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With increasing demand and availability of bandwidth reses, there has been tremen-
dous growth in the scale and speed of web servers. In webrsesabeduling plays an im-
portant role in resource allocation (for instance, bandwadlocation, processor allocation,
etc). However, as the scale of a system increases so doesiriitgenof activitiegevents

in the system (e.g., job arrivals), as a consequence of whiehanalysis of scheduling
becomes increasingly harder. In particular, the possilglgswn which scheduling failure
(e.g., queue overflow, excessively large delay, instghiifta system) can occur becomes
increasingly greater, thus making it mordidiult to understand the behavior and develop

design rules for scheduling algorithms. However, a wettkn observation from large de-
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viations theory that large scale systems fails in a “mostyikvay” can potentially be used

to simplify the design and analysis of scheduling. In thissik, we study the implications
and applications of thisfBect on scheduling in a web server accessed by a large number of
sources.

We analyze the delay distribution of scheduling policiesvieb servers under a
many sources large deviation regime which models web seimea large scale system
well. Due to the diiculties brought on considering a large number of sourcdg,aosmall
number of scheduling policies, such as First-Come-Fiest#S (FCFS), General-Processor-
Sharing (GPS), and Priority Queueing policies have beelyzedunder the many sources
regime. In particular, in a single queue single server stitaplelay characteristics of only
FCFS, Shortest-Job-First (SJF), and Longest-Job-Fidt)(has been analyzed.

In this thesis, we study the Two-Dimensional-Queueing (2B@mework, a uni-
fying queueing framework that allows the identification loé¢ t'‘most likely way” in which
delay occurs, to analyze the delay of various unexploreddiding policies. In conjunction
with the 2DQ framework, we develop a new “cycle based” tegheifor understanding the
large deviations tail probability of more complex policies

Using the combination of the 2DQ framework and the cycle tammalysis, we
first analyze two interesting scheduling policies, i.e Qi$st-Remaining-Processing-Time
(SRPT) policy (which is mean delay optimal) and Proces$aig (PS) policy (which is a
“fair” policy). We derive the asymptotic delay distributie (rate functions) of both policies
and study their behavior across job sizes. Next, we addness problems in implementing
the aforementioned scheduling policies: (i) end receiveay have bandwidth constraints
that are not taken account in SRPT, (ii) the remaining pingstime information might
not be available to the web-server, and (iii) most actuallementations are variants of
SRPT to reflect other implementation constraints/antb jointly optimize other metrics
in addition to delay, i.e., jitter, fairness, etc. To addrétese, we first develop finite-SRPT

that takes into account the bandwidth constraint at the ecelver, and show that the policy
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shifts between SRPT and a PS-like policy depending on theévaidth constraint. Second,
we study the Least-Attained-Service (LAS) policy which iswed as a good substitute
for SRPT when the remaining job size is not available and vedyae the penalty associ-
ated with not using the remaining size information directhastly, we analyze a class of
scheduling policies known as SMART that contains many wsiaf SRPT with dierent
fairness properties and show that all policies in the clas® lthe same tail probability of
delay across job sizes for a many sources regime. The redultés thesis facilitate the
understanding of various scheduling policies under theynsanrces regime and provides

an analytical queueing framework that can be used to uradetsither scheduling policies.

viii



Contents

Acknowledgments v
Abstract Vi
List of Tables Xii
List of Figures Xiii
Chapter 1 Introduction 1

1.1 Summary . . . . e e e e
1.2 MainContributions . . . . . . . .. ... e

1.3 Organization. . . . . . . . . . . e

Chapter 2 The Basic System Model 8
21 TheSystemSetup . . . . . . . . . . e

2.2 Many-Sources Large-Deviations Regime . . . . .. ... .. ... . 10
2.3 Brief Overview of Scheduling Policies . . . . .. ... ... ...... 13
Chapter3 SRPT 15
3.1 Background and RelatedWork . . . . . .. ... ... ... ....... 15
3.2 Main Contributions and Intuition . . . . . . . . ... ... .. .. .. 17
3.3 Numerical Analysis . . . . . . . .. .. . .. . 32



Chapter4 SMART 25

4.1 Background and RelatedWork . . . . . .. ... ... ... ... .... 25
4.2 Two Dimensional Queueing Framework . . . . .. .. ... ... ... 28
4.3 Intuition . . . . . 31
4.4 Main Contributions . . . . . . . .. 23
4.4.1 SMART for Large Deviations . . . ... ... ... ........ 32
442 AnalyticalResult . . . ... ... ... .. 33
4.5 Numerical Analysis . . . . . . . . . e 83
Chapter5 LAS 42
5.1 Background and Related Work . . . . . .. ... ... ... .. ..., 42
5.2 Intuition . . . . .. e 44
5.3 Main Contributions . . . . . . . . . 64
5.4 Numerical Analysis . . . . . . . . . . . . 05
Chapter 6 finite-SRPT 54
6.1 Background and RelatedWork . . . . . .. ... ... ... ....... 54

6.1.1 Definition and explanation of finite-SRPT . . . . ... ... .. 55

6.2 Intuition . . . . . .. 56

6.3 Main Contributions . . . . . . . . ... 95
6.3.1 Characteristics of finite-SRPT . . . . . . . ... ... ... ... 59
6.3.2 The delay decay rate of finite-SRPT . . . . .. ... ... ... 61

6.4 Numerical Analysis . . . . . . . . . . . . .. e 76
Chapter 7 Discrete Processor Sharing 69
7.1 Background and RelatedWork . . . . . .. ... ... ..., 69

7.2 Two Dimensional Queueing Framework withcycles . . . . ...... . .. 71
7.3 Intuition . . ... 72
7.3.1 PSindiscretetime . .. .. .. ... .. .. . e 72



7.3.2 Discrete PS described through 2DQ framework withesycl. . . .
7.4 Main Contributions . . . . . . ... o

7.5 Numerical Analysis . . . .. .. .. ... .. .. .. . .

Chapter 8 Concluding Remarks

Appendix A Proof of Theorems

A.l Proofof Theorem3.2.1 . . . . . . .. . ... ... .. ... .....
A.2 Proofof Theorem3.2.2 . . . ... ... ... .. ... . .......
A.3 Proofof Theorem4.4.1 . . . .. . ... ... ... ... . ......
A4 Proofof Theorem5.3.1 . . . . . . ... ... ... ... .......

A.4.1 Lower bound of the decayrate . . . ... ... ........

A.4.2 The delay decay rate (a tight upper bound)

A5 Proofof Theorem6.3.1 . . . . . . ... ... ... ... .......
A.5.1 Lowerboundonthedecayrate. . ... ............
A.5.2 Upper bound of the decayrate . . ... ... .........

A.6 Proofof Theorem7.4.1 . . . . . . . . . ... ... .. ... .....
A.6.1 Lower bound of the delay decay rate of discrete PS . . . . . .
A.6.2 Tight upper bound of the delay decay rate of discrete.PS. . . .

Bibliography

Vita

Xi

122

127



List of Tables

2.1 Notations frequently used in the dissertation.

2.2 Overview of scheduling policies.

Xii



2.1

3.1

4.1

List of Figures

lllustration of many sources framework. In the many sesrarge devia-
tions framework, we consider the probability of large d#@eias from the

mean when the system is accessed by a large number of soutas a

served by a server with capacity that increase in propartian. . . . . . . 9

lllustration of the delay decay rate of size 1 aigbbs for SRPT compared
with FIFO. The decay rate of size 1 jobs for SRPT is actualfinite since
the setup ensures that all size 1 jobs are served as sooryastive. It is
depicted as a horizontal line for viewing purpose. Note thatdecay rate
of sizeM jobs for SRPT approaches that of FIFO as khéncreases while

the diference for size 1 jobs remains large (actually grows foelddy. . . 23

lllustration of the Two Dimensional Queueing (2DQ) Feawork. The left
figure depicts the basic form of the 2DQ framework which isidally a
collection of virtual queues arranged in a grid to reflect stegte of the
system. The right figure depicts the 2DQ representation {0ABT where
the X-axis is the original size and the Y-axis is the remajnimocessing

timeofajob. . .. .. ... .. ...

Xiii



4.2

4.3

4.4

4.5

lllustrations of the two dimensional queueing frameéwfor SMART. Note
that since a job cannot have remaining size larger thanigsai size only

the lower right triangle of Figure 4.1 is of importance. Thegression of

a job between queues while in the system is illustrated inTag priority
structure for an incoming job is shown in (b) and for a pdstiakrved job
isshownin(c). . . ... . . . . . . . . . e
Plot of the rate of convergence of SRPT, PSJF, and RS tddtay rate
under the uniform workload wittM = 16, p = 0.8, andm = 4. The
asymptotic decay rate is shown as a dotted line. Note thgttbel decay
rates of the larger sizes are shown because only these castitmated
accurately in simulation since a large delay for smallerges is a very
low probability event adl grows. Though not shown here, we found similar
convergence rates under other policies in SMART-LD. . .. ...... .. 38
Plot of the decay rate as a function of the thresiolchder the power-law
and the high variability workload under SMART-LD with the rii@mum job
sizeM = 16 andp = 0.8. Each line in the figures corresponds to the decay
rate of delay experienced by a specific job dtz& he decay rate of FCFS

is included as a benchmark. Note that since decay rateseflgabs are
infinite, they areomitted. . . . . . . . .. ... ... ... .. ... ..., 9
Plot of the decay rate as a function of the maximum job Bizender the
power-law and the high variability workload under SMART-Math the
thresholdm = 4 andp = 0.8. Each line in the figures corresponds to the
decay rate of delay experienced by a specific job kiZEhe decay rate of
FCFSis included as a benchmark. Note that since decay rateed. jobs

are infinite, they areomitted. . . . . . . . . ... ... ... 40

Xiv

3



5.1

5.2

5.3

5.4

lllustration of the 2DQ representation for LAS. As depitthe X-axis is the
original size and the Y-axis is the attained service of a yahere attained
service is the amount of service a job has received sofar. . ... ... 44
lllustrations of the two dimensional queueing framewior LAS. Note that
since a job cannot have attained service larger than itgyatigize only the
upper right triangle of Figure 5.1 is of importance. The pesgion of a

job between gueues while in the system is illustrated in Tdje priority
structure for an incoming job is shown in (b) and for a pdstiakrved job
isshownin(c). . . ... . . . . . . . . . e 45
Plot of the rate of convergence of SRPT to the decay rateruthe uniform
workload withM = 16, p = 0.8, andm = 4. The asymptotic decay rate is
shown as a dotted line. Note that only the decay rates of theraizes are
shown because only these can be estimated accurately itaonusince a
large delay for smaller job sizes is a very low probabilitgetvasN grows.
Though not shown here, we found similar convergence ratdsrusther
policies in SMART-LD. . . . . . . . . . . . . . . . . . . e 49
Plot of the decay rate as a function of the thresiolchder the power-law

and the high variability workload under SMART-LD with the rii@mum job
sizeM = 16 andp = 0.8. Each line in the figures corresponds to the decay
rate of delay experienced by a specific job dtz& he decay rate of FCFS

is included as a benchmark. Note that since decay rateseflgabs are

infinite, they areomitted. . . . . . . . .. .. ... ... ... ... ..., 05

XV



5.5 Plot of the decay rate as a function of the maximum job Blzender the
power-law and the high variability workload under SMART-Math the
thresholdm = 4 andp = 0.8. Each line in the figures corresponds to the
decay rate of delay experienced by a specific job kiZEhe decay rate of
FCFSis included as a benchmark. Note that since decay rateed. jobs
are infinite, they areomitted. . . . . . . . . .. ... ... .. 51

5.6 Plot of the delay rate function as a function of the joteskz with the
thresholdm = 20 and maximum job sizé1 = 16 held fixed. Recall
that lw(k, m) measures the rate function Bf(W(k) > m) and that a larger

Iw(k, m) indicates a stochastically smallerdelay. . . . ... .. .. ..... B2

6.1 Finite-SRPT and two dimensional queueing frameworle [Eft-most fig-
ure depicts the path that a job should take for it to be fullyised. X-axis
is the original size of a job and Y-axis is the remaining siza @b. Thus
a job of original sizek upon receiving service progresses downward until
it is fully served, i.e., remaining processing time is 0. Hwer, diferent
sized jobs require elierent numbers of rounds Bfunits of service in finite-
SRPT. jobs of siz& < D will be fully served in one round, while jobs with
sizeD < k < 2D require two rounds of service to leave the system. . ... 56
6.2 Priority scheme for a tagged job of size k, whBre M < 2D. As depicted
in the figures, all fictitious queues in the shaded area arébgh priority.
Correspondingly, lower priority queues are the fictitiougges in the non-
shaded area. The higher priority area is composed of tyhighkr priority
jobs represented as the thick diagonal lines and atypibal goe in the rest

oftheshaded area. . . . . . . . . . . . . . . . 57

XVi



6.3

6.4

7.1

7.2

7.3

7.4

Finite-SRPT described with respect to SRPT and PS.eF8RPT occu-

pies aregion between SRPT and PS for varying valu&s avhenD = M,
finite-SRPT is equivalent to SRPT. Finite-SRPTDat 1 is a scheduling

policy very close to PS but fierent in the fact that only jobs with smaller
remaining processing time are served before the taggechjalcycle in-

stead of all jobs inthesystem. . . .. ... ... ... .......... 0 6
Delay decay rate of job sizes214, 6, 8, for varyingD = {2, 4, 8}, exceed-

ing the thresholan = 5 is depicted. X-axis is the original size of the tagged

job and y-axis is the actual numerics of the delay decay rate.. . . . . . 67

lllustration of the two queue representation of the reigc PS operation.

The queue with the star arrow is the queue that is active gugue being
served. A job receives a unit whence it is transferred to theroqueue
without the star arrow, i.e., the inactive queue. When dlkjteave the

active queue, the other queue becomes active where thesproepeats

again. . .. e e e 72
lllustration of the infinite queue representation. Trgueent is given that

the infinite queue representation is equivalent to the twauguepresenta-

tion of discrete PS. . . . . . . ... 73
lllustration of the 2DQ with cycles representation @ tliscrete PS schedul-

ing policy. The 2DQ representation follows the two queuaespntation

and provides a tractable framework that makes the analysiscarete PS
possible. . . .. e 74
lllustration of the progress of a tagged size 3 job in th&2epresentation.

Note that the transition of active queues in the two queueesgmtation

is expressed as the sequence of multiple 2DQs with strictifyribetween

them. . . . . e 75

XVil



7.5

7.6

7.7

7.8

lllustration of the 2DQs representing the state of ttetesy for a tagged job

of sizek after time slot 0. We denotd®)/0 as the inactive 2DQ at time 0,

i.e., the 2DQ that receives new arrivals at time 0. Activel@ylenote the

time interval that the respective 2DQ is active and the jolvas are the
actual arrivals that the particular 2DQ receives. Note thiasizek tagged

job only 2DQs ranging fromRQ/0 to 2DQ/k are relevant since the tagged

job is fully served and leaves the system DQ@/k. . .. .. ... ... .. 76
lllustration of the 2DQs representing the state of thetesy for a tagged

job of sizek before time slot 0. The 2DQ number is assigned relative to
2DQ/0. The last 2DQ corresponds to the 2DQ that receives jobadsrat

the start of the busy period, whefe — 1 is the last time before time slot 0
thatthe systemwasempty. . . . .. .. .. .. ... .. .. ... ... 77
lllustration of the simplification of the past 2DQs. Apared the unknown
number of 2DQs afterRQ/k — M can all be combined into a single 2DQ

that represent the 2DQ with the corresponding job arrivads$ heed to be

fully served before the tagged job leaves the system. Thiplgication is

one of the key observations that make the analysis of des&8tpossible. . 81
lllustration of the multiple resolution of 2DQ framewoior discrete PS

with respect to cycles. The figure shows the simplificatiothefpast 2DQs

and the additional resolution of)/0 where the priority scheme before

and aftertime Ois dierent. . . . . . . . . . . . ... .. ... ... ... 82

XVili



7.9

Al

A.2

A3

Plot of the delay decay rate of discrete PS under the expiahdistribution
with p = 0.8, m =5, andC = 1 for jobs sizes ]13, and 5. The asymptotic
decay rate of discrete PS shows that even the exponentialy date of
discrete PS is dependent on the job size where the decayeeteages for
larger jobs, i.e., slightly favors small jobs. However, qared to SRPT
and LAS the discrete PS policy does not favor small jobs ashmihe
delay decay rate of SRPT and LAS for size 1 jobs are actudilyite, but

depicted as finite to able to compare the delay decay raténef @b sizes. 83

lllustration of the bounds of* that are used to prove Theorem A.2.1. As
shown in the figure, we construf(6) that lower bounds\a, o(6) for all 6. 92
lllustration of the lower and upper bound of the actudhgevith respect to

the virtual delay. The lower bound shows that the actual g leave the
system only if the virtual job leaves the system, i.e., readhe head of the
queue. The upper bound shows that if the virtual job behiedatiditional
sizek job reaches the head of the queue then the actual job is geadio
befullyserved. . . .. . . . . . .. .. 95
Priority scheme for a tagged job of size k, wh&rec M < 2D. The higher
priority area is composed of typical higher priority jobgmesented as the
thick diagonal lines and atypical jobs are in the rest of theeded area that

represent the atypicaljobs. . . . .. .. .. .. ... ... .. ..., 110

XiX



Chapter 1

Introduction

1.1 Summary

With increasing demand and availability of bandwidth reses, there has been tremen-
dous growth in the scale and speed of computer system netwadnksuch a large scale
system, it is understood that various limited resourcest tneishared ficiently. Specif-
ically, scheduling is a key consideration fdfieient resource allocation. Thus, exploring
numerous ffects and applications of scheduling in large scale systsrasciucial step in
understanding the current Internet.

Models used to understand computer systems tends to capeiggroperties of
small to medium sized systems better than a large scalawsyBbension of these models
to large scale systems mostly entails approximations ossions of important characteris-
tics of large scale systems. Understanding schedulingrinamdel specifically tailored to
capture the properties of large scale systems is impongorteicisely understand how and
why scheduling policies behave as they do in current comsyttems.

In this dissertation, we consider the many sources regimiaganalysis and mod-
eling of scheduling in web servers in a large scale systera.nidny sources regime models

web servers in large scale systems well in that the regintegysrthe increasing number of



sourcefflows evident in the Internet. In addition, to accommodatehhge amount tfac
due to the increased number of sources, most service previdéurn have increased the
capacity of their servers as well as their queue size. The/reamrce regime captures this
trend well by scaling the number of arrival flows along witle tbapacity and the queue
size. Thus, analysis of scheduling policies under the manyces regime provides a more
accurate understanding of scheduling in current day weakeser

Itis natural to expect that considering web servers in a&laggle system would lead
to increased complexity which would make analysis and mgeidf scheduling dtficult,
which has certainly been the reason behind the scarcityeohtfalysis of scheduling in
a many sources regime. However, we use the intuition thasdheple path behavior of a
large scale system can be characterized by a single “miai-trajectory”. In other words,
as the number of sources scales, minor fluctuations awaytfiermost-likely behavior of
scheduling can befiectively ignored and as a result the main characteristiaaaites of
behavior sfficiently describes and models scheduling. Based on sucttiontuwe study
the delay performance of scheduling policies in web seraecessed by a large number of
sources.

Considering the emphasis on QoS in computer systems, antampaelay perfor-
mance to consider is the tail probability of delay. In thisitaxt, we are interested in the
probability that the delay experienced by a user exceeds slorashold in a web server ac-
cessed by many sources. In particular, the decaying tretttegirobability (rate function)
of delay experienced by a typical job exceeding a threshBleh(plementary Cumulative
Distribution Function (CCDF) of delay) in a web server isided under the many sources
large deviations framewot§8, 10, 24]. Due to the complexity of large scale systemsy anl
few scheduling policies, such as First-In-First-Out (F)F@D], General-Processor-Sharing

(GPS) [26], and Priority Queueing policies [13, 38] haverbeealyzed under the many

1The many sources large deviations framework basicallgstitat the probability of rare event occurring
(CCDF of delay in our case) decays exponentially with a sjgeekponent (the rate function) as the system
becomes large (the many sources regime).



sources large deviations framework. This is due to the faat s the scale of the sys-
tem increases so does the number of activénts in the system (e.g., job arrivals), as
a consequence of which the possible ways in which a useriexpes delay exceeding a
threshold can occur becomes increasingly large, thus matkmore dtficult to understand
the behavior and develop design rules for scheduling dlgus.

As a step toward completing the picture for delay analysisabieduling policies,
we study schedulers with a single server and a single quetigeimany sources large
deviations regime. In this context, only the delay disthidu of FIFO [10], Shortest-Job-
First (SJF), and Longest-Job-First (L3fave been reported in literature. Numerous other
scheduling policies, such as schedulers that prioritibs pith respect to the remaining
processing time, and attained service of jobs, have escapysis due in large part to the
increased complexity in large scale systems.

In this dissertation, we study the Two-Dimensional-Quegei2DQ) framework
[48], a novel unifying queueing framework that allows thalgsis of delay experienced by
a user for various scheduling policies in the many sourage ldeviations regime. The 2DQ
framework is a collection virtual queues ordered in such ptivat accurately describes the
state of the system at all times. More importantly, the systé virtual queues allows
consistent and coherent separation of higher and lowerifgrareas and in some cases no
priority areas of virtual queues with respect to the job uradmsideration.

In conjunction with the 2DQ framework, we develop a new “eyichsed” technique
for understanding the large deviations tail probabilityradre complex policies. Such com-
plex scheduling policies possess priority schemes thatncarbe completely described
using a single 2DQ, i.e., 2DQ framework. We improve upon tb€Zramework to mul-
tiple 2DQs, i.e., multiple collection of virtual queues, vk each 2DQs are “active” in
well defined time intervals (cycles). The multiple 2DQs fitaies analysis by capturing

the additional prioritization in the more complex schedglpolicies.

2The delay distribution of SJF and LJF can be derived by a simpblication of the results on Priority
Queueing scheduling policy [13, 38].



We first analyze two interesting scheduling policies, ther&st-Remaining-Processing-
Time (SRPT) policy through the 2DQ framework and the PrageSéaring (PS) policy
using 2DQ framework in conjunction with the cycle based gsial SRPT is an interesting
policy since it is optimal in delay performance, i.e., SRBEhown to possess the smallest
mean delay compared to any work conserving schedulingypf8i¢]. On the other hand,
at the other end of the spectrum are scheduling policiesatteatair. In the literature, PS
has been regarded # fair policy in various metrics, i.e., fair distribution dfi¢ capacity
[22, 23], slowdown [42], etc. By understanding these two scheduling polidied exem-
plify scheduling policies that possess good mean delayactexistics and that are fair in
delay, we believe that a better grasp of other schedulinigipsican be achieved. In partic-
ular, we derive the asymptotic (asymptotic in the numberoofees) delay distributions of
both scheduling policies and study their behavior acrdssires.

Next, we address the following three problems in implenmenthe aforementioned

scheduling policies.

() SRPT services a single highest priority job until it idlyuserved and leaves the
system or until a job of even smaller remaining processimg thrrives to the system
whence it will be preempted. Thus the ideal SRPT model asstina¢ a job receives
the full capacity of the web-server during the duration sfsérvice. However, one
problem in implementing SRPT in practical systems is thaPBBoes not take into
consideration the bandwidth constraint at links. In otherds, SRPT guarantees full
bandwidth (BW) of the server to job requests with the smatiemaining processing
time until the request are fully accommodated or are preechpthis is unrealistic

when we consider servers of large BW.

(i) The SRPT policy assumes that the remaining processgimginformation is available
to the web-server. A web-server derives the remaining gsoog time information

by receiving the original size information at the time a jobves. However, in some

3Slowdown of a job is its delay divided by the size of that job.

4



cases the original size and hence the remaining processiegiriformation might
not be available to the web-server. For example, a requesivab page may entail

downloading or searching other web sites for files of unkneiza.

(i) SRPT is an idealistic policy which in many cases is maplemented directly [28, 33,
34]. In fact, many practical implementations are variahtg teflect implementation
constraints an@r to jointly optimize other metrics in addition to delaye.l. jitter,

fairness, etc.
In the dissertation, we address the above three questidhs following manner.

