define the

exponent corresponding to the total system occupancy exceeding a certain limit:

8N lim 1 g Qi q Q3.3)
q-+oo q

The system occupancy exponent in (3.3), which can be shown to exist, plays an

important role in our analysis of the buffer overflow exponent (3.2) under the LQF

policy. The following well known lemma asserts that ON is the same for all non-idling

scheduling policies.

Lemma 3.1 All non-idling policies achieve the same steady-state system occupancy

distribution (and hence the same system exponent ON)-

In fact, the above result holds at a sample-path level, since one packet would leave

the system every time slot if the system is not empty, under any non-idling policy.

We mainly analyze the Longest Queue First (LQF) scheduling policy, which, as the

name implies, serves the longest queue in each slot, with an arbitrary tie-breaking rule.

We also consider two other non-idling policies: random scheduling (RS), which serves

a random occupied queue in each slot (each with equal probability), and processor

sharing (PS), which divides the server capacity equally between all occupied queues.

Note that LQF scheduling is queue-aware, while RS and PS are queue-blind.



3.3 Large Deviation Analysis of LQF Scheduling

In this section, we present our main results regarding the buffer overflow exponents

and trajectories under LQF scheduling. We begin by characterizing the system occu-

pancy exponent ON for a non-idling policy.

Proposition 3.1 Under any non-idling policy, the system occupancy exponent is

given by

A* a+lf- (3.4)
a>O a

Proof: The result is a consequence of the fact that the total system occupancy distri-

bution is the same as the queue length distribution of a single queue, served by the

same server, but fed by the sum process Ai [t]. Since the input processes to the

different queues are independent and identically distributed (i.i.d), the log-moment

generating function of the sum process is NA(O). Next, from the definition of the

convex dual, the rate function of the sum process can be expressed as NA*(x/N).

Once the rate function of the input process is known, the overflow exponent of a

single server queue can be easily computed; see [25]. D

Let us denote by a*v the optimizing value of a in (3.4).

We now define scaled processes for the arrivals and queue lengths, which are often

used to study sample path large deviations in the large buffer regime. For every

sample path that leads to a buffer overflow at time slot 0, there exists a time -n < 0

for which both queues are empty. Since we are interested in large M asymptotics, we

let T = - , and define the sequence of scaled queue length processes

qi (t) = , it = 1 .Q.. , N,M

if t e {-, ... , 9,0}, and by linear interpolation otherwise. Similarly, we define a

scaled version of the cumulative arrival processes

SM) Si[MTMt]
M



if t E { ,... , :, 0}, and by linear interpolation otherwise. The initial condition

implies that qi(-T) = 0, i < N. Under the above scaling, qi(0) > 1 corresponds to the

overflow of queue i at time 0. The functions Sj") (t) are Lipschitz continuous maps

from [-T, 0] to RN, and therefore posses derivatives almost everywhere. We define

the sequence of empirical rates of the input process on queue i as x4 M) (t) , (M)

whenever the derivative exists. Mogulskii's theorem [18] asserts that the sequence of

maps S0M)(-) satisfies a sample path LDP in the space of maps from [-T, 0] to RN

equipped with a supremum norm. Further, the rate function of the sample path LDP

is given by3

-IT(S(-)) = I-TA* (xi (t)) dt. (3.5)

We remark that Mogulskii's theorem applies directly only to arrivals processes which

are independent across time. If the arrivals are correlated in time, the results in this

chapter will still apply, if we take Equation (3.5) as a starting point. That is, we need

to assume that the arrival process to each queue satisfies a sample path LDP with

rate function given by (3.5).

Next, the sequence of scaled queue lengths q(") (t), t e [-T, 0] is uniformly

bounded (by unity), and is Lipschitz continuous. Thus, there exists a subsequence

that converges uniformly over the compact set [-T, 0]. (This is a consequence of

the Arzel6-Ascoli theorem, see [53]). Let us denote this uniform limit by qi(t), i

1,... , N, and refer to these functions as the fluid limit of the queue lengths.

We now specify the evolution of the fluid limit qj(t), i 1, . . . , N, under LQF

scheduling. First, note that for a given sample path and a fixed t, the N-tuple of

the queue length fluid limits (qi(t), . . , qN(t)) is a point in [0, 1 ]N. Next, let _I be

any non-empty subset of {1, 2,... , N}. We define R7Z as the subset of [0, 1]N, such

that (qi(t),. .. ,qN(t)) E R iff q (t)- q(t) Vi, j E I, and for any k ( I, j E I,

qk (t) < q (t). Intuitively, in region R_, the queues in the index set _I 'grow together',

3The rate function expression holds only for absolutely continuous maps S(-), and is infinite

otherwise. However, SM) (t) are Lipschitz continuous, and Lipschitz continuity implies absolute
continuity.



and all other queues are smaller. It is clear that the regions RE are convex, and

constitute a partition of the set [0, 1 ]N as I ranges over all non-empty index sets.

The queue evolution equation in region R-T is given by

dijt = i (t) - 1;
iEJJ i~I

We now state the main result regarding the large deviations behavior of LQF

scheduling.

Theorem 3.1 Under statistically independent and identical arrival processes to each

queue, the large deviation behavior of buffer overflow under LQF scheduling is given

as follows:

(i) The exponent is given by

ELQF min k~k, (3-7)
N k=1 ,..., N

where 8k is the system occupancy exponent for k parallel queues, given by (3.4).

(ii) For a given A, suppose that a unique j < N minimizes (3.7), i.e.,

j = arg min kek.
k=1,...,N

Then, for that A, the likeliest overflow trajectory consists of j queues reaching

overflow. More specifically, the likeliest overflow trajectory (in the (q1(t ), ... , qN

space) is the line segment joining the origin to the point (q1 (0) = 1,..., qj(0)

1, q+1(0) - , ... , qN(O) = I), where ' < 1.
a*a* a*

The proof of the theorem follows a rather elaborate sample path large deviations ar-

gument that involves solving a variational problem. We relegate the proof to Chapter

Appendix 3.A.1, and discuss the theorem intuitively.
4The symmetry allows us to only present the case where the first j queues overflow.



The first part of the theorem states that the buffer overflow exponent under LQF

scheduling is only a function of the system occupancy exponent ek of a system with

k parallel queues, where k < N. The second part of the theorem asserts that if E QF

equals j for a unique j < N, then the likeliest overflow scenario consists of j queues

overflowing, and the other N - j queues grow approximately to My, which is less

than M. In particular, the queues that do not overflow are never the longest, and

hence get no service at all. The service is shared equally among the j queues that

overflow, and a* denotes the likeliest rate at which the j queues overflow in spite of

getting all the service. On the other hand, the queues that do not overflow get to

keep all their arrivals, which occur at the average rate A. The exponent for this case

is given by je8, which corresponds to all the queues in a j-queue system overflowing

together. This is because the other N -j queues which do not get service, get arrivals

at the average rate, and hence do not contribute to the exponent.

3.3.1 Illustrative examples with Bernoulli traffic

In this section, we obtain the LQF exponents explicitly for a system with symmetric

Bernoulli inputs to each queue. We deal with N = 2 and N 3, since these cases

are easily visualized, and elucidate the nature of the solution particularly well. We

begin by making the following elementary observation regarding LQF scheduling and

Bernoulli arrivals.

Proposition 3.2 Under Bernoulli arrivals and LQF scheduling, the system evolves

such that the two longest queues never differ by more than two packets.

Next, we state a well known result regarding the rate function A*(.) for a Bernoulli

process.

Proposition 3.3 For a Bernoulli process of rate A, the rate function is given by

x 1 - x
A*(x) = D(x||A) := xlog - + (1 - x) log

A1 - A



where D(x||A) is the Kullback-Liebler (KL) divergence (or the relative entropy) be-

tween x and A.

The result is a consequence of Sanov's theorem for finite alphabet [25].

Let us now consider a two queue system with Bernoulli arrivals. For this simple

system, it turns out that the exponent can be computed from first principles, without

resorting to sample path large deviations. First, the system exponent 62 under

Bernoulli arrivals can be computed either from Equation (3.4), or directly from the

system occupancy Markov chain, yielding

62 = 2log A

The overflow behavior under LQF scheduling is derived from first principles in the

following proposition.

Proposition 3.4 Under LQF scheduling and Bernoulli arrivals, the following state-

ments hold for the case N = 2 :

(i) The likeliest overflow trajectory is along the diagonal, (q1 = q2)

(ii) EfQF = 292 = 4log l-

Proof: Part (i) of the result is a simple consequence of Proposition 3.2. Specifically,

suppose that one of the queues (say Q1) overflows, so that Q1 > M. From Proposition

3.2, it follows that Q2 > M - 2. Thus, when an overflow occurs in one queue, the

other queue is also about to overflow, so that the only possible (and thus the likeliest)

overflow trajectory is along the diagonal.

In order to show part (ii), we first argue that ELQF > 282. Indeed, when a

buffer overflow occurs, the total system occupancy is at least 2M - 2. Thus, the

buffer overflow probability is upper-bounded by the probability of the total system

occupancy being at least 2M - 2 :

P f{Q1 > M _< P {Q1 + Q2 > 2M - 2}.



We thus have,

LQF limE 2  - Mr -- ogTP{Qi>MI
M-+oo M

> lim -log P {Q1 + Q2 > 2M - 2} 28 2 ,-M-+oo M

where the last equality follows from the definition of 8 2.

To show a matching upper bound, note that when the system occupancy is 2M

or greater, at least one of the queues will necessarily overflow. Thus,

P {Q1 + Q2 > 2M} < P {max(Q 1 , Q2 ) > M}.

We can then argue as above that EfQF < 282-

Let us now analyze a system with three queues, fed by symmetric Bernoulli traffic.

In this case, although the longest two queues grow together, it is not immediately

clear how the third queue behaves during overflow. As before, the system occupancy

exponent 8 3 can be obtained from (3.4) or directly from the Markov chain to yield

2 A
(83 = log 

2

(B -2C) + 3 B - 2C) 2 +4AC

where A = (1 - A)3 , B = 3A2, and C = A3 .

We can now invoke Theorem 3.1, and conclude that the desired overflow exponent

is given by min(20 2, 393). (Note that 8 1 is infinite in this case, since a single queue

fed by Bernoulli input cannot overflow). Figure 3-2 shows a plot of 28 2 and 38 3 as

functions of the input rate A on each queue. It is clear from the figure that for small

values of A, the exponent 28 2 dominates the overflow behavior. In this regime, the

likeliest manner of overflow involves two queues reaching overflow, while the third

queue grows to approximately M /A . For larger values of A (> 0.07), the exponent

is 383, and all three queues overflow together.
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Figure 3-2: Exponent behavior for N = 3 under Bernoulli traffic.

3.4 LQF vs. Queue-Blind Policies

In this section, we compare the performance of LQF scheduling with that of queue-

blind policies. We only consider a two queue system, since the large deviation behavior

of PS and RS is difficult to characterize for N > 2. The following result for processor

sharing follows from [6].

Proposition 3.5 The buffer overflow exponent for a two queue system under PS is

given by
1i 1 1

Eps = inf - A*(a + )+ A*() (3.8)2 a >0 a 22

The likeliest manner of overflow under processor sharing is as follows. Suppose it is

the first queue that overflows. The second queue receives traffic at rate 1/2, which is

also its service rate. Thus, the second queue does not overflow, and grows to at most

o(M). The first queue receives service at rate 1/2 and input traffic at rate a*, + 1/2,

where a* optimizes (3.8). Thus, a*s is the likeliest rate of overflow of the first queue.

Next, we present the exponent for random scheduling.



Proposition 3.6 The buffer overflow exponent for a two queue system under RS is

given by
1 F1

ERS = inf - inf A*(a + 1 - #) + A*(#) + D(#0|1) . (3.9)
a>O a 4c(O,1) [

The proof is outlined in Chapter Appendix 3.A.2. We now describe the most

likely overflow event. Suppose queue 1 overflows. The parameter # that appears in

the inner infimization in (3.9) denotes the empirical fraction of service received by

queue 2. In other words, the 'fair' coin tosses that decide which queue to serve when

both queues are nonempty, 'misbehave' statistically. The exponent corresponding to

this event is given by D(#|1). If #* is the optimal value of # in (3.9), the second

queue receives traffic at rate #*, and therefore grows to an o(M) level. The first

queue receives traffic at rate a* + 1 - #*, where a* is the optimizing value of a in

(3.9).

The following result establishes the order among the overflow exponents for the

three policies considered in this chapter.

Proposition 3.7 It holds that Efs E2s E'QF2

Proof: To see the first inequality ERS < E2JS, note that substituting # = 1/2 in the

RS exponent (3.9) yields the PS exponent. To prove the second inequality, it suffices

to show that EPS < 81 and E2S < 28 2. First note that for all a > 0, we have

A*(a + 1/2) > A*(1/2) since the input rate A is less than 1/2. Thus, for all a > 0,

2 1
2A*(a + 1/2) > - [A*(a + 1/2) + A*(1/2)].
a a

Taking inf on both sides, we have E4S < 282. Similarly, for all a > 0, it can be shown

that A*(a+1) > A*(a+1/2) + A*(1/2), using the fact that A*() is an increasing convex

function, for arguments greater than A. Dividing the preceding inequality by a and

taking infimum, it follows that EPS < 81

In Figure 3-3, we plot the exponents corresponding to LQF, PS and random

scheduling for a two queue system, as a function of the arrival rate A. Figure 3-3(a)

corresponds to having Bernoulli arrivals in each time slot, while in Figure 3-3(b), the
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Figure 3-3: Comparison of LQF, PS and RS exponents for a two queue system, under
(a) Bernoulli arrivals (b) Poisson arrivals



number of arrivals in each slot is a Poisson random variable. The first observation we

make from Figure 3-3 is that, for a given arrival rate, the exponent values for a given

policy are generally larger under Bernoulli traffic. This is because Poisson arrivals

have a larger potential for being more bursty, and hence the overflow probability is

larger (and the exponent smaller) for a given average rate. Next, notice that the

LQF exponent under Poisson traffic (Figure 3-3(b)) exhibits a cusp at A ~ 0.27.

This is because under Poisson traffic, we have two competing exponents 8 1 and 26 2,

corresponding respectively to one queue and both queues overflowing. For A below

the cusp, 8 1 dominates, and vice-versa. On the other hand, under Bernoulli traffic,

6 1 is infinite. Thus, the LQF exponent is given by 28 2 , which is a smooth curve as

shown in Figure 3-3(a).

3.4.1 Buffer scaling comparison

It is well known that large deviation exponents have direct implications on the buffer

size required in order to achieve a certain low probability of overflow. We now com-

pare LQF scheduling with the two queue-blind policies in terms of the buffer scaling

required to guarantee a given overflow probability.

In Figure 3-4, we plot the ratio of the LQF exponent to the PS and RS exponents.

This ratio is directly related to the savings in the buffer size that results from using

LQF scheduling, as opposed to using one of the queue-blind policies. For example,

consider the ratio of the LQF exponent to the RS exponent, when the traffic is

relatively heavy (say A > 0.3). This is the regime where overflows are most likely to

occur. We see that under both Bernoulli and Poisson traffic, the LQF exponent is

roughly 1.8 times the RS exponent. This implies that in order to achieve a certain

overflow probability, the LQF policy requires only 55% of the buffer size required

under random scheduling in heavy traffic. A similar comparison can also be made

between the LQF and PS exponents.
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3.5 Scheduling with Infrequent Queue Length In-

formation

We have seen that the LQF policy has a superior buffer overflow performance com-

pared to queue-blind policies. This is because the queue-blind policies cannot discern

and mitigate large build-up on one of the queues, whereas the LQF policy tries to

achieve a more balanced set of queues by serving the longest queue in each slot. On

the other hand, the scheduler needs to know queue length information in every slot in

order to perform LQF scheduling. In this section, we will show that the buffer over-

flow performance of LQF scheduling can be maintained even if we allow for arbitrarily

infrequent queue length information to be conveyed to the scheduler.

The basic idea is that it is sufficient to serve the longest queue only when the

queues are large. When the queue lengths are all small, we can save on the queue

length information by adopting a non-idling, but queue-blind scheduling strategy. To

achieve this, we suggest the following scheduling policy which is a 'hybrid' version of

the queue-blind RS, and the LQF policy.

Hybrid Scheduling: Let K < M be a given queue length threshold. In each slot, if

all queues are smaller than K, then serve any occupied queue at random. If at least

one queue exceeds K, serve the longest queue in that slot.

The following theorem asserts that the hybrid policy achieves the same buffer

overflow exponent as LQF scheduling, while requiring queue length information in a

vanishingly small fraction of slots.

Theorem 3.2 For the hybrid scheduling policy proposed above, the following state-

ments hold.

(i) The fraction of slots in which queue length information is required can be made

arbitrarily small.

(ii) The buffer overflow exponent of hybrid scheduling is equal to E&QF as long as

K = o(M).



Observe that queue lerfgth information is required only in time slots when the longest

queue in the system is longer than K. Since RS is a stabilizing policy, the steady state

probability that the longest queue exceeds K approaches zero as K becomes large.

(In fact, this probability goes to zero exponentially in K.) Therefore, the fraction of

slots in which queue length information is required can be made arbitrarily small. On

the other hand, the overflow exponent remains the same as in the LQF case. This is

because the hybrid policy differs from LQF scheduling only in a 'small' neighborhood

around the origin. We relegate the proof to Chapter Appendix 3.A.3.

3.6 Conclusions

In this chapter, we studied the buffer overflow probabilities in a system of parallel

queues, under some well known scheduling policies. We showed that under max-

weight (or LQF) scheduling and symmetric traffic on all the queues, the large devia-

tion exponent of buffer overflow probability is purely a function of the total system

occupancy exponent. We also showed that queue length-blind policies such as PS

have a smaller overflow exponent (and hence larger buffer size requirements) than

max-weight scheduling. Finally, we showed that the superior buffer overflow perfor-

mance of LQF policy can be preserved even under arbitrarily infrequent queue length

information.

3.A Proofs

3.A.1 Proof of Theorem 3.1

The proof can be divided into two parts. The first part involves showing that the

queue length process under LQF scheduling satisfies an LDP, whose rate function is

given by the solution to a variational problem. The second step involves solving the

variational problem in the case of symmetric arrivals, and proving that the optimal

solution to the variational problem takes a simple form, as given by the theorem.



The existence of an LDP for the queue length was shown in [60] for longest

weighted waiting time as well as longest weighted queue length scheduling. Assuming

without loss of generality that the first queue overflows, the exponent is given by the

following variational problem

0 'N
minjO fA*(xi(t)) dt (3.10)

subject to

qi(-T) = 0,Vi

q1(0) = 1

T : free,

q,(0) : free for j > 1,

and the queue length trajectories qi(t) evolve according to (3.6).

Our emphasis is on solving the above variational problem under the symmetric

traffic scenario. In (3.10), the empirical rates xi(t) are the control variables, and

the cost function is the exponent corresponding to the control variables, as given by

Mogulskii's theorem. In words, the variational problem is to find the set of empirical

rates which leads to the smallest exponent, and results in the overflow of at least

one queue. Note that the above is a free time problem, i.e., the time T over which

overflow occurs is not constrained. Also, it is possible for queues other than the first

queue to reach overflow.

An important property which helps us solve (3.10) is given by the following lemma,

which states that when the queue lengths are within one of the regions R7Z, the

empirical rates xi(t) can be taken as constants, without loss of optimality.

Lemma 3.2 Fix a time interval [-T 1, -T 2] and consider a control trajectory xi(t), i =

1,..., N, t C [-T 1, -T 2], such that the fluid limit of the queue lengths qi(t), i

1,. .. , N, t C [-T 1, -T2] stay within a particular region R-. Define the average con-



trol trajectory x in the interval [-T 1 , -T2] as

'x(T) = T xI (t)dt
T1 -T2 _T,

for i = 1,... , N and T G [-T 1, -T2]. Then, the queue lengths under the average

control trajectory sT,(t) lie entirely within Rz, and satisfy the same initial and final

conditions at t = -T 1 and t = -T 2 respectively. Furthermore, the cost achieved under

the (constant) control trajectory ±i(t) is not larger than the cost achieved under xi(t).

Proof: The proof is akin to the two dimensional case treated in [6]. That the queue

length trajectories under the average control ti satisfy the initial and final conditions

is easy to verify. Further, the trajectory moves along a straight line, and therefore

stays entirely with R1 , due to the convexity of the region. Finally, due to the convexity

of A*(.), we have

T2 ~N ~N -T2

A* (x i(t)) dt > (T1 - T2) [:A* T1  T2 T xi(t)dt

~N

(T 1 - T2) A* (zi)

This implies that the average control trajectory is not more costly than the original

control trajectory. l

Using Lemma 3.2, we next compute the exponents corresponding to overflow tra-

jectories that stay entirely within a particular region R7Z. Later, we will show that

overflow trajectories that traverse more than one region cannot have a strictly smaller

exponent than trajectories that stay within exactly one of the regions. This will give

us the result we want.

Consider an overflow trajectory that lies entirely within RZ1 , where Ij = j for

some 1 < j < N. In this case, the j queues in the index set IT reach overflow, while

the other N - j queues are strictly smaller, and hence receive no service. Due to the

symmetry of arrivals, we can compute the exponent assuming that I {1,. .. , ,



i.e., the first j queues overflow. Lemma 3.2 implies that the optimal empirical rates

can be restricted to constant values5 xi, i 1, . . . , N for this particular overflow

event. Let a - 1/T denote the rate at which the first j queues overflow. Since each

queue k E {1, ... , j} overflows at rate a, the empirical input rate Xk must be of the

form Xk= a+#k, where #k > 0 can be thought of as the rate at which queue k receives

service in the overflow interval. Since the first j queues receive all the service, we

have E _' k =1. Next, for 1 > j, we need x, < a, since these queues are never the

longest, and hence get no service.

The optimization in (3.10) takes the following form when the first j queues reach

overflow.

inf inf A*(a +#)+ NA*(X) (3.11)
a>- a 4x>0 4 =1 k=1 Ai(+1

x 1 <a, V l>j

Let us now perform the inner minimization in (3.11). It is obvious that the minimiza-

tion over #k, k < j and x1, 1 > j can be performed independently. Due to convexity

of the rate function, we have

1 3l

A*(a +#k) > A*(- (a +k))= A*(a + ).
k=1 k=1

Therefore, the optimal value of the #ks is given by #, = 1/j, k < j. Next, consider

optimizing over x, for 1 > j. We distinguish two cases:

(i) a > A: In this case, it is optimal to choose x, = A for each I > j, since A*(A) = 0.

(ii) a < A: In this case, the constraint x, < a has to be active, since for x < A,

A*(x) is decreasing in x. Thus, we have x, = a.

Putting the two cases together, we get from (3.11) the exponent Ej corresponding to

exactly j queues overflowing, while the trajectory stays inside 'ITj.

Ej = min(Xj, ) (3.12)

5For simplicity of notation, we henceforth use xi in place of i.



with

Xj inf - jA*(a + )+ (N - j)A*(a) ,and

() = inf -A*(a+ (3.13)
a>A ay

The above expression holds for 1 < j < N. The exponent for all the N queues

overflowing is simpler to obtain; it is given by

EN =inf NA*(a + ) = NEN, (3.14)
a>O a N

where the last equality follows by recalling (3.4). The optimal exponent considering

the set of all overflow trajectories that stay inside any one of the regions RZ, I C

{1,... , N} is obtained by minimizing Ej over j 1,... , N.

At this point, we are two steps away from obtaining the result. The first step

involves showing that there is nothing further to be gained by considering paths

that traverse more than one of the partitioning regions. This would imply that

the optimal exponent is given by minl j<N E. The second step involves showing

that min1<35NEj = min1<5NJ8j, where 8j is the system occupancy exponent of j
parallel queues, defined in (3.4). The following two lemmata establish what is needed.

Lemma 3.3 For every queue overflow trajectory that traverses more than one of

the regions Rz., I c {1,... , N}, there exists an overflow trajectory that lies entirely

within one of the regions, while achieving an exponent that is no larger.

Proof: We only rule out overflow trajectories that traverse two regions; similar argu-

ments can be used for trajectories that visit more than two regions. Consider a queue

trajectory that starts out in a region R.T but reaches overflow in region Rg, while

staying in one of the two regions at every instant in between. Note that the region

RI is a convex set of dimension N - |I + 1. That is, regions that involve a larger

number of queues growing together, have a smaller dimension and vice-versa.

