
Copyright

by

ChangWoo Yang

2007

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UT Digital Repository

https://core.ac.uk/display/5181164?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

The Dissertation Committee for ChangWoo Yang

certifies that this is the approved version of the following dissertation:

Large Deviations Analysis of

Scheduling Policies for a Web Server

Committee:

Sanjay Shakkottai, Supervisor

Ari Arapostathis

Vijay Garg

John Hasenbein

Srinidhi Varadarajan

Gustavo de Veciana

Large Deviations Analysis of

Scheduling Policies for a Web Server

by

ChangWoo Yang, B.S.E.;M.S.E.

Dissertation

Presented to the Faculty of the Graduate School of

The University of Texas at Austin

in Partial Fulfillment

of the Requirements

for the Degree of

Doctor of Philosophy

The University of Texas at Austin

December 2007

With love,

to my family

Acknowledgments

I would like to express my deepest gratitude and appreciation to Prof. Sanjay Shakkottai

for his guidance, support, patience, and encouragement throughout this long journey. It was

his valuable scholarly advice and generous support that helped the most to finish my PhD.

I feel very fortunate and extremely proud to have worked withhim.

I am indebted to my dissertation committee members, Prof. Ari Arapostathis, Prof.

Vijay Garg, Prof. John Hasenbein, Prof. Srinidhi Varadarajan, and Prof. Gustavo de Ve-

ciana for their insightful and constructive comments that helped me to improve the quality

of my work to a great extent. In addition, I would like to extend my sincere thanks to Prof.

JaiYong Lee at the Yonsei University for his warm advice and constant support.

Most of all, I am extremely grateful to my parents, ByungHo Yang and YoungHee

Park. They have been a source of unconditional love, encouragement, and belief for which

I would not have reached so far. Thank you to my parent in law for their many prayers and

concern for my well-being. Also, my thanks goes to old friends in Korea and new friends

that I have made during my graduate studies. Lastly, I express my deepest thanks to my

wife YoungIhn Koh for her heart warming encouragement, loveand support. I love you

with all my heart and soul.

v

Large Deviations Analysis of

Scheduling Policies for a Web Server

Publication No.

ChangWoo Yang, Ph.D.

The University of Texas at Austin, 2007

Supervisor: Sanjay Shakkottai

With increasing demand and availability of bandwidth resources, there has been tremen-

dous growth in the scale and speed of web servers. In web servers, scheduling plays an im-

portant role in resource allocation (for instance, bandwidth allocation, processor allocation,

etc). However, as the scale of a system increases so does the number of activities/events

in the system (e.g., job arrivals), as a consequence of whichthe analysis of scheduling

becomes increasingly harder. In particular, the possible ways in which scheduling failure

(e.g., queue overflow, excessively large delay, instability of a system) can occur becomes

increasingly greater, thus making it more difficult to understand the behavior and develop

design rules for scheduling algorithms. However, a well-known observation from large de-

vi

viations theory that large scale systems fails in a “most likely way” can potentially be used

to simplify the design and analysis of scheduling. In this thesis, we study the implications

and applications of this effect on scheduling in a web server accessed by a large number of

sources.

We analyze the delay distribution of scheduling policies for web servers under a

many sources large deviation regime which models web servers in a large scale system

well. Due to the difficulties brought on considering a large number of sources, only a small

number of scheduling policies, such as First-Come-First-Serve (FCFS), General-Processor-

Sharing (GPS), and Priority Queueing policies have been analyzed under the many sources

regime. In particular, in a single queue single server setupthe delay characteristics of only

FCFS, Shortest-Job-First (SJF), and Longest-Job-First (LJF) has been analyzed.

In this thesis, we study the Two-Dimensional-Queueing (2DQ) framework, a uni-

fying queueing framework that allows the identification of the “most likely way” in which

delay occurs, to analyze the delay of various unexplored scheduling policies. In conjunction

with the 2DQ framework, we develop a new “cycle based” technique for understanding the

large deviations tail probability of more complex policies.

Using the combination of the 2DQ framework and the cycle based analysis, we

first analyze two interesting scheduling policies, i.e., Shortest-Remaining-Processing-Time

(SRPT) policy (which is mean delay optimal) and Processer-Sharing (PS) policy (which is a

“fair” policy). We derive the asymptotic delay distributions (rate functions) of both policies

and study their behavior across job sizes. Next, we address three problems in implementing

the aforementioned scheduling policies: (i) end receiversmay have bandwidth constraints

that are not taken account in SRPT, (ii) the remaining processing time information might

not be available to the web-server, and (iii) most actual implementations are variants of

SRPT to reflect other implementation constraints and/or to jointly optimize other metrics

in addition to delay, i.e., jitter, fairness, etc. To address these, we first develop finite-SRPT

that takes into account the bandwidth constraint at the end receiver, and show that the policy

vii

shifts between SRPT and a PS-like policy depending on the bandwidth constraint. Second,

we study the Least-Attained-Service (LAS) policy which is viewed as a good substitute

for SRPT when the remaining job size is not available and we analyze the penalty associ-

ated with not using the remaining size information directly. Lastly, we analyze a class of

scheduling policies known as SMART that contains many variants of SRPT with different

fairness properties and show that all policies in the class have the same tail probability of

delay across job sizes for a many sources regime. The resultsof this thesis facilitate the

understanding of various scheduling policies under the many sources regime and provides

an analytical queueing framework that can be used to understand other scheduling policies.

viii

Contents

Acknowledgments v

Abstract vi

List of Tables xii

List of Figures xiii

Chapter 1 Introduction 1

1.1 Summary . 1

1.2 Main Contributions . 6

1.3 Organization . 7

Chapter 2 The Basic System Model 8

2.1 The System Setup . 9

2.2 Many–Sources Large–Deviations Regime 10

2.3 Brief Overview of Scheduling Policies 13

Chapter 3 SRPT 15

3.1 Background and Related Work .15

3.2 Main Contributions and Intuition 17

3.3 Numerical Analysis . 23

ix

Chapter 4 SMART 25

4.1 Background and Related Work .25

4.2 Two Dimensional Queueing Framework 28

4.3 Intuition . 31

4.4 Main Contributions . 32

4.4.1 SMART for Large Deviations . 32

4.4.2 Analytical Result . 33

4.5 Numerical Analysis . 38

Chapter 5 LAS 42

5.1 Background and Related Work .42

5.2 Intuition . 44

5.3 Main Contributions . 46

5.4 Numerical Analysis . 50

Chapter 6 finite-SRPT 54

6.1 Background and Related Work .54

6.1.1 Definition and explanation of finite-SRPT 55

6.2 Intuition . 56

6.3 Main Contributions . 59

6.3.1 Characteristics of finite-SRPT 59

6.3.2 The delay decay rate of finite-SRPT61

6.4 Numerical Analysis . 67

Chapter 7 Discrete Processor Sharing 69

7.1 Background and Related Work .69

7.2 Two Dimensional Queueing Framework with cycles 71

7.3 Intuition . 72

7.3.1 PS in discrete time . 72

x

7.3.2 Discrete PS described through 2DQ framework with cycles 73

7.4 Main Contributions . 77

7.5 Numerical Analysis . 83

Chapter 8 Concluding Remarks 85

Appendix A Proof of Theorems 88

A.1 Proof of Theorem 3.2.1 . 88

A.2 Proof of Theorem 3.2.2 . 92

A.3 Proof of Theorem 4.4.1 . 95

A.4 Proof of Theorem 5.3.1 . 101

A.4.1 Lower bound of the decay rate . 101

A.4.2 The delay decay rate (a tight upper bound) 104

A.5 Proof of Theorem 6.3.1 . 107

A.5.1 Lower bound on the decay rate . 107

A.5.2 Upper bound of the decay rate . 113

A.6 Proof of Theorem 7.4.1 . 116

A.6.1 Lower bound of the delay decay rate of discrete PS 116

A.6.2 Tight upper bound of the delay decay rate of discrete PS. 120

Bibliography 122

Vita 127

xi

List of Tables

2.1 Notations frequently used in the dissertation. 11

2.2 Overview of scheduling policies. 14

xii

List of Figures

2.1 Illustration of many sources framework. In the many sources large devia-

tions framework, we consider the probability of large deviations from the

mean when the system is accessed by a large number of sources and is

served by a server with capacity that increase in proportion. 9

3.1 Illustration of the delay decay rate of size 1 andM jobs for SRPT compared

with FIFO. The decay rate of size 1 jobs for SRPT is actually infinite since

the setup ensures that all size 1 jobs are served as soon as they arrive. It is

depicted as a horizontal line for viewing purpose. Note thatthe decay rate

of sizeM jobs for SRPT approaches that of FIFO as theM increases while

the difference for size 1 jobs remains large (actually grows for large M). . . 23

4.1 Illustration of the Two Dimensional Queueing (2DQ) Framework. The left

figure depicts the basic form of the 2DQ framework which is basically a

collection of virtual queues arranged in a grid to reflect thestate of the

system. The right figure depicts the 2DQ representation for SMART where

the X-axis is the original size and the Y-axis is the remaining processing

time of a job. 29

xiii

4.2 Illustrations of the two dimensional queueing framework for SMART. Note

that since a job cannot have remaining size larger than its original size only

the lower right triangle of Figure 4.1 is of importance. The progression of

a job between queues while in the system is illustrated in (a). The priority

structure for an incoming job is shown in (b) and for a partially served job

is shown in (c). 30

4.3 Plot of the rate of convergence of SRPT, PSJF, and RS to thedecay rate

under the uniform workload withM = 16, ρ = 0.8, andm = 4. The

asymptotic decay rate is shown as a dotted line. Note that only the decay

rates of the larger sizes are shown because only these can be estimated

accurately in simulation since a large delay for smaller jobsizes is a very

low probability event asN grows. Though not shown here, we found similar

convergence rates under other policies in SMART-LD. 38

4.4 Plot of the decay rate as a function of the thresholdm under the power-law

and the high variability workload under SMART-LD with the maximum job

sizeM = 16 andρ = 0.8. Each line in the figures corresponds to the decay

rate of delay experienced by a specific job sizek. The decay rate of FCFS

is included as a benchmark. Note that since decay rates of size 1 jobs are

infinite, they are omitted. 39

4.5 Plot of the decay rate as a function of the maximum job sizeM under the

power-law and the high variability workload under SMART-LDwith the

thresholdm = 4 andρ = 0.8. Each line in the figures corresponds to the

decay rate of delay experienced by a specific job sizek. The decay rate of

FCFS is included as a benchmark. Note that since decay rates of size 1 jobs

are infinite, they are omitted. .40

xiv

5.1 Illustration of the 2DQ representation for LAS. As depicted the X-axis is the

original size and the Y-axis is the attained service of a job,where attained

service is the amount of service a job has received so far. 44

5.2 Illustrations of the two dimensional queueing framework for LAS. Note that

since a job cannot have attained service larger than its original size only the

upper right triangle of Figure 5.1 is of importance. The progression of a

job between queues while in the system is illustrated in (a).The priority

structure for an incoming job is shown in (b) and for a partially served job

is shown in (c). 45

5.3 Plot of the rate of convergence of SRPT to the decay rate under the uniform

workload withM = 16, ρ = 0.8, andm = 4. The asymptotic decay rate is

shown as a dotted line. Note that only the decay rates of the larger sizes are

shown because only these can be estimated accurately in simulation since a

large delay for smaller job sizes is a very low probability event asN grows.

Though not shown here, we found similar convergence rates under other

policies in SMART-LD. 49

5.4 Plot of the decay rate as a function of the thresholdm under the power-law

and the high variability workload under SMART-LD with the maximum job

sizeM = 16 andρ = 0.8. Each line in the figures corresponds to the decay

rate of delay experienced by a specific job sizek. The decay rate of FCFS

is included as a benchmark. Note that since decay rates of size 1 jobs are

infinite, they are omitted. 50

xv

5.5 Plot of the decay rate as a function of the maximum job sizeM under the

power-law and the high variability workload under SMART-LDwith the

thresholdm = 4 andρ = 0.8. Each line in the figures corresponds to the

decay rate of delay experienced by a specific job sizek. The decay rate of

FCFS is included as a benchmark. Note that since decay rates of size 1 jobs

are infinite, they are omitted. .51

5.6 Plot of the delay rate function as a function of the job size, k, with the

thresholdm = 20 and maximum job sizeM = 16 held fixed. Recall

that IW(k,m) measures the rate function ofPr(W(k) > m) and that a larger

IW(k,m) indicates a stochastically smaller delay. 52

6.1 Finite-SRPT and two dimensional queueing framework. The left-most fig-

ure depicts the path that a job should take for it to be fully serviced. X-axis

is the original size of a job and Y-axis is the remaining size of a job. Thus

a job of original sizek upon receiving service progresses downward until

it is fully served, i.e., remaining processing time is 0. However, different

sized jobs require different numbers of rounds ofD units of service in finite-

SRPT. jobs of sizek ≤ D will be fully served in one round, while jobs with

sizeD < k ≤ 2D require two rounds of service to leave the system. 56

6.2 Priority scheme for a tagged job of size k, whereD < M ≤ 2D. As depicted

in the figures, all fictitious queues in the shaded area are of higher priority.

Correspondingly, lower priority queues are the fictitious queues in the non-

shaded area. The higher priority area is composed of typicalhigher priority

jobs represented as the thick diagonal lines and atypical jobs are in the rest

of the shaded area. 57

xvi

6.3 Finite-SRPT described with respect to SRPT and PS. Finite-SRPT occu-

pies a region between SRPT and PS for varying values ofD. WhenD = M,

finite-SRPT is equivalent to SRPT. Finite-SRPT atD = 1 is a scheduling

policy very close to PS but different in the fact that only jobs with smaller

remaining processing time are served before the tagged job in a cycle in-

stead of all jobs in the system. 60

6.4 Delay decay rate of job sizes 1, 2, 4, 6, 8, for varyingD = {2, 4, 8}, exceed-

ing the thresholdm= 5 is depicted. X-axis is the original size of the tagged

job and y-axis is the actual numerics of the delay decay rate.. 67

7.1 Illustration of the two queue representation of the discrete PS operation.

The queue with the star arrow is the queue that is active, i.e., queue being

served. A job receives a unit whence it is transferred to the other queue

without the star arrow, i.e., the inactive queue. When all jobs leave the

active queue, the other queue becomes active where the process repeats

again. 72

7.2 Illustration of the infinite queue representation. The argument is given that

the infinite queue representation is equivalent to the two queue representa-

tion of discrete PS. 73

7.3 Illustration of the 2DQ with cycles representation of the discrete PS schedul-

ing policy. The 2DQ representation follows the two queue representation

and provides a tractable framework that makes the analysis of discrete PS

possible. 74

7.4 Illustration of the progress of a tagged size 3 job in the 2DQ representation.

Note that the transition of active queues in the two queue representation

is expressed as the sequence of multiple 2DQs with strict priority between

them. 75

xvii

7.5 Illustration of the 2DQs representing the state of the system for a tagged job

of sizek after time slot 0. We denote 2DQ/0 as the inactive 2DQ at time 0,

i.e., the 2DQ that receives new arrivals at time 0. Active cycle denote the

time interval that the respective 2DQ is active and the job arrivals are the

actual arrivals that the particular 2DQ receives. Note thatfor sizek tagged

job only 2DQs ranging from 2DQ/0 to 2DQ/k are relevant since the tagged

job is fully served and leaves the system in 2DQ/k. 76

7.6 Illustration of the 2DQs representing the state of the system for a tagged

job of sizek before time slot 0. The 2DQ number is assigned relative to

2DQ/0. The last 2DQ corresponds to the 2DQ that receives job arrivals at

the start of the busy period, whereT∗ − 1 is the last time before time slot 0

that the system was empty. 77

7.7 Illustration of the simplification of the past 2DQs. As depicted the unknown

number of 2DQs after 2DQ/k − M can all be combined into a single 2DQ

that represent the 2DQ with the corresponding job arrivals that need to be

fully served before the tagged job leaves the system. This simplification is

one of the key observations that make the analysis of discrete PS possible. . 81

7.8 Illustration of the multiple resolution of 2DQ framework for discrete PS

with respect to cycles. The figure shows the simplification ofthe past 2DQs

and the additional resolution of 2DQ/0 where the priority scheme before

and after time 0 is different. 82

xviii

7.9 Plot of the delay decay rate of discrete PS under the exponential distribution

with ρ = 0.8, m = 5, andC = 1 for jobs sizes 1, 3, and 5. The asymptotic

decay rate of discrete PS shows that even the exponential decay rate of

discrete PS is dependent on the job size where the decay rate decreases for

larger jobs, i.e., slightly favors small jobs. However, compared to SRPT

and LAS the discrete PS policy does not favor small jobs as much. The

delay decay rate of SRPT and LAS for size 1 jobs are actually infinite, but

depicted as finite to able to compare the delay decay rate of other job sizes. 83

A.1 Illustration of the bounds ofθ∗ that are used to prove Theorem A.2.1. As

shown in the figure, we constructfk(θ) that lower boundsΛAk,0(θ) for all θ. 92

A.2 Illustration of the lower and upper bound of the actual delay with respect to

the virtual delay. The lower bound shows that the actual job can leave the

system only if the virtual job leaves the system, i.e., reaches the head of the

queue. The upper bound shows that if the virtual job behind the additional

sizek job reaches the head of the queue then the actual job is guaranteed to

be fully served. 95

A.3 Priority scheme for a tagged job of size k, whereD < M ≤ 2D. The higher

priority area is composed of typical higher priority jobs represented as the

thick diagonal lines and atypical jobs are in the rest of the shaded area that

represent the atypical jobs. .110

xix

Chapter 1

Introduction

1.1 Summary

With increasing demand and availability of bandwidth resources, there has been tremen-

dous growth in the scale and speed of computer system networks. In such a large scale

system, it is understood that various limited resources must be shared efficiently. Specif-

ically, scheduling is a key consideration for efficient resource allocation. Thus, exploring

numerous effects and applications of scheduling in large scale systems is a crucial step in

understanding the current Internet.

Models used to understand computer systems tends to capturethe properties of

small to medium sized systems better than a large scale system. Extension of these models

to large scale systems mostly entails approximations or omissions of important characteris-

tics of large scale systems. Understanding scheduling under a model specifically tailored to

capture the properties of large scale systems is important to precisely understand how and

why scheduling policies behave as they do in current computer systems.

In this dissertation, we consider the many sources regime for the analysis and mod-

eling of scheduling in web servers in a large scale system. The many sources regime models

web servers in large scale systems well in that the regime portrays the increasing number of

1

sources/flows evident in the Internet. In addition, to accommodate the huge amount traffic

due to the increased number of sources, most service providers in turn have increased the

capacity of their servers as well as their queue size. The many source regime captures this

trend well by scaling the number of arrival flows along with the capacity and the queue

size. Thus, analysis of scheduling policies under the many sources regime provides a more

accurate understanding of scheduling in current day web servers.

It is natural to expect that considering web servers in a large scale system would lead

to increased complexity which would make analysis and modeling of scheduling difficult,

which has certainly been the reason behind the scarcity of the analysis of scheduling in

a many sources regime. However, we use the intuition that thesample path behavior of a

large scale system can be characterized by a single “most–likely trajectory”. In other words,

as the number of sources scales, minor fluctuations away fromthe most-likely behavior of

scheduling can be effectively ignored and as a result the main characteristics ormodes of

behavior sufficiently describes and models scheduling. Based on such intuition, we study

the delay performance of scheduling policies in web serversaccessed by a large number of

sources.

Considering the emphasis on QoS in computer systems, an important delay perfor-

mance to consider is the tail probability of delay. In this context, we are interested in the

probability that the delay experienced by a user exceeds some threshold in a web server ac-

cessed by many sources. In particular, the decaying trend ofthe probability (rate function)

of delay experienced by a typical job exceeding a threshold (Complementary Cumulative

Distribution Function (CCDF) of delay) in a web server is derived under the many sources

large deviations framework1 [8, 10, 24]. Due to the complexity of large scale systems, only a

few scheduling policies, such as First-In-First-Out (FIFO) [10], General-Processor-Sharing

(GPS) [26], and Priority Queueing policies [13, 38] have been analyzed under the many

1The many sources large deviations framework basically states that the probability of rare event occurring
(CCDF of delay in our case) decays exponentially with a specific exponent (the rate function) as the system
becomes large (the many sources regime).

2

sources large deviations framework. This is due to the fact that as the scale of the sys-

tem increases so does the number of activities/events in the system (e.g., job arrivals), as

a consequence of which the possible ways in which a user experiences delay exceeding a

threshold can occur becomes increasingly large, thus making it more difficult to understand

the behavior and develop design rules for scheduling algorithms.

As a step toward completing the picture for delay analysis ofscheduling policies,

we study schedulers with a single server and a single queue inthe many sources large

deviations regime. In this context, only the delay distribution of FIFO [10], Shortest-Job-

First (SJF), and Longest-Job-First (LJF)2 have been reported in literature. Numerous other

scheduling policies, such as schedulers that prioritize jobs with respect to the remaining

processing time, and attained service of jobs, have escapedanalysis due in large part to the

increased complexity in large scale systems.

In this dissertation, we study the Two-Dimensional-Queueing (2DQ) framework

[48], a novel unifying queueing framework that allows the analysis of delay experienced by

a user for various scheduling policies in the many sources large deviations regime. The 2DQ

framework is a collection virtual queues ordered in such a way that accurately describes the

state of the system at all times. More importantly, the system of virtual queues allows

consistent and coherent separation of higher and lower priority areas and in some cases no

priority areas of virtual queues with respect to the job under consideration.

In conjunction with the 2DQ framework, we develop a new “cycle based” technique

for understanding the large deviations tail probability ofmore complex policies. Such com-

plex scheduling policies possess priority schemes that cannot be completely described

using a single 2DQ, i.e., 2DQ framework. We improve upon the 2DQ framework to mul-

tiple 2DQs, i.e., multiple collection of virtual queues, where each 2DQs are “active” in

well defined time intervals (cycles). The multiple 2DQs facilitates analysis by capturing

the additional prioritization in the more complex scheduling policies.

2The delay distribution of SJF and LJF can be derived by a simple application of the results on Priority
Queueing scheduling policy [13, 38].

3

We first analyze two interesting scheduling policies, the Shortest-Remaining-Processing-

Time (SRPT) policy through the 2DQ framework and the Processer-Sharing (PS) policy

using 2DQ framework in conjunction with the cycle based analysis. SRPT is an interesting

policy since it is optimal in delay performance, i.e., SRPT is shown to possess the smallest

mean delay compared to any work conserving scheduling policy [37]. On the other hand,

at the other end of the spectrum are scheduling policies thatare fair. In the literature, PS

has been regarded asthe fair policy in various metrics, i.e., fair distribution of the capacity

[22, 23], slowdown3 [42], etc. By understanding these two scheduling policies that exem-

plify scheduling policies that possess good mean delay characteristics and that are fair in

delay, we believe that a better grasp of other scheduling policies can be achieved. In partic-

ular, we derive the asymptotic (asymptotic in the number of sources) delay distributions of

both scheduling policies and study their behavior across job sizes.

Next, we address the following three problems in implementing the aforementioned

scheduling policies.

(i) SRPT services a single highest priority job until it is fully served and leaves the

system or until a job of even smaller remaining processing time arrives to the system

whence it will be preempted. Thus the ideal SRPT model assumes that a job receives

the full capacity of the web-server during the duration of its service. However, one

problem in implementing SRPT in practical systems is that SRPT does not take into

consideration the bandwidth constraint at links. In other words, SRPT guarantees full

bandwidth (BW) of the server to job requests with the smallest remaining processing

time until the request are fully accommodated or are preempted. This is unrealistic

when we consider servers of large BW.

(ii) The SRPT policy assumes that the remaining processing time information is available

to the web-server. A web-server derives the remaining processing time information

by receiving the original size information at the time a job arrives. However, in some

3Slowdown of a job is its delay divided by the size of that job.

4

cases the original size and hence the remaining processing time information might

not be available to the web-server. For example, a request ofa web page may entail

downloading or searching other web sites for files of unknownsize.

(iii) SRPT is an idealistic policy which in many cases is not implemented directly [28, 33,

34]. In fact, many practical implementations are variants that reflect implementation

constraints and/or to jointly optimize other metrics in addition to delay, i.e., jitter,

fairness, etc.

In the dissertation, we address the above three questions inthe following manner.

(i) We develop the finite-SRPT policy that takes into accountthe bandwidth constraint

at the end receiver, i.e., jobs are served at most a given fixedamount at any time.

This reflects the practical BW constraint of the end users. Weanalyze the delay of

finite-SRPT as the bandwidth constraint is varied.

(ii) We study the Least-Attained-Service (LAS) policy which is viewed as a good sub-

stitute for SRPT when the remaining job size is not available[32, 33, 35, 36]. It has

been shown that the amount of service a job has received so faris a good indication of

its remaining processing time when the jobs size distribution possesses a decreasing

failure rate. Well known heavy tail jobs size distribution that is known to accurately

describe the actual job size distribution in today’s computer systems have a decreas-

ing failure rate. In addition to understanding the delay performance of LAS across

job sizes, we analyze the penalty associated with not using the remaining size infor-

mation directly.

(iii) Instead of analyzing variants of SRPT on a case-by-case basis, we study a class of

scheduling policies, SMART [43], that are biased toward smaller job size or remain-

ing size. This class contains many variants of SRPT with different fairness properties.

Our analysis shows that all policies in the class have the same tail probability of delay

across job size in the many sources large deviation regime.

5

The results of this dissertation facilitates the understanding of various scheduling

policies under the many sources large deviations regime by analyzing the asymptotic delay

distribution of previously unexplored policies. The dissertation presents novel methods of

queueing analysis based on the 2DQ framework and the cycle concept which have allowed

analysis of scheduling policies described in this dissertation and will facilitate understand-

ing of other policies in the future.

1.2 Main Contributions

(1) We study the 2DQ framework [48] along with the cycle basedanalysis to provide a

unifying analytical framework that allows the analysis of various scheduling policies

in the many sources large deviations regime previously not understood due to the dif-

ficulties brought on by the increased complexity. The proposed methods of analysis

demonstrate that most scheduling policies can be viewed in the context of a com-

plex but tractable priority queueing system. This enables the study of a large class of

scheduling policies by applying the large deviations results for priority queues.

(2) In this dissertation, the asymptotic delay distribution of scheduling policies that ex-

hibit superior mean delay by favoring small jobs, such as SRPT, PSJF, and LAS, are

analyzed in the many sources large deviations regime. In addition, the delay rate

functions of all scheduling policies in SMART are shown to beequivalent and is

derived. The scheduling policies are compared with each other to understand the

benefits and tradeoffs associated with each scheduling policy.

(3) The finite-SRPT policy is proposed to take into account the possible bandwidth con-

straints at the end receivers. We analyze the rate function of finite-SRPT across job

sizes and for varying bandwidth constraint. The results show that finite-SRPT shifts

between SRPT and a PS-like policy as the bandwidth constraint is adjusted. Thus,

the proposed finite-SRPT can be used as a policy to balance performance and fairness

6

by simply adjusting the maximum amount a job can be served at any time.

(4) The asymptotic delay distribution in the many sources large deviations regime for

Processor–Sharing (in the discrete time framework), a wellknown fair scheduling

policy, is derived.

1.3 Organization

The organization of the dissertation is as follows. The basic system model used through-

out this dissertation along with the many sources large deviations regime is explained in

Chapter 2. Chapter 2 also briefly introduces many of the scheduling policies mentioned

in the dissertation. In Chapter 3, the asymptotic delay tailprobabilities across job size are

investigated for the SRPT scheduling policy. Then from Chapter 4 to Chapter 6, we address

the practical implementation constraints of the SRPT policy. In particular, the delay decay

rate of SMART that includes SRPT and its variants is derived in Chapter 4 and the LAS

policy which is has been shown to be good substitute for SRPT when the remaining pro-

cessing time information is not available is studied in Chapter 5. In Chapter 6, we introduce

the finite-SRPT scheduling policy that takes into account the possible end user bandwidth

constraint and investigates its delay characteristics as the constraint is varied. Then we in-

vestigate the well known fair scheduling policy, PS, in the many sources large deviations

regime in Chapter 7. Lastly, we conclude in Chapter 8 with a summary of the dissertation

and present interesting problems for the future.

7

Chapter 2

The Basic System Model

Scheduling has found diverse applications in the area ranging from manufacturing, com-

puter systems to flight scheduling and call centers. Depending on the scheduling policy

used the performance of the system is greatly affected. Due to its diverse application and

its importance, scheduling has been analyzed through a widerange of models and perfor-

mance metrics. Models range from a simple single server setup where the jobs arrivals and

departures are independent, to more complex models where jobs have preferences at which

time and at which server it is served. The performance metricunder consideration can range

from delay, queue size to guaranteed service time and worst case behavior.