(i) We develop the finite-SRPT policy that takes into accdtetbandwidth constraint
at the end receiver, i.e., jobs are served at most a given firemlint at any time.
This reflects the practical BW constraint of the end users.awayze the delay of

finite-SRPT as the bandwidth constraint is varied.

(i) We study the Least-Attained-Service (LAS) policy whitcs viewed as a good sub-
stitute for SRPT when the remaining job size is not availgBk 33, 35, 36]. It has
been shown that the amount of service a job has received soefgiood indication of
its remaining processing time when the jobs size distrupossesses a decreasing
failure rate. Well known heavy tail jobs size distributidrat is known to accurately
describe the actual job size distribution in today’s corepglystems have a decreas-
ing failure rate. In addition to understanding the delayfgrenance of LAS across
job sizes, we analyze the penalty associated with not ubimgemaining size infor-

mation directly.

(ii) Instead of analyzing variants of SRPT on a case-byedaasis, we study a class of
scheduling policies, SMART [43], that are biased towardIfmb size or remain-
ing size. This class contains many variants of SRPT witiecent fairness properties.
Our analysis shows that all policies in the class have thedaifprobability of delay

across job size in the many sources large deviation regime.
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The results of this dissertation facilitates the undeditam of various scheduling
policies under the many sources large deviations regimenalyzang the asymptotic delay
distribution of previously unexplored policies. The digaton presents novel methods of
gueueing analysis based on the 2DQ framework and the cyoleepbwhich have allowed
analysis of scheduling policies described in this disserizand will facilitate understand-

ing of other policies in the future.

1.2 Main Contributions

(1) We study the 2DQ framework [48] along with the cycle baagédlysis to provide a
unifying analytical framework that allows the analysis afious scheduling policies
in the many sources large deviations regime previously ndéetstood due to the dif-
ficulties brought on by the increased complexity. The predamethods of analysis
demonstrate that most scheduling policies can be vieweHdrcontext of a com-
plex but tractable priority queueing system. This enalflesstudy of a large class of

scheduling policies by applying the large deviations rissiar priority queues.

(2) In this dissertation, the asymptotic delay distribntmf scheduling policies that ex-
hibit superior mean delay by favoring small jobs, such as BGRBJF, and LAS, are
analyzed in the many sources large deviations regime. litiadthe delay rate
functions of all scheduling policies in SMART are shown to dmuivalent and is
derived. The scheduling policies are compared with eachrdth understand the

benefits and tradéls associated with each scheduling policy.

(3) The finite-SRPT policy is proposed to take into accouatghssible bandwidth con-
straints at the end receivers. We analyze the rate funcfifinite-SRPT across job
sizes and for varying bandwidth constraint. The resultsvsiiat finite-SRPT shifts
between SRPT and a PS-like policy as the bandwidth consisadjusted. Thus,

the proposed finite-SRPT can be used as a policy to balanfmgmpeance and fairness



by simply adjusting the maximum amount a job can be servedyatiae.

(4) The asymptotic delay distribution in the many sourcegdadeviations regime for
Processor—Sharing (in the discrete time framework), a Wwewn fair scheduling

policy, is derived.

1.3 Organization

The organization of the dissertation is as follows. The dagstem model used through-
out this dissertation along with the many sources largeadievis regime is explained in
Chapter 2. Chapter 2 also briefly introduces many of the sdimefpolicies mentioned
in the dissertation. In Chapter 3, the asymptotic delaypaibabilities across job size are
investigated for the SRPT scheduling policy. Then from Géia$ to Chapter 6, we address
the practical implementation constraints of the SRPT pgolic particular, the delay decay
rate of SMART that includes SRPT and its variants is derive@€hapter 4 and the LAS
policy which is has been shown to be good substitute for SRR&wvthe remaining pro-
cessing time information is not available is studied in Gaap. In Chapter 6, we introduce
the finite-SRPT scheduling policy that takes into accouatgbssible end user bandwidth
constraint and investigates its delay characteristichk@sanstraint is varied. Then we in-
vestigate the well known fair scheduling policy, PS, in theny sources large deviations
regime in Chapter 7. Lastly, we conclude in Chapter 8 withrareary of the dissertation

and present interesting problems for the future.



Chapter 2

The Basic System Model

Scheduling has found diverse applications in the area mgnigom manufacturing, com-
puter systems to flight scheduling and call centers. Depgndn the scheduling policy
used the performance of the system is greafiigcied. Due to its diverse application and
its importance, scheduling has been analyzed through anamge of models and perfor-
mance metrics. Models range from a simple single servepsetere the jobs arrivals and
departures are independent, to more complex models wHesdave preferences at which
time and at which server it is served. The performance mefiiier consideration can range
from delay, queue size to guaranteed service time and wasstloehavior.

Due in part to the wide range in models and metrics, two aitalyapproaches have
received much attention for understanding schedulingst iSrthe deterministic approach
where the worst case behavior of a scheduling policies i©on€ern. In general, the de-
terministic approach assumes finite number of job arrivatsrakes no assumption on the
job size or the arrival sequence. On the other hand, the pii@ie approach is more con-
cerned about the distribution (cdf or pdf) of the metric unclensideration. The approach
makes probabilistic assumptions on the arrival, serviakjab size to derive the average,
variance and in some cases the distribution of the metrintefest.

In this dissertation, we take the probabilistic approaclamalyzing the delay of
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Figure 2.1: lllustration of many sources framework. In thenysources large deviations
framework, we consider the probability of large deviatifmosn the mean when the system
is accessed by a large number of sources and is served byeawéftvcapacity that increase
in proportion.

scheduling policies. We use this approach since we are mweested in what a “typical”
job in a system will experience rather than what would hagpdghe worst possible case.
In the rest of the chapter, we describe the system setup bhemabhout the dissertation in
Section 2.1. Then, we go into detail the analytical apprdakén and the performance met-
ric under consideration in Section 2.2. Lastly, we give atintroduction to the scheduling

policies analyzed and mentioned in this dissertation iniGe@.3.

2.1 The System Setup

We consider a queueing system with a single queue and a siagter having stationary
and ergodic arrival and service processes, where the laanidaservice processes are inde-
pendent of each other. The system operates in discreteitena,batch of jobs arrive at the
beginning of each time slot and jobs are serviced at the emadai time slot. The queue
state is measured immediately after the service and justéddfie arrivals of the next time

slot.



In the many sources regime, the number of arrival processssaled along with
the capacity of the system and theffien size as depicted in Figure 2.1. We denoteithe
arrival process a8, where 1< i < N. We assume that the possible sizes of the jobs are
restricted to bounded multiples of a unit size. Thus, weesgnt the set of possible job
sizes aM = {1,2,3,..., M}. The assumption that the service distribution is bounded is
natural given the numerous recent studies that have oluséraefile sizes at web servers
typically follow a bounded, highly variable distributionze [3,11]. Formally, for each
job sizek € M, we assumeN independent, identically distributed processes. We @enot
AN(a, b) as the total number of arrivals by &l arrival processes in the time-interval b),
wherea < b'. For example AN(0, 0) signifies the total number of arrivals in time slot
0. Additionally, we define«"}'(a, b) as the total number of jobs of sizethat arrive in
the queue during time-intervad,(b). Thus, the volume of sizk arrivals iskA':'(a, b), and
AN(a,b) = ¥¢'; A¥(a, b). We assume independence between arrival processeSeredt
sized jobs, i.e.AiN(a, b) is independent oA?‘(a, b) for i # j. Note that job arrivals from a
single stream of any given size can be correlated acrossdiohe

As depicted in Figure 2.1, we assume that the capacity ofahaegC, is scaled in
proportion to the number of arrival processes, and at mMi&data can be service at any
time slot. We assume that the server is work-conserving laaidthe system is stable, i.e.

E| %M, iAN(0,0)] < NC. Based on these basic setup and assumptions we are interested
the asymptotic (asymptotic in the number of sources) dekyiloution in the many sources

large deviations regime.

2.2 Many-Sources Large—Deviations Regime

Our goal in this dissertation is to study the tail probapilif delay in the many sources
regime, i.e., probability of large deviations under theuagstion that the number of sources

is large. The study of large deviations in a queueing systedeiuan asymptotic regime is

1The notation 4, b) refers to time slot¢a, a + 1,.. ., b}.



Notation | Description

M Set of possible job sizes.
M Largest job size.
N The scaling factor that represents the number of arrivalgeses

and the multiplicative factor of the capacity andieu size.
AN(a,b) | Total number of arrivals from aN arrival processes in the
interval @, b).

Al':'(a, b) | Total number of siz& arrivals from allN arrival processes in
the interval & b).

C The unscaled capacity of the server.
WM (k) | Actual delay experienced by a sikgob in the many sources regime.
Iw(K) Actual delay rate function of sizejob
VN (k) Virtual delay experienced by a sikgob in the many sources regime.
lv(K) Virtual delay rate function of sizk job

Table 2.1: Notations frequently used in the dissertation.

mainly divided into thdarge byfer large deviations and thmany sourcetarge deviations.
The large bfer large deviations is concerned with the tail behavior ddyér(W(k) > m)

for large m (whereW(k) denotes the delay experience by a dizieb). While the large
buffer framework has provided many insights about the behavitheotail of W(k), this

type of analysis leaves several questions unanswered. iMpsttantly, the large kiter

framework only studies thextreme tailbehavior ofW(k), i.e. Pr(W(k) > m) asm — oo,

rather than the fultlistribution of W(k).

In this dissertation, we take aftkrent approach and analy¥é(k) in the many
sourceslarge deviations regime. To reflect the large number of ssumonsidered, we
denoteW®) (k) as the delay experienced by a sigeb in the many sources regime. While
the large bifer large deviations studies the overflow probability of gkirgqueue and single
arrival process as the fiar size goes to infinity, the many sources large deviatioaksc
the service capacity with the number of arrivals (see FiQui¢. Thus, the many sources
regime has the advantage that it allows us to stadyV(N) (k) > m) for all m, rather than
requiring thatm be large. That is, it allows us to obtain information abowt distribution

of WN)(k), rather than just the tail. Another advantage of the manycas regime is that
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scaling the number of sources (arrivals) seems approgoastudying scheduling in web
applications given the high level of statistical multiglex among multiple user requests,
while scaling the delay threshold seems less appropriate given the finiteness of delay in
web applications.

Formally, W(N)(k), is the delay experienced by the last job with dide an arrival
burst to a stationary system. The tail probability of deRgyVN) (k) > m), is the probability
that the last job of siz&in the burst arriving at time sldtdoes not leave the system by the
end of time slotl + m. It has been shown that, in the large deviation framewor,t#il
probability of delay of various scheduling policies suchFdEO, Generalized Processor

Sharing (GPS), and Priority Queueing decays as
Prov®™ (k) > m) = g (k, mye Nwlem,

under general conditions, where M —% loggN(k, m) = 0. In other words, the most
dominant trend of the tail probability is the exponentiatael(k, m), which is appropri-

ately called thelecay rate Thus, the decay rate of delay is defined as
Iw(k,m) = hIllm N log Priv™ (k) > m). (2.1)

In this dissertation, we show that such decay rates for thediding policies under
consideration do exist and derive their precise form. Nb&t the delay distribution for a
job of sizek depends on the capaci@ the threshold valum, the job sizek, and the arrival
processesﬁ{z‘(a, b) Yk € M. In particular, the contribution of the arrival processhe telay
decay rate of scheduling policies is expressed throughdlei decay rate, which has been

well analyzed in the literature, i.e.,
|@b) ; 1 N
A X = I\Ilmo N log Pr(A.'(a, b) > NX). (2.2)

Though our goal is to study the decay rate of delay, the dadegvation is dificult,
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so we first consider the distribution of thetual delay Thevirtual delay, V(N (k), is the
delay seen by a fictitious (virtual) job that arriveSat queue for sizé jobs, at the end of

an arrival burst at = 0 (given that the system startedtat —co). The even{V™(k) > m|
corresponds to a fictitious job arriving at the end of an afdourst during time slot 0 and
not departing the system until tineth time slot. Note that this setup ensures that the system
is stationary at the arrival of the virtual job. To avoid casibn, we will refer to the delay
WM (k) as theactual delayin order to distinguish it from theirtual delay AN (k). Observe
that the virtual delay is dierent from actual delay: for example, even when there is no
arrival the virtual delay can be measured, whereas the lagélay is not defined. The

decay rate of the virtual delay is defined as
. 1 (N)
vk, m) = |\|1|m ——log Priv*™ (k) > m). (2.3)

In the our proofs, it will be necessary to have a more genafahition of the decay

rate than we have defined so far. Thus, for any sequence cévargsH"N, we define
I(H) = lim —=log Pr(HV)
Noco N ’

as the decay rate of a general sequence of ew¢Nta’hose probability becomes increas-

ingly small as the system scales.

2.3 Brief Overview of Scheduling Policies

Since the main focus of this dissertation is to understaeddiiects diferent scheduling
policies have on the delay distribution, a short overviewhef various scheduling policies
are given in Table 2.2. By no means complete, we provide Talles an reference point
for abbreviated names of the scheduling policies. The temginal size, remaining size,
and attained service of a job is used throughout this dessent to signify the following

information of a job that are used by the scheduling polidye driginal size of a job is the
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S chedulingPolicy| Description

FCFS First—-Come-—First—Serve serves jobs that have arrives first
Also known as First—In—First—Out (FIFO)

PRI Priority queueing system with multiple queues where jobsnoéller
original size reside in queue with higher priority.

SJF Shortest—Job—First serves jobs of smaller original sisé fir

PSJF Preemptive—Shortest—Job—First preemptively servesgbbshaller
original size first.

SRPT Shortest—Remaining—Processing—Time preemptively s¢ois
with smaller remaining size first.

LAS Least—Attained—Serves preemptively serves jobs with E#sned
service first.

PS Processor—Sharing serves all jobs the same rate.

RS RS preemptively serves jobs with the least product of reimgin
processing time and original size

Table 2.2: Overview of scheduling policies.

processing time required for a job to leave the system wharriites to the system. The
remaining size of a job is the remaining processing timeftefthe job to leave the system.
The attained service of a job is the amount of processing tivaiehas been served so far.

Note that the table contains policies that aom-preemptiveand ones that angre-
emptive where the scheduling policies are non—preemptive unkassdsotherwise. Pre-
emptive policies allow a job to be suspended during servibenna higher priority job
arrives to the system, while a non-preemptive policy guaesithat a job will be fully
served when it begins service.

We make the following assumptions on the scheduling pdligigder consideration
in this dissertation. All scheduling policies amdrk-conservingvhich means that as long
as there are jobs in the system the server serves jobs withllitapacity. In addition, we
assume that there is no cost or penalty in being preemptethahd job resumes service

starting from where it has leftfH
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Chapter 3

SRPT

3.1 Background and Related Work

With web service becoming increasingly popular, today'vswservers handle loads that
could range from hundreds to thousands of simultaneousections. These jobs are served
by a web server by means of a scheduler, which “prioritizég’requests. Many filerent
scheduling policies have been proposed in the literatuderaplemented in practice. Itis
well known that Shortest-Remaining-Processing-Time (BR®hich gives higher priority
to jobs with a smaller remaining processing timexhibits the minimum mean delay among
all policies. Despite this advantage, most of the existoigedulers opt for simpler policies
such as First-Come-First-Serve (FCFS), or fairness @tksatheduling policies where the
resources are equally shared among all connections. The neeson behind the lack of
attention to SRPT is that, it has been believed that in thege® of optimizing the mean
delay, fairness among jobs offidirent sizes might ster, i.e., “starvation” of larger jobs
[39]. More specifically, it is believed that larger file regtewill “starve” under the SRPT
scheduling policy [39, 40]. Intuitively this seems obvicddy giving priority to smaller

file requests, the delay experienced by larger file requestsnarease, thus leading to

IMore specifically, SRPT serves jobs with the smallest remgiprocessing time first and in the case of a
tie the jobs are served in FCFS manner.
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unfairness.

However, recent studies have shown that this intuition isnezessarily correct.
In [4], the authors show that under a heavy-tailed arrivatrifiution, the unfairness of
SRPT compared to a Processor-Sharing (PS) schedulingy pslguite small. Using an
M/G/1 queuing model and a heavy-tailed arrival distributiorg &#uthors have shown that
regardless of the load, at most only 1% of jobs have a largeea®d delay under SRPT
than under PS. Further, the authors provide an upper bourtbwnmuch worse SRPT
can perform compared to PS in terms of expected delay. Metivhy these results, the
authors have implemented an SRPT scheduler for web set@sifhich has been shown
to dramatically reduce delay.

Thus, the SRPT scheduling policy is a promising alterndatvbe prevalent schedul-
ing policies. However, there are realistic concerns thatfsirness problem in SRPT may
deteriorate when the system is accessed by a large volumattaf.tin addition, the mean
delay metric is not enough to understand the characterisfi@ scheduling policy, espe-
cially when one is interested in the QoS of the system. Tdzedts full potential, the
analysis of the delay distribution for specific sized joba ilarge scale system is necessary
in order to characterize the behavior of this policy. Moredfically, we will be looking
at the probabilities of the delay exceeding some threstaltprobability), when the web
server is accessed by a large number of sources, using aderggions formulation.

Related works include [7] where SRPT is analyzed in the laigker regime, and
[19] where it has been shown that various scheduling palicieluding SRPT and PS have
the sameexpectedslowdowr? for asymptotically large sized jobs. However, there is no
work in the many sources large deviation regime which iseg&r understand web servers
or routers in large scale systems. Our work focuses on thg s@urces regime, and com-
pares the SRPT scheduler with a FCFS scheduler.

The main intuition behind the analysis of SRPT is the util@aof virtual queues

2Slowdown is defined as delay divided by the job size.
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and thelarge scale limit

(1) Virtual Queues: The scheduling policies in question possess only a sirfgyysipal
queue. Thus itis diicult to track the state change that a job goes through initirges
queue. However, scheduling policies distinguish jobs leyrttate information, e.g.,
time of arrival, original size, remaining size, and attalirservice, to decides which
job to service next. In essence, all scheduling policiegagsiority to jobs based on
their state and serve them in a specific order. We construydtara of virtual queues
which reflects this priority scheme of a specific schedulinticy. This construction
of virtual queues for analysis purpose enables the undhlisigh of the state changes
of the system at all times. The scheduling system is repnééed through this system
of virtual queues to derive the delay distribution in the snaaurces large deviation

framework.

(2) Large Scale Limit: We observe that in the many sources large deviations regime
only the main characteristics of the scheduling policy renas the scale increases.
In other words, the delay distribution of scheduling p@gin a large scale com-
puter network can be described by its first order behaviat,adlnother higher order

behaviors can be ignored.

3.2 Main Contributions and Intuition

In this section, we show that the rate function of delay folPSRs equivalent to that of a
priority queue that assigns higher priority to jobs with dereoriginal size. Let us denote
PRI as a priority queueing system described below. FormaRPT and PRI are defined as

follows.

SRPT: In any time slot, jobs that have the smallest remaining msiog time are served

first. When there are multiple jobs that have the same snaflegining processing
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time, the job that arrived earlier to the queue is selectebetserved. The job in
service receives service until either it is fully served ewrjobs with even smaller
remaining processing time arrive to the system at the ne §lot. In the latter case,
the job becomes preempted and waits until all jobs that hegleeh priority (smaller

remaining processing time) leave the system.

PRI: PRI is a non-preemptive priority queueing system, where jofidifferent sizes are
queued separately, and queues that are assigned to sriza@tbjabs have higher pri-
ority, while the queues assigned to larger sized jobs haverlpriority. For example,
the queue that corresponds to sizebs (henceforth referred to &%) has priority
[, whereQ; has the highest priority, an@y has the lowest priority. FCFS rule is
observed among jobs in the same queues, i.e., jobs of thedgimal size. PRI is
different from SRPT in that the job in service does not get preednphen new jobs
arrive to the system in the next time slot. Thus a job in sergiantinues to receive

service until it leaves the system.

We prove that the rate function of the SRPT scheduler is beditg the rate func-
tions of the priority queueing schedulers, and use resultprimrity queues from [38] to

complete the proof. First, we make the following two assuomst on the arrival processes.

Assumption 3.2.1.3 Fix any e > 0, such that FAN(0,0)] < N(C - ¢), and consider the

event

k-1
HS = [ ANCT.m) + AN-T.0)> N(C - (T +m+ 1))
i=1

We define T = argTingl (H$). The existence of Tresults from the stability condition
>

and we assume that it is unique. Furthermore, we assl(i¢) satisfies the following

3This assumption can be shown to be satisfied by sources withdeal rates [24], i.e., arrival processes for
which the total number of arrivals per slot is bounded.

18



condition

€

- 1(HT)
Iern_LQf og T =w>0. (3.2)

More specificallyH§ is the following event: The event that the sum of all arrivals
with job size< k during the time interval{T,0) and the arrivals due to jobs with size
< (k—1) over the interval (Im), exceeds the service capacityMiC — ¢€). Large deviations
theory roughly states that the probability of occurrence oére event is dominated (in a
large-scale system) by a single “critical” event. It is sihaw Theorem 3.2.1 that the event
H$ is the “critical” event offViN) (k) > m}. Equation (3.1) can be shown to be satisfied by
sources with bounded rates [24], i.e., arrival processestiah the total number of arrivals

per slot is bounded.

Assumption 3.2.2. (“Burstiness” condition) Define

A =(..,AN-T,0)...,AN(-1,0), AN(0,0)). ThenA; satisfies
(AIAN(0,0) = 0) <5t (AIAN(0,0) > 0), (3.2)

where<g denotes stochastic ordering.

This “burstiness” condition is used in essence to bridgeghap between the derived
virtual delay rate function of SRPT and the actual delay fatetion. We show that from
the results in [38] and Assumption 3.2.2, the virtual andialctielay asymptotes are the
same. The above assumption heuristically corresponds boiratiness” condition on the
arrival process, see [38]. Many types of sources satisg/abndition, including any ON-
OFF Markov sources.

Based on the two assumptions described above, the delajurattton of SRPT
sizek (for anyk € {1,..., M}) jobs has been derived as in Theorem 3.2.1 [46] under As-
sumption 3.2.1 and Assumption 3.2.2 .
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Theorem 3.2.1.Fix anye > 0. Then, for any le {1,..., M} we have
13 (m) < I\(_/k)(m) <1 (m),

where we denote b;é‘](m), the delay rate function of size k jobs under SRPT with total
capacity NC. Similarly,\(j?(m) denotes the delay rate function of size k jobs under SJF, and

with total capacity M.

Proof. Intuition (technical proof in Appendix A.1)¥e make the observation that the oper-
ation of SRPT is equivalent to that of PRI described abovenlitlt switching of partially
served jobs during time slots. The SRPT scheduler granssyath less remaining service
time higher priority compared to jobs with larger remaingggvice time. Jobs that have not
been completely serviced (partially served) in a time-glifitreceive higher priority in the
next time-slot depending on their remaining service timeusl, the SRPT scheduler can be
modeled as a priority queueing system, where the queuesoaessigned by the job size
but the residual job size (remaining service time of a joother way to interpret SRPT
is to look at SRPT as being equivalent to the priority quegisiystem based on job sizes,
but with partially served jobs changing priority levels hetend of a time-slot (moving
to a corresponding higher priority queue). Note that an irgm diference between the
original priority queueing system and the SRPT scheduléras in the priority queueing
scheduler a partially served job continues to remain in éimeesqueue that it was originally
in, and its priority leveldoes not changim the next time-slots.

Next, we show that the number of preempted jobs in SRPT issmiall compared
to jobs that do not get preempted. The intuition for this ie do the observation that
at most only a single job can be preempted in any time slotredsea large number of
new jobs arrive in each time slot. As a result, the number ofiglly served jobs that
change priority levels is negligible, i.e., the number digahat are served with respect
to remaining processing timeftgrent from their original size is negligible. Thus, we can

conclude that the delay rate function of SRPT is equivalettidt of PRI in the many source
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large deviations regime. This result on the virtual delayloa extended to the case of actual

delay under Assumption 3.2.2 as shown in [46]. ]

Using the delay rate function result of SRPT, we investighteperformance and
fairness of SRPT in the large scale regime by comparing ttey date functions of SRPT
and FCFS (a scheduling policy that does not distinguish @ildifferent size). A FCFS
gueueing system consists of a single server and a singlegaed jobs are processed in the
order they arrived. The comparison of the delay rate fundsoderived in Theorem 3.2.2

[46] under Assumption 3.2.3.

