511 research outputs found

    GPS Multipath Detection in the Frequency Domain

    Full text link
    Multipath is among the major sources of errors in precise positioning using GPS and continues to be extensively studied. Two Fast Fourier Transform (FFT)-based detectors are presented in this paper as GPS multipath detection techniques. The detectors are formulated as binary hypothesis tests under the assumption that the multipath exists for a sufficient time frame that allows its detection based on the quadrature arm of the coherent Early-minus-Late discriminator (Q EmL) for a scalar tracking loop (STL) or on the quadrature (Q EmL) and/or in-phase arm (I EmL) for a vector tracking loop (VTL), using an observation window of N samples. Performance analysis of the suggested detectors is done on multipath signal data acquired from the multipath environment simulator developed by the German Aerospace Centre (DLR) as well as on multipath data from real GPS signals. Application of the detection tests to correlator outputs of scalar and vector tracking loops shows that they may be used to exclude multipath contaminated satellites from the navigation solution. These detection techniques can be extended to other Global Navigation Satellite Systems (GNSS) such as GLONASS, Galileo and Beidou.Comment: 2016 European Navigation Conference (ENC 2016), May 2016, Helsinki, Finland. Proceedings of the 2016 European Navigation Conference (ENC 2016

    Analysis of Multipath Mitigation Techniques with Land Mobile Satellite Channel Model

    Get PDF
    Multipath is undesirable for Global Navigation Satellite System (GNSS) receivers, since the reception of multipath can create a significant distortion to the shape of the correlation function leading to an error in the receivers’ position estimate. Many multipath mitigation techniques exist in the literature to deal with the multipath propagation problem in the context of GNSS. The multipath studies in the literature are often based on optimistic assumptions, for example, assuming a static two-path channel or a fading channel with a Rayleigh or a Nakagami distribution. But, in reality, there are a lot of channel modeling issues, for example, satellite-to-user geometry, variable number of paths, variable path delays and gains, Non Line-Of-Sight (NLOS) path condition, receiver movements, etc. that are kept out of consideration when analyzing the performance of these techniques. Therefore, this is of utmost importance to analyze the performance of different multipath mitigation techniques in some realistic measurement-based channel models, for example, the Land Multipath is undesirable for Global Navigation Satellite System (GNSS) receivers, since the reception of multipath can create a significant distortion to the shape of the correlation function leading to an error in the receivers’ position estimate. Many multipath mitigation techniques exist in the literature to deal with the multipath propagation problem in the context of GNSS. The multipath studies in the literature are often based on optimistic assumptions, for example, assuming a static two-path channel or a fading channel with a Rayleigh or a Nakagami distribution. But, in reality, there are a lot of channel modeling issues, for example, satellite-to-user geometry, variable number of paths, variable path delays and gains, Non Line-Of-Sight (NLOS) path condition, receiver movements, etc. that are kept out of consideration when analyzing the performance of these techniques. Therefore, this is of utmost importance to analyze the performance of different multipath mitigation techniques in some realistic measurement-based channel models, for example, the Land Mobile Satellite (LMS) channel model [1]-[4], developed at the German Aerospace Center (DLR). The DLR LMS channel model is widely used for simulating the positioning accuracy of mobile satellite navigation receivers in urban outdoor scenarios. The main objective of this paper is to present a comprehensive analysis of some of the most promising techniques with the DLR LMS channel model in varying multipath scenarios. Four multipath mitigation techniques are chosen herein for performance comparison, namely, the narrow Early-Minus-Late (nEML), the High Resolution Correlator, the C/N0-based two stage delay tracking technique, and the Reduced Search Space Maximum Likelihood (RSSML) delay estimator. The first two techniques are the most popular and traditional ones used in nowadays GNSS receivers, whereas the later two techniques are comparatively new and are advanced techniques, recently proposed by the authors. In addition, the implementation of the RSSML is optimized here for a narrow-bandwidth receiver configuration in the sense that it now requires a significantly less number of correlators and memory than its original implementation. The simulation results show that the reduced-complexity RSSML achieves the best multipath mitigation performance in moderate-to-good carrier-to-noise density ratio with the DLR LMS channel model in varying multipath scenarios

    A Robust GNSS tracking enhancement for hostile environments

    Get PDF
    openIn urban environments any GNSS receiver is subjected to frequent sudden losses of the line-of-sight (LOS) signal and to the multipath phenomenon, which drastically reduce the accuracy, robustness and availability of the GNSS service. This thesis evaluates the implementation of a tracking loop for robust tracking of GNSS signals in hostile scenarios, developed in collaboration with Qascom and addressed to their software defined GNSS receiver, the QN400. After an initial analysis of the state of the art in robustness enhancement techniques, it was decided, together with Qascom's Advanced Navigation team, to integrate a Kalman filter inside the common tracking loop structure. More specifically, the proposed tracking loop integrates a fourth-order Kalman filter and an outage detection algorithm into the standard structure, with the overall goal of improving tracking performance in terms of robustness to multipath effects and signal's interruptions. The proposed design was extensively tested with Qascom's semi-analytical simulator in Matlab, both with simulated scenarios, based on the DLR land mobile multipath channel model, and more realistic ones based on live recordings of a GNSS receiver mounted on a vehicle moving in Bassano del Grappa. The proposed solution has shown great efficacy in all designed test environments. Specifically, it has demonstrated superior resilience in resisting signal outages when compared to the standard tracking loop