We will consider two cases, I D J and I C J. Brief reflection should make it

clear that if one of the above two containments is not satisfied, the trajectory has to



necessarily traverse more than two regions. The arguments that follow are easier to

understand if visualized in two dimensions.

Suppose I C J. Consider a trajectory that starts out at the origin at t = -T, and

stays inside Rz until time t = -T 1 , when it enters R17. The trajectory stays in Rj

until overflow at t = 0. Intuitively, the queues qi, i E I start out growing together. At

time -T, the queues qi, i E J-I 'catch up', and overflow occurs in all the queues in

the index set J. Since constant empirical input rates are optimal inside each partition

region (Lemma 3.2), the arbitrary trajectory in R_ can be replaced at no further cost

by a straight segment that has the same initial and final values (qi(-T) = 0, and

qi(-T 1 ) E Rg for each i). This segment lies entirely in RE, but is arbitrarily close to

the region Rj. (Note that Rj forms one of the 'boundaries' of Rz). However, the

cost of this replaced segment is clearly not lower than the optimal trajectory in R7

with the same initial and final conditions. The part of the trajectory from t = -T1

until over flow at t = 0, can again be replaced by the optimal trajectory in Rj with

the corresponding end points. Thus, overall, the cost of the original trajectory is

greater than or equal to that of the optimal trajectory in Rj.

Now consider the case I D J. Intuitively, this case corresponds to the queues

qi, i E I starting to grow together. At some time instant, the queues qi, i E I - J

start 'losing out', and overflow occurs within Rj. The arbitrary trajectories in each of

the regions can be replaced with an optimal segment in each of the regions, with the

same boundary conditions at no added cost. The cost of this replaced trajectory, is a

convex combination of the optimal overflow trajectories in regions R 5 and RZ1 , and

hence cannot be smaller than the smaller of the two costs. Thus, a strictly smaller

cost cannot be obtained by a trajectory that traverses two regions.

Lemma 3.4 minl iN Ej = minlj N Jj.

Proof: We first prove that Xj > EN for all j < N. First, using convexity, we can write

j 1 N-j j 1 N-j
- A*(a + -) + A*(a) > A* ((a + ) N a)N j N - N J3N

= A*(a + -).- (3.15)
N



We now have

X = inf - [jA*(a + -) + (N - j)A*(a)
0<a<Aa

> inf - [jA* (a + ,)+ (N - J) A*(a)
a>0 a

(a) N 1
> inf A*(a + ) = EN.

a>0 a N

The inequality (a) follows from (3.15). It is now clear that the Xjs are irrelevant,

as they are always dominated by EN= NON- We next write the following series of

equalities that imply the lemma.

min E = min((1, ... , N-1,NON)
1<j'<N

= min min( j, NON)

(b)
min min(jOj, NON)

1<j<N

= min j8
1<j<N

In the above, equality (b) is shown as follows. Consider min( j, NON). The definition

of (j (3.13) involves the infimum of a convex function of a over a > A. If the convex

function attains its global minimum for 0 < a < A, then the infimum in (3.13) will

be obtained at a = A. In this case, it is easy to show that NON < j. Thus, if (j

has to be smaller than NON, the infimum in (3.13) must be obtained at the global

minimum, which lies at a > A.6 Thus, whenever min(( , NON) = j, we necessarily

have

y= inf 3A*(a + )=inf A*(a + )=j8i,
a>Aa y a>Oa

so that equality (b) follows, and we are done. E

6 It follows that A/a* < 1, which proves the claim made in part (ii) of Theorem 3.1.



3.A.2 Proof outline of Proposition 3.6

Let Bi[t] e {0, 1} denote the i.i.d fair 'coin tosses' that decide which queue to serve

when both queues are occupied. If Bi [t] = 1, then the second queue is served if

occupied in slot t; if Bi[t] = 0, the first queue is served if occupied. If one of the

queues is not occupied in slot t, the occupied queue is served, and Bi[t] becomes

irrelevant. Let #(t) be the empirical fraction of coin tosses in favor of the second

queue, defined analogously to the empirical input rates in Section 3.3. The dynamics

of the fluid queue length processes under RS is given by

41(t = X1(t) - (1 - #(t))

42 (t) =2 2(t) - 0(t))

whenever qi(t) and q2(t) are non-zero. If either qi(t) = 0 or q2 (t) 0, then

41 (t) + 42 (t) = X1I(t) + X 2(t) -1

Here, xi(t) and x2 (t) are the empirical rates of the input processes.

Using a result analogous to Lemma 3.2, we can prove that constant empirical rates

for the inputs as well as the coin tosses is optimal, within each of the regions (i) qi (t) >

0, q2 (t) > 0 (ii) q1(t) > 0, q2 (t) =0, and (iii) qi(t) = 0, q2 (t) > 0. The problem can

now be mapped to an instance of generalized processor sharing with variable service

rate, as treated in [6]. The result follows by applying the GPS exponent results to

our symmetric case, and noting that the rate function corresponding to the fair coin

tosses is given by D(.|1/2).

3.A.3 Proof of Theorem 3.2

Let us first prove part (i), which is quite straightforward. Given 6 > 0, suppose that

we wish to make the fraction of slots in which queue length information is required less

than 6. Since the hybrid policy is non-idling for every K, the steady state probability

of the largest queue exceeding K approaches zero as K becomes large. In other words,



we can choose a K6 such that for any K > K6, the probability of the longest queue

exceeding K is less than 6. It is now clear that a hybrid policy with K > K5 will

achieve what we want, since the hybrid policy requires queue length information only

in slots when the longest queue exceeds K.

We now proceed to show part (ii) of the theorem. For any fixed parameter K

of the hybrid policy, we will show that the the overflow exponent remains the same

as that of the LQF policy. We first prove an elementary lemma, which asserts that

given two systems with different initial queue occupancies, the LQF policy does not

allow the queue evolution trajectories to 'diverge', when the two systems are fed by

the same input process.

Definition 3.1 For any two vectors x, y C ZN, define d(x, y) = maxi=1 ,...,N Zi - yi -

Lemma 3.5 Consider two fictitious systems U and V, in which the initial queue

lengths (at time zero) are given by QU) [0], i 1,... ,N and Q(V) [0 ] i - 1,... N

respectively. Let A = d(Q(U) [0], Q(v)[ 0]). Suppose that

(a) The same input sample path A[t], t = 1, ... , To feeds both systems for To time

slots, and that

(b) LQF scheduling is performed (with the same tie breaking rule) on both systems

for t = 1,. .. , To.

Then, for any input sample path and To, we have d(Q(U)[To], Q(v)[To]) < A.

Proof: The queue lengths in the two systems after the arrivals during the first time slot

are given by B(U) [1 ) QU)[0 ]+ Ai[1], i = 1,...,N, and BV)[1] Q(V)[0]+ Ai[1]

1,..., N. At the end of the first time slot, LQF scheduling is performed based on

these queue lengths. We will consider the following exhaustive possibilities, and show

that d(Q(U) [1), Q(V)[ 1 ]) < A.

(i) If the LQF policy chooses the same queue to serve in both systems, it is clear

that d(Q(u)[To], Q(v)[T]) = A.



(ii) Suppose the LQF policy chooses queue u in system U and queue v in system

V, with u / v. This implies that B$1U)[1] > B "3[1] and B$(v)[ 1] < Blv)[1]. The

following sub-cases arise

(iia) Bu [1] > BU1V) [1] and B7V [1] > B v[1]. In this case, after the LQF policy

finishes service, Q(U)[ 1 ] - Qj(V)[1]| = |Q(U)[ 0 ] - Qj(V)[0]| - 1 for i = U, v,

and IQ(U)[1] - Q>(V)[1]- QU)[0] - Qj(V)[0]| i f u, v. Thus, in this case,

d(Q(U) [1], Q(v)[1) A.

(iib) One of the inequalities in (iia) fail to hold. Suppose B(U) [1] < BT [1]. This

implies that B") [1] <, B") [1] b BV) [1] <c Bv) [1]. If inequalities a and

c are both met with equalities, there is a tie in both systems between queues

u and v. In such a case, the (common) tie breaking rule would select the

same queue for both systems7 , and this case is covered under (i). We can

therefore assume that at least one of the inequalities a and c is strict. Now,

it is clear that IQ(U)[1]-Qv(V)[1]| IQ$v [0]-Qv(V)[0]| -1. However, the

difference increases in the u co-ordinate: IQ(U)[I - Q (V)[I] Q(U)[ 0] -

Qu(V)[0] I + 1. This increase does not contribute to a strict increase in

d(Q(u) [13, Q(v) [1]), since IQV [13 -)(V)[13 = QUU)[03 - Qu(V)[03|+1 d

QVU)[0] - Qv(V)[0] < A. Inequality d holds since one of the inequalities

a and c is strict. Thus, d(Q(U) [13, Q(v)[ 1]) < A in this case too.

Iterating over time slots, it can be shown that d(Q(u)[t], Q(v)[t]) < A, for all

t > 1. El

Let us now show that the overflow exponent under hybrid scheduling is greater

than or equal to EJNQF. We prove this by showing that for every input sample path

that leads to a buffer overflow under hybrid scheduling, the LQF policy also gets close

to overflow. Specifically, let A[t), t = 1, ... , T be an input sample path which leads

to a buffer overflow at time T under hybrid scheduling. Thus, Q(H) [T] > M, for some

i < N. (We use the superscript H to denote queue lengths under hybrid scheduling,

'If the tie breaking rule is randomized, we need to assume that the same sample path for the tie
breakers apply to both systems.



and L for LQF scheduling). Let T < T denote the last time that all the queues were

less than or equal to K. Thus, QSH) [r] < K, j 1,..., N. Now, since both hybrid

scheduling and LQF scheduling are non-idling, the total number of packets in the

system is conserved. Thus, if the same input sample path were to feed a system with

LQF scheduling in each slot, we would have Ej QL) [T] = >2 Q(H) [T] < NK, from

which it is immediate that

d(Q(H) [T],Q(L)[T]) < NK. (3.16)

Observe that by the definition of T, the hybrid policy actually performs LQF

scheduling during the time slots T+1, . . ., T. Thus, we have two systems which start

with different initial queue lengths Q(H) [T] and Q(L) [T]. However, they are both fed

by the same input sample path, and are served according to the LQF policy for

t > T. Lemma 3.5 now applies, and we can conclude that d(Q(H)[T], Q(L)[T]) <

d(Q(H)[T], Q(L)[T]). When combined with (3.16), this yields d(Q(H)LT], Q(L)[T]) <

NK. Thus, Q(L) [T] > M - NK, whenever QH) [T] > M. This shows that for every

input sample path that leads to an overflow under Hybrid scheduling, the LQF policy

is also close to overflow.

Since this is true for every overflow sample path, we have the steady state relation

P {max Q(H) > M} < p {maxQ ;L) M-NK},

from which it follows that EH > ELQF. Next in order to show that EH < ELQF we

can argue as above that every input sample path that leads to overflow under LQF

scheduling, also leads 'close' to an overflow under hybrid scheduling. We have shown

that for a fixed K, the hybrid scheduling policy has overflow exponent equal to EkTQF.

It is not difficult to see that if K increases sub-linearly in M, i.e., K = o(M), the

exponent would still remain the same. This implies that by scaling K sub-linearly in

the buffer size M, the rate of queue length information can be sent to zero, while still

achieving the exponent corresponding to LQF scheduling. l



Chapter 4

Asymptotic Analysis of

Generalized Max-Weight

Scheduling in the presence of

Heavy-Tailed Traffic

4.1 Introduction

Traditionally, traffic in telecommunication networks has been modeled using Poisson

and Markov-modulated processes. These simple traffic models exhibit 'local random-

ness', in the sense that much of the variability occurs in short time scales, and only an

average behavior is perceived at longer time scales. With the spectacular growth of

packet-switched networks such as the internet during the last couple of decades, these

traditional traffic models have been shown to be inadequate. This is because the traf-

fic in packetized data networks is intrinsically more 'bursty', and exhibits correlations

over longer time scales than can be modeled by any Markovian point process. Em-

pirical evidence, such as the famous Bellcore study on self-similarity and long-range

dependence in ethernet traffic [35] lead to increased interest in traffic models with

high variability.



Heavy-tailed distributions, which have long been used to model high variability

and risk in finance and insurance, were considered as viable candidates to model

traffic in data networks. Further, theoretical work such as [30], linking heavy-tails

to long-range dependence (LRD) lent weight to the belief that extreme variability in

the internet file sizes is ultimately responsible for the LRD traffic patterns reported

in [35] and elsewhere.

Many of the early queueing theoretic results for heavy-tailed traffic were obtained

for the single server queue; see [48] for a detailed survey of these results. It turns

out that the service discipline plays an important role in the latency experienced in

a queue, when the traffic is heavy-tailed. For example, it was shown in [3] that any

non-preemptive service discipline leads to infinite expected delay, when the traffic is

sufficiently heavy-tailed. Further, the asymptotic behavior of latency under various

service disciplines such as first-come-first-served (FCFS) and processor sharing (PS),

is markedly different under light-tailed and heavy-tailed scenarios. This is important

in the context of scheduling jobs in server farms, and has been widely studied [10,29,

72].

In the context of communication networks, a subset of the traffic flows may be

well modeled as heavy-tailed, and the rest better modeled as light-tailed. In such

a scenario, there are relatively few studies on the problem of scheduling between

the different flows, and the ensuing nature of interaction between the heavy-tailed

and light-tailed traffic. Perhaps the earliest, and one of the most important studies

in this category is [11], where the interaction between light and heavy-tailed traffic

flows under generalized processor sharing (GPS) is studied. In that paper, the authors

derive the asymptotic workload behavior of the light-tailed flow, when its GPS weight

is greater than its traffic intensity.

One of the key considerations in the design of a scheduling policy for a queueing

network is throughput optimality, which is the ability to support the largest set of

traffic rates that is supportable by a given queueing network. Queue length based

scheduling policies, such as max-weight scheduling [64] and its many variants, are

known to be throughput optimal in a general queueing network. For this reason, the



max-weight family of scheduling policies has received much attention in various net-

working contexts, including switches [41], satellites [45], wireless [46,63], and optical

networks [12].

In spite of a large and varied body of literature related to max-weight scheduling,

it is somewhat surprising that the policy has not been adequately studied in the

context of heavy-tailed traffic. Specifically, a question arises as to what behavior we

can expect due to the interaction of heavy and light-tailed flows, when a throughput

optimal max-weight-like scheduling policy is employed. Our present work is aimed at

addressing this basic question.

In a recent paper [40], a special case of the problem considered here is studied.

Specifically, it was shown that when the heavy-tailed traffic has an infinite vari-

ance, the light-tailed traffic experiences an infinite expected delay under max-weight

scheduling. Further, it was shown that the max-weight policy can be tweaked to fa-

vor the light-tailed traffic, so as to make the expected delay of the light-tailed traffic

finite. In the present chapter, we considerably generalize these results by provid-

ing a precise asymptotic characterization of the occupancy distributions under the

max-weight scheduling family, for a large class of heavy-tailed traffic distributions.

We study a system consisting of two parallel queues, served by a single server.

One of the queues is fed by a heavy-tailed arrival process, while the other is fed

by light-tailed traffic. We refer to these queues as the 'heavy' and 'light' queues,

respectively. In this setting, we analyze the asymptotic performance of max-weight-

a scheduling, which is a generalized version of max-weight scheduling. Specifically,

while max-weight scheduling makes scheduling decisions by comparing the queue

lengths in the system, the max-weight-a policy uses different powers of the queue

lengths to make scheduling decisions. Under this policy, we derive an exact asymptotic

characterization of the light queue occupancy distribution, and specify all the bounded

moments of the queue lengths.

A surprising outcome of our asymptotic characterization is that the 'plain' max-

weight scheduling policy induces the worst possible asymptotic behavior on the light

queue tail. We also show that by a choice of parameters in the max-weight-a policy



that increases the preference afforded to the light queue, the tail behavior of the light

queue can be improved. Ultimately however, the tail of the light queue distribution

is lower bounded by a power-law-like curve, for any scheduling parameters used in

the max-weight-a scheduling policy. Intuitively, the reason max-weight-a scheduling

induces a power-law-like decay on the light queue distribution is that the light queue

has to compete with a typically large heavy queue for service.

The simplest way to guarantee a good asymptotic behavior for the light queue

distribution is to give the light queue complete priority over the heavy queue, so that

it does not have to compete with the heavy queue for service. We show that under

priority for the light queue, the tail distributions of both queues are asymptotically

as good as they can possibly be under any policy. Be that as it may, giving priority

to the light queue has an important shortcoming - it is not throughput optimal for a

general constrained queueing system.

We therefore find ourselves in a situation where on the one hand, the throughput

optimal max-weight-a scheduling leads to poor asymptotic performance for the light

queue. On the other hand, giving priority to the light queue leads to good asymptotic

behavior for both queues, but is not throughput optimal in general. To remedy this

situation, we propose a throughput optimal log-max-weight (LMW) scheduling policy,

which gives significantly more importance to the light queue compared to max-weight-

a scheduling. We analyze the asymptotic behavior of the LMW policy and show that

the light queue occupancy distribution decays exponentially. We also obtain the exact

large deviation exponent of the light queue tail under a regularity assumption on

the heavy-tailed input. Thus, the LMW policy has both desirable attributes - it is

throughput optimal, and ensures an exponentially decaying tail for the light queue

distribution.

The remainder of this chapter is organized as follows. In Section 4.2, we describe

the system model. In Section 4.3, we present the relevant definitions and mathemat-

ical preliminaries. Section 4.4 deals with the queue length behavior under priority

scheduling. Sections 4.5 and 4.7 respectively contain our asymptotic results for max-

weight a scheduling, and the LMW policy. We conclude the chapter in Section 4.8.



Figure 4-1: A system of two parallel queues, with one of them fed with heavy-tailed
traffic.

4.2 System Model

Our system consists of two parallel queues, H and L, served by a single server, as

depicted in Figure 4-1. Time is slotted, and stochastic arrivals of packet bursts occur

to each queue in each slot. The server is capable of serving one packet per time

slot from only one of the queues according to a scheduling policy. Let H(t) and

L(t) denote the number of packets that arrive during slot t to H and L respectively.

Although we postpone the precise assumptions on the traffic to Section 4.3.2, let

us loosely say that the input L(t) is light-tailed, and H(t) is heavy-tailed. We will

refer to the queues H and L as the heavy and light queues, respectively. The queues

are assumed to be always connected to the server. Let qH(t) and qL(t), respectively,

denote the number of packets in H and L during slot t, and let qH and qL denote the

steady-state queue lengths, when they exist. Our aim is to characterize the behavior

of P {q > b} and P {qH > b} as b becomes large, under various scheduling policies.

4.3 Definitions and Mathematical Preliminaries

4.3.1 Heavy-tailed distributions

We begin by defining some properties of tail distributions of non-negative random

variables.

Definition 4.1 A random variable X is said to be light-tailed if there exists 0 > 0

for which E [exp(OX)] < oc. A random variable is heavy-tailed if it is not light-tailed.



In other words, a light-tailed random variable is one that has a well defined moment

generating function in a neighborhood of the origin. The complementary distribution

function of a light-tailed random variable decays at least exponentially fast. Heavy-

tailed random variables are those which have complementary distribution functions

that decay slower than any exponential. This class is often too general to study, so

sub-classes of heavy-tailed distributions, such as sub-exponentials have been defined

and studied in the past [59]. We now review some definitions and existing results on

some relevant classes of heavy-tailed distributions. In the remainder of this section, X

will denote a non-negative random variable, with complementary distribution function

F(x) - P {X > x}. For the most part, we adhere to the terminology in [9,15].

Notation: If f(b) and g(b) are positive functions, we write f(b) ~ g(b) to mean

lim f(b) = 1.
b-+oo g(b)

Similarly, f (b) > g(b) means
f (b)lim inf > 1. (4.1)

b-+oo g (b) -

Definition 4.2 1. F(x) is said to have a regularly varying tail of index v, nota-

tion F E R(v), if

~_F(kx) kV, V k>O0.lim - =k-"Vk>0
x-+oo F(x)

2. F(x) is said to be extended-regularly varying, notation F ER, if for some

real c, d > 0, and F > 1,

F(kx) F(kx)
k-d < lim inf < lim sup - < k-c Vk c [1, F].

xoo F(x) x-+oo F(x)

3. F(x) is said to be intermediate-regularly varying, notation F E 1R, if

lim lim inf F(kx) lim lim sup F(kx) =
k4l x--oo F(x) ks1 xoo F(x)



4. F(x) is said to be order-regularly varying, notation F E OR, if for some F > 1,

. F (kx) F(kx )
0 < lim inf _ < lim sup -_ < O, Vk E [1, I].

XCo F(x) - x-+oo F(x)

It is easy to see from the definitions that R C SR C IR C VIZ. In fact, the

containments are proper, as shown in [15]. Intuitively, R is the class of distributions

with tails that decay according to a power-law with parameter v. Indeed, it can be

shown that

F E R(v) 4-> F(x) = U(x)x-v,

where U(x) is a slowly varying function, i.e, a function that satisfies U(kx) ~

U(x), Vk > 0. The other three classes are increasingly more general, but as we shall

see, they all correspond to distributions that are asymptotically heavier than some

power-law curve. In what follows, a statement such as X E _ER should be construed

to mean Pf{X > x}C EIR.

Next, we define the lower and upper orders of a distribution.

Definition 4.3 1. The lower order of F(x) is defined by

((F) = lim inf -log F(x)
log x

2. The upper order of F(x) is defined by

log F(x)
p(F) = lim sup log X

It can be shown that for regularly varying distributions, the upper and lower

orders coincide with the index v. It also turns out that both orders are finite for the

class OR, as asserted below.

Proposition 4.1 p(F) < oo for every F E OR.

Proof: Follows from Theorem 2.1.7 & Proposition 2.2.5 in [9]. El

The following result, which is a consequence of Proposition 4.1, shows that every

T C OR is asymptotically heavier than a power-law curve.



Proposition 4.2 Let F C OR. Then, for each p > p(F), we have xP = o(F(x)) as

x3 -+ 00.

Proof: See Equation (2.4) in [51].

Definitions 4.2 and 4.3 deal with asymptotic tail probabilities of a random variable.

Next, we introduce the notion of tail coefficient, which is a moment property.

Definition 4.4 The tail coefficient of a random variable X is defined by

Cx sup{c > 0 1 E [Xc] < oo}.

In other words, the tail coefficient is the threshold where the power moment of a

random variable starts to blow up. Note that the tail coefficient of a light-tailed

random variable is infinite. On the other hand, the tail coefficient of a heavy-tailed

random variable may be infinite (e.g., log-normal) or finite (e.g., Pareto). The next

result shows that the tail coefficient and order are, in fact, closely related parameters.

Proposition 4.3 1 The tail coefficient of X is equal to the lower order of F(x).

Proof: Suppose first that the lower order is infinite, so that for any s > 0, we can

find an x large enough such that

logIP{X > x} >
log x

Thus, for large enough x, we have

P{X > x} < x-8, V s > 0.

This implies E [Xc] < o for all c > 0. Therefore, the tail coefficient of X is also

infinite.

Next suppose that ((F) E (0, oo). We will show that (i) E [Xc] < oo for all

c < ((F), and (ii)E [XC] = o for all c > (). To show (i), we argue as above that

'The author is grateful to Jayakrishnan Nair (Caltech) for suggesting a proof of Proposition 4.3
via a personal communication.



for large enough x, we have P {X > x} < x-, when s < .(F). Thus, E [Xc] < oo for

all c < ((F). To show (ii), let us consider some s such that c > s > ((F). By the

definition of ((F) there exists a sequence {xi} that increases to infinity as i -a 00,

log P {X > xj} < , V i
log xi

4> IP {X > xi} > X" V i.

E [Xc] = xcdFx(x) >
Ji

xcdFx(x) > xIP {X > xi} > xcx 8", V i,

from which it follows that E [Xc] = oo. Therefore, the tail coefficient of X is equal to

We emphasize that Proposition 4.3 holds for any random variable, regardless of

its regularity properties. Finally, we show that any distribution in the class OR

necessarily has a finite tail coefficient.

Proposition 4.4 If X G OR, then X has a finite tail coefficient.

Proof: From Proposition 4.1, the upper order is finite: p(F) < 00. Thus, the lower

order ((F) is also finite. By Proposition 4.3, the lower order is equal to the tail

coefficient, so that the result is immediate.