Assumption 3.2.3.4 We assume the following on the marginal probabilities ofivaa
Ax(0,0), for all k € M

0 with probability p(k)
A«(0,0) =
k  with probability q(k)= 1-p(k),

where dk) satisfies: for any; < 1 there exists constants,A 1, and K, > 1 such that for

allk > K,

qke = A,.

Assumption 3.2.3 states that the marginal probability efdrival for large sized
jobsdoes notdecay exponentially in job size, i.e., it decays more slahign exponential.
Note that this assumption does not place restrictions otirtieecorrelations.

Arrival processes that have this property include arrivacpsses with a truncated

heavy tailed job size distributidn\We note that, Assumption 3.2.3 holds not only for trun-

4Assumption 3.2.3 holds for all arrival processes whilchnot have an exponential taifs special cases,
heavy tailed arrivals as well as truncated heavy tailediligion possess this property

5It has been observed that job sizes on web servers typicdlonf a heavy-tailed distribution with an ap-
propriate max job size (i.e. truncation). This property istef common in web workloads; the heavy tailed
property is seen in the distribution of job size requestedlignts, the length of network connections, and jobs
stored on servers 3,11, 12]. By heavy tailed distributisa,mean that the tail of the distribution function de-
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cated heavy-tailed arrivals, but for all arrival processgsch do not have an exponential
tail (heavy-tailed arrivals are just a special case for whichagsimption holds).

Under Assumption 3.2.3 on the marginal probabilities of &ngval process, the
upper bound on the flerence of the delay rate function for sizgpbs in SRPT and FIFO
is derived. We denotk;(m) as the delay decay rate of jobs in FIFO. We comment that the
delay rate function for FIFO is invariant with respect to gibe. In other words, the virtual

delay seen by size 1 jobs is the same as any other.

Theorem 3.2.2. An upper bound of the glierence between the rate function of size k jobs

for SRPT and FCFS is as follows. For a@y y < 1, there exists & (m) such that
1)~ 1g(m) = ) vk = R(m)
v v Ky = :

Proof. The technical proof is provided in Appendix A.2. m|

The above result implies thtte djference of the delay rate functions for size k jobs
under SRPT and FIFO decays at least as fast §&/K) for k large Thus, even though
the job size is increasing, the delay performance of SRPToagpes that of FIFO in the
many sources regime. This result shows that the unfairfeS®BT (compared to FIFO)
becomes increasingly small for increasingly large jobs.ti@nother hand, fosize 1 jobs
the diference of the delay rate functions remains constant. Thisesto the fact that the
delay distributions under SRPTirs/ariant with k i.e., larger jobs do not influence the delay
of smaller jobs under SRPT scheduling. However for FIFOgday distributions for even
size 1 jobgdecays a@(ﬁ) for M large. Thus, these results indicate that SRPT is a good
policy to implement for web-servers, where empirical ewicke suggests a large variability
in job sizes [2], since the unfairness of larger jobs is sm@thpared to the benefits gained

for the smaller jobs.

cays with a power law with exponent less than 2. That is, ihaom variableX has a heavy-tailed distribution,
then PrK > x) ~ x® for 0 < a < 2. We can see that for heavy-tailed arrival processes, thaklprobability

of large sized jobs decays only polynomially (slower thagtanential, i.e., Assumption 3.2.3 is satisfied for
n > 0).
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Figure 3.1: lllustration of the delay decay rate of size 1 &h¢bbs for SRPT compared
with FIFO. The decay rate of size 1 jobs for SRPT is actualiyite since the setup ensures
that all size 1 jobs are served as soon as they arrive. It igteéepas a horizontal line for
viewing purpose. Note that the decay rate of ik@bs for SRPT approaches that of FIFO
as theM increases while the fierence for size 1 jobs remains large (actually grows for
large M).

3.3 Numerical Analysis

In this section, we compare the delay rate functions of SRRITFAFO numerically. We
consider a system where the arrival process is assumed tonij@sed of two independent
ON-OFF processes which are one of two types: size 1 jobseanith probability p, and
size M jobs arrive with probabilityp/M. The numerical values of the delay rate functions
are calculated fo€C = 0.9,p = 0.4, m = 2 using the closed form expressions derived
in this dissertation. The result comparing size 1 and Biziebs is depicted in Figure 3.1.
Figure 3.1 shows that theftiérence of the delay rate function of silzkjobs between SRPT

and FIFO becomes smaller Bbsincreases. We conclude that even in the extreme scenario,
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the dfect of increased delay for larger jobs in SRPT compared t@FIEcomes smaller in
the asymptotic sense. In comparison, the rate functionifer sjobs of SRPT is superior
of that of FIFO by at least factor of 100. As shown in Figure &itl Theorem 3.2.2, the
difference in the delay rate function for larger jobs betweenTS&® FIFO indicates that
the delay rate function of SRPT approaches that of FIFO foeimsingly large jobs while
the delay performance of SRPT for smaller jobs remains m@tteibthan FIFO. It has
been shown that web server requests exhibit heavy-tailddladistribution [2]. The two
classes tréic model that we studied approximates such a heaiydtaehavior for largeM.
Thus, the results indicate that SRPT is a promising schaglgiolicy which can be readily

employed in web-servers.
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Chapter 4

SMART

4.1 Background and Related Work

In the previous chapter, we considered SRPT. In this chapteconsider a class of SRPT-
like policies called SMART [43], which performs well for a mbination of metrics such
as mean delay, mean slowdolyand fairness [17, 28, 33, 34]. SMART contains SRPT and
many of its variants whereby the analysis of SMART allowsuhéderstanding of many of
the practical implementations of SRPT.

SMART was introduced by Wierman and Harchol-Balter in [48Has formally
defined as follows. Denote jobs usilagb, andc where joba has original sizes, and
remaining size,. SMART is defined to be the class of scheduling policies tieyahe

following properties.

(1) Bias Property: Ifr, > s, then job a has priority over job b.

(2) Consistency Property: If job a ever receives service while job b is in the system,

thereafter job a has priority over job b.

(3) Transitivity Property: If an arriving job b preempts job c; thereafter, until job c

1Slowdown of a job is the delay divided by the job size.
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receives service, every arrival, a, with size<ss, is given priority over job c.

The Bias Property guarantees that scheduling policies iABMfavor “small” jobs
by guaranteeing that the job receiving service has a snraleaining size than the original
size of all jobs in the system. This ensures that the serdénetiservice a new arrival with
greater size than an existing one. As observed in [43], tlds Broperty is the key property
that allows SMART do the “smart” thing.

The Consistency and Transitivity Properties essentialguee the “coherency” of
the priority scheme dictated by the Bias Property. In paldic the two properties are
concerned on the priority scheme after jobs have receivabpservice. The Consistency
Property &ectively prevents time-sharing by enforcing the rule thateoa job receives
service other jobs already in the system do not receive @eruitil the former job leaves
the system. In other words, if jo is given priority over jobb, then jobb will never
served before jola. The Transitivity Property ensures that SMART do not secguess
the decision they have made. For example, if it is decidetjolhbea is smaller (have higher
priority) than jobb, new arrivals that are smaller than jalare considered smaller than job
b.

As shown in [43], SMART contains many important “smart” pa#is such as SRPT,
PSJF, and a wide array of hybrid policies with more compéidairioritization schemes. In
particular, an interesting scheduling policy called RSqgylwhich assigns higher prior-
ity to jobs with smaller product of its remaining size andatiginal size, is included in
SMART. The RS policy is interesting in that the policy oufipems SRPT if when we
consider weighted mean delay measures such as the mearoalow@&MART actually
includes many generalization of these policies. In paldicit has been shown in [43] that
scheduling policies that grants priority based on a fixedrjtyi function p(s, r) such that
for s < sy andry < rp, p(s1,r1) < p(sp, rp) are contained in SMART. An example of such
a policy is a policy that hap(s,r) = sri for all i > 0 andj > 0.

SMART is important due to the fact that the class includesdewange of policies
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that perform well for a combination of metrics such as medaylenean slowdown, and de-
lay tail probability. For these combinations of metrics ¢ipimal policy is not SRPT, rather
the optimal scheduling policy depends on the specific job digtribution. The importance
of SMART lies in the fact that many of the optimal schedulingligies with respect to
mixed metrics are included in it, since no single policy in SRT is optimal across appli-
cations. In addition, SMART contains time-varying pol&igo it contains policies that can
optimize performance online in the face of time varying parfance metric, system-state
information, and randomization.

Despite its breadth, many “smart” policies are excludedf®®MART, e.g. LAS,
and Shortest-Job-First (SJF). However, the exclusion df gwlicies is due to the goal in
defining a class of policies that are near optimal in terms eamndelay across all service
distributions and all loads. For example, SJF exhibitsteably large mean delay when the
second moment of the service distribution is large, and L&Bé& worst policy when the
job size distribution is of increasing failure rate. One ivattion for working with SMART
is to illustrate the wide range of policies that behave liIRPS with respect to mean delay.

Recent studies of policies that prioritize small job sizestsas SRPT and SMART,
have focused on the delay experienced by a job of lsi2&/(k). The interest inW(k) is
spurred by the desire to understand how the prioritizatibsneall job sizes fiects the
behavior ofW(k) across jobs sizes. In particular, there are worries alhmutelay experi-
enced by largé, which the scheduling policies are biased against. Mu@mnatin has been
given to understanding&[W(K)], the mean delay experienced by a job of dizecrossk
[1, 4,32, 33, 41]; however far less is understood aboutisiibution of W(K) in large scale
systems.

The dfficulty in direct analysis of the distribution 0 (k) has led researchers to
study asymptotic scalings of the distribution. The manyreesilarge deviations is one such
asymptotic approximation of the distribution suitabledioderstanding large scale systems.

In this chapter, we analyze the delay distribution of SMARattcontains scheduling poli-
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cies that biased toward jobs of small original size/andemaining processing time.

4.2 Two Dimensional Queueing Framework

In order to analyze SMART in the many sources regime, we stbdywo dimensional
queueing2DQ) framework [48]. The basic 2DQ framework is a collentad virtual queues
as depicted in Figure 4.1(a), which in essence allows usdlodba scheduling policy as a
complex but tractable time varying priority queueing sgsteNote that the idea of virtual
queues used in Chapter 3 is extended to an array of virtualegui@ the 2DQ framework.
The 2DQ framework is based on the idea of suitable and cohareangement of multiple
virtual queuedo represent the state of the system.

The state of the system is adequately represented by a fimitder of virtual
gqueuesi.e., the virtual queues are defined and arranged in suchyaha& it represents
the state of the system at all times. The collection of virqueeues contain jobs of certain
state so that the collection completely describes the sfdtee system at all times, where
an individual virtual queue contains jobs of a certain staitee fact that the state of the sys-
tem can be represented by the two dimensional collectioririnfal queues (2DQ) is made
possible by the fact that the number of all relevant job stadiscrete This is due to the
following two assumptions made in Chapter 2. First, the jabssare restricted to multiples
of a unit size. Second, the server serves jobs in discretelaisioMore importantly, the
2DQ framework allows the delay analysis of SMART by proviglencoherent and tractable
portrayal of the system state changes as the jobs recewieessbased on the following two
conceptsfinitenessandordering

First, byfinitenessthe number of virtual queues in 2DQ required to fully repres
the state of the system is finite, which makes the analysisrauapler. We have assumed
that the server services the jobsdiscreteamounts and that the set of possible job sizes is
M =1{1,23,....,M}. The important consequence is that at any time slot, thakaisbn

of all relevant states of any job in SMART (original size ardhaining size) isliscreteand

28



1 original M
size

<

azis
Buiurewal

O——mv

(@) The basic Two Dimensional (b) Two Dimensional Queue for
Queueing (2DQ) Framework. SMART.

Figure 4.1: lllustration of the Two Dimensional Queueind®(@) Framework. The left
figure depicts the basic form of the 2DQ framework which isdedly a collection of virtual
queues arranged in a grid to reflect the state of the syster.right figure depicts the
2DQ representation for SMART where the X-axis is the origsiae and the Y-axis is the
remaining processing time of a job.

finite. This results in a more tractable description of the queaie st

The second important concept of the 2DQ framewodrdering Many scheduling
policies specify a scheme of ordering (prioritization),which the server considers some
jobs more important than others and serves those first. Fampgbe, FCFS orders jobs
by their time of arrival, SRPT by the remaining size (i.emegning service requirement),
and LAS by their age (i.e., attained service). We make thervbsion that all jobs in the
system must be totally ordered by the specific schedulingypadin other words, the con-
cept of ordering should be taken one step further by assigmifurther ordering schemes
beyond the previously existing one to specify a total ordgir the lack of it. The two
dimensional queueing framework is a collection of virtuaéges that portray this ordering
of a scheduling policy in such a manner that the two dimemdigneue separates high,
low and no priority set of virtual queues in a coherent andsistent mannerfFor exam-
ple, SRPT does not specify any rule for jobs with the same ir@ntasize. To make the
operation of the policy more tractable, we introduce an taatil ordering to be used to

determine which of these jobs should be served first. Basdtismbservation, the 2DQ
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Figure 4.2: lllustrations of the two dimensional queueingnfework for SMART. Note

that since a job cannot have remaining size larger thanigeai size only the lower right

triangle of Figure 4.1 is of importance. The progression jafltabetween queues while in
the system is illustrated in (a). The priority structure &orincoming job is shown in (b)
and for a partially served job is shown in (c).

framework takes the concept of ordering inherent in thergseheduling policy one step
further by assigning a secondary ordering scheme to thedntg existing one. In other
words, jobs are serviced in the order specified by the schedpblicy, but when there are
multiple jobs with the same priority, the secondary ordgrsicheme is used to select the
next job to serve. For example, let us consider the ordefifignoaller job size first” as the
secondary ordering for FCFS. In this case, when multipls jive to the system at the
same time slot, smaller jobs are served before larger jofis.iniportance of the secondary
ordering is that it further constrains the policy, thus nmgkihe analysis more tractable. In
the case of SMART, the policy itself specify all the necegsadering required to embed it
into a two dimensional queueing framework and only the jiedis ordering of the virtual
queue is required. The two dimensional queueing framewarlSMART is depicted in

Figure 4.1(b).

30



4.3 Intuition

Note that SMART falls into the 2DQ framework very nicely agsim in Figure 4.2. A new
job arrives to the queues on the upper most strip, where thmak size and the remaining
size are equal. The job then progresses through the systenowing downward until the
remaining size becomes 0. We denoteQyy, i > ], the virtual queue that contains all the
jobs that have original sizeand remaining sizg. For example, a job of sizk arrives at
Qkk, and then moves througQu k-1, Qk-2, ---» Qk1, Qo as a unit service is received. It
is important to note that the properties of SMART dictates dheas of high, low, and no
priority with respect to the job in question as depicted igufe 4.2.

Let us now consider the behavior of a sk@b under a policy of SMART. Upon
arrival, the job resides iQk. By the Bias Property (LD), the following queues have higher

and lower priority compared tQyk:

=~

-1

M M
Qi,j, Lower Priority: U UQ‘J‘ (4.2)

i=k+1 j=k

k
Higher Priority: U

i=1j

Il
iy

This is illustrated in Figure 4.2(b). We denote the group ighkr priority queues
as areaA and lower priority queues as ar€a Note that, there is a third area where the
queues do not have any fixed priority order compare@ge. Jobs in this aredB, can be
serviced before or after the sikgob. Due to the priority scheme, area A must be empty
for the job inQyk to receive one unit of service. As depicted in Figure 4.2{d¢)en a job
in Qk receives service it moves down the vertical line in the twoehsional queue and
the respective priority areas change according to theiposf the queue in which the job
resides. For a partially serviced si@b to receive service, all queues in the corresponding
areaA, as depicted in Figure 4.2(c), must be empty. In both cases aicoming sizek
job and partially serviced sizejob, the relative priority of queues in ar@&is unknown.

However, the volume of jobs in ardacan be sfliciently bounded to provide tight upper
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and lower bounds to derive the probability of delay in the ynsources large deviations

regime of SMART.

4.4 Main Contributions

4.4.1 SMART for Large Deviations

SMART identifies a group of policies that are similar to SRPiT #SJF (policies biased
toward smaller jobs) with respect to theean delaymetric in the traditional model when
there is only a single flow and the capacity does not scaletiitlilow. A natural question

to ask in the context of the many sources large deviationsneeg the following. Is there

a class of scheduling policies that exhibit similar or idesltcharacteristics with respect to
thedelay distribution in the many sources large deviationsme} In this dissertation, we

observe that indeed such a class exists and we denote it aREUB, i.e., SMART for

Large-Deviations. We define SMART-LD as follows.

Definition 4.4.1. A scheduling policy satisfying the following property meje toSMART-
LD.

(i) Bias Property (LD): If rp > s, then job a has priority over job b.

Note that the Bias Property changed from a strict inequélijyto an equality %).
This change in the Bias Property guarantees the total mglevhich is one of the key
intuition behind the 2DQ framework. More specifically, theage guarantees that, among
jobs with equal original size, jobs with smaller remainiliwesare given higher priority, and
among jobs with equal remaining size, jobs with smalleringbsize are assigned higher
priority.

Further, note that the Consistency Property and the TraitsiProperty of the orig-
inal SMART are excluded in SMART-LD. We show that even withthe two properties

that enforce “coherency”, their contribution to the delastribution becomes insignificant
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when the scaling constaritl, scales to infinity. The exclusion of the Consistency Priyper
and the Transitivity Property in SMART-LD implies that SMAR.D contains all schedul-
ing policies in SMARTand more complicated policies for which the “coherency” of the
priority scheme is lost. In particular, this means that dcitiag policies that time share
the capacity an@r decide to change priority after a job has been served aheded in
SMART-LD. This is surprising in that SMART-LD includes SMARike policies that have
low level of coherency, where the priority between jobs change after they have been
served while possessing the same delay characteristioe many sources large deviations
regime.

The importance of SMART-LD lies in the fact that (i) it inhesiall the aspects
of SMART, i.e., inclusion of all scheduling policies thataclose to optimal in terms of
the mean delay, and (ii) it contains all policies that exhiténtical delay tail probability
characteristics in the many sources large deviations girhe latter is important because
(i) SMART-LD attempts to identify all scheduling policielsat behave the same in terms of
delay in the many sources regime to the mean delay optimalrsde¥e (ii) by deriving the
delay distribution of SMART-LD, the delay characteristfos many “smart” policies when
accessed by a large number of sources can be understood.

It is important to note that the proposed SMART-LD esselytimakes the interior
of areasA andC of the virtual queues also “no priority”. The main intuitiéthat since
the number of jobs in the interior of the 2DQ representats®e (Figure 4.2) are negligible
in the many sources large deviations regime the derivatidimeo delay rate function of
SMART-LD requires only a slight adjustment to that of SMARTiah is also the result of

this dissertation.

4.4.2 Analytical Result

The main contributions regarding SMART-LD is the derivatiof the delay rate function.

We make two assumptions for the analysis, one of which isdatewing.
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Assumption 4.4.1. We assume that the rate function corresponding to the driva=

> M A satisfies
1T (T +1+ 1) - v) < 15T (T + 1)), (4-2)

forve[v: =6,V + 6], v: > 0andé > 0 syficiently small.

Assumption 4.4.1 is equivalent to the decay rate being iddintuitively, a decay
rate with the property of additive functionals implies thia occurrence of a rare event in
the large deviation framework happens in a straight lineis Blssumption has been used
extensively in the large deviation literature [5, 14, 27rtRer, arrival processes that satisfy
Assumption 4.4.1 include many common processes such astidirgary and Markov de-
pendent processes. Additionally, if the arrival process Isevy type then the decay rate of
the arrival satisfies Equation (4.2).

The second assumption is similar to Assumption 3.2.2 buafoevent that corre-
sponds to the higher priority jobs in SMART. For brevity, wélwot go into detail on the
specifics of the assumption.

We prove that the delay rate function experienced by kipbs is the same under

all policies in SMART and derive the delay rate function of ARIT-LD as follows [48].

Theorem 4.4.1.Lete > 0. For any ke M, the decay rate of delay for a size k job under
any policy in SMART-LD i(k, m), satisfies

lve_ (K, m) < Igg(k, m) < Ty (k, m), (4.3)

where 1,,(k,m) is the virtual decay rate of delay under a priority queueirygtem, PRI,
with capacity M and is defined as

ok m) = o (44 + )| 4.
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where conditiorZ states tha@!‘zl izi = u(T + m+ 1). Further,

k-1
DK™ (@)

1
A = |,(§kT’O)(Zk)-

QI<k(z)

This theorem states that asymptotically (in the large dapaad large number of
flows regime) all policies in SMART-LD behave alike in terms of delay tadl@bility, in
that their delay decay rates are the same. In other worda, iy of original sizek and for

any fixed integem > 0, we have that the delay distribution fW(N)(k) is given by
P(V_V(N)(k) > m) — g(k, m Ne—NIW(k,m)’

wherelg(k, m) is the same for all policies in SMART-LDhus, the decay rate of any policy
in SMART-LD is the same as that of SRPT, which was derived iagér 3.

The decay rate in Equation (4.4) appears complicated, lag kdave intuition. It can
be shown that in the many sources asymptote, the decay éadie on the “most likely”
way that the arrival processes deviate from their meananrates in order to cause delay
exceedingm. Thus, the two infimums choose the most likely time sc@leand partition
of the overall arrival rate to job sizeg)(respectively. Then, inside the infimun®% (2
and?l, characterize the delay caused to a $izeb by jobs arriving over the time interval
(=T, m) with size< k and by jobs arriving over the time intervat T, 0) with sizek.

To illustrate this intuition, we now consider the speciateavhen jobs are one of
two sizes (1 oiM). For this special case, we can provide simplified expressighich relate
the delay distributions of jobs to the arrival process stias. As a baseline for comparison,
we compare with the delay distribution of FCFS [8].

For FCFS, it follows from the results in [8] that
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PravN (k) > m) o rpgoxpr(D(N)(T) > C(T + m+ 1)) (4.5)

for k = 1 andk = M and wherea « b means thaa andb have the same decay rate. Here
DN)(T) is the cumulative workload (including both size 1 and dizgobs) that arrives to

the server over the time-interval T, 0), i.e.,

DMN(T) = AN(=T,0) + MAY(-T,0).

Recall that the server capacity @G units per time-slot. The above expression of
Equation (4.5) states that the probability that a job of diz& M experiences a delay of
at leastm is the same as the probability thée cumulative arrival workload over a time
interval of T+1 slots exceeds the cumulative server capacity over a tireevaitof T+ m+1
slots, for some fixed value of. The maximizing value of in the right hand side (RHS)
of Equation (4.5) is sometimes referred to as the criticaktscale of the queue. Note that
the decay rates for size 1 aiMijobs are the same, since the onl§telience is their service
requirement which is negligible in the large deviation feamork.

Moving to SMART, it follows from Theorem 4.4.1 that

Priv™ (k) > m) o rp%xPrGEi((N)(T) > C(T + m+ 1)) (4.6)
>
where
AN(-T,0), k=1;
EI((N)(T) 1

AY(=T,m) + MAJ(-T,0), k=M.
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Note that for size 1 jobs, the above is the "best possible&ydelistribution that
can be achieved over the class of all work conserving palicidowever, in the case of
sizek jobs for each fixedr, E{;(T) > DMN(T), which immediately implies that the de-
lay of a job of original sizeM with SMART-LD stochastically dominates (i.e., is larger
in a distributional-sense) the corresponding delay witlF§CHowever, for heavy-tailed
arrivals, it can be shown that thisfidirence is small, of orded(1/M), by observing that
the decay rate of SMART-LD matches that of SRPT, which hags beepared to FCFS in
Chapter 3. This means that in the lalgeand M regime (i.e. large number of flows, and a
large diference in arriving job sizes), the delay experienced byeaMijpb is similar under
FCFS and SMART-LD, while size 1 jobs experience far lessydefader SMART-LD than
under FCFS.