Due in part to the wide range in models and metrics, two analytical approaches have

received much attention for understanding scheduling. First is the deterministic approach

where the worst case behavior of a scheduling policies is of concern. In general, the de-

terministic approach assumes finite number of job arrivals but makes no assumption on the

job size or the arrival sequence. On the other hand, the probabilistic approach is more con-

cerned about the distribution (cdf or pdf) of the metric under consideration. The approach

makes probabilistic assumptions on the arrival, service and job size to derive the average,

variance and in some cases the distribution of the metric of interest.

In this dissertation, we take the probabilistic approach inanalyzing the delay of

8

…

∞→N

1:A

NA:

2:A

NB NC…

∞→N

1:A

NA:

2:A

NB NC

Figure 2.1: Illustration of many sources framework. In the many sources large deviations
framework, we consider the probability of large deviationsfrom the mean when the system
is accessed by a large number of sources and is served by a server with capacity that increase
in proportion.

scheduling policies. We use this approach since we are more interested in what a “typical”

job in a system will experience rather than what would happenin the worst possible case.

In the rest of the chapter, we describe the system setup used throughout the dissertation in

Section 2.1. Then, we go into detail the analytical approachtaken and the performance met-

ric under consideration in Section 2.2. Lastly, we give a short introduction to the scheduling

policies analyzed and mentioned in this dissertation in Section 2.3.

2.1 The System Setup

We consider a queueing system with a single queue and a singleserver having stationary

and ergodic arrival and service processes, where the arrival and service processes are inde-

pendent of each other. The system operates in discrete time,i.e. a batch of jobs arrive at the

beginning of each time slot and jobs are serviced at the end ofeach time slot. The queue

state is measured immediately after the service and just before the arrivals of the next time

slot.

9

In the many sources regime, the number of arrival processes is scaled along with

the capacity of the system and the buffer size as depicted in Figure 2.1. We denote theith

arrival process asA:i , where 1≤ i ≤ N. We assume that the possible sizes of the jobs are

restricted to bounded multiples of a unit size. Thus, we represent the set of possible job

sizes asM = {1, 2, 3, . . . ,M}. The assumption that the service distribution is bounded is

natural given the numerous recent studies that have observed that file sizes at web servers

typically follow a bounded, highly variable distribution size [3, 11]. Formally, for each

job sizek ∈ M, we assumeN independent, identically distributed processes. We denote

AN(a, b) as the total number of arrivals by allN arrival processes in the time-interval (a, b),

wherea ≤ b1. For example,AN(0, 0) signifies the total number of arrivals in time slot

0. Additionally, we defineAN
k (a, b) as the total number of jobs of sizek that arrive in

the queue during time-interval (a, b). Thus, the volume of sizek arrivals iskAN
k (a, b), and

AN(a, b) =
∑M

k=1 AN
k (a, b). We assume independence between arrival processes of different

sized jobs, i.e.,AN
i (a, b) is independent ofAN

j (a, b) for i , j. Note that job arrivals from a

single stream of any given size can be correlated across time-slots.

As depicted in Figure 2.1, we assume that the capacity of the server,C, is scaled in

proportion to the number of arrival processes, and at mostNC data can be service at any

time slot. We assume that the server is work-conserving and that the system is stable, i.e.

E
[

∑M
i=1 iAN

i (0, 0)
]

< NC. Based on these basic setup and assumptions we are interestedin

the asymptotic (asymptotic in the number of sources) delay distribution in the many sources

large deviations regime.

2.2 Many–Sources Large–Deviations Regime

Our goal in this dissertation is to study the tail probability of delay in the many sources

regime, i.e., probability of large deviations under the assumption that the number of sources

is large. The study of large deviations in a queueing system under an asymptotic regime is

1The notation (a,b) refers to time slots{a,a+ 1, . . . ,b} .

10

Notation Description
M Set of possible job sizes.
M Largest job size.
N The scaling factor that represents the number of arrival processes

and the multiplicative factor of the capacity and buffer size.
AN(a, b) Total number of arrivals from allN arrival processes in the

interval (a, b).
AN

k (a, b) Total number of sizek arrivals from allN arrival processes in
the interval (a, b).

C The unscaled capacity of the server.
W(N)(k) Actual delay experienced by a sizek job in the many sources regime.
IW(k) Actual delay rate function of sizek job
V(N)(k) Virtual delay experienced by a sizek job in the many sources regime.
IV(k) Virtual delay rate function of sizek job

Table 2.1: Notations frequently used in the dissertation.

mainly divided into thelarge buffer large deviations and themany sourceslarge deviations.

The large buffer large deviations is concerned with the tail behavior of delay, Pr(W(k) > m)

for large m (whereW(k) denotes the delay experience by a sizek job). While the large

buffer framework has provided many insights about the behavior of the tail of W(k), this

type of analysis leaves several questions unanswered. Mostimportantly, the large buffer

framework only studies theextreme tailbehavior ofW(k), i.e. Pr(W(k) > m) asm→ ∞,

rather than the fulldistributionof W(k).

In this dissertation, we take a different approach and analyzeW(k) in the many

sourceslarge deviations regime. To reflect the large number of sources considered, we

denoteW(N)(k) as the delay experienced by a sizek job in the many sources regime. While

the large buffer large deviations studies the overflow probability of a single queue and single

arrival process as the buffer size goes to infinity, the many sources large deviations scales

the service capacity with the number of arrivals (see Figure2.1). Thus, the many sources

regime has the advantage that it allows us to studyPr(W(N)(k) > m) for all m, rather than

requiring thatm be large. That is, it allows us to obtain information about the distribution

of W(N)(k), rather than just the tail. Another advantage of the many sources regime is that

11

scaling the number of sources (arrivals) seems appropriatefor studying scheduling in web

applications given the high level of statistical multiplexing among multiple user requests,

while scaling the delay thresholdm seems less appropriate given the finiteness of delay in

web applications.

Formally,W(N)(k), is the delay experienced by the last job with sizek in an arrival

burst to a stationary system. The tail probability of delay,Pr(W(N)(k) > m), is the probability

that the last job of sizek in the burst arriving at time slotl does not leave the system by the

end of time slotl + m. It has been shown that, in the large deviation framework, the tail

probability of delay of various scheduling policies such asFIFO, Generalized Processor

Sharing (GPS), and Priority Queueing decays as

Pr(W(N)(k) ≥ m) = gN(k,m)e−NIW(k,m),

under general conditions, where limN→∞ −
1
N loggN(k,m) = 0. In other words, the most

dominant trend of the tail probability is the exponential decay IW(k,m), which is appropri-

ately called thedecay rate. Thus, the decay rate of delay is defined as

IW(k,m) = lim
N→∞

−
1
N

log Pr(W(N)(k) > m). (2.1)

In this dissertation, we show that such decay rates for the scheduling policies under

consideration do exist and derive their precise form. Note that the delay distribution for a

job of sizek depends on the capacityC, the threshold valuem, the job sizek, and the arrival

processesAN
k (a, b) ∀k ∈M. In particular, the contribution of the arrival process to the delay

decay rate of scheduling policies is expressed through their own decay rate, which has been

well analyzed in the literature, i.e.,

I (a,b)
Ak

(x) = lim
N→∞

−
1
N

log Pr(AN
k (a, b) > Nx). (2.2)

Though our goal is to study the decay rate of delay, the directderivation is difficult,

12

so we first consider the distribution of thevirtual delay. Thevirtual delay, V(N)(k), is the

delay seen by a fictitious (virtual) job that arrives atQk, queue for sizek jobs, at the end of

an arrival burst att = 0 (given that the system started att = −∞). The event
{

V(N)(k) > m
}

corresponds to a fictitious job arriving at the end of an arrival burst during time slot 0 and

not departing the system until themth time slot. Note that this setup ensures that the system

is stationary at the arrival of the virtual job. To avoid confusion, we will refer to the delay

W(N)(k) as theactual delayin order to distinguish it from thevirtual delay V(N)(k). Observe

that the virtual delay is different from actual delay: for example, even when there is no

arrival the virtual delay can be measured, whereas the actual delay is not defined. The

decay rate of the virtual delay is defined as

IV(k,m) = lim
N→∞

−
1
N

log Pr(V(N)(k) > m). (2.3)

In the our proofs, it will be necessary to have a more general definition of the decay

rate than we have defined so far. Thus, for any sequence of rareeventsHN, we define

I (H) = lim
N→∞

−
1
N

log Pr
(

HN
)

,

as the decay rate of a general sequence of eventsHN whose probability becomes increas-

ingly small as the system scales.

2.3 Brief Overview of Scheduling Policies

Since the main focus of this dissertation is to understand the effects different scheduling

policies have on the delay distribution, a short overview ofthe various scheduling policies

are given in Table 2.2. By no means complete, we provide Table2.2 as an reference point

for abbreviated names of the scheduling policies. The termsoriginal size, remaining size,

and attained service of a job is used throughout this dissertation to signify the following

information of a job that are used by the scheduling policy. The original size of a job is the

13

S chedulingPolicy Description
FCFS First–Come–First–Serve serves jobs that have arrives first.

Also known as First–In–First–Out (FIFO)
PRI Priority queueing system with multiple queues where jobs ofsmaller

original size reside in queue with higher priority.
SJF Shortest–Job–First serves jobs of smaller original size first.
PSJF Preemptive–Shortest–Job–First preemptively serves jobsof smaller

original size first.
SRPT Shortest–Remaining–Processing–Time preemptively serves jobs

with smaller remaining size first.
LAS Least–Attained–Serves preemptively serves jobs with least attained

service first.
PS Processor–Sharing serves all jobs the same rate.
RS RS preemptively serves jobs with the least product of remaining

processing time and original size

Table 2.2: Overview of scheduling policies.

processing time required for a job to leave the system when itarrives to the system. The

remaining size of a job is the remaining processing time leftfor the job to leave the system.

The attained service of a job is the amount of processing timethat has been served so far.

Note that the table contains policies that arenon-preemptiveand ones that arepre-

emptive, where the scheduling policies are non–preemptive unless stated otherwise. Pre-

emptive policies allow a job to be suspended during service when a higher priority job

arrives to the system, while a non-preemptive policy guarantees that a job will be fully

served when it begins service.

We make the following assumptions on the scheduling policies under consideration

in this dissertation. All scheduling policies arework-conservingwhich means that as long

as there are jobs in the system the server serves jobs with itsfull capacity. In addition, we

assume that there is no cost or penalty in being preempted andthat a job resumes service

starting from where it has left off.

14

Chapter 3

SRPT

3.1 Background and Related Work

With web service becoming increasingly popular, today’s web servers handle loads that

could range from hundreds to thousands of simultaneous connections. These jobs are served

by a web server by means of a scheduler, which “prioritizes” the requests. Many different

scheduling policies have been proposed in the literature and implemented in practice. It is

well known that Shortest-Remaining-Processing-Time (SRPT), which gives higher priority

to jobs with a smaller remaining processing time1, exhibits the minimum mean delay among

all policies. Despite this advantage, most of the existing schedulers opt for simpler policies

such as First-Come-First-Serve (FCFS), or fairness oriented scheduling policies where the

resources are equally shared among all connections. The main reason behind the lack of

attention to SRPT is that, it has been believed that in the process of optimizing the mean

delay, fairness among jobs of different sizes might suffer, i.e., “starvation” of larger jobs

[39]. More specifically, it is believed that larger file requests will “starve” under the SRPT

scheduling policy [39, 40]. Intuitively this seems obvious– by giving priority to smaller

file requests, the delay experienced by larger file requests will increase, thus leading to

1More specifically, SRPT serves jobs with the smallest remaining processing time first and in the case of a
tie the jobs are served in FCFS manner.

15

unfairness.

However, recent studies have shown that this intuition is not necessarily correct.

In [4], the authors show that under a heavy-tailed arrival distribution, the unfairness of

SRPT compared to a Processor-Sharing (PS) scheduling policy is quite small. Using an

M/G/1 queuing model and a heavy-tailed arrival distribution, the authors have shown that

regardless of the load, at most only 1% of jobs have a larger expected delay under SRPT

than under PS. Further, the authors provide an upper bound onhow much worse SRPT

can perform compared to PS in terms of expected delay. Motivated by these results, the

authors have implemented an SRPT scheduler for web servers [18], which has been shown

to dramatically reduce delay.

Thus, the SRPT scheduling policy is a promising alternativeto the prevalent schedul-

ing policies. However, there are realistic concerns that the fairness problem in SRPT may

deteriorate when the system is accessed by a large volume of traffic. In addition, the mean

delay metric is not enough to understand the characteristics of a scheduling policy, espe-

cially when one is interested in the QoS of the system. To realize its full potential, the

analysis of the delay distribution for specific sized jobs ina large scale system is necessary

in order to characterize the behavior of this policy. More specifically, we will be looking

at the probabilities of the delay exceeding some threshold (tail probability), when the web

server is accessed by a large number of sources, using a largedeviations formulation.

Related works include [7] where SRPT is analyzed in the largebuffer regime, and

[19] where it has been shown that various scheduling policies including SRPT and PS have

the sameexpectedslowdown2 for asymptotically large sized jobs. However, there is no

work in the many sources large deviation regime which is geared to understand web servers

or routers in large scale systems. Our work focuses on the many sources regime, and com-

pares the SRPT scheduler with a FCFS scheduler.

The main intuition behind the analysis of SRPT is the utilization of virtual queues

2Slowdown is defined as delay divided by the job size.

16

and thelarge scale limit.

(1) Virtual Queues: The scheduling policies in question possess only a single physical

queue. Thus it is difficult to track the state change that a job goes through in this single

queue. However, scheduling policies distinguish jobs by their state information, e.g.,

time of arrival, original size, remaining size, and attained service, to decides which

job to service next. In essence, all scheduling policies assign priority to jobs based on

their state and serve them in a specific order. We construct a system of virtual queues

which reflects this priority scheme of a specific scheduling policy. This construction

of virtual queues for analysis purpose enables the understanding of the state changes

of the system at all times. The scheduling system is re-interpreted through this system

of virtual queues to derive the delay distribution in the many sources large deviation

framework.

(2) Large Scale Limit: We observe that in the many sources large deviations regime

only the main characteristics of the scheduling policy remain as the scale increases.

In other words, the delay distribution of scheduling policies in a large scale com-

puter network can be described by its first order behavior, and all other higher order

behaviors can be ignored.

3.2 Main Contributions and Intuition

In this section, we show that the rate function of delay for SRPT is equivalent to that of a

priority queue that assigns higher priority to jobs with smaller original size. Let us denote

PRI as a priority queueing system described below. Formally, SRPT and PRI are defined as

follows.

SRPT: In any time slot, jobs that have the smallest remaining processing time are served

first. When there are multiple jobs that have the same smallest remaining processing

17

time, the job that arrived earlier to the queue is selected tobe served. The job in

service receives service until either it is fully served or new jobs with even smaller

remaining processing time arrive to the system at the next time slot. In the latter case,

the job becomes preempted and waits until all jobs that have higher priority (smaller

remaining processing time) leave the system.

PRI: PRI is a non-preemptive priority queueing system, where jobs of different sizes are

queued separately, and queues that are assigned to smaller sized jobs have higher pri-

ority, while the queues assigned to larger sized jobs have lower priority. For example,

the queue that corresponds to sizel jobs (henceforth referred to asQl) has priority

l, whereQ1 has the highest priority, andQM has the lowest priority. FCFS rule is

observed among jobs in the same queues, i.e., jobs of the sameoriginal size. PRI is

different from SRPT in that the job in service does not get preempted when new jobs

arrive to the system in the next time slot. Thus a job in service continues to receive

service until it leaves the system.

We prove that the rate function of the SRPT scheduler is bounded by the rate func-

tions of the priority queueing schedulers, and use results on priority queues from [38] to

complete the proof. First, we make the following two assumptions on the arrival processes.

Assumption 3.2.1. 3 Fix any ǫ > 0, such that E[AN(0, 0)] < N(C − ǫ), and consider the

event

HǫT = [
k−1
∑

i=1

AN
i (−T,m) + AN

k (−T, 0) > N(C − ǫ)(T +m+ 1)].

We define T∗ = arg inf
T≥0

I (HǫT). The existence of T∗ results from the stability condition

and we assume that it is unique. Furthermore, we assumeI (HǫT) satisfies the following

3This assumption can be shown to be satisfied by sources with bounded rates [24], i.e., arrival processes for
which the total number of arrivals per slot is bounded.

18

condition

lim inf
T→∞

I (HǫT)

logT
= ω > 0. (3.1)

More specifically,HǫT is the following event: The event that the sum of all arrivals

with job size≤ k during the time interval (−T, 0) and the arrivals due to jobs with size

≤ (k−1) over the interval (1,m), exceeds the service capacity ofN(C− ǫ). Large deviations

theory roughly states that the probability of occurrence ofa rare event is dominated (in a

large-scale system) by a single “critical” event. It is shown in Theorem 3.2.1 that the event

HǫT is the “critical” event of{V(N)(k) > m}. Equation (3.1) can be shown to be satisfied by

sources with bounded rates [24], i.e., arrival processes for which the total number of arrivals

per slot is bounded.

Assumption 3.2.2. (“Burstiness” condition) Define

~Ai = (. . . ,AN
i (−T, 0) . . . ,AN

i (−1, 0),AN
i (0, 0)). Then~Ai satisfies

(~A|AN
i (0, 0) = 0) ≤st (~A|AN

i (0, 0) > 0), (3.2)

where≤st denotes stochastic ordering.

This “‘burstiness” condition is used in essence to bridge the gap between the derived

virtual delay rate function of SRPT and the actual delay ratefunction. We show that from

the results in [38] and Assumption 3.2.2, the virtual and actual delay asymptotes are the

same. The above assumption heuristically corresponds to a “burstiness” condition on the

arrival process, see [38]. Many types of sources satisfy this condition, including any ON-

OFF Markov sources.

Based on the two assumptions described above, the delay ratefunction of SRPT

sizek (for any k ∈ {1, . . . ,M}) jobs has been derived as in Theorem 3.2.1 [46] under As-

sumption 3.2.1 and Assumption 3.2.2 .

19

Theorem 3.2.1.Fix anyǫ > 0. Then, for any k∈ {1, . . . ,M} we have

I (k)
VC−ǫ

(m) ≤ I (k)

V
(m) ≤ I (k)

VC+ǫ
(m),

where we denote by I(k)

V
(m), the delay rate function of size k jobs under SRPT with total

capacity NC. Similarly, I(k)
Vµ

(m) denotes the delay rate function of size k jobs under SJF, and

with total capacity Nµ.

Proof. Intuition (technical proof in Appendix A.1):We make the observation that the oper-

ation of SRPT is equivalent to that of PRI described above butwith switching of partially

served jobs during time slots. The SRPT scheduler grants jobs with less remaining service

time higher priority compared to jobs with larger remainingservice time. Jobs that have not

been completely serviced (partially served) in a time-slotwill receive higher priority in the

next time-slot depending on their remaining service time. Thus, the SRPT scheduler can be

modeled as a priority queueing system, where the queues are not assigned by the job size

but the residual job size (remaining service time of a job). Another way to interpret SRPT

is to look at SRPT as being equivalent to the priority queueing system based on job sizes,

but with partially served jobs changing priority levels at the end of a time-slot (moving

to a corresponding higher priority queue). Note that an important difference between the

original priority queueing system and the SRPT scheduler isthat, in the priority queueing

scheduler a partially served job continues to remain in the same queue that it was originally

in, and its priority leveldoes not changein the next time-slots.

Next, we show that the number of preempted jobs in SRPT is verysmall compared

to jobs that do not get preempted. The intuition for this is due to the observation that

at most only a single job can be preempted in any time slot, whereas a large number of

new jobs arrive in each time slot. As a result, the number of partially served jobs that

change priority levels is negligible, i.e., the number of jobs that are served with respect

to remaining processing time different from their original size is negligible. Thus, we can

conclude that the delay rate function of SRPT is equivalent to that of PRI in the many source

20

large deviations regime. This result on the virtual delay can be extended to the case of actual

delay under Assumption 3.2.2 as shown in [46]. �

Using the delay rate function result of SRPT, we investigatethe performance and

fairness of SRPT in the large scale regime by comparing the delay rate functions of SRPT

and FCFS (a scheduling policy that does not distinguish jobsof different size). A FCFS

queueing system consists of a single server and a single queue, and jobs are processed in the

order they arrived. The comparison of the delay rate function is derived in Theorem 3.2.2

[46] under Assumption 3.2.3.

Assumption 3.2.3. 4 We assume the following on the marginal probabilities of arrival,

Ak(0, 0), for all k ∈M

Ak(0, 0) =



























0 with probability p(k)

k with probability q(k)= 1-p(k),

where q(k) satisfies: for anyη < 1 there exists constants Aη ≥ 1, and Kη ≥ 1 such that for

all k ≥ Kη

q(k)ekη ≥ Aη.

Assumption 3.2.3 states that the marginal probability of the arrival for large sized

jobsdoes notdecay exponentially in job size, i.e., it decays more slowlythan exponential.

Note that this assumption does not place restrictions on thetime correlations.

Arrival processes that have this property include arrival processes with a truncated

heavy tailed job size distribution5. We note that, Assumption 3.2.3 holds not only for trun-

4Assumption 3.2.3 holds for all arrival processes whichdo not have an exponential tail. As special cases,
heavy tailed arrivals as well as truncated heavy tailed distribution possess this property

5It has been observed that job sizes on web servers typically follow a heavy-tailed distribution with an ap-
propriate max job size (i.e. truncation). This property is quite common in web workloads; the heavy tailed
property is seen in the distribution of job size requested byclients, the length of network connections, and jobs
stored on servers [3, 11, 12]. By heavy tailed distribution,we mean that the tail of the distribution function de-

21

cated heavy-tailed arrivals, but for all arrival processeswhich do not have an exponential

tail (heavy-tailed arrivals are just a special case for which theassumption holds).

Under Assumption 3.2.3 on the marginal probabilities of thearrival process, the

upper bound on the difference of the delay rate function for sizek jobs in SRPT and FIFO

is derived. We denoteIV̂(m) as the delay decay rate of jobs in FIFO. We comment that the

delay rate function for FIFO is invariant with respect to jobsize. In other words, the virtual

delay seen by size 1 jobs is the same as any other.

Theorem 3.2.2.An upper bound of the difference between the rate function of size k jobs

for SRPT and FCFS is as follows. For any0 < γ < 1, there exists âK(m) such that

|I (k)

V
(m) − IV̂(m)| = O(

1
kγ

) ∀k ≥ K̂(m).

Proof. The technical proof is provided in Appendix A.2. �

The above result implies thatthe difference of the delay rate functions for size k jobs

under SRPT and FIFO decays at least as fast as O(1/kγ) for k large. Thus, even though

the job size is increasing, the delay performance of SRPT approaches that of FIFO in the

many sources regime. This result shows that the unfairness of SRPT (compared to FIFO)

becomes increasingly small for increasingly large jobs. Onthe other hand, forsize 1 jobs,

the difference of the delay rate functions remains constant. This isdue to the fact that the

delay distributions under SRPT isinvariant with k, i.e., larger jobs do not influence the delay

of smaller jobs under SRPT scheduling. However for FIFO, thedelay distributions for even

size 1 jobsdecays asO(1
Mγ) for M large. Thus, these results indicate that SRPT is a good

policy to implement for web-servers, where empirical evidence suggests a large variability

in job sizes [2], since the unfairness of larger jobs is smallcompared to the benefits gained

for the smaller jobs.

cays with a power law with exponent less than 2. That is, if a random variableX has a heavy-tailed distribution,
then Pr(X > x) ∼ x−α for 0 < α < 2. We can see that for heavy-tailed arrival processes, the arrival probability
of large sized jobs decays only polynomially (slower that exponential, i.e., Assumption 3.2.3 is satisfied for
η > 0).

22

SRPT(size 1)

SRPT(size M)

FIFO(size 1 and M)

SRPT-FIFO(size M)

Figure 3.1: Illustration of the delay decay rate of size 1 andM jobs for SRPT compared
with FIFO. The decay rate of size 1 jobs for SRPT is actually infinite since the setup ensures
that all size 1 jobs are served as soon as they arrive. It is depicted as a horizontal line for
viewing purpose. Note that the decay rate of sizeM jobs for SRPT approaches that of FIFO
as theM increases while the difference for size 1 jobs remains large (actually grows for
largeM).

3.3 Numerical Analysis

In this section, we compare the delay rate functions of SRPT and FIFO numerically. We

consider a system where the arrival process is assumed to be composed of two independent

ON-OFF processes which are one of two types: size 1 jobs arrive with probabilityp, and

sizeM jobs arrive with probabilityp/M. The numerical values of the delay rate functions

are calculated forC = 0.9, p = 0.4,m = 2 using the closed form expressions derived

in this dissertation. The result comparing size 1 and sizeM jobs is depicted in Figure 3.1.

Figure 3.1 shows that the difference of the delay rate function of sizeM jobs between SRPT

and FIFO becomes smaller asM increases. We conclude that even in the extreme scenario,

23

the effect of increased delay for larger jobs in SRPT compared to FIFO becomes smaller in

the asymptotic sense. In comparison, the rate function for size 1 jobs of SRPT is superior

of that of FIFO by at least factor of 100. As shown in Figure 3.1and Theorem 3.2.2, the

difference in the delay rate function for larger jobs between SRPT and FIFO indicates that

the delay rate function of SRPT approaches that of FIFO for increasingly large jobs while

the delay performance of SRPT for smaller jobs remains much better than FIFO. It has

been shown that web server requests exhibit heavy-tailed arrival distribution [2]. The two

classes traffic model that we studied approximates such a heavy traffic behavior for largeM.

Thus, the results indicate that SRPT is a promising scheduling policy which can be readily

employed in web-servers.

24

Chapter 4

SMART

4.1 Background and Related Work

In the previous chapter, we considered SRPT. In this chapter, we consider a class of SRPT-

like policies called SMART [43], which performs well for a combination of metrics such

as mean delay, mean slowdown1, and fairness [17, 28, 33, 34]. SMART contains SRPT and

many of its variants whereby the analysis of SMART allows theunderstanding of many of

the practical implementations of SRPT.

SMART was introduced by Wierman and Harchol-Balter in [43] and is formally

defined as follows. Denote jobs usinga, b, andc where joba has original sizesa and

remaining sizera. SMART is defined to be the class of scheduling policies that obey the

following properties.

(1) Bias Property: If rb > sa, then job a has priority over job b.

(2) Consistency Property: If job a ever receives service while job b is in the system,

thereafter job a has priority over job b.

(3) Transitivity Property: If an arriving job b preempts job c; thereafter, until job c

1Slowdown of a job is the delay divided by the job size.

25

receives service, every arrival, a, with size sa < sb is given priority over job c.

The Bias Property guarantees that scheduling policies in SMART favor “small” jobs

by guaranteeing that the job receiving service has a smallerremaining size than the original

size of all jobs in the system. This ensures that the server will not service a new arrival with

greater size than an existing one. As observed in [43], this Bias Property is the key property

that allows SMART do the “smart” thing.

The Consistency and Transitivity Properties essentially ensure the “coherency” of

the priority scheme dictated by the Bias Property. In particular, the two properties are

concerned on the priority scheme after jobs have received partial service. The Consistency

Property effectively prevents time-sharing by enforcing the rule that once a job receives

service other jobs already in the system do not receive service until the former job leaves

the system. In other words, if joba is given priority over jobb, then jobb will never

served before joba. The Transitivity Property ensures that SMART do not secondguess

the decision they have made. For example, if it is decided that job a is smaller (have higher

priority) than jobb, new arrivals that are smaller than joba are considered smaller than job

b.

As shown in [43], SMART contains many important “smart” policies such as SRPT,

PSJF, and a wide array of hybrid policies with more complicated prioritization schemes. In

particular, an interesting scheduling policy called RS policy, which assigns higher prior-

ity to jobs with smaller product of its remaining size and itsoriginal size, is included in

SMART. The RS policy is interesting in that the policy outperforms SRPT if when we

consider weighted mean delay measures such as the mean slowdown. SMART actually

includes many generalization of these policies. In particular, it has been shown in [43] that

scheduling policies that grants priority based on a fixed priority function p(s, r) such that

for s1 ≤ s2 andr1 < r2, p(s1, r1) < p(s2, r2) are contained in SMART. An example of such

a policy is a policy that hasp(s, r) = sir j for all i ≥ 0 and j > 0.

