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Abstract

In urban environments anyGNSS receiver is subjected to frequent sudden losses of the line-of-
sight (LOS) signal and to the multipath phenomenon, which drastically reduce the accuracy,
robustness and availability of the GNSS service. This thesis evaluates the implementation of a
tracking loop for robust tracking of GNSS signals in hostile scenarios, developed in collabora-
tion with Qascom and addressed to their software defined GNSS receiver, the QN400.
After an initial analysis of the state of the art in robustness enhancement techniques, it was de-
cided, together with Qascom’s Advanced Navigation team, to integrate a Kalman filter inside
the common tracking loop structure. More specifically, the proposed tracking loop integrates a
fourth-orderKalman filter and an outage detection algorithm into the standard structure, with
the overall goal of improving tracking performance in terms of robustness to multipath effects
and signal’s interruptions. The proposed design was extensively tested with Qascom’s semi-
analytical simulator in Matlab, both with simulated scenarios, based on the DLR land mobile
multipath channel model, and more realistic ones based on live recordings of a GNSS receiver
mounted on a vehicle moving in Bassano del Grappa. The proposed solution has shown great
efficacy in all designed test environments. Specifically, it has demonstrated superior resilience
in resisting signal outages when compared to the standard tracking loop.
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1
Introduction

This thesis was developed in collaborationwithQascom, an engineering company that offers se-
curity solutions in satellite navigation and space cybersecurity. One of its products, theQN400,
is a software defined radio based receiver which provides an high degree of flexibility making
it capable of different applications for space and Earth. For instance, in the context of space
missions, the QN400 has been chosen for the Lunar GNSS Receiver Experiment (LuGRE)
project in collaboration with ASI and NASA [14].
On Earth, the application scenario is completely different. In urban environments, such as city
centres, any GNSS receiver is subjected to frequent sudden losses of the line-of-sight (LOS)
signal and to the multipath phenomenon: the reception of multiple delayed and attenuated
replicas of the original signal that interfere with each other at the receiver. These phenomena
significantly impact the quality of service in terms of accuracy, robustness, and availability.
This thesis work specifically addresses the need to enhance the robustness and reliability of the
QN400-SpaceGNSS receiver in urban scenarios. In particular themain goalwas tomake the re-
ceiver capable of resisting the frequent signal outages that occur in urban canyons, which cause
the standard receiver to loose the lock of the tracking loops and thus to perform frequently the
time-demanding re-acquisition process. In order to fulfill this need, a Kalman filter aided by an
outage detection algorithm will be described and widely tested in this dissertation.
The next chapters of this document are organised as follows. Chapter 2 presents a general de-
scription of a GNSS architecture, Chapter 3 focuses more on the receiver, the signal structure
and on standard acquisition and tracking procedures. Chapter 4 presents an overview of the
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state of the art techniques for robust tracking in hostile scenarios, Chapter 5 describes the pro-
posed tracking loop, the Kalman filter structure and the outage detection algorithm. Finally,
Chapter 6 reports the simulationperformed and the results obtained,whileChapter 7 discusses
the conclusions and future developments of this work.
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2
Global Navigation Satellite System

2.1 Global positioning

Navigation can be defined as the strategy of getting something from one place to another; to
do so a proper knowledge of the current position is needed and Global Navigation Satellite
Systems (GNSS) were born to fulfill this need.
To get a simple idea of how the position computation is carried out, imagine a sailor with his
ship lost in the middle of the sea [15]. Suppose that a lighthouse, in a fixed and known posi-
tion and whose clock is perfectly synchronized with the mariner’s one, emits a light pulse at a
certain predetermined time instant. Now, bymeasuring the time delay in which he receives the
pulse the mariner is able to calculate his distance from the lighthouse; this measure is defined
as a pseudorange.
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Themariner, having a single pseudorange and knowing the exact position of the lighthouse,
has a circle of possible places where he could be.

Figure 2.1: Single pseudorange measure. Illustration by [1]

In order to get a precise position in a 2D scenario three pseudoranges coming from three
different lighthouses are required.

Figure 2.2: Ideal positioning exploiting three pseudoranges. Illustration by [1]

In a more realistic formulation, each calculated pseudorange will be affected by some uncer-
tainty; the result of the position calculation will be an area (2D space) or a volume (3D space).
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Figure 2.3: Uncertain positioning exploiting three pseudoranges. Illustration by [1]

The shape and size of this area depends not only on the number of pseudoranges but also
on the position of the lighthouses; this effect is called Dilution of Precision (DOP). A bad
distribution of the lighthouses results in a higher uncertainty space and consequently a higher
DOP.

Figure 2.4: Dilution of Precision, on the right an example of low and high DOP. Illustration by [2]

From this simple example the generalisation to the more complex GNSS 3D scenario is
straightforward.
The previously mentioned lighthouses represent the GNSS satellites and pseudoranges are cal-
culated based on the time taken for the signal transmitted by each satellite to reach the receiver.
The assumption that the exact satellite position is known to the receiver is satisfied because
the signal sent by each satellite encodes the ephemeris data: a set of parameters that define
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the satellite’s position and orbit. On the other hand, the assumption that the receiver is per-
fectly synchronised with the satellite becomes too strong; the receivers are usually equipped
with cheap quartz clocks which usually have poor stability. For this reason, a time estimate
appears in the system of equations to be solved and thus an additional pseudorange measure
is required. Furthermore, in order to improve the DOP and provide a more accurate position,
multiple pseudoranges are included in the positioning and time estimation [2].