    Implementation of a Vector-based Tracking Loop Receiver in a Pseudolite Navigation System

    Get PDF
    We propose a vector tracking loop (VTL) algorithm for an asynchronous pseudolite navigation system. It was implemented in a software receiver and experiments in an indoor navigation system were conducted. Test results show that the VTL successfully tracks signals against the near–far problem, one of the major limitations in pseudolite navigation systems, and could improve positioning availability by extending pseudolite navigation coverage

    Design, implementation and verification of CubeSat systems for Earth Observation

    Get PDF
    In recent years, Earth Observation (EO) technologies have surged in an attempt to better understand the world we live in, and exploit the vast amount of data that can be collected to improve our lives. The field of EO encompasses a broad array of technologies capable of extracting information remotely, in a process called Remote Sensing (RS). CubeSats are causing a revolution in the RS field, and are becoming a really important contribution to it. The lack of testing and preparation are common in CubeSat EO missions due to the low budgets they usually suffer from. A successful CubeSat EO mission must supply the lack of size or funding with properly tested components and environments. In this document, emphasis will be given to preemptive approaches such as studying the performance of Commercial Off-The-Shelf (COTS) Global Positioning System (GPS) receivers and the development of simulators for highly dynamic environments This topic will be expanded upon by introducing the problematic of simulating such signals for testing, and the possible countermeasures to Radio-Frequency Interference (RFI) that threatens the success of the mission. Finally, a new S-Band Ground Station will be built to provide access to this band for future CubeSat missions. All of the above will provide a holistic view on some of the hot challenges that EO faces, and multiple future research paths that open with the recent rise of New Space technologies

    Signal Acquisition and Tracking Loop Design for GNSS Receivers

    Get PDF

    Direct position tracking in GPS using vector correlator

    Get PDF
    Traditional GPS receivers track the code and carrier of individual satellite signals and estimate the position and velocity of the receiver using trilateration. Different from this two-step approach, direct maximum likelihood estimation of position has proved to be beneficial in weak signal and multipath environments. In this thesis, an architecture of a direct position tracking loop that maximizes an approximation to the maximum likelihood cost function is presented. The unscented Kalman filter is used for direct position tracking using the vector correlator sum. This technique of maximizing the vector correlation sum proves to be beneficial in certain kinds of multipath environments. Further, the tracking loop architecture is validated using experiments with a software receiver

    Robust Positioning in the Presence of Multipath and NLOS GNSS Signals

    Get PDF
    GNSS signals can be blocked and reflected by nearby objects, such as buildings, walls, and vehicles. They can also be reflected by the ground and by water. These effects are the dominant source of GNSS positioning errors in dense urban environments, though they can have an impact almost anywhere. Non- line-of-sight (NLOS) reception occurs when the direct path from the transmitter to the receiver is blocked and signals are received only via a reflected path. Multipath interference occurs, as the name suggests, when a signal is received via multiple paths. This can be via the direct path and one or more reflected paths, or it can be via multiple reflected paths. As their error characteristics are different, NLOS and multipath interference typically require different mitigation techniques, though some techniques are applicable to both. Antenna design and advanced receiver signal processing techniques can substantially reduce multipath errors. Unless an antenna array is used, NLOS reception has to be detected using the receiver's ranging and carrier-power-to-noise-density ratio (C/N0) measurements and mitigated within the positioning algorithm. Some NLOS mitigation techniques can also be used to combat severe multipath interference. Multipath interference, but not NLOS reception, can also be mitigated by comparing or combining code and carrier measurements, comparing ranging and C/N0 measurements from signals on different frequencies, and analyzing the time evolution of the ranging and C/N0 measurements

    A Comparative Performance Analysis of GPS L1 C/A, L5 Acquisition and Tracking Stages under Polar and Equatorial Scintillations

    Get PDF
    This paper provides a comparative performance analysis of different acquisition and tracking methods of GPS L1 C/A and GPS L5 signals testing their robustness to the presence of scintillations in the propagation environment. The paper compares the different acquisition methods in terms of probabilities of detection/false alarm, peak-to-noise floor ratios for the acquired signal and execution time, assessing the performance loss in the presence of scintillations. Moreover, robust tracking architectures that are optimized to operate in a harsh ionospheric environment have been employed. The performance of the carrier tracking methods, namely, traditional Phase-Locked Loop (PLL) and Kalman filter based-PLL, have been compared in terms of the standard deviation of Doppler estimation, phase error, phase lock indicator (PLI) and phase jitter. The study is based on real GNSS signals affected by significant phase and amplitude scintillation effects, collected at the South African Antarctic research base (SANAE IV) and Brazilian Centro de Radioastronomia e Astrofisica Mackenzie (CRAAM) monitoring stations. Performance is assessed exploiting a fully software GNSS receiver which implements the different architectures. The comparative analysis allows to choose the best setting of the acquisition and tracking parameters, in order to allow the operation of signal acquisition and tracking at a required performance level under scintillation conditions
    • …
    corecore