SMART is important due to the fact that the class includes a wide range of policies

26

that perform well for a combination of metrics such as mean delay, mean slowdown, and de-

lay tail probability. For these combinations of metrics theoptimal policy is not SRPT, rather

the optimal scheduling policy depends on the specific job size distribution. The importance

of SMART lies in the fact that many of the optimal scheduling policies with respect to

mixed metrics are included in it, since no single policy in SMART is optimal across appli-

cations. In addition, SMART contains time-varying policies so it contains policies that can

optimize performance online in the face of time varying performance metric, system-state

information, and randomization.

Despite its breadth, many “smart” policies are excluded from SMART, e.g. LAS,

and Shortest-Job-First (SJF). However, the exclusion of such policies is due to the goal in

defining a class of policies that are near optimal in terms of mean delay across all service

distributions and all loads. For example, SJF exhibits arbitrarily large mean delay when the

second moment of the service distribution is large, and LAS is the worst policy when the

job size distribution is of increasing failure rate. One motivation for working with SMART

is to illustrate the wide range of policies that behave like SRPT with respect to mean delay.

Recent studies of policies that prioritize small job size, such as SRPT and SMART,

have focused on the delay experienced by a job of sizek, W(k). The interest inW(k) is

spurred by the desire to understand how the prioritization of small job sizes affects the

behavior ofW(k) across jobs sizes. In particular, there are worries about the delay experi-

enced by largek, which the scheduling policies are biased against. Much attention has been

given to understandingE[W(k)], the mean delay experienced by a job of sizek, acrossk

[1, 4, 32, 33, 41]; however far less is understood about thedistributionof W(k) in large scale

systems.

The difficulty in direct analysis of the distribution ofW(k) has led researchers to

study asymptotic scalings of the distribution. The many sources large deviations is one such

asymptotic approximation of the distribution suitable forunderstanding large scale systems.

In this chapter, we analyze the delay distribution of SMART that contains scheduling poli-

27

cies that biased toward jobs of small original size and/or remaining processing time.

4.2 Two Dimensional Queueing Framework

In order to analyze SMART in the many sources regime, we studythe two dimensional

queueing(2DQ) framework [48]. The basic 2DQ framework is a collection of virtual queues

as depicted in Figure 4.1(a), which in essence allows us to look at a scheduling policy as a

complex but tractable time varying priority queueing system. Note that the idea of virtual

queues used in Chapter 3 is extended to an array of virtual queues in the 2DQ framework.

The 2DQ framework is based on the idea of suitable and coherent arrangement of multiple

virtual queuesto represent the state of the system.

The state of the system is adequately represented by a finite number ofvirtual

queues, i.e., the virtual queues are defined and arranged in such a way that it represents

the state of the system at all times. The collection of virtual queues contain jobs of certain

state so that the collection completely describes the stateof the system at all times, where

an individual virtual queue contains jobs of a certain state. The fact that the state of the sys-

tem can be represented by the two dimensional collection of virtual queues (2DQ) is made

possible by the fact that the number of all relevant job states isdiscrete. This is due to the

following two assumptions made in Chapter 2. First, the job sizes are restricted to multiples

of a unit size. Second, the server serves jobs in discrete amounts. More importantly, the

2DQ framework allows the delay analysis of SMART by providing a coherent and tractable

portrayal of the system state changes as the jobs receive service based on the following two

concepts:finitenessandordering.

First, byfiniteness, the number of virtual queues in 2DQ required to fully represent

the state of the system is finite, which makes the analysis much simpler. We have assumed

that the server services the jobs indiscreteamounts and that the set of possible job sizes is

M = {1, 2, 3,,M}. The important consequence is that at any time slot, the distribution

of all relevant states of any job in SMART (original size and remaining size) isdiscreteand

28

(a) The basic Two Dimensional
Queueing (2DQ) Framework.

M1 original
size

rem
aining

size

M

0

M1 original
size

rem
aining

size

M

0

(b) Two Dimensional Queue for
SMART.

Figure 4.1: Illustration of the Two Dimensional Queueing (2DQ) Framework. The left
figure depicts the basic form of the 2DQ framework which is basically a collection of virtual
queues arranged in a grid to reflect the state of the system. The right figure depicts the
2DQ representation for SMART where the X-axis is the original size and the Y-axis is the
remaining processing time of a job.

finite. This results in a more tractable description of the queue state.

The second important concept of the 2DQ framework isordering. Many scheduling

policies specify a scheme of ordering (prioritization), inwhich the server considers some

jobs more important than others and serves those first. For example, FCFS orders jobs

by their time of arrival, SRPT by the remaining size (i.e., remaining service requirement),

and LAS by their age (i.e., attained service). We make the observation that all jobs in the

system must be totally ordered by the specific scheduling policy. In other words, the con-

cept of ordering should be taken one step further by assigning a further ordering schemes

beyond the previously existing one to specify a total ordering or the lack of it. The two

dimensional queueing framework is a collection of virtual queues that portray this ordering

of a scheduling policy in such a manner that the two dimensional queue separates high,

low and no priority set of virtual queues in a coherent and consistent manner.For exam-

ple, SRPT does not specify any rule for jobs with the same remaining size. To make the

operation of the policy more tractable, we introduce an additional ordering to be used to

determine which of these jobs should be served first. Based onthis observation, the 2DQ

29

0 M
original

size

remaining
size

Qk.k

M

1

arrivals

Qi,j

0

Qk,1

Qk,0

0 M
original

size

remaining
size

Qk.k

M

1

arrivals

Qi,j

0

Qk,1

Qk,0

(a)

1 M
original

size

remaining
size

k

A: Higher
Priority

M

1

C: Lower
Priority

B: No
Priority

arrivals

0

1 M
original

size

remaining
size

k

A: Higher
Priority

M

1

C: Lower
Priority

B: No
Priority

arrivals

0

(b)

1 M
original

size

remaining
size

kA: Higher
Priority

M

1

C: Lower
Priority

B: No
Priority

arrivals

0

1 M
original

size

remaining
size

kA: Higher
Priority

M

1

C: Lower
Priority

B: No
Priority

arrivals

0

(c)

Figure 4.2: Illustrations of the two dimensional queueing framework for SMART. Note
that since a job cannot have remaining size larger than its original size only the lower right
triangle of Figure 4.1 is of importance. The progression of ajob between queues while in
the system is illustrated in (a). The priority structure foran incoming job is shown in (b)
and for a partially served job is shown in (c).

framework takes the concept of ordering inherent in the given scheduling policy one step

further by assigning a secondary ordering scheme to the inherently existing one. In other

words, jobs are serviced in the order specified by the scheduling policy, but when there are

multiple jobs with the same priority, the secondary ordering scheme is used to select the

next job to serve. For example, let us consider the ordering of “smaller job size first” as the

secondary ordering for FCFS. In this case, when multiple jobs arrive to the system at the

same time slot, smaller jobs are served before larger jobs. The importance of the secondary

ordering is that it further constrains the policy, thus making the analysis more tractable. In

the case of SMART, the policy itself specify all the necessary ordering required to embed it

into a two dimensional queueing framework and only the judicious ordering of the virtual

queue is required. The two dimensional queueing framework for SMART is depicted in

Figure 4.1(b).

30

4.3 Intuition

Note that SMART falls into the 2DQ framework very nicely as shown in Figure 4.2. A new

job arrives to the queues on the upper most strip, where the original size and the remaining

size are equal. The job then progresses through the system bymoving downward until the

remaining size becomes 0. We denote byQi, j , i ≥ j, the virtual queue that contains all the

jobs that have original sizei and remaining sizej. For example, a job of sizek arrives at

Qk,k, and then moves throughQk,k−1, Qk,k−2, ..., Qk,1,Qk,0 as a unit service is received. It

is important to note that the properties of SMART dictates the areas of high, low, and no

priority with respect to the job in question as depicted in Figure 4.2.

Let us now consider the behavior of a sizek job under a policy of SMART. Upon

arrival, the job resides inQk,k. By the Bias Property (LD), the following queues have higher

and lower priority compared toQk,k:

Higher Priority:
k

⋃

i=1

k−1
⋃

j=1

Qi, j , Lower Priority:
M
⋃

i=k+1

M
⋃

j=k

Qi, j . (4.1)

This is illustrated in Figure 4.2(b). We denote the group of higher priority queues

as areaA and lower priority queues as areaC. Note that, there is a third area where the

queues do not have any fixed priority order compared toQk,k. Jobs in this area,B, can be

serviced before or after the sizek job. Due to the priority scheme, area A must be empty

for the job inQk,k to receive one unit of service. As depicted in Figure 4.2(c),when a job

in Qk,k receives service it moves down the vertical line in the two dimensional queue and

the respective priority areas change according to the position of the queue in which the job

resides. For a partially serviced sizek job to receive service, all queues in the corresponding

areaA, as depicted in Figure 4.2(c), must be empty. In both cases ofan incoming sizek

job and partially serviced sizek job, the relative priority of queues in areaB is unknown.

However, the volume of jobs in areaB can be sufficiently bounded to provide tight upper

31

and lower bounds to derive the probability of delay in the many sources large deviations

regime of SMART.

4.4 Main Contributions

4.4.1 SMART for Large Deviations

SMART identifies a group of policies that are similar to SRPT and PSJF (policies biased

toward smaller jobs) with respect to themean delaymetric in the traditional model when

there is only a single flow and the capacity does not scale withthe flow. A natural question

to ask in the context of the many sources large deviations regime is the following. Is there

a class of scheduling policies that exhibit similar or identical characteristics with respect to

thedelay distribution in the many sources large deviations regime? In this dissertation, we

observe that indeed such a class exists and we denote it as SMART-LD, i.e., SMART for

Large-Deviations. We define SMART-LD as follows.

Definition 4.4.1. A scheduling policy satisfying the following property belongs toSMART-

LD.

(i) Bias Property (LD): If rb ≥ sa, then job a has priority over job b.

Note that the Bias Property changed from a strict inequality(>) to an equality (≥).

This change in the Bias Property guarantees the total ordering which is one of the key

intuition behind the 2DQ framework. More specifically, the change guarantees that, among

jobs with equal original size, jobs with smaller remaining size are given higher priority, and

among jobs with equal remaining size, jobs with smaller original size are assigned higher

priority.

Further, note that the Consistency Property and the Transitivity Property of the orig-

inal SMART are excluded in SMART-LD. We show that even without the two properties

that enforce “coherency”, their contribution to the delay distribution becomes insignificant

32

when the scaling constant,N, scales to infinity. The exclusion of the Consistency Property

and the Transitivity Property in SMART-LD implies that SMART-LD contains all schedul-

ing policies in SMARTand more complicated policies for which the “coherency” of the

priority scheme is lost. In particular, this means that scheduling policies that time share

the capacity and/or decide to change priority after a job has been served are included in

SMART-LD. This is surprising in that SMART-LD includes SMART like policies that have

low level of coherency, where the priority between jobs can change after they have been

served while possessing the same delay characteristics in the many sources large deviations

regime.

The importance of SMART-LD lies in the fact that (i) it inherits all the aspects

of SMART, i.e., inclusion of all scheduling policies that are close to optimal in terms of

the mean delay, and (ii) it contains all policies that exhibit identical delay tail probability

characteristics in the many sources large deviations regime. The latter is important because

(i) SMART-LD attempts to identify all scheduling policies that behave the same in terms of

delay in the many sources regime to the mean delay optimal SRPT, and (ii) by deriving the

delay distribution of SMART-LD, the delay characteristicsfor many “smart” policies when

accessed by a large number of sources can be understood.

It is important to note that the proposed SMART-LD essentially makes the interior

of areasA andC of the virtual queues also “no priority”. The main intuitionis that since

the number of jobs in the interior of the 2DQ representation (see Figure 4.2) are negligible

in the many sources large deviations regime the derivation of the delay rate function of

SMART-LD requires only a slight adjustment to that of SMART which is also the result of

this dissertation.

4.4.2 Analytical Result

The main contributions regarding SMART-LD is the derivation of the delay rate function.

We make two assumptions for the analysis, one of which is the following.

33

Assumption 4.4.1. We assume that the rate function corresponding to the arrival A =
∑M

i=1 Ai satisfies

I (−T,l)
A (C(T + l + 1)− v) < I (−T,0)

A (C(T + 1)) , (4.2)

for v ∈ [v∗ − δ, v∗ + δ], v∗ > 0 andδ > 0 sufficiently small.

Assumption 4.4.1 is equivalent to the decay rate being additive. Intuitively, a decay

rate with the property of additive functionals implies thatthe occurrence of a rare event in

the large deviation framework happens in a straight line. This assumption has been used

extensively in the large deviation literature [5, 14, 27]. Further, arrival processes that satisfy

Assumption 4.4.1 include many common processes such as all stationary and Markov de-

pendent processes. Additionally, if the arrival process isof Levy type then the decay rate of

the arrival satisfies Equation (4.2).

The second assumption is similar to Assumption 3.2.2 but foran event that corre-

sponds to the higher priority jobs in SMART. For brevity, we will not go into detail on the

specifics of the assumption.

We prove that the delay rate function experienced by sizek jobs is the same under

all policies in SMART and derive the delay rate function of SMART-LD as follows [48].

Theorem 4.4.1.Let ǫ > 0. For any k∈ M, the decay rate of delay for a size k job under

any policy in SMART-LD, IW(k,m), satisfies

IVC−ǫ (k,m) ≤ IW(k,m) ≤ IVC(k,m), (4.3)

where IVµ(k,m) is the virtual decay rate of delay under a priority queueing system, PRI,

with capacity Nµ and is defined as

IVµ(k,m) = inf
T≥0

[

inf
~z:Z

{

A<k(~z) + Ak
}

]

, (4.4)

34

where conditionZ states that
∑k

i=1 izi = µ(T +m+ 1). Further,

A<k(~z) =
k−1
∑

i=1

I (−T,m)
Ai

(zi)

Ak = I (−T,0)
Ak

(zk).

This theorem states that asymptotically (in the large capacity and large number of

flows regime),all policies in SMART-LD behave alike in terms of delay tail probability, in

that their delay decay rates are the same. In other words, fora job of original sizek and for

any fixed integerm≥ 0, we have that the delay distribution forW
(N)

(k) is given by

P
(

W
(N)

(k) > m
)

= g(k,m)Ne−NIW(k,m),

whereIW(k,m) is the same for all policies in SMART-LD.Thus, the decay rate of any policy

in SMART-LD is the same as that of SRPT, which was derived in Chapter 3.

The decay rate in Equation (4.4) appears complicated, but does have intuition. It can

be shown that in the many sources asymptote, the decay rate depends on the “most likely”

way that the arrival processes deviate from their mean arrival rates in order to cause delay

exceedingm. Thus, the two infimums choose the most likely time scale (T) and partition

of the overall arrival rate to job sizes (~z) respectively. Then, inside the infimums,A<k(~z)

andAk characterize the delay caused to a sizek job by jobs arriving over the time interval

(−T,m) with size< k and by jobs arriving over the time interval (−T, 0) with sizek.

To illustrate this intuition, we now consider the special case when jobs are one of

two sizes (1 orM). For this special case, we can provide simplified expressions which relate

the delay distributions of jobs to the arrival process statistics. As a baseline for comparison,

we compare with the delay distribution of FCFS [8].

For FCFS, it follows from the results in [8] that

35

Pr(W(N)(k) > m) ∝ max
T≥0

Pr(D(N)(T) > C(T +m+ 1)) (4.5)

for k = 1 andk = M and wherea ∝ b means thata andb have the same decay rate. Here

D(N)(T) is the cumulative workload (including both size 1 and sizeM jobs) that arrives to

the server over the time-interval (−T, 0), i.e.,

D(N)(T) = AN
1 (−T, 0)+ MAN

M(−T, 0).

Recall that the server capacity isC units per time-slot. The above expression of

Equation (4.5) states that the probability that a job of size1 or M experiences a delay of

at leastm is the same as the probability thatthe cumulative arrival workload over a time

interval of T+1 slots exceeds the cumulative server capacity over a time interval of T+m+1

slots,for some fixed value ofT. The maximizing value ofT in the right hand side (RHS)

of Equation (4.5) is sometimes referred to as the critical time scale of the queue. Note that

the decay rates for size 1 andM jobs are the same, since the only difference is their service

requirement which is negligible in the large deviation framework.

Moving to SMART, it follows from Theorem 4.4.1 that

Pr(W(N)(k) > m) ∝ max
T≥0

Pr(E(N)
k (T) > C(T +m+ 1)) (4.6)

where

E(N)
k (T)



















AN
1 (−T, 0), k = 1;

AN
1 (−T,m) + MAN

M(−T, 0), k = M.

36

Note that for size 1 jobs, the above is the “best possible” delay distribution that

can be achieved over the class of all work conserving policies. However, in the case of

sizek jobs for each fixedT, E(N)
M (T) ≥ D(N)(T), which immediately implies that the de-

lay of a job of original sizeM with SMART-LD stochastically dominates (i.e., is larger

in a distributional-sense) the corresponding delay with FCFS. However, for heavy-tailed

arrivals, it can be shown that this difference is small, of orderO(1/M), by observing that

the decay rate of SMART-LD matches that of SRPT, which has been compared to FCFS in

Chapter 3. This means that in the largeN andM regime (i.e. large number of flows, and a

large difference in arriving job sizes), the delay experienced by a size M job is similar under

FCFS and SMART-LD, while size 1 jobs experience far less delay under SMART-LD than

under FCFS.

Proof. Intuition(technical proof in Appendix A.3):We show that the delay rate function of

SMART-LD is again equivalent to the priority queue that gives higher priority to jobs of

smaller original size, PRI. This is proven through the idea of large scale limit, similar to the

arguments given for SRPT. We show that since at most only one job can be preempted at

any time slot, preempted jobs are negligible compared to jobs that are not preempted. This

idea is applied to the 2DQ framework of SMART-LD. As shown in Figure 4.2, the virtual

queues are partitioned into areas of higher priority, lowerpriority, and no priority. The no

priority area,B, is made up of exclusively preempted jobs, thus the number ofjobs can be

at most finite and can be effectively ignored in the large scale regime (N → ∞). In a similar

manner, we can see that the interiors of high and low priorityareas are also sparse. This

leads to the conclusion that in the many sources large deviations regime only the upper most

strips are of importance. Upon further inspection, the upper strip of the two dimensional

queue corresponds to PRI. �

37

0 5 10 15 20 25
0

0.2

0.4

0.6

0.8

1

N

−
(1

/N
)

lo
g

P
r(

W
N

(k
)>

4)

SRPT k=3M/4
SRPT k=M
PSJF k=3M/4
PSJF k=M
RS k=3M/4
RS k=M

Figure 4.3: Plot of the rate of convergence of SRPT, PSJF, andRS to the decay rate under
the uniform workload withM = 16, ρ = 0.8, andm = 4. The asymptotic decay rate is
shown as a dotted line. Note that only the decay rates of the larger sizes are shown because
only these can be estimated accurately in simulation since alarge delay for smaller job
sizes is a very low probability event asN grows. Though not shown here, we found similar
convergence rates under other policies in SMART-LD.

4.5 Numerical Analysis

Though Theorem 4.4.1 provides the expression for the delay decay rates of SMART-LD in

the many sources regime, the complicated nature of these formulas hide the behavior of the

decay rates. In this section, we will use simulations and numerical experiments to illustrate

how the decay rateIW(k,m), and thusPr(W(k) > m), is affected by the variability of the

service distribution, the range of the service distribution (M), and the threshold value (m).

In performing these studies we focus on three practical questions:

(i) How does the delay distribution behave under a large, butnot infinite, number of

flows? That is, what is the rate of convergence to the decay rate, IW(k,m)?

38

8 10 12 14 16 18 20
0

1

2

3

4

5

6

Threshold value, m

D
el

ay
 d

ec
ay

 r
at

e,
 I W

(k
,m

)

FCFS
SMART k=M
SMART k=3M/4
SMART k=M/2
SMART k=M/4

(a) Power-law

8 10 12 14 16 18 20
0

5

10

15

20

25

Threshold value, m

D
el

ay
 d

ec
ay

 r
at

e,
 I W

(k
,m

)

FCFS
SMART k=M
SMART k=3M/4
SMART k=M/2
SMART k=M/4

(b) High variability

Figure 4.4: Plot of the decay rate as a function of the threshold m under the power-law and
the high variability workload under SMART-LD with the maximum job sizeM = 16 and
ρ = 0.8. Each line in the figures corresponds to the decay rate of delay experienced by a
specific job sizek. The decay rate of FCFS is included as a benchmark. Note that since
decay rates of size 1 jobs are infinite, they are omitted.

(ii) How does the decay rate for a job of sizek vary acrossk? That is, how much do large

job sizes suffer under policies that bias towards small job sizes?

In our experiments, we assume that jobs are of sizes 1,M/4, M/2, 3M/4, or M, and

we varyM between 8 and 20. Each job size arrives according to an on-off process, i.e. in

each discrete interval a sizek job arrives with probabilitypk. We assume that the capacity

of the system,C, is 1.

We will consider three cases for the distribution of job sizes, which we refer to

asuniform, power-law, andhigh variability. In theuniform case each job size is equally

likely. In the power-lawcase, the arrival probabilities follow the power-law distribution

with exponent 2, i.e. a discrete and truncated counterpart of the Pareto distribution. Note

that due to the small spread of job sizes, this distribution is not highly variable; thus, to

study the impact of variability, we also consider a distribution where the largest jobs make

up half the load (as has been observed in web job sizes). In particular, thehigh variability

workload has size 1,M/4, M/2, 3M/4, andM job arrivals make up 1/24, 1/12, 1/8, 1/4,

39

8 10 12 14 16 18 20
0

0.5

1

1.5

2

2.5

3

Max job size, M

D
el

ay
 d

ec
ay

 r
at

e,
 I W

(k
,4

)
FCFS
SMART k=M
SMART k=3M/4
SMART k=M/2
SMART k=M/4

(a) Power-law

8 10 12 14 16 18 20
0

2

4

6

8

10

Max job size, M

D
el

ay
 d

ec
ay

 r
at

e,
 I W

(k
,4

)

FCFS
SMART k=M
SMART k=3M/4
SMART k=M/2
SMART k=M/4

(b) High variability

Figure 4.5: Plot of the decay rate as a function of the maximumjob size M under the
power-law and the high variability workload under SMART-LDwith the thresholdm = 4
andρ = 0.8. Each line in the figures corresponds to the decay rate of delay experienced by
a specific job sizek. The decay rate of FCFS is included as a benchmark. Note that since
decay rates of size 1 jobs are infinite, they are omitted.

and 1/2 of the total load.

Figure 4.3 illustrates the convergence of the delay distribution to the asymptotic

decay rate asN grows under SRPT. The thick lines are the numeric calculations of the

asymptotic decay rates proven in the dissertation and the other dotted lines are generated

using an event-driven simulation for scheduling policies SRPT, PSJF, and RS (which prior-

itizes towards the smallest product of remaining size and original size) that are all included

in SMART. The simulation matches the uniform workload and the setup described above

except that a Poisson arrival process (for ease of simulation) is used. Thus, in addition to

the error from using a finiteN, Figure 4.3 illustrates the error from the discretization of the

arrival process. Note that whenN = 20 there is already little difference between the em-

pirical decay rate of SRPT, PSJF, and RS and the asymptotic limit of SMART-LD. Thus, it

seems that rate of convergence to the decay rate is very fast,and thus the asymptotic decay

rate provides information that is useful in practical settings such as high traffic web servers

and routers, which have far more than 20 simultaneous flows.

40

We investigate the effect of varyingm and M under the power-law and the high

variability job size distribution on the delay decay rate and we illustrate the effect of these

variables in Figures 4.4 and 4.5 respectively. These plots illustrate the effect of increasing

m andM on the decay rate of delay. As the threshold valuem increases, Figure 4.4 shows

that the decay rate increases, and thusPr(W(k) > m) decreases. It is interesting to note

that the decay rate seems to grow linearly withm for all jobs sizesk under SMART-LD.

As the maximum job sizeM increases, Figure 4.5 shows that the decay rate of all job sizes

decreases, which is not surprising since this leads to an increase in service times for all job

sizes.

41

Chapter 5

LAS

5.1 Background and Related Work

An implementation issue with SRPT or SMART is that the remaining processing time in-

formation required may not be available to the scheduler. For example, a request of a

web page may entail downloading or searching other web sitesfor files of unknown size.

However, even in applications where the job sizes are unknown, system designers have

suggested policies such as Least-Attained-Service (LAS),which prioritizes jobs with small

attained service so that small jobs (which always have smallages) tend to have the server

to themselves. Formally, LAS is defined as follows.

Definition 5.1.1. LAS is a preemptive scheduling policy that serves jobs with the smallest

attained service (age) first. When there are multiple jobs with the same attained service, the

capacity of the server is distributed among them in some manner.

Note that a newly arriving job always preempts the job (or jobs) currently in service

and retains the processor until one of the following occurs:(i) the job departs, (ii) the next

arrival appears, or (iii) the job has obtained an amount of service equal to that received by

the job(s) preempted on arrival.

42

More specifically, in routers where the remaining processing time is not known

many blind1 policies have been suggested. Of such policies, Least–Attained–Service (LAS)

has been shown to be optimal in mean delay when the job size distribution has the decreas-

ing failure rate property [35, 36], and many variants have been implemented in practice

[32, 33] with similar success as SRPT. It has been shown that the amount of service a job

has received so far is a good indication of its remaining processing time when the jobs size

distribution follows a decreasing failure rate. Job size distribution with decreasing failure

rate captures the actual job size distribution found in the Internet since the well known

heavy tail job size distribution that is known to accuratelydescribe the actual job size dis-

tribution in today’s computer systems have a decreasing failure rate. By assigning higher

priority to jobs with small attained service, LAS indirectly favors jobs of small original size,

which always have small attained service. Due to this property, LAS is viewed as a good

approximation to SRPT when the job size information is not available.

Similar to SRPT and SMART, recent studies on LAS have focusedon the mean

delay experienced by a job of sizek, E[W(k)][17, 32, 33, 41]. However, when one is con-

cerned with other metrics such as QoS in a more realistic setting, a more revealing metric

would be thedistributionof W(k) in the many sources large deviations regime.

The difficulty in direct analysis of the distribution ofW(k) has led researchers to

study asymptotic scalings of the distribution. Analyticalresults on the LAS policy in the

large buffer large deviations framework have shown that the tail ofW(k) behaves propor-

tionally to a busy period, when the job size distribution is truncated atk. In other words,

jobs of size larger thank contributek to the busy period [25, 30, 31]. This is in contrast

to the behavior of FCFS, where the tail ofW(k) is proportional to the tail of the stationary

workload for allk. However, the many sources large deviations regime allows us to un-

derstand complementary characteristics of the LAS policy in a setting which is geared to

understand today’s web-server.

1Blind to job size.

43

M1 original
size

attained
service

0

M

M1 original
size

attained
service

0

M

Figure 5.1: Illustration of the 2DQ representation for LAS.As depicted the X-axis is the
original size and the Y-axis is the attained service of a job,where attained service is the
amount of service a job has received so far.

In this chapter, we analyze the delay distribution of LAS in the many sources large

deviation regime which to the best of our knowledge has not been studied yet.

5.2 Intuition

The analysis of LAS in the many sources large deviations regime hinges on the 2DQ frame-

work studied in Section 4.2. However, the arrangement of virtual queues for LAS is differ-

ent from SMART-LD due to its prioritization with respect to attained service rather than the

remaining processing times as in SMART-LD. The 2DQ framework for LAS is depicted in

Figure 5.1, where the X-axis is the original size of a job and Y-axis is the attained service

that a job has received so far. This may seem surprising sincethe prioritization of LAS

depends only on the attained service of a job; however addinga secondary variable is the

key to making the analysis tractable. Note that the analysisof LAS must be very different

from SRPT or SMART, since a job actually loses priority as it receives service while for

SRPT and SMART a job gains priority.

44

0

M

attained
service

M
original

size1

packet arrival

Fully serviced

Qk,k

Qk,1
0

M

attained
service

M
original

size1

packet arrival

Fully serviced

Qk,k

Qk,1

(a)

0

M

attained
service

M
original

size1

packet arrival

Qk,k

Higher Priority

Lower
Priority

Qk,k-1

0

M

attained
service

M
original

size1

packet arrival

Qk,k

Higher Priority

Lower
Priority

Qk,k-1

(b)

0

M

attained
service

M
original

size1

packet arrival

Higher
Priority

Lower
Priority

Qk,r

Qk,r-1

0

M

attained
service

M
original

size1

packet arrival

Higher
Priority

Lower
Priority

Qk,r

Qk,r-1

(c)

Figure 5.2: Illustrations of the two dimensional queueing framework for LAS. Note that
since a job cannot have attained service larger than its original size only the upper right
triangle of Figure 5.1 is of importance. The progression of ajob between queues while in
the system is illustrated in (a). The priority structure foran incoming job is shown in (b)
and for a partially served job is shown in (c).