Proof. Intuition(technical proof in Appendix A.3)Ve show that the delay rate function of
SMART-LD is again equivalent to the priority queue that girggher priority to jobs of
smaller original size, PRI. This is proven through the idekime scale limit similar to the
arguments given for SRPT. We show that since at most only @megn be preempted at
any time slot, preempted jobs are negligible compared to foat are not preempted. This
idea is applied to the 2DQ framework of SMART-LD. As shown igue 4.2, the virtual
gqueues are partitioned into areas of higher priority, lopréority, and no priority. The no
priority area,B, is made up of exclusively preempted jobs, thus the numbpgabsfcan be
at most finite and can befectively ignored in the large scale regini¢ & o). In a similar
manner, we can see that the interiors of high and low pri@igas are also sparse. This
leads to the conclusion that in the many sources large daviategime only the upper most
strips are of importance. Upon further inspection, the ugbep of the two dimensional

gqueue corresponds to PRI. O
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Figure 4.3: Plot of the rate of convergence of SRPT, PSJFR&htb the decay rate under
the uniform workload withM = 16, p = 0.8, andm = 4. The asymptotic decay rate is
shown as a dotted line. Note that only the decay rates of theraizes are shown because
only these can be estimated accurately in simulation sinleege delay for smaller job
sizes is a very low probability event &kgrows. Though not shown here, we found similar
convergence rates under other policies in SMART-LD.

4.5 Numerical Analysis

Though Theorem 4.4.1 provides the expression for the dedagydrates of SMART-LD in
the many sources regime, the complicated nature of thesmifas hide the behavior of the
decay rates. In this section, we will use simulations andemigal experiments to illustrate
how the decay ratéy(k, m), and thusPr(W(k) > m), is dfected by the variability of the
service distribution, the range of the service distribut{M), and the threshold valuenj.

In performing these studies we focus on three practicaltopres

(i) How does the delay distribution behave under a large,nottinfinite, number of

flows? That is, what is the rate of convergence to the decaylyaik, m)?
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Figure 4.4: Plot of the decay rate as a function of the thriesmaunder the power-law and
the high variability workload under SMART-LD with the maximm job sizeM = 16 and
p = 0.8. Each line in the figures corresponds to the decay rate alydelperienced by a
specific job sizek. The decay rate of FCFS is included as a benchmark. Noteitie s
decay rates of size 1 jobs are infinite, they are omitted.

(i) How does the decay rate for a job of siz@ary acros«k? That is, how much do large

job sizes sffer under policies that bias towards small job sizes?

In our experiments, we assume that jobs are of sizé4/4, M/2, 3M/4, or M, and
we vary M between 8 and 20. Each job size arrives according to arffgpracess, i.e. in
each discrete interval a sikgob arrives with probabilityp,. We assume that the capacity
of the system(, is 1.

We will consider three cases for the distribution of job sjzehich we refer to
asuniform, power-law andhigh variability. In the uniform case each job size is equally
likely. In the power-lawcase, the arrival probabilities follow the power-law dtstition
with exponent 2, i.e. a discrete and truncated countergaheoPareto distribution. Note
that due to the small spread of job sizes, this distributeonadt highly variable; thus, to
study the impact of variability, we also consider a disttitn where the largest jobs make
up half the load (as has been observed in web job sizes). ticydar, thehigh variability

workload has size IM/4, M/2, 3M/4, andM job arrivals make up /24, 1/12, 1/8, 1/4,
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Figure 4.5: Plot of the decay rate as a function of the maxinjoionsize M under the
power-law and the high variability workload under SMART-Bth the thresholdn = 4
andp = 0.8. Each line in the figures corresponds to the decay rate af@aiperienced by
a specific job siz&. The decay rate of FCFS is included as a benchmark. Noteitica s
decay rates of size 1 jobs are infinite, they are omitted.

and 1/2 of the total load.

Figure 4.3 illustrates the convergence of the delay digiidh to the asymptotic
decay rate adN grows under SRPT. The thick lines are the numeric calculatiof the
asymptotic decay rates proven in the dissertation and ther olotted lines are generated
using an event-driven simulation for scheduling polici®&PS, PSJF, and RS (which prior-
itizes towards the smallest product of remaining size aigirad size) that are all included
in SMART. The simulation matches the uniform workload ane $etup described above
except that a Poisson arrival process (for ease of simalaisoused. Thus, in addition to
the error from using a finit&l, Figure 4.3 illustrates the error from the discretizatidthe
arrival process. Note that wheé¥h = 20 there is already little ffierence between the em-
pirical decay rate of SRPT, PSJF, and RS and the asymptwiicdf SMART-LD. Thus, it
seems that rate of convergence to the decay rate is venafasthus the asymptotic decay
rate provides information that is useful in practical sefs such as high tfidc web servers

and routers, which have far more than 20 simultaneous flows.
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We investigate theftect of varyingm and M under the power-law and the high
variability job size distribution on the delay decay ratel ave illustrate the fect of these
variables in Figures 4.4 and 4.5 respectively. These plograte the &ect of increasing
mandM on the decay rate of delay. As the threshold vatuecreases, Figure 4.4 shows
that the decay rate increases, and tRu@V(k) > m) decreases. It is interesting to note
that the decay rate seems to grow linearly wittor all jobs sizesk under SMART-LD.
As the maximum job siz# increases, Figure 4.5 shows that the decay rate of all j&s siz

decreases, which is not surprising since this leads to aease in service times for all job

sizes.
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Chapter 5

LAS

5.1 Background and Related Work

An implementation issue with SRPT or SMART is that the renmgjrprocessing time in-
formation required may not be available to the schedulerr dxample, a request of a
web page may entail downloading or searching other web fteiles of unknown size.
However, even in applications where the job sizes are unkna@ystem designers have
suggested policies such as Least-Attained-Service (LARIGh prioritizes jobs with small
attained service so that small jobs (which always have saga$) tend to have the server

to themselves. Formally, LAS is defined as follows.

Definition 5.1.1. LAS is a preemptive scheduling policy that serves jobs with thallest
attained service (age) first. When there are multiple jolik tie same attained service, the

capacity of the server is distributed among them in some grann

Note that a newly arriving job always preempts the job (os)aturrently in service
and retains the processor until one of the following occ(ijghe job departs, (ii) the next
arrival appears, or (iii) the job has obtained an amount ofice equal to that received by

the job(s) preempted on arrival.
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More specifically, in routers where the remaining procesgime is not known
many blind policies have been suggested. Of such policies, LeasinatiaService (LAS)
has been shown to be optimal in mean delay when the job sizédion has the decreas-
ing failure rate property [35, 36], and many variants havenbenplemented in practice
[32, 33] with similar success as SRPT. It has been shown hieadinount of service a job
has received so far is a good indication of its remaining @ssing time when the jobs size
distribution follows a decreasing failure rate. Job sizgribution with decreasing failure
rate captures the actual job size distribution found in titerhet since the well known
heavy tail job size distribution that is known to accuratégscribe the actual job size dis-
tribution in today’s computer systems have a decreasidgréarate. By assigning higher
priority to jobs with small attained service, LAS indirgctavors jobs of small original size,
which always have small attained service. Due to this ptgpeAS is viewed as a good
approximation to SRPT when the job size information is netlable.

Similar to SRPT and SMART, recent studies on LAS have focusedhe mean
delay experienced by a job of sikeE[W(K)][17, 32, 33, 41]. However, when one is con-
cerned with other metrics such as QoS in a more realisti;gett more revealing metric
would be thistribution of W(K) in the many sources large deviations regime.

The dfficulty in direct analysis of the distribution O (k) has led researchers to
study asymptotic scalings of the distribution. Analyticasults on the LAS policy in the
large byfer large deviations framework have shown that the tal{k) behaves propor-
tionally to a busy period, when the job size distributionrisntated ak. In other words,
jobs of size larger thak contributek to the busy period [25, 30, 31]. This is in contrast
to the behavior of FCFS, where the tail\®{(k) is proportional to the tail of the stationary
workload for allk. However, the many sources large deviations regime all@v® wn-
derstand complementary characteristics of the LAS policg Betting which is geared to

understand today’s web-server.

1Blind to job size.
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Figure 5.1: lllustration of the 2DQ representation for LA depicted the X-axis is the
original size and the Y-axis is the attained service of a jobere attained service is the
amount of service a job has received so far.

In this chapter, we analyze the delay distribution of LASha tnany sources large

deviation regime which to the best of our knowledge has nentstudied yet.

5.2 Intuition

The analysis of LAS in the many sources large deviationswegiinges on the 2DQ frame-
work studied in Section 4.2. However, the arrangement efi@irqueues for LAS is dlier-
ent from SMART-LD due to its prioritization with respect tti@ined service rather than the
remaining processing times as in SMART-LD. The 2DQ framéwfor LAS is depicted in
Figure 5.1, where the X-axis is the original size of a job arax¥ is the attained service
that a job has received so far. This may seem surprising $heerioritization of LAS
depends only on the attained service of a job; however adalisgcondary variable is the
key to making the analysis tractable. Note that the anabfsisAS must be very dterent
from SRPT or SMART, since a job actually loses priority aseitgives service while for

SRPT and SMART a job gains priority.
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Figure 5.2: lllustrations of the two dimensional queueirgniework for LAS. Note that
since a job cannot have attained service larger than iténatigize only the upper right
triangle of Figure 5.1 is of importance. The progression jflabetween queues while in
the system is illustrated in (a). The priority structure &orincoming job is shown in (b)
and for a partially served job is shown in (c).

As shown in Figure 5.1, the secondary variable we add is tigénaf job size. This
means that, in the event of ties in attained service, instéagharing the server among
the jobs with equal attained service, the job with the smstlbeiginal size is served first.
Further, jobs that have the same original size and the sat@ieett service are serviced
according to a FCFS rule. Keep in mind that jobs are not sewidld the full service
capacity, but are only serviced a single unit at once, wisctonsistent with the discrete
version of LAS. Note that using the job size as a secondargrimgl variable does not alter
the performance of LAS in the asymptotic framework, it isgiyra modeling decision used
to make the analysis tractable.

Formally, a queud; j, i > j, denotes the queue that contains all the jobs having
original sizei that have received unit of service. Thus a job of original siZzearrives to
Qko and then progresses @k 1, Qk2 ... Quk-1, Qkk, at which point the job is fully serviced
and leaves the system. This is depicted in Figure 5.2. WaaigaioteQ; ;(t) as the volume

of Qi j at timet, andQ;(t) as the volume of the queue that contains all jobs that hagaat

sizei, Q;, whereQ; = U}jo_l Qij-
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Let us now consider a tagged sizgb that arrives in the system at time 0 and has
receivedr units of service (see Figure 5.2). By the definition of LAS,jabs that have
been served less thanunits have higher priority than the tagged job. Additionajbbs
with smaller original size that have attainednits of service also have higher priority. In
other words, for any job iQ, to be serviced an additional unit, the following queues must

be empty.

k=1 r M r-1 r-1
JUeu+ U U+
i=1 j=0 i=k+1 j=0 j=0

Further, since in each queu@, j, jobs are serviced in a FCFS order, jobs that have
arrived toQk before the tagged job must be servicedhits and job that arrived after must
be served only — 1 units. The same argument can be madeJoe_1, which is the queue
for jobs that will leave the system once it is served againis Tinoup of higher priority
gqueues change as the job in question receives service. leoviles basis of the derivation
of the delay decay rate rests in the fact that these higherigrqueues follow a tractable

and consistent order.

5.3 Main Contributions

The result of this chapter in the dissertation is the deowadf the delay decay rate of LAS
and a corollary that compares the asymptotic delay distabuwof SMART-LD and LAS
across job sizes. The following theorem describes the daliyfunction of LAS in the

many sources large deviations regime, i.e., the asymptetay distribution of LAS.

Theorem 5.3.1.Under similar assumptions made in Section 4.4.2, the deai@yaf delay
for size k jobs under LAS;(k, m), is

(k. m) = inf |an§ (A (¥) + W(¥) + WD) |- (5.1)
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where conditiory states thad, . iy +Kyk+ 2 ci (k=1)yi = C(T +m+ 1) with k{1,...,k=1},
k={k+1...,M},and y" + £1y@ -y, Further,

k-1

Aaly) = Zl””"(y.)

W@ = 15000 1570
M

W) = 1K)

j=k+1

Theorem 5.3.1 characterizes the delay distribution of LAShe many sources
regime. Though the form of Equation (5.1) is complicated,cae obtain intuition for it.
Again, the decay rate depends on the “most likely” way thatdtrival processes deviate
from their mean arrival rates in order to cause delay exogedi Thus, the two infimums
choose the most likely time scal@)(and arrival rates for each job sizg),(whereyy is
separated into the arrivals beforé') and after ¥\) the tagged arrival. Then, inside the
infimums, A (¥), A(¥), andWA.«(Y) characterize the contribution to the delay of a dize
job made by jobs with size k, other jobs of siz&, and jobs of size- k arriving in the time
interval (T, m). This intuition indicates one keyflierence between the decay rate¥\gk)
under SMART and LAS. While under LAS..«(Y) characterizes theffect of jobs with size
larger thark, there is no such term in the decay rate of SMART (see Equédid@n).

To illustrate the intuition of the above result, we will ube tspecial case when jobs
are only of sizes 1 an. For LAS, in the special case when there only exist size 1Mnd

jobs, it follows from Theorem 5.3.1 that

Prov™M(K) > m) o rpgoxprﬂ'“)(T) > C(T + m+ 1)) (5.2)
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where

AY(-T,0),
N
FVT) =1 AN-T.m) + MAN(-T. 0)
FM-DAN@L M), k=M.

,\_
I
=

Note, that for size 1 jobs, SMART-LD and LAS are asymptoticalentical (i.e.,
the decay rates are the same). On the other-hand, folsigs, observe that for each
fixed T, FV(T) = EQV(T), which immediately implies the delay of a job of original size
M with LAS stochastically dominates the corresponding deldly SMART-LD. Thus, the
delay experienced by a si2d job under LAS is larger than that under SMART-LD (in

distribution). This is an important observation that wél generalized in Corollary 5.3.1.

Proof. Intuition(technical proof in Appendix A.4)As shown in Figure 5.2, for LAS the
two dimensional queueing framework partitions the virtgatues into coherent areas of
higher and lower priority with respect to a job in the systdihe job progresses downward
through the two dimensional queue only when all the queuéseimigher priority area are
emptied. This logical separation of high and low priority sévirtual queues persists in
a tractable manner until the job leaves the system as showigume 5.2. In this manner,
LAS can be partitioned into two distinct areas of high and pwerity that is time varying.
This observation along with the well known results from thi@fity queueing system are

applied to derive the delay rate function of LAS ]

In addition to the delay rate function of LAS, we prove thaipallicies in SMART-
LD stochastically outperform LAS with respect to delay foiygob size [48], i.e., there is
a consistent penalty for not using the remaining procesing directly which #ects all
job sizes. We can prove the following corollary using a sengttension of the size 1 and

M example.

Corollary 5.3.1. Any scheduling policy in SMART is uniformly better (for aaly gize)
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Figure 5.3: Plot of the rate of convergence of SRPT to theydeat under the uniform
workload withM = 16,p = 0.8, andm = 4. The asymptotic decay rate is shown as a dotted
line. Note that only the decay rates of the larger sizes ave/istbecause only these can
be estimated accurately in simulation since a large delagrf@ller job sizes is a very low
probability event afN grows. Though not shown here, we found similar convergeatasr
under other policies in SMART-LD.

than the LAS policy with respect to delay in the many soue® Ideviations regime, i.e.
lg(k, m) > 1z, (k, m),

for all k and m, whereg;(k, m) and k3 (k, m) are the delay rate functions of SMART and
LAS respectively.

Proof. The precise proof for Corollary 5.3.1 is omitted. Howevée basic idea behind
the proof is that the volume of higher priority jobs for SMARD is always less than that
of LAS while the available capacity is the same for both. Imtipalar, A(2) + Ak of
SMART-LD is always less thafl_k(Y) + A (Y) + sk (y) of LAS (see Theorem 4.4.1 and
Theorem 5.3.1 o
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Figure 5.4: Plot of the decay rate as a function of the thriesmaunder the power-law and
the high variability workload under SMART-LD with the maximm job sizeM = 16 and
p = 0.8. Each line in the figures corresponds to the decay rate alydelperienced by a
specific job sizek. The decay rate of FCFS is included as a benchmark. Noteitie s
decay rates of size 1 jobs are infinite, they are omitted.

5.4 Numerical Analysis

Similar to the SMART-LD case, we address the same questisngell as the following

additional question.

(i) How much penalty does LAS pay for not using job size infation to prioritize?

That is, by how much does SMART-LD outperform LAS?

All the simulation setup used in this section is identicatiie SMART-LD case.
Figure 5.3 illustrates the convergence of the delay digiioh to the asymptotic decay rate
asN grows under LAS. The dotted lines are the numeric calculatiof the asymptotic
decay rates proven in the dissertation and the other linreg@anerated using an event-
driven simulation. The simulation matches the uniform vimeki described above except
that a Poisson arrival process is used. Thus, it seems tieadfraonvergence to the decay
rate is very fast, and thus the asymptotic decay rate previdiermation that is useful in

practical settings such as highffia web servers and routers, which have far more than 20
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Figure 5.5: Plot of the decay rate as a function of the maxinjoimnsize M under the
power-law and the high variability workload under SMART-Bth the thresholdn = 4
andp = 0.8. Each line in the figures corresponds to the decay rate af@aiperienced by
a specific job siz&. The decay rate of FCFS is included as a benchmark. Noteitica s
decay rates of size 1 jobs are infinite, they are omitted.

simultaneous flows.

We investigate theftect of varyingm and M under the power-law and the high
variability job size distribution on the delay decay ratel ave illustrate the fect of these
variables in Figures 5.4 and 5.5 respectively. Figure Sodvstthat the decay rate increases,
and thusPr(W(k) > m) decreases, for increasing As the maximum job siz& increases,
Figure 5.5 shows that the decay rate of all job sizes decrease

More importantly, we address the additional question. (iFigure 5.6 illustrates
how the decay rate for a job of sikevaries acros& under SMART-LD, LAS, and FCFS
(which we include as a baseline for comparison). The reavd{shown for both the power-
law and high variability workloads under high loddote that a larger decay rate indicates
a stochastically smaller delay.

The first observation we make is that, in each of the plots|Igatesizes have much
better decay rates under SMART-LD and LAS than under FCF®reds large job sizes
have better decay rates under FCFS than under LAS and SMARTHuS, there is always

crossover point for each of SMART-LD and LAS where their decde “crosses over” that
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Figure 5.6: Plot of the delay rate function as a function efjtib sizek, with the threshold
m = 20 and maximum job siz& = 16 held fixed. Recall thdty(k, m) measures the rate
function of Pr(W(k) > m) and that a largeky(k, m) indicates a stochastically smaller delay.

of FCFS. Figure 5.6 illustrates that the crossover poinighlii dependent on the service
distribution. When the load is high and the largest jobs mgkea significant fraction of
the load, the decay rate of SMART-LD does not cross that of &FG#til the largest job
size,k = M. The behavior of the crossover point can be understood tisefpllowing key
observation: while the decay rate under FCFS gets worsdl&inas the load of largest
jobs is increased and the total load is held constant, theydates of LAS and SMART-LD
get better (larger). Thus, since large job sizes make uprfisgnt fraction of the load in
many computer applications, it seems that one need not w@rsmnuch about the $iering

of large job sizes under policies that prioritize small jobBhough not shown, we also
investigated the impact of load on the crossover point andddhat load only changes the
magnitude of the decay rates (the higher the load, the Idveedécay rate), not the relative
behavior of the decay rates under FCFS, LAS, and SMART-LD.

The next observation we make from Figure 5.6 is that both SWHAR and LAS
exhibit a similar trend in decay rate acrdssvith SMART-LD always providing stochasti-
cally smaller delays than LAS. Further, in answer to the tjoesFigure 5.6 illustrates that
the improvement of SMART-LD over LAS is again highly depentden the job size distri-
bution: as the load of the largest jobs increases, tfierdnce in the decay rates of SMART-

LD and LAS increases. The fact that SMART-LD is better for Bijuds follows from the
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operation of two policies: small jobs typically do not geepmpted under SMART-LD,
but are preempted by all arrivals under LAS. However, thaltésat SMART-LD is better
than LAS even for larger jobs less obvious. An explanatiarttics fact is that under LAS,
though larger jobs gain higher priority at arrival compated/SMART-LD, as large jobs
receive service their priority is dropping quickly under &4ut may be increasing under

SMART-LD.
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Chapter 6

finite-SRPT

6.1 Background and Related Work

As we have discussed in Chapter 3, SRPT is a policy that pee\sdperior delay properties
for smaller jobs while the unfairness for larger jobs is rmwge. However, one problem in
implementing SRPT is practical systems is that SRPT doetaketinto consideration the
bandwidth constraint at links. In other words, SRPT guaesitfull bandwidth (BW) of
the server to job requests with the smallest remaining ggicg time until the request are
fully accommodated or are preempted. This is unrealistiewive consider servers of
large BW. To illustrate, let us consider the following exdepAssume that the outgoing
BW of the web-server is 1 Gbps and multiple download requestile downloads arrive.
The original SRPT algorithm at the web-server would prosesh requests one at a time
with the full 1 Gbps out-going link bandwidth allocated tetfile currently being served.
However, the end-receiver (user) receiving this file mayehaandwidth of only 10 Mbps
(e.g., a wireless LAN at the end-user). Thus a more reakstmnario is where the BW of
the server is simultaneously distributed among multiperiiquests by a fixed amount that
corresponds to the link rates of the end-receivers. Thisbeaoaptured by imposing an

additional constraint on SRPT — namely, a peak rate at wtach &le can be served by the
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web-server.

In this section, we investigate the delay distribution ofPFSRwith the additional
constraint that the maximum amount of service each job cesive in a time-slot (also
called the potential service) is bounded (this capturesetireceiverbandwidth con-
straint). We denote the proposed scheduling policy as fBIR®T. We show that as the
maximum potential service a job can receive in a time-slotaised, the proposed finite-
SRPT exhibits a spectrum of characteristics. In particuldren the maximum amount
is larger than or equal to the largest job it is equivalent RIP$ whereas it is similar to

Processor-Sharing (PS) when the maximum amount is only wite u

6.1.1 Definition and explanation of finite-SRPT

SRPT is a preemptive scheduling policy that serve jobs withlker remaining processing
time first. Among jobs that have the same remaining procgdsime, jobs are served in
FCFS ordet. We consider SRPT for a more realistic setting where the gobsserved at
most a fixed amount in a time-slot. Accordingly, we call theslistic version of SRPT as

finite-SRPT.

Definition 6.1.1. finite-SRPTis identical to the original SRPT but with an additional re-
striction which states that a job is served at most D units timee slot, wherdl < D < M

(recall M is the largest job size).

Next section explains the proposed finite-SRPT with resjodtie two-dimensional-

gueueing (2DQ) framework first introduced in [48] which maltee analysis possible.
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Figure 6.1: Finite-SRPT and two dimensional queueing fiaank. The left-most figure
depicts the path that a job should take for it to be fully sssdli X-axis is the original
size of a job and Y-axis is the remaining size of a job. Thusbagboriginal sizek upon
receiving service progresses downward until it is fullyveel, i.e., remaining processing
time is 0. However, dferent sized jobs requirefterent numbers of rounds @f units of
service in finite-SRPT. jobs of size< D will be fully served in one round, while jobs with
sizeD < k < 2D require two rounds of service to leave the system.

6.2 Intuition

As in Chapter 4, we consider a 2DQ representation, an@jletlenote the fictitious queue
that contains all the jobs that were originally of sizend currently have remaining size
Recall that our objective is to study the delay experiencethb tagged job — a fictitious
job that arrived to the system at time-slot 0. The path thattéiyged job of siz& takes
in the 2DQ representation whéh < M < 2D is depicted in Figure 6.1. Accordingly the
2DQ representation allows the separation of high and loaripyiareas with respect to the
tagged job as shown in Figure 6.2.