4.3.2 Assumptions on the arrival processes

We are now ready to state the precise assumptions on the arrival processes.

1. The arrival processes H(t) and L(t) are independent of each other, and inde-

pendent of the current state of the system.

2. H(t) is independent and identically distributed (i.i.d.) from slot-to-slot.

3. L(t) is i.i.d. from slot-to-slot.

4. L(-) is light-tailed with E [L(t)] = AL.

such that

Therefore,



5. H(-) C OR with tail coefficient CH> 1, and E [H(t)) = AH-

We also assume that AL + AH < 1, so that the input rate does not overwhelm the

service rate. Then, it can be shown that the system is stable2 under any non-idling

policy, and that the steady-state queue lengths qH and qL exist.

4.3.3 Residual and age distributions

Here, we define the residual and age distributions for the heavy-tailed input process,

which will be useful later. First, we note that H(.) necessarily has a non zero prob-

ability mass at zero, since AH < 1. Define H+ as the strictly positive part of H(-).

Specifically,

l-P{H() = m} ~ ,2P {H+ = I m} = ,( ml = 1, 27 . ...
1-P {H(-) = 0}

Note that H+ has tail coefficient equal to CH, and inherits any regularity property of

H(-).

Now consider a discrete-time renewal process with inter-renewal times distributed

as H+. Let HR E {1, 2, ... } denote the residual random variable, and HA E {O, 1, . . }
the age of the renewal process [24].3 The joint distribution of the residual and the

age can be derived using basic renewal theory:

P{HR= k,HA= 1 {H} = , k E {1,2. .. }, l E {O, 1,. .. }. (4.2)E [H+]

The marginals of HR and HA can be derived from (4.2):

I?{R k}- P{H± > k}P{H = k} = P H+ ~ , k E {1, 2,. .. }. (4.3)E [H+]

2 The notion of stability used here is the positive recurrence of the system occupancy Markov
chain.

3We have defined the residual time and age such that if a renewal occurs at a particular time
slot, the age at that time slot is zero, and the residual time is equal to the length of the upcoming
renewal interval.



(4.4)P{HA =+ k} = , k E {0, 1, .[.H.
E [ H+]

Next, let us invoke a useful result from the literature.

Lemma 4.1 If H(.) E OR, then HR ESR, and

nP {H+ > nl
sup < o.

n P{HR >n}
(4.5)

A corresponding result also holds for the age HA.

Proof: See [15. Lemma 4.2(i)]. R

Using the above, we prove the important result that the residual distribution is

one order heavier than the original distribution.

Proposition 4.5 If H(-) C OR has tail coefficient equal to CH, then HR and HA

have tail coefficient equal to CH - 1.

Proof: According to (4.5), we have, for all a and some real x,

- logP {H> a} < - log a - logP{H+ > a} + X.

Let us now consider the lower order of HR :

1 .. flogPHR> a} <lim inf
a-4mo loga a-m

-log a -log P{H+ > a} +X
log a

In the last step above, we have used the tail coefficient of H+. Since the lower order

of HR equals its tail coefficient (Lemma 4.3), the above relation shows that the tail

coefficient of HR is at most CH - 1-

Next, to show the opposite inequality, let us consider the duration random vari-

able, defined as

HD = HR + HA.



Using the joint distribution (4.2), we can obtain the marginal of HD as

kP {H+ = k}
Pf{HD = k E [H] k E {, 2,. .. }.

Thus, for any e > 0, the CH - 1 - E moment of HD is finite:

[CH--E kCH-l-Ek { H+ =k} E [H+H-E]< .

k>1 [H+] [H+]

Since HR is stochastically dominated by HD, it is immediate that E [H cH-1-E

Therefore, the tail coefficient of HR is at least CH - 1, and the result is proved. L

4.4 The Priority Policies

In this section, we study the two 'extreme' scheduling policies, namely priority for L

and priority for H. Our analysis helps us arrive at the important conclusion that the

tail of the heavy queue is asymptotically insensitive to the scheduling policy. In other

words, there is not much we can do to improve or hurt the tail distribution of H by

the choice of a scheduling policy. Further, we show that giving priority to the light

queue ensures the best possible asymptotic decay for both queue length distributions.

4.4.1 Priority for the Heavy-Tailed Traffic

In this policy, H receives service whenever it is non-empty, and L receives service

only when H is empty. It should be intuitively clear at the outset that this policy

is bound to have undesirable impact on the light queue. The reason we analyze this

policy is that it gives us a best case scenario for the heavy queue.

Our first result shows that the steady-state heavy queue occupancy is one order

heavier than its input distribution.

Theorem 4.1 Under priority scheduling for H, the steady-state queue occupancy

distribution of the heavy queue satisfies the following bounds.
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1. For every e > 0, there exists a constant IH(e) such that

IP{qH > bj < H(e)(CH V b. (4.6)

2.

Pf{qH > b} > AHP{HR > b}, V b. (4.7)

Further, qH is a heavy-tailed random variable with tail coefficient equal to CH - 1.

That is, for each e > 0, we have

H[q CH,-1-6] < oo1 (4.8)

and

E[q H
4
±E] - c0 (4.9)

Proof: Equation (4.8) can be shown using a straightforward Lyapunov argument,

along the lines of [40. Proposition 6]. Equation (4.6) follows from (4.8) and the

Markov inequality.

Next, to show (4.7), we consider a time instant t at steady-state, and write

P{qH(t) > b} FPqH(t) > b qH(t) > 0} P{qH(t) > 0} AHP fqH(t) > b qH(t) > 0}.

We have used Little's law at steady-state to write P {qH(t) > 0} =vH. Let us

now lower bound the term P {qH (t) > b qH (t) > 0}. Conditioned on H being non-

empty, denote by B(t) the number of packets that belong to the burst in service

that still remain in the queue at time t. Then, clearly, qH(t) > B(t), from which

P{qH(t) > b qH(t) > 0} > P {5(t) > b}. Now, since the H queue receives service

whenever it is non-empty, it is clear that the time spent at the head-of-line (HoL)

by a burst is equal to its size. It can therefore be shown that in steady-state, B(t)

is distributed according to the residual variable HR. Thus, P {qH(t) > bjqH(t) > 0} >

P {HR > b}, and (4.7) follows. Finally, (4.9) follows from (4.7) and Proposition 4.5.

n
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When the distribution of H(.) is regularly varying, the lower bound (4.7) takes

on a power-law form that agrees with the upper bound (4.6).

Corollary 4.1 If H(-) E R(CH), then

P{qH > b} > U(b)b-(cH-i) V b

where U(-) is some slowly varying function.

Since priority for H affords the most favorable treatment to the heavy queue, it follows

that the asymptotic behavior of H can be no better than the above under any policy.

Proposition 4.6 Under any scheduling policy, qH is heavy-tailed with tail coefficient

at most CH - 1. That is, Equation (4.9) holds for all scheduling policies.

Proof: The tail probability P {qH > b} under any other policy stochastically domi-

nates the tail under priority for H. Therefore, the lower bounds (4.7) and (4.9) would

hold for all policies. 0

Interestingly, under priority for H, the steady-state light queue occupancy qL is

also heavy-tailed with the same tail coefficient as qH. This should not be surprising,

since the light queue has to wait for the entire heavy queue to clear, before it receives

any service.

Theorem 4.2 Under priority for H, qL is heavy-tailed with tail coefficient CH - 1.

Furthermore, the tail distribution P {qL > b} satisfies the following asymptotic bounds.

1. For every e > 0, there exists a constant KL(c) such that

P f{qL > b <KL ()b (C - (4.10)

2. If H(.) E OR, then

P{qL> b AHP HA> } (4.11)
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Proof: The upper bound (4.10) is a special case of Theorem 4.4 given in the next

section. Let us show (4.11). Notice first that the lower bound (4.11) is asymptotic in

the sense of (4.1), unlike (4.7) which is exact. As before, let us consider a time t at

steady-state, and write using Little's law

P{qL(t) > b} PfqL(t) > bqH(t) > 0} P {qH(t) > 0} AHIP qL(t) > bjqH(t) > 0}-

Let us denote by A(t) the number of slots that the current head-of-line burst has been

in service. Clearly then, L has not received any service in the interval [t - A(t), t], and

has kept all the arrivals that occurred during the interval. Thus, conditioned on H

being non-empty, qL(t) ;> Et-A(t) L(-). Next, it can be seen that in steady-state,

A(t) is distributed as the age variable HA. Putting it all together, we can write

HA

P {qL > b} > AH fqL (t) > b qH (t) > 0} AHP L(i) > b. (4.12)

Next, since H(.) E OR, Lemma 4.1 implies that HA E SR c IR. We can therefore

invoke Lemma 4.4 in the chapter appendix to write

{P L(i) > b HA> (4.13)
i=1

Finally, (4.11) follows from (4.12) and (4.13). l

We note that if H(.) is regularly varying, the lower bound (4.11) takes on a power-

law form that matches the upper bound (4.10).

4.4.2 Priority for the Light-Tailed Traffic

We now study the policy that serves L whenever it is non-empty, and serves H only if

L is empty. This policy affords the best possible treatment to L and the worst possible

treatment to H, among all non-idling policies. Under this policy, L is completely

oblivious to the presence of H, in the sense that it receives service whenever it has

a packet to be served. Therefore, L behaves like a discrete time G/D/1 queue, with
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light-tailed inputs. Classical large deviation bounds can be derived for such a queue;

see [25] for example.

Recall that since L(.) is light-tailed, the log moment generating function

AL(O) = logE [eOL()]

exists for some 0 > 0. Define

EL = sup{O|AL(0) - 0 < 0}- (4.14)

Proposition 4.7 Under priority for L, qL satisfies the large deviation principle (LDP)

1
lim -- logP{qL > b} = EL. (4.15)
b-+oo b

In words, the above proposition asserts that the tail distribution of qL decays expo-

nentially, with rate function EL. We will refer to EL as the intrinsic exponent of the

light queue. An alternate expression for the intrinsic exponent that is often used in

the literature is
1

EL = inf -A*(1 + a), (4.16)
a>O a

where A* (-) is the Fenchel-Legendre transform (see Equation (3.1)) of AL(0)-

It is clear that the priority policy for L gives the best possible asymptotic behavior

for the light queue, and the worst possible treatment for the heavy queue. Surprisingly

however, it turns out that the heavy queue tail under priority for L is asymptotically

as good as it is under priority for H.

Proposition 4.8 Under priority for L, qH is heavy-tailed with tail coefficient CH -1.

Proof: It is clear from Proposition 4.6 that the tail coefficient is no more than CH - 1.

We need to show that the tail coefficient is no less than CH - 1. This is a special case

of Theorem 4.4, given in the next section.

The above result also implies that the tail coefficient of H cannot be worse than

CH - 1 under any other scheduling policy.
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Proposition 4.9 Under any non-idling scheduling policy, qH has a tail coefficient of

at least CH - 1. That is, Equation (4.8) holds for all non-idling scheduling policies.

Proof: The tail probability P {qH > b} under any other policy is stochastically dom-

inated by the tail probability under priority for L.

Propositions 4.6 and 4.9 together imply the insensitivity of the heavy queue's tail

distribution to the scheduling policy. We state this important result in the following

theorem.

Theorem 4.3 Under any non-idling scheduling policy, qH is heavy-tailed with tail

coefficient equal to CH - 1. Further, P {qH > b} satisfies bounds of the form (4.6) and

(4.7) under all non-idling policies.

Therefore, it is not possible to either improve or hurt the heavy queue's asymptotic

behavior, by the choice of a scheduling policy.

It is evident that the light queue has the best possible asymptotic behavior under

priority for L. Additionally, Theorem 4.3 asserts that H is asymptotically the same

under any non-idling policy, including priority for L. In other words, this policy

ensures the best asymptotic behavior for both queues. Furthermore, it is non-idling,

and therefore throughput-optimal in this simple setting.

However, we are ultimately interested in studying more sophisticated network

models, where priority for L may not be throughput optimal. In fact, when we study

queues with intermittent connectivity in the next chapter, the priority for L policy

fails to achieve a significant portion of the rate region of the system. This motivates

us to study the asymptotic behavior of general throughput optimal policies belonging

to the max-weight family.

4.5 Asymptotic Analysis of Max-Weight-a Schedul-

ing

In this section, we analyze the asymptotic tail behavior of the light queue distribution

under max-weight-a scheduling. For fixed parameters aH > 0 and aL > 0, the max-
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weight-a policy operates as follows: During each time slot t, perform the comparison

qL(t)"L - qH {{

and serve one packet from the queue that wins the comparison. Ties can be broken

arbitrarily, but we break them in favor of the light queue for the sake of definiteness.

Note that aL = aH corresponds to the usual max-weight policy, which serves the

longest queue in each slot. aL/aH > 1 corresponds to emphasizing the light queue

over the heavy queue, and vice-versa.

We derive an asymptotic characterization of the light queue occupancy distribu-

tion under max-weight-a scheduling, by deriving matching upper and lower bounds.

Our characterization shows that the light queue occupancy is heavy-tailed under

max-weight-a scheduling for all values of the parameters aH and aL. Since we obtain

distributional bounds on the light queue occupancy, our results also shed further light

on the moment results derived in [40] for max-weight-a scheduling.

4.5.1 Upper bound

In this section, we derive two different upper bounds on the overflow probability

P {qL > b} , that both hold under max-weight-a scheduling. However, depending on

the values of aH and aL, one of them would be tighter. The first upper bound holds

for all non-idling policies, including max weight-a scheduling.

Theorem 4.4 Under any non-idling policy, and for every e > 0, there exists a con-

stant K1( E) > 0, such that

E [qCH- 0C (4.17)

and

P {qL > bj < K1(E) b-(CH-) -418

Proof: Let us combine the two queues into one, and consider the sum input process

H(t) + L(t) feeding the composite queue. The server serves one packet from the

composite queue in each slot. Under any non-idling policy in the original system, the
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occupancy of the composite queue is given by q = qH + qL. Let us first show that the

combined input has tail coefficient equal to CH-

Lemma 4.2 The tail coefficient of H(.) + L(-) is CH.

Proof: Clearly, E [(H + L)CH+0] ;> E [HCH+0] = oc, for every 6 > 0. We next need

to show that E [(H + L)CH-] < o, for every 6 > 0. For a random variable X and

event E, let us introduce the notation E [X; E] = E [X1E], where 1E is the indicator

of E. (Thus, for example, E [X] = E [X; E] + E [X; Ec].) Now,

E [(H + L)cH-0] = E [(H + L)CH -0 H > L] + E [(H + L)cH- 6 ; H < L]

< E [(2H)CH-'; H > L] + E [(2L)CH~0; H < L]

< 2 { E [HCH--] + E [LCH--] o

where the last inequality follows from the tail coefficient of H(.), and the light-tailed

nature of L(.). D

The composite queue is therefore a G/D/1 queue with input tail coefficient CH.

For such a queue, it can be shown that

(4.19)E [qH-1-E] <

This is, in fact, a direct consequence of Theorem 4.1.

Thus, in terms of the queue lengths in the original system, we have

E [(qH + qL)CH ] <-- >

from which it is immediate that E [qcH-l-] <

we use the Markov inequality to write

Pf{qL > b q CH -1-b} cH-- -

oc. This proves (4.17). To show (4.18),

E [q CH-1-]
L -Kl(E)b(CH--)
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The above result asserts that the tail coefficient of qL is at least CH - 1 under any

non-idling policy, and that P {qL > b} is uniformly upper bounded by a power-law

curve. Our second upper bound is specific to max-weight-a scheduling. It hinges on a

simple observation regarding the scaling of the a parameters, in addition to a theorem

in [40]. We first state the following elementary observation due to its usefulness.

Observation: (Scaling of a parameters) Let aH and aL be given parameters of a max-

weight-a policy, and let # > 0 be arbitrary. Then, the max-weight-a policy that uses

the parameters paH and /aL for the queues H and L respectively, is identical to the

original policy. That is, in each time slot, the two policies make the same scheduling

decision.

Next, let us invoke an important result from [40].

Theorem 4.5 If max-weight-a scheduling is performed with 0 < aH < CH - 1, then,

for any aL > 0, we have E [q'L] <oo.

Thus, by choosing a large enough aL, any moment of the light queue length can be

made finite, as long as aH < CH - 1. Our second upper bound, which we state next,

holds regardless of how the a parameters are chosen.

Theorem 4.6 Define

= ' (CH -)
aH

Under max weight-a scheduling, and for every e > 0, there exists a constant I{2(E) > 0,
such that

aE [q7- <oo (4.20)

and

P{qL > b} < K2(e)b-(-). (4.21)

Proof: Given e > 0, let us choose # = (CH -1)/aH - E/aL, and perform max-weight-a

scheduling with parameters SaH and /aL. According to the above observation, this

policy is identical to the original max-weight-a policy. Next, since /aH < CH - 1,
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Theorem 4.5 applies, and we have E q" = E [q'6] < oc, which proves (4.20).

Finally, (4.21) can be proved using (4.20) and the Markov inequality. l

The above theorem asserts that the tail coefficient of qL is at least -y under the max

weight-a policy. We remark that Theorem 4.4 and Theorem 4.6 both hold for max-

weight-a scheduling with any parameters. However, one of them yields a stronger

bound than the other, depending on the a parameters. Specifically, we have the

following two cases:

(i) < 1: This is the regime where the light queue is given lesser priority, when

compared to the heavy queue. In this case, Theorem 4.4 yields a stronger bound.

(ii) " > 1 : This is the regime where the light queue is given more priority com-
aH

pared to the heavy queue. In this case, Theorem 4.6 gives the stronger bound.

Remark 4.1 The upper bounds in this section hold whenever H(.) is heavy-tailed

with tail coefficient CH. We need the assumption H(.) E OR only to derive the lower

bounds in the next subsection.

4.5.2 Lower bound

In this section, we state our main lower bound result, which asymptotically lower

bounds the tail of the light queue distribution in terms of the tail of the residual

variable HR.

Theorem 4.7 Let H(.) c OR. Then, under max-weight-a scheduling with parame-

ters aYH and aL, the distribution of the light queue occupancy satisfies the following

asymptotic lower bounds:

1. If a < 1,

P {qL > b} AHP HR + (4.22)

2. If g=1,

P{qL b AHP{H b 1+ + (4.23)
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3. If L > 1,

P{qL > b} H AHP{HR ;> bL/}aH (4.24)

As a special case of the above theorem, when H(.) is regularly varying with index CH,

the lower bounds take on a more pleasing power-law form that matches the upper

bounds (4.18) and (4.21).

Corollary 4.2 Suppose H(.) - R(CH). Then, under max-weight-a scheduling with

parameters aH and aL, the distribution of the light queue satisfies the following asymp-

totic lower bounds:

1. if < 1

P f{qL > b} > U(b)b-(CH (4.25)

2. If OL> 1,

P f{qL > b} > U(b)b-', (4.26)

where U(-) is some slowly varying function.

It takes several steps to prove Theorem 4.7; we start by defining and studying a

related fictitious queueing system.

4.5.3 Fictitious system

The fictitious system consists of two queues, fed by the same input processes that feed

the original system. In the fictitious system, let us call the queues fed by heavy and

light traffic H and L respectively. The fictitious system operates under the following

service discipline.

Service for the fictitious system: The queue H receives service in every time slot.

The queue L receives service at time t if and only if q1(t)L > q-(t) H.

Note that if L receives service and H is non-empty, two packets are served from

the fictitious system. Also, H is just a discrete time G/D/1 queue, since it receives

service at every time slot. We now show a simple result which asserts that the light

queue in the original system is 'longer' than in the fictitious system.
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Proposition 4.10 Suppose a given input sample path feeds the queues in both the

original and the fictitious systems. Then, for all t, it holds that q_(t) < qL(t). In

particular, for each b > 0, we have

P f{qL > b} > P q_ > b-

Proof: We will assume the contrary and arrive at a contradiction. Suppose qj, (0)

qL(0), and that for some time t > 0, qL(t) > qL(t). Let T > 0 be the first time when

q_(T) > qL(T). It is then necessary that qL(T - 1) = qL(T - 1), since no more than

one packet is served from a queue in each slot. Next, q (r - 1) = qL(r - 1), and

q1(T) > qL(T) together imply that L received service at time T - 1, but L did not.

This is possible only if qH(T - 1) < qfN(T - 1), which is a contradiction, since H

receives service in each slot. E

Next, we show that the distribution of qL satisfies the lower bounds in Equations

(4.22)-(4.24). Theorem 4.7 then follows, in light of Proposition 4.10.

Theorem 4.8 In the fictitious system, the distribution of qi is asymptotically lower

bounded as follows.

1. If L < 1,

P{qL > b} > AHF{HR> } (4.27)

2. If =1,

P{qq > b} > AHP HR > b I + A) (4.28)

3. If > 1,

_P{q > b} > AHIP {HR> b"L/QH 29)

Proof: Let us consider an instant t when the fictitious system is in steady-state. Since

the heavy queue in the fictitious system receives service in each slot, the steady-state

probability P {qft > 0} = AH by Little's law. Therefore, we have the lower bound

P {qi > b} ;> AHP {qL > bjqft > 0} .
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In the rest of the proof, we will lower bound the above conditional probability.

Indeed, conditioned on qft > 0, denote as before by B(t), the number of packets

that belong to the head-of-line burst that still remain in H at time t. Similarly,

denote by A(t) the number of packets from the head-of-line burst that have already

been served by time t. Since H is served in every time slot, A(t) also denotes the

number of time slots that the HoL burst has been in service at H.

The reminder of our proof shows that qL(t) stochastically dominates a particular

heavy-tailed random variable. Indeed, at the instant t, there are two possibilities:

(a) q1(t)QL > B(t)QH, or

(b) q( tG < B(t )aH

Let us take a closer look at case (b) in the following proposition.

Proposition 4.11 Suppose that

q1(t)L < B(t)aH.

Let - < t be the instant before t that L last received service. Then, the current

head-of-line burst arrived at H after the instant -.

Proof: We have

qf(o-)H -q G(u)L <qi(t)&L < B(t)GH.

The first inequality holds because L received service at u, the second inequality is

true since L does not receive service between o and t, and the final inequality is from

the hypothesis.

We have shown that qft(o) < B(t), and hence the HoL burst could not have

arrived by the time slot o-. F

The above proposition implies that if case (b) holds, L has not received service ever

since the HoL burst arrived at H. In particular, L has not received service for A(t)

time slots, and it accumulates all arrivals that occur during the interval [t - A(t), t].
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Let us denote the number of arrivals to L during this interval as

S4 = ( L(i).
i=t-A(t)

In this notation, our argument above implies that if case (b) holds, then qg(t) > SA.

Putting this together with case (a), we can conclude that

(4.30)

Therefore,

bj (4.31)

Recall now that in steady-state, b(t) is distributed as HR, and A(t) is distributed as

HA. Therefore, the above bound can be written as

Pfqi > b} > AHP HaH IOL

HA

>b, L(i) > b .

Lemma 4.5 shows that

S{ H H/aL > b,
HA

SL(i)

P{H

P{HR

P{HR

> b } L <1,

>b±\- =1,

> bGaL/aH CI >

Notice that the assumption H(-) E OR. is used in the proof of Lemma 4.5.

Theorem 4.8 now follows from the above asymptotic relation and (4.32). l

Proof of Theorem 4.7: The result follows from Theorem 4.8 and Proposition 4.10. L

4.6 Tail Coefficient of qL

In this section, we characterize the exact tail coefficient of the light queue distribution

under max-weight-a scheduling. In particular, we show that the upper bound (4.17)

is tight for L < 1, and (4.20) is tight for ' > 1.
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Theorem 4.9 The tail coefficient of the steady-state queue length qL of the light

queue is given by

(i) CH - I for < 1, and

(ii) OL = (CH - ~ cLfo > 1

Proof: Consider first the case L < 1. The lower order

upper bounded using (4.22) or (4.23) as follows

lolgP {qL > b} ..lim inf - < lim inf -
b-oo log b b--x

(Definition 4.3) of qL can be

log AH + log P {HR >

log b
logIP {HR 2a}-O il

- lim inf -log -f l CH - 1a- oo log a

The last step is from Proposition 4.5. The above equation shows that the tail co-

efficient of qL is at most CH - 1. However, it is evident from (4.17) that the tail

coefficient of qL is at least CH - 1. Therefore, the tail coefficient of qL equals CH - 1

for < < 1. This proves case (i) of the theorem.