As shown in Figure 5.1, the secondary variable we add is the original job size. This

means that, in the event of ties in attained service, insteadof sharing the server among

the jobs with equal attained service, the job with the smallest original size is served first.

Further, jobs that have the same original size and the same attained service are serviced

according to a FCFS rule. Keep in mind that jobs are not servedwith the full service

capacity, but are only serviced a single unit at once, which is consistent with the discrete

version of LAS. Note that using the job size as a secondary ordering variable does not alter

the performance of LAS in the asymptotic framework, it is simply a modeling decision used

to make the analysis tractable.

Formally, a queueQi, j , i ≥ j, denotes the queue that contains all the jobs having

original sizei that have receivedj unit of service. Thus a job of original sizek arrives to

Qk,0 and then progresses toQk,1, Qk,2 ... Qk,k−1,Qk,k, at which point the job is fully serviced

and leaves the system. This is depicted in Figure 5.2. We again denoteQi, j(t) as the volume

of Qi, j at timet, andQi(t) as the volume of the queue that contains all jobs that have original

sizei, Qi, whereQi =
⋃ j=i−1

j=0 Qi, j .

45

Let us now consider a tagged sizek job that arrives in the system at time 0 and has

receivedr units of service (see Figure 5.2). By the definition of LAS, all jobs that have

been served less thanr units have higher priority than the tagged job. Additionally, jobs

with smaller original size that have attainedr units of service also have higher priority. In

other words, for any job inQk,r to be serviced an additional unit, the following queues must

be empty.

k−1
⋃

i=1

r
⋃

j=0

Qi, j +

M
⋃

i=k+1

r−1
⋃

j=0

Qi, j +

r−1
⋃

j=0

Qk, j

Further, since in each queue,Qi, j , jobs are serviced in a FCFS order, jobs that have

arrived toQk before the tagged job must be servicedr units and job that arrived after must

be served onlyr − 1 units. The same argument can be made forQk,k−1, which is the queue

for jobs that will leave the system once it is served again. This group of higher priority

queues change as the job in question receives service. However, the basis of the derivation

of the delay decay rate rests in the fact that these higher priority queues follow a tractable

and consistent order.

5.3 Main Contributions

The result of this chapter in the dissertation is the derivation of the delay decay rate of LAS

and a corollary that compares the asymptotic delay distribution of SMART-LD and LAS

across job sizes. The following theorem describes the delayrate function of LAS in the

many sources large deviations regime, i.e., the asymptoticdelay distribution of LAS.

Theorem 5.3.1.Under similar assumptions made in Section 4.4.2, the decay rate of delay

for size k jobs under LAS, IŴ(k,m), is

IŴ(k,m) = inf
T≥0

[

inf
~y:Y

(

A<k(~y) + Ak(~y) + A>k(~y)
)

]

, (5.1)

46

where conditionY states that
∑

i∈k̂ iyi+kyk+
∑

i∈ǩ(k−1)yi = C(T+m+1) with k̂{1, . . . , k−1},

ǩ = {k+ 1, . . . ,M}, and y(1)
k +

k−1
k y(2)

k = yk. Further,

A<k(~y) =
k−1
∑

i=1

I (−T,m)
Ai

(yi)

Ak(~x) = I (−T,0)
Ak

(y(1)
k) + I (1,m)

Ak
(y(2)

k)

A>k(~y) =
M
∑

j=k+1

I (−T,m)
Ai

(y j).

Theorem 5.3.1 characterizes the delay distribution of LAS in the many sources

regime. Though the form of Equation (5.1) is complicated, wecan obtain intuition for it.

Again, the decay rate depends on the “most likely” way that the arrival processes deviate

from their mean arrival rates in order to cause delay exceeding m. Thus, the two infimums

choose the most likely time scale (T) and arrival rates for each job size (~y), whereyk is

separated into the arrivals before (y(1)
k) and after (y(2)

k) the tagged arrival. Then, inside the

infimums,A<k(~y), Ak(~y), andA>k(~y) characterize the contribution to the delay of a sizek

job made by jobs with size< k, other jobs of sizek, and jobs of size> k arriving in the time

interval (−T,m). This intuition indicates one key difference between the decay rates ofW(k)

under SMART and LAS. While under LASA>k(~y) characterizes the effect of jobs with size

larger thank, there is no such term in the decay rate of SMART (see Equation(4.4)).

To illustrate the intuition of the above result, we will use the special case when jobs

are only of sizes 1 andM. For LAS, in the special case when there only exist size 1 andM

jobs, it follows from Theorem 5.3.1 that

Pr(W(N)(k) > m) ∝ max
T≥0

Pr(F(N)
k (T) > C(T +m+ 1)) (5.2)

47

where

F(N)
k (T) =



































AN
1 (−T, 0), k = 1;

AN
1 (−T,m) + MAN

M(−T, 0)

+(M − 1)AN
M(1,m), k = M.

Note, that for size 1 jobs, SMART-LD and LAS are asymptotically identical (i.e.,

the decay rates are the same). On the other-hand, for sizeM jobs, observe that for each

fixed T, F(N)
M (T) ≥ E(N)

M (T), which immediately implies the delay of a job of original size

M with LAS stochastically dominates the corresponding delaywith SMART-LD. Thus, the

delay experienced by a sizeM job under LAS is larger than that under SMART-LD (in

distribution). This is an important observation that will be generalized in Corollary 5.3.1.

Proof. Intuition(technical proof in Appendix A.4):As shown in Figure 5.2, for LAS the

two dimensional queueing framework partitions the virtualqueues into coherent areas of

higher and lower priority with respect to a job in the system.The job progresses downward

through the two dimensional queue only when all the queues inthe higher priority area are

emptied. This logical separation of high and low priority set of virtual queues persists in

a tractable manner until the job leaves the system as shown inFigure 5.2. In this manner,

LAS can be partitioned into two distinct areas of high and lowpriority that is time varying.

This observation along with the well known results from the priority queueing system are

applied to derive the delay rate function of LAS �

In addition to the delay rate function of LAS, we prove that all policies in SMART-

LD stochastically outperform LAS with respect to delay for any job size [48], i.e., there is

a consistent penalty for not using the remaining processingtime directly which affects all

job sizes. We can prove the following corollary using a simple extension of the size 1 and

M example.

Corollary 5.3.1. Any scheduling policy in SMART is uniformly better (for any job size)

48

0 5 10 15 20 25
0

0.2

0.4

0.6

0.8

1

N

−
(1

/N
)

lo
g

P
r(

W
N

(4
)>

0.
5)

LAS k=M/2
LAS k=3M/4
LAS k=M

Figure 5.3: Plot of the rate of convergence of SRPT to the decay rate under the uniform
workload withM = 16,ρ = 0.8, andm= 4. The asymptotic decay rate is shown as a dotted
line. Note that only the decay rates of the larger sizes are shown because only these can
be estimated accurately in simulation since a large delay for smaller job sizes is a very low
probability event asN grows. Though not shown here, we found similar convergence rates
under other policies in SMART-LD.

than the LAS policy with respect to delay in the many sources large deviations regime, i.e.

IW(k,m) ≥ IŴ(k,m),

for all k and m, where IW(k,m) and IŴ(k,m) are the delay rate functions of SMART and

LAS respectively.

Proof. The precise proof for Corollary 5.3.1 is omitted. However, the basic idea behind

the proof is that the volume of higher priority jobs for SMART-LD is always less than that

of LAS while the available capacity is the same for both. In particular, A<k(~z) + Ak of

SMART-LD is always less thanA<k(~y) + Ak(~y) + A>k(~y) of LAS (see Theorem 4.4.1 and

Theorem 5.3.1 �

49

8 10 12 14 16 18 20
0

1

2

3

4

5

6

Threshold value, m

D
el

ay
 d

ec
ay

 r
at

e,
 I W

(k
,m

)

FCFS
LAS k=M
LAS k=3M/4
LAS k=M/2
LAS k=M/4

(a) Power-law

8 10 12 14 16 18 20
0

5

10

15

20

25

Threshold value, m

D
el

ay
 d

ec
ay

 r
at

e,
 I W

(k
,m

)

FCFS
LAS k=M
LAS k=3M/4
LAS k=M/2
LAS k=M/4

(b) High variability

Figure 5.4: Plot of the decay rate as a function of the threshold m under the power-law and
the high variability workload under SMART-LD with the maximum job sizeM = 16 and
ρ = 0.8. Each line in the figures corresponds to the decay rate of delay experienced by a
specific job sizek. The decay rate of FCFS is included as a benchmark. Note that since
decay rates of size 1 jobs are infinite, they are omitted.

5.4 Numerical Analysis

Similar to the SMART-LD case, we address the same questions as well as the following

additional question.

(i) How much penalty does LAS pay for not using job size information to prioritize?

That is, by how much does SMART-LD outperform LAS?

All the simulation setup used in this section is identical tothe SMART-LD case.

Figure 5.3 illustrates the convergence of the delay distribution to the asymptotic decay rate

as N grows under LAS. The dotted lines are the numeric calculations of the asymptotic

decay rates proven in the dissertation and the other lines are generated using an event-

driven simulation. The simulation matches the uniform workload described above except

that a Poisson arrival process is used. Thus, it seems that rate of convergence to the decay

rate is very fast, and thus the asymptotic decay rate provides information that is useful in

practical settings such as high traffic web servers and routers, which have far more than 20

50

8 10 12 14 16 18 20
0

0.5

1

1.5

2

2.5

3

Max job size, M

D
el

ay
 d

ec
ay

 r
at

e,
 I W

(k
,4

)
FCFS
LAS k=M
LAS k=3M/4
LAS k=M/2
LAS k=M/4

(a) Power-law

8 10 12 14 16 18 20
0

2

4

6

8

10

Max job size, M

D
el

ay
 d

ec
ay

 r
at

e,
 I W

(k
,4

)

FCFS
LAS k=M
LAS k=3M/4
LAS k=M/2
LAS k=M/4

(b) High variability

Figure 5.5: Plot of the decay rate as a function of the maximumjob size M under the
power-law and the high variability workload under SMART-LDwith the thresholdm = 4
andρ = 0.8. Each line in the figures corresponds to the decay rate of delay experienced by
a specific job sizek. The decay rate of FCFS is included as a benchmark. Note that since
decay rates of size 1 jobs are infinite, they are omitted.

simultaneous flows.

We investigate the effect of varyingm and M under the power-law and the high

variability job size distribution on the delay decay rate and we illustrate the effect of these

variables in Figures 5.4 and 5.5 respectively. Figure 5.4 shows that the decay rate increases,

and thusPr(W(k) > m) decreases, for increasingm. As the maximum job sizeM increases,

Figure 5.5 shows that the decay rate of all job sizes decrease.

More importantly, we address the additional question (iii). Figure 5.6 illustrates

how the decay rate for a job of sizek varies acrossk under SMART-LD, LAS, and FCFS

(which we include as a baseline for comparison). The resultsare shown for both the power-

law and high variability workloads under high load.Note that a larger decay rate indicates

a stochastically smaller delay.

The first observation we make is that, in each of the plots, small job sizes have much

better decay rates under SMART-LD and LAS than under FCFS; whereas large job sizes

have better decay rates under FCFS than under LAS and SMART-LD. Thus, there is always

crossover point for each of SMART-LD and LAS where their decay rate “crosses over” that

51

Low load (ρ = 0.4) High load (ρ = 0.8)

4 6 8 10 12 14 16
0

5

10

15

20

25

Job size, k

D
el

ay
 d

ec
ay

 r
at

e,
 I W

(k
,2

0)

FIFO
SMART
LAS

(a) Power-law

4 6 8 10 12 14 16
0

5

10

15

20

25

Job size, k

D
el

ay
 d

ec
ay

 r
at

e,
 I W

(k
,2

0)

FIFO
SMART
LAS

(b) High variability

4 6 8 10 12 14 16
0

5

10

15

20

25

Job size, k

D
el

ay
 d

ec
ay

 r
at

e,
 I W

(k
,2

0)

FIFO
SMART
LAS

(c) Power-law

4 6 8 10 12 14 16
0

5

10

15

20

25

Job size, k

D
el

ay
 d

ec
ay

 r
at

e,
 I W

(k
,2

0)

FIFO
SMART
LAS

(d) High variability

Figure 5.6: Plot of the delay rate function as a function of the job size,k, with the threshold
m = 20 and maximum job sizeM = 16 held fixed. Recall thatIW(k,m) measures the rate
function ofPr(W(k) > m) and that a largerIW(k,m) indicates a stochastically smaller delay.

of FCFS. Figure 5.6 illustrates that the crossover point is highly dependent on the service

distribution. When the load is high and the largest jobs makeup a significant fraction of

the load, the decay rate of SMART-LD does not cross that of FCFS until the largest job

size,k = M. The behavior of the crossover point can be understood usingthe following key

observation: while the decay rate under FCFS gets worse (smaller) as the load of largest

jobs is increased and the total load is held constant, the decay rates of LAS and SMART-LD

get better (larger). Thus, since large job sizes make up a significant fraction of the load in

many computer applications, it seems that one need not worrytoo much about the suffering

of large job sizes under policies that prioritize small jobs. Though not shown, we also

investigated the impact of load on the crossover point and found that load only changes the

magnitude of the decay rates (the higher the load, the lower the decay rate), not the relative

behavior of the decay rates under FCFS, LAS, and SMART-LD.

The next observation we make from Figure 5.6 is that both SMART-LD and LAS

exhibit a similar trend in decay rate acrossk, with SMART-LD always providing stochasti-

cally smaller delays than LAS. Further, in answer to the question, Figure 5.6 illustrates that

the improvement of SMART-LD over LAS is again highly dependent on the job size distri-

bution: as the load of the largest jobs increases, the difference in the decay rates of SMART-

LD and LAS increases. The fact that SMART-LD is better for small jobs follows from the

52

operation of two policies: small jobs typically do not get preempted under SMART-LD,

but are preempted by all arrivals under LAS. However, the result that SMART-LD is better

than LAS even for larger jobs less obvious. An explanation for this fact is that under LAS,

though larger jobs gain higher priority at arrival comparedto SMART-LD, as large jobs

receive service their priority is dropping quickly under LAS but may be increasing under

SMART-LD.

53

Chapter 6

finite-SRPT

6.1 Background and Related Work

As we have discussed in Chapter 3, SRPT is a policy that provides superior delay properties

for smaller jobs while the unfairness for larger jobs is not large. However, one problem in

implementing SRPT is practical systems is that SRPT does nottake into consideration the

bandwidth constraint at links. In other words, SRPT guarantees full bandwidth (BW) of

the server to job requests with the smallest remaining processing time until the request are

fully accommodated or are preempted. This is unrealistic when we consider servers of

large BW. To illustrate, let us consider the following example. Assume that the outgoing

BW of the web-server is 1 Gbps and multiple download requestsfor file downloads arrive.

The original SRPT algorithm at the web-server would processsuch requests one at a time

with the full 1 Gbps out-going link bandwidth allocated to the file currently being served.

However, the end-receiver (user) receiving this file may have bandwidth of only 10 Mbps

(e.g., a wireless LAN at the end-user). Thus a more realisticscenario is where the BW of

the server is simultaneously distributed among multiple file requests by a fixed amount that

corresponds to the link rates of the end-receivers. This canbe captured by imposing an

additional constraint on SRPT – namely, a peak rate at which each file can be served by the

54

web-server.

In this section, we investigate the delay distribution of SRPT with the additional

constraint that the maximum amount of service each job can receive in a time-slot (also

called the potential service) is bounded (this captures theend-receiverbandwidth con-

straint). We denote the proposed scheduling policy as finite-SRPT. We show that as the

maximum potential service a job can receive in a time-slot isvaried, the proposed finite-

SRPT exhibits a spectrum of characteristics. In particular, when the maximum amount

is larger than or equal to the largest job it is equivalent to SRPT whereas it is similar to

Processor-Sharing (PS) when the maximum amount is only one unit.

6.1.1 Definition and explanation of finite-SRPT

SRPT is a preemptive scheduling policy that serve jobs with smaller remaining processing

time first. Among jobs that have the same remaining processing time, jobs are served in

FCFS order1. We consider SRPT for a more realistic setting where the jobsare served at

most a fixed amount in a time-slot. Accordingly, we call this realistic version of SRPT as

finite-SRPT.

Definition 6.1.1. finite-SRPTis identical to the original SRPT but with an additional re-

striction which states that a job is served at most D units in atime slot, where1 ≤ D ≤ M

(recall M is the largest job size).

Next section explains the proposed finite-SRPT with respectto the two-dimensional-

queueing (2DQ) framework first introduced in [48] which makes the analysis possible.

55

kkQ ,

kkQ ,

0,kQ 0,kQ

DMD 2≤<

MMMM

0000

remainingremainingremainingremaining

sizesizesizesize

1111 MMMMoriginaloriginaloriginaloriginal

sizesizesizesize

kkQ ,

0,kQ

D

D

D

D

Dk ≤ Dk >

filefilefilefile

arrivalarrivalarrivalarrival

kkQ ,

kkQ ,

0,kQ 0,kQ

DMD 2≤<

MMMM

0000

remainingremainingremainingremaining

sizesizesizesize

1111 MMMMoriginaloriginaloriginaloriginal

sizesizesizesize

kkQ ,

0,kQ

D

D

D

D

Dk ≤ Dk >

filefilefilefile

arrivalarrivalarrivalarrival

Figure 6.1: Finite-SRPT and two dimensional queueing framework. The left-most figure
depicts the path that a job should take for it to be fully serviced. X-axis is the original
size of a job and Y-axis is the remaining size of a job. Thus a job of original sizek upon
receiving service progresses downward until it is fully served, i.e., remaining processing
time is 0. However, different sized jobs require different numbers of rounds ofD units of
service in finite-SRPT. jobs of sizek ≤ D will be fully served in one round, while jobs with
sizeD < k ≤ 2D require two rounds of service to leave the system.

6.2 Intuition

As in Chapter 4, we consider a 2DQ representation, and letQi, j denote the fictitious queue

that contains all the jobs that were originally of sizei and currently have remaining sizej.

Recall that our objective is to study the delay experienced by the tagged job – a fictitious

job that arrived to the system at time-slot 0. The path that the tagged job of sizek takes

in the 2DQ representation whenD < M ≤ 2D is depicted in Figure 6.1. Accordingly the

2DQ representation allows the separation of high and low priority areas with respect to the

tagged job as shown in Figure 6.2.

We first define a typical job for the finite-SRPT scheduling policy as follows.

Definition 6.2.1. Typical jobsare jobs that receive D units of service every time they are

selected for service. Observe that in a time-slot in which a job is selected for service, it can

1Other definition of SRPT specifies that jobs with the same remaining size are served in a PS manner. Even
in such cases, the system does not restrict the amount of service to a job since the number of jobs with the
smallest remaining size is not fixed, i.e., can range from 1 job to all jobs in the system.

56

D

D

High
priority

Low
priority

D

D
High
priority

Low
priority

D

DHigh
priority

Low
priority

Dk ≤ Dk >

D

D

High
priority

Low
priority

D

D
High
priority

Low
priority

D

DHigh
priority

Low
priority

Dk ≤ Dk >

Figure 6.2: Priority scheme for a tagged job of size k, whereD < M ≤ 2D. As depicted in
the figures, all fictitious queues in the shaded area are of higher priority. Correspondingly,
lower priority queues are the fictitious queues in the non-shaded area. The higher priority
area is composed of typical higher priority jobs represented as the thick diagonal lines and
atypical jobs are in the rest of the shaded area.

receiveat mostD units of service. We denote a job to be typical if it is offeredexactlyD

units of service each time it is selected for service. Thus a typical job receives D units of

service until its leftover size becomes less than D whence itis fully served. A job is said to

beatypical if it is not typical.

To illustrate, consider a system with link capacityC = 10, with 2 jobs (A,B) in the

system of sizesFA = 16, FB = 24 respectively and assumeD = 8. In this case, the state of

the system at the end of service isFA = 8, FB = 22, i.e., jobsA, B received 8, 2 units of

service respectively. In this example, jobA is typical and jobB is atypical.

To illustrate the path that the tagged job of sizek takes, we consider the specific

case ofD < M ≤ 2D. In this example (and in the rest of this section), we assume that the

all jobs (including the tagged job) are typical2.

The tagged job takes two distinct paths depending on its size, i.e.,k ≤ D andD <

k ≤ 2D, since they require 1 round and 2 rounds of service to completely leave the system.

DenoteT1 as the time-slot in which the tagged job receives its firstD units of service, and

2Note that in general, some of the jobs could be atypical – thisproblem will be dealt in the proof of the
delay decay rate.

57

T2 as the time-slot in which the tagged job receives its secondD units of service (if the

tagged job size exceedsD).

First, let us consider the path of the tagged job of sizek ≤ D, and in the process

identify all higher priority queues and arrivals that are required to derive the virtual delay

experienced by the tagged job. This tagged job arrives atQk,k at time-slot 0 by defini-

tion. Since all jobs with smaller remaining size have higherpriority, all of the jobs in the

following queues must be servedD units before the tagged job is served its firstD units.

M
∑

i=1

k−1
∑

j=1

Qi, j(0)+ Qk,k(0). (6.1)

Sincek ≤ D, the queues in Equation (6.1) must be fully served before thetagged

job leaves the system. Note that sincek ≤ D, the tagged job leaves the system at time-slot

T1. Thus, in addition to the jobs in the higher priority queues described in Equation 6.1, job

arrivals
∑k−1

i=1 AN
i (T1, 1) must be fully served (sincek ≤ D) before the tagged job leaves the

system.

Now, we consider the path that the tagged job of sizeD < k ≤ 2D takes and

determine the higher priority queues and job arrivals usingthe 2DQ framework. At time-

slot 0, the tagged job arrives atQk,k. Thus all jobs in Equation (6.1) must be servedD

units in order for the tagged job to receives its firstD units of service. Since the tagged job

receives its firstD units of service atT1, job arrivals
∑k−1

i=1 AN
i (T1, 1) must be servedD units.

However, the tagged job requires anotherD units of service to leave the system. In fact, the

tagged job will be in the queueQk,k−D at timeT1. Thus, jobs in the following queues:

M
∑

i=1

k−D−1
∑

j=1

Qi, j(T1) + Qi,k−D(T1) (6.2)

must be servedD units before the tagged job receives its nextD units of service. Note

58

that all jobs in Equation (6.2) are ones that have been servedD units from the queues

described in Equation (6.1) and arrivals
∑k−1

i=1 AN
i (T1, 1). Note again that since the jobs in

Equation (6.2) and
∑k−1

i=1 AN
i (T1, 1) at time-slotT1 have remaining size< D, they need to

be fully served before the tagged job receives its secondD units of service. In addition, all

new job arrivals that have original size< k− D, i.e.,
∑k−D−1

i=1 AN
i (T2,T1 + 1), are required to

be servedD units (since all jobs in this arrival have original size< D, they are fully served)

before the tagged job can leave the system. To summarize, alljobs in the queues described

in Equation (6.1) and job arrivals
∑k−1

i=1 AN
i (T1, 1) and

∑k−D−1
i=1 AN

i (T2,T1+1) should be fully

served before the tagged job can leave the system.

This argument can be extended to the general case of a tagged job of size (i −1)D <

k ≤ iD for some integeri ≥ 1.. In this case, the tagged job requiresi rounds of service

of being serveD units to be fully served. The higher priority queues and arrivals can be

determined by definingTi as the time-slot when the tagged job receives itsith D unit of

service.

6.3 Main Contributions

6.3.1 Characteristics of finite-SRPT

One can see that finite-SRPT behaves differently for different values ofD, which ranges

from 1 to M. One extreme case is whenD = M. Finite-SRPT forD = M is a scheduling

policies that does not restrict the amount of service granted to a job in a time-slot. Thus

finite-SRPT withD = M allocates its full capacity to a single job then moves on to the next

one, which is equivalent to the original SRPT.

As D decreases, finite-SRPT becomes a scheduling policy where a job is served

less and less each time it is scheduled for service. WhenD = 1, a job is served a unit

at each time-slot it is selected for service. Define a cycle tobe the interval between time-

slots when the tagged job is servedD units and the time-slot it is servedD units again, i.e.,

59

maximum units

served in a time-slot

files served

in a cycle

All files

files with smaller

remaining size

1 M

PS

SRPT

finite-SRPT

maximum units

served in a time-slot

files served

in a cycle

All files

files with smaller

remaining size

1 M

PS

SRPT

finite-SRPT

Figure 6.3: Finite-SRPT described with respect to SRPT and PS. Finite-SRPT occupies
a region between SRPT and PS for varying values ofD. WhenD = M, finite-SRPT is
equivalent to SRPT. Finite-SRPT atD = 1 is a scheduling policy very close to PS but
different in the fact that only jobs with smaller remaining processing time are served before
the tagged job in a cycle instead of all jobs in the system.

(Ti+1,Ti + 1). Then finite-SRPT withD = 1 is a scheduling policy which servesall jobs

with smaller remaining size1 unit in a cycle. This is very similar to a discrete version of

PS whereall jobs are served 1 unit in a cycle. As explained, the only difference lies in the

fact that the two policies differ in the set of jobs that is served 1 unit in a cycle (all smaller

remaining sized jobs vs. all jobs). This interesting characteristic of finite-SRPT is due to

the fact that when the maximum service (D) is small, the left-over capacity after all smaller

jobs have been servedD units trickles down to larger jobs thus making the scheduling policy

more fair.

For example, consider the following scenario where the system has three jobs of

size 3, 4, and 10. Assume that the capacity of the server is 3. In the original SRPT or

whenD = 3 in finite-SRPT, only the first job of size 3 will be served in the first time slot.

However, whenD = 2, 2 units the first job and 1 unit of the second job will be served.

Note that a larger job which would not have been served if it was SRPT is being served. In

other words, left-over capacity is distributed to the larger jobs. This trend becomes more

pronounce when we considerD = 1 for finite-SRPT. In this case, all three jobs will receive 1

60

unit of service which is what PS would have done. However, note that finite-SRPT becomes

equivalent to PS only when the number of jobs is smaller than⌊
totalcapacity

D ⌋.

Intuitively, the proposed finite-SRPT can be seen as a scheduling policies that span

the area shown in Figure 6.3 asD is varied. WhenD = M, finite-SRPT is equivalent to

SRPT and asD decrease finite-SRPT becomes similar to PS. This intuition can be explicitly

seen in the numerical analysis in Section 6.4.

6.3.2 The delay decay rate of finite-SRPT

The delay decay rate of finite-SRPT for varyingD in the many sources large deviations

regime is derived in the following theorem [45].

Theorem 6.3.1. Under suitable straight line large deviation and burstiness assumptions

on the arrival (used in [44]), the virtual delay decay rate ofsize k jobs under finite-SRPT

satisfies

IC−ǫ (k,m) ≤ IV(k,m) ≤ IC+ǫ (k,m) (6.3)

for anyǫ > 0, where

IS(k,m) = inf
−→
T :T



















inf
~y:Y



















M
∑

j=1

IAN
j (Ti+1,Ti+1)

(

y(Ti+1,Ti+1
j

)





































, (6.4)

for which the conditionT states that m= T⌈ k
D ⌉−1 > . . . > T1 > 0 > T0 > . . . > T⌈ k

D ⌉−⌈
M
D ⌉

,

andY states that

⌈ k
D ⌉−1
∑

i=1

k−iD−1
∑

j=1

jy(Ti+1,Ti+1)
j +

k−1
∑

j=1

jy(T1,1)
j +

k
∑

j=1

jy(0,T0+1)
j

61

+

−1
∑

i=⌈ k
D ⌉−⌈

M
D ⌉

k−iD
∑

j=1

jy(Ti+1,Ti+1)
j = S

(

T⌈ k
D ⌉−⌈

M
D ⌉
+m+ 1

)

,

where⌈a⌉ is the smallest integer large than a, and y(Ti+1,Ti+1)
j , y(T1,1)

j , y(0,T0+1)
j ≥ 0 for all

i, j ≥ 0.

The theorem states that the delay decay rate of finite-SRPT can be bounded by the

delay decay rate of finite-SRPT considering only typical jobs with slight perturbations (ǫ)

to the server capacity.