We first define a typical job for the finite-SRPT schedulingigobs follows.

Definition 6.2.1. Typical jobsare jobs that receive D units of service every time they are

selected for service. Observe that in a time-slot in whicblei selected for service, it can

10ther definition of SRPT specifies that jobs with the same ieimgisize are served in a PS manner. Even
in such cases, the system does not restrict the amount a€sdova job since the number of jobs with the
smallest remaining size is not fixed, i.e., can range fronblgaall jobs in the system.
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Figure 6.2: Priority scheme for a tagged job of size k, whHare M < 2D. As depicted in
the figures, all fictitious queues in the shaded area are bEhigriority. Correspondingly,
lower priority queues are the fictitious queues in the naadsld area. The higher priority
area is composed of typical higher priority jobs represgtaiethe thick diagonal lines and
atypical jobs are in the rest of the shaded area.

receiveat mostD units of service. We denote a job to be typical if it jiemed exactly D
units of service each time it is selected for service. Thuygmal job receives D units of
service until its leftover size becomes less than D whensdutly served. A job is said to

beatypicalif it is not typical.

To illustrate, consider a system with link capadly= 10, with 2 jobs A,B) in the
system of size§a = 16, Fg = 24 respectively and assuriie= 8. In this case, the state of
the system at the end of servicebg = 8, Fg = 22, i.e., jobsA, B received 8, 2 units of
service respectively. In this example, jlis typical and jobB is atypical.

To illustrate the path that the tagged job of skztakes, we consider the specific
case ofD < M < 2D. In this example (and in the rest of this section), we assuraethe
all jobs (including the tagged job) are typital

The tagged job takes two distinct paths depending on its sezek < D andD <
k < 2D, since they require 1 round and 2 rounds of service to coelglétave the system.

DenoteT; as the time-slot in which the tagged job receives its firstnits of service, and

2Note that in general, some of the jobs could be atypical —gtoklem will be dealt in the proof of the
delay decay rate.
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T, as the time-slot in which the tagged job receives its seddnaits of service (if the
tagged job size exceed.

First, let us consider the path of the tagged job of &ize D, and in the process
identify all higher priority queues and arrivals that arguieed to derive the virtual delay
experienced by the tagged job. This tagged job arrive®atat time-slot 0 by defini-
tion. Since all jobs with smaller remaining size have higheority, all of the jobs in the

following queues must be serv&lunits before the tagged job is served its flbstinits.

~
=

Qi (0) + Quk(0). (6.1)

M
=

J

Il
i

Sincek < D, the queues in Equation (6.1) must be fully served befordagged
job leaves the system. Note that sirkcg D, the tagged job leaves the system at time-slot
T1. Thus, in addition to the jobs in the higher priority queuesdibed in Equation 6.1, job
arrivalsz!‘:‘l1 AiN(Tl, 1) must be fully served (sinde< D) before the tagged job leaves the
system.

Now, we consider the path that the tagged job of direx k < 2D takes and
determine the higher priority queues and job arrivals ugieg2DQ framework. At time-
slot O, the tagged job arrives &k. Thus all jobs in Equation (6.1) must be served
units in order for the tagged job to receives its flbstinits of service. Since the tagged job
receives its firsD units of service al1, job arrivaIsZ!<:‘l1 AiN(Tl, 1) must be served units.
However, the tagged job requires anotBeunits of service to leave the system. In fact, the

tagged job will be in the queud x-p at timeT;. Thus, jobs in the following queues:

M k-D-1
>0 > Qi) + Que(Ta) (6.2)
£ L,

i=1 ]

must be served units before the tagged job receives its nBxunits of service. Note
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that all jobs in Equation (6.2) are ones that have been sdbvedits from the queues
described in Equation (6.1) and arrivaﬂ#jl1 Ai'\'(Tl, 1). Note again that since the jobs in
Equation (6.2) ancztll AiN(Tl, 1) at time-slotT, have remaining size D, they need to
be fully served before the tagged job receives its sednaits of service. In addition, all
new job arrivals that have original sizek — D, i.e.,Z!‘:‘P‘l Ai'\'(Tz, T1+ 1), are required to
be served units (since all jobs in this arrival have original sizeD, they are fully served)
before the tagged job can leave the system. To summarizeballn the queues described
in Equation (6.1) and job arrivag{=! AN(Ty, 1) andyi-P* AN(T,, Ty + 1) should be fully
served before the tagged job can leave the system.

This argument can be extended to the general case of a taggeftigjize {— 1)D <
k < iD for some integer > 1.. In this case, the tagged job requiiesunds of service
of being serveD units to be fully served. The higher priority queues andvalsi can be
determined by defining; as the time-slot when the tagged job receivestitdD unit of

service.

6.3 Main Contributions

6.3.1 Characteristics of finite-SRPT

One can see that finite-SRPT behave$edéntly for diferent values oD, which ranges
from 1 to M. One extreme case is wh&h= M. Finite-SRPT forD = M is a scheduling
policies that does not restrict the amount of service grhttea job in a time-slot. Thus
finite-SRPT withD = M allocates its full capacity to a single job then moves on &rtbxt
one, which is equivalent to the original SRPT.

As D decreases, finite-SRPT becomes a scheduling policy whesk & jserved
less and less each time it is scheduled for service. When 1, a job is served a unit
at each time-slot it is selected for service. Define a cycleetdthe interval between time-

slots when the tagged job is sernv@dunits and the time-slot it is servedd units again, i.e.,
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Figure 6.3: Finite-SRPT described with respect to SRPT &hdHmhite-SRPT occupies
a region between SRPT and PS for varying value®ofWhenD = M, finite-SRPT is
equivalent to SRPT. Finite-SRPT B = 1 is a scheduling policy very close to PS but
different in the fact that only jobs with smaller remaining pssieg time are served before
the tagged job in a cycle instead of all jobs in the system.

(Tiz1, Ti + 1). Then finite-SRPT witlD = 1 is a scheduling policy which served jobs
with smaller remaining sizé& unit in a cycle. This is very similar to a discrete version of
PS wheraall jobs are served 1 unit in a cycle. As explained, the onljedence lies in the
fact that the two policies ier in the set of jobs that is served 1 unit in a cycle (all smalle
remaining sized jobs vs. all jobs). This interesting chimastic of finite-SRPT is due to
the fact that when the maximum servid®) (s small, the left-over capacity after all smaller
jobs have been servé&lunits trickles down to larger jobs thus making the schedytialicy
more fair.

For example, consider the following scenario where theesydtas three jobs of
size 3, 4, and 10. Assume that the capacity of the server is:13hd original SRPT or
whenD = 3 in finite-SRPT, only the first job of size 3 will be served irtfirst time slot.
However, wherD = 2, 2 units the first job and 1 unit of the second job will be sdrve
Note that a larger job which would not have been served if & ®RPT is being served. In
other words, left-over capacity is distributed to the larfgds. This trend becomes more

pronounce when we considbr= 1 for finite-SRPT. In this case, all three jobs will receive 1
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unit of service which is what PS would have done. Howevee tiwdt finite-SRPT becomes
equivalent to PS only when the number of jobs is smaller Lﬁ?ﬁﬂcgp—mﬂ.

Intuitively, the proposed finite-SRPT can be seen as a stihgdulicies that span
the area shown in Figure 6.3 8sis varied. WherD = M, finite-SRPT is equivalent to
SRPT and a® decrease finite-SRPT becomes similar to PS. This intuigonbe explicitly

seen in the numerical analysis in Section 6.4.

6.3.2 The delay decay rate of finite-SRPT

The delay decay rate of finite-SRPT for varyibgin the many sources large deviations

regime is derived in the following theorem [45].

Theorem 6.3.1. Under suitable straight line large deviation and burstinesssumptions
on the arrival (used in [44]), the virtual delay decay ratesize k jobs under finite-SRPT

satisfies

1€k, m) < Iy(k, m) < 1%k, m) (6.3)

for anye > O, where

T:T)7

M
Is(ka m) = Lnf Iyné {Z IAE\‘(Ti+1,Ti+l) (ygTHl’TiJrl)}‘ ’ (6.4)
j=1

for which the conditiorl” states that m= TF%H >...>T1>0>Tg>...> TF%H%],

andy states that

[E£1-1k-iD-1 k-1 k
(T T+l (Tl - (0,To+1
VRIS WURTO WYL

-1 =1 =1

i=1
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where[a] is the smallest integer large than a, angiy"ml),y(jTl’l),ygo’T"”) > 0 for all

i,j>0.

The theorem states that the delay decay rate of finite-SRRDedounded by the
delay decay rate of finite-SRPT considering only typicakj@bth slight perturbationse]

to the server capacity.

Proof. Intuition(technical proof in Appendix A.5X.he basic idea behind the proof is the
following. The derivation of the delay decay rate for finB&PT is dependent upon iden-
tifying the critical event that results ifv™)(k) > m} with the least cost. This critical event
corresponds to the “easiest” way in which the tagged job z# Isiarriving at time-slot 0
does not leave the system by time-giat We make the observation that the “easiest” way
to achieve{V(N(k) > my} is the event in which all higher priority jobs are servicedobe
the tagged job.

However, the precise volume of all jobs with higher priotigyunknown. We show
that all jobs in the higher priority queues and higher ptyojob arrivals can be upper and
lower bounded as follows. The derivation of these asymgabyi tight bounds were based
on analyzing typical and atypical jobs separately and degibounds for each.

We describe in detail the main intuition that makes the asiglgf the delay decay
rate of finite-SRPT possible. For ease of understanding, is@usks the simple case of
D < M < 2D. The technical proof for the general case is provided in AppeA.5. The
delay experienced by a tagged job is dependent on the vold@iak jobs that are served
before the tagged job leaves the system. Observe that higloeity queues and higher
priority job arrivals identified through the 2DQ framework $ection 6.2 provides a clear
way in which one can derive R¢N(k) > m). In particular, the approximate analysis

(approximate due to the assumption that all jobs are typieatls to the following:
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PrvM (k) > m) ~

Pr(ZM, 2573 Q1j(0) + Quk(0)

+ SIHAN(TL, 1) 2 NC(m + 1)), k<D
Pr(ZM, 2473 Qij(0) + Quk(0) + XiiAN(T1. 1)

+ 2P HANM Ty + 1) > NC(m+ 1)), D <k<2D.

(6.5)

To derive the precise expression for W) (k) > m), we must improve upon Equa-

tion (6.5) in the following manner.

() Recall that in Section 6.2, we assumed that all jobs iiclg the tagged job are
typical. Due to this assumption, the higher priority jobiais in Equation (6.5) are

not accurate and must be corrected to take into accountypeait jobs.

(i) The volume of higher priority jobs irEi"ﬂl Z'j‘j Qi,j(0) + Qxk(0) must be quantified.
This requires the identification of job arrivals in the pdsttend up in the higher

priority queues at time-slot 0.

However, identifying the precise volume of all jobs thateshémbe served before the
tagged job is dficult to determine. Our approach is to derive (asymptotgadtbitrarily
close upper and lower bounds on the volume of all jobs in th&édi priority queues and

the volume of all higher priority job arrivals.

() Bounding higher priority arrivals:As discussed before, we need to take into account
the atypical jobs in determining the higher priority jobieais in Equation (6.5). Note
that atypical jobs are generated as a result of the last faleifmaining size> D) that
is served in a time-slot encountering a server with leftrmagpacity smaller thab.
From this observation, it is clear that at most a single jai lmacome atypical in a

time-slot.
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Due to this observation, the volume of higher priority aald/for the cas&k <

D can be upper bounded by};l iAiN(m, 1) where no job becomes atypical and
lower bounded bﬂ‘;ll iAiN(m, 1) - m(M - 1) where exactly one job becomes atyp-
ical in every time-slot and the size of the atypical job is thmest possible, i.e.,
M — 1. Similarly, for the case oD < k < 2D, an upper bound ii!‘;ll iAiN(m, 1)+
YP-LAN(M Ty + 1) and a lower bound igiAN(M, 1) + R PHAN(mM, Ty +

1) - m(M — 1).

(i) Bounding higher priority queuesProviding bounds for the volume of all higher
priority queues in Equation 6.5 is morefittult. The dificulty lies in the fact that
determining the volume of jobs in the higher priority queteguires the knowledge
of the past. This diiculty can be mitigated by considering typical and atypiolkjin
the higher priority queues separately and derive asynmadbtitight upper and lower
bounds for both.

As depicted in Figure 6.2, the shaded area represents akhiority queues, i.e.,
Zi“ﬂl Z'j‘j Q;,j(0) + Qck(0). The area of higher priority queues can be separated into
three distinct subareas: the thick upper-most diagonial @enote a3,), the lower
thick diagonal strip that ¥ units away fromB; (denote atB,), and the rest of
the shaded area which we denoteGas Then by definition, %M, ¥'°3 Qi ;(0) +

Z!‘;ll Qi k(0) = By + B2 + C1. We make the observation th@ai contains only atypical
jobs and that all jobs i1, Bp, andC; need to be fully served before the tagged job
leaves the system by a similar argument in Section 6.2. Basékis discussion, we

derive asymptotically tight upper and lower boundsyXi, Z‘j‘;} Qi.j(0) + Quk(0).

First, we consider the case where the tagged job is ofksizeD. We consider the
possible arrivals to the system that contributdip B,, andC, separately, and then
derive upper and lower bounds @ + Bz + Cy, i.e., 2%, 1 Qij(0) + Quk(0).
DenoteTy as the last time-slot before time-slot 0 wh@pwas empty, and_; as the

last time before time-slot 0 wheQy,.p was empty. This can be generalized where
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Ti,i < 0 denotes the last time-slot before 0 wh@nip was empty.

(B1) Note that all jobs inB; are jobs that arrived before time-slot O but have not
received any service until time-slot 0. Thus, an upper baamthe volume of
arrivals that contribute t®; is by assuming that all jobs are typical, and leads
to Z!‘Zl iAiN(O, To + 1). A lower bound on the volume of arrivals is derived by
assuming that (in the worst-case) one job becomes atypiealeay time-slot,
and the size of the atypical job is the largest possible, Me- 1, thus leading
to the lower boungk ; IAN(O, To + 1) + To(M — 1).

(B2) B contains jobs that had original size k + D and were serve® units of
service before time-slot 0. Thus, one can see that upper amer Ibounds
on the volume of job arrivals contributing 8 is 2!‘;1'3 iAiN(TO, T.1+1)and
Z!(LD iAi'\I (To, T_1+1)—(To—T_1)(M — 1) respectively, using similar argument

as for theB; case.

(C1) Since all jobs inC; are atypical, a lower bound is 0 and an upper bound is

T_1(M - 1).

Combining the upper and lower bounds of the contributior3;td,, andC; derived
above with the service capacity provided during that irdgkrwe have upper and

lower bounds orE"; 2473 Q1 j(0) + Quk(0). In particular,

k k+D

Upper bound:  IAN(O, To+ 1) + > iAN(To, T-a + 1) = T_3(M - 1) - NCT 4,
i=1 i=1
Ik IL+D

Lower bound: » iAN(O, To + 1) + Z iAN(To, T-1 + 1)+ T-3(M - 1) - NCT_;.
i=1 i=1

Similar arguments hold for the case of the tagged job bergZi< k < 2D. Details

of the argument is omitted. The resulting upper and lowenbsiare
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k
Upper bound: Z iANO, To + 1) - To(M — 1) - NCTo,
i=1
P
Lower bound: > iAN(0, To + 1) + To(M — 1) - NCTo.
i=1
Combining the upper and lower bounds of the contributionB1toB,, andC; de-

rived above with the service capacity provided during thegrival, we have upper and lower

bounds oy, %77 Qi j(0) + Quk(0). In particular,

k k+D
Upper bound:  IAN(O, To+ 1) + > iAN(To, T-1 + 1) = T_3(M - 1) - NCT 4,
— —
Ik IL+D
Lower bound: Z IANO, To+1)+ » iAN(To, T-1+1)+ T_1(M-1)-NCT.;. (6.6)
i=1 i=1

Similar arguments hold for the case of the tagged job beingBi < k < 2D.

Details of the argument are omitted. The resulting upper@awdr bounds are

k
Upper bound: Z iANO, To + 1) - To(M — 1)~ NCTo,
i=1

Lower bound: i iAiN(O, To+ 1)+ To(M —1) - NCT,. (6.7)
i—1
Combining the results, upper and lower bounds on Equatids) (&n be derived,
which leads to arbitrarily tight bounds on the virtual detiscay rate. This result can be
extended to a general case which is the result in Theorerh. 6.3.
Based on the intuition, we can show that the upper bound oddbay rate, i.e., the
lower bound on the probability, corresponds to the eventevhk jobs corresponding to the

upper bound on all higher priority jobs are served beforddlged job is fully served. On
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Delay decay rate for varying D
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Figure 6.4: Delay decay rate of job size214, 6, 8, for varyingD = {2, 4, 8}, exceeding
the thresholdn = 5 is depicted. X-axis is the original size of the tagged jod gwaxis is
the actual numerics of the delay decay rate.

the other hand, the lower bound on the decay rate, i.e., upperd on the probability, can
be derived from the event in which the lower bound on all highority jobs are served
before the tagged job leaves the system. It is shown in [4]dk the system scales, i.e.,
N — oo, the diference between the volume of jobs between the upper and looverd
becomes negligible, leading to the result that the lowerthedupper bound on the decay

rate is tight within any > 0. m|

6.4 Numerical Analysis

Due to the complicated nature of the delay decay rate of fBR®T described in The-
orem 6.3.1, it is diicult to understand its precise characteristics. Thus, igdaction,
we provide a numerical analysis of the delay decay rate aEfiB8RPT to understand the

particularly interesting question of: How does the behawiofinite-SRPT change as the
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maximum amount of service per time-sl@)(change?
The setup for the numerical analysis of the derived delay oafinite-SRPT is as

follows.

e Job arrives according to an oft@rocess (a job of sizk arrives with probabilitypy

at each time-siot).

e Job sizes are 1, 2, 4, 6, or 8. The jobs size distribution ialthe power-law with
exponent 2, which is a discrete and bounded counterparteoP#reto distribution

well-known for its accuracy in describing web server re¢si¢2)].

e Capacity,C, is assumed to be 1, the load i80and the threshold valua = 5.

As suggested in Figure 6.3, Figure 6.4 shows that finite-SRBguivalent to SRPT
whenD = 8 and adD decreases to 4 and 2 finite-SRPT biases less and less towalldrsm
jobs. In other words, ab decreases, smaller jobs experience more delay while lgiyer
experience smaller delay, i.e., the scheduling policy bemore “fair”. The numerical
results reinforces the range of the proposed finite-SRP@rithesin Section 6.3.1. Thus,
finite-SRPT presents a simple way in which to compromiseydataformance and fairness
by adjusting the maximum amount of service per time-slois ©due to the fact that when
the maximum amount of service is small, the left-over cayeaditer all smaller jobs have
been served units trickles down to larger jobs thus making the schedupolicy more
fair.

Although not shown in this dissertation, numerical ressittsw that the delay decay

rate decrease for decreasing valuempincreasing load and for increasing.
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Chapter 7

Discrete Processor Sharing

7.1 Background and Related Work

In this section, we derive the asymptotic delay distributed (a discretized version of)
Processor-Sharing (PS), a scheduling policy known foraitséss. PS, made popular by
the work of Kleinrock [22, 23], has received much attenti@ntlae idealization of time-
sharing queueing models. PS models can be applied for tharpamnce analysis of elastic
traffic in integrated-service communications network and for Ti@fc in IP networks. PS
is also important due to the fact that it has been shown todoenttst “fair” [41].

Previous delay analysis of various scheduling policieshaagcFCFS [8], SJF (by
applying the results of [14, 38]), SRPT (Chapter 3), and LAB4gpter 5) relies on the
observation that their priority (ordering) scheme betwpdys “relatively” do not change
over time. To illustrate, a job in FCFS that arrives at titredways have higher priority
over jobs that come after tintend have lower priority compared to jobs that arrived before
time t. In SJF, sizek job always have higher priority than jobs with sizek and lower
priority than jobs of size< k. In addition, even though SRPT and LAS have time-varying
priority schemes they can be reduced down to one dominatilcg@riority rules that do not

change in time when we consider typical jobs which was showdotninate the probability
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of delay (Chapter 3, Chapter 5).

However, for other scheduling policies that do not posskesdiime-invariant pri-
ority scheme, the derivation of the delay distribution isrendifficult. Such complicated
scheduling policies include policies that share the ca&pacisome manner such as PS,
GPS [26], and Discriminatory-Processor-Sharing (DPSg dificulty in the analysis of
such scheduling policies lies in the fact that the policiesriselves seem to lack any prior-
ity scheme due to their sharing nature.

The basic intuition behind the derivation of the delay cheaastics of PS in the
many sources large deviations regime is the observatidraltimugh PS does not seem to
have a clear and coherent prioritization of jobs due to itsisly nature, PS in discrete time
does indeed have clear ordering which can be taken advaotage

In particular, we introduce the 2DQ framework with cyclesanhalyze discrete PS
in the many sources large deviations regime. The proposég f2Z@mework with cycles
is based on the idea that in discrete time, jobs are orderacparticular manner and that
there exist time intervalscycles in which the prioritization scheme remains invariant. In
particular, the state of the system (along with the pricsitheme) is portrayed by the 2DQ
framework and the priority schemes in 2DQs arfedlent for each cycle while remaining
invariant within a cycle.

Previous results for PS and discrete PS includes the asalyslelay distribution
under the traditional assumptions of a single arrival aaticstapacity inM/M/1 [9] and
in M/G/1 [15, 21, 49, 50]. Although the literature reports largeidion results for large
buffers (i.e., study of the probability as delay tends to infigigsuming a single source)
under heavy-tailed job size distribution [16, 20, 29, 504 &ght-tailed job size distribution
[6, 26] on the job size distribution, no previous work on thelgsis of the delay distribution
for many sources has been reported. This is in part due todimplexity brought on by
the large number of sources. However, we show in this destsentthat the proposed 2DQ

framework with cycles can simplify the analysis so that thgnaptotic delay distribution is
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derived.

7.2 Two Dimensional Queueing Framework with cycles

In this section, we propose the 2DQ framework with cyclese Tige of the 2DQ framework
(described in Section 4.2) for scheduling policies suchRBE LAS and SMART [43]
has made delay analysis in the many sources large deviaigise possible [44, 47].
However, the relatively simple structure of the 2DQ framewarevents it from being used
for analysis of more complicated scheduling policies. Weoituce an extension to the
2DQ framework that makes possible the analysis of more cexgitheduling policies.

The analysis of simple scheduling policies such as FCFSSdRdare possible due
to the fact that they can be represented by a time-invariaottify scheme. If we focus on
the dominant event for which the many sources large devisiilepends on, even schedul-
ing policies such as SRPT and SMART that seem to have chapgiority schemes can be
represented as a scheduling policy with time-invarianmriyi scheme in the 2DQ frame-
work. For example, a typical jdbin SRPT experiences a time-invariant priority scheme
since it will be served fully once the server selects it favee. In other words, the domi-
nant priority scheme depicted through 2DQ does not changetiowe for simple scheduling
policies such as FCFS, SJF, SRPT and LAS. This idea will bé&aggad in more detail in
the latter part of this subsection.

In general, analyzing complicated scheduling policies Have time-varying pri-
ority schemes are flicult. However, a particular subset of these schedulingcigalican
be represented as time-varying priority schemes with datbde structure. In particular,
some scheduling policies can be represented as a collasftitatic priority schemes over
continuous time intervals, which we denote as cycles. Thpgeed2DQ framework with

cycles takes the 2DQ framework and defines static prioritgs®s over continuous blocks

Typical jobs in SRPT are those jobs that are not preemptetithay are fully served (Chapter 6, Sec-
tion 6.2).
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Figure 7.1: lllustration of the two queue representationhef discrete PS operation. The
gueue with the star arrow is the queue that is active, i.euegueing served. A job receives
a unit whence it is transferred to the other queue withoutstae arrow, i.e., the inactive

queue. When all jobs leave the active queue, the other quecmnies active where the
process repeats again.

of time slot called cyclesvhereas the original 2DQ framework (without cycles) asssiia

static priority scheme throughout.