Next, consider ' > 1. Using (4.24), we can upper bound the lower order of qL as

lim inf - log P {qL > b}
b-+oo log b

. f logp{H R b ba/aH
~ b-+oo log b

aL -log Pf{HR>a} > a aLS lim if - - (CH - 1) (4-33)
aH a-x log a aH

Equation (5.15) shows that the tail coefficient of qL is at most -y. However, it is evident

from (4.20) that the tail coefficient of qL is at least 7. Therefore, the tail coefficient

of qL equals = L (CH - 1) for L > 1. This proves case (ii) of the theorem. l

In Figure 4-2, we show the tail coefficient of qL as a function of the ratio aL/cH-

We see that the tail coefficient is constant at the value CH - 1 as cL/cH varies from 0

to 1. Recall that aL/aH =1 corresponds to max-weight scheduling, while cL/GH . 0

corresponds to priority for H. Thus, the tail coefficient of qL under max-weight

scheduling is the same as the tail coefficient under priority for H, implying that the

max-weight policy leads to the worst possible asymptotic behavior for the light queue
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Figure 4-2: The tail coefficient of qL under max-weight a scheduling, as a function of

aL/aH, for CH 2.5.

among all non-idling policies. However, the tail coefficient of qL begins to improve

in proportion to the ratio aL/aH in the regime where the light queue is given more

importance.

Remark 4.2 If the heavy-tailed input has an infinite variance (CH < 2), then it

follows from Theorem 4.9 that the expected delay in the light queue is infinite un-

der max-weight scheduling. Thus, [40. Proposition 5] is a special case of the above

theorem.

4.7 Log-Max-Weight Scheduling

We showed in Theorem 4.9 that the light queue occupancy distribution is necessarily

heavy-tailed with a finite tail coefficient, under max-weight-a scheduling. On the

other hand, the priority for L policy which ensures the best possible asymptotic

behavior for both queues, suffers from possible instability effects in more general

queueing networks.

In this section, we propose and analyze the log-max-weight (LMW) policy. We

show that the light queue distribution is light-tailed under LMW scheduling, i.e., that
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P {qL > b} decays exponentially fast in b. However, unlike the priority for L policy,

LMW scheduling is throughput optimal even in more general settings. For our simple

system model, we define the LMW policy as follows:

In each time slot t, the log-max-weight policy compares

qL(t) - log(1 + qH (t),

and serves one packet from the queue that wins the comparison. Ties are broken in

favor of the light queue.

The main idea in the LMW policy is to give preference to the light queue to a

far greater extent than any max-weight-a policy. Specifically, for aLcIH > 1, the

max-weight-a policy compares qL to a power of qH that is smaller than 1. On the

other hand, LMW scheduling compares qL to a logarithmic function of qH, leading

to a significant preference for the light queue. It turns out that this significant de-

emphasis of the heavy queue with respect to the light queue is sufficient to ensure an

exponential decay for the distribution of qL in our setting.

Furthermore, the LMW policy has another useful property when the heavy queue

gets overwhelmingly large. Although the LMW policy significantly de-emphasizes the

heavy queue, it does not ignore it, unlike the priority for L policy. That is, if the

H queue occupancy gets overwhelmingly large compared to L, the LMW policy will

serve the H queue. In contrast, the priority for L policy will ignore any build-up in

H, as long as L is non-empty. This property turns out to be crucial in more complex

queueing models, where throughput optimality is non-trivial to obtain. For example,

when the queues have time-varying connectivity, the LMW policy will stabilize both

queues for all rates within the rate region, whereas priority for L leads to instability

effects in H.

Our main result in this section shows that under the LMW policy, P {qL > b}

decays exponentially fast in b, unlike under max-weight-a scheduling.

Theorem 4.10 Under log-max-weight scheduling, qL is light-tailed. Specifically, it
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holds that

lim inf - log P {qL > b} > min(EL, CH (4.34)
b--oc b

where EL is the intrinsic exponent, given by (4.14), (4-16).

Proof: Fix a small 6 > 0. We first write the equality

P {qL > b = P {qL > b; log(1 + qH) <b

(i)

+ PI{qL >b (1-6)blog(lqH) 1 +b

(ii)

+ P {qL > b; 1og(1 + qH) > (1 - t )b} (4.35)

(iii)

We will next upper bound each of the above three terms on the right.

(i) f {qL > b; log(1 + q) < b} : Intuitively, this event corresponds to an overflow

of the light queue, when the light queue is not 'exponentially large' in b, i.e.,

qH < exp(6b) - 1. Suppose without loss of generality that this event happens at

time 0. Denote by -r < 0 the last instant when the heavy queue received service.

Since H has not received service since -T, it is clear that log(1 + qH(- r)) < 3b.

Thus, qL(-T) < b.

In the time interval [-T + 1, 0] the light queue receives service in each slot. In

spite of receiving all the service, it grows from less than b to overflow at time

0. This implies that every time the event in (i) occurs, there necessarily exists

-u < 0 satisfying
0
E(L(i) - 1) > (1 - 6)b.

i=-u+1

Therefore,

P {qL > b; log(1 + qH ) < Ab} < P lu > 0 E(L(i) - 1) > (1 - 6)b.
i=-U+1
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Letting Su = L_.i L(i), the above inequality can be written as

P {qL > b; log(1 + QH) < b} P sup (Su - u) > (1 - 6)b
u>0

(4.36)

The right hand side of (4.36) is precisely the probability of a single server queue

fed by the process L(.) reaching the level (1 - 6)b. Standard large deviation

bounds are known for such an event. Specifically, from [25. Lemma 1.5], we get

1
lim inf - - log P

b->oo b
sup SU - U> (1
u>O

> inf uA* 1
u>0 L

1 -5
a>O a

From (4.36) and (4.37), we see that for every e > 0 and for large enough b,

P {qL > b; log(1 + QH) < b} < rie-b(1-6)(EL-E). (438)

(iii) Let us deal with the term (iii) before (ii). This is the regime where the overflow

of L occurs, along with H becoming exponentially large in b. We have

P {qL > b; log(1 + qH) > (1 - 6)b} PfqL > b; qH > e (6)b _1}

< 'P {qL + qH > e(1 )b}

We have shown earlier in the proof of Theorem 4.4 that for any non-idling policy,

P {qL + qH > M} < K2M-(CH-1-6)

for every c > 0 and some r12 > 0. Therefore,

P {qL >_ b; log(1 + qH) > (1 - 6)b < K2 ep (-(1 - )b(CH - 1 - e >0.

(4.39)

(ii) Let us now deal with the second term, P {qL > b; (1 - 6)b > log(1 + qH) 6.
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Let us call this event E2. Suppose this event occurs at time 0. Denote by -r < 0

the last time during the current busy period that H received service, and define

q = log(1 + qH(-T)).

If H never received service during the current busy period, we take r to be

equal to the last instant that the system was empty, and q = 0. We can deduce

that T1 < (1 - 6)b, because H receives no service in [-T- + 1, 0]. It is also clear

that qL(-T) < T1. Therefore, L grows from less than 77 to more than b, in spite

of receiving all the service in [-T + 1, 0]. Using u and ( as 'dummy' variables

that represent the possible values taken by T and 77 respectively, we can write

P{E2 } < P {3 < (1 - 6)b, u 0|S - u > b- (; qH(-u) - qL(-u) > e}
(1-6)b

< PfE{ u > 0 SU-- U > b -;qH(-) + qL(-U) >e}

(1-5)b

KP {Su - u > b - (; q(-u) - q(--U) >e}
=O u O

where the last two steps are by the union bound. Notice now that for every

u > 0, the event S, -u > b - is independent of the value of qH(-U) + qL(-U),

since these are determined by arrivals in disjoint intervals. Therefore, continuing

from above

(1-3)b

- ZP{Su -
=O u O

(1-6)b

< E {lpS,-
=rO u O

(1-6)b

< E rie-(EL -E)(b

=0

u > b - }P f{qH(-u) + qL(-u) > e

u > b - } '2 e-(CH-1-1), V e > 0

-0) K2e- (CH-1- 0.

Equation (4.40) follows from (4.18), and (4.41) is a classical large deviation

119

(4.40)

(4.41)



bound that follows, for example, from [25. Lemma 1.5]. Thus, for every 6 > 0,

(1-6)b

P {EI2} <- K1K2Ced(CH--)+E e(-) (4.42)

Let us now distinguish two cases:

CH - 1 > EL : In this case, we can bound the above probability as

P { 2} Ke -b(EL -) V E > 0, (4.43)

where K > 0 is some constant.

CH - 1 < EL : In this case,

P f{ 2 } Ke-b(CH-l-E)(1- 3 ), Ve > 0. (4.44)

Let us now put together the bounds on terms (i), (ii) and (iii) into Equation

(4.35).

1. If CH - 1 > EL, we get from (4.38), (4.39), and (4.43),

(4.45)P {qL > b} < C-b(1-6)(EL-E) [- K2 ((1 -- )b(CH-1-EL)) + K]

from which it is immediate that

lim inf - logP {qL > b} > (1 - 6)(EL -
b-+v o b

Since the above is true for each e and J, we get

> b} > EL.

2. If CH - 1 < EL, we get from (4.38), (4.39), and (4.44),

P {qL > b} < eb(l-)(CH-1-) [KlC-((1-6)b(EL-CH+1)) ±K 2 ± I

(4.46)

(4.47)
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from which it is immediate that

1
lim inf - logP {qL b} > ( 1- 6)(CH -1- ) -

b-+oo b

Since the above is true for each e and 6, we get

1
lim inf -log P {qL > b > CH -1- (4.48)

b-+oo b

Theorem 4.10 now follows from (4.46) and (4.48). L

Thus, the light queue tail is upper bounded by an exponential term, whose rate

of decay is given by the smaller of the intrinsic exponent EL, and OH - 1. We remark

that Theorem 4.10 utilizes only the light-tailed nature of L(-), and the tail coefficient

of H(.). Specifically, we do not need to assume any regularity property such as H(-) E

OR for the result to hold. However, if we assume that the tail of H(.) is regularly

varying, we can obtain a matching lower bound to the upper bound in Theorem 4.10.

Theorem 4.11 Suppose that H(.) E R(CH). Then, under LMW scheduling, the tail

distribution of qL satisfies an LDP with rate function given by

1
lim -- log Pf {qL > b} = min(EL, CH - 1).

b- oo b

Proof: In light of Theorem 4.10, it is enough to prove that

1
limsup -log P {qL > b} < min(EL, CH -~).

b-*c~ b

Let us denote by qf) the queue length of the light queue, when it is given complete

priority over H. Note that P {q2P > b is a lower bound on the overflow probability

under any policy, including LMW. Therefore, for all b > 0, P {qL b} > I {q > b}

This implies

lim sup - log P {qL 2! b} < lim sup - log P q}' > b =EL, (4.49)
b-oo b b-oc b
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where the last step is from (4.15).

Next, we can show, following the arguments in Proposition 4.10 and Theorem 4.8

that
HA

P qL !b} AHPHR >el LL(i) >b}

But arguing similarly to Lemma 4.5, we can show that

HA

P{HR eb -1; ZL(i) > b ~ F {HR > eb -

Thus,

P{qL > b} > p f{HR > e- .

Next, since H(-) is regularly varying with tail coefficient CH, HR is also regularly

varying with tail coefficient CH- 1 , so that P {HR > e - 1}= U(eb)eb(CH-1). Finally

we can write

lim sup -log P {qL 2b < lim sup Cllog P {Ho g eU CH -im sup (eb)
b-+oo b b-+oo b b-4oo b

The final limit supremum is shown to be zero in Lemma 4.6, using a representation

theorem for slowly varying functions. Thus,

1
lim sup -logP{qL > b} < CH - 1. (4.50)

b-*oo b

Equations (4.49) and (4.50) imply the theorem.

Figure 4-3 shows the large deviation exponent given by Theorem 4.11 as a function

of AL, for CH 2.5, and Poisson inputs feeding the light queue. There are two distinct

regimes in the plot, corresponding to two fundamentally different modes of overflow.

For relatively large values of AL, the exponent for the LMW policy equals EL, the

intrinsic exponent. In this regime, the light queue overflows entirely due to atypical

behavior in the input process L(.). In other words, qL would have grown close to the

level b even if the heavy queue was absent. This mode of overflow is more likely for

larger values of AL, which explains the diminishing exponent in this regime.
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Figure 4-3: The large deviation exponent for qL under LMW scheduling, as a function
of AL. The light queue is fed by Poisson bursts, and CH 2.5.

The flat portion of the curve in Figure 4-3 corresponds to a second overflow mode.

In this regime, the overflow of the light queue occurs due to extreme misbehavior on

the part of the heavy-tailed input. Specifically, the heavy queue becomes larger than

eb after receiving a very large burst. After this instant, the heavy queue hogs all the

service, and the light queue gets starved until it gradually builds up to the level b. In

this regime, the light queue input behaves typically, and plays no role in the overflow

of L. That is, the exponent is independent of AL, being equal to a constant CH - 1.

The exponent is decided entirely by the 'burstiness' of the heavy-tailed traffic, which

is reflected in the tail coefficient.

4.8 Concluding Remarks

We considered a system of parallel queues fed by a mix of heavy-tailed and light-tailed

traffic, and served by a single server. We studied the asymptotic behavior of the queue

size distributions under various scheduling policies. We showed that the occupancy

distribution of the heavy queue is asymptotically insensitive to the scheduling policy

used, and inevitably heavy-tailed. In contrast, the light queue occupancy distribution

can be heavy-tailed or light-tailed depending on the scheduling policy.
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Our major contribution is in the derivation of an exact asymptotic characterization

of the light queue occupancy distribution, under max-weight-az scheduling. We showed

that the light queue distribution is heavy-tailed with a finite tail coefficient under

max-weight-a scheduling, for any values of the scheduling parameters. However, the

tail coefficient can be improved by choosing the scheduling parameters to favor the

light queue. We also observed that 'plain' max-weight scheduling leads to the worst

possible asymptotic behavior of the light queue distribution, among all non-idling

policies.

Another important contribution is the log-max-weight policy, and the correspond-

ing asymptotic analysis. We showed that the light queue occupancy distribution is

light-tailed under LMW scheduling, and explicitly derived an exponentially decaying

upper bound on the tail of the light queue distribution. Additionally, the LMW pol-

icy also has the desirable property of being throughput optimal in a general queueing

network.

Although we study a very simple queueing network in this chapter, we believe that

the insights obtained from this study are valuable in much more general settings. For

instance, in a general queueing network with a mix of light-tailed and heavy-tailed

traffic flows, we expect that the celebrated max-weight policy has the tendency to

'infect' competing light-tailed flows with heavy-tailed asymptotics. We also believe

that the LMW policy occupies a unique 'sweet spot' in the context of scheduling

light-tailed traffic in the presence of heavy-tailed traffic. This is because the LMW

policy de-emphasizes the heavy-tailed flow sufficiently to maintain good light queue

asymptotics, while also ensuring network-wide stability.

4.A Technical Lemmata

Lemma 4.3 P{HR > m, HA 2n}=- P{HR > m+n}
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Proof. Using (4.2) and (4.3),

P {HR > m, HA > n} E P {H+ = k + l}

k>m l>n [H+]

P {H+ = P
YLE [H+]

k>m p=k+n

EP{HR= k+n}
k>m

= IP{HR>m+n}.

Lemma 4.4 Let N E IR be a non-negative integer valued random variable. Let

X_ i > 1 be i.i.d. non-negative light-tailed random variables, with mean P, indepen-

dent of N. Define
N

SN = EXi.
i=1

Then,

P{SN > b} ~ P{N > b/p}.

Proof: For notational ease, we will prove the result for p = 1, although the result and

proof technique are applicable for any y > 0. First, for a fixed 6 > 0, we have

IP {SN> b} PfSN> b; N < b(1- 6)} + P {SN> b; N > b(1 - 6)}

(4.51)< P I{Stb(1_-6 > b} + P f{N > b(1 - 6)}.

Next, we write a lower bound:

PI{SN > b} > F{SN> b; N > b(1 + 6)}

- P{N >b(1+)}-P{SN< b; N > b(1I + 6)}

> P {N > b(1 + 6)} - P {SFbI(1+3)1 b}
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Since the Xi have a well defined moment generating function, their sample average

satisfies an exponential concentration inequality around the mean. Specifically, we

can show using the Chernoff bound that there exist constants K, rj such that

P {Stb(1_6)] > b} < Ke-b,.

Thus, it follows that

P {Stb(1_s)J > b} = o(P {N > b}) (4.53)

as b -+ oc. Similarly,

P {Sb(1+3)J < b} = o(P {N > b}). (4.54)

Next, getting back to (4.51),

lim sup PfSN > b}
b-+oo P {N > b}

P {Stb(1-)J > b}
< lim sup

b-+oo P{N > b}
limsup P{N > b(1 - 6)}

b-eo PI{N > b}

The first term on the right hand side is zero in view of (4.53), so that for all 6, we

have
P {SN > b}

lim sup
b-+oo P {N > b}

<iim sup {N > b(1 - 6)}
b-oo P{N > b}

Taking the limit as 6 4 0,

IP{SN > b} P{N_>_b1_-__)lim sup < lim lim sup P{N> b(= - 6)1
b-+o P {N>b} ~ o4 boo P{N > b}

The final limit is unity, by the definition of the class IR. Similarly, we can show

using (4.52), (4.54) and the intermediate-regular variation of the tail of N that

lim inf PfSN> b}
b- oo P {N >b} >-

(4.56)

Equations (4.55) and (4.56) imply the result. LI

The above lemma can be proved under more general assumptions than stated

here, see [51].
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Lemma 4.5 If H(.) E OR, we have

HA

P H> bL/H , L(i) > b

P {HR ? -}
IH > b+}

IP{HR > b+ }

ID {HR > b aL/aH

Proof: In this proof, let us take AL 1 for notational simplicity, although the same

proof technique works without this assumption. Denote S, = " E L(i). We first get

an upper bound. For every 6 > 0, we have

Pf{HR b aL aH ;SHA > b}

IP{. ; HA < b(1 - 6)}

< Pf{SHA > b; HA < b(1 - 6)}

< P{SHA > b; HA < b(1 - 6)}

< P {Stb(1_6) > b}

P{.- ;HA > b(1 - 6)

P{HR > bCLQH; HA > b(1 - 6)}

PfH { H R e I atH + b(1 - 6)}1

P {HR > b CLl/eH + b(1 - 6)}1.

(4.58)

(4.59)

In (4.58) we have utilized Lemma 4.3, and in Equation (4.59), we have used the

independence of HA and L(.). Next, let us derive a lower bound.

P { HR> b LIH SHA > b}

P{HR > bL/aH ; HA> b(1-+6)}

PI{HR> bCLIH; HA> b(1+6)}

P {HR > b OL 10H+ (+61

> P{HR>b CLIaH SHA > b; HA> b(1+6)}=

- P{HR >bL/H SHA < b; HA> b(1+6)} >

- IP{SHA < b; HA> b(1 +6)} >

- B Srbl1+6m < b}. (4.60)

Equation (4.60) uses Lemma 4.3. Now, observe that the terms P {Stb(1-6)j > b} in

(4.59) and P {S[b(1+)1 <_ b} in (4.60) decay exponentially fast as b - 00, for any 6 > 0.

This is because L(.) is light-tailed, and their sample average satisfies an exponential

concentration inequality around the mean (unity). More precisely, a Chernoff bound
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can be used to show that

P {Sb(1_-)J > b} o (P {HR > baL/IH + b})

and

P {Srb(1+)>1 < b} = o (P {HR baL/QH + b})

Case (i): g < 1. Using (4.59), we write

lim sup
P {HR> baL/aH. SHA -

Pf{HR > b}

b<

P {Stb(i 6)J > b}lim sup
b-+oo P{HR > b}

+ lim sup.{HR
b-+oo

b L /H + b( - 6)}
{HR b}

The first limit supremum on the right is zero in view of (4.61). Since L < 1, we can

write

P{HR> bCL QH; SHA

P{HR > b}

P{HR;> b" LI/CH; SHA
P{HR > b}

> b}
lim supPHR>b( ) VJ > 0.

b-oo Pf{HR > b}

< lim lim sup ~fHR > b(1 - 61
F0 b-+oo P{HR> b}

The final limit is unity, because according to Lemma 4.1, H(.) E OR implies HR E

ER. Since SR c IR, the final limit in (4.63) is unity, by the definition of intermediate-

regular variation (Definition 4.2).

Along similar lines, we can use (4.60), (4.62), and the fact that HR E IR to show

that

P.. {HR > b"L/H: SHA > b}
lim inf > lim lim inf

b-+oo P{HR>b} - 60 b-+oo

P{HR > b(1+ 2E)}
fHR = 1.
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(4.61)

(4.62)

lim sup
b-+oo

Thus,

lim sup
b-+oo

= 1. (4.63)

(4.64)



Equations (4.63) and (4.64) imply that

P{HIb"L/"; SHA > b}~ P{HR > b},

which implies Lemma 4.5 for ' < 1, and AL 1.

Case (ii): L = 1. Similar to the previous case. Here, we get

P R{H > b; SHA b} P{HR 2b}.

Case (iii): bn > 1.

For the upper bound, we have from (4.59) and (4.53),

Pf{HR > bCL/aH SH A

P{HR> baL /aH }

Sb} <limsup {HR
b-*oED

> baIL/OH +b(1- 6)1

{HR > baL/aH}

Similarly, for the lower bound, we have from (4.60) and (4.54),

IP{ HR > b"L/aH; SHA > b}

IP { HR baL /aH }
> lim inf

b-+oo

P{ HR> beCL/oH +b(1+6)}

P { HR baL/aH 

-R b" CL 1"" (I + J)

{HR > baL H)

IP{HR baL/aH; SHA> b}

P{HR b"L/H }
> lim lim inf

- 0o b-*oo

P{HR > b"L/ H(I +

P{HR baL/QHI

where the last limit is unity due to the intermediate-regular variation of HR. There-

fore, we can conclude for aL >-1 that

1P{HR b aL/aH; SHA > b}~ P{HR> b"L/aH

Lemma 4.5 is now proved.
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lim sup
b-+oo

lim inf
b-*oo

<1.

Thus,

> lim inf
b-+oo

V6 > 0.

lim inf
b-+oc



Lemma 4.6 For any slowly varying function U(.),

lrn log U(a) 0.
a-+oo log a

Proof: We use the representation theorem for slowly varying functions derived in [22].

For every slowly varying function U(-), there exists a B > 0 such that for all x > B,

the function can be written as

U(x) = exp (V(x) + Lf ((y)dy)JB Y/

where v(x) converges to a finite constant, and ((x) - 0 as x - oc. Therefore,

log U(a) . v(a) + f" (1 dy
lim = hm i

a-*oo log a a-4oo log a
fi" (dy

aoo log a

where the last step is because v(a) converges to a constant. Next, given any C > 0,

choose C(c) such that 1((a)| < E, V a > C(c). Then, we have

f" (dy
lim

a-oc log a
< lim

a-oc

og dy + fE dy

log a

e log a
< lim l 0(E) = 6.

a-+om loga

Since the above is true for every c, the result follows.
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Chapter 5

Throughput Optimal Scheduling in

the presence of Heavy-Tailed

Traffic

In this chapter, we extend the results obtained in the previous chapter to the setting

where the two queues are connected to the server through randomly time-varying

links. This channel model can be used to represent fading wireless links in a two-user

up-link or down-link system. We study this model for two main reasons. First, in

this setting, throughput optimality turns out to be a non-trivial objective. That is,

while any non-idling policy stabilizes the system considered in the previous chapter,

queue length blind scheduling policies (such as priority) generally fail to stabilize the

system when the channels are time-varying. Second, it turns out that the asymptotic

behavior of the queue length distributions under a given policy strongly depends on

the arrival rates. In fact, under a given scheduling policy, we derive vastly different

queue length behaviors in different parts of the rate region an effect not observed

in the previous chapter.

We now state the specific assumptions about the system model.
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HHeavy-Tailed PH

Server

PL

Light-Tailed L

Figure 5-1: A system of two parallel queues, with one of them fed with heavy-tailed
traffic. The channels connecting the queues to the server are unreliable ON/OFF
links.