Proof. Intuition(technical proof in Appendix A.5):The basic idea behind the proof is the

following. The derivation of the delay decay rate for finite-SRPT is dependent upon iden-

tifying the critical event that results in{V(N)(k) > m} with the least cost. This critical event

corresponds to the “easiest” way in which the tagged job of size k arriving at time-slot 0

does not leave the system by time-slotm. We make the observation that the “easiest” way

to achieve{V(N)(k) > m} is the event in which all higher priority jobs are serviced before

the tagged job.

However, the precise volume of all jobs with higher priorityis unknown. We show

that all jobs in the higher priority queues and higher priority job arrivals can be upper and

lower bounded as follows. The derivation of these asymptotically tight bounds were based

on analyzing typical and atypical jobs separately and deriving bounds for each.

We describe in detail the main intuition that makes the analysis of the delay decay

rate of finite-SRPT possible. For ease of understanding, we discuss the simple case of

D < M ≤ 2D. The technical proof for the general case is provided in Appendix A.5. The

delay experienced by a tagged job is dependent on the volume of all jobs that are served

before the tagged job leaves the system. Observe that higherpriority queues and higher

priority job arrivals identified through the 2DQ framework in Section 6.2 provides a clear

way in which one can derive Pr(V(N)(k) ≥ m). In particular, the approximate analysis

(approximate due to the assumption that all jobs are typical) leads to the following:

62

Pr(V(N)(k) ≥ m) ≈



















































Pr
(

∑M
i=1

∑k−1
j=1 Qi, j(0)+ Qk,k(0)

+
∑k−1

i=1 iAN
i (T1, 1) ≥ NC(m+ 1)

)

, k ≤ D

Pr
(

∑M
i=1

∑k−1
j=1 Qi, j(0)+ Qk,k(0)+

∑k−1
i=1 iAN

i (T1, 1)

+
∑k−D−1

i=1 iAN
i (m,T1 + 1) ≥ NC(m+ 1)

)

, D < k ≤ 2D.

(6.5)

To derive the precise expression for Pr(V(N)(k) ≥ m), we must improve upon Equa-

tion (6.5) in the following manner.

(i) Recall that in Section 6.2, we assumed that all jobs including the tagged job are

typical. Due to this assumption, the higher priority job arrivals in Equation (6.5) are

not accurate and must be corrected to take into account the atypical jobs.

(ii) The volume of higher priority jobs in
∑M

i=1
∑k−1

j=1 Qi, j(0)+ Qk,k(0) must be quantified.

This requires the identification of job arrivals in the past that end up in the higher

priority queues at time-slot 0.

However, identifying the precise volume of all jobs that need to be served before the

tagged job is difficult to determine. Our approach is to derive (asymptotically) arbitrarily

close upper and lower bounds on the volume of all jobs in the higher priority queues and

the volume of all higher priority job arrivals.

(i) Bounding higher priority arrivals:As discussed before, we need to take into account

the atypical jobs in determining the higher priority job arrivals in Equation (6.5). Note

that atypical jobs are generated as a result of the last job (of remaining size≥ D) that

is served in a time-slot encountering a server with left-over capacity smaller thanD.

From this observation, it is clear that at most a single job can become atypical in a

time-slot.

63

Due to this observation, the volume of higher priority arrivals for the casek <

D can be upper bounded by
∑k−1

i=1 iAN
i (m, 1) where no job becomes atypical and

lower bounded by
∑k−1

i=1 iAN
i (m, 1)−m(M − 1) where exactly one job becomes atyp-

ical in every time-slot and the size of the atypical job is thelargest possible, i.e.,

M − 1. Similarly, for the case ofD < k ≤ 2D, an upper bound is
∑k−1

i=1 iAN
i (m, 1) +

∑k−D−1
i=1 iAN

i (m,T1 + 1) and a lower bound is
∑k−1

i=1 iAN
i (m, 1) +

∑k−D−1
i=1 iAN

i (m,T1 +

1)−m(M − 1).

(ii) Bounding higher priority queues:Providing bounds for the volume of all higher

priority queues in Equation 6.5 is more difficult. The difficulty lies in the fact that

determining the volume of jobs in the higher priority queuesrequires the knowledge

of the past. This difficulty can be mitigated by considering typical and atypical jobs in

the higher priority queues separately and derive asymptotically tight upper and lower

bounds for both.

As depicted in Figure 6.2, the shaded area represents all higher priority queues, i.e.,
∑M

i=1
∑k−1

j=1 Qi, j(0)+ Qk,k(0). The area of higher priority queues can be separated into

three distinct subareas: the thick upper-most diagonal strip (denote asB1), the lower

thick diagonal strip that isD units away fromB1 (denote atB2), and the rest of

the shaded area which we denote asC1. Then by definition,
∑M

i=1
∑k−1

j=1 Qi, j(0) +
∑k−1

i=1 Qi,k(0) = B1+B2+C1. We make the observation thatC1 contains only atypical

jobs and that all jobs inB1, B2, andC1 need to be fully served before the tagged job

leaves the system by a similar argument in Section 6.2. Basedon this discussion, we

derive asymptotically tight upper and lower bounds on
∑M

i=1
∑k−1

j=1 Qi, j(0)+ Qk,k(0).

First, we consider the case where the tagged job is of sizek < D. We consider the

possible arrivals to the system that contribute toB1, B2, andC1 separately, and then

derive upper and lower bounds onB1 + B2 + C1, i.e.,
∑M

i=1
∑k−1

j=1 Qi, j(0) + Qk,k(0).

DenoteT0 as the last time-slot before time-slot 0 whenQk was empty, andT−1 as the

last time before time-slot 0 whenQk+D was empty. This can be generalized where

64

Ti , i ≤ 0 denotes the last time-slot before 0 whenQk−iD was empty.

(B1) Note that all jobs inB1 are jobs that arrived before time-slot 0 but have not

received any service until time-slot 0. Thus, an upper boundon the volume of

arrivals that contribute toB1 is by assuming that all jobs are typical, and leads

to
∑k

i=1 iAN
i (0,T0 + 1). A lower bound on the volume of arrivals is derived by

assuming that (in the worst-case) one job becomes atypical at every time-slot,

and the size of the atypical job is the largest possible, i.e., M − 1, thus leading

to the lower bound
∑k

i=1 iAN
i (0,T0 + 1)+ T0(M − 1).

(B2) B2 contains jobs that had original size≤ k + D and were servedD units of

service before time-slot 0. Thus, one can see that upper and lower bounds

on the volume of job arrivals contributing toB2 is
∑k+D

i=1 iAN
i (T0,T−1 + 1) and

∑k+D
i=1 iAN

i (T0,T−1+1)− (T0−T−1)(M−1) respectively, using similar argument

as for theB1 case.

(C1) Since all jobs inC1 are atypical, a lower bound is 0 and an upper bound is

T−1(M − 1).

Combining the upper and lower bounds of the contributions toB1, B2, andC1 derived

above with the service capacity provided during that interval, we have upper and

lower bounds on
∑M

i=1
∑k−1

j=1 Qi, j(0)+ Qk,k(0). In particular,

Upper bound:
k

∑

i=1

iAN
i (0,T0 + 1)+

k+D
∑

i=1

iAN
i (T0,T−1 + 1)− T−1(M − 1)− NCT−1,

Lower bound:
k

∑

i=1

iAN
i (0,T0 + 1)+

k+D
∑

i=1

iAN
i (T0,T−1 + 1)+ T−1(M − 1)− NCT−1.

Similar arguments hold for the case of the tagged job being sizeD < k ≤ 2D. Details

of the argument is omitted. The resulting upper and lower bounds are

65

Upper bound:
k

∑

i=1

iAN
i (0,T0 + 1)− T0(M − 1)− NCT0,

Lower bound:
k

∑

i=1

iAN
i (0,T0 + 1)+ T0(M − 1)− NCT0.

Combining the upper and lower bounds of the contributions toB1, B2, andC1 de-

rived above with the service capacity provided during that interval, we have upper and lower

bounds on
∑M

i=1
∑k−1

j=1 Qi, j(0)+ Qk,k(0). In particular,

Upper bound:
k

∑

i=1

iAN
i (0,T0 + 1)+

k+D
∑

i=1

iAN
i (T0,T−1 + 1)− T−1(M − 1)− NCT−1,

Lower bound:
k

∑

i=1

iAN
i (0,T0 + 1)+

k+D
∑

i=1

iAN
i (T0,T−1 + 1)+ T−1(M − 1)− NCT−1. (6.6)

Similar arguments hold for the case of the tagged job being size D < k ≤ 2D.

Details of the argument are omitted. The resulting upper andlower bounds are

Upper bound:
k

∑

i=1

iAN
i (0,T0 + 1)− T0(M − 1)− NCT0,

Lower bound:
k

∑

i=1

iAN
i (0,T0 + 1)+ T0(M − 1)− NCT0. (6.7)

Combining the results, upper and lower bounds on Equation (6.5) can be derived,

which leads to arbitrarily tight bounds on the virtual delaydecay rate. This result can be

extended to a general case which is the result in Theorem 6.3.1.

Based on the intuition, we can show that the upper bound on thedecay rate, i.e., the

lower bound on the probability, corresponds to the event where all jobs corresponding to the

upper bound on all higher priority jobs are served before thetagged job is fully served. On

66

���������� 	
���������� 	

������
����	����
���

������
����	���� �

���������� 	
���������� 	

������
����	����
���

������
����	���� �

Figure 6.4: Delay decay rate of job sizes 1, 2, 4, 6, 8, for varyingD = {2, 4, 8}, exceeding
the thresholdm = 5 is depicted. X-axis is the original size of the tagged job and y-axis is
the actual numerics of the delay decay rate.

the other hand, the lower bound on the decay rate, i.e., upperbound on the probability, can

be derived from the event in which the lower bound on all higher priority jobs are served

before the tagged job leaves the system. It is shown in [45] that as the system scales, i.e.,

N → ∞, the difference between the volume of jobs between the upper and lowerbound

becomes negligible, leading to the result that the lower andthe upper bound on the decay

rate is tight within anyǫ > 0. �

6.4 Numerical Analysis

Due to the complicated nature of the delay decay rate of finite-SRPT described in The-

orem 6.3.1, it is difficult to understand its precise characteristics. Thus, in this section,

we provide a numerical analysis of the delay decay rate of finite-SRPT to understand the

particularly interesting question of: How does the behavior of finite-SRPT change as the

67

maximum amount of service per time-slot (D) change?

The setup for the numerical analysis of the derived delay rate of finite-SRPT is as

follows.

• Job arrives according to an on-off process (a job of sizek arrives with probabilitypk

at each time-slot).

• Job sizes are 1, 2, 4, 6, or 8. The jobs size distribution follows the power-law with

exponent 2, which is a discrete and bounded counterpart of the Pareto distribution

well-known for its accuracy in describing web server requests [2].

• Capacity,C, is assumed to be 1, the load is 0.8, and the threshold valuem= 5.

As suggested in Figure 6.3, Figure 6.4 shows that finite-SRPTis equivalent to SRPT

whenD = 8 and asD decreases to 4 and 2 finite-SRPT biases less and less toward smaller

jobs. In other words, asD decreases, smaller jobs experience more delay while largerjobs

experience smaller delay, i.e., the scheduling policy becomes more “fair”. The numerical

results reinforces the range of the proposed finite-SRPT describe in Section 6.3.1. Thus,

finite-SRPT presents a simple way in which to compromise delay performance and fairness

by adjusting the maximum amount of service per time-slot. This is due to the fact that when

the maximum amount of service is small, the left-over capacity after all smaller jobs have

been servedD units trickles down to larger jobs thus making the scheduling policy more

fair.

Although not shown in this dissertation, numerical resultsshow that the delay decay

rate decrease for decreasing values ofm, increasing load and for increasingM.

68

Chapter 7

Discrete Processor Sharing

7.1 Background and Related Work

In this section, we derive the asymptotic delay distribution of (a discretized version of)

Processor-Sharing (PS), a scheduling policy known for its fairness. PS, made popular by

the work of Kleinrock [22, 23], has received much attention as the idealization of time-

sharing queueing models. PS models can be applied for the performance analysis of elastic

traffic in integrated-service communications network and for TCPtraffic in IP networks. PS

is also important due to the fact that it has been shown to be the most “fair” [41].

Previous delay analysis of various scheduling policies such as FCFS [8], SJF (by

applying the results of [14, 38]), SRPT (Chapter 3), and LAS (Chapter 5) relies on the

observation that their priority (ordering) scheme betweenjobs “relatively” do not change

over time. To illustrate, a job in FCFS that arrives at timet always have higher priority

over jobs that come after timet and have lower priority compared to jobs that arrived before

time t. In SJF, sizek job always have higher priority than jobs with size> k and lower

priority than jobs of size< k. In addition, even though SRPT and LAS have time-varying

priority schemes they can be reduced down to one dominating strict priority rules that do not

change in time when we consider typical jobs which was shown to dominate the probability

69

of delay (Chapter 3, Chapter 5).

However, for other scheduling policies that do not possess the time-invariant pri-

ority scheme, the derivation of the delay distribution is more difficult. Such complicated

scheduling policies include policies that share the capacity in some manner such as PS,

GPS [26], and Discriminatory-Processor-Sharing (DPS). The difficulty in the analysis of

such scheduling policies lies in the fact that the policies themselves seem to lack any prior-

ity scheme due to their sharing nature.

The basic intuition behind the derivation of the delay characteristics of PS in the

many sources large deviations regime is the observation that although PS does not seem to

have a clear and coherent prioritization of jobs due to its sharing nature, PS in discrete time

does indeed have clear ordering which can be taken advantageof.

In particular, we introduce the 2DQ framework with cycles, to analyze discrete PS

in the many sources large deviations regime. The proposed 2DQ framework with cycles

is based on the idea that in discrete time, jobs are ordered ina particular manner and that

there exist time intervals (cycles) in which the prioritization scheme remains invariant. In

particular, the state of the system (along with the priorityscheme) is portrayed by the 2DQ

framework and the priority schemes in 2DQs are different for each cycle while remaining

invariant within a cycle.

Previous results for PS and discrete PS includes the analysis of delay distribution

under the traditional assumptions of a single arrival and static capacity inM/M/1 [9] and

in M/G/1 [15, 21, 49, 50]. Although the literature reports large deviation results for large

buffers (i.e., study of the probability as delay tends to infinityassuming a single source)

under heavy-tailed job size distribution [16, 20, 29, 50] and light-tailed job size distribution

[6, 26] on the job size distribution, no previous work on the analysis of the delay distribution

for many sources has been reported. This is in part due to the complexity brought on by

the large number of sources. However, we show in this dissertation that the proposed 2DQ

framework with cycles can simplify the analysis so that the asymptotic delay distribution is

70

derived.

7.2 Two Dimensional Queueing Framework with cycles

In this section, we propose the 2DQ framework with cycles. The use of the 2DQ framework

(described in Section 4.2) for scheduling policies such as SRPT, LAS and SMART [43]

has made delay analysis in the many sources large deviationsregime possible [44, 47].

However, the relatively simple structure of the 2DQ framework prevents it from being used

for analysis of more complicated scheduling policies. We introduce an extension to the

2DQ framework that makes possible the analysis of more complex scheduling policies.

The analysis of simple scheduling policies such as FCFS, andSJF are possible due

to the fact that they can be represented by a time-invariant priority scheme. If we focus on

the dominant event for which the many sources large deviations depends on, even schedul-

ing policies such as SRPT and SMART that seem to have changingpriority schemes can be

represented as a scheduling policy with time-invariant priority scheme in the 2DQ frame-

work. For example, a typical job1 in SRPT experiences a time-invariant priority scheme

since it will be served fully once the server selects it for service. In other words, the domi-

nant priority scheme depicted through 2DQ does not change over time for simple scheduling

policies such as FCFS, SJF, SRPT and LAS. This idea will be explained in more detail in

the latter part of this subsection.

In general, analyzing complicated scheduling policies that have time-varying pri-

ority schemes are difficult. However, a particular subset of these scheduling policies can

be represented as time-varying priority schemes with a tractable structure. In particular,

some scheduling policies can be represented as a collectionof static priority schemes over

continuous time intervals, which we denote as cycles. The proposed2DQ framework with

cycles takes the 2DQ framework and defines static priority schemes over continuous blocks

1Typical jobs in SRPT are those jobs that are not preempted until they are fully served (Chapter 6, Sec-
tion 6.2).

71

Arrivals

Arrivals

Arrivals

Arrivals

Figure 7.1: Illustration of the two queue representation ofthe discrete PS operation. The
queue with the star arrow is the queue that is active, i.e., queue being served. A job receives
a unit whence it is transferred to the other queue without thestar arrow, i.e., the inactive
queue. When all jobs leave the active queue, the other queue becomes active where the
process repeats again.

of time slot called cycles, whereas the original 2DQ framework (without cycles) assumes a

static priority scheme throughout.

7.3 Intuition

7.3.1 PS in discrete time

In the original PS, when there aren > 0 customers in the system, all existing customers get

an equal fraction 1/n of the capacity. However, such PS is an idealized schedulingpolicy

that requires the capacity to be divided infinitesimally to all jobs in a fair manner.

We consider a discretized PS scheduling policy (in the discrete time framework)

that operates in the following manner. Since the smallest increment of capacity is one unit

in our setup, all existing jobs found in the system at a particular time-slot should be given

one unit service. After successfully distributing one unitservice to all jobs, the server again

sequentially serves jobs found in the buffer at that specific time-slot (time-slot when all jobs

were served a unit previously). This process is repeated until the capacity available in the

72

Arrivals

…
..

…
..

Arrivals

…
..

…
..

Figure 7.2: Illustration of the infinite queue representation. The argument is given that the
infinite queue representation is equivalent to the two queuerepresentation of discrete PS.

time slot runs out. At the next time slot, the process continues from where it was left off in

the previous time slot.

7.3.2 Discrete PS described through 2DQ framework with cycles

In this section, we describe the operation of discrete PS using the proposed 2DQ framework

with cycles. Describing the discrete PS operation using the2DQ framework with cycles

allows a more tractable description of the system state so that discrete PS can analyzed in

the many sources large deviations regime.

First, we make the observation that the operation of discrete PS (described in Sub-

section 7.3.1) can be represented by a pair of queues as depicted in Figure 7.1. In this

representation, there is an active queue that is indicated by the star arrow and an inactive

73

0

M

attained
service

M
original

size1

Higher
Priority

Lower
Priority

Qk,i

Qk,i-1
0

M

attained
service

M
original

size1

Higher
Priority

Lower
Priority

Qk,i

Qk,i-1

(a) Priority Scheme among
jobs in 2DQ.

Qk,i

Job arrival

Qk,i+1
unit served

strict priority

<

active interval (Ti+2,Ti+1)
N

TT ii
A)1,(12 +++

2DQ/i+1 2DQ/i

Qk,i

Job arrival

Qk,i+1
unit served

strict priority

<

active interval (Ti+2,Ti+1)
N

TT ii
A)1,(12 +++

2DQ/i+1 2DQ/i

(b) Priority Scheme in 2DQ and position of new
arrivals.

Figure 7.3: Illustration of the 2DQ with cycles representation of the discrete PS schedul-
ing policy. The 2DQ representation follows the two queue representation and provides a
tractable framework that makes the analysis of discrete PS possible.

queue (queue without the star arrow). Only jobs in the activequeue are served (one unit

in FCFS order) and when a job is served one unit it is transferred to the tail of the inactive

queue. When the active queue becomes empty, i.e., all jobs inthe active queue are served

one unit, the state of the two queues are reversed, i.e., the inactive queue becomes active and

vice versa as depicted in Figure 7.1. In addition, new jobs arrive to the tail of the inactive

queue. We observe that this two queue representation accurately describes the operation

of discrete PS, since all jobs in the system are guaranteed toreceive one unit of service

until a job is served again. Observe that a queue becomes active possibly in the middle of

a discrete time slot, and continues to remain active until all the jobs in the queue have been

served exactly one unit. This interval of time starting froma queue becoming active until it

becomes empty and this inactive is called acycle.

Note that the alternating transition of active queues as depicted in Figure 7.1 is

equivalent to the infinite queue representation depicted inFigure 7.2, where the active queue

state moves to the lower queue when the queue becomes empty. Accordingly, the inactive

queue state moves to the next queue as is the case of the activequeue state. Since at most

74

tagged job arrival

Q3,0

Q3,1

Q3,2

Q3,3

tagged job departs
Priority

<

existing jobs

tagged job arrival

Q3,0

Q3,1

Q3,2

Q3,3

tagged job departs
Priority

<

existing jobs

Figure 7.4: Illustration of the progress of a tagged size 3 job in the 2DQ representation.
Note that the transition of active queues in the two queue representation is expressed as the
sequence of multiple 2DQs with strict priority between them.

two queues (active and the inactive queues) contain jobs, all other queues in this infinite

queue representation may be ignored until they become active or inactive.

Next, we connect the infinite queue representation of the operation of discrete PS to

the 2DQ framework as follows. Note that the infinite queue representation of the operation

of discrete PS remains identical when we replace the queues by 2DQs. A job in the active

2DQ is transferred to the appropriate queue (a queue of one more attained service) in the

next 2DQ when it is served one unit as shown in Figure 7.3(b). When all jobs in the

active 2DQ are served exactly one unit and becomes empty, thenext 2DQ becomes active.

In addition, we assume that the jobs in a 2DQ are served in the LAS order as shown in

Figure 7.3(a), i.e., jobs with less attained service are served first. Note that, like SMART and

LAS, this additional ordering of jobs in the individual 2DQsdoes not affect the asymptotic

analysis of discrete PS.

Now, we explain the operation of discrete PS formally as follows. First, we make

the following definition to distinguish individual 2DQs according to their respective cycles.

Definition 7.3.1. We define2DQ/0 as the inactive 2DQ at time slot0, i.e., the 2DQ that

75

tagged job arrives

Qk,0Qk,1

Qk,k-1

tagged job departs existing jobs

…

active
cycle (Tk+1,Tk+1) (T3,T2+1) (T2,T1+1) (T1,T0+1)

job
arrivals

N
TTA)1,(10 +−

N
TTA)1,(01 +

N
TT kk

A)1,(1+−

2DQ #

N
TTA)1,(12 +

2DQ/k 2DQ/1 2DQ/0 2DQ/-1

tagged job arrives

Qk,0Qk,1

Qk,k-1

tagged job departs existing jobs

…

active
cycle (Tk+1,Tk+1) (T3,T2+1) (T2,T1+1) (T1,T0+1)

job
arrivals

N
TTA)1,(10 +−

N
TTA)1,(01 +

N
TT kk

A)1,(1+−

2DQ #

N
TTA)1,(12 +

2DQ/k 2DQ/1 2DQ/0 2DQ/-1

Figure 7.5: Illustration of the 2DQs representing the stateof the system for a tagged job
of sizek after time slot 0. We denote 2DQ/0 as the inactive 2DQ at time 0, i.e., the 2DQ
that receives new arrivals at time 0. Active cycle denote thetime interval that the respective
2DQ is active and the job arrivals are the actual arrivals that the particular 2DQ receives.
Note that for sizek tagged job only 2DQs ranging from 2DQ/0 to 2DQ/k are relevant since
the tagged job is fully served and leaves the system in 2DQ/k.

accepts job arrivals at time slot0. Accordingly, we define2DQ/T as the 2DQ T cycles in

the future of 2DQ/0, and2DQ/-T as the 2DQ T cycles in the past with respect to 2DQ/0.

Thus, by definition2DQ/ − 1 is the 2DQ that is active at time slot0.

We denoteQr
i, j as the queue that contains all jobs having original sizei that have

received j unit of service and is in 2DQ/r. Thus the tagged job of sizek arrives toQ0
k,0

and then progresses toQ1
k,1,Q

2
k,2, . . . ,Q

k−1
k,k−1,Q

k
k,k, at which point the job is fully serviced

and leaves the system. We denoteQr
i, j(t) as the volume ofQr

i, j at time t, and Qr
i (t) as

the volume of the queue that contains all jobs with original size i in the r ’th 2DQ, i.e.,

Qr
i (t) =

∑ j=i−1
j=0 Qr

i, j(t). Similarly, denoteQr(t) as the volume of all jobs in 2DQ/r at time-

slot t, i.e.,Qr(t) =
∑M

i=1
∑ j=i−1

j=0 Qr
i, j(t). A simple example shown in Figure 7.4 depicts how a

tagged job of size 3 moves through the 2DQ framework with cycles until it is fully served.

76

tagged job arrives

Qk,0

existing jobs

…

active
cycle (T2,T1+1) (T1,T0+1) (T0,T-1+1))1,(1 +∗−∗ TT

start of busy period
that contain time 0

job
arrivals

N
TTA),(∗∗

N
TTA)1,(21 +−−

N
TTA)1,(01 +

2DQ #

N
TTA)1,(10 +−

2DQ/0 2DQ/-1 2DQ/-2 2DQ/*

tagged job arrives

Qk,0

existing jobs

…

active
cycle (T2,T1+1) (T1,T0+1) (T0,T-1+1))1,(1 +∗−∗ TT

start of busy period
that contain time 0

job
arrivals

N
TTA),(∗∗

N
TTA)1,(21 +−−

N
TTA)1,(01 +

2DQ #

N
TTA)1,(10 +−

2DQ/0 2DQ/-1 2DQ/-2 2DQ/*

Figure 7.6: Illustration of the 2DQs representing the stateof the system for a tagged job of
sizek before time slot 0. The 2DQ number is assigned relative to 2DQ/0. The last 2DQ
corresponds to the 2DQ that receives job arrivals at the start of the busy period, whereT∗−1
is the last time before time slot 0 that the system was empty.

7.4 Main Contributions

In this section, the delay decay rate of discrete PS is derived using the proposed 2DQ

framework with cycles. The result of this section is the following theorem that states the

delay decay rate of sizek jobs under the discrete PS scheduling policy. Denote the virtual

delay of discrete PS of sizek job asV̂N(k). First, we make the following assumption.

Assumption 7.4.1.Let Ahigh denote the sum of all higher priority arrivals in any cycle of

(Ti+1,Ti + 1) with respect to the tagged size k job, then we assume that the corresponding

rate function satisfies

I (Ti+1+l,Ti+1)
Ahigh

(C(Ti+1 − Ti + l) − v) < I (Ti+1,Ti+1)
Ahigh

(C(Ti+1 − Ti))

for v ∈ [v∗ − δ, v∗ + δ], v∗ > 0, andδ > 0 sufficiently small.

The assumption is equivalent to the decay rate being additive. Intuitively, a decay

77

rate with the property of additive functionals implies thatthe occurrence of a rare event in

the large deviation framework happens in a straight line. The delay decay rate of discrete

PS in the many sources large deviations regime is presented in the following Theorem 7.4.1.

Theorem 7.4.1.Under suitable straight line large deviation (Assumption 7.4.1) assumption

on the arrival, the delay decay rate of size k jobs under discrete PS is

IV̂(k,m) = inf
−→
T :T



















inf
~y:Y



















M
∑

j=1

IAN
j (Ti+1,Ti+1)

(

y(Ti+1,Ti+1
j

)





































, (7.1)

where conditionT states that m≥ Tk ≥ Tk−1 ≥ . . .T1 ≥ 0 ≥ T0 . . . ≥ Tk−M+1 ≥ Tk−M = T∗,

andY states that

k−1
∑

i=k−M,i,0



















k−i
∑

j=1

jy(Ti+1,Ti+1)
j +

M
∑

j=k−i+1

(k − i)y(Ti+1,Ti+1)
j



















+

k
∑

j=1

jy(0,T0+1)
j

+

M
∑

j=k+1

ky(0,T0+1)
j +

k−1
∑

j=1

jy(T1,1)
j +

M
∑

j=k+1

(k− 1)y(T1,1)
j = C(T⋆ +m+ 1),

where y(Ti+1,Ti+1)
j , y(T1,1)

j , y(0,T0+1)
j ≥ 0 for all i , j ≥ 0.

The basic idea of the proof of Theorem 7.4.1 is the following,ignoring the slight

adjustment required for sizek jobs. The explanation described here is only for better under-

standing and the actual proof considers the adjustment. Denote [2DQ/i]d and [AN(Ti+1,Ti+

1)]d asd units of all jobs that arrive to 2DQ/i and sum ofd units of all jobs inAN(Ti+1,Ti+1)

respectively.