7.3 Intuition

7.3.1 PSindiscrete time

In the original PS, when there ane> 0 customers in the system, all existing customers get
an equal fraction An of the capacity. However, such PS is an idealized schedplaotigy
that requires the capacity to be divided infinitesimally ltgados in a fair manner.

We consider a discretized PS scheduling policy (in the disctime framework)
that operates in the following manner. Since the smallesement of capacity is one unit
in our setup, all existing jobs found in the system at a paldictime-slot should be given
one unit service. After successfully distributing one eitvice to all jobs, the server again
sequentially serves jobs found in thefiteu at that specific time-slot (time-slot when all jobs

were served a unit previously). This process is repeatdtithatcapacity available in the
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Figure 7.2: lllustration of the infinite queue represewtati The argument is given that the
infinite queue representation is equivalent to the two quepeesentation of discrete PS.

time slot runs out. At the next time slot, the process comtgniom where it was leftfdin

the previous time slot.

7.3.2 Discrete PS described through 2DQ framework with cyels

In this section, we describe the operation of discrete P&jubie proposed 2DQ framework
with cycles. Describing the discrete PS operation using2ib® framework with cycles
allows a more tractable description of the system state atodibcrete PS can analyzed in
the many sources large deviations regime.

First, we make the observation that the operation of died?P& (described in Sub-
section 7.3.1) can be represented by a pair of queues adeatepicFigure 7.1. In this

representation, there is an active queue that is indicatatiedostar arrow and an inactive
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Figure 7.3: lllustration of the 2DQ with cycles represeintatof the discrete PS schedul-
ing policy. The 2DQ representation follows the two queuaesentation and provides a
tractable framework that makes the analysis of discreted3Silple.

gqueue (queue without the star arrow). Only jobs in the adiveue are served (one unit
in FCFS order) and when a job is served one unit it is transfieto the tail of the inactive
queue. When the active queue becomes empty, i.e., all joibe iactive queue are served
one unit, the state of the two queues are reversed, i.endlove queue becomes active and
vice versa as depicted in Figure 7.1. In addition, new jobgeto the tail of the inactive
gueue. We observe that this two queue representation aelyudescribes the operation
of discrete PS, since all jobs in the system are guaranteeec&ve one unit of service
until a job is served again. Observe that a queue becomes actssibly in the middle of
a discrete time slot, and continues to remain active urtihaljobs in the queue have been
served exactly one unit. This interval of time starting frargueue becoming active until it
becomes empty and this inactive is callecyale

Note that the alternating transition of active queues asctixbin Figure 7.1 is
equivalent to the infinite queue representation depict&dgare 7.2, where the active queue
state moves to the lower queue when the queue becomes engutyrdiagly, the inactive

gueue state moves to the next queue as is the case of the@ative state. Since at most
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Figure 7.4: lllustration of the progress of a tagged sizelBijothe 2DQ representation.
Note that the transition of active queues in the two queusesgmtation is expressed as the
sequence of multiple 2DQs with strict priority between them

two queues (active and the inactive queues) contain jobsttar queues in this infinite
gqueue representation may be ignored until they becomesaatinactive.

Next, we connect the infinite queue representation of theadipa of discrete PS to
the 2DQ framework as follows. Note that the infinite queueespntation of the operation
of discrete PS remains identical when we replace the queu2b@s. A job in the active
2DQ is transferred to the appropriate queue (a queue of ome attained service) in the
next 2DQ when it is served one unit as shown in Figure 7.3(b)eiVall jobs in the
active 2DQ are served exactly one unit and becomes emptgettte?DQ becomes active.
In addition, we assume that the jobs in a 2DQ are served in & &rder as shown in
Figure 7.3(a), i.e., jobs with less attained service anecskiirst. Note that, like SMART and
LAS, this additional ordering of jobs in the individual 2D@ses not fect the asymptotic
analysis of discrete PS.

Now, we explain the operation of discrete PS formally asofed. First, we make

the following definition to distinguish individual 2DQs awrding to their respective cycles.

Definition 7.3.1. We defin€2DQ/0 as the inactive 2DQ at time sl& i.e., the 2DQ that
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tagged job departs tagged job arrives  existing jobs
\

Qx1 \
Qxke1
o
2DQ # 2DQ/k 2DQ/1 2DQI0 2DQI-1
"j‘:;t(':‘l’: (T, Tt 1) (T3, T2+1) (T2, T1+1) (T, To+1)
job N N N N
arrivals A(Tk Tiatl) A(Tz ) A(Tl,Toﬂ) A(To T4+)

Figure 7.5: lllustration of the 2DQs representing the stdtthe system for a tagged job
of sizek after time slot 0. We denotel®)/0 as the inactive 2DQ at time 0, i.e., the 2DQ
that receives new arrivals at time 0. Active cycle denotdithe interval that the respective
2DQ is active and the job arrivals are the actual arrivals tie particular 2DQ receives.
Note that for sizé tagged job only 2DQs ranging froniDZ)/0 to 2DQ/k are relevant since
the tagged job is fully served and leaves the systenDIQ k.

accepts job arrivals at time sldi. Accordingly, we defin@DQ/T as the 2DQ T cycles in
the future of 2D@®, and2DQ/-T as the 2DQ T cycles in the past with respect to 2DQ
Thus, by definitio2DQ/ — 1is the 2DQ that is active at time sl6t

We denoteQi"j as the queue that contains all jobs having original sitet have
receivedj unit of service and is in 2D@ Thus the tagged job of sidearrives toQk,0
and then progresses @, QZ,...., QL. QF,., at which point the job is fully serviced
and leaves the system. We den@[?j(t) as the volume oQ{’j at timet, and Q/(t) as
the volume of the queue that contains all jobs with origiriaé $ in the r'th 2DQ, i.e.,
Q1) = XI5 Q1,(1). Similarly, denoteQ' (t) as the volume of all jobs iNRQ/r at time-
slott, i.e.,Q"(t) = Zi'\il Z}zio_l {’j(t). A simple example shown in Figure 7.4 depicts how a

tagged job of size 3 moves through the 2DQ framework witheycintil it is fully served.
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existing jobs start of busy period
\ that contain time O

\

tagged job arrives

2DQ # 2DQ/0 2DQ/-1 2DQ/-2 2DQM

i;t(':‘l’: (T2, T+1) (T1,To+1) (To,T4+1) (T, T,+1)
job N N N N

arrivals A(Tl To+D) AXTO T.+1) 'AXT_l T_,+1) 'AXTD,TD)

Figure 7.6: lllustration of the 2DQs representing the stdtiie system for a tagged job of
sizek before time slot 0. The 2DQ number is assigned relativeDQ. The last 2DQ
corresponds to the 2DQ that receives job arrivals at theadttre busy period, whefg, —1

is the last time before time slot 0 that the system was empty.

7.4 Main Contributions

In this section, the delay decay rate of discrete PS is dinigng the proposed 2DQ
framework with cycles. The result of this section is thedoling theorem that states the
delay decay rate of sizejobs under the discrete PS scheduling policy. Denote thiealir

delay of discrete PS of sidejob asVN(k). First, we make the following assumption.

Assumption 7.4.1. Let Aygy denote the sum of all higher priority arrivals in any cycle of
(Tis1, Ti + 1) with respect to the tagged size k job, then we assume thabthesponding

rate function satisfies

T (T = T + 1) = v) < 10T D Ty, = T))

| (Ti+
Ani Anigh

gh
forve[v—6,v+6], v >0, ands > 0 syficiently small.
The assumption is equivalent to the decay rate being additituitively, a decay
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rate with the property of additive functionals implies thia occurrence of a rare event in
the large deviation framework happens in a straight linee diblay decay rate of discrete

PS in the many sources large deviations regime is presemtbd following Theorem 7.4.1.

Theorem 7.4.1.Under suitable straight line large deviation (Assumptiof.T) assumption

on the arrival, the delay decay rate of size k jobs under éiscPS is

ly(k, m) = inf
T

')_’n; {Z lAN(THl T.+1) (T|+1 Tﬁl)}‘ , (71)

where conditior states that m> Ty > Ty-1 > ... T1 >0>To... > Tiemsr = Tiem = T,

andy states that

k-1 k=i M

Z [Z Jy(T|+1 ,Ti+1) + Z (k (T|+1 T|+1)] + Z Jy(o ,To+1)
M 20\ j=1 j= k—|+1

Z T+ Z Y+ Z (k= Y™ = (T, + m+ 1),
=k+1 j=k+1

where )?T“l’T‘”),yJTl ) y(°T°+1) > 0foralli, j>0.

The basic idea of the proof of Theorem 7.4.1 is the followiiggoring the slight
adjustment required for sizgobs. The explanation described here is only for better unde
standing and the actual proof considers the adjustmentot®¢2DQ/i]4 and [AN(Ti,1, Ti+
1)]9 asd units of all jobs that arrive toRQ/i and sum ofi units of all jobs inAN(Ti, 1, Ti+1)

respectively.

Q

Pr(V™ (k) > m) Pr([2DQ/K]" + ... + [2DQ/0]* + Q%(To) > NC(m + 1))

Pr([2DQ/K]" + ...+ [2DQ/0]* + [2DQ/ — 1]

Q
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+...+[2DQ/k = M]™ > NC(T. + m+ 1))

= Pr([AN(Tr. T+ DI + ..+ [AN(T, To + 1!
+H[AN(To. Ty + DI+ [AY(Ticmer, To + DI
> NC(T, + m+ 1))

Proof. Intuition(technical proof in Appendix A.6)he basic intuition behind the derivation
of the delay decay rate of discrete PS are the following. Awsthat the size of the tagged
job isk.

(1) The number of all future 2DQs, which depict the priogtibn scheme from the ar-
rival of the tagged job until its departure,ks+ 1. Figure 7.5 depicts ak + 1 future
2DQs from DQ/0 to 2DQ/k.

(2) The number of all past 2DQs, which capture the systemrpssgpn from the last
time the system was empty to time-slot 0, is also finite. Thst BRQs are depicted
in Figure 7.6. In fact the number of relevant past 2DQMis k, i.e., DQ/ - 1 to
2DQ/k — M.

(3) The progress of the tagged job requires that the 2DQ irchviiresides in becomes
empty, i.e., all jobs in that 2DQ are served one unit. Thisiregnent of emptying
each 2DQ (serving one unit to all jobs in each 2DQ) can be laets to required

service of a specific amount to all job arrivals to each 2D@s,AN(Ti,1, Ti + 1).

The above mentioned intuitions allows the derivation of deéay decay rate of
discrete PS. First, we explain the intuition described in @s shown in Figure 7.5, the
tagged job of siz& requiresk + 1 2DQs to leave the system, i.e., requikasits of service.
2DQ/0 represents its arrival and subsequent 2DQs corresponesctounit served until
2DQ/k where the tagged job leaves the system once it is servedeanatit. Thus, only

k + 1 future 2DQs are necessary.
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We next explain the intuition described in (3) for the fut@®Qs for which the
same argument holds for the past 2DQs. Note that for the dggbeo leave the system, all
jobs in 2DQ/0 to 2DQ/k — 1 have to be served one unit. FAPQ/k only jobs with smaller
attained service and jobs with the same attained servicevitiutsmaller size need to be
served one unit for the tagged job to depart. Note that tlysirement is equivalent to the
following statementk — 1 units of all jobs that arrive to2Q/0, k — 2 units of all jobs that
arrive to DQ/1, ..., 2 units of all jobs that arrive tddX)/k — 1, and 1 unit of all jobs that
arrive to DQ/k are required to be served before the tagged job leaves thengywith a
slight adjustment where sizgob is assigned one more unit of service in all arri¢albhis
requirement can be extended to past 2DQs sokthatts of all jobs that arrive toRQ/ — 1
are required to be served before the tagged job leaves ttessgnd so on.

In other words, all jobs that arrive to the system in the saypotednterval will be
guaranteed to be equally serviced unit by unit until the ¢aiggb leaves the system. All
jobs that arrive one cycle late will receive one less unitj ahl jobs arriving one cycle
early will receive one more unit of service. As described iguFe 7.5 and Figure 7.6, the
relative priority of job arrivals increase and decreasehascicle in which they arrive in
moves to the future and past. This translation from sengcgirements to jobs in each
2DQ to service requirement of job arrivals to each 2DQ allawsmpler understanding and
analysis of discrete PS.

Lastly, we discuss the specific arguments behind the intuiiescribed in (2). Al-
though, not as obvious as the future 2DQs, the past 2DQs caimlidarly portrayed as in
Figure 7.6. As shown in Figure 7.6, past 2DQs date back toasietime that the entire
system was empty, i.el.. The number of past 2DQs is finite due to the fact thais
finite, which is ensured by the stability condition. In faitte number of all relevant past
2DQs can be simplified to b — k through the following argument. We make the ob-

servation that job arrivals to all 2DQs befor®Q/k — M are required to be fully served

2This slight adjustment is due to the fact that f@Q/k only jobs with smaller attained service need to be
served
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2DQ # k-M k-M-1 +1 O

2DQ #: k-M

Figure 7.7: lllustration of the simplification of the past QB. As depicted the unknown
number of 2DQs afterRQ/k — M can all be combined into a single 2DQ that represent the
2DQ with the corresponding job arrivals that need to be fafiyved before the tagged job
leaves the system. This simplification is one of the key oladiems that make the analysis
of discrete PS possible.

before the tagged job leaves the system, although theyreedifierent amount of units to
be served before the tagged job leaves the system. This i®dbe fact that job arrivals

to 2DQ/k — M needs to be serveld — k units before the arrival of the tagged job (before
time-slot 0) and will be servell additional units until the tagged job departs. Thus all job
arrivals to 2DQs before2Q/k — M are required to be fully serviced before the tagged job
leaves the system. This means that, as shown in Figure Vj@balrrivals to 2DQs in the
following set{2DQ/k— M, 2DQ/k-M-1,...,2DQ/x} can be combined into a single 2DQ
of 2DQ/k — M where the arrivals to this 2DQ aAf.‘rk_Mﬂ’T* 1) that are fully served before
the tagged job departs. This collapse of past 2DQs resudtsatal ofM + 1 relevant 2DQs,

i.e.,k+ 1 future 2DQs andM — k past 2DQs. This allows a much simpler analysis of the
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Figure 7.8: lllustration of the multiple resolution of 2D@Mmework for discrete PS with
respect to cycles. The figure shows the simplification of th&et DQs and the additional
resolution of 2Q/0 where the priority scheme before and after time O fi&edent.

delay decay rate, since it much easier to trdtk 1 2DQs than finite but indeterminable
number of 2DQs.

In addition to the fundamental intuition described above, abserve that job ar-
rivals to 20Q/0, i.e.,AN(T1, To + 1) must be treated fierently from other cycle due to the
following facts: (1) the tagged job arrives in this cycle iate 0, i.e.,T1 < 0 < Tp + 1,
and that (2) due to the FCFS ordering between jobs with theesanginal and remain-
ing size, sizek jobs that arrive before the tagged job receive an additionélcompared
to the jobs that arrive after the tagged job. Thus, as depicte=igure 7.8, the cycle
(T1, To + 1) should be separated into cycles ©f,(1) and (QTo + 1) where the only dif-
ference is that an additional unit is served for sizfbs of cycle T1,1) compared to
(0, To + 1). This finer resolution of the cycld{, To + 1) and coarser resolution of cycles
(Tkem+1s Tkem + 1), ..., (Tyr1, Tw + 1) is depicted in Figure 7.8.

Lastly, the last cycle {[{k.1, Tk)) must also be treated ftierently from the others

since not all jobs should be served. Only the jobs in higha@rity queues (queues with
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(a) Delay decay rate of discrete PS (b) Delay decay rate of discrete PS.
compared to SRPT and LAS.

Figure 7.9: Plot of the delay decay rate of discrete PS urtteexponential distribution
with p = 0.8, m = 5, andC = 1 for jobs sizes 13, and 5. The asymptotic decay rate of
discrete PS shows that even the exponential decay ratecoétlidP S is dependent on the job
size where the decay rate decreases for larger jobs, ightlglfavors small jobs. However,
compared to SRPT and LAS the discrete PS policy does not fawmal jobs as much. The
delay decay rate of SRPT and LAS for size 1 jobs are actudilyiie, but depicted as finite
to able to compare the delay decay rate of other job sizes.

attained service k — 1 and queues of attained servieek and original size< k need to be

served a unit service instead of all the jobs in the 2DQ asfier @ycles. m]

7.5 Numerical Analysis

We consider an On-fD source in which at every time-slot a job of sikerrives to the
system with probabilitypk . The job sizes are either 1, 3, or 5. The jobs size distributio
follows an exponential distribution. The per flow capacg&Zi= 1 and the load is set to be
0.8. Based on this setup, we derive the numerics of the delagydate of discrete PS for
each job sizes when the threshold valumis 5.

The numerical analysis for the above mentioned scenariepgtéd in Figure 7.9.
Figure 7.9(a) shows that compared to SRPT and LAS, disci8tdd@s not seem to fa-

vor small jobs. However, Figure 7.9(b) shows that discredegrants slight preference to
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smaller sized jobs but not overly much. This is an expectsditrsince discrete PS exhibit
different mean delay that is proportional to the job size, iisgrdte PS has equal mean

slowdown across job size, which should be reflected in theyddécay rate.
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Chapter 8

Concluding Remarks

Scheduling is a key consideration fdfieient resource allocation that caffiext the perfor-
mance of the computer systems especially in bottlenecKkgetature, much of the analysis
of scheduling policies have depended on traditional queuiodels that captures the prop-
erties of small to medium sized systems. However, extersitimese models to large scale
systems mostly entails approximations or omissions of @b characteristics of large
scale systems. Understanding scheduling under a modefisakietailored to capture the
properties of large scale systems is important to precisedierstand how and why schedul-
ing behaves as they do in current computer systems. In tbéedation, we consider the
many sources regime for the analysis and modeling of scimedin web servers.

In Chapter 3, we derive the delay decay rate of the Shortestgiing-Processing-
Time (SRPT) scheduling policy under the many sources regiklthough SRPT is the
optimal scheduling policy in terms of mean delay, it has bleelieved that in the process
of optimizing the mean delay, fairness among jobs Gedent sizes might sier, i.e., “star-
vation” of larger jobs. Our results on the delay decay ratSRPT shows that compared
to the prevalent First-Come-First-Serve (FCFS) the unésis is quite small. In fact, the
decay rate dierence between SRPT and FCFS decreases in proportion twvénsea of the

job size when the job size distribution is of heavy tail.

85



The results of Chapter 3 point to the fact that SRPT is a vigbley for web
servers in large scale systems. However, there are vamgpigmentation constraints for
SRPT which are addressed in Chapter 4 to Chapter 6. Chaptidrdsses the fact that
actual implementations are variants of the ideal SRPT. Wealthe asymptotic delay tail
probabilities across job sizes of a class of schedulingcigdlicalled SMART that include
SRPT and its variants. The results show that all schedulitigips that obey certain prop-
erties that characterize SMART have the same asymptotiy dblaracteristics as the mean
delay optimal SRPT.

Chapter 5 addresses the implementation constraint of SBFMd case where the
remaining processing time information is not availabldatweb servers. It has been shown
in the literature and in practice that the Least-Attainedvi®e (LAS) scheduling policy is
a good substitute for SRPT when the job size distributioneiaviy tailed. We study its
delay characteristics in the many sources large deviatiEgismne and show that the penalty
in using the attained service information (LAS) rather tltfae remaining processing time
(SRPT) is prevalent in that LAS is always worse than SRPTszcatl job sizes.

Actual implementations of any scheduling policy must taki® iaccount the end
user bandwidth (BW) constraints that exist in web serverswéver, the ideal SRPT or
SMART assume that a job selected for service receives thatfehtion of the server until
it is fully served or is preempted. In Chapter 6, we consither énd user BW constraint
on SRPT (finite-SRPT) and derive its delay decay rate. Thdtseshow that as the BW
constraint increase finite-SRPT approaches the ideal SRBBathe constraint decrease
finite-SRPT becomes more fair, i.e., similar to the fair lessor-Sharing (PS) scheduling
policy.

Finite-SRPT brings us to the question of the charactesistf¢he “fair” scheduling
policy, PS, when the web server is accessed by a large nunmifienvs. We investigate
the asymptotic delay characteristics of a discrete timerPtBe many sources regime in

Chapter 7. The delay decay rate of PS shows that the expahdeatiay rate of a fair policy
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is not equal for all job sizes, rather the decay rate decseaséhe job size increases.

An interesting and practical issue not discussed in thisediation is the delay per-
formance of scheduling policies accessed by a large numbsowces in multi server
setting or server farm setting. It would be of interest tcegtgate the asymptotic delay
characteristics of various scheduling policies in suckirggt and to provide practitioners

good directions on how to dispatch jobs téfeient servers.
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Appendix A

Proof of Theorems

A.1 Proof of Theorem 3.2.1

First, we derive the lower bound, i.da\g,'g_e(m) < I\(_/k)(m). We denote bﬁ::' (a, b), the volume
of potential servickthat jobs inQy can receive in an intervab(b) under SRPT. Observe
that if the virtual delay exceeds, then we have that the total queue lerfgh time zero
(i.e., Q«(0)) is not served by timen. In other words{V(N) (k) > m} c {Qx(0) > EE(L m)},

and consequently

Priv (k) > m) < Pr(Q«(0) > By (1, m)). (A.1)

From Loynes’ formula, we have

Pr(Q«(0) > By (~T.m) = Pr(sufAN(-T,0) + Sy (-T.0) - By (-T.m)] 2 0),  (A.2)
T>0

Ipotential service corresponds to the maximum amount ofcgetivat can be received if the corresponding
queue is not empty.

2The unit of the queue length is the volume of data. ThusQigrQ,(0) denotesk times the number of size
k jobs in the queue.
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where§||:l (=T, 0) is the volume of arrivals tQx due to partially served jobs arriving from
lower priority queuesQ-k, in the interval £T,0). Let-T* be the first time before time 0
such thailQy(-T* — 1) = 0. Without loss of generality, we can show ti@g{—-T* — 1) = 0,
for all | < k (the proof is provided in Theorem 4.1 of [38] in the contexpabrity queues).

Hence, we have

Pr(sugAN(-T,0) + Sy (~T.0) - By (-T.m)] > 0)
T>0

= PrAN(-T",0)+ Sy (-T*,0) = By (-T".m) > 0). (A.3)

Since allQ«k are empty at time-T* — 1, the potential service available @ in the
interval T*, m) is lower bounded by the residual service after all exteamavals toQ«k

and internal arrivals tQ-x generated by partially served jobs are served, i.e.,

B (=T*,m) > NC(T* +m+ 1) - ki ANGTS m) = (T* +m+ D)k-1). (A4
i=1

Note that in Equation (A.4), the terri {+ m+ 1)(k— 1) accounts for the worst case
scenario where at every time slot inT*, m), a partially served job arrives &y_1 from
gueues with higher priority thak This observation follow from the fact that at most only
one additional job can be partially served in a time slot.

From Equation (A.1), Equation (A.2), Equation (A.3), Eqaat(A.4), and the fact
thatS, (-T*,0) < k(T* + 1), we have

PrviN (k) > m)

IA

PIAN(=T*,0) + Sy (-T*,0) = By (-T*.m) > 0]
k-1

PIAN(-T*,0)+ > AN(=T*,m) - NC(T* + m+ 1)
i=1

IA

+HT"+Dk+(T"+m+1)(k-1)> 0]
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< PrANG-T, 0)+Z/\( —T*,m) = NC(T* + m+ 1)
+2(T* +m+1)k>0]
k-1
< PrAN-T?, 0)+ZA( ~T*,m )—N(C——)(T*+m+1)>0]
< P A TO)+ZA,( ~T,m )—N(C——)(T+m+1)>0)]
T>0
< > PHAY(- T0)+Z/\( T,m) - N(C——)(T+m+1)>0]

T>0

Fix anye > 0. Observe that foN large enough, we hav€({ %‘) > (C—-¢). Hence,

Prv (k) > m) < > PHAN(-T, 0)+Z/\( ~T,m) = N(C — &)(T +m+1) > 0]. (A.5)

T>0

Note that Equation (A.5) is the same expression for the ratetion of sizek jobs
in priority queues with capacit¢ — e. (This uses Assumption 3.2.1 as in [13, 24].) Using
similar techniques as in [13, 24], it follows that the loweruind of the rate function of
Pr(Qq(0) > By (L.m) is 1§ (m).