5.1 System Model

The system shown in Figure 5-1 consists of two parallel queues H and L, with heavy-

tailed traffic feeding H, and light-tailed traffic feeding L. The only main difference

from the model in the previous chapter is that the channels connecting the queues to

the server are time-varying links. Let SH(t) E {0, 1} and SL(t) E {0, 1} respectively

denote the states of the channels connecting the H and L queues to the server. When

a channel is in state 0, it is OFF, and no packets can be served from the corresponding

queue in that slot. When a channel is in state 1, it is ON, and a packet can be served

from the corresponding queue if the server is assigned to that queue. We assume

that the scheduler can observe the channel states SL(t) and SH(t) before making a

scheduling decision during time slot t.

The processes SH(t) and SL(t) are independent of each other, and independent of

the arrival processes and the current queue occupancies. We assume that SH(t) and

SL(t) are i.i.d. from slot to slot, distributed according to Bernoulli processes with

positive means PH and PL respectively. That is, IP {S() = 1} pi, i E {H, L}. We

say that a particular time slot t is exclusive to H, if SH(t) = 1 and SL(t) = 0, and

similarly for L.

The assumptions on the arrival processes are almost the same as before, except

that we do not assume any regularity property for the heavy-tailed input distribution.

More precisely, our assumptions on the input distributions are as follows.

1. The arrival processes H(t) and L(t) are independent of each other, and inde-

132



pendent of the processes SH(t) and SL(t).

2. H(t) is i.i.d. from slot-to-slot.

3. L(t) is i.i.d. from slot-to-slot.

4. L(-) is light-tailed', with E [L(t)] = AL-

5. H(.) is heavy-tailed, with tail coefficient 2 CH, (1 < CH < o), and E [H(.)]

AH-

The conditions for a rate pair (AH, AL) to be stably supportable in this system are

known in the literature. Specifically, it follows from the results in [64] that the rate

region of the system is given by

{(AHH,AL) 0 <AL< PL,O <AH < PH, AH hAL < PH +PL -PHpL}. (5.1)

Thus, the rate region is pentagonal, as illustrated by the solid line in Figure 5-2. Since

we only derive moment bounds on the steady-state queue occupancy in this chapter,

and not distributional bounds as we did in the previous chapter, we are able to do

away with the order-regularity assumption on H(-).

We now proceed to analyze the behavior of the queue lengths in this system under

three scheduling policies, namely, priority for L, max-weight-a, and LMW.

5.2 Priority for the Light-Tailed Traffic

Under priority for L, the light queue is served whenever its channel is ON, and L is

non-empty. The heavy queue is served during the exclusive slots of H, and in the

slots when both channels are ON, but L is empty.

Recall from Section 4.4.2 that when the queues are always connected to the server,

priority for L leads to the best possible asymptotic behavior for both queues. In that

simple setting, priority for L was also enough to stabilize all arrival rates in the rate

'See Definition 4.1.
2See Definitions 4.1 and 4.4.
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PH

Figure 5-2: The rate region of the system is shown in solid line, and the set of
stabilizable rates under priority for L is the region under the dashed line

region of the system. However, in the present setting with time-varying channels,

priority for L fails to stabilize the heavy queue for some arrival rates within the rate

region in (5.1). The following theorem characterizes the behavior of both queues

under priority for L.

Theorem 5.1 The following statements hold under priority scheduling for L.

(i) If AH > PH(I - AL), the heavy queue is unstable, and no steady-state exists.

(ii) If ANH < PH( ~ AL), the heavy queue is stable, and its steady-state occupancy

qH is heavy-tailed with tail coefficient CH - 1.

(iii) qL is light-tailed and satisfies the LDP

1
lim -- log IP {qL > b}

b--oo b

where IL is the intrinsic exponent of the light queue3 given by

IL sup {0 jAL(O) - lOg (1 - pL+ PLe) < 0 . (5.2)

In Figure 5-2, the line AH = PH(I - AL) is shown using a dashed segment. The

above theorem asserts that H is stable under priority for L only in the trapezoidal
3Note that IL equals EL defined in (4.14) when PL = 1-
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region under the dashed line, while the rate region of the system is clearly larger.

Therefore, priority for L is not throughput optimal in this setting. To summarize,

priority for L can lead to instability of the heavy queue, but for all arrival rates that

it can stabilize, the asymptotic behavior of both queues is as good as it can possibly

be. Let us now prove the above theorem.

Proof: First, we note that the light queue behaves like a discrete time G/M/1 queue

under priority, since the service time for each packet is geometrically distributed with

mean 1/pL. Thus, qL is light-tailed, and satisfies the same LDP as a G/M/1 queue.

Statement (iii) therefore follows from classical large deviation results.

Let us now prove statement (i) of the theorem. Under priority for L, denote by

bH(t) E {0, 1} the indicator of service opportunity afforded to the heavy queue in

slot t. Thus, bH(t) 1 if H is ON and the server is assigned to H during slot t, and

zero otherwise. Note that bH(t) - 1 does not necessarily imply a departure from the

heavy queue in that slot, since H could be empty. We will compute the long term

average rate of service opportunities given to H under priority for L, defined as

IT
lim -E bH t0-

T-+oo T

Since the light queue behaves as a G/M/1 queue, the intervals between successive

commencements of busy periods of L are renewal intervals. Let us denote by XL a

random variable representing the length of a renewal interval. Also denote by B and

I respectively the average length of a busy and idle period of L. The average length

of a renewal interval is therefore E [XLI = + 7. Consider now the total number of

service opportunities dH (i) given to H during the ith renewal interval. dH(i) equals

the number of exclusive slots of H during the renewal interval, plus the number of

slots when both channels are ON and L is empty. Therefore, it is clear that dH(Z)

depends only on the events in the ith renewal interval, and is a valid reward process.
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We can now invoke the renewal reward theorem [24] and write (almost surely)

I T dH i
lim -:AZ() D-

t1 o T+ I

Let us now compute E dH(i) . First, the average number of exclusive slots of H

during a renewal interval is given by PH (1 - PL) (B+ 7). Second, the average number

of slots when both channels are ON, and L is empty is given by 7PHPL. Therefore,

E dH PH -PL)(B+ I)+ IPHPL- Substituting this in the reward theorem, we

get
T 7

lim - DH(t) -PH -- PL) + PHPL J
TooT t=1B +

Next, note that according to Little's law,

I 1 AL

B+I PL

Therefore,

lim Y fH (t) = PH(I - PL) + PHPL PH( - AL)- (5.3)T--+o~o T t1PL

Thus, the average service rate of H almost surely equals pH(1 - AL) if AH > PH(I -

AL), then the average service rate given to the heavy queue is dominated by the

average arrival rate, leading to the instability of H. This proves statement (i).

Before we prove statement (ii) of the theorem, we state a useful result regarding

random sums of a light-tailed number of heavy-tailed terms.

Proposition 5.1 Let N be a non-negative, integer valued, light-tailed random vari-

able that is not identically equal to zero. Let Y, i = 1,2,... be i.i.d. heavy-tailed

random variables, independent of N, with tail coefficient Cy. Define

N

SN Yi.
i=1
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Then, SN is heavy-tailed with tail coefficient Cy.

Proof: Since N is not identically zero, it suffices to show that

< oo, V 6 > 0.

Indeed, for a fixed n, note that S ' < ncy-z. n

n, we have

E [S --3] <

n

ncy-6gE c
-i5]

ycy) . Therefore, for a fixed

for some finite M. Finally, we use iterated expectations, and the assumption that N

is light-tailed to write

ES = EN [E [CY3 N < EN [MNCY+1- <00.

We are now ready to prove statement (ii) of the theorem. We need to show that

when AH < pH( - AL), the system is stable and the steady state queue length of H

has tail coefficient equal to CH - 1.

Let us first show that the heavy queue is stable under priority for L, and that the

steady-state value qH exists, when AH <pH (-AL). We do this by considering a linear

Lyapunov function, and showing a negative drift over long time frames. Specifically,

choose To large enough, and consider the expected drift

E [qH(t + T0 - qH(t) qH(t)] = TOE [z
.k=1

To

E DH(t +
k=1

TO To 1 TO
Z H(t + k) -E DH (t + k) qH {t) + TE [Z H(t + k)

.k=1 k=1 k=1

To

- E DH(t
k=1

+ k) IqH t

The second expectation above is the number of lost departures due to an empty H
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queue. In particular, the second expectation is zero if qH(t) > T0 . Thus,

I E [qH (t + T0 ) - qH (t) qH (t
1 I

TO

EH (t
TO

+ k) - EbH {t

bH(t k) qH (t) + 1 qH(t)<To.

I TO

k=1

Next, let 6 > 0 be such that AH - 2J < PH - AL). In view of (5.3), we have for all t,

lim E H(t+k)= PH(I -AL)
k=1

almost surely. By the dominated convergence theorem [8. Theorem 16.4], it follows

that

lim E
T-oc Tk PH(1 - AL)-

Since the above holds for all t, a To can be chosen large enough such that

- AL) - 6,

regardless of the value of qH(t). Therefore, returning to the drift expression (5.4), we

have

[qH (t + T0) - qH M qH Mt) < AH - (PH(l - AL) - 6) + lqH(t)<To < -6+ "qH(t)<TO

The above term is negative for qH > T0 , so that by the Foster criterion [4], H is

stable, and the steady-state queue length qH exists.

To complete the proof of part (ii) of the theorem, we finally show that qH has tail

coefficient equal to CH - 1. It is enough to show that E [qy ] < oc for all a < CH - 1.

This is because we already know from Theorem 4.1 that the tail coefficient of qH is

no larger than CH - 1, even if the heavy queue is always ON and always served.

Let us consider the renewal intervals corresponding to successive commencement
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of busy periods of L as above. Denote by T the time slot at which the ith renewal

period commences. The heavy queue occupancy sampled at the renewal epochs can

be shown to form a Markov chain. That is, QH(i) := qH(T), i E Z, forms a Markov

chain with the non-negative integers as its state space. We will show that when

AH < PH(1 - AL), this Markov chain is positive recurrent, and that its steady-state

QH satisfies E [Qc] < oc for all a < CH - 1.

Consider the Lyapunov function

V(x) = , 0 < a < CH-
Oa + 1

defined on the state-space of the Markov chain. We will compute the expected drift

in the Lyapunov function, defined as

E [V(QH(i + 1)) - V(QH(i))IQH(i)-

The queue evolution equation is given by

QH(i + 1) QH(i)+ aH(i) - dH(),

where we have used aH(i) and dH(i) to respectively denote the total number of arrivals

to H and departures from H, during the ith renewal interval. We will now consider

two sub-cases, (a) CH < 2, a < 1, and (b) CH > 2, a> 1.

(a) a < CH - 1 < 1. In this case, we have by Taylor's theorem

QH(i + 1)1+a' (QH() + aH (i)- dH(i)) +a
V(Q H(l) + a+ V(H(W 12H)

1+a 1+a

where AH(i) =aH (i)- dH(i), and ( E (QH(i)- dH(i QH() + aH(i)) There-

fore,

E [V(QH(i + 1)) - V(QH(i))IQH(i)] E AH(i) IQH(i)]

= E [AH(O)'; AH(*) < OIQH(i)] + E [AH(i)"c; AH(i) > OIQH(i)

139



< E [H (0)(QH(0 - dH (0);H H(i) <01QH(01 +

E [AH(i)(QH(i) + aH(i)); AH(i) 0IQH(i)1-

Since a < 1 in this case, we have (QH() - dH(i))C > QH(iYc - dH(Z)c, and

(QH(i) -+ aH(i)) QH(i)O + a-H()a. Continuing the upper bound on the

Lyapunov drift, we write

E [V(QH(i + 1)) - V(QH(i)) QH()1

E [AH ()(QH ( -) - dH AH(Z) <0OQH()1 ±

E [AH((QH(i)" + aH (0) AH(i) 0IQH(i)1

E [,AH()QH(0)jQHij ± E [AH((-dH()); AH(i) < OQH(i)]

+E [AH (i)(aH (i));H H(i) 01QH(01

<lE [AH(i)QH() 0 IQH()1 + 1+ [aH(i)la ± dH() 1 +a QH(i)]

The second expectation in the right-hand side above can be shown to be finite.

To see this, first note that dH(i) is upper bounded by the renewal interval,

which is light-tailed. Second, aH(i) is a sum of a light-tailed number of heavy-

tailed terms, which according to Proposition 5.1 has tail coefficient equal to CH-

Therefore, the Lyapunov drift is upper bounded as

E [V(QH(i + 1)) - V(QH(i))IQH(i)] < W + E [AH(i)QH iyflQH(0i

=W + QH(i)aE [aH(i) - dH (0)1QH()1

for some finite constant W. Recall now that dH (i) denotes the number of service

opportunities given to H during the ith renewal period, and that dH(i) > dH(i)-
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We can now write the above drift bound as

E [V(QH(z + 1)) - V(QH QH

W+QH~zc 1 [g a H H 'QH(.]+ [H() - dH H

Next, aH(i) and dH(i) are independent of QH(i), and E [aH(i) - AHE [XL],

where XL is the renewal interval. It was shown earlier in the proof that

E [dH(i)] = E [XL] PH l - AL). Thus,

E [V(QH(i 1)) V(QH(i))QH(i) < W + E [XL] (H -- PHl - LQH

+ QH( 0aE [dH )- dH(i) QH(-)]

Since AH - PH (I AL) < 0 by assumption, there exists a E > 0 such that

AH - PH(I - AL) < -6. Therefore,

E [V(QH(i + 1)) - V(QH (i)) IQH(Z)

W + QHa(i) [dHi) - dH (Z)IQH ( ~] - QH (-

Next, we will upper bound the remaining expectation term on the right side.

Notice that dH(i) - dH(i) is simply the total number of lost departures from H

due to the queue being empty. In particular, dH(i)--dH i) = 0 if QH (i) XL W)

where XL(i) is the ith renewal interval. In general, it holds that dH(i) - dH

XL(i)lXL(i)>QH(i). Therefore,

E ZH-) .)H H(i)] < E [XL(i); XL(i) > QHi)

and

E [V(QH(i + 1)) V(QH(i))IQH(i)]

W + QH (i)E [XL(i); XL(i) > QH (i)] - 6QH(i)
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We finally show that the term QH(i) 0 E [XL(i); XL(i) > QH(i)] is bounded for

all values of QL(i)- It is enough to consider large values of QH(i), since the

term clearly stays bounded for bounded values of QH(i). Indeed, since XL is

light-tailed (being the renewal period of the light queue), E [XL(i); XL(i) > b]

decays exponentially fast in b. Therefore, for large enough values of QH(i), the

term QH(i)aE [XL(i); XL(i) > QH(i)] can be made arbitrarily small, implying

boundedness. Finally then, we can bound the Lyapunov drift as

E [V(QH(+ 1)) (- VQH())QH(i)] W 1 -

for some constant W'. Due to Foster's criterion, the Markov chain QH(), i C Z,

is positive recurrent, and at steady-state E [Qc1] < oc for all a < CH - -

(b) 1 < a < CH - 1. In this case, we have by Taylor's theorem

V(QH~i + 1) QH( c _± 11+a _ QH) + aHi) - H(1+

1+ a + -a

V(QH (i + QH(i)AH aAH 2 a-

where ( E (QH(i) - dH(i), QH() + aH . Thus,

E [V(QH(i + 1)) - V(QH())QH()]

QHH [ H ) H 2 - I1

[ ) ]AH)2

QH'" [A~i QH0 a cE 2 (QH(i) + aH (i))IQH I]

Since (QH() + aH () 1  1< 2 (QH(i)a- 1 + a(i)-1), we can continue thus

< H a(i)E [AH(i)IQH(i)1 + aE [AH() 2 a-2 (QH(- 1 + aH(i) 1)QH(i)] ,

QH (i)aE [AH (i)IQH +'2]a-2a QH()- 1 E [(aH() + XL() 2 JQH(i] +
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2- 2 aE [(aH () + XL(i) 2 aH(i)a-1 QH(-)]

The last two expectation terms above are finite, since according to Proposi-

tion 5.1, the tail coefficient of aH(i) is CH. Thus, for every 6 > 0, there exists

a W(6) such that

E [V(QH(i ± 1)) - V(QH(i)) QH(i)1 QH(aE [AH(0)QH(i)1+W(6)+6QH(Z).

Finally, the term E [AH(0) QH(i)1 can be bounded as in case (a) to finally yield

E [V(QH(i ± 1)) V(QH(i))IQH(i)] W(6) - 6QH(i aI

for some bounded W'(6). Again, Foster's criterion implies positive recurrence

of QH(i), i E Z, and at steady-state, E [Qc] < oo for all 1 < a < CH - 1.

Cases (a) and (b) above imply the positive recurrence of QH(i), i E Z for all

values of CH, and that E [QHH -] < o for all E > 0. We are not quite done yet, as

we need to show that E [qCH-1-e] < oo for the steady-state queue length qH-

Indeed, during an instant at steady-state, say t = 0, consider the most recent

commencement of a light queue busy period, and denote it by -T <0. Then, qH(-T),

which is the heavy queue occupancy sampled at that renewal instant, is distributed

as QH, the steady-state distribution of the Markov chain QH(i), i E Z. We then have

qH(0) < qH(-T) + E'_ H(i), so that

0 CH--1-E

E [qH (0)CH-1-E] < E [ (-T) + H (i)

0 C H-1-f

< 2CH-1E E ([qH(-T)CH-1-e] + E ( H(i)).

The first expectation above is finite since qH (-T) is distributed like QH in steady-

state. To see that the second expectation is also finite, note that r is distributed

according to the age of the busy period in progress at time 0. Since the light queue
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busy periods are light-tailed, the age T is also light-tailed. Thus, 1 _, H(i) is a sum

of a light-tailed number of heavy-tailed terms, which has tail coefficient equal to CH

by Proposition 5.1.

5.3 Max-Weight-a Scheduling

In this setting, max-weight-a scheduling works as follows. During each slot t, compare

qOL {~tSL H (t)0a H SH(t

and serve one packet from the queue that wins the comparison. It can be shown

using standard Lyapunov arguments that max-weight-a scheduling is throughput

optimal for all aH > 0 and aL > 0. That is, it can stably support all arrival rates

within the rate region (5.1). This throughput optimality result follows, for example,

from [20. Theorem 1].

We recall from the previous chapter that when the queues are always connected,

the light queue occupancy distribution is heavy-tailed with a finite tail coefficient

under max-weight-a scheduling. In the present setting with time-varying channels,

the behavior is more interesting. In fact, qL turns out to be light-tailed for values

of AL that are smaller than a certain threshold, and heavy-tailed with a finite tail

coefficient for larger values of AL.

The following result shows that the light queue distribution is light-tailed under

any 'reasonable' policy, as long as the rate AL is smaller than a threshold value.

Proposition 5.2 Suppose that AL < PL(1 - PH). Then qL is light-tailed under any

policy that serves L during its exclusive slots.

Proof: The proof is straightforward once we note that the exclusive slots of L occur

independently during each slot with probability pL(1 - PH). Indeed, consider the L

queue under a policy that serves L only during its exclusive slots. Under this policy,

the L queue behaves like a G/M/1 queue with light-tailed inputs at rate AL, and

service rate pL(1 - PH). It can be shown using standard large deviation arguments
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- PL

kL

Figure 5-3: Under max-weight-a scheduling, qL is light-tailed for arrival rates in the
unshaded region, and heavy-tailed in the shaded region.

that qL is light-tailed under the policy that serves L only during its exclusive slots.

Therefore, qL is light-tailed under any policy that serves L during its exclusive slots,

and some other slots. E

The above proposition implies that for AL < PL(1 - PH), the light queue distri-

bution is light-tailed under max-weight-a scheduling. The region AL < PL(I - PH) is

shown unshaded in Figure 5-3. Thus, qL is light-tailed under max-weight-a scheduling

for arrival rates in the unshaded region.

In the remainder of this section, we investigate the tail behavior of the light queue

under max-weight-a scheduling when the arrival rate is above the threshold, i.e., for

AL > PL(I - PH). In this case, the light queue receives traffic at a higher rate than

can be supported by the exclusive slots of L alone. Therefore, the light queue has

to compete for service with the heavy queue during the slots that both channels are

ON. Since the heavy queue is very large with positive probability, it seems intuitively

reasonable that the light queue will suffer from this competition, and also take on a

heavy-tailed behavior. This intuition is indeed correct, although proving the result is

a non-trivial task, and requires taking an entirely different approach from the methods

used in the previous chapter.

We prove that the light queue distribution is heavy-tailed when AL > PL( - PH)

for all values of the scheduling parameters aL and aH. We also obtain the exact tail

coefficient of the light queue distribution for 'plain' max-weight scheduling (aL/aH
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1), and for the regime where the light queue is given more importance (aL/aH > 1)-

Whereas we derived distributional bounds for the light queue tail in the previous

chapter, doing the same for the present case appears difficult. We only derive a

moment characterization of the steady-state light queue occupancy, by obtaining the

exact tail coefficient.

5.3.1 Max-weight scheduling

Let us first characterize the tail coefficient of the steady-state light queue occupancy

under the max-weight policy, which serves the longest connected queue in each slot.

Since qL is light-tailed for AL < PL(I -PH) according to Proposition 5.2, we will focus

on the case AL > PL(1 - PH)- We directly state our main result.

Theorem 5.2 Suppose that AL > PL(I - PH). Then, under max-weight scheduling,

qL is heavy-tailed with tail coefficient CH - 1.

In terms of Figure 5-3, the theorem asserts that qL is heavy-tailed with tail co-

efficient CH - 1 for all arrival rates in the shaded region. Proving the above result

involves showing (i) an upper bound of the form E [qH-1-6] < oc, and (ii) a lower

bound of the form E [qCH-->lJ = oc, for all e > 0. We deal with each of them below.

Upper Bound for max-weight scheduling

Proposition 5.3 Under max-weight scheduling, we have

E [qLCH-L [ IHl~ <oc Vc > 0.

Proof: The result is a straightforward consequence of a theorem in [20]. Indeed,

given any e > 0, max-weight scheduling in our context is equivalent to compar-

ing qL(t)CH-1-fSL(t) versus qH (t)CH-1-ESH(t), and scheduling the winning queue

in each slot. These functions of the queue lengths meet the conditions imposed

in [20 . Theorem 1], so that the steady-state queue lengths satisfy

LE [qCHNE] <

146



and

[q CH-16 o (5.5)

Remark 5.1 Although we are concerned primarily with the light queue tail behavior,

it is interesting that Equation (5.5) gives us the tail coefficient of the heavy queue

'for free'. Indeed, Equation (5.5) asserts that the tail coefficient of the heavy queue

under max-weight scheduling is at least CH -1. However, we know as a consequence of

Proposition 4.6 that the tail coefficient of qH cannot be any larger either. Therefore,

qH is heavy-tailed with tail coefficient equal to OH - 1, under max-weight scheduling.

Lower Bound for max-weight scheduling

Proposition 5.4 Suppose that AL > PL (1 -PH). Then, under max-weight scheduling,

we have

E [qCH -1+ = 00, V E > 0.

The proof of this result is quite involved, so we informally describe the idea behind

its construction, before proceeding with the formal proof. In our intuitive argument,

we will 'show' that

lim E [qL (t)CH-1+C] = 00. (5.6)
t-ooD

The above is the limit of the expectation of a sequence of random variables, whereas

what we really want in Proposition 5.4 is the expectation of the limiting random

variable qL- Although it is by no means obvious that the limit and the expectation

can be interchanged here, we will ignore this as a technical point for the time being.

The main idea behind the proof is to consider the renewal intervals that commence

at the beginning of each busy period of the system. Let us define the renewal reward

process R(t) = qL(t)CH-±f. By the key renewal theorem [24],

lim E [R(t)] = ,
t oo E [T]

147



where E [R] denotes the expected reward accumulated over a renewal interval, and

E [T] < oo is the mean renewal interval. It is therefore enough to show that4

T~

E 00qL.)cH-1+6 _

i=0

To see intuitively why the above expectation is infinite, let us condition on the

busy period commencing at time 0 with a burst of size b to the heavy queue5 . After

this instant, the heavy queue drains at rate PH, assuming for the sake of a lower

bound that there are no further bursts arriving at H. In the mean time, the light

queue receives traffic at rate AL, and gets served only during the exclusive slots of

L, which occur at rate pL(I - PH)- With high probability therefore, the light queue

will steadily build up at rate AL - PL(I - PH), until it eventually catches up with the

draining heavy queue. It can be shown that the light queue will build up to an O(b)

level before it catches up with the heavy queue. Further, the light queue occupancy

stays at O(b) for a time interval of length O(b). Therefore, with high probability, the

reward is at least 0(bCH-1+6) for O(b) time slots. Thus, for some constant K,

~T

E [iqL (Z)CH1+E > E [Kb -bCH-1+] = E [KbCH+E] =0
i=0

where the last expectation is infinite because the initial burst size has tail coefficient

equal to CH-

In words, the light queue not only grows to a level proportionate to the initial

burst size, but also stays large for a period of time that is proportional to the burst

size. This leads to a light queue distribution that is one order heavier than the burst

size distribution. We now present the formal proof of Proposition 5.4 using the above

reward theory approach.