Pr
(

V̂(N)(k) > m
)

≈ Pr
(

[2DQ/k]1 + . . . + [2DQ/0]k−1 + Q0(T0) > NC(m+ 1)
)

≈ Pr
(

[2DQ/k]1 + . . . + [2DQ/0]k−1 + [2DQ/ − 1]k

78

+ . . . + [2DQ/k − M]M > NC(T∗ +m+ 1)
)

= Pr
(

[AN(Tk+1,Tk + 1)]1 + . . . + [AN(T1,T0 + 1)]k−1

+[AN(T0,T−1 + 1)]k + . . . [AN(Tk−M+1,T⋆ + 1)]k

> NC(T∗ +m+ 1))

Proof. Intuition(technical proof in Appendix A.6):The basic intuition behind the derivation

of the delay decay rate of discrete PS are the following. Assume that the size of the tagged

job isk.

(1) The number of all future 2DQs, which depict the prioritization scheme from the ar-

rival of the tagged job until its departure, isk + 1. Figure 7.5 depicts allk + 1 future

2DQs from 2DQ/0 to 2DQ/k.

(2) The number of all past 2DQs, which capture the system progression from the last

time the system was empty to time-slot 0, is also finite. The past 2DQs are depicted

in Figure 7.6. In fact the number of relevant past 2DQs isM − k, i.e., 2DQ/ − 1 to

2DQ/k − M.

(3) The progress of the tagged job requires that the 2DQ in which it resides in becomes

empty, i.e., all jobs in that 2DQ are served one unit. This requirement of emptying

each 2DQ (serving one unit to all jobs in each 2DQ) can be translated to required

service of a specific amount to all job arrivals to each 2DQs, i.e.,AN(Ti+1,Ti + 1).

The above mentioned intuitions allows the derivation of thedelay decay rate of

discrete PS. First, we explain the intuition described in (1). As shown in Figure 7.5, the

tagged job of sizek requiresk+1 2DQs to leave the system, i.e., requiresk units of service.

2DQ/0 represents its arrival and subsequent 2DQs corresponds toeach unit served until

2DQ/k where the tagged job leaves the system once it is served another unit. Thus, only

k+ 1 future 2DQs are necessary.

79

We next explain the intuition described in (3) for the future2DQs for which the

same argument holds for the past 2DQs. Note that for the tagged job to leave the system, all

jobs in 2DQ/0 to 2DQ/k− 1 have to be served one unit. For 2DQ/k only jobs with smaller

attained service and jobs with the same attained service butwith smaller size need to be

served one unit for the tagged job to depart. Note that this requirement is equivalent to the

following statement.k − 1 units of all jobs that arrive to 2DQ/0, k− 2 units of all jobs that

arrive to 2DQ/1, ..., 2 units of all jobs that arrive to 2DQ/k − 1, and 1 unit of all jobs that

arrive to 2DQ/k are required to be served before the tagged job leaves the system, with a

slight adjustment where sizek job is assigned one more unit of service in all arrivals2. This

requirement can be extended to past 2DQs so thatk units of all jobs that arrive to 2DQ/− 1

are required to be served before the tagged job leaves the system and so on.

In other words, all jobs that arrive to the system in the same cycle interval will be

guaranteed to be equally serviced unit by unit until the tagged job leaves the system. All

jobs that arrive one cycle late will receive one less unit, and all jobs arriving one cycle

early will receive one more unit of service. As described in Figure 7.5 and Figure 7.6, the

relative priority of job arrivals increase and decrease as the cycle in which they arrive in

moves to the future and past. This translation from service requirements to jobs in each

2DQ to service requirement of job arrivals to each 2DQ allowsa simpler understanding and

analysis of discrete PS.

Lastly, we discuss the specific arguments behind the intuition described in (2). Al-

though, not as obvious as the future 2DQs, the past 2DQs can besimilarly portrayed as in

Figure 7.6. As shown in Figure 7.6, past 2DQs date back to the last time that the entire

system was empty, i.e.,T∗. The number of past 2DQs is finite due to the fact thatT∗ is

finite, which is ensured by the stability condition. In fact,the number of all relevant past

2DQs can be simplified to beM − k through the following argument. We make the ob-

servation that job arrivals to all 2DQs before 2DQ/k − M are required to be fully served

2This slight adjustment is due to the fact that for 2DQ/k only jobs with smaller attained service need to be
served

80

…

2DQ # k-M k-M-1

2DQ #: k-M

1+∗ ∗

…

2DQ # k-M k-M-1

2DQ #: k-M

1+∗ ∗

Figure 7.7: Illustration of the simplification of the past 2DQs. As depicted the unknown
number of 2DQs after 2DQ/k−M can all be combined into a single 2DQ that represent the
2DQ with the corresponding job arrivals that need to be fullyserved before the tagged job
leaves the system. This simplification is one of the key observations that make the analysis
of discrete PS possible.

before the tagged job leaves the system, although they require different amount of units to

be served before the tagged job leaves the system. This is dueto the fact that job arrivals

to 2DQ/k − M needs to be servedM − k units before the arrival of the tagged job (before

time-slot 0) and will be servedk additional units until the tagged job departs. Thus all job

arrivals to 2DQs before 2DQ/k− M are required to be fully serviced before the tagged job

leaves the system. This means that, as shown in Figure 7.7, all job arrivals to 2DQs in the

following set{2DQ/k−M, 2DQ/k−M−1, . . . , 2DQ/⋆} can be combined into a single 2DQ

of 2DQ/k − M where the arrivals to this 2DQ areAN
(Tk−M+1,T⋆+1) that are fully served before

the tagged job departs. This collapse of past 2DQs results ina total ofM+1 relevant 2DQs,

i.e., k + 1 future 2DQs andM − k past 2DQs. This allows a much simpler analysis of the

81

… …kT1+kT 1T 0T 1−T 1+−MkT *T

0T1T 0

1+−MkT MkT − …
1−∗T ∗T

… …kT1+kT 1T 0T 1−T 1+−MkT *T

0T1T 0

1+−MkT MkT − …
1−∗T ∗T

Figure 7.8: Illustration of the multiple resolution of 2DQ framework for discrete PS with
respect to cycles. The figure shows the simplification of the past 2DQs and the additional
resolution of 2DQ/0 where the priority scheme before and after time 0 is different.

delay decay rate, since it much easier to trackM + 1 2DQs than finite but indeterminable

number of 2DQs.

In addition to the fundamental intuition described above, we observe that job ar-

rivals to 2DQ/0, i.e.,AN(T1,T0 + 1) must be treated differently from other cycle due to the

following facts: (1) the tagged job arrives in this cycle at time 0, i.e.,T1 ≤ 0 ≤ T0 + 1,

and that (2) due to the FCFS ordering between jobs with the same original and remain-

ing size, sizek jobs that arrive before the tagged job receive an additionalunit compared

to the jobs that arrive after the tagged job. Thus, as depicted in Figure 7.8, the cycle

(T1,T0 + 1) should be separated into cycles of (T1, 1) and (0,T0 + 1) where the only dif-

ference is that an additional unit is served for sizek jobs of cycle (T1, 1) compared to

(0,T0 + 1). This finer resolution of the cycle (T1,T0 + 1) and coarser resolution of cycles

(Tk−M+1,Tk−M + 1), . . . , (T⋆+1,T⋆ + 1) is depicted in Figure 7.8.

Lastly, the last cycle ((Tk+1,Tk)) must also be treated differently from the others

since not all jobs should be served. Only the jobs in higher priority queues (queues with

82

1 3 5
0

0.5

1

1.5

2

2.5

3

Job size

D
el

ay
 d

ec
ay

 r
at

e

PS
SRPT
LAS

(a) Delay decay rate of discrete PS
compared to SRPT and LAS.

1 3 5
0.5

0.55

0.6

0.65

0.7

0.75

0.8

job size

de
ca

y
ra

te

(b) Delay decay rate of discrete PS.

Figure 7.9: Plot of the delay decay rate of discrete PS under the exponential distribution
with ρ = 0.8, m = 5, andC = 1 for jobs sizes 1, 3, and 5. The asymptotic decay rate of
discrete PS shows that even the exponential decay rate of discrete PS is dependent on the job
size where the decay rate decreases for larger jobs, i.e., slightly favors small jobs. However,
compared to SRPT and LAS the discrete PS policy does not favorsmall jobs as much. The
delay decay rate of SRPT and LAS for size 1 jobs are actually infinite, but depicted as finite
to able to compare the delay decay rate of other job sizes.

attained service≤ k− 1 and queues of attained service= k and original size≤ k need to be

served a unit service instead of all the jobs in the 2DQ as the other cycles. �

7.5 Numerical Analysis

We consider an On-Off source in which at every time-slot a job of sizek arrives to the

system with probabilitypk . The job sizes are either 1, 3, or 5. The jobs size distribution

follows an exponential distribution. The per flow capacity isC = 1 and the load is set to be

0.8. Based on this setup, we derive the numerics of the delay decay rate of discrete PS for

each job sizes when the threshold value ism= 5.

The numerical analysis for the above mentioned scenario is depicted in Figure 7.9.

Figure 7.9(a) shows that compared to SRPT and LAS, discrete PS does not seem to fa-

vor small jobs. However, Figure 7.9(b) shows that discrete PS grants slight preference to

83

smaller sized jobs but not overly much. This is an expected result since discrete PS exhibit

different mean delay that is proportional to the job size, i.e., discrete PS has equal mean

slowdown across job size, which should be reflected in the delay decay rate.

84

Chapter 8

Concluding Remarks

Scheduling is a key consideration for efficient resource allocation that can affect the perfor-

mance of the computer systems especially in bottlenecks. Inliterature, much of the analysis

of scheduling policies have depended on traditional queueing models that captures the prop-

erties of small to medium sized systems. However, extensionof these models to large scale

systems mostly entails approximations or omissions of important characteristics of large

scale systems. Understanding scheduling under a model specifically tailored to capture the

properties of large scale systems is important to preciselyunderstand how and why schedul-

ing behaves as they do in current computer systems. In this dissertation, we consider the

many sources regime for the analysis and modeling of scheduling in web servers.

In Chapter 3, we derive the delay decay rate of the Shortest-Remaining-Processing-

Time (SRPT) scheduling policy under the many sources regime. Although SRPT is the

optimal scheduling policy in terms of mean delay, it has beenbelieved that in the process

of optimizing the mean delay, fairness among jobs of different sizes might suffer, i.e., “star-

vation” of larger jobs. Our results on the delay decay rate ofSRPT shows that compared

to the prevalent First-Come-First-Serve (FCFS) the unfairness is quite small. In fact, the

decay rate difference between SRPT and FCFS decreases in proportion to the inverse of the

job size when the job size distribution is of heavy tail.

85

The results of Chapter 3 point to the fact that SRPT is a viablepolicy for web

servers in large scale systems. However, there are various implementation constraints for

SRPT which are addressed in Chapter 4 to Chapter 6. Chapter 4 addresses the fact that

actual implementations are variants of the ideal SRPT. We derive the asymptotic delay tail

probabilities across job sizes of a class of scheduling policies called SMART that include

SRPT and its variants. The results show that all scheduling policies that obey certain prop-

erties that characterize SMART have the same asymptotic delay characteristics as the mean

delay optimal SRPT.

Chapter 5 addresses the implementation constraint of SRPT for the case where the

remaining processing time information is not available at the web servers. It has been shown

in the literature and in practice that the Least-Attained-Service (LAS) scheduling policy is

a good substitute for SRPT when the job size distribution is heavy tailed. We study its

delay characteristics in the many sources large deviationsregime and show that the penalty

in using the attained service information (LAS) rather thanthe remaining processing time

(SRPT) is prevalent in that LAS is always worse than SRPT across all job sizes.

Actual implementations of any scheduling policy must take into account the end

user bandwidth (BW) constraints that exist in web servers. However, the ideal SRPT or

SMART assume that a job selected for service receives the full attention of the server until

it is fully served or is preempted. In Chapter 6, we consider the end user BW constraint

on SRPT (finite-SRPT) and derive its delay decay rate. The results show that as the BW

constraint increase finite-SRPT approaches the ideal SRPT and as the constraint decrease

finite-SRPT becomes more fair, i.e., similar to the fair Processor-Sharing (PS) scheduling

policy.

Finite-SRPT brings us to the question of the characteristics of the “fair” scheduling

policy, PS, when the web server is accessed by a large number of flows. We investigate

the asymptotic delay characteristics of a discrete time PS in the many sources regime in

Chapter 7. The delay decay rate of PS shows that the exponential decay rate of a fair policy

86

is not equal for all job sizes, rather the decay rate decreases as the job size increases.

An interesting and practical issue not discussed in this dissertation is the delay per-

formance of scheduling policies accessed by a large number of sources in multi server

setting or server farm setting. It would be of interest to investigate the asymptotic delay

characteristics of various scheduling policies in such settings and to provide practitioners

good directions on how to dispatch jobs to different servers.

87

Appendix A

Proof of Theorems

A.1 Proof of Theorem 3.2.1

First, we derive the lower bound, i.e.,I (k)
VC−ǫ

(m) ≤ I (k)

V
(m). We denote byB

N
k (a, b), the volume

of potential service1 that jobs inQk can receive in an interval (a, b) under SRPT. Observe

that if the virtual delay exceedsm, then we have that the total queue length2 at time zero

(i.e., Qk(0)) is not served by timem. In other words,{V(N)(k) > m} ⊂ {Qk(0) > B
N
k (1,m)},

and consequently

Pr(V(N)(k) > m) ≤ Pr(Qk(0) > B
N
k (1,m)). (A.1)

From Loynes’ formula, we have

Pr(Qk(0) > B
N
k (−T,m)) = Pr(sup

T≥0
[AN

k (−T, 0)+ S
N
k (−T, 0)− B

N
k (−T,m)] ≥ 0), (A.2)

1Potential service corresponds to the maximum amount of service that can be received if the corresponding
queue is not empty.

2The unit of the queue length is the volume of data. Thus, forQk, Qk(0) denotesk times the number of size
k jobs in the queue.

88

whereS
N
k (−T, 0) is the volume of arrivals toQk due to partially served jobs arriving from

lower priority queues,Q>k, in the interval (−T, 0). Let−T∗ be the first time before time 0

such thatQk(−T∗ − 1) = 0. Without loss of generality, we can show thatQl(−T∗ − 1) = 0,

for all l ≤ k (the proof is provided in Theorem 4.1 of [38] in the context ofpriority queues).

Hence, we have

Pr(sup
T≥0

[AN
k (−T, 0)+ S

N
k (−T, 0)− B

N
k (−T,m)] ≥ 0)

= Pr(AN
k (−T∗, 0)+ S

N
k (−T∗, 0)− B

N
k (−T∗,m) ≥ 0). (A.3)

Since allQ≤k are empty at time−T∗ − 1, the potential service available toQk in the

interval (−T∗,m) is lower bounded by the residual service after all externalarrivals toQ≤k

and internal arrivals toQ≤k generated by partially served jobs are served, i.e.,

B
N
k (−T∗,m) ≥ NC(T∗ +m+ 1)−

k−1
∑

i=1

AN
i (−T∗,m) − (T∗ +m+ 1)(k − 1). (A.4)

Note that in Equation (A.4), the term (T∗ +m+1)(k−1) accounts for the worst case

scenario where at every time slot in (−T∗,m), a partially served job arrives atQk−1 from

queues with higher priority thank. This observation follow from the fact that at most only

one additional job can be partially served in a time slot.

From Equation (A.1), Equation (A.2), Equation (A.3), Equation (A.4), and the fact

thatS
N
k (−T∗, 0) ≤ k(T∗ + 1), we have

Pr(V(N)(k) > m) ≤ Pr[AN
k (−T∗, 0)+ S

N
k (−T∗, 0)− B

N
k (−T∗,m) > 0]

≤ Pr[AN
k (−T∗, 0)+

k−1
∑

i=1

AN
i (−T∗,m) − NC(T∗ +m+ 1)

+(T∗ + 1)k + (T∗ +m+ 1)(k − 1) > 0]

89

≤ Pr[AN
k (−T∗, 0)+

k−1
∑

i=1

AN
i (−T∗,m) − NC(T∗ +m+ 1)

+2(T∗ +m+ 1)k > 0]

≤ Pr[AN
k (−T∗, 0)+

k−1
∑

i=1

AN
i (−T∗,m) − N(C −

2k
N

)(T∗ +m+ 1) > 0]

≤ Pr[
⋃

T≥0

(AN
k (−T, 0)+

k−1
∑

i=1

AN
i (−T,m) − N(C −

2k
N

)(T +m+ 1) > 0)]

≤
∑

T≥0

Pr[AN
k (−T, 0)+

k−1
∑

i=1

AN
i (−T,m) − N(C −

2k
N

)(T +m+ 1) > 0].

Fix anyǫ > 0. Observe that forN large enough, we have (C− 2k
N) > (C− ǫ). Hence,

Pr(V(N)(k) > m) ≤
∑

T≥0

Pr[AN
k (−T, 0)+

k−1
∑

i=1

AN
i (−T,m) − N(C − ǫ)(T +m+ 1) > 0]. (A.5)

Note that Equation (A.5) is the same expression for the rate function of sizek jobs

in priority queues with capacityC − ǫ. (This uses Assumption 3.2.1 as in [13, 24].) Using

similar techniques as in [13, 24], it follows that the lower bound of the rate function of

Pr(Qk(0) > B
N
k (1,m)) is I (k)

VC−ǫ
(m).

Next, we derive the upperbound, i.e.,I (k)

V
(m) ≤ I (k)

VC+ǫ
(m). Since a lower bound on

the probability is an upper bound of the rate function, we concentrate on finding a lower

bound on Pr(V(N)(k) > m). We do so by constructing a priority queueing based system

which lower bounds the delay experienced in the SRPT scheduler.

As a basis for comparison, we define PRI-0 to be a priority queueing system with

capacityNC. This system consists ofM queues, with sizek jobs arriving toQk. Partially

served jobs in this system continue to reside in the same queue, i.e., no switching of jobs

occur. Next, we consider a priority queueing system PRI-1, with capacityNC, whereall

partially served jobs completely leave the system, instead of residing in the same queue

(PRI-0) or switching to a higher priority queue (SRPT). By construction, this system has

fewer arrivals to each queue, and at least as many departuresfrom each queue as compared

90

to the SRPT scheduler. Thus, PRI-1 provides a lower bound on the delay experienced by a

job compared to the SRPT scheduler.

Next, we fix anǫ > 0, and consider PRI-2, a priority queueing system with capacity

N(C + ǫ). Thus, the operation of PRI-2 is identical to that of PRI-0,but with additional

service capacity ofNǫ. First, we compare PRI-1 and PRI-0. In any time slot, at most only

one job can be partially served. This implies that the maximum additional potential service

that Qk can receive in PRI-1 compared to PRI-0 is (k − 1). On the other hand, for any

N ≥ M/ǫ, the system PRI-2 will provide an additional service ofNǫ ≥ M ≥ k, compared

to PRI-0. Thus, PRI-2 provides more potential service toQk compared to PRI-1. Further,

note that PRI-2 has the same number of external arrivals as PRI-1. Thus, PRI-2 provides

a lower bound on the virtual delay of a job compared to PRI-1, and consequently a lower

bound to that of the SRPT scheduler.

We now describe the above argument in greater detail. Consider the case where

there are two queues: size 1 and sizeM. Let the queues for PRI-1 beQ(1)
1 (t) andQ(1)

M (t),

and the queues for PRI-2 beQ(2)
1 (t) andQ(2)

M (t). As described above, the arrival processes

to PRI-1 and PRI-2 systems are the same. However, the potential service forQ(1)
M (t) and

Q(2)
M (t) are different. For PRI-1, we have that the potential service at timet to QM is upper

bounded by the sum of (NC−Q(1)
1 (t)) and (possibly) partially served sizeM jobs. Thus, the

upper bound on the potential service forQ(1)
M (t) is (NC− Q(1)

1 (t) + M). On the other hand,

Q(2)
M (t) has potential service of (NC− Q(2)

1 (t) + Nǫ). Further, we have thatQ(2)
1 (t) ≤ Q(1)

1 (t).

This is due to the following three facts: (i) the external arrivals toQ(2)
1 (t) andQ(1)

1 (t) are the

same, (ii) jobs of size 1 are fully served (i.e., there is no partially served size 1 job), and

(iii) PRI-2 has larger capacity than PRI-1. Combining the fact thatQ(2)
1 (t) ≤ Q(1)

1 (t), and

that Nǫ ≥ M ≥ k, we have that the potential service provided by PRI-1 is no more than

PRI-2. This argument can be directly extended to case of multiple queues. Thus, the delay

experienced by a job in a priority queueing system with capacity N(C+ ǫ) is a lower bound

on the delay of jobs in SRPT. Thus, we have thatI (k)

V
(m) ≤ I (k)

VC+ǫ
(m).

91

θx
)(0, θ

kAΛ
)(θkf

θkθ kθ̂

max

*
kθ γk

1

θx
)(0, θ

kAΛ
)(θkf

θkθ kθ̂

max

*
kθ γk

1

Figure A.1: Illustration of the bounds ofθ∗ that are used to prove Theorem A.2.1. As shown
in the figure, we constructfk(θ) that lower boundsΛAk,0(θ) for all θ.

A.2 Proof of Theorem 3.2.2

We first derive an upper bound on the delay rate function of SRPT and FIFO. The upper

bound on the delay rate function of sizek jobs for SRPT is given by selecting specific values

in the infimizing set, i.e.,I (k)

V
(m) ≤ infT≥0[IAk,T((C−α)(T +m+1))] ≤ IAk,0((C−α)(m+1))

(sinceIAi ,0(E[Ai(0, 0)]) = 0). Using the same technique, an upper bound of the delay rate

function for FIFO isIV̂(m) ≤ IAk,0(C(m+ 1)− αM).

From the upper bounds derived above and the fact that the ratefunctions are non-

negative, it follows that

|I (k)

V
(m) − IV̂(m)| ≤ max{IAk,0((C − α)(m+ 1)), IAk,0(C(m+ 1)− αM)}. (A.6)

Based on Assumption 3.2.3 on the marginal probabilities of the arrival process, a

more revealing upper bound ofIAk,0(x) using Equation (A.6) is derived in the following

92

theorem.

Theorem A.2.1. Fix any0 < γ < (1− η), and x> E[Ak(0, 0)]. Then there exists̄K(x) such

that

IAk,0(x) ≤
x(x+ 1)

kγ
∀k ≥ K̄(x).

Proof. First, we make some basic observations for the proof. From the i.i.d. assump-

tion across flows, we haveΛAk,0(θ) = logE(eθAk(0,0)). We denoteθ∗k as theθ that satisfies

IAk,0(x) = supθ∈R(xθ − ΛAk,0(θ)). Further, forAk(0, 0) satisfying Assumption 3.2.3,ΛAk,0(θ)

is convex, non–negative, and is increasing forθ ≥ 0 with ΛAk,0(0) = 0 (see Figure A.1).

Further, sincex > E(Ak(0, 0)), we can restrict the supremizing set ofθ to {θ ≥ 0}.

We define fk(θ) as follows. For any 0< γ < (1 − η) and for all k > K̄(x) =

max(Kη, 2(x+ 1)),

fk(θ) =



























0 0≤ θ ≤ 1/kγ

(x+ 1)(θ − 1
kγ) θ > 1/kγ.

The function fk(θ) is constructed such that for allk > K̄(x) it is a lower-bound

of ΛAk,0(θ) (see Figure A.1). To show this, first observe that for allθ ≤ 1/kγ, we have

0 = fk(θ) ≤ ΛAk,0(θ). Further, forθ = 1/kγ, we have

[
dΛAk,0(θ)

dθ
]θ= 1

kγ
=

kq(k)ek1−γ

p(k) + q(k)ek1−γ
≥

kq(k)ek1−γ

1+ q(k)ek1−γ
= k

1

1+ 1
q(k)ek1−γ

≥ k
1

1+ 1
Aη

≥
k
2
≥ (x+ 1) ∀k > K̄(x).

93

SinceΛAk,0(θ) is convex, it follows that
dΛAk,0(θ)

dθ ≥ x + 1 for all θ ≥ 1/kγ and

k > K̄(x). Further, asfk(1/kγ) ≤ ΛAk,0(1/kγ), it follows that fk(θ) ≤ ΛAk,0(θ) for all θ ≥ 0

andk > K̄(x).

We defineθ̄k as theθ that satisfiesxθ = ΛAk,0(θ), andθ̂k as theθ that satisfiesxθ =

fk(θ). Note thatθ̄k andθ̂k depends onk. Sincexθ is affine andΛAk,0(θ) is convex, we have

θ∗k ≤ θ̄k. Furthermore, as shown above,fk(θ) ≤ ΛAk,0(θ) for all θ ≥ 0 (see Figure A.1), thus

we haveθ̄k ≤ θ̂k. Thus, an upper bound onIAk,0(x) is xθ̂k, sinceIAk,0(x) = xθ∗k − ΛAk,0(θ∗k) ≤

xθ∗k ≤ xθ̄k ≤ xθ̂k. Computingθ̂k, we haveθ̂k = x+1
kγ . Consequently

IAk(x) ≤
x(x+ 1)

kγ
∀k > K̄(x).

�

As a corollary of Theorem A.2.1, the upper bound on the difference of the delay

rate function for sizek jobs in SRPT and FIFO is derived, i.e., Theorem 3.2.2.

Proof. Combining Theorem A.2.1 and upper bounds of delay rate function for sizek jobs

under SRPT and FIFO derived previously, we have the following upper bound on the rate

functions. Denotec1 = (C − α)(m+ 1), c2 = C(m+ 1) − αM and note thatc1, c2 > β,

whereβ = E[Ak(0, 0)]. For any fixed 0< γ < 1 − η there existsK̄1(m) and K̄2(m) such

that I (k)

V
(m) ≤ c1(c1+1)

kγ for all k ≥ K̄1(m), andIV̂(m) ≤ c2(c2+1)
kγ for all k ≥ K̄2(m). Applying

Equation (A.6), and the fact that the rate function is non–negative, we have that the upper

bound on the difference between the rate functions for k sized jobs of delay asymptote for

SRPT and FIFO is

|I (k)

V
(m) − IV̂(m)| ≤ max{

c1(c1 + 1)
kγ

,
c2(c2 + 1)

kγ
}

94

conditional arrival: A(0,0)

last job

virtual job

conditional arrival: A(0,0)

last job

virtual job

(a) Queue state for the lower bound.

conditional arrival: A(0,0)

last job

virtual job size k extra job

conditional arrival: A(0,0)

last job

virtual job size k extra job

(b) Queue state for the upper bound.

Figure A.2: Illustration of the lower and upper bound of the actual delay with respect to the
virtual delay. The lower bound shows that the actual job can leave the system only if the
virtual job leaves the system, i.e., reaches the head of the queue. The upper bound shows
that if the virtual job behind the additional sizek job reaches the head of the queue then the
actual job is guaranteed to be fully served.

for all k ≥ max{K̄1(m), K̄2(m)} = K̂(m), which proves the theorem. �

A.3 Proof of Theorem 4.4.1

We now derive the actual delay decay rate of SMART in the many sources regime. We

prove Theorem 4.4.1 by first considering the virtual delay, Pr(V
(N)

(k) > m), for sizek jobs

then deriving the actual delay, Pr(W
(N)

(k) > m).

DefineIW(k,m) as the decay rate of the actual delay of a sizek job under SMART

with total service rateNC. Let IVµ
(k,m) denote the decay rate of the virtual delay of a size

k job under SMART with total service rateNµ. For bounding purposes, we consider the

virtual delay of SMART where an additional sizek job is inserted before the virtual job,

and denote it asIṼµ(k,m).

Lemma A.3.1. For any k∈M, under any scheduling policy in SMART

IṼC
(k,m) ≤ IW(k,m) ≤ IVC

(k,m). (A.7)

95

Proof. First, we derive the upper bound by showing

Pr
(

V
(N)

(k) > m|AN(0, 0) > 0
)

≤ Pr
(

W
(N)

(k) > m
)

. (A.8)

Note that a virtual job (with size 0) need only to arrive at thefront of the queue to

be fully serviced. Thus, Equation (A.8) follows from the observation that, if a fictitious job

did not leave the system (i.e. arrive at the head of the queue)before timem, then the actual

job did not leave the queue. That is, the actual job did not even receive one unit of service.

Thus, the actual job is guaranteed to have not left the systemby timem. This queue state is

depicted in Figure A.2(a), where the last job corresponds tothe actual job. Thus, we have

−
1
N

log Pr
(

W
(N)

(k) > m
)

≤ −
1
N

log Pr
(

V
(N)

(k) > m|AN(0, 0) > 0
)

. (A.9)

As N → ∞, Equation (A.9) can be further upper bounded byIVC
(k,m) using similar

techniques to those in [38]. Finally,

−
1
N

log Pr
(

W
(N)

(k) > m
)

−→
N→∞

IW(k,m)

gives the upper bound.