Next, we derive the upperbound, i.eg)(m) < I\(,kc)ﬁ(m). Since a lower bound on
the probability is an upper bound of the rate function, wecemtrate on finding a lower
bound on PYM (k) > m). We do so by constructing a priority queueing based system
which lower bounds the delay experienced in the SRPT scaedul

As a basis for comparison, we define PRI-0 to be a priority gungusystem with
capacityNC. This system consists dfl queues, with siz& jobs arriving toQyx. Partially
served jobs in this system continue to reside in the sameequeu, no switching of jobs
occur. Next, we consider a priority queueing system PRI-ih wapacityNC, whereall
partially served jobs completely leave the systémtead of residing in the same queue
(PRI-0) or switching to a higher priority queue (SRPT). Byswouction, this system has

fewer arrivals to each queue, and at least as many depaftanegach queue as compared
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to the SRPT scheduler. Thus, PRI-1 provides a lower bounti@delay experienced by a
job compared to the SRPT scheduler.

Next, we fix ane > 0, and consider PRI-2, a priority queueing system with ciipac
N(C + €). Thus, the operation of PRI-2 is identical to that of PRbQt with additional
service capacity oNe. First, we compare PRI-1 and PRI-0. In any time slot, at makt o
one job can be partially served. This implies that the maxinaalditional potential service
that Qx can receive in PRI-1 compared to PRI-0 kis{1). On the other hand, for any
N > M/e, the system PRI-2 will provide an additional serviceNaf > M > k, compared
to PRI-0. Thus, PRI-2 provides more potential servicQtocompared to PRI-1. Further,
note that PRI-2 has the same number of external arrivals &4 PRhus, PRI-2 provides
a lower bound on the virtual delay of a job compared to PRIA, @onsequently a lower
bound to that of the SRPT scheduler.

We now describe the above argument in greater detail. Cengi@ case where
there are two queues: size 1 and she Let the queues for PRI-1 t@(ll)(t) and Q(l\?(t),
and the queues for PRI-2 l@f)(t) and Q(,\ﬁ)(t). As described above, the arrival processes
to PRI-1 and PRI-2 systems are the same. However, the patsetivice forQ(lj)(t) and
Q(lj)(t) are diterent. For PRI-1, we have that the potential service at titney, is upper
bounded by the sum oNC - Q(ll)(t)) and (possibly) partially served sidé jobs. Thus, the
upper bound on the potential service [(t) is (NC — Q{Y(t) + M). On the other hand,
Q(lj)(t) has potential service oNC — Q(lz)(t) + Ne¢). Further, we have tha(p(lz)(t) < Q(ll)(t).
This is due to the following three facts: (i) the externaheals to Q(lz)(t) and Q(ll)(t) are the
same, (ii) jobs of size 1 are fully served (i.e., there is ndigly served size 1 job), and
(iii) PRI-2 has larger capacity than PRI-1. Combining thetfalatQ(lz)(t) < Q(ll)(t), and
thatNe > M > k, we have that the potential service provided by PRI-1 is noentloan
PRI-2. This argument can be directly extended to case ofipreiljueues. Thus, the delay
experienced by a job in a priority queueing system with cepa¢(C + €) is a lower bound

on the delay of jobs in SRPT. Thus, we have ﬂé/ﬁ(m) < I\(,kc)ﬁ(m).
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Figure A.1: lllustration of the bounds 6f that are used to prove Theorem A.2.1. As shown
in the figure, we construdi(6) that lower bounds\ o, o(6) for all 6.

A.2 Proof of Theorem 3.2.2

We first derive an upper bound on the delay rate function of BRRI FIFO. The upper
bound on the delay rate function of sizgbs for SRPT is given by selecting specific values
in the infimizing set, i.e.l,g‘)(m) < infrso[la. 7((C—a)(T + m+1))] < Ia0((C - @)(m+1))
(sincela o(E[AI(0,0)]) = 0). Using the same technique, an upper bound of the delay rate
function for FIFO isly(m) < Ia0(C(M+ 1) — am).

From the upper bounds derived above and the fact that théuratéons are non-

negative, it follows that

18 (m) — 19(m)l < max(ia,o((C - @)(m+ 1)), Ia,o(C(M+ 1) - am)} (A.6)

Based on Assumption 3.2.3 on the marginal probabilitieshefdrrival process, a

more revealing upper bound of, o(x) using Equation (A.6) is derived in the following
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theorem.

Theorem A.2.1. Fix any0 < y < (1 - n), and x> E[A«(O, 0)]. Then there existE(x) such
that

vk > K(x).

Iaco(X) < X(ij/- 1)

Proof. First, we make some basic observations for the proof. Frami.tld. assump-
tion across flows, we havka, o(d) = log E(€”(®0)). We denotes;, as thed that satisfies
[a.0(X) = sup,er (X0 — Aa,0(6)). Further, forA(O, 0) satisfying Assumption 3.2.3ya, 0(6)
is convex, non—negative, and is increasing#or 0 with Ap, o(0) = O (see Figure A.1).
Further, sincex > E(Ax(0, 0)), we can restrict the supremizing setdb {6 > 0}.

We define fy(0) as follows. For any O< y < (1 -1n) and for allk > IZ(x) =
maxK,, 2(x + 1)),

0 0<6<1/K
fk(0) =
(x+1)@-2%) 0>1/K.

The function fi(#) is constructed such that for &l > IZ(x) it is a lower-bound
of Aa.0(0) (see Figure A.1). To show this, first observe that foréakk 1/k”, we have
0 = fk(0) < Aa.0(0). Further, ford = 1/k”, we have

(AAaco(®), kaQe™” kae” 1

o=3 = 1> = 1y 1

de K p(k)1+ q(k)ik 1 + q(k)ex + T
> k1+Aln_§2(x+1) Yk > K(X).
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Pa0® 5 x+1foralle > 1/k and

Since A, 0(f) is convex, it follows that
k > K(x). Further, asf(1/K) < Ap0(1/K?), it follows that f(6) < Aa.0(6) for all 6 > 0
andk > K(x).

We definedy as thef that satisfies® = Ap0(0), andéy as thed that satisfies® =

fk(6). Note thatgy, anddy depends otk. Sincexd is atine andAa, o(6) is convex, we have
0, < 6. Furthermore, as shown abowie(d) < Aa.o(0) for all & > O (see Figure A.1), thus
we haves < 6. Thus, an upper bound dg, o(X) is X, sincela o(X) = X8 — Ap 0(6;) <

X6 < X0« < xf. Computingdy, we haved = XL, Consequently

vk > K(X).

Ia () < x(kayr 1)

O

As a corollary of Theorem A.2.1, the upper bound on thedénce of the delay

rate function for siz& jobs in SRPT and FIFO is derived, i.e., Theorem 3.2.2.

Proof. Combining Theorem A.2.1 and upper bounds of delay rate imdéor sizek jobs
under SRPT and FIFO derived previously, we have the follgwipper bound on the rate
functions. Denote; = (C — a)(m+ 1), c; = C(m+ 1) — ay and note that;, ¢, > g,
wheres = E[A(0,0)]. For any fixed O< y < 1 —  there exist;(m) and Ky(m) such
thatl\(7k)(m) < @D for all k > Ky(m), andlg(m) < 22 for all k > Ky(m). Applying
Equation (A.6), and the fact that the rate function is nogatige, we have that the upper
bound on the dference between the rate functions for k sized jobs of delampiote for

SRPT and FIFO is

ci(c1 +1) coc + 1)}
kr 7 kr

199(m) — 1g(m)l < max
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virtual job virtual job size k extra job
last job last job
- Y
H_) | SR—
conditional arrival: A(0,0) conditional arrival: A(0,0)
(a) Queue state for the lower bound. (b) Queue state for the upper bound.

Figure A.2: lllustration of the lower and upper bound of tlcéual delay with respect to the
virtual delay. The lower bound shows that the actual job eawe the system only if the
virtual job leaves the system, i.e., reaches the head ofubaeg The upper bound shows
that if the virtual job behind the additional sikgob reaches the head of the queue then the
actual job is guaranteed to be fully served.

for all k > maxK1(m), Ko(m)} = K(m), which proves the theorem. O

A.3 Proof of Theorem 4.4.1

We now derive the actual delay decay rate of SMART in the manyces regime. We
prove Theorem 4.4.1 by first considering the virtual delaf};_/g)(k) > m), for sizek jobs
then deriving the actual delay, W{N)(k) > m).

Definel(k, m) as the decay rate of the actual delay of a &izgb under SMART
with total service raté&NC. Let va(k, m) denote the decay rate of the virtual delay of a size
k job under SMART with total service ratdu. For bounding purposes, we consider the
virtual delay of SMART where an additional sikgob is inserted before the virtual job,

and denote it ak;,ﬂ(k, m).

Lemma A.3.1. For any ke M, under any scheduling policy in SMART

19 (k. M) < Iggk, m) < Ig_(k, m). (A7)
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Proof. First, we derive the upper bound by showing

Pr(V(N’(k) > mAN(©,0) > o) < Pr(V_V(N)(k) > m). (A.8)

Note that a virtual job (with size 0) need only to arrive at tfent of the queue to
be fully serviced. Thus, Equation (A.8) follows from the ebsation that, if a fictitious job
did not leave the system (i.e. arrive at the head of the qumefeye timem, then the actual
job did not leave the queue. That is, the actual job did noh @geeive one unit of service.
Thus, the actual job is guaranteed to have not left the syByetime m. This queue state is

depicted in Figure A.2(a), where the last job correspondkda@ctual job. Thus, we have

—% log Pr(v_v(N’(k) > m) < —% log Pr(V(N)(k) > mAN(0,0) > o). (A.9)

AsN — oo, Equation (A.9) can be further upper bounded$yk, m) using similar

techniques to those in [38]. Finally,
1 T(N)
- log Pr(w (k) > m) — Il m)

gives the upper bound.
To prove the lower bound, we add an extra digeb in front of the virtual queue
and consider the virtual delay™)(k) . The queue state is depicted in Figure A.2(b). We

prove the following inequality using a contra-positive @argent.

PV > m < Pr(Y™K) > mAY(0,0)> 0) (A.10)
The event{\7('\')(k) < mAN(,0) > 0} is equivalent to the statement that the virtual
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job leaves the system before time Note that for a virtual job to leave the system, all that
is required is for the virtual job to reach the head of the guélthe virtual job reaches the
head of the queue when the extra job leaves the queue, eeextha job gets one unit of
service. The key observation is that, the extra job need edalty serviced, only partially
serviced. However, for the extra job to be even partiallyised, the last job of the batch
arrival must leave the system completely. This is due to #wosdary priority scheme
introduced in the two dimensional queueing framework: jolith the same original size
but with smaller remaining sizes have higher priority. TlB& job in the front of the virtual

job is the job that represents the actual delay. Thus, we thaviollowing.

(VM) < mAN©,0) > 0] = {V_V(N)(k) < m},

where A = B denotesA implies B. This proves Equation (A.10) by a contra-positive

argument. Thus, we have

_% log Pr(VM(K) > mAN(0,0) > 0) < —% log Pr(V_V(N)(k) > m).

As N — oo, above equation can be lower bounded hy(k, m) using similar argu-

ments to [38]. Finally, noting the definition &f;(k, m), completes the proof. ]

We are now ready to prove Theorem 4.4.1. Deﬁﬁlg()(a, b) as the volume of po-
tential service that jobs iy x can receive in interval( b) under SMART. Potential service
corresponds to the maximum amount of service that can béveec# the corresponding
queue is never empty. Note th@gx does not include original sidejobs that have received

partial service.

Proof. (of Theorem 4.4.1First, we derive the lower bound on the decay rate in Equa-
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tion (4.3) by finding an upper bound of (R?(N)(k) > m) and using Lemma A.3.1.

Let us consider the virtual delay in SMART with the extra job,, P{VM (k) > m).
Observe that if the virtual delay with the extra skgb exceedsn, then we have that the
queue length at time zero (i.€x«(0)) and the extra job is not served by tinre In other

words {VN (k) > m} = {QKk(O) +k> Egl(,k)(l, m)}, which results in

Pr(VM() > m) < Pr(Qk,k(O) +k > By (L, m)). (A.11)

From Loynes’ formula, we have

Pr(Qk,k(O) +k > By (L, m)) Pr(iug[k,ﬂ{:‘(—T, 0)+ k- By (—T, m)] > o)

Pr(kA':'(—T*, 0) = By (-T*m) + k> o). (A12)

Note that in addition to the volume @k (Qkk(0)), k is added in deriving Equa-
tion (A.12) due to the construction & Also, —T* is the most recent time in the past such
that Qxx(-T* - 1) = 0.

Now, we derive a lower bound oﬁaik)(—T*,m), which will in turn provide an
upper bound of PN (k) > m). We make use of the priority scheme of SMART in the
two dimensional queueing framework, which has been digscuabove. An observation
was made that areais higher priority compared tQx, and the queues in ar&may or
may not have higher priority. Thus a simple lower bouncEﬁtL)(—T*, m) is the available
service assuming that both areéasind B have higher priority. The volume of service that
areaA requires can be derived using the fact that all queues in Ar@@ empty at time
-T*-1,i.e,Q,j(-T*-1) =0, for alli < kandj < k— 1. The proof follows immediately
from Theorem 4.1 in [38], which is stated in the context obpty queues. Additionally,

the volume of service that ardarequires during interval{T*, m) is upper bounded by
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(T*+ m+ 1)(M — 1). This is due to the observation that at most a single pigrsarviced

job can occur in a time slot, and the worst partially servigdais of sizeM — 1. Thus

By (=T, m) is lower bounded as follows.

_N «
By (=T, m)

[\

k—

k
NC(T* +m+1)- > > Qujp(-T" - 1)
i=1 ]

=

Il
iy

k-1
= Y ANETL, M) - (T7 + m+ 1)(M - 1)

i=1
k-1

NC(T* +m+1) = > iAN-T*, m)
(T e me DM - 1) (A.13)

From Equation (A.11), Equation (A.12), and Equation (A,12& have

Pr(V™(K) > m)

IA

IA

P

IA

P

IA

P

-

[ T>0

ZPr

T>0

IA

IA

KAN(-T*,0) +

KAY(-T*,0) +

k-1

i=1
k-1

i=1
k-1

i=1

Z IANG-T*,m) = NC(T* +m+ 1)+ 2(T* + m+ 1)M > 0

ZiAiN(—T*,m)—N(C— ZWM)(T* +m+1)>0

Pr{KAN(-T*,0) + k= By (~T*,m) > 0

2M

k-1
[kAL\'(—T, 0)+ > IAN-T,m) - N (c - W) (T+m+1)> 0}]
i=1

k-1

KAY(=T,0)+ > TAN-T, m) - N(C— %)(T +m+1)> 0]-

i=1

Fix any e > 0 and observe that fdd large enough, we hav& (- ZWM) > (C - ).

Hence,
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k-1
Pr(\7(N)(k) > m) < Z Pr kAQ'(—T, 0) + Z iAiN(—T, m)
NC-aT+m+1)>0]. (A.14)

Note that Equation (A.14) is the expression for the decay oésizek jobs in PRI
having capacityC — €. Using similar techniques as in [13, 24], it follows that tloever
bound Oﬂ\"/”(k, m) is 'VC_E(k’ m). Applying Lemma A.3.1, we have the lower bound on the
decay rate in Equation (4.3). Specifically, we apply the i@mtion principle, to obtain the
closed form expression .., (k, m).

Next, we derive the upper bound on the decay rate in Equadi®) by deriving a
lower bound on PK™)(k) > m) and combine it with the result of Lemma A.3.1. We do
so by comparing SMART with a priority queueing system whictvér bounds the delay
experienced by the job.

Consider a PRI system with capacMC, which we describe again. This system
consists ofM queues, with jobs of original sizl arriving to queuek. There are strict
priority between queues where the queue correspondingdtiesrjobs have higher priority.
Partially served jobs in this system continue to resided@stime queue and the jobs in each
gueue are served in a FCFS manner. In comparing the PRI s{st8MART, we can think
of PRI as SMART wher&), = Z!‘Zl Qi and priorities are assigned such that afelaas
higher priority whereas ardadandC have lower priority.

DenoteV(N(K) as the virtual delay of a sizejob for PRI. Then evenfv™) (k) < m}
of PRI ensures the evemV(N)(k) < m} of SMART. This comes from the fact that the
external arrival to both PRI and SMART are the same but thielwakservice available to
Qkk in SMART is upper bounded by the residual service for queoé&PRI. This follows
from the fact that the residual service of SMART is the renmgjrservice after servicing of
all of areaA and possibly a part or all of aréa However, the residual service in PRI is that

of after servicing only the ared, and none of areB. Thus PRI provides a lower bound on

100



the virtual delay of a job compared to SMART. In other words,vavely_(k, m) < Iv(k, m)

and combining it with Lemma A.3.1, the proof is complete. ]

A.4 Proof of Theorem 5.3.1

A.4.1 Lower bound of the decay rate

We start the analysis of LAS by deriving a lower bound on thayldecay rate under LAS.
Denote the virtual delay of LAS a¢(0). We bound the probability that the virtual delay

for sizek jobs exceeds, PrivN (k) > m), as follows.

Lemma A.4.1. For any ke M, the virtual delay of size k jobs in LAS satisfies

Pr(V™W(g > m) < Pr(sup(kp{}'(—T, 0)+ (k- DAY(L m) - BY(-T.m)) > o)
T>0
Pr(kAY(=T*,0) + (k= DAY(L m) - BY(-T".m) > 0), (A.15)

where Q‘(—T, 0) is the number of size k job arrivals in the inter¢alT, 0), B (=T, m) is the

service available to Qduring (=T, m), and T* is the last time befor@that Q«(-T*-1) =0

The theorem states thapassiblescenario in which the eveiv™(k) > m} could
occur is when the total volume of arrivals for sik@b before the virtual job and a portion
((k — 1)/K) of the volume of arrivals for sizk job after the virtual job, exceed the available

capacity forQy .

Proof. ConsiderQy. By the operation of LAS{V(N(k) > m} implies that all jobs irQy(0)
have not been fully serviced by tinm, i.e., {kA'(\'(—T*,O) > é’lz‘(—T*,m)}. Since adding
more jobs makes the event of exceeding the available cgpacite probable, we have the

following.
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Pr(V™ (k) > m)

IA

Pr(sup(kp{}'(—T, 0)- BY(-T.0)) - BY(L.m) > o)
T>0

Pr(sup(kA':‘(—T, 0)- BY(-T.m) > O)
50

IA

Pr(sup(kp{}'(—T, 0)+ (k- DAY (L m) - BY(-T. m)) > o)
T>0

Finally, Equation (A.15) follows from Loynes’ formula. m|

Note that the total available capacity @ in interval T, m) with regards to the
event{VN(K) > my, i.e. BE(—T, m), is the remaining capacity after all the higher priority

queues are served in LAS. So, the following holds.

k-1 k-1
BY-T.m) > NC(T+m+1)- > iAN-T,m - > Q(-T -1)
M = M k-2 =
= > k=DAN-T,m - > 3 Q=T -1) (A.16)
i=k+1 i=k+1 j=0

Using Lemma A.4.1 and the above, we can derive the following.

Theorem A.4.1. The virtual decay rate of size k jobs under LAS is lower bodraddollows

lg(k, m) > inf [l)pyf {lxnjfc (Uck(Y) + We(Y) + ‘11>k(>7))}] ; (A.17)

whereY, X, A k(Y), U(¥), andA.«(Y) are defined as in Theorem 5.3.1.

Proof. Combining Equation (A.16) with Lemma A.4.1 we have the foilog upper bound
on the probability of VINV(k) > m}.
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Pr(V™ (k) > m)

IA

Pr(sup KAN(=T,0) + (k- DAN (2, m) - BN(-T, m))>o)
= Pr(kAY(-T*,0)+ (k- DAY(L m) - BY(-T*.m) > 0)

k-1

PrlkAN(-T*,0) + (k- DAV(L, m)+Z|AN( —T, m)+

k—

IN

H

Q(-T"-1)+ Z (k- DAN-T",m)

i=1 i=k+1

M k-2
>

Qj(-T"=1)-NC(T"+m+1)> OJ
i=k+1 j=0

k-1
_ Pr[kA{j(—T*, 0)+ (k= DAY(Lm) + > AN(-T",m)
i=1

M
+ ) (k= DAN-T, m) = NC(T* +m+ 1) > o] (A.18)
i=k+1

IA

k-1
[U[kﬁk( ~T,0) + (k- DAN(L, m)+Z|AN( ~T,m)

T>0
>OJ

k-1
> Pr[kAkN(—T, 0) + (k= DAY(L M) + > iAN(-T, m)
i=1

T=>0

M
+ Z (k- l)AiN(—T, m) - NC(T + m+ 1) > OJ

i=k+1

+ Z (k— DAN(-T,m) - NC(T + m+ 1)
i=k+1

IA

where Equation (A.18) follows from the observation tp{-T* - 1) =0for1<i<k-1
andQ;j(-T*-1)=0fork+1<i <M,0< j<k-2The justification is similar to that
for a priority queueing system. Namely, since the above gsidnave higher priority than
Qk, whenQy is empty all higher priority queues must be empty. Applyihg tontraction

principle completes the proof. ]

Theorem A.4.1 provides possiblescenario in whichV®N(k) > m} could occur.

To show that this scenario is indeed the most dominant anttaisrthe behavior of the
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probability, in the next section we will show that the samensrio provides the upper

bound on the decay rate of™(k) > m}.

A.4.2 The delay decay rate (a tight upper bound)

We now develop an upper bound for the decay rate of LAS whidlglg with the lower
bound derived in Section A.4.1, i.e., we develop the tightdobound for the tail proba-
bility. The main argument for the upper bound is that, usheytivo dimensional queueing
framework, LAS can be viewed as a simple priority queueirgjesy, as was the case with
SMART. Thus, using a similar analysis, we can derive thettigdper bound for the decay

rate.

Theorem A.4.2. The probability of the virtual delay for size k jobs in LAS damlower

bounded as

0<l<m

k-1
Pr(VVK) > m) > Pr[ inf {Z IANG=T*, 1) + KAY(=T%,0) + (k- 1)AY(L, 1)
i=1

M
+ k= DANT ) = NC(T” + 1+ 1)} > o] (A.19)

i=k+1
where—T* is the last time before tim@when Q(-T*—-1) = 0.

Proof. As explained in Section A.4.1, there exists a group of quemnesarrivals that con-
stitute higher priority compared to the virtual job thatwaed at time 0. At timd the volume

of jobs from higher priority queues and arrivals is

k=1 i-1 M k-2 k-2
Qi+ > D QM + > Qi) + A-T",0) (A.20)
i=1 j=0 i=k+1 j=0 j=0

If the higher priority queues and arrivals with respect te Wrtual jobs in Equa-

tion (A.20) are never empty at any time during), then the virtual job is guaranteed not
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to leave the system in the interval (). Based on this observation we derive a lower bound

on Priy™ (k) > m) as follows.

[\

Pr(VM(K) > m)
i=1 j=0 i=k+1 j=0

k-1
+ZQK,(|) + AT, 0)} > o]

k-1i-1 M k=2
[Og;;m{ Qi)+ >, > Qi)

k-1 i-1 k-1
- Pr{ inf { Qui(-T" = 1)+ D IAN-T 1)
i i=1

M k-1 = M
+ 20 2 QT =D+ ) k=DANT )
i=k+1 j=0 e ]

+KAY(=T*,0) + (k - DAN(1, |) ~NC(T* +1+ 1)} > 0)

- Pr[oirﬂjm{z IANGT* 1) + Z (k- DAN-T*,1)

i=k+1
+RAY(=T*,0) + (k= DAY(L 1) = NC(T* +1 + 1)} > 0)

In the calculation above, note that we have argued in Sedtidrl that at time
—T* —1 all higher priority queues are empty. ]

Extending the above to obtain a tight lower bound on the deaty of LAS is
difficult without further assumptions on the inputs. We make tesueptions in order to

complete the derivation.