Proof: We will first show (5.6) and then use a truncation argument to interchange the

limit and the expectation. Consider the renewal process defined by the commence-

4Without loss of generality, we have considered a busy period that commences at time 0.
5 1t is easy to show that this event has positive probability.
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ment of each busy period of the system. Let T denote a typical renewal interval. We

have E [T] < oc since the system is stable. Define the reward function

R(t) = qL (t)CH -IkE

It is easy to see that R(t) is a legitimate reward function, since qL(t) is only a function

of arrivals and departures during the current renewal interval. As argued above using

the key renewal theorem, it is enough to show that the expected reward accumulated

over a renewal interval is infinite. Without loss of generality, let us consider a busy

period that commences at time 0. We need to show that

T~

E[E qL()CH-1+ -00

i=0

The busy period that commences at time 0 can be of three different types. It can

commence with (i) a burst arriving to L alone, or (ii) a burst arriving to H alone, or

(iii) bursts arriving to both H and L simultaneously. It can be shown that all the

three events have positive probabilities'. The event that is of interest to us is (ii), i.e.,

the busy period commencing with a burst at the heavy queue only, so that qH(0) > 0

and qL(0) = 0. Let us denote this event by SH qH (0) > 0, qL(0) = 0}. We now

have the following lower bound

T ~ T ~T

E q )E qiC-L)CH -1+e ( SH Eb LE YZ ; CH-+E SH qH(0) -

0i= i=0 i=0

In the last step above, we have iterated the expectation over the initial burst size b.

The inner expectation above is a function of b; let us denote it by

T

gE(b) := E [ qL()CH-l+E; i SHqH(O) = b
i=0

6In fact, we can explicitly compute the probability of each of the three events in terms of the
probability mass at 0 for H(.) and L(-), but the actual probabilities are not important.
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Thus,

E qL(Z) CH-1± > Eb [gE (b)] > Eb [g,(b); b > bo], VbO > 1. (5.7)
i=o

Since the above bound is true for any bo, we can make be as large as we want. In

particular, we will make the initial burst size large enough to be able to assert that

the arrival process to L as well as the channel processes behave 'typically' for time

scales of order b.

To be more precise, choose 6 > 0 such that AL - PL(I - PH) - 36 - 7 > 0, and

choose any small K> 0. Define

Tb -
b

2(PH AL)

For large enough bo, and b > bo, it is clear from the (weak) law of large numbers

(LLN) that

S 
Tb

Tb E~

In words, the channel process of H

its mean pH. Now for all t < Tb, the

H7b

qH (t) > b - E SH(i) >
i=O

SH) -PH > < K-

is overwhelmingly likely to behave according to

occupancy of H can be lower bounded as

b - (PH + 6 )Tb b PH + 2AL ~ O
k\2(pH + AL)J)

(5.8)

with probability greater than 1 - K. Similarly, the input process to the light queue is

also likely to behave according to its mean. That is, for large enough be and b > bo,

1Tb

P J Ei L(i) - AL > 6 < K.
Tbi=o

Therefore, for all t < Tb, the occupancy of L can be upper bounded as

t L(O)< b( AL + E
qL < i=O - (2(pH -| AL) (5.9)
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with probability greater than 1 - r. From (5.8), (5.9), and the independence of the

processes L(-) and SH(-), we can conclude that qH(t) > qL(t) for all t < Tb, with

probability greater than 1 - 2K.

Since the light queue remains smaller that the heavy queue for t < Tb with high

probability, it follows that the light queue receives service only during its exclusive

slots. More precisely, the departure process from the light queue can be bounded as

Tb Tb

EDL( Z SLi)(1 - SH i)),

with probability at least 1 - 2 /. However, the exclusive slots of L are also overwhelm-

ingly likely to behave according to the mean:

P IZ SL(i)(1-SH(i))-PL(1-PH) > 26
Tb i=2

Thus,
Tb

S DL(i) < Tb(PL(1 - PH) + 26),

with probability at least 1 - 3K. Using the above bound on the departures from L,

along with the fact that arrivals to L are also typical, we can lower bound qL(Tb) with

high probability. Indeed,

'Tb 'Tb

qL (Tb) = L(i) - DL(i) ;> Fb(AL - 6) - Tb(PL (I -PH) +20)b ) (PH= AL

with probability at least 1 - 3K. We have thus shown that qL(Tb) is O(b) with as high

a probability as we want.

It is now inevitable that qL(t) stays above qL(Tb)/2 for at least another O(b) slots,

since at most one packet can be served in a slot. In particular,

qL prbaib t Tb t least b + b

with probability at least 1 - 3r,.
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We can thus lower bound g,(b) for large enough b0 and b > b0 as

~T

gE(b)1fb>boI =E EqL )CH-1+E; 8 H qH() b {b>bo}
i=0

Tb+-rb 
H-+

> (1 - 3K) 2 1 H-1+E ,b3boT (4(PH +ALl

>( - 3K) 77i 7?Tb)CH-1+E 1yb>bo= KbCH+EIb>bo , (5.10)

for some constant K > 0. Thus, going back to (5.7),

T~

E [ qL (CH-1] > Eb [gE(b); b > b0] ;> Eb [KbCH+6; b> bo
i=0

The last step is because the initial burst size b has tail coefficient CH, so that

Eb [bCH+E] = E [bCH+E; b> bo] = oo for all b0. Therefore, we are done proving (5.6).

Finally, we use a truncation argument to prove that E [qCH-1+6] o, where qL

is the steady-state limit of qL(t).

Truncation argument: Our intention is to show that the limit and the expectation in

(5.6) can be interchanged, so that we get the desired moment result for the limiting

random variable qL- Our truncation argument utilizes one of the most fundamental re-

sults in integration theory, the Monotone Convergence Theorem (MCT) [8. Theorem

16.2], as well as a result that affirms the convergence of moments when there is con-

vergence in distribution [8. Theorem 25.12].

The main idea here is to define a truncated reward function

RM(t) = (M A qL(t))CH -+E6

where M is a large integer, and M A qL(t) min(M, qL(t)). There are three steps in

our truncation argument.

(i) Tracing all the steps leading up to (5.10) in the proof above, and using the key
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renewal theorem for the truncated reward function, we can show that

WM:= lim E [RM(t)] > I-3K Eb "7b (M A (?))CH 1±c
t-*oo E [T] _ 2 2

1yb>bo}I , (5.11)

for all M and large enough bo. The left hand side in the above equation is

a function of M, which we have denoted by wM. The expression inside the

expectation on the right is a function of b and M, which we denote by

UM(b) ( M A 'q2 ) 1jb>b}.j

When viewed as a sequence of functions indexed by M, it is easy to see that

{uM(b), M > 1} is a monotonically non-decreasing sequence of functions. Fur-

thermore,

lim uM(b) = KbCH+ 1b>bo}, V b, b
M-+oo

where K is the positive constant in Equation (5.10). Invoking the MCT for the

sequence uM(b), we have

lim Eb [uM(b)] = Eb lim um(b) = Eb [Kb CH b> b1
M0oo LM -- +oo J u

Next, going back to (5.11) and taking M to infinity, we have

lim WM = lim lim E [R (t)) > 13{lim En [um(b)] = 00.
M-Moo Moo-+x kJo E [T M-oo

(5.12)

(ii) Recall that the steady-state queue length qL is defined as the

limit of qL(t), as t becomes large. In other words, viewing qL(t)

of random variables indexed by t, we have qL(t) == qL, where

convergence in distribution. Next, let us fix M, and view RM(t)

of random variables indexed by t. We have

distributional

as a sequence

"=>" denotes

as a sequence

RM (t) zz (M A qL)cH-1+6
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Theorem 25.12 in [8] asserts that when a sequence of random variables converges

in distribution, the corresponding sequence of means also converges to the mean

of the limiting random variable, as long as a technical condition called uniform

integrability is satisfied. Since RM(t) is bounded above by MCH-1 for all t,

uniform integrability is trivially satisfied, and we have

E [RM(t)] -- E [ (M A qL)]CH-1k6

for each M as t -+ oc. Thus,

wM E [(M A qL.)CH-1+. (5.13)

(iii) Consider finally the term inside the expectation on the right hand side of Equa-

tion (5.13). When viewed as a sequence of random variables indexed by M,

the term (M A qL)CH-+E represents a monotonically non-decreasing sequence

of random variables. Furthermore,

lim (M A qL)CH-±C __ H .

M->oo

Thus, another application of the MCT gives

lim E [(M A qL)0H-A(] = E [qfCH-6] . (5.14)

Finally, combining (5.14), (5.13), and (5.12), we get

E [qCH--lf] = lim E [(M A qL CH+E =m WM =OO.

Proposition 5.4 is now proved.
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5.3.2 Max-weight-a scheduling with aZL > aH

In this subsection, we characterize the exact tail coefficient of the light queue dis-

tribution under max-weight-a scheduling, with aL > &H. We only treat the case

AL > PL(1 - PH), since qL is known to be light-tailed otherwise. Our main result for

this regime is the following.

Theorem 5.3 Suppose that AL > PL(1 - PH). Then, under max-weight-a scheduling

with aL > aH, qL is heavy-tailed with tail coefficient

=aL H (5.15)
aH

In terms of Figure 5-3, the above theorem asserts that qL is heavy-tailed with tail

coefficient y for all arrival rates in the shaded region. As usual, proving this result

involves showing (i) an upper bound of the form E [q'-'] < oo, and (ii) a lower bound

of the form E [q7+] oc, for all c > 0. We deal with each of them separately.

Upper Bound for max-weight-a scheduling

Proposition 5.5 Under max-weight-a scheduling, we have

E [q'E] < o, V e > 0.

Proof: The result is again a consequence of a theorem in [20]. Indeed, max-weight-a

scheduling in our context is equivalent to comparing qL (t)#at SL (t) versus qH (t)#aH SH

where # > 0 is arbitrary, and scheduling the winning queue in each slot. In particular,

if we choose 3 (CH - 1)/aH - C/aL, the conditions imposed in [20. Theorem 1] are

satisfied for any e > 0, so that the steady-state queue lengths satisfy

E[q-'-] < oo,

and
CH -1-aE] <E [qH "L < o. (5.16)
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Remark 5.2 (i) Proposition 5.5 is valid for any parameters aL and aH, and not

just for aL > aH-

(ii) Equation (5.16) and Proposition 4.6 together imply that the tail coefficient of

qH is equal to CH - 1 under max-weight-a scheduling, for any parameters aL

and aH.

Lower Bound for max-weight-a scheduling with aL > aH

Proposition 5.6 Suppose that AL > PL(1 -PH). Then, under max-weight-a schedul-

ing with aL > aH, we have

E [qo±e] =o, V e > 0.

To prove the above result, we take an approach that is conceptually similar to

the proof of Proposition 5.4. We consider the renewal process that commences at the

beginning of each busy period of the system, and define the reward process R-,(t) =

qL(t)-+e. We will show that the expected reward accumulated over a renewal interval

is infinite. The key renewal theorem would then imply that limt, E [qL(t)+E =- .

Finally, the result we want can be obtained by invoking a truncation argument to

interchange the limit and the expectation.

To intuitively see why the expected reward over a renewal interval is finite, let us

condition on the busy period commencing with a burst of size b at the heavy queue.

Starting at this instant, the light queue will build up at the rate AL - PL (1 - PH)

with high probability. However, unlike in the case of max-weight scheduling, the light

queue only builds up to an O(baH/L) level before it 'catches up' with the heavy queue

and wins back the service preference. It can also be shown that the light queue catches

up in a time interval of length O(baH/QL). It might therefore be tempting to argue that

the light queue stays above O(baH/QL) for an interval of duration O(bQH/IL). Although

this argument is not incorrect as such, it fails to capture what typically happens in
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the system. Let us briefly follow through with this argument, and conclude that it

does not give us the lower bound we want.

Indeed, following the above argument, the reward is at least O(bb+>6)aHZL -

0(bcH--1+E6HL) for 0(baHOL) time slots, so that the expected reward over the re-

newal interval is lower bounded by

Eb [o (boHQL )0 (bcH-1+E0HL)] = Eb [o(bcH-1+aH L-|EHL)1

However, the right-hand side above turns out to be finite for L/aH > 1. Therefore,

the above simple bound fails to give the result we are after.

The problem with the above argument is that it looks at the time scale at which

the light queue catches up, whereas the event that decides the tail coefficient happens

after the light queue catches up. In particular, the light queue catches up relatively

quickly, in a time scale of O(bPH/QL). However, after the light queue catches up with

the heavy queue, the two queues drain together, with most of the slots being used

to serve the heavy queue. In fact, as we show, before the light queue occupancy can

drain by a constant factor after catch-up, the heavy queue drains by 0(b). As such,

the light queue remains at an 0(bH /aL) level for 0(b) time slots. Therefore, the

expected reward can be lower bounded by

Eb [O(b)Oc(bCH-16CHL)] Eb [ (bcH +EOHGL)]

which is what we want. In sum, the light queue builds up relatively quickly until

catch-up, but takes a long time to drain out after catch-up. We now proceed with

the formal proof.

Proof: For the renewal process considered above, R,(t) = qL(t)?+ is easily seen to

be a legitimate reward function. Our aim is to show that the expected reward over

the renewal interval is infinite, or

-T

EE
E 1: qL (i3+

i=0
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The key renewal theorem would then imply that limt, qLt)?+6 = oc. We can finally

appeal to a truncation argument to interchange the limit and the expectation, and

obtain the desired result.

Defining EH {qH(O) > 0, qL(0) = 0}, and proceeding as in the proof of Proposi-

tion 5.4,

T ~'T ' ~T~~

E q EL(+ E qL(i)+'; SH b [E [: qL(i)+; EH qH(O) - b
i=0 . . i=0 i=0

In the last step above, we have iterated the expectation over the initial burst size b.

The inner expectation above is a function of b; let us denote it by

T

gy(b) : EqH qH(O) = b
i=0

Thus,
.T

E [:qL (i)+j> Eb [g, (b)] > Eb [g,(b); b > ba] , VbO > 1. (5.17)
i=0

Since the above bound is true for any bo, we can make bo as large as we want. We

will make be large enough for us to be able to invoke the law of large numbers several

times in the rest of the proof.

At this point, we note that for the sake of a lower bound on the expected reward

over the renewal interval, we can assume that the heavy queue receives no further

arrivals after the initial burst. Under this assumption, we will next show that the

light queue catches up with the heavy queue in O(baH/aL) time slots. We first need

to define what exactly we mean by 'catch-up'.

The catch-up time Tc is defined as

Te = min {t > 0 |qL(t)aL/aH > qH(t) > 0} (5.18)

In words, the catch-up time is the first time after the arrival of the initial burst for

which qL(Tc)aL/aH > qH(Tc). Note that the catch-up time need not always exist, even
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if EH occurs7 . However, we show that if the initial burst size is large, the catch-up

time exists with high probability.

Indeed, let b > b0 for large enough b0 , and suppose that a catch-up time does not

exist. Let us consider the queue lengths after the first b - 1 time slots, by which time

the busy period could not have possibly ended. Since the light queue never catches

up, the departure process from the light queue can be upper bounded by the number

of exclusive slots. Thus, the light queue occupancy at time b-I can be lower bounded

as
b-1

qL(b - 1) ;> L(i) - SL ~i)(1 - SHZ-
i=O

Since catch-up has not occurred until time b - 1, it follows that qL(b - 1)aL/aH <

qH(b - 1) < b. Thus, assuming that a catch-up time does not exist implies

b/ 1 LaH
L(i) - SL(i)(1 - SH()) < b)

i=0O

or equivalently,

Ib-1 atl~aH b

S L(i) - SL(i)(1 - SH()) / ba /aH<
bi=0 cta

When b is large, the weak LLN implies that the above event has a small probability.

This is because the term inside the parentheses on the left is a sample average of

random variables with positive mean. Thus, assuming that catch-up does not happen

necessitates the occurrence of an event with small probability. This implies that a

catch-up time exists for large b with high probability8 .

7For example, the initial burst size might be small, and the system might empty again without
the light queue ever receiving a single packet during the renewal interval.

8 In this proof, when we state that an event occurs with high probability for large b, we mean
the following: Given any K > 0, there exists a large enough bo such that for all b > bo, the event in
question has probability greater than 1 - K. In a symmetric fashion, we can define a low probability
event for large b as the complement of a high probability event.
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Next, we show that T is O(b oH/QL) with high probability. First, to obtain a lower

bound on Tc, define ri(b) as the unique positive solution to the equation

(ALT1(b))L (b - PHT1(b) )H.

It is easy to see that Ti(b) = O(b HalL). Let us now bound the queue occupancies in

the interval 0 < t < [(b)]. For the heavy queue,

qH(t) b -

[ J

E SH (i)
i=O

b - (PH + 6 ) (b)
2

with high probability for large b, where 6 > 0 can be chosen arbitrarily small. Simi-

larly, for the light queue,

q(t) < T ,i _ (1b)

i=0

with high probability for large b. Comparing the last two bounds, it is evident that

qL (t)a/aH > qH(t), 0 < T,(b)
2

for large b, with high probability. Thus, catch-up has not occurred by time [(b) j, so

that rc > [L2b) j with high probability for large b. Since i (b) =0 (baH/aL), it follows

that rc is at least O(baH/QL

Second, to obtain an upper bound on the catch-up time, define

T2(b) - (2b)aH/QL

AL ~ PL(1 -PH)

Suppose that catch-up has not occurred by time [r2(b)]. Then, the departures from

the light queue only occur during the exclusive slots of L. Thus,

Fr2 (b)]

qL([T 2 (b)]) ;> L(i) - SL(i)(1 - SH W)).
i=O
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Since we assumed that catch-up has not occurred by time F2(b)1, we have qL (F 2(b) )L/aH

qH([T2(b)]) < b. Therefore,

/r2 (b)1

(ZL(i) - SL(i)1 SH

or equivalently,

1 Fr2 (b)]

(r2(b)| L(i) - SL(i)(1( -SH W) <
baH/QL

b2 )
AL - PL(1 -PH)

2 aH/QL

By the weak LLN, the above event is of low probability when b is large. Therefore,

we conclude that Tc < [ T2 (b)] with high probability when b is large.

We have so far shown that the light queue catches up with the heavy queue in

a time scale of 0 (baH/QL) with high probability. Therefore, it easily follows that

qL(Tc) = O(bPH aL) and qH(Tc) = b - O(baH/QL) with high probability. We have now

reached the core of the proof where we show that after T, the light queue stays at

O(baH /L) for 0(b) time slots.

To this end, define oc as the first time after Tc that the light queue occupancy falls

below (qH(Tc)/2) "HL . That is

c-min t > T qL t
qH(Tc) aH/L

< 2lI l

It is clear that oc is well defined when Tc exists, since the system eventually empties.

With the intention of necessitating a low probability event, let us assume that

qH(t) , for all t E [rc, ac]. (5.19)

Next, define

w- = max { e < t < -c qLt) 4 )3qH c) H a L

S4
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In words, w is the last time before 0- that the light queue occupancy exceeds

(3qH(Tc)/4)aHL . Now, by the definition of w and the assumption made in (5.19),

it is clear that qL(t)aL/aH < qH(t) for wc < t < ^c. Thus, the departures that occur

from the light queue during the interval wc < t < ae must necessarily occur during

the exclusive slots of L. Therefore,

0c'

qL (c) qL (wc) + S L(i) - SL(i)(I ~ SH(i)),
2=Wc+1

or equivalently,

1 L(i) SL (i)(1 - SH (i0c - qL(c

~c - wc 5 L c)~~c

This necessarily implies

1 L(i) - SL (i)(1 - SH(i) < 0. (5.20)
c- ci=WC+

From the definition of 0c and we, it is clear that

c - Wc > qL (c) - qL (O'c) = ( 3 aH|/L - QH/L) qH (Tc) aH/aL

4

so that oc - we is at least O(boH/QL). Therefore, by the weak LLN, the event in (5.20)

is a low probability event for large b.

What we have shown now is that the assumption in (5.19) implies the occurrence

of a low probability event for large b. Therefore, the assumption (5.19) should be

false with high probability when b is large. In other words, with high probability,

there exists t E [Tc, ~c) for which qH(t) < 3qHTrc). In particular, this implies that

ac - Tc > qH(rc) with high probability for large b.
4,7

Next, since qH(Tc) = b - O(baH/tL) with high probability, we have qH(rc) > b/2

for large enough b. Thus, 0c - Tc > b/8, with high probability, and for Tc < t < oc,
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the light queue occupancy is lower bounded by

qL t)> qH ( -TC) aH /aL >H a L

2 4

also with high probability. We have thus shown that after catch-up, the light queue

occupancy stays at 0(bCHIL) for 0(b) slots, with high probability.

We can now return to (5.17) to finish the sequence of inequalities. In particular,

let us choose b0 large enough such that for b > b0 , the intersection of all the high

probability events above has probability at least 1 - r,, for some r > 0. Then,

T bH .L (+)

S[,qL[(b)9 b > b01 > (1 - )Eb [ ( ( b > bo
i=0

= K1Eb [b - bcHI+EaH/aL b> bo] so,

since the burst size b has tail coefficient CH. The key renewal theorem would then

imply that

lim E [qL(t),+±] = o, V C > 0.
t-*oo

We can finally invoke a truncation argument similar to the one in Proposition 5.4 to

interchange the limit and the expectation. Thus, for the steady-state occupancy qL,

we have E [q^'E] = o, V E > 0.

5.3.3 Max-weight-a scheduling with aL < aH

We finally consider the case aL < aH under max-weight-a scheduling, and study

the asymptotic behavior of qL. Recall that max-weight-a scheduling with aL < aH

corresponds to giving the heavy queue preference over the light queue. In this regime,

we show that qL is heavy-tailed with a finite tail coefficient, for arrival rates in the

shaded region of Figure 5-3. However, we are unable to determine the exact tail

coefficient of qL for some arrival rate pairs in this regime.

Our first result for this case is an upper bound on the tail coefficient of qL- Intu-
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itively, we would expect that the asymptotic behavior of qL in this regime cannot be

better than it is under max-weight scheduling. In other words, the tail coefficient of

qL in this regime cannot be larger than CH - 1. This intuition is indeed correct.

Proposition 5.7 Suppose that AL > PL ( -PH). Then, under max-weight-a schedul-

ing with aL < aH, the tail coefficient of qL is at most CH - 1.

Proof: Follows similarly to the proof of Proposition 5.4. Specifically, conditioning on

an initial burst of size b arriving to the heavy queue, it can be shown that with high

probability, qL will be O(b) in size for at least O(b) time slots.

Next, to obtain a lower bound on the tail coefficient of qL, recall that Proposi-

tion 5.5 holds for the present regime as well. Thus, 7y (defined in (5.15)) is a lower

bound9 on the tail coefficient of qL. In sum, we have shown that for AL > PL(1 -PH),

the light queue occupancy distribution is heavy-tailed, with a tail coefficient that lies

in the interval [-y, CH - 1].

It turns out that we can obtain the exact tail coefficient of qL for arrival rates in a

subset of the shaded region in Figure 5-3. Specifically, consider the region represented

by pL (1 -PH) <AL PL( - AH). In Figure 5-4, this region is shown in gray. It can be

shown that all arrival rates in the region shaded gray can be stabilized under priority

for H. Furthermore, under priority for H, it can be shown that qL is heavy-tailed

with tail coefficient equal to CH - 1, when PL( - PH) < AL < PL(1 - AH). This can

be done using a proof strategy similar to the one used in Theorem 5.1(ii).

Since the tail of qL under max-weight-a scheduling with any parameters is no

worse than under priority for H, we can conclude that the tail coefficient of qL is at

least CH- 1 when PL(1-PH) < AL < PL(1-AH). Combining this with Proposition 5.7,

we conclude that the tail coefficient qL is equal to CH - 1, when the arrival rate pair

lies in the gray region of Figure 5-4.

Proposition 5.8 Suppose that pL(1 - PH) < AL <PL(1 - AH). Then, under max-

weight-a scheduling with aL < aH, the tail coefficient of qL is equal to CH - 1.