To prove the lower bound, we add an extra sizek job in front of the virtual queue

and consider the virtual delay,Ṽ(N)(k) . The queue state is depicted in Figure A.2(b). We

prove the following inequality using a contra-positive argument.

Pr(W
(N)

(k) > m) ≤ Pr
(

Ṽ(N)(k) > m|AN(0, 0) > 0
)

(A.10)

The event
{

Ṽ(N)(k) ≤ m|AN(0, 0) > 0
}

is equivalent to the statement that the virtual

96

job leaves the system before timem. Note that for a virtual job to leave the system, all that

is required is for the virtual job to reach the head of the queue. The virtual job reaches the

head of the queue when the extra job leaves the queue, i.e., the extra job gets one unit of

service. The key observation is that, the extra job need not be fully serviced, only partially

serviced. However, for the extra job to be even partially serviced, the last job of the batch

arrival must leave the system completely. This is due to the secondary priority scheme

introduced in the two dimensional queueing framework: jobswith the same original size

but with smaller remaining sizes have higher priority. Thislast job in the front of the virtual

job is the job that represents the actual delay. Thus, we havethe following.

{

Ṽ(N)(k) ≤ m|AN(0, 0) > 0
}

⇒

{

W
(N)

(k) ≤ m
}

,

whereA ⇒ B denotesA implies B. This proves Equation (A.10) by a contra-positive

argument. Thus, we have

−
1
N

log Pr
(

Ṽ(N)(k) > m|AN(0, 0) > 0
)

≤ −
1
N

log Pr
(

W
(N)

(k) > m
)

.

As N → ∞, above equation can be lower bounded byIṼC
(k,m) using similar argu-

ments to [38]. Finally, noting the definition ofIW(k,m), completes the proof. �

We are now ready to prove Theorem 4.4.1. DefineB
N
(k,k)(a, b) as the volume of po-

tential service that jobs inQk,k can receive in interval (a, b) under SMART. Potential service

corresponds to the maximum amount of service that can be received if the corresponding

queue is never empty. Note thatQk,k does not include original sizek jobs that have received

partial service.

Proof. (of Theorem 4.4.1)First, we derive the lower bound on the decay rate in Equa-

97

tion (4.3) by finding an upper bound of Pr
(

Ṽ(N)(k) > m
)

and using Lemma A.3.1.

Let us consider the virtual delay in SMART with the extra job,i.e., Pr
(

Ṽ(N)(k) > m
)

.

Observe that if the virtual delay with the extra sizek job exceedsm, then we have that the

queue length at time zero (i.e.Qk,k(0)) and the extra job is not served by timem. In other

words,
{

Ṽ(N)(k) > m
}

⇒

{

Qk,k(0)+ k > B
N
(k,k)(1,m)

}

, which results in

Pr
(

Ṽ(N)(k) > m
)

≤ Pr
(

Qk,k(0)+ k > B
N
(k,k)(1,m)

)

. (A.11)

From Loynes’ formula, we have

Pr
(

Qk,k(0)+ k > B
N
(k,k)(1,m)

)

= Pr

(

sup
T≥0

[

kAN
k (−T, 0)+ k− B

N
(k,k)(−T,m)

]

≥ 0

)

= Pr
(

kAN
k (−T∗, 0)− B

N
(k,k)(−T∗,m) + k ≥ 0

)

. (A.12)

Note that in addition to the volume ofQk,k (Qk,k(0)), k is added in deriving Equa-

tion (A.12) due to the construction ofṼ. Also,−T∗ is the most recent time in the past such

thatQk,k(−T∗ − 1) = 0.

Now, we derive a lower bound onB
N
(k,k)(−T∗,m), which will in turn provide an

upper bound of Pr(̃V(N)(k) > m). We make use of the priority scheme of SMART in the

two dimensional queueing framework, which has been discussed above. An observation

was made that areaA is higher priority compared toQk,k, and the queues in areaB may or

may not have higher priority. Thus a simple lower bound onB̂N
(k,k)(−T∗,m) is the available

service assuming that both areasA andB have higher priority. The volume of service that

areaA requires can be derived using the fact that all queues in areaA are empty at time

−T∗ − 1, i.e.,Q(i, j)(−T∗ − 1) = 0, for all i ≤ k and j ≤ k− 1. The proof follows immediately

from Theorem 4.1 in [38], which is stated in the context of priority queues. Additionally,

the volume of service that areaB requires during interval (−T∗,m) is upper bounded by

98

(T∗ +m+ 1)(M − 1). This is due to the observation that at most a single partially serviced

job can occur in a time slot, and the worst partially servicedjob is of sizeM − 1. Thus

B
N
(k,k)(−T∗,m) is lower bounded as follows.

B
N
(k,k)(−T∗,m) ≥ NC(T∗ +m+ 1)−

k
∑

i=1

k−1
∑

j=1

Q(i, j)(−T∗ − 1)

−

k−1
∑

i=1

iAN
i (−T∗,m) − (T∗ +m+ 1)(M − 1)

= NC(T∗ +m+ 1)−
k−1
∑

i=1

iAN
i (−T∗,m)

−(T∗ +m+ 1)(M − 1) (A.13)

From Equation (A.11), Equation (A.12), and Equation (A.13), we have

Pr
(

Ṽ(N)(k) > m
)

≤ Pr
[

kAN
k (−T∗, 0)+ k− B

N
(k,k)(−T∗,m) > 0

]

≤ Pr

















kAN
k (−T∗, 0)+

k−1
∑

i=1

iAN
i (−T∗,m) − NC(T∗ +m+ 1)+ (T∗ +m+ 1)(M − 1)+ k > 0

















≤ Pr

















kAN
k (−T∗, 0)+

k−1
∑

i=1

iAN
i (−T∗,m) − NC(T∗ +m+ 1)+ 2(T∗ +m+ 1)M > 0

















≤ Pr

















kAN
k (−T∗, 0)+

k−1
∑

i=1

iAN
i (−T∗,m) − N

(

C −
2M
N

)

(T∗ +m+ 1) > 0

















≤ Pr

















⋃

T≥0

















kAN
k (−T, 0)+

k−1
∑

i=1

iAN
i (−T,m) − N

(

C −
2M
N

)

(T +m+ 1) > 0

































≤
∑

T≥0

Pr

















kAN
k (−T, 0)+

k−1
∑

i=1

iAN
i (−T,m) − N

(

C −
2M
N

)

(T +m+ 1) > 0

















.

Fix any ǫ > 0 and observe that forN large enough, we have (C − 2M
N) > (C − ǫ).

Hence,

99

Pr
(

Ṽ(N)(k) > m
)

≤
∑

T≥0

Pr

















kAN
k (−T, 0)+

k−1
∑

i=1

iAN
i (−T,m)

−N(C − ǫ)(T +m+ 1) > 0] . (A.14)

Note that Equation (A.14) is the expression for the decay rate of sizek jobs in PRI

having capacityC − ǫ. Using similar techniques as in [13, 24], it follows that thelower

bound ofIṼµ(k,m) is IVC−ǫ
(k,m). Applying Lemma A.3.1, we have the lower bound on the

decay rate in Equation (4.3). Specifically, we apply the contraction principle, to obtain the

closed form expression ofIVC−ǫ (k,m).

Next, we derive the upper bound on the decay rate in Equation (4.3) by deriving a

lower bound on Pr(V(N)(k) > m) and combine it with the result of Lemma A.3.1. We do

so by comparing SMART with a priority queueing system which lower bounds the delay

experienced by the job.

Consider a PRI system with capacityNC, which we describe again. This system

consists ofM queues, with jobs of original sizek arriving to queue-k. There are strict

priority between queues where the queue corresponding to smaller jobs have higher priority.

Partially served jobs in this system continue to reside in the same queue and the jobs in each

queue are served in a FCFS manner. In comparing the PRI systemto SMART, we can think

of PRI as SMART whereQk =
∑k

i=1 Qk,i and priorities are assigned such that areaA has

higher priority whereas areaB andC have lower priority.

DenoteV(N)(k) as the virtual delay of a sizek job for PRI. Then event{V(N)(k) ≤ m}

of PRI ensures the event{V
(N)

(k) ≤ m} of SMART. This comes from the fact that the

external arrival to both PRI and SMART are the same but the residual service available to

Qk,k in SMART is upper bounded by the residual service for queue-k of PRI. This follows

from the fact that the residual service of SMART is the remaining service after servicing of

all of areaA and possibly a part or all of areaB. However, the residual service in PRI is that

of after servicing only the areaA, and none of areaB. Thus PRI provides a lower bound on

100

the virtual delay of a job compared to SMART. In other words, we haveIVC
(k,m) ≤ IV(k,m)

and combining it with Lemma A.3.1, the proof is complete. �

A.4 Proof of Theorem 5.3.1

A.4.1 Lower bound of the decay rate

We start the analysis of LAS by deriving a lower bound on the delay decay rate under LAS.

Denote the virtual delay of LAS aŝV(0). We bound the probability that the virtual delay

for sizek jobs exceedsm, Pr(V̂(N)(k) > m), as follows.

Lemma A.4.1. For any k∈M, the virtual delay of size k jobs in LAS satisfies

Pr
(

V̂(N)(k) > m
)

≤ Pr

(

sup
T≥0

(

kAN
k (−T, 0)+ (k− 1)AN

k (1,m) − B̂N
k (−T,m)

)

> 0

)

= Pr
(

kAN
k (−T∗, 0)+ (k − 1)AN

k (1,m) − B̂N
k (−T∗,m) > 0

)

, (A.15)

where AN
k (−T, 0) is the number of size k job arrivals in the interval(−T, 0), B̂k(−T,m) is the

service available to Qk during (−T,m), and T∗ is the last time before0 that Qk(−T∗−1) = 0

The theorem states that apossiblescenario in which the event{V̂(N)(k) > m} could

occur is when the total volume of arrivals for sizek job before the virtual job and a portion

((k − 1)/k) of the volume of arrivals for sizek job after the virtual job, exceed the available

capacity forQk .

Proof. ConsiderQk. By the operation of LAS,{V̂(N)(k) > m} implies that all jobs inQk(0)

have not been fully serviced by timem, i.e., {kAN
k (−T∗, 0) > B̂N

k (−T∗,m)}. Since adding

more jobs makes the event of exceeding the available capacity more probable, we have the

following.

101

Pr
(

V̂(N)(k) > m
)

≤ Pr

(

sup
T≥0

(

kAN
k (−T, 0)− B̂N

k (−T, 0)
)

− B̂N
k (1,m) > 0

)

= Pr

(

sup
T≥0

(

kAN
k (−T, 0)− B̂N

k (−T,m)
)

> 0

)

≤ Pr

(

sup
T≥0

(

kAN
k (−T, 0)+ (k− 1)AN

k (1,m) − B̂N
k (−T,m)

)

> 0

)

Finally, Equation (A.15) follows from Loynes’ formula. �

Note that the total available capacity toQk in interval (−T,m) with regards to the

event{V̂(N)(k) > m}, i.e. B̂N
k (−T,m), is the remaining capacity after all the higher priority

queues are served in LAS. So, the following holds.

B̂N
k (−T,m) ≥ NC(T +m+ 1)−

k−1
∑

i=1

iAN
i (−T,m) −

k−1
∑

i=1

Qi(−T − 1)

−

M
∑

i=k+1

(k − 1)AN
i (−T,m) −

M
∑

i=k+1

k−2
∑

j=0

Qi, j(−T − 1) (A.16)

Using Lemma A.4.1 and the above, we can derive the following.

Theorem A.4.1.The virtual decay rate of size k jobs under LAS is lower bounded as follows

IV̂(k,m) ≥ inf
T≥0

[

inf
~y:Y

{

inf
~x:X

(

A<k(~y) + Ak(~y) + A>k(~y)
)

}]

, (A.17)

whereY, X, A<k(~y), Ak(~y), andA>k(~y) are defined as in Theorem 5.3.1.

Proof. Combining Equation (A.16) with Lemma A.4.1 we have the following upper bound

on the probability of{V̂(N)(k) > m}.

102

Pr
(

V̂(N)(k) > m
)

≤ Pr

(

sup
T≥0

(

kAN
k (−T, 0)+ (k− 1)AN

k (1,m) − B̂N
k (−T,m)

)

> 0

)

= Pr
(

kAN
k (−T∗, 0)+ (k − 1)AN

k (1,m) − B̂N
k (−T∗,m) > 0

)

≤ Pr

















kAN
k (−T∗, 0)+ (k − 1)AN

k (1,m) +
k−1
∑

i=1

iAN
i (−T∗,m)+

k−1
∑

i=1

Qi(−T∗ − 1)+
M
∑

i=k+1

(k− 1)AN
i (−T∗,m)

+

M
∑

i=k+1

k−2
∑

j=0

Qi, j(−T∗ − 1)− NC(T∗ +m+ 1) > 0



















= Pr

















kAN
k (−T∗, 0)+ (k − 1)AN

k (1,m) +
k−1
∑

i=1

iAN
i (−T∗,m)

+

M
∑

i=k+1

(k− 1)AN
i (−T∗,m) − NC(T∗ +m+ 1) > 0

















(A.18)

≤ Pr

















⋃

T≥0

















kAN
k (−T, 0)+ (k− 1)AN

k (1,m) +
k−1
∑

i=1

iAN
i (−T,m)

+

M
∑

i=k+1

(k− 1)AN
i (−T,m) − NC(T +m+ 1)

















> 0

















≤
∑

T≥0

Pr

















kAN
k (−T, 0)+ (k − 1)AN

k (1,m) +
k−1
∑

i=1

iAN
i (−T,m)

+

M
∑

i=k+1

(k− 1)AN
i (−T,m) − NC(T +m+ 1) > 0

















where Equation (A.18) follows from the observation thatQi(−T∗ − 1) = 0 for 1≤ i ≤ k− 1

andQi, j(−T∗ − 1) = 0 for k + 1 ≤ i ≤ M, 0 ≤ j ≤ k − 2.The justification is similar to that

for a priority queueing system. Namely, since the above queues have higher priority than

Qk, whenQk is empty all higher priority queues must be empty. Applying the contraction

principle completes the proof. �

Theorem A.4.1 provides apossiblescenario in which{V̂(N)(k) > m} could occur.

To show that this scenario is indeed the most dominant and controls the behavior of the

103

probability, in the next section we will show that the same scenario provides the upper

bound on the decay rate of{V̂(N)(k) > m}.

A.4.2 The delay decay rate (a tight upper bound)

We now develop an upper bound for the decay rate of LAS which istight with the lower

bound derived in Section A.4.1, i.e., we develop the tight lower bound for the tail proba-

bility. The main argument for the upper bound is that, using the two dimensional queueing

framework, LAS can be viewed as a simple priority queueing system, as was the case with

SMART. Thus, using a similar analysis, we can derive the tight upper bound for the decay

rate.

Theorem A.4.2. The probability of the virtual delay for size k jobs in LAS canbe lower

bounded as

Pr
(

V̂(N)(k) > m
)

≥ Pr

















inf
0≤l≤m















k−1
∑

i=1

iAN
i (−T∗, l) + kAN

k (−T∗, 0)+ (k − 1)AN
k (1, l)

+

M
∑

i=k+1

(k − 1)AN
i (−T∗, l) − NC(T∗ + l + 1)















> 0

















(A.19)

where−T∗ is the last time before time0 when Qk(−T∗ − 1) = 0.

Proof. As explained in Section A.4.1, there exists a group of queuesand arrivals that con-

stitute higher priority compared to the virtual job that arrived at time 0. At timel the volume

of jobs from higher priority queues and arrivals is

k−1
∑

i=1

i−1
∑

j=0

Qi, j(l) +
M
∑

i=k+1

k−2
∑

j=0

Qi, j(l) +
k−2
∑

j=0

Qk, j(l) + Ak(−T∗, 0). (A.20)

If the higher priority queues and arrivals with respect to the virtual jobs in Equa-

tion (A.20) are never empty at any time during (0,m), then the virtual job is guaranteed not

104

to leave the system in the interval (0,m). Based on this observation we derive a lower bound

on Pr(̂V(N)(k) > m) as follows.

Pr
(

V̂(N)(k) > m
)

≥ Pr



















inf
0≤l≤m



















k−1
∑

i=1

i−1
∑

j=0

Qi, j(l) +
M
∑

i=k+1

k−2
∑

j=0

Qi, j(l)

+

k−1
∑

j=0

Qk, j(l) + Ak(−T∗, 0)



















> 0



















= Pr



















inf
0≤l≤m



















k−1
∑

i=1

i−1
∑

j=0

Qi, j(−T∗ − 1)+
k−1
∑

i=1

iAN
i (−T∗, l)

+

M
∑

i=k+1

k−1
∑

j=0

Qi, j(−T∗ − 1)+
M
∑

i=k+1

(k − 1)AN
i (−T∗, l)

+kAN
k (−T∗, 0)+ (k− 1)AN

k (1, l) − NC(T∗ + l + 1)
}

> 0
)

= Pr

















inf
0≤l≤m















k−1
∑

i=1

iAN
i (−T∗, l) +

M
∑

i=k+1

(k− 1)AN
i (−T∗, l)

+kAN
k (−T∗, 0)+ (k− 1)AN

k (1, l) − NC(T∗ + l + 1)
}

> 0
)

In the calculation above, note that we have argued in SectionA.4.1 that at time

−T∗ − 1 all higher priority queues are empty. �

Extending the above to obtain a tight lower bound on the decayrate of LAS is

difficult without further assumptions on the inputs. We make two assumptions in order to

complete the derivation.

Assumption A.4.1. Let Ahigh denote the sum of all higher priority arrivals described in

Theorem A.4.2, then we assume that the corresponding rate function satisfies

I (−T∗,l)
Ahigh

(

C(T∗ + l + 1)− v
)

< I (−T∗,0)
Ahigh

(

C(T∗ + 1)
)

(A.21)

for v ∈ [v∗ − δ, v∗ + δ], v∗ > 0, andδ > 0 sufficiently small.

105

Assumption A.4.2. Define

~Ahigh =
(

. . . ,AN
high(−T, 0), . . . ,AN

high(−1, 0),AN
high(0, 0)

)

Then, we assume that the stochastic process~Ahigh satisfies

(

~Ahigh|A
N
high(0, 0) = 0

)

≤st

(

~Ahigh|A
N
high(0, 0) > 0

)

.

where~Ahigh was defined in Assumption A.4.1.

The first assumption is equivalent to the decay rate being additive. Intuitively, a

decay rate with the property of additive functionals implies that the occurrence of a rare

event in the large deviation framework happens in a straightline. This assumption has

been used extensively in large deviation literature [5, 14,27]. Further, arrival processes

that satisfy Assumption A.4.1 include many common processes such as all stationary and

Markov dependent processes. Additionally, if the arrival process is of Levy type then the

decay rate of the the arrival satisfies Equation (A.21).

The second assumption allows us to show that the virtual delay decay rate is equal

to the actual delay decay rate. This assumption essentiallysays that the arrival process has

the property that if there are very few arrivals in a given time slot, there were also very few

arrivals in the immediate past (and vice versa). It is a kind of “burstiness” assumption for

the source.

We are now ready to complete the proof of Theorem 5.3.1.

Proof. (of Theorem 5.3.1)It follows from Theorem A.4.2 and Assumption A.4.1 thatIV̂(k,m)

is upper bounded by the expression in Equation (5.1) using the same technique as in [14].

Further, applying Theorem A.4.1, we obtain equality. Lastly, using similar arguments as in

106

[38], we can conclude that the actual delay decay rate is equal to the virtual delay decay

rate under Assumption A.4.2, which completes the proof. �

A.5 Proof of Theorem 6.3.1

A.5.1 Lower bound on the decay rate

First, note that an upper bound on the probability is a lower bound on the decay rate. We

start the analysis of finite-SRPT by deriving an upper bound on the probability of the virtual

delay (V(N)(k)) exceeding some thresholdm, i.e., Pr(V(N)(k) > m).

DenoteBN,k(a, b) as the service capacity available to all the the files inQk,k(0) in-

cluding the tagged file during interval (a, b), andBN
i, j(a, b) as the service capacity available

to the queueQi, j during the time-interval (a, b). To illustrate the difference, consider the

case where the tagged file of size 3 arrives to the system and isserved 2 units at time-slot

2 and the rest is served at time-slot 7. In this case, the service available to all files of size

3 that arrives at time-slot 0 including the tagged file during(7, 1) is BN,3(7, 1). BN,3(7, 1)

can be derived by noticing that the tagged file resides inQ3,3 during the interval (2, 1), and

Q3,1 during (7, 3), thusBN,3(7, 1) is the summation of the available service in these queues

during their respective time intervals, i.e.,

BN,3(7, 1) = BN
3,3(2, 1)+ BN

3,1(7, 3).

Let us focus our attention onQk,k. By the operation of finite-SRPT,{V(N)(k) > m}

implies that all files inQk,k(0) have not been fully serviced by timem. In other words,

Pr(V(N)(k) > m) ≤ Pr(Qk,k(0) > BN,k(m, 1)). Denote the lower bound ofBN,k(m, 1) as

BN,k
LB (m, 1). Then the following holds.

107

Pr(V(N)(k) > m) ≤ Pr(Qk,k(0) > BN,k(m, 1))

≤ Pr(Qk,k(0) > BN,k
LB (m, 1)) (A.22)

To connect with the simple case, we show that Equation (6.5) can revised in the

same manner as Equation (A.22) as follows.

Pr(V(N)(k) ≥ m) ≤



















































Pr
(

Qk,k(0) ≥
(

NC(m+ 1)−
∑k−1

i=1 Ai(m, 1)

−
∑M

i=1
∑k−1

j=1 Qi, j(0)
)

LB

)

, k ≤ D

Pr
(

Qk,k(0) ≥
(

NC(m+ 1)−
∑k−1

i=1 Ai(T1, 1)

−
∑k−D−1

i=1 Ai(m,T1 + 1)−
∑M

i=1
∑k−1

j=1 Qi, j(0)
)

LB

)

, D < k ≤ 2D

(A.23)

whereBN,k
LB (m, 1) is equal to (NC(m+1)−

∑k−1
i=1 Ai(m, 1)−

∑M
i=1

∑k−1
j=1 Qi, j(0))LB for k ≤ D and

(NC(m+1)−
∑k−1

i=1 Ai(T1, 1)−
∑k−D−1

i=1 Ai(m,T1+1)−
∑M

i=1
∑k−1

j=1 Qi, j(0))LB for D < k ≤ 2D.

The arguments in Section 6.2 provides a clear cut way to findBN,k
LB (m, 1) by providing upper

bounds on the volume of files in higher priority queues and higher priority file arrivals for

the simple case ofD < M ≤ 2D.

However, we require the solution for the general case. To extend the result to a

more general case, we make use of the idea thatBN,k(m, 1) can be broken down into mul-

tiple BN
i, j(a, b)’s. In particular, we haveBN,k(m, 1) = BN

k,k(m, 1) for k ≤ D andBN,k(m, 1) =

BN
k,k(T1, 1)+BN

k,k−D(T2,T1+1), whereBN
k,k(m, 1) ≥ NC(m+1)−

∑k−1
i=1 Ai(m, 1)−

∑M
i=1

∑k−1
j=1 Qi, j(0)

for k ≤ D and

108

BN
k,k(T1, 1)+ BN

k,k−D(m,T1 + 1) ≥ NC(m+ 1)−
k−1
∑

i=1

Ai(T1, 1)

−

k−D−1
∑

i=1

Ai(m,T1 + 1)−
M
∑

i=1

k−1
∑

j=1

Qi, j(0),

for D ≤ k < 2D.

This idea can be extended to the general case in the followingmanner. DenoteTi

as the time-slot in which the tagged file receives itsi’th D units of service. Then it is clear

that a job of sizek requires⌈k/D⌉ rounds of service, and will leave the system at time-slot

T⌈k/D⌉. We denoter1 + 1 as the last round of service in which the tagged file leaves the

system, i.e.,r1 = ⌈k/D⌉ − 1, thusTr1+1 = m.

Now we characterize the lower bound ofBN,k(m, 1). Note that the total available

capacity to all higher priority files in interval (m, 1) with regards to the event{V(N)(k) > m},

i.e., BN,k(m, 1), is the remaining capacity after all the higher priority queues are served in

finite-SRPT. Using similar argument as the simpleD < M ≤ 2D case, we have

BN,k(m, 1) = Bk,k−r1D(Tr1+1,Tr1 + 1)+ . . . + Bk,k−D(T2,T1 + 1)+ Bk,k(T1, 1)

≥ NCTr1+1 −

k−r1D−1
∑

i=1

iAN
i (Tr1+1,Tr1 + 1)− . . . −

k−D−1
∑

i=1

iAN
i (T2,T1 + 1)

−

k−1
∑

i=1

iAN
i (T1, 1)− Tr1+1(M − 1)−

M
∑

i=1

k−1
∑

j=1

Qi, j(0). (A.24)

We complete the lower bound by deriving an upper bound on
∑M

i=1
∑k−1

j=1 Qi, j(0).

Section 6.2 reports a suitable upper bound for the simple case of D < M ≤ 2D in Equa-

tion (6.6) for k ≤ D and in Equation (6.7) forD < k ≤ 2D. Lastly, the upper bound of

Pr(V(N)(k) ≥ m) can completely characterized by noting that by definition

109

D

D

High
priority

Low
priority

D

D
High
priority

Low
priority

D

DHigh
priority

Low
priority

Dk ≤ Dk >

D

D

High
priority

Low
priority

D

D
High
priority

Low
priority

D

DHigh
priority

Low
priority

Dk ≤ Dk >

Figure A.3: Priority scheme for a tagged job of size k, whereD < M ≤ 2D. The higher
priority area is composed of typical higher priority jobs represented as the thick diagonal
lines and atypical jobs are in the rest of the shaded area thatrepresent the atypical jobs.

Qk,k(0) = kAN
k (0,T0 + 1). (A.25)

To extend this result to the general case we make the following arguments. Higher

priority files with respect toQk,k(0) can be separated into two different groups: the typical

and the atypical higher priority files. In other words,

M
∑

i=1

k−1
∑

j=1

Qi, j(0) =
k

∑

i=1

∑

j∈A−{k}

Qi, j(0)+
k

∑

i=1

∑

j∈{1,2,...,k}−A

Qk, j(0), (A.26)

whereA = {i, i −D, i −2D, ..., i − sD} ands= ⌈ i
D⌉−1. Note that

∑k
i=1

∑

j∈A−{k} Qi, j(0) is the

volume of typical higher priority files in the thick diagonalstrip and
∑k

i=1
∑

j∈{1,2,...,k}−A Qk, j(0)

is the total volume of atypical files in the higher priority queues as shown in Figure A.3.

Based on similar arguments as in Section 6.2, the volume of all files in the higher

priority queues in Equation (A.26) can be upper bounded by

110

k
∑

i=1

∑

j∈A−{k}

Qi, j(0) ≤
k−1
∑

i=1

iAN
i (0,T0 + 1)+

k−D
∑

i=1

iAN
i (T0,T−1 + 1)+ . . .

+

k+r2D
∑

i=1

iAN
i (Tr2+1,Tr2 + 1)− Tr2(M − 1)− NCTr2, (A.27)

and

k
∑

i=1

∑

j∈{1,2,...,k}−A

Qk, j(0) ≤ −Tr2(M − 1), (A.28)

wherer2 = ⌈
k
D⌉ − ⌈

M
D ⌉, and 0> T−1 > T−2 > . . . > Tr2. The upper bound described in

Equation (A.27) is the result of the fact that
∑k

i=1 iAN
i (0,T0 + 1) contributes to the upper

most strip and
∑k−D

i=1 iAN
i (T0,T−1 + 1) results in files in the next lower strip and so on.

Next, the upper bound in Equation (A.28) corresponds to the maximum volume of

the atypical higher priority files. The maximum volume of such files in interval (0,Tr2) is

(1−Tr2)(M−1) since at most only one file can become atypical in a time-slot and the largest

possible atypical file size isM − 1.

Combining Equation A.27 and Equation A.28, we have

M
∑

i=1

k−1
∑

j=1

Qi, j(0) ≤
k−1
∑

i=1

iAN
i (0,T0 + 1)+

k−D
∑

i=1

iAN
i (T0,T−1 + 1)+ . . .

+

k+r2D
∑

i=1

iAN
i (Tr2+1,Tr2 + 1)− 2Tr2(M − 1)− NCTr2, (A.29)

Combining the result of Equation (A.29) and Equation (A.24), we have

111

BN
k (m, 1) ≥ NC(m+ 1− Tr2) −

k−r1D−1
∑

i=1

iAN
i (Tr1+1,Tr1 + 1)− . . .