Assumption A.4.1. Let Aygn denote the sum of all higher priority arrivals described in

Theorem A.4.2, then we assume that the corresponding nadéida satisfies

|( Ve i+ -v < gh;jm (C(T* + 1)) (A.21)

forve[v—4,v+6], v >0, andé > 0 syficiently small.
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Assumption A.4.2. Define

e

Arigh = (- -» ANgn(=T.0). ... Al (=1, 0), AN;1,(0. 0))

Then, we assume that the stochastic prodegs satisfies

(AnighlANgh(0. 0) = 0) <st (AnignlANg,(0.0) > 0).

whereﬁhigh was defined in Assumption A.4.1.

The first assumption is equivalent to the decay rate beingiaeld Intuitively, a
decay rate with the property of additive functionals imglteat the occurrence of a rare
event in the large deviation framework happens in a strdigkt This assumption has
been used extensively in large deviation literature [52¥4, Further, arrival processes
that satisfy Assumption A.4.1 include many common processeh as all stationary and
Markov dependent processes. Additionally, if the arrivagess is of Levy type then the
decay rate of the the arrival satisfies Equation (A.21).

The second assumption allows us to show that the virtualydidaay rate is equal
to the actual delay decay rate. This assumption esserg@jly that the arrival process has
the property that if there are very few arrivals in a givendisfot, there were also very few
arrivals in the immediate past (and vice versa). It is a kihtbarstiness” assumption for
the source.

We are now ready to complete the proof of Theorem 5.3.1.

Proof. (of Theorem 5.3.1)follows from Theorem A.4.2 and Assumption A.4.1 tiatk, m)
is upper bounded by the expression in Equation (5.1) usiagdme technique as in [14].

Further, applying Theorem A.4.1, we obtain equality. Lastsing similar arguments as in
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[38], we can conclude that the actual delay decay rate isleéqube virtual delay decay

rate under Assumption A.4.2, which completes the proof. ]

A.5 Proof of Theorem 6.3.1

A.5.1 Lower bound on the decay rate

First, note that an upper bound on the probability is a lowemiol on the decay rate. We
start the analysis of finite-SRPT by deriving an upper bounthe probability of the virtual
delay ¥ (k)) exceeding some threshatd i.e., Pry™ (k) > m).

DenoteBNK(a, b) as the service capacity available to all the the fileQjm(0) in-
cluding the tagged file during intervad, (), and Bi'f‘j(a, b) as the service capacity available
to the queudQ; j during the time-intervalg, b). To illustrate the dierence, consider the
case where the tagged file of size 3 arrives to the system amhied 2 units at time-slot
2 and the rest is served at time-slot 7. In this case, thecgeruailable to all files of size
3 that arrives at time-slot 0 including the tagged file durfiigl) is BN-3(7,1). BN3(7, 1)
can be derived by noticing that the tagged file residg34g during the interval (21), and
Qs during (7 3), thusBN3(7, 1) is the summation of the available service in these queues

during their respective time intervals, i.e.,

BN3(7,1) = BY5(2 1) + B} (7. 3).

Let us focus our attention oBy. By the operation of finite-SRPTY( (k) > m}
implies that all files inQyk(0) have not been fully serviced by timm. In other words,
PrviN(k) > m) < Pr(Qux(0) > BN¥(m, 1)). Denote the lower bound @"*(m, 1) as
BX(m, 1). Then the following holds.
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PrviN (k) > m)

IA

Pr(Qcx(0) > B¥(m, 1))
Pr(Qux(0) > B(m, 1)) (A.22)

IA

To connect with the simple case, we show that Equation (@&B)revised in the

same manner as Equation (A.22) as follows.

PrvN(K) > m) <

Pr(Quk(0) > (NC(m+ 1) - it A(m. 1)

- 3M 21 Qii(0), ) k<D

Pr(Qu(0) = (NC(m + 1) - X A(T1, 1)

— P AMT+ 1) - 2 31 Q0)) ) D<k<2D

(A.23)

whereBx(m, 1) is equal to IC(m+1)- XL A(m, 1)- 1M, Y1 Qij(O)s fork < Dand

(NC(m+1)- S AT, 1) - 2P AM T1+ 1) - M) 251 Qi j(0)s for D < k< 2D.
The arguments in Section 6.2 provides a clear cut way toB[Hgﬁm, 1) by providing upper
bounds on the volume of files in higher priority queues andhéigpriority file arrivals for
the simple case dd < M < 2D.

However, we require the solution for the general case. Terekthe result to a
more general case, we make use of the ideaBi&(m, 1) can be broken down into mul-
tiple B',(a, b)'s. In particular, we hav@8™¥(m, 1) = B (m, 1) for k < D andB"¥(m, 1) =
BR (T2, 1)+BY,_p(T2, T1+1), whereBR, (m, 1) = NC(m+1)-Z A(m, 1)-3M) 2573 Q15(0)
fork < D and
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k-1
BN (T1, 1)+ B\ (M Ty +1)> NC(m+ 1) - Z A(T1, 1)
i=1

=

_D-
_ Z Ai(m,T1+1)—_Z Qi,i(0),

k 1 M k-
=1

i=1 i

Il
i

for D <k < 2D.

This idea can be extended to the general case in the follomegner. Denotd;
as the time-slot in which the tagged file receives’tts D units of service. Then it is clear
that a job of sizek requires[k/D] rounds of service, and will leave the system at time-slot
Tryo1. We denotery + 1 as the last round of service in which the tagged file leaves th
system, i.e.f1 = [k/D] -1, thusT; ;1 = m.

Now we characterize the lower bound B¥¥(m, 1). Note that the total available
capacity to all higher priority files in intervair( 1) with regards to the evefiv™ (k) > my,
i.e., BN%(m, 1), is the remaining capacity after all the higher priorityeges are served in

finite-SRPT. Using similar argument as the simplec M < 2D case, we have

BN’k(m’ 1) = Bk,k—l'lD(TI’1+1’ TI']_ + 1) +...+ Bk,k—D(TZ’ Tl + 1) + Bk,k(Tl’ 1)
k-ri1D-1 k-D-1
> NCTa— > iANTa T+ 1) - > iAN(T2, Ti+1)
£ £
k=1 I M k-1 l
=Y ANTL D) = TraM-1)- > " Q(0) (A.24)
i=1 i=1 j=1

We complete the lower bound by deriving an upper boundrify Z'j‘j Q.;(0).
Section 6.2 reports a suitable upper bound for the simple cB® < M < 2D in Equa-
tion (6.6) fork < D and in Equation (6.7) foD < k < 2D. Lastly, the upper bound of
ProvN (k) > m) can completely characterized by noting that by definition
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k<D k>D

Low —_ Low
i t priority
D  High
priority

Low
priority

High
High priority

priority

|<—U—>|<—U—>|
|«— T —>|— O —|

Figure A.3: Priority scheme for a tagged job of size k, whBrec M < 2D. The higher
priority area is composed of typical higher priority jobpresented as the thick diagonal
lines and atypical jobs are in the rest of the shaded areaghedsent the atypical jobs.

Quk(0) = KAY(0, To + 1). (A.25)

To extend this result to the general case we make the folgparguments. Higher
priority files with respect t@Qy k(0) can be separated into twdidirent groups: the typical

and the atypical higher priority files. In other words,

~
=

k

M
D Qio=> >, Q.,(0)+Z > Qi) (A.26)

i=1 j i=1 jeA-{k} i=1 je(1,2,...k}—-

i
i

whereA = {i,i - D,i-2D,...,i— sD}ands = [ 51~ 1. Note thaty ; 3"ic 4_q Qij(0) is the

volume of typical higher priority files in the thick diagorsdtip andZ!‘:1 Yier2,..k-A Q. j(0)

is the total volume of atypical files in the higher priorityeqes as shown in Figure A.3.
Based on similar arguments as in Section 6.2, the volume {ifed in the higher

priority queues in Equation (A.26) can be upper bounded by
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k k-1 k-D
>0 QO < DN To+ 1)+ Y AN, T+ 1)+...
i=1 jeA—{K) i=1 i=1

k+r2D

+ Z iAN(Trpe1. Tr, + 1) = Tr,(M = 1) = NCT;,, (A.27)
i=1

and

k
> ) Q)= -T,(M-1), (A.28)
i=1 je(1.2,..k-A
wherer, = [%] - r%], and 0> T_; > T_» > ... > Ty,. The upper bound described in
Equation (A.27) is the result of the fact thgtl iAiN(O, To + 1) contributes to the upper
most strip andzikz‘lD iAiN(TO, T_1 + 1) results in files in the next lower strip and so on.
Next, the upper bound in Equation (A.28) corresponds to thrimum volume of
the atypical higher priority files. The maximum volume of Budes in interval (QT,) is
(1-T,)(M-1) since at most only one file can become atypical in a timeasid the largest
possible atypical file size is1 — 1.

Combining Equation A.27 and Equation A.28, we have

M k-1 k-1 k=D
Q0 < DIANOTo+1)+ Y iAN(To, T+ 1)+...
i=1 j=1 i=1 i=1
k+r2D

+ Y AN, Ty, + 1) - 2T, (M- 1) - NCT,,,  (A.29)
i=1

Combining the result of Equation (A.29) and Equation (A,24¢ have
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k-r1D-1
BY(m1) > NCm+1-T,)- Z IAN(T 0 T + 1) — ..
i=1
k-D-1 I k-1 k-1
=1

= > IANT T+ 1) - Y IAN(TL 1) - Y IANO, To + 1)
‘ - -
k_ID l k+l’2D I

=D ANTo, T+ ) == Y AN (T, Tr, + 1)
i=1 i=1
—2M+1-T,,)(M - 1), (A.30)

Lastly, applying the results from Equations (A.30), and &upn (A.25), to Equa-
tion (A.22), we have the following upper bound on the probighbof {V(N (k) > m}.

PrviN (k) > m)

IA

PrQux(0) > BM¥(m, 1))

k-r1D-1 k-D-1
Pr[ DU ANMT, 1)+ D IAN(T, T+
i=1 i=1

IA

k-1 k

+ Z;‘ iAN(TL, 1) + Z;‘ iAN(0, To + 1)
i= i=
k+D k-roD

+ Z IAN(To, T+ 1)+...+ Z iAN(Trpe1, Tr, + 1)
i=1 i=1
+2(M+1-T,,)(M - 1) = NC(m+1-T,,) > 0)

rl

2M -1

ZA,-(TJ-+1,T,- +1)- N(C— %)(m+ 1+Ty,) > 0]
j=r2

Pr[_U

T:T

ZPr

fary
T:T

= Pr

rl
Z AT+, Tj+1) =N (C - %) (Mm+1+T,)> 0]]
j=r2

IA

rl
> AT, Tj+ 1) =N
j=r2

IA

(c— 2(M - 1)

N )(m+ 1+Tr2)>OJ

where conditior7 states tham =Ty, > ... > Ty >0>Tg> ... > Ty,, andAj(Tj,1, Tj+1)

is defined as
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AJ‘(TJ'H_,TJ' + l) =
SR P A(Tjor, Tj + 1) jefri+Llry,....2.1)
SITIA(TL D) + 35 IA(0. To+1) =0

TP iA(T L, Ty + 1) je{-1-2,...,r2+ 112}

Fix anye > 0 and observe that faX large enough, we haye€ - 24%-2) > (C -
€). Applying the contraction principle we have that the detkcay rate of finite-SRPT,

lv(k, m), is lower bounded by“—¢(k, m) for anye > 0. Wherel S(k, m) is defined as

: (A.31)

1Sk, m) = In Tllnf {Z IAN(TI+1 Tl (y(THl T.+1)}

where conditioryl” states tham = Ty, 4.1 > Tr; > ... > Ty > 0> Tp... > Ty, andy states

that

ri k-iD-1

Z Z JyETHl ,Ti+1) + Z Jy(T1 ,1) 4 Z Jy(0 . To+1)

i=1 j=1
-1 k-iD

+ Z Z jy(T'+1 T — gm+ 1+ Tr,)s

i=ry j=

whereyﬁT”l’Ti”),yTl ) y(°T°+l) > 0foralli,j > 0.

J

A.5.2 Upper bound of the decay rate

We now derive an upper bound for the delay decay rate of fBIR&T which is arbitrarily

tight with the lower bound derived in Section A.5.1. This @ by finding a suitable lower
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bound on the probability of delay, i.e., RV (k) > m). The main argument is based on the
idea that by using the two dimensional queueing framewankefiSRPT can be viewed as
a simple priority queueing system. Then by using similafyais as the priority queueing
system an upper bound can be derived.

As explained in Section 6.2, there exists a group of filesabastitute higher prior-
ity compared to the tagged sikdile that arrives at time 0. Unlike Section A.5.1, files that
are absolutely required to be served before the tagged fitesmonds to the lower bound
on the volume of higher priority files. A lower bound for thengle D < M < D case is

derived in Section 6.2, and similarly a lower bound for theegal case can be derived as

ri
Z AT Tj+1) = (M+1-T,)(M - 1). (A.32)
j=r2
However, consider the following scenario. Assume that tirpatisfiesT,, .1 < | <
Ty,. This implies that at timé the tagged file has received orty- 1 units but have not
received the lasD units of service for it to completely leave the system. Thetinae | all

files of higher priority are

rl
DUATh T+ 1) = M+ 1= Ty, )(M - 1), (A.33)
j=r2

assumingT,,1 = |. If all the higher priority files with respect to the taggedesk files
have not left the system in any time during the intervahff) then it is guaranteed that the
tagged file did not leave the system in the intervainf0 Based on this observation, we

derive a lower bound on Pr{N) (k) > m) as follows:

PrviN (k) > m)
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M-1)

rl
> Pr[ inf {Z AT, Ty +1) - N(C+

O<lI< :
=i=m j=r2

)(I +1- Trz)}J, (A.34)

assumingly, ;1 = |. Extending the above result to obtain a tight lower boundnendecay
rate of finite-SRPT is diicult without further assumptions on the input. We make the

following assumption on the arrival process in order to clatgpthe derivation.

Assumption A.5.1. Let Ayigh denote the sum of all higher priority arrivals in any session
of (Ti+1, T + 1) with respect to the tagged size k file as described in Equ#ti88, then we

assume that the corresponding rate function satisfies

T (C(Tia = T+ ) = v) < 10T (C(Tia - T))

| (Ti+
Ani Anigh

gh
forve[v:—46,v+6], v >0, andé > 0 syficiently small.

The following explanation of the assumptions is an exceghfChapter A.4 which
is included for completeness. The first assumption is etpnvdo the decay rate being
additive. Intuitively, a decay rate with the property of @ne functionals implies that
the occurrence of a rare event in the large deviation frameWwappens in a straight line.
This assumption has been used extensively in large deviktgwature [5, 14, 27]. Further,
arrival processes that satisfy Assumption A.5.1 includeywe@mmon processes such as all
stationary and Markov dependent processes. Additiorialiye arrival process is of Levy
type then the decay rate of the the arrival satisfies Assompti5.1.

Using the same technique as in [14] on Equation (A.34), we liaatl ©—¢(k, m) as
an arbitrarily tight upper bound on the delay decay rate @fefiS8RPT based on Assump-
tion A.5.1. Combining with the previous lower bound, we abtae result for virtual delay.

This completes the proof.
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A.6 Proof of Theorem 7.4.1

The basic idea of the proof of Theorem 7.4.1 is the followiggdring the slight adjustment
required for sizek jobs). The explanation described here is only for betteretstdnding
and the actual proof considers the adjustment. Den®@®f2]¢ and JAN(Ti,1, T; + 1)] as
d units of all jobs that arrive toR2Q/i and sum ofd units of all jobs INAN(T;,1, T; + 1)

respectively. Then, we have

X

Pr(V™M(K) > m) Pr([2DQ/K" + ...+ [2DQ/0* + Q°(To) > NC(m + 1))
Pr([2DQ/K" + ... + [2DQ/0]* ! + [2DQ/ - 1]¥

+...+[2DQ/k— M]™ > NC(T. + m+ 1))
Pr([AY(Tirs, T+ DI + .+ [AN(T, To + DI + [AN(To, Ty + DI

+ . [AN(Thomen, T + D> NC(T, + m+ 1))

Q

Based on this intuitive argument the precise proof of thévdgon is provided in
the following sections.
A.6.1 Lower bound of the delay decay rate of discrete PS

We start the analysis of discrete PS by deriving an upperdbouarthe probability of virtual
delay of sizek job exceeding some threshatd i.e., Priy™(k) > m). Denoteéﬁ‘(a, b) as

the service capacity available to all jobs with originaledizduring the interval &, b).

Lemma A.6.1. For any ke M, the virtual delay of size k jobs in discrete PS satisfies

Pr(V™(k) > m)

IA

k-1
Pr[sup[ D AR Ti+ 1) - B Tiew + 1)J > 0}
T:7\i=k—M

k-1
Pr[ > AT T+ ) = B M Ticw + 1) > o]
i=k-M
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where conditiorJ” states that n> Ty > Ty-1 > ... T1 20> To... = Tkems1r = Tkem =
T., T}‘ are the time-slots for each cycles that supremize the abquatien. Further,

A(Tis1. Ti + 1) is defined as

KAN(Tio0, Ty + 1) fork—M<i<-1
AR(Tisr. T+ 1) = § (k= DAN(TL, 1) + kAV(0, To+ 1) fori =0

(k= )AY(Tiv1, Ti + 1) forl<i<k-1.

The theorem states thapassiblescenario in which the eveiv™(k) > m} could
occur is when the totaklevantvolume of arrivals for sizd job across all future and past

2DQs for sizek jobs exceed the available capacity to all jobs of &ize

Proof. ConsiderQ?. By the operation of discrete P8/ (k) > m} implies that all jobs
in Q2(0) have not been fully serviced by tinm, i.e., {Q%(0) > BN(m 1)}. Since adding
more jobs makes the event of exceeding the available cgpaoite probable, we have the

following.

Pr(V™ag >m) < Pr(QY0)> BY(m 1))
= Pr{sup(kAY(0,T) - BY(0.T)) - BY(m 1) > o)
= Pr(kAY(0.T. +1)- BY(mT. +1)>0)

E
(

= Pr(kAYO.Ticw +1) - BYM Ty + 1) > 0)
(

< Pr kAk (Te. Tiem + 1) = BR(M Ticw + 1) > 0)
< Z ANT Ti+ 1) - BY (M T + 1) > 0}
i=k—M
for anyTIz : J. Thus Lemma A.6.1 holds. ]
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Note that the total available capacity to all jobs of skz&n interval {(m, T) with
regards to the everftyM(k) > my, i.e. B’Iz‘(m, T), is the remaining capacity after all the
higher priority queues are served in discrete PS. So, thewfinlg inequality holds for
T <O.

k-1 M
BYMT) > NC(T+m+1)— > W(Tiy, Ti+1)- > Qi(Tkm),  (A35)
i=k—M j=Lj#k

wheredN(Ti, 1, T; + 1) is defined as

AN(Tiy1, Ti+1) =

M AN, Ti+ 1)

+ XM (k= DAN(Tiag, Ti + 1) fori # 0

ST IANTL 1) + 2 (k= DAN(TL, 1)

+ 3% JANO T+ 1) + 5N, kANO. To+1)  fori =0

and correspondingl?ti‘k(Ti+1, Ti +1) isAN(T;,1, T; + 1) without the term corresponding to
j = k. Using Lemma A.6.1 and the lower bound 6}:1(m,T) in Equation (A.35), we derive
the following theorem which specifies a lower bound of thexgdelecay rate of discrete PS,

i.e., upper bound on the probability.

Theorem A.6.1. The decay rate of size k jobs under discrete PS is lower baLasl®ollows

M
oGk, m) 2 inf {inf 33 Laver, ony (7T 1. (A.36)
TV |
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where conditiorl states thatme Ty > Ty.1 > ... T1 20> To... > Tiemer = Tem = Ts,

andy states that

k—i M
Z Jy(TH-l JTi+1) + Z (k I)y(T|+1 JTi+1) + Z Jy(0T0+1)
#0\ j=1 j=k—i+1

k-1
0T+ D45 e 1 = Ty + e 1),
=1 j=k+1

3
M
=k+1
where i+ T+1), (T yOTo D > o foralli, j > 0.

Proof. Combining Equation (A.35) with Lemma A.6.1 we have the failog upper bound
on the probability of V(N (k) > m}.

A

k-1
Pr(VN(k) >m) < Pr|sup Z AN(Tisr, Ty + 1) = BN(M, Ty + 1)} > o]
7.7 \izk—M

k-1
= Pr AN LT+ 1) - BY (M Tiem + 1) > 0]
i=k—M
k-1 k-1
< Pr AN LT+ 1)+ Z W (T, T + 1)
i=k—M i=k-M
M
+ > QTkem) = NC(Ticw +m+ 1) > o]
j=Ljzk
k-1 k-1
< Pr Ak (The T+ D+ Z k(T|+1’ i +1)
i=k—M i=k-M
~NC(Tg_m + m+1) > 0) (A.37)
k-1

= Pr Z AN(T T +1) = NC(Tiem +m+1) > o}
i=k—M

P

IA

k-1
U [ Z AN(Tis, Ty + 1) = NC(Tyem + M+ 1) > 0}]

le—M

IA

Z Pr[ Z AN(Tis1, Ty + 1) = NC(Tyem + M+ 1) > o}

T i=k—M
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where Equation (A.37) follows from the observation tiy(T.) = Oforall1<i < M by

definition. Applying the contraction principle completée tproof. ]

Theorem A.6.1 provides possiblescenario in whichV®N(k) > m} could occur.
To show that this scenario is indeed the most dominant anttatsrthe most dominant
decaying behavior of the probability, we show that the sameaton provides an upper

bound on the decay rate of™(k) > m}.

A.6.2 Tight upper bound of the delay decay rate of discrete PS

We now develop an upper bound for the decay rate of discrete is tight with the

lower bound derived in Section A.6.1. The main argument fierdpper bound is that by
using the 2DQ framework with cycles, discrete PS can be \dexgea simple priority queue-
ing system. Thus, using a similar analysis of the well knowarfty queueing system, we

can derive the tight upper bound for the decay rate.

Theorem A.6.2. The probability of the virtual delay for size k jobs in LAS damlower

bounded as

k-1
Pr(V™(k) > m) > Pr{o<ipkf< m{ kZM AN(T |, T+ 1) = NC(T)_y + 1 + 1)} > o],

where T are the optimizing time-slots for each cycle, and they Batis> Ty > Ty 1 >

. T120>2To... 2 Temer = Tuem = T

Proof. As explained in Section 7.4, there exists a group of job alsithat constitute higher
priority compared to the tagged job. If the higher priorityegies and arrivals with respect to
the virtual job are never empty at any time duringr(f), then the virtual job is guaranteed
not to leave the system in the interval (). Based on this observation we derive a lower

bound on PN (k) > m) as follows.
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Pr(V™ (k) > m)

[\

N
[O<I‘|I:Lf<m{I ;M‘u (TI+1’ it 1)
j
+

i=1 j=1

M
QM (T = NC(Ty_y, + 1+ 1) > o]

I
e
o_.
A3,
3
/—/—\

Z AN(T/ T+ 1) = NC(Ty +1 + 1))} > oJ,

i=k—-M
where the last equality follows from the fact that at timet3l, the system is empty. O
To obtain atight lower bound on the decay rate of discretes®#icult without fur-

ther assumptions on the input. Thus, we make the assumpssamption 7.4.1 described

in Section 7.4. We are now ready to complete the proof of Témor.4.1.

Proof. (of Theorem 7.4.1)follows from Theorem A.6.2 and Assumption 7.4.1 thatk, m)
is upper bounded by the right hand expression in Equatidr) (ising the same technique
as in [14]. Further, applying Theorem A.6.1, we obtain eifyal ]
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