9Note that -y is smaller than CH - 1 in this regime.
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PH H

kH

PL

Figure 5-4: Under max-weight-a scheduling with aL < aH, qL is light-tailed for arrival
rates in the unshaded region, and heavy-tailed with tail coefficient equal to CH - 1
in for arrival rates in the gray region. For arrival rates in the region colored black,
the tail coefficient lies in [-Y, CH - 1].

The region shaded black in Figure 5-4 (AL > PL (I - AH)) corresponds to the arrival

rates for which priority for H is not stabilizing10 . Under max-weight-a scheduling

with aL < aH, we are unable to determine the exact tail coefficient of qL for arrival

rates in the black region of Figure 5-4. However, we have shown earlier that the tail

coefficient lies in the interval [', CH - 1]. We conjecture that the tail coefficient of qL

equals -y, for arrival rates in the black region.

5.3.4 Section summary

We showed the following results in this section.

1. The light queue distribution is light-tailed under max-weight-a scheduling, when

AL < pL(1 - PH). This is true for all scheduling parameters.

2. When AL > PL(1 - PH), the light queue distribution is inevitably heavy-tailed

under max-weight-a scheduling. In particular, under max-weight scheduling

(aL = aH), the tail coefficient of qL is equal to CH - 1. For aL > aH, the tail

coefficient of qL is y = (CH - 1)aL/aH. Finally, for aL < aH, the tail coefficient

of qL lies in [Y, CH - 11-

' 0This case is symmetric to the case in Theorem 5.1(i).
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3. For all values of the scheduling parameters, qH is heavy-tailed with tail co-

efficient equal to CH - 1.

Remark 5.3 The case PH PL = 1 corresponds to a system where the queues are

always connected to the server, i.e., the system considered in the previous chapter.

Applying Theorem 5.2 and Proposition 5.8 to this special case implies that the tail

coefficient of qL is CH - 1, for aL aH. Similarly, applying Theorem 5.3 for the

special case PH PL = 1 implies that the tail coefficient of qL equals y, for aL > aH-

What we have shown above is that Theorem 4.9 is a special case of the results in

this section. Furthermore, since we have not made any regularity assumptions on the

heavy-tailed input in this chapter, it follows that Theorem 4.9 holds even when H(.)

is not order-regular. In other words, the assumption H(.) C OR is needed only to

derive the distributional lower bounds in Theorem 4.7, and not for the tail coefficient

result in Theorem 4.9.

5.4 Log-Max-Weight Scheduling

In the previous section we studied the performance of the max-weight-a policy when

the queues are connected to the server through time-varying channels. Although

max-weight-a scheduling has the desirable property of throughput optimality, our

analysis showed that the light queue occupancy distribution is heavy-tailed, except

when AL is small enough to be supported by the exclusive slots of L.

In this section, we study the performance of log-max-weight scheduling policy. In

the current setting with time-varying channels, the LMW policy works as follows.

During each time slot t, the log-max-weight policy compares

qL(t)SL(t) ' log(1 + qH (t))SH (t),

and serves one packet from the queue that wins the comparison.

We show that LMW scheduling has desirable performance on both fronts, namely

throughput optimality, and the asymptotic behavior of the light queue occupancy.
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The LMW policy can be shown to be throughput optimal, in the sense that it can

stably support any arrival rate pair within the rate region specified in (5.1). This

throughput optimality result can be shown directly using a Lyapunov argument, or

viewed as a special case of [20. Theorem 1].

In terms of the asymptotic performance, we show that the LMW policy guarantees

that the light queue occupancy distribution is light-tailed, for all arrival rates that

can be stabilized by priority for L. For arrival rates that are not stabilizable under

priority for L, the LMW policy will still stabilize the system, although we are not

able to guarantee that qL is light-tailed for these arrival rates.

In particular, our analysis implies that the light queue occupancy distribution is

light-tailed under LMW scheduling, for arrival rates in a larger region than under the

max-weight-a policy. Let us state this precisely in the following theorem.

Theorem 5.4 Under LMW scheduling, qL is light-tailed if at least one of the follow-

ing conditions hold:

(i) AL < PL( -PH), or

(ii) AH < PH(I - AL)-

Note that for AL < PL(1 - PH), qL is easily seen to be light-tailed under LMW

scheduling, since the arrival rate is small enough to be supported by the exclusive

slots of L. The second condition in Theorem 5.4 states that for all arrival rates that

can be stabilized under priority for L (i.e., the trapezoidal region in Figure 5-2), qL

is light-tailed under LMW scheduling.

The union of the two regions in which qL is light-tailed according to Theorem 5.4

is shown unshaded in Figure 5-5. As can be seen, the unshaded region occupies most

of the rate region, except for the shaded triangle. For arrival rates in the shaded

triangle, the LMW policy still stabilizes the system, unlike priority for L.

Proof: Statement (i) of the theorem is a direct consequence of Proposition 5.2. We

now prove statement (ii) by explicitly deriving an exponentially decaying upper bound

on P{qL > b}. Since the proof of (ii) is quite similar to the proof of Theorem 4.10,

we skip some details.
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Figure 5-5: Under LMW scheduling, qL is light-tailed in the unshaded region.

For AH < PH(1 - AL), we show that

lim inf -log P {qL > b} > min(IL, CH - 1), (5.21)
b-*oo b

where IL is defined in (5.2). Assume without loss of generality that the event qL > b

occurs at time zero, with the system running since time -oo. Define -T < 0, as the

most recent time during the current busy period that the relation log(1+qHQ()) > qL(')

holdsn.

For any fixed 6 > 0, we have the following equality.

P {qL(O) b} P){ qL(0) > b; log(1 + qH(-T)) < 6b,

(a)

+ P{qL(0) b; (-6)b > log(1 + qH(-T)) > 6b}

(b)

+ P {qL(0) > b; log(1 + qH(-T)) > (1 - 5)b} (5.22)

(c)

We will next upper bound each of the above three terms on the right.

(a) Since log(1 + qH(-r)) < 6b, it follows from the definition of T that qL(-r) < ob.

Next, during the interval [-T + 1, 0], we have log(1 + qH(')) < qL (), so that the

light queue receives service whenever SL(-) = 1. In other words, the light queue

effectively has priority in the interval [-r + 1, 0], but still grows from less than

11If no such T exists during the current busy period, take qH(--r) = 0 for interpreting (5.22).
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6b to overflow at time 0. A classical large deviation bound can be derived for

this event. Indeed, it can be shown that for every c > 0 and for large enough b,

P {qL(0) > b; log(1 + qH (-T)) < 6b} < K i(c)e b(1-6)(IL-c), (5.23)

for some constant '1(E).

(c) Let us deal with the term (c) before (b). For AH < PH(I - AL), Theorem 5.1 as-

serts that qH has tail coefficient equal to CH - 1 under priority for L. Therefore,

under LMW scheduling, it holds that E [qCH-1-e] < oc. Applying Markov in-

equality with the above expectation, we have under LMW scheduling for every

e > 0,

P {qH > M} < K 2 M-(CH-1-e), M > 0.

Therefore, for every e > 0,

P {qL(0) > b; log(1 + qH (-T)) > (1 - ) b} < P {log(1 + qH(-T)) > (1 - 6)b}

< K2(c) exp (-(1 - 6)b(CH - 1 - 6)). (5.24)

(b) In this case, let r/ = log(1 + qH(~-T)), so that 6b < r; < (1 - 6)b. Proceeding

similarly to the steps leading to Equation (4.42) in the proof of Theorem 4.10,

we can show that for every e > 0 and some

(1-3)b

P {qL(0) > b; (1 - 6)b > log(1 + qH(-T)) > Sb} < Kz(c)e ( (CH-1-)-(IL -)(b-

(5.25)

where ( is a 'dummy' variable that runs over all possible values of T. Let us now

distinguish two cases:

- CH - 1 > IL : In this case, we can bound the probability in (5.25) as

P {qL(0) > b; (1 - 6)b > log(1 + qH(~T)) 8b} < 3e b[(1- 6 )(ILE)I V] > 0,

(5.26)
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where r 3 is some constant.

- CH - I < IL : In this case,

P {qL (0) > b; (1 - 6)b > log(1 I+ qH (-T)) > b} < K4 e b[(1 -)(CH -1- 6 >0

(5.27)

where K 4 is some constant.

Finally, we put together the bounds on terms (a), (b) and (c) into Equation (5.22).

1. If CH- 1 > IL, we get from (5.23), (5.24), and (5.26),

P {qL(0) > b} < eb( 1
-)(IL-E) [K1 K2 e( 1 )b(CH-1-IL)) + 3] (5.28)

from which it is immediate that

lim inf - log P {qL(0) > b} > (1
b--oo b - J)(IL - 6).

Since the above is true for each c and 6, we get

1
lim inf - log P {qL(0) > b} _ IL.

b-+oo b

2. If CH - 1 < IL, we get from (5.23), (5.24), and (5.27),

P {qL() > b} < e b(1-6)(CH~1- -((1-6)b(IL CH-1i) + K2 + r14]

from which it is immediate that

1
lim inf -Ilog P { qL (0 >b>(1 - 6)(H ~- 1-E.

b-*oo b

Since the above is true for each 6 and 6, we get

1
lim inf -log P {qL(0) > b > CH - 1.

b-+oo b
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Equation (5.21) now follows from (5.29) and (5.31), and we are done. LI

We have shown that under LMW scheduling, the light queue occupancy distribu-

tion is necessarily light-tailed for arrival rates in the unshaded region of Figure 5-5. In

other words, the LMW policy guarantees light-tailed asymptotics for the light queue

distribution, whenever the arrival rate pair is stably supportable by priority for L. For

arrival rates in the shaded triangle, we know that the LMW policy is stabilizing, but

priority for L is not. However, we are unable to determine whether or not the light

queue distribution is light-tailed, for arrival rates in the shaded triangle of Figure 5-5.

5.5 Chapter Summary

In this chapter, we extended the results obtained in the previous chapter to a setting

with randomly time-varying links. We conclude by briefly summarizing the main

results of this chapter.

1. When the light-tailed traffic is given full priority, the heavy queue can become

unstable, even if the arrival rates are within the rate region of the system. How-

ever, if the system is stable under priority for the light queue, the asymptotic

behavior of both queues is as good as it can possibly be.

2. Under max-weight-a scheduling, the light queue occupancy distribution is light-

tailed when AL < PL(1 -PH), and heavy-tailed with a finite tail coefficient when

AL >PL(1 -PH)-

3. Under LMW scheduling, the light queue occupancy distribution is light-tailed

for all arrival rates that are stably supportable under priority for the light queue.

Additionally, the LMW policy is also throughput optimal, and can stabilize

traffic rates that are not supportable under priority scheduling.
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Chapter 6

Concluding Remarks

In this thesis, we studied the interplay between the asymptotic behavior of queue oc-

cupancy distributions, queue length information, and traffic statistics in the operation

of network control policies. In addition to enhancing the conceptual understanding

of the role of control information in network control, our study also has practical

implications on buffer provisioning, estimating buffer overflow events, and providing

worst-case delay guarantees. Furthermore, our results show that queue length based

scheduling policies should be designed based on the statistical properties of compet-

ing traffic flows, in order to simultaneously ensure throughput optimality and good

asymptotic behavior of the queue backlogs.

In Chapter 2, we studied the role of queue length information in the congestion

control of a single-server queue. Our results indicate that arbitrarily infrequent queue

length information is sufficient to ensure optimal asymptotic decay for the buffer over-

flow probability, as long as the control information is accurately received. However,

if the control messages are subject to errors, the congestion probability can increase

drastically, even if the control messages are transmitted often.

In Chapter 3, we studied the scheduling problem in a system of parallel queues

sharing a server, when the system is fed by a statistically homogeneous traffic pattern.

We showed that the queue length based max-weight scheduling outperforms some well

known queue-blind policies in terms of the buffer overflow probability. This is because

the max-weight policy tends to 'balance' the queue occupancies by serving the longest
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queue at each instant, while the queue-blind policies cannot discern large build-up in

one of the queues. We also showed that the large deviation exponent of the overflow

probability can be preserved under arbitrarily infrequent queue length updates. This

result, as well as the one in Chapter 2, suggests that the large deviation exponent of

buffer overflow is not susceptible to change under infrequent queue length updates,

much like the stability of the queueing network.

In Chapters 4 and 5, we obtained an exact asymptotic characterization of the

queue length distributions, when a mix of heavy-tailed and light-tailed traffic flows

feeds a system of parallel queues. In stark contrast to the results in Chapter 3,

we showed that max-weight scheduling leads to a poor asymptotic performance for

the light-tailed traffic. This is because the max-weight policy forces the light-tailed

traffic to compete for service with the highly bursty heavy-tailed traffic. In other

words, the tendency of the max-weight policy to 'balance' the queue occupancies

actually becomes a curse of sorts, when scheduling between traffic flows of greatly

different burstiness levels.

We also analyzed a log-max-weight scheduling policy, which effectively smoth-

ers the impact of the heavy-tailed flow's burstiness, by giving significantly higher

scheduling preference to the light-tailed flow. We showed that the log-max-weight

policy leads to good asymptotic performance for the light-tailed traffic, while also

preserving throughput optimality.

Overall, our study of queue length asymptotics under various scheduling policies

indicates that the statistical nature of the traffic flows should be taken into account

in the design of queue length based scheduling mechanisms.
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Appendix A

Throughput Maximization over

Uncertain Wireless Channels - A

State Action Frequency Approach

A.1 Introduction

In this chapter, we consider the scheduling problem in a wireless uplink or downlink

system, when there is no explicit instantaneous Channel State Information (CSI)

available to the scheduler. The lack of CSI may arise in practice due to several reasons.

For example, the control overheads, as well as the delay and energy costs associated

with channel probing, might make instantaneous CSI too costly or impractical to

obtain.

Our system consists of N wireless links, which are modeled as N parallel queues

that are fed by stochastic traffic. Due to the shared wireless medium, only a single

queue can be chosen at each time slot for transmitting its data. The channel quality

(or state) of each wireless link is time-varying, evolving as an independent ON/OFF

Markov chain. A given transmission is successful only if the underlying channel is

currently in the ON state.

Our basic assumption in this chapter is that the scheduler cannot observe the
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current state of any of the wireless links. Nonetheless, when the scheduler serves

one of the queues in a given time slot t, there is an ACK-feedback mechanism which

acknowledges whether the transmission was successful or not, thereby revealing the

channel state a posteriori. Since the channels are correlated across time by the Marko-

vian assumption, this a posteriori CSI can be used for predicting the channel state

of the chosen queue in future time slots. We emphasize that the ACK mechanism is

the only means by which CSI is made available to the scheduler.

The capacity region (or the rate region) of the system described above, is the set

of all arrival-rate vectors that are stably-supportable by some scheduling policy. Our

aim is to characterize the capacity region of the system, and to design a throughput

optimal scheduling policy.

The general problem of scheduling parallel queues with time-varying connectivity

has been widely studied for almost two decades. The seminal paper of Tassiulas and

Ephremides [64] considered the case where both channel states and queue lengths

are fully available to the scheduler. It was shown in [64] that the max-weight algo-

rithm, which serves the longest connected queue, is throughput optimal. Notably, the

algorithm stabilizes all rates in the capacity region, without requiring any a priori

knowledge on the arrival rates.

Following this paper, several variants of imperfect and delayed CSI scenarios have

been considered in the literature, see, e.g., [28,47,74,75] and references therein. How-

ever, our scheduling problem fundamentally differs from the models considered in

these references. Specifically, no explicit CSI is ever made available to the scheduler,

and acquiring channel state information is a part of the scheduling decision made at

each time instant. This adds significant difficulties to the scheduling problem.

Two recent papers consider the scheduling problem where the CSI is obtained

through an acknowledgement process, as in our model. In [1], the authors consider

the objective of maximizing the sum-rate of the system, under the assumption that

the queues are fully-backlogged (i.e., there is always data to send in each queue). It is

shown that a simple myopic policy is sum-rate optimal. The suggested policy keeps

scheduling the channel that is being served as long as it remains ON, and switches to
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the least recently served channel when the current channel goes OFF.

In [36], the authors propose a randomized round-robin scheduling policy for the

system, which is inspired by the myopic sensing results in [1]. Their policy is shown

to stabilize arrivals that lie within an inner-bound to the rate region. However, their

policy is not throughput optimal, and their method cannot be used to characterize

the capacity region.

Here, we propose a throughput optimal scheduling policy for the system. In

particular, the policy we propose can stabilize arrival rates that lie arbitrarily close

to the capacity region boundary, with a corresponding tradeoff in the computational

complexity. We also provide a characterization of the capacity region boundary, as

the limit of a sequence of LP solutions.

The scheduling problem we consider is related to the celebrated restless bandits

problem [71], which is known to be computationally difficult. In fact, every point

on the boundary of the capacity region can be implicitly expressed as the optimal

solution to a restless bandits problem. Such a solution involves solving an MDP with

a countably infinite state-space. Since obtaining this solution may be computationally

and analytically prohibitive, we approximate the original MDP by a finite-state MDP

with a 'tunable' number of states. We then employ a linear programming approach

to solve the resulting finite-state MDP [50].

We prove that the solution to the LP approximates the boundary of the capacity

region arbitrarily closely, where the accuracy of the approximation improves with the

number of states in the underlying finite MDP. Thus, there is a tradeoff between the

accuracy of the approximation, and the dimensionality of the LP.

Next, we combine the LP solution with a queue length based scheduling mecha-

nism that operates over long time-frames to obtain a dynamic scheduling policy for

the system. Our main result establishes that this 'frame-based' policy is through-

put optimal, i.e., can stably support all arrival rates in the interior of the capacity

region. Our proof of throughput optimality combines tools from Markov decision

theory within a Lyapunov stability framework.

The remainder of this chapter is organized as follows. The model is presented
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Figure A-1: A system of parallel queues served by a single server. The channels
connecting the queues to the server are randomly time-varying.

in Section A.2. In Section A.3, we formulate a linear program which leads to the

characterization of the capacity region. In Section A.4, we suggest the frame-based

policy, which we prove to be throughput optimal. We conclude in Section A.5.

A.2 System Description

The network model. We model the wireless system as consisting of N parallel

queues (see Figure A-1). Time is slotted (t = 1, 2,...). Packets arrive to each queue

i E {1, 2,..., N} according to an independent stochastic process with rate Aj. We

assume that the arrival processes are independent of each other, and independent and

identically distributed (i.i.d.) from slot-to-slot. We further assume that the number

of arrivals in a slot to each of the queues has a finite variance.

Due to the shared wireless medium, only a single transmission is allowed at a given

time. In our queuing model, this is equivalent to having the queues connected to a

single server, which is capable of serving only a single packet per slot, belonging to one

of the queues. Each queue is connected to the server by an ON/OFF channel, which

models time-varying channel quality of the underlying wireless link. If a particular

channel is OFF and the queue is chosen by the scheduler, the transmission of the

packet would fail, and the packet has to be retransmitted. If it is ON and chosen by

the scheduler, a single packet is properly transmitted, and an ACK is received by the

scheduler.
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Figure A-2: The Markov chain governing the time evolution of each of the channels
state Ci(t).

We denote the channel state of the i-th link at time t by Ci(t) E {ON, OFF}, i=

1,... , N. We assume that the states of different channels are statistically indepen-

dent of each other. The time evolution of each of the channels is given by a two

state ON/OFF Markov chain (see Figure A-2). Although our methodology allows for

different Markov chains for different channels, we shall assume for ease of exposition

that the Markov chains are identically distributed across users as shown in Figure A-

2. We further assume that e < 0.5, so that each channel is positively correlated in

time.

Information structure. At each time t, we assume that the scheduler knows the

current queue lengths Qi(t) prior to making the scheduling decision. Yet, no in-

formation about the current channel conditions is made available to the scheduler.

Only after scheduling a particular queue, does the scheduler get to know whether the

transmission succeeded or not, by virtue of the ACK-mechanism. The scheduler thus

has access to the entire history of transmission successes and failures. However, due

to the Markovian nature of the channels, it is sufficient to record how long ago each

channel was served, and the state of the channel (ON/OFF) when it was last served.

In addition to the above, the scheduler also knows precisely the statistical properties

of each of the channels (i.e., the Markov chain of Figure A-2).

Scheduling objective. Given the above information structure, our objective is to

design a scheduling policy that can support the largest possible set of input rates.

More precisely, an arrival rate vector A = (A,,... , AN) is said to be supportable, if

there exists some scheduling policy under which the queue lengths are finite (almost

surely). The capacity region F of the system is the closure of all supportable rate
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vectors. A policy is said to be throughput optimal if it can support all arrival rates

in the interior of F.

A.3 Optimal Policies for a Fully Backlogged Sys-

tem

In the interest of simplicity of notation and exposition, we restrict attention to the

case of N - 2 queues in the rest of the chapter, although our methodology extends

naturally to more queues. In this section, we assume that the queues are fully back-

logged, i.e., the queues never empty.

Since the queues are assumed to be infinitely backlogged in this section, the

state of the system is completely specified by the state of each channel the last

time it was served, and how long ago each channel was served. In a system with

two fully backlogged queues, the information state during slot t has the form s(t) =

[ki(t), bi(t), k2 (t), b2 (t)], where ki(t) is the number of slots since the queue i was served,

and bi(t) C {0, 1} is the state of the channel the last time it was observed.1 Since the

channels are Markovian, s(t) is a sufficient statistic for the fully backlogged system.

Note that min(ki(t), k2 (t)) = 1, V t, and max(ki(t), k2(t)) > 2 V t. Let S denote the

(countably infinite) set of all possible states s(t).

Denote the I step transition probabilities of the channel Markov chain in Figure A-
() (1) (1)2 by pj, pol, pio, and poa3. It can be shown by explicit computation that for I > 1,

(1) =P(1) 1 - (1 - 2e)l (1) ( P) 1 + (1 - 2c)l
Poi Pio 2 2

Next, define the belief vector corresponding to state s E S as [w1(s), W2 (s)], where

wi(s), i = 1, 2 is the conditional probability that the channel i is ON. For example,

if s = [1, ON, 3, OFF], the corresponding belief vector is [1 - e, p ]. It can be shown

that the belief vector has a one-to-one mapping to the information state, and is

'Throughout, 0 is used interchangeably to denote the channel state OFF, and 1 is used to denote
ON.
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therefore also a sufficient statistic for the fully backlogged problem.

In each slot, there are two possible actions, a E {1, 2}, corresponding to serving

one of the two queues. Given a state and an action at a particular time, the belief

for the next slot is updated according to the following equation.

(1 - e) i(t) + e(1 - wi(t)), if a(t) 7 i,

os(t + 1) =1- e, if a(t) = i, Ca(t)(t) = 1,

e, if a(t) i, Ca(t)(t) = 0,

where we have abused notation to write wi(t) wi(s(t)).

A policy for the fully backlogged system is a rule that associates an action a(t) E

{1, 2}, to the state s(t) for each t. A deterministic stationary policy is a map from

S to {1, 2}, whereas a randomized stationary policy picks an action given the state

according to a fixed distribution P {als(-)}.

Suppose that a unit reward is accrued from each of the two channels, every time a

packet is successfully transmitted on that channel, i.e., when the server is assigned to

a particular channel and the channel is ON. Given a state s(t) at a particular time,

and an action a(t), the probability that a unit reward is accrued in that time slot is

simply equal to the belief of the channel that was chosen. We are interested in the

long term time average rate achieved on each of the channels under a given policy.

From the viewpoint of the reward defined above, the average rate translates to the

infinite horizon time average reward obtained on each channel under a given policy.

We say that rate pair (A,, A2) is achievable in the fully backlogged system, if there

exists some policy for which the infinite horizon time average reward vector equals

(A,, A2). The closure of the set of all achievable rate pairs is called the rate region

A of the fully backlogged system. It should be evident that a rate pair that is not

achievable in the fully backlogged system, cannot be supportable in the dynamic

system with finite queues. Thus, the capacity region F of the queueing system is

contained in the rate region A of the fully backlogged system. In fact, we show in

Section A.4 that the two rate regions have the same interior, by deriving a queue

length based policy for the original system that can stabilize any arrival rate in the
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interior of A. We now proceed to obtain an implicit characterization of the rate region

boundary.

A.3.1 MDP formulation and state action frequencies

Let us consider a Markov decision process (MDP) formulation on the belief space for

characterizing the rate region boundary.