−

k−D−1
∑

i=1

iAN
i (T2,T1 + 1)−

k−1
∑

i=1

iAN
i (T1, 1)−

k−1
∑

i=1

iAN
i (0,T0 + 1)

−

k−D
∑

i=1

iAN
i (T0,T−1 + 1)− . . . −

k+r2D
∑

i=1

iAN
i (Tr2+1,Tr2 + 1)

−2(m+ 1− Tr2)(M − 1). (A.30)

Lastly, applying the results from Equations (A.30), and Equation (A.25), to Equa-

tion (A.22), we have the following upper bound on the probability of {V(N)(k) > m}.

Pr(V(N)(k) > m) ≤ Pr(Qk,k(0) > BN,k(m, 1))

≤ Pr

















k−r1D−1
∑

i=1

iAN
i (m,Tr1 + 1))+ . . .

k−D−1
∑

i=1

iAN
i (T2,T1 + 1)+

+

k−1
∑

i=1

iAN
i (T1, 1)+

k
∑

i=1

iAN
i (0,T0 + 1)

+

k+D
∑

i=1

iAN
i (T0,T−1 + 1)+ . . . +

k−r2D
∑

i=1

iAN
i (Tr2+1,Tr2 + 1)

+2(m+ 1− Tr2)(M − 1)− NC(m+ 1− Tr2) > 0
)

= Pr



















r1
∑

j=r2

A j(T j+1,T j + 1)− N

(

C −
2(M − 1)

N

)

(m+ 1+ Tr2) > 0



















≤ Pr





















⋃

−→
T :T



















r1
∑

j=r2

A j(T j+1,T j + 1)− N

(

C −
2(M − 1)

N

)

(m+ 1+ Tr2) > 0







































≤
∑

−→
T :T

Pr



















r1
∑

j=r2

A j(T j+1,T j + 1)− N

(

C −
2(M − 1)

N

)

(m+ 1+ Tr2) > 0



















where conditionT states thatm= Tr1 > . . . > T1 > 0 > T0 > . . . > Tr2, andA j(T j+1,T j+1)

is defined as

112

A j(T j+1,T j + 1) =















































∑k− jD−1
i=1 iAi(T j+1,T j + 1) j ∈ {r1 + 1, r1, . . . , 2, 1}

∑k−1
i=1 iAi(T1, 1)+

∑k
i=1 iAi(0,T0 + 1) j = 0

∑k− jD
i=1 iAi(T j+1,T j + 1) j ∈ {−1,−2, . . . , r2 + 1, r2}.

Fix any ǫ > 0 and observe that forN large enough, we have
(

C − 2(M−1)
N

)

> (C −

ǫ). Applying the contraction principle we have that the delaydecay rate of finite-SRPT,

IV(k,m), is lower bounded byIC−ǫ (k,m) for anyǫ > 0. WhereIS(k,m) is defined as

IS(k,m) = inf
−→
T :T



















inf
~y:Y



















M
∑

j=1

IAN
j (Ti+1,Ti+1)

(

y(Ti+1,Ti+1
j

)





































, (A.31)

where conditionT states thatm = Tr1+1 > Tr1 > . . . > T1 > 0 > T0 . . . > Tr2, andY states

that

r1
∑

i=1

k−iD−1
∑

j=1

jy(Ti+1,Ti+1)
j +

k−1
∑

j=1

jy(T1,1)
j +

k
∑

j=1

jy(0,T0+1)
j

+

−1
∑

i=r2

k−iD
∑

j=1

jy(Ti+1,Ti+1)
j = S(m+ 1+ Tr2),

wherey(Ti+1,Ti+1)
j , y(T1,1)

j , y(0,T0+1)
j ≥ 0 for all i, j ≥ 0.

A.5.2 Upper bound of the decay rate

We now derive an upper bound for the delay decay rate of finite-SRPT which is arbitrarily

tight with the lower bound derived in Section A.5.1. This is done by finding a suitable lower

113

bound on the probability of delay, i.e., Pr(V(N)(k) > m). The main argument is based on the

idea that by using the two dimensional queueing framework, finite-SRPT can be viewed as

a simple priority queueing system. Then by using similar analysis as the priority queueing

system an upper bound can be derived.

As explained in Section 6.2, there exists a group of files thatconstitute higher prior-

ity compared to the tagged sizek file that arrives at time 0. Unlike Section A.5.1, files that

are absolutely required to be served before the tagged file corresponds to the lower bound

on the volume of higher priority files. A lower bound for the simple D < M ≤ D case is

derived in Section 6.2, and similarly a lower bound for the general case can be derived as

r1
∑

j=r2

A j(T j+1,T j + 1)− (m+ 1− Tr2)(M − 1). (A.32)

However, consider the following scenario. Assume that timel satisfiesTr1+1 ≤ l ≤

Tr1. This implies that at timel the tagged file has received onlyk − 1 units but have not

received the lastD units of service for it to completely leave the system. Then at time l all

files of higher priority are

r1
∑

j=r2

A j(T j+1,T j + 1)− (m+ 1− Tr2)(M − 1), (A.33)

assumingTr1+1 = l. If all the higher priority files with respect to the tagged size k files

have not left the system in any time during the interval (0,m), then it is guaranteed that the

tagged file did not leave the system in the interval (0,m). Based on this observation, we

derive a lower bound on Pr(V(N)(k) > m) as follows:

Pr(V(N)(k) > m)

114

≥ Pr



















inf
0≤l≤m



















r1
∑

j=r2

A j(T j+1,T j + 1)− N

(

C +
(M − 1)

N

)

(l + 1− Tr2)





































, (A.34)

assumingTr1+1 = l. Extending the above result to obtain a tight lower bound on the decay

rate of finite-SRPT is difficult without further assumptions on the input. We make the

following assumption on the arrival process in order to complete the derivation.

Assumption A.5.1. Let Ahigh denote the sum of all higher priority arrivals in any session

of (Ti+1,Ti + 1) with respect to the tagged size k file as described in EquationA.33, then we

assume that the corresponding rate function satisfies

I (Ti+1+l,Ti+1)
Ahigh

(C(Ti+1 − Ti + l) − v) < I (Ti+1,Ti+1)
Ahigh

(C(Ti+1 − Ti))

for v ∈ [v∗ − δ, v∗ + δ], v∗ > 0, andδ > 0 sufficiently small.

The following explanation of the assumptions is an excerpt from Chapter A.4 which

is included for completeness. The first assumption is equivalent to the decay rate being

additive. Intuitively, a decay rate with the property of additive functionals implies that

the occurrence of a rare event in the large deviation framework happens in a straight line.

This assumption has been used extensively in large deviation literature [5, 14, 27]. Further,

arrival processes that satisfy Assumption A.5.1 include many common processes such as all

stationary and Markov dependent processes. Additionally,if the arrival process is of Levy

type then the decay rate of the the arrival satisfies Assumption A.5.1.

Using the same technique as in [14] on Equation (A.34), we have thatIC−ǫ (k,m) as

an arbitrarily tight upper bound on the delay decay rate of finite-SRPT based on Assump-

tion A.5.1. Combining with the previous lower bound, we obtain the result for virtual delay.

This completes the proof.

115

A.6 Proof of Theorem 7.4.1

The basic idea of the proof of Theorem 7.4.1 is the following (ignoring the slight adjustment

required for sizek jobs). The explanation described here is only for better understanding

and the actual proof considers the adjustment. Denote [2DQ/i]d and [AN(Ti+1,Ti + 1)]d as

d units of all jobs that arrive to 2DQ/i and sum ofd units of all jobs inAN(Ti+1,Ti + 1)

respectively. Then, we have

Pr
(

V̂(N)(k) > m
)

≈ Pr
(

[2DQ/k]1 + . . . + [2DQ/0]k−1 + Q0(T0) > NC(m+ 1)
)

≈ Pr
(

[2DQ/k]1 + . . . + [2DQ/0]k−1 + [2DQ/ − 1]k

+ . . . + [2DQ/k − M]M > NC(T∗ +m+ 1)
)

= Pr
(

[AN(Tk+1,Tk + 1)]1 + . . . + [AN(T1,T0 + 1)]k−1 + [AN(T0,T−1 + 1)]k

+ . . . [AN(Tk−M+1,T⋆ + 1)]k > NC(T∗ +m+ 1)
)

.

Based on this intuitive argument the precise proof of the derivation is provided in

the following sections.

A.6.1 Lower bound of the delay decay rate of discrete PS

We start the analysis of discrete PS by deriving an upper bound on the probability of virtual

delay of sizek job exceeding some thresholdm, i.e., Pr(̂V(N)(k) > m). DenoteB̂N
k (a, b) as

the service capacity available to all jobs with original size k during the interval (a, b).

Lemma A.6.1. For any k∈M, the virtual delay of size k jobs in discrete PS satisfies

Pr
(

V̂(N)(k) > m
)

≤ Pr

















sup
−→
T :T

















k−1
∑

i=k−M

AN
k (Ti+1,Ti + 1)− B̂N

k (m,Tk−M + 1)

















> 0

















= Pr

















k−1
∑

i=k−M

AN
k (T∗i+1,T

∗
i + 1)− B̂N

k (m,Tk−M + 1) > 0

















116

where conditionT states that m≥ Tk ≥ Tk−1 ≥ . . .T1 ≥ 0 ≥ T0 . . . ≥ Tk−M+1 ≥ Tk−M =

T∗, T∗j are the time-slots for each cycles that supremize the above equation. Further,

AN
k (Ti+1,Ti + 1) is defined as

AN
k (Ti+1,Ti + 1) =















































kAN
k (Ti+1,Ti + 1) for k− M ≤ i ≤ −1

(k− 1)AN
k (T1, 1)+ kAN

k (0,T0 + 1) for i = 0

(k− i)AN
k (Ti+1,Ti + 1) for 1 ≤ i ≤ k− 1.

The theorem states that apossiblescenario in which the event{V̂(N)(k) > m} could

occur is when the totalrelevantvolume of arrivals for sizek job across all future and past

2DQs for sizek jobs exceed the available capacity to all jobs of sizek.

Proof. ConsiderQ0
k. By the operation of discrete PS,{V̂(N)(k) > m} implies that all jobs

in Q0
k(0) have not been fully serviced by timem, i.e., {Q0

k(0) > B̂N
k (m, 1)}. Since adding

more jobs makes the event of exceeding the available capacity more probable, we have the

following.

Pr
(

V̂(N)(k) > m
)

≤ Pr
(

Q0
k(0) > B̂N

k (m, 1)
)

= Pr

(

sup
T<0

(

kAN
k (0,T) − B̂N

k (0,T)
)

− B̂N
k (m, 1) > 0

)

= Pr
(

kAN
k (0,T∗ + 1)− B̂N

k (m,T∗ + 1) > 0
)

= Pr
(

kAN
k (0,Tk−M + 1)− B̂N

k (m,Tk−M + 1) > 0
)

≤ Pr
(

kAN
k (T1,Tk−M + 1)− B̂N

k (m,Tk−M + 1) > 0
)

≤ Pr

















k−1
∑

i=k−M

AN
k (Ti+1,Ti + 1)− B̂N

k (m,Tk−M + 1) > 0

















,

for any
−→
T : T. Thus Lemma A.6.1 holds. �

117

Note that the total available capacity to all jobs of sizek in interval (m,T) with

regards to the event{V̂(N)(k) > m}, i.e. B̂N
k (m,T), is the remaining capacity after all the

higher priority queues are served in discrete PS. So, the following inequality holds for

T < 0.

B̂N
k (m,T) ≥ NC(T +m+ 1)−

k−1
∑

i=k−M

A
N
,k(Ti+1,Ti + 1)−

M
∑

j=1, j,k

Qi(Tk−M), (A.35)

whereAN(Ti+1,Ti + 1) is defined as

A
N(Ti+1,Ti + 1) =























































































∑k−i
j=1 jAN

j (Ti+1,Ti + 1)

+
∑M

j=k−i+1(k− i)AN
j (Ti+1,Ti + 1) for i , 0

∑k−1
j=1 jAN

j (T1, 1)+
∑M

j=k(k − 1)AN
j (T1, 1)

+
∑k

j=1 jAN
j (0,T0 + 1)+

∑M
j=k+1 kAN

j (0,T0 + 1) for i = 0

and correspondinglyAN
,k(Ti+1,Ti + 1) isAN(Ti+1,Ti + 1) without the term corresponding to

j = k. Using Lemma A.6.1 and the lower bound onB̂N
k (m,T) in Equation (A.35), we derive

the following theorem which specifies a lower bound of the delay decay rate of discrete PS,

i.e., upper bound on the probability.

Theorem A.6.1.The decay rate of size k jobs under discrete PS is lower bounded as follows

IV̂(k,m) ≥ inf
−→
T :T



















inf
~y:Y



















M
∑

j=1

IAN
j (Ti+1,Ti+1)

(

y(Ti+1,Ti+1
j

)





































, (A.36)

118

where conditionT states that m≥ Tk ≥ Tk−1 ≥ . . .T1 ≥ 0 ≥ T0 . . . ≥ Tk−M+1 ≥ Tk−M = T∗,

andY states that

k−1
∑

i=k−M,i,0



















k−i
∑

j=1

jy(Ti+1,Ti+1)
j +

M
∑

j=k−i+1

(k− i)y(Ti+1,Ti+1)
j



















+

k
∑

j=1

jy(0,T0+1)
j

+

M
∑

j=k+1

ky(0,T0+1)
j +

k−1
∑

j=1

jy(T1,1)
j +

M
∑

j=k+1

(k− 1)y(T1,1)
j = C(Tk−M +m+ 1),

where y(Ti+1,Ti+1)
j , y(T1,1)

j , y(0,T0+1)
j ≥ 0 for all i , j ≥ 0.

Proof. Combining Equation (A.35) with Lemma A.6.1 we have the following upper bound

on the probability of{V̂(N)(k) > m}.

Pr
(

V̂(N)(k) > m
)

≤ Pr

















sup
−→
T :T

















k−1
∑

i=k−M

AN
k (Ti+1,Ti + 1)− B̂N

k (m,Tk−M + 1)

















> 0

















= Pr

















k−1
∑

i=k−M

AN
k (T∗i+1,T

∗
i + 1)− B̂N

k (m,Tk−M + 1) > 0

















≤ Pr

















k−1
∑

i=k−M

AN
k (T∗i+1,T

∗
i + 1)+

k−1
∑

i=k−M

A
N
,k(T

∗
i+1,T

∗
i + 1)

+

M
∑

j=1, j,k

Qi(Tk−M) − NC(Tk−M +m+ 1) > 0



















≤ Pr

















k−1
∑

i=k−M

AN
k (T∗i+1,T

∗
i + 1)+

k−1
∑

i=k−M

A
N
,k(T

∗
i+1,T

∗
i + 1)

−NC(Tk−M +m+ 1) > 0) (A.37)

= Pr

















k−1
∑

i=k−M

A
N(T∗i+1,T

∗
i + 1)− NC(Tk−M +m+ 1) > 0

















≤ Pr





















⋃

−→
T :T

















k−1
∑

i=k−M

A
N(Ti+1,Ti + 1)− NC(Tk−M +m+ 1) > 0





































≤
∑

−→
T :T

Pr

















k−1
∑

i=k−M

A
N(Ti+1,Ti + 1)− NC(Tk−M +m+ 1) > 0

















119

where Equation (A.37) follows from the observation thatQi(T∗) = 0 for all 1 ≤ i ≤ M by

definition. Applying the contraction principle completes the proof. �

Theorem A.6.1 provides apossiblescenario in which{V̂(N)(k) > m} could occur.

To show that this scenario is indeed the most dominant and controls the most dominant

decaying behavior of the probability, we show that the same equation provides an upper

bound on the decay rate of{V̂(N)(k) > m}.

A.6.2 Tight upper bound of the delay decay rate of discrete PS

We now develop an upper bound for the decay rate of discrete PSwhich is tight with the

lower bound derived in Section A.6.1. The main argument for the upper bound is that by

using the 2DQ framework with cycles, discrete PS can be viewed as a simple priority queue-

ing system. Thus, using a similar analysis of the well known priority queueing system, we

can derive the tight upper bound for the decay rate.

Theorem A.6.2. The probability of the virtual delay for size k jobs in LAS canbe lower

bounded as

Pr
(

V̂(N)(k) > m
)

≥ Pr

















inf
0≤Tk≤m















k−1
∑

i=k−M

A
N(T∗i+1,T

∗
i + 1)− NC(T∗k−M + l + 1)















> 0

















,

where T∗i are the optimizing time-slots for each cycle, and they satisfy m ≥ Tk ≥ Tk−1 ≥

. . .T1 ≥ 0 ≥ T0 . . . ≥ Tk−M+1 ≥ Tk−M = T∗.

Proof. As explained in Section 7.4, there exists a group of job arrivals that constitute higher

priority compared to the tagged job. If the higher priority queues and arrivals with respect to

the virtual job are never empty at any time during (0,m), then the virtual job is guaranteed

not to leave the system in the interval (0,m). Based on this observation we derive a lower

bound on Pr(̂V(N)(k) > m) as follows.

120

Pr
(

V̂(N)(k) > m
)

≥ Pr

















inf
0≤Tk≤m















k−1
∑

i=k−M

A
N(T∗i+1,T

∗
i + 1)

+

j
∑

i=1

M
∑

j=1

Qk−M−1
i, j (T⋆) − NC(T∗k−M + l + 1)



















> 0



















= Pr

















inf
0≤l≤m















k−1
∑

i=k−M

A
N(T∗i+1,T

∗
i + 1)− NC(T∗k−M + l + 1))















> 0

















,

where the last equality follows from the fact that at time-slot T⋆ the system is empty. �

To obtain a tight lower bound on the decay rate of discrete PS is difficult without fur-

ther assumptions on the input. Thus, we make the assumption Assumption 7.4.1 described

in Section 7.4. We are now ready to complete the proof of Theorem 7.4.1.

Proof. (of Theorem 7.4.1)It follows from Theorem A.6.2 and Assumption 7.4.1 thatIV̂(k,m)

is upper bounded by the right hand expression in Equation (7.1) using the same technique

as in [14]. Further, applying Theorem A.6.1, we obtain equality. �

121

Bibliography

[1] S. Aalto, U. Ayesta, and E. Nyberg-Oksanen. Two-level processor-sharing scheduling disci-

plines: mean delay analysis. InProc. of ACM Sigmetrics/Performance, pages 97–105, 2004.

[2] M. F. Arlitt and C. L. Williamson. Web server workload characterization: The search for

invariants. InProceeding of the ACM Sigmetrics, Philadelphia, PA, April 1996.

[3] M. F. Arlitt and C. L. Williamson. Internet web servers: Workload characterization and per-

formance implications.IEEE/ACM Transactions on Networking, 5(5):631–645, 1997.

[4] N. Bansal and M. Harchol-Balter. Analysis of SRPT scheduling: Investigating unfairness. In

Proc. of ACM Sigmetrics/Performance, pages 279–290, 2001.

[5] D. Bertsimas, I. C. Paschalidis, and J. N. Tsitsiklis. Asymptotic buffer overflow probabilities in

multiclass multiplexers: An optimal control approach.IEEE Trans. on Auto. Control, 43:315–

335, 1998.

[6] S. C. Borst, O. J. Boxma, and R. N´uñez-Queija. The equivalence between processor sharing

and service in random order.Operations Research Letters, 31:254–262, 2003.

[7] S. C. Borst, O. J. Boxma, R. N´uñez-Queija, and A. P. Zwart. The impact of the service disci-

pline on delay asymptotics.Performance Evaluation, 54(2):175–206, October 2003.

[8] D. Botvich and N. Duffield. Large deviations, economies of scale, and the shape of the loss

curve in large multiplexers.Queueing Systems, 20:293–320, 1995.

[9] E. G. Coffman, R. R. Muntz, and H. Trotter. Waiting time distribution for processor sharing

systems.Journal of the Association of Computing Machinery, 17:123–130, 1970.

122

[10] C. Coubercoubetis and R. Weber. Buffer overflow asymptotics for a buffer handling many

traffic sources.J. Appl. Prob., 33(3):886–903, 1996.

[11] M. E. Crovella and A. Bestavros. Self-similarity in world wide web traffic: Evidence and

possible causes.IEEE/ACM Transactions on Networking, 5(6):835–846, 1997.

[12] M. E. Crovella, M. S. Taqqu, and A. Bestavros.Heavy-tailed probability distributions in the

World Wide Web: A Practical Guide To Heavy Tails. Chapman and Hall, New York, 1998.

[13] S. Delas, R. Mazumdar, and C. Rosenberg. Cell loss asymptotics for buffers handling a large

number of independent stationary sources. InProc of IEEE Infocom, volume 2, pages 551–558,

1999.

[14] S. Delas, R. Mazumdar, and C. Rosenberg. Tail asymptotics for HOL priority queues handling

a large number of independent stationary sources.Queue. Sys. Thry. and App., 40(2):183–204,

2002.

[15] J. L. V. den Berg. Sojourn times in feedback and processor-sharing queues.PhD thesis,

Rijksuniversiteit Utrecht, 1990.

[16] F. Guillemin, P. Robert, and B. Zwart. Tail asymptoticsfor processor sharing queues.Advances

in Applied Probability, 36:525–543, 2004.

[17] M. Harchol-Balter, B. Schroeder, N. Bansal, and M. Agrawal. Implementation of SRPT

scheduling in web servers.ACM Trans. on Comp. Sys., 21(2), May 2003.

[18] M. Harchol-Balter, B. Schroeder, N. Bansal, and M. Agrawal. Size-based scheduling to im-

prove web performance.ACM Transactions on Computer Systems, 21(2):207–233, May 2003.

[19] M. Harchol-Balter, K. Sigman, and A. Wierman. Asymptotic convergence of scheduling poli-

cies with respect to slowdown.Performance 2002. IFIP WG 7.3 International Symposium on

Computer Modeling, Measurement and Evaluation, 49(1):241–256, September 2002.

[20] P. Jelenković and P. Momcilović. Large deviation analysis of subexponential waiting time in a

processor sharing queue.Math. Oper. Res., 28:587–608, 2003.

[21] F. P. Kelly. Reversibility and Stochastic Networks. John Wiley, New York, NY, 1976.

[22] L. Kleinrock. Analysis of a time–shared processor.Naval Research Logistics Quarterly,

11:59–73, 1964.

123

[23] L. Kleinrock. Queueing Systems, Volume 1: Theory. Wiley–Interscience, New York, 1975.

[24] N. Likhanov and R. Mazumdar. Cell loss asymptotics for buffers fed with a large number of

independent stationary sources.Journal of Applied Probability, 36:86–96, 1999.

[25] M. Mandjes and M. Nuyens. Sojourn time in the M/G/1 FB queue with light-tailed service

times.Prob. in the Eng. and Info. Sci., 19:351–361, 2005.

[26] M. Mandjes and B. Zwart. Large deviations for sojourn times in processor sharing queues.

Queueing Systems, 52:237–250, 2006.

[27] L. Massoulie. Large deviations estimates for polling and weighted fair queueing service sys-

tems.Adv. Perf. Anal., 2(2):103–128, 1999.

[28] D. McWherter, B. Schroeder, N. Ailamaki, and M. Harchol-Balter. Improving preemptive pri-

oritization via statistical characterization of OLTP locking. In Int. Conf on Data Engineering,

2005.

[29] R. Nunez-Queija. Processor-sharing models for integrated-services networks.PhD thesis,

Eindhoven University, 2000.

[30] M. Nuyens, A. Wierman, and B. Zwart. Preventing large sojourn times using SMART schedul-

ing. Under Submission, 2005.

[31] M. Nuyens and B. Zwart. A large-deviation analysis of GI/GI/1 SRPT queue.Under Submis-

sion, 2005.

[32] I. Rai, G. Urvoy-Keller, and E. Biersack. Analysis of LAS scheduling for job size distributions

with high variance. InProc. of ACM Sigmetrics, 2003.

[33] I. Rai, G. Urvoy-Keller, M. Vernon, and E. Biersack. Performance modeling of LAS based

scheduling in packet switched networks. InProc. of ACM Sigmetrics/Performance, 2004.

[34] M. Rawat and A. Kshemkalyani. SWIFT: scheduling in web servers for fast response time. In

Symp. on Net. Comp. and App., 2003.

[35] R. Righter and J. Shanthikumar. Scheduling multiclasssingle server queueing systems to

stochastically maximize the number of successful departures.Prob. in the Eng. and Info. Sci.,

3:967–978, 1989.

124

[36] R. Righter, J. Shanthikumar, and G. Yamazaki. On external service disciplines in single stage

queueing systems.Journal of Applied Probability, 27:409–416, 1990.

[37] L. E. Schrage. A proof of the optimality of the shortest remaining processing time discipline.

Operations Research, 16:678–690, 1968.

[38] S. Shakkottai and R. Srikant. Many-sources delay asymptotics with applications to priority

queues.Queueing Systems: Theory and Applications, 39:183–200, October 2001.

[39] W. Stalling.Operating Systems. Second Edition, Prentice Hall, 1995.

[40] M. Vojnovic, J. L. Boudec, and C. Boutremans. Global fairness of additive-increase and

multiplicative-decrease with heterogeneous round-trip times. InProceedings of IEEE Info-

com 2000, Tel-Aviv, Israel, March 2000.

[41] A. Wierman and M. Harchol-Balter. Classifying scheduling policies with respect to unfairness

in an M/GI/1. In Proc. of ACM Sigmetrics, 2003.

[42] A. Wierman and M. Harchol-Balter. Classifying scheduling policies with respect to higher

moments of conditional response time. InProc. of ACM Sigmetrics, 2005.

[43] A. Wierman, M. Harchol-Balter, and T. Osogami. Nearly insensitive bounds on SMART

scheduling. InProc. of ACM Sigmetrics, 2005.

[44] C. W. Yang and S. Shakkottai. Asymptotic evaluation of delay with the srpt scheduler.To

appear in IEEE Transactions on Automatic Control.

[45] C. W. Yang and S. Shakkottai. Proof for the delay decay rate of finite-srpt.

https://webspace.utexas.edu/yangc36/CDC-2007/proof-finite-SRPT.pdf.

[46] C. W. Yang and S. Shakkottai. Delay asymptote of the SRPTscheduler. InProceedings of the

IEEE Conference on Decision and Control, December 2004.

[47] C. W. Yang and S. Shakkottai. Asymptotic evaluation of delay with the srpt scheduler.IEEE

Transactions on Automatic Control, 51(11):1848–1854, November 2006.

[48] C. W. Yang, A. Wierman, S. Shakkottai, and M. Harchol-Balter. Tail asymptotics for policies

favoring short jobs in a many-flows regime. InProceedings of ACM SIGMETRICS, June 2006.

125

[49] S. F. Yashkov. A derivation of responese time distribution for a m/g/1 processor sharing queue.

Problems of Control and Information Theory, 12(2):133–148, 1983.

[50] A. P. Zwart and O. J. Boxma. Sojourn time asymptotics in the M/G/1 processor-sharing queue.

Queueing Systems, 35:141–166, 2000.

126

Vita

ChangWoo Yang was born in Seoul Korea on January 18, 1975, theson of ByungHo Yang and

YoungHee Park. After graduating from Karachi American School in 1992, he entered Yonsei Uni-

versity, Seoul, Korea. ChangWoo Yang graduated with a Bachelor’s and Master’s degree in 1997

and 2001, both in Electrical Engineering from the Yonsei University. He joined the Department of

Electrical and Computer Engineering at the University of Texas at Austin in the fall of 2002 as a

Ph.D student and is currently working with Prof. Sanjay Shakkottai. While he was in the program,

he has awarded the Information and Telecommunication National Fellowship and has worked as a

Teaching Assistant for one semester and then a Graduate Research Assistant throughout. In the past,

he has worked with LG electronics, Korea Telecom, and the Ministry of Defense.

His research interests lie in the application of probability, queueing theory, and large devia-

tions theory to a variety of communications and computer networking problems.

Permanent Address: 4th floor 498-2 PungNap-Dong SongPa-Gu

Seoul, South Korea

This dissertation was typeset with LATEX 2ε3 by the author.

3LATEX 2ε is an extension of LATEX. LATEX is a collection of macros for TEX. TEX is a trademark of the
American Mathematical Society. The macros used in formatting this dissertation were written by Dinesh Das,
Department of Computer Sciences, The University of Texas atAustin, and extended by Bert Kay, James A.
Bednar, and Ayman El-Khashab.

127