2.2 GNSS architecture

A Global Navigation Satellite System is a satellite-based system that provides continuous po-
sitioning over the globe. Nowadays several GNSSs are operational: the well-known GPS de-
signed by the US, the European Galileo, the Russian Glonass, and China’s Beidou.

Figure 2.5: GNSS logos (GPS, Galileo, Glonass and Beidou).

Eachof them shares a commonarchitecture structurewhich consists of threemain segments:
a space segment, a control segment and the user segment.
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Figure 2.6: GNSS segments. Illustration by [3]

2.2.1 Space Segment

The orbital satellites of a GNSS constitute the space segment. Typically positioned inMedium
Earth Orbits (MEOs), these satellites are organized into constellations designed to ensure that
a user will have at least four satellites in view from any point on Earth.
Figure 2.7 displays how different GNSSs constellations differ in terms of number of satellites,
orbits altitudes and inclinations.

Figure 2.7: GNSS constellations. Illustration by [4]
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2.2.2 Control Segment

The control segment includes all ground infrastructures responsible for monitoring andmain-
taining general health and status of the satellites, including their position, solar arrays status,
battery level, propellant levels for the orbit adjusting manoeuvres and many more tasks. Fur-
thermore, the control segment defines the ephemeris and almanac data contained in the naviga-
tionmessage and updates each satellite’s clock. The ephemeris parameters define precisely each
satellite orbit and are esential for user receivers to predict each satellite position. The almanac is
a condensed version of these parameters, featuring only 7 of the original 15. These values along
with the clock corrections are modified and adjusted each few hours.

2.2.3 User Segment

The user segment consists of all the devices equipped with a GNSS receiver which acquires,
tracks and demodulates the signals coming from satellites to obtain pseudoranges and com-
pute the device’s position.
These receivers are embedded in many of our everyday devices such as smartphones, smart-
watches, cars and many others.
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3
Standard GNSS Receiver

3.1 Receiver structure

TheGNSS receiver is responsible for acquiring, tracking and demodulating the signals received
form the space segment. It then collects the datamessage, estimates the pseudoranges and com-
putes the position and time.
The general structure of a GNSS receiver is shown in Figure 3.1.

Figure 3.1: Generic GNSS receiver. Illustration by [1]
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The incoming RF signal, which structure will be described in detail in Section 3.2, is cap-
tured by an antenna, filtered, amplified, downconverted and transferred from the analogue to
the digital domain. At this point, exploiting the CDMA technique used in the downlink trans-
mission from the satellites to the ground, each satellite’s signal is acquired and goes through
tracking process while its navigation data is demodulated to obtain the pseudoranges estima-
tions and compute timing and positioning.
For the purposes of this thesis, the focus is moved to the signal structure and to the acquisi-
tion and tracking processes performed in each channel belonging to the digital signal processor
block showed in Figure 3.1.
For a more detailed description of the receiver please refer to [1], [7] or [16].

3.2 Signal structure

All GNSS satellites transmit their signals in the L-band (from 1 to 2 GHz); the frequency allo-
cation between the different positioning services is shown in Figure 3.2.

Figure 3.2: Frequency allocation in the L band. Illustration by [5]

It’s clear thatmany satellites, bothbelonging to the same service ornot,share the samemedium,
thus an appropriate Multiple Access technique is required.
Most GNSSs use Direct Sequence Spread Spectrum (DSSS), which adds to the modulation
process, BPSK in the case of GPS, the use of a spreading waveform generated from a PRN
code, a finite binary sequence completely known to the intended receiver.
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A generic signal will then be a combination of the following components:

• RF carrier
A sinusoidal signal at a given frequency.

• Data waveform
A binary encoded message containing the ephemeris and almanac, the clock bias, the
satellite status and other complementary information.

• Spreading waveform
A spreading signal generated by the transmitter according to a pseudorandom unique
chip sequence: the PRN code. This allows a receiver to acquire and track a given satel-
lite’s signal by knowing its PRN code.

The graphical representation of this combination is shown in Figure 3.3. Tc, the time inter-
val associated to a PRN code chip and is commonly referred as a chip period, its reciprocal is
the chipping rate denoted as Rc and the portion of spreading waveform in a chip period is a
spreading symbol.
The choice of the spreading symbol differentiates one implementation from the others, in the
case ofGPS the choicemadewas pretty simple: a constant amplitude over a chip period. In this
case, the complete DSSS process can be referred as BPSK-R [1]. In GALILEO’s case a more
complex MBOCmodulation is utilized, a combination of two different square wave portions
(BOC signals)[17] [18].

Figure 3.3: DSSS signal generation example. Illustration by [1]

11



The use of DSSS has three main objectives:

• the introduction of frequent phase changes introduced by the PRN waveform enable
precise ranging by the receiver thanks to a sharper Autocorrelation Function (ACF) on
the peak.

• the use of different PRN codes for different satellites enables the simultaneous transmis-
sion at the same frequency.

• it provides significant rejection of narrowband interference.

An important aspect of these DSSS signals is their correlation properties. For