It is easy to show that the rate region A is convex. Indeed, given two points in the

rate region, each attainable by some policy, we can obtain any convex combination of

the rate points by time-sharing the policies over sufficiently long intervals. Further,

the rate region is also closed by definition. Therefore, any point on its boundary

maximizes a weighted sum- rate expression. That is, if (r*, r*) is a rate pair on the

boundary of A, then

(ri*, r*) = argmax(MM) Al- w2A2  (A.1)

for some weight vector w = [wi, w2), with w1 + w 2 = 1. The following proposition

shows that if the rate pair (A,, A2 ) is in A, then there must necessarily exist state

action frequencies that satisfy a set of balance equations.

Proposition A.1 Let (A,, A2 ) C A. Then, for each state s E S and action a E {1, 2},

there exists state action frequencies x(s; a), that satisfy

0 < x(s; a) 1, (A.2)

the balance equations (A.3)-(A.6),

x([1, bi, k, b2]; 1) + X(1, bi, k, b2]; 2)

x([1, b, k - 1, b2 ]; 1)(1 -e) + x([1, 1 - bi, k - 1, b2]; 1)e, k > 2, (A.3)
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x([1, bi, 2, b2]; 1) + x([1, bi, 2, 62] ; 2)=

x([l, bi, 1, b2]; 1)p' + x([l, 1 - bi, 1, b2]; 1)p , (A.4)
1>2

x([k, bi, 1, b21; 1) + x([k, bi, 1, b2]; 2) =

x([k - 1, bi, 1, b2 ]; 2)(1 - c) + x([k - 1, bi, 1, 1 - b21; 2)e, k > 2, (A.5)

x([2, bi, 1, b2]; 1) + x([2, bi, 1, b2]; 2)

x([1, bi, 1, b2 ); 2)p11 + x([1, bi, 1, 1 - b2]; 2)pg' , (A.6)
1>2

the normalization condition

x(s; 1) + x(s; 2) 1, (A.7)
sCS

and the rate constraints

A< E x (s; 0 i (s), i1 1, 2. (A.8)
sES

Proof: Follows from the linear programming formulation of countable MDPs [2]. E

Intuitively, a set of state action frequencies corresponds to a stationary randomized

policy such that x(s; a) equals the steady-state probability that in a given time slot,

the state is s and the action is a. Further, conditioned on being in state s, the action

is chosen with probability ,( where P {s} = x(s; 1) + x(s; 2). (If P {s} = 0, the

policy prescribes actions arbitrarily).

Let us now provide an intuitive explanation of the balance equations. Equations

(A.3)-(A.6) simply equate the steady-state probability of being in a particular state,

to the total probability of entering that state from all possible states. For exam-

ple, the left side of (A.3) equals the steady-state probability of being in the state

[1, bi, k, b2 ], k > 2, while the right side equals the total probability of getting to the
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above state from other states, and similarly for the other balance equations. Equation

(A.7) equates the total steady-state probability to unity. Finally, in Equation (A.8),

the term x(s; i)w(s) equals the probability that the state is s, the action i is chosen,

and the transmission succeeds. Thus, the right-side side of (A.8) equals the total

expected rate on channel i.

We now return to the characterization of the rate region boundary. In light of

Proposition A.1, Equation (A.1) can be rewritten as follows.

Problem INFINITE(w):

(r*,r*) arg max(,\, wiA + w 2A2  (A.9)

subject to (A.2)-(A.8).

Since the number of state-space of the MDP is countably infinite, the optimization

in (A.9) involves an infinite number of variables. In order to make this problem

tractable, we now introduce an LP approximation.

A.3.2 LP approximation using a finite MDP

In this section, we introduce an MDP with a finite state space, which as we show,

approximates the original MDP arbitrarily closely. The state action frequencies cor-

responding to the finite MDP approximation can then be solved as a linear program.

First note that the belief of a channel that has not been observed for a long time

increases monotonically toward the steady state value of 0.5 if it was OFF the last

time it was scheduled. Similarly, the belief decreases monotonically to 0.5 if the

channel was ON the last time it was scheduled. The key idea now is to construct a

finite MDP whose states are the same as the original MDP, with the exception that

the belief of a channel that remains unobserved for a long time is clamped to the

steady state ON probability, 0.5. Specifically, when a channel has not been scheduled

for T or more time slots, its observation history is entirely forgotten, and the belief
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on it is assumed to be 0.5. The action space and the reward structure are exactly

as before. We show that this truncated finite MDP approximates the original MDP

better and better, as r gets large.

Let us now specify the states and state action frequencies for this finite MDP.

There are 4(r -2) states of the form [1, bi, k2 , b2], 2 < k2 < T-1, bi, b2 E {ON, OFF}

that correspond to the first channel being scheduled in the previous slot, and the

second channel being scheduled less that T time slots ago. In a symmetric fashion,

there are 4(T-2) states of the form [ki, bi, 1, b2 ], 2 k1 < T-1, bi, b2 E {ON, OFF}

that correspond to the second channel being scheduled in the previous slot. Finally,

there are 4 states [1, bi, #, #, bi E {ON, OFF} and [#, #, 1, b2], b2 E {ON, OFF}

in which one of the channels has not been seen for at least 7 slots, and its belief

reset to 0.5. Let us denote by S the above set of states for the finite MDP, and let

i (s; a), s E $, a E {1, 2} denote the state action frequencies for the finite MDP.

These state action frequencies satisfy

0 < -(s; a) <1 (A.10)

S(s; 1) + i (s; 2) =1, (A. 11)
SES

<s J (s; i) wi (s), i1 1, 2, (A. 12)

and a set of balance equations analogous to (A.3)-(A.6).

For a fixed w and r, let us now consider the following LP.

Problem FINITE(r,w):

(f1 , 2 ) = arg max wi2 )W'' + w 2 2  (A.13)

subject to (A.10)-(A.12) and balance equations.

The main result of this section shows that the solution to this LP approximates
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the boundary point specified by the problem INFINITE(w) for every w, for large T.

Proposition A.2 2 For a given w with w1 +w 2 =1, and T, let ?(T, w) denote the so-

lution to the problem FINITE(T,w), and let r*(w) denote the solution to INFINITE(w).

Then, i(r, w) converges uniformly to r*(w), as T -s oo. In other words, given any

K > 0 and any w, there exists T0 > 0 that depends on r, but not on w, such that for

all T > To, we have

l(r, w) - r*(w)| < K.

Proof: The convergence of i/(r, w) to r* (w) for a fixed w follows from the classical

work of Whitt [69,70]. The difficulty is in proving that the convergence is uniform

across all w. Without loss of generality, we assume that w - (x, 1 - x) for x e [0, 1].

The main observation here is that the function f, : [0, 1] -± R that takes an element x

and returns i)(T, (x, 1 - x)) is a convex function for every T since it is the solution of a

parametric linear program [7]. It also follows that fT(0) and f,(1) is the same for all

T (since these are the cases where only one of the channels matters). Let's denote the

function f,(x) : [0, 1] - R to be a function that takes x and returns r*((x, 1 - x)).

Take a finite grid of points on [0, 1] denoted by G. We have convergence for every

g E G of f,(g) to f,(g) [69, 70]. Since these are all convex functions, a uniform

convergence for all values of x follows; see [52]. D

We next show a result that asserts that using the state action frequencies obtained

from the finite MDP in the backlogged system entails only a negligible sub-optimality,

when r is large. The finite MDP solution is applied to the backlogged system as fol-

lows. If the state in the backlogged system is such that both channels were served

no more than 7 time slots ago, then we schedule according to the state action fre-

quencies of that particular state in the finite MDP. On the other hand, if one of the

channels was served more than T time slots ago, the finite MDP would not have a

corresponding state and state action frequencies. In such a case, we schedule accord-

ing to the state action frequencies of one of the four states in the finite MDP in which

the belief is clamped to the steady-state value. For example, if the system state is
2The proofs of Propositions A.2 and A.3 were supplied by Prof. Shie Mannor. They are included

here for completeness.
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[1, bi, k2, b2], with k2 > r, we schedule according to the state action frequencies of the

state [1, bi, #, #] in the finite MDP, and so on.

Proposition A.3 Suppose that the optimal state action frequencies obtained by solv-

ing the problem FINIT E(7, w) are used to perform scheduling in a fully backlogged

system, as detailed above. Let i-(T, w) denote the average reward vector so obtained.

Then for every w with w1 + w2 = 1, we have that i'(r, w) converges uniformly to the

optimal reward r*(w), as T -+ o.

Proof outline: Proposition A.2 asserts that i1 (r, w) converges to r*(w) uniformly. It

therefore suffices to prove that fr(r, w) converges uniformly to i)(T, w). Indeed, we will

prove a stronger result claiming that this holds for any stationary policy for the finite

MDP, and not just for optimal policies under some w.

Suppose that we are given a stationary policy w defined on the truncated MDP

with a 'memory' of T, and let -F. be the extension of -F to the infinite state space

as discussed above. To complete the proof, we imitate the methodology of [69, 70].

While the details are lengthy and technical, the main observation that is required

to obtain uniform convergence is that the reward that is obtained in the finite MDP

for - is obtained in the same states as it is obtained for 7", for the infinite MDP

(and this is true for all w). The difference between the finite and infinite MDPs

in terms of transitions is only in the transitions out of the four additional states

[1, bi, 4, 0], bi e {ON, OFF} and [#, 4, 1, b2], b2 G {ON, OFF} that have the same

policy as the appropriate states where one of the queues was not visited for r steps

(by construction). As long as the transition is within these four states or within the

other states that are identical for the truncated and infinite MDPs, the rewards are

the same. Once there is a transition out of these states, the conditional transition

probability becomes becomes close as T increases (i.e., exiting each of the four states

has a conditional probability that becomes closer to the conditional probability when

exiting the matching states in the infinite MDP). The fact that the transitions are

becoming closer makes the value of the policies similar uniformly over all policies. El

We pause momentarily to emphasize the subtle difference between Propositions
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A.2 and A.3. Proposition A.2 asserts that optimal reward obtained from the finite

MDP is close to the optimal reward of the infinite MDP. In this case, the optimal

solution to the finite MDP is applied to the finite state-space. On the other hand,

in Proposition A.3, the optimal policy obtained from the finite MDP is used on

the original infinite state-space, and the ensuing reward is shown to be close to the

optimal reward. From a practical perspective, Propositions A.2 is useful in obtaining

a characterization of the rate region, while Proposition A.3 plays a key role in the

throughput optimality proof of the frame-based policy.

A.3.3 An outer bound

We now derive an outer bound to the rate region A, using 'genie-aided' channel

information. Although the bound is not used in deriving our optimal policy, it is of

interest to compare the outer bound we obtain to existing bounds in the literature.

Consider a fictitious, fully backlogged system in which the channel processes follow

the same sample paths as in the original system. However, after a channel is served

in a particular time slot, a genie reveals the states of all the channels in the system.

Therefore, at the beginning of a time slot in the fictitious system, the scheduler has

access to all the channel states in the previous slot, and not just the channel that

was served. Clearly, the rate region boundary for the genie-aided system is an outer

bound to the rate region of the original system.

Let us explicitly compute the above outer bound for our two queue system. Indeed,

there are only four possibilities for the channel states in the previous slots, {ON, ON},

{OFF, ON}, {ON, OFF}, and {OFF, OFF}. Furthermore, each of the states above

occurs with probability 1/4 in steady-state. Using these facts, we can explicitly obtain

the rate region for the genie-aided fictitious system.

Indeed, let A00 be the convex hull of the vectors (e, 0) and (0, e). Intuitively,

A00 is the set of all rate vectors that are achievable exclusively in the time slots

with {OFF, OFF} as the channel states in the previous slot. Similarly, let A01 =

C {(e, 0), (0, 1 - e)}, A10 = C {(1 - e, 0), (0, c)}, and Al1 = C {(1 - e, 0), (0, 1 - e)},

where C stands for convex hull. Then, the rate region of the fictitious system is given
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X=A ;> 0 A =(AOO + Aoi1 + AX10 + Ali),

where Aoo e Aoo, etc. The boundary of the region A can be explicitly characterized

in terms of e:
cA + (1 - e)A2 (1 - e)/2;

X = (A, I A) (1 - e)AI + eA2 <(1 - 6)/2; (A. 14)

A + A2 3/4 - c/2

A desirable property of the genie-aided outer bound is that it is tight at the

symmetric rate point for the two queue system with symmetric channels. In other

words, the symmetric rate point on the outer-bound, namely (3/8 - e/4, 3/8 - e/4), is

achievable in the original backlogged system. To see this, consider the myopic policy

which stays with a queue as long as its channel remains ON, and switches to the

other queue when it goes OFF. The sum throughput of this policy can be shown to

be 3/4 - e/2, by direct computation (see [1] for example). Since this sum throughput

is equally shared between the two channels, it follows that the symmetric rate point

on the outer bound is achievable.

Interestingly, the above argument also constitutes a simple optimality proof of

myopic sensing for the case of two symmetric channels. This is a special case of the

optimality result derived in [1] for any N.

A.3.4 Numerical examples

In this section, we use the finite LP approximation obtained in Section A.3.2 to nu-

merically compute and plot the capacity region for a two queue system. Specifically,

we use the solution to the problem FINITE(T,w) with large enough T, which, ac-

cording to Proposition A.2, uniformly approximates the rate region boundary for all

w. We also plot the genie-aided outer bound obtained above, and compare our rate

region and outer bound to the inner and outer bounds derived in [36].

Figure A-3 shows the numerically obtained rate region, the genie-aided outer

bound, and the inner and outer bounds derived in [36] for our symmetric two queue
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system. Figure A-3(a) is for the case e = 0.2 (higher correlation in time), while

Figure A-3(b) is for e = 0.4 (lower correlation in time). The rate region, shown with

a dark solid line, was obtained by solving the LP approximation FINITE(r, w) for

all weight vectors, and large enough T. We observed that T a 30 andT 10 were

sufficient for the cases c = 0.2, and e = 0.4, respectively. The dash-dot curve in the

figure is the genie-aided outer bound, given by (A.14). The achievable region of the

randomized round-robin policy proposed in [36], is shown by a dashed line. Finally,

the outer most region in the figure is the outer bound derived in [36].

The tightness of the genie-aided outer bound at the symmetric rate point is evident

from Figure A-3, since the rate region boundary touches the outer bound. We also

observe that the genie-aided bound is uniformly better than the outer bound in [36].

A.4 A Throughput Optimal Frame-Based Policy

In this section, we return to the original problem, with finite queues and stochastic

arrivals. We propose a throughput optimal queue length based policy that operates

over long 'frames.'

In our frame-based policy, the time axis is divided into frames consisting of T slots

each, and the queue lengths are updated at the beginning of each frame. Given the

queue length vector Q(kT) at the beginning of each frame, the idea is to maximize

a weighted sum rate quantity over the frame, where the weight vector is the queue

length vector for that frame. The weighted rate maximization is, in turn, performed

approximately by solving the finite MDP. Intuitively, the above procedure has the

net effect of performing max-weight scheduling over each time-frame, where MDP

techniques are employed to compute each of the 'optimal schedules.'

FRAME-BASED POLICY:

(i) At the beginning of time frame k, update the queue length vector Q(kT).

(ii) Compute the normalized queue length vector Q(kT), whose entries sum to 1.
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(iii) Solve the problem FINITE(T, Q(kT)) and obtain the state action frequencies

i(s, a), s E S , a E { 1, 2}.

(iv) Schedule according to the state action frequencies obtained in the previous step

during each slot in the frame, even if it means scheduling an empty queue.

Our main result in the chapter is the throughput optimality of the frame-based

policy, for large enough values of T and T. Specifically, our frame-based policy can

stabilize all arrival rates within a 6-stripped region of A, for any 6 > 0. As we shall see,

a small 6 could require large values of T and T, which increases the dimensionality of

the LP (depends on T) as well as the average delay (depends on T). Thus our policy

offers a tradeoff between computational complexity and delay on the one hand, and

better throughput on the other. Our main theorem is stated below. Note also that

our policy requires queue length information only at the beginning of each time frame.

Theorem A.1 Given any 6 > 0, there exist large enough T and T such that the

frame-based policy stabilizes all arrival rates in the 6-stripped rate region A - 61.

Proof: Let us define the Lyapunov function

L (Q (t)) = Q2 (t)

and the corresponding drift over a frame

AT(kT) = E [L(Q((k + 1)T)) - L(Q(kT)) Q(kT)].

Using the queue evolution relation

Q (t + 1) = Q2 (t) + Ai(t) - Di(t),

where Ai(-) and Di(.) respectively denote the arrival and departure processes from

the ith queue, we can easily arrive at the following bound on the T step Lyapunov
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drift.

AT(kT)/T < B + Qi(kT) A -( Q(kT)E [ E Di (kT + o-)IQ(kT)1, (A.15)

where B is a constant. The above expression holds for any policy. In order to

particularize the bound, we need to bound the departure term in (A.15) for the

frame-based policy.

We now pause to make some definitions. Define

1

WT(kT) = ( Qi(kT() ( Di(kT +u).
i ~a=0O

Next, define Di(t) as the departure process from a fully backlogged system when our

frame-based policy is used on it. That is, D(t) is the same as the departure process

Di(t) in the original system, except there are no lost departures due to empty queues.

Define

bT(kT) = Q (kT) (E bi(kT +0).
( UO

Given any weight vector w, let r*(w) denote the rate vector on the boundary of the

original capacity region A that maximizes the w-weighted sum of rates. Define

R*(kT) = ( Q2 (kT) r(Q(kT)).

Next, for the same weight vector w, let F(w, 7) denote the weighted rate maximizing

point in the truncated MDP. Define

R(kT) = ( Qi(kT) ri(Q(kT),Ir).

Observe that r*(-) and F(-, T) are deterministic vectors, once the weight vector and

the truncation threshold T are fixed. On the other hand, bi(-) is a random variable,

which is determined by the channel outcomes and the outcomes of the randomized

actions dictated by the state action frequencies.
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Our next result states that the mixing of the finite MDP is exponential in time,

so that the empirical average reward obtained over a long frame of length T is very

close to the infinite horizon reward of the finite MDP.

Lemma A.1 Regardless of the starting state, we have, V K > 0

P 1 T-1

T Z)(kT + -) - T(Q(kT), T)
U=O

K

2
< ces(*)T

Proof: Follows from [39].

Let us now get back to the drift expression (A.15), and rewrite it as

AT(kT)/T < B + ( Q(kT)Aj - E [WT(kT)|Q( kT)]

= B+( Qi(kT)

< B + Qi(kT)

- r(Q(kT))] + E [R*(kT) - WT(kT)|Q(kT)]

+ E |R* Q(kT)]

+ E |E(kT) - WT(kT) I Q(kT)]. (A.16)

We now bound the two expectation terms in the RHS of (A.16). First, we have

E [IR*(kT) - R(kT) | Q(kT)] = E < Q(kT), r*(Q(kT)) - !;(Q(kT), T) > | Q(kT)]

< E [IIQ(kT)II ||r*(Q(kT)) -- f(Q(kT),T)II Q(kT)]

< KIQ(kT)I.

(A.17)

(A.18)

where (A.17) follows from Schwarz Inequality, and (A.18) is due to Proposition A.3

for large enough T.

We next bound the second expectation term in (A.16) as shown in (A.19).

E [E(kT) - WT(kT)I Q(kT)] < E | [r(kT - WT(kT)I Q(kT), |R(kT) - WT(kT)I < KQ(kT)

.P { R(kT) - WT(kT)| < |IQ(kT)II Q(kT)} +
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E [R(kT) - WT(kT) \ Q(kT), IR(kT) - WT(kT)I > r-||Q(kT) ii

-P {|R(kT) - WT(kT)| > r||Q(kT)II Q(kT)}

| + Qi(kT)) P {IR(kT) - WT(kT)I > n||Q(kT)fl Q(kT).

Let us now bound the final probability term in (A.19):

P {|R(kT) - WT(kT)| > rI|Q(kT)I| Q(kT)} <

P {|R(kT) - bT(kT)\ > |IQ(kT)H| Q(kT)}

+P fIbT(kT) - WT(kT)|> |"1Q(kT)|| Q(kT)}

r(Q(kT), T)
1

T-1
b(kT + > ' Q(kT)2

+ P bE(kT + T) - D(kT + o-)

where the final bound is due to the Schwarz Inequality. In the RHS of the above

inequality, the first probability term is bounded by Lemma A.1. To bound the second

term, note that the difference ET_~I) b(kT + -) - ET D(kT + a) represents the

number of lost rewards over a frame due to empty queues. In particular, if each queue

in the system has at least T packets at the beginning of the frame, this difference is

zero. Thus,

P { b(kT +-) - YZD(kT
TO

+0) >LI Q(kT)
2

< 1Q(kT)<T.1.

Let us now return to (A.19) and upper bound the RHS as

< ||Q(kT) |+ ( Qi(kT))

< (QikT)

(ce(I.)T + 1Q(kT)<T.1)

(r, + ce ) + NT,
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where N is the number of queues. We can now use the above bound on the RHS of

(A.19), along with (A.18) to upper bound the drift in (A.16).

AT(kT)/T B+ Qi(kT) [Ai -r<(Q(kT))]+ Qi(kT) (2 +ce-n()T)+NT.

(A.20)

Let 6 2, + ce-(,)T. Assume now that the input rate vector A lies in the interior of

the 6-stripped region A - 61. That is, there exists a ( > 0 such that A + 1 =r -- (1,

for r c A. Thus,

AT(kT)/T B + NT + Qi(kT) [ri - r(Q(kT))]- ( Qi(kT) (.

Finally, noting that E> Qj(kT) [ri - r*(Q(kT))] < 0 by the definition of r*(Q(kT)),

we get

AT(kT)/T < B + NT - Qj(kT) .

This shows that the system is stable under our frame-based policy for arrival rates

inside the 6-stripped region A - 61. Since 6 can be made arbitrarily small by choosing

sufficiently large values for T and T, our policy can support rates arbitrarily close to

the capacity region boundary, with a corresponding tradeoff in delay and computa-

tional complexity.

A.4.1 Simulation results for the frame-based policy

We now provide some basic simulation results for the frame-based policy. In Figure A-

4, we plot the average queue length of one of the queues, under the frame-based policy,

as a function of the arrival rate. We take c = 0.25, and consider a symmetric rate

scenario, where independent Poisson traffic of equal rates feeds the two queues. Each

simulation run was carried out over ten thousand frames, with a frame sizes of T = 10

and T = 50 in Figure A-4(a) and Figure A-4(b), respectively.

Under this symmetric traffic scenario, the theoretical boundary of the capacity

region lies at (A, A2 ) = (0.3125, 0.3125). The first observation we make from the
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Figure A-4: The average queue length as a function of the symmetric arrival rate
under the frame-based policy, for (a) T = 10 and (b) T = 50.
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figure is that the frame-based policy easily stabilizes arrival rates up to 0.29 even for

small frame sizes such as T = 10. There is considerable queue build-up at (Al, A2 )

(0.3,0.3), and very large build up when the symmetric rate equals 0.31.

Another interesting point to note from the figure is that in heavy traffic, the

average queue length when T = 50 is roughly a factor of five larger than when

T = 10. This conforms to the theoretical prediction that the frame-based policy

inherently suffers from an O(T) average congestion level in the queues. This implies

that although the frame-based policy is theoretically optimal for large T, it is possible

that for a given traffic rate, a large frame size leads to considerable delay.

A.5 Conclusions

In this chapter, we studied the problem of scheduling over uncertain wireless channels,

where channel state information can only be indirectly obtained, using past successes

and failures of transmissions. We showed that the capacity region boundary for such

a system can be approximated arbitrarily well by a sequence of LP solutions. We

then incorporated the LP solution into a queue length based scheduling framework,

to obtain a throughput optimal policy for the system.

Although we explicitly dealt with a two channel symmetric setting, our method-

ology extends naturally to more than two asymmetric channels. However, when the

number of channels becomes asymptotically large, the dimensionality of the LP ap-

proximation increases exponentially in the number of channels. In such a case, it may

be more practical to resort to the sub-optimal policy from [36]. On the other hand,

for relatively small system sizes (N ~ 10), our method may entail solving an LP with

a dimensionality of a few thousands, which is not prohibitive in today's setting.

For future work, it would be interesting to obtain structural properties of optimal

policies for the backlogged system. For example, we believe that threshold policies

should be sufficient to achieve the rate region boundary. If this is indeed the case, we

can use a simple threshold policy over long frames to obtain a throughput optimal

policy, instead of solving a large LP in every frame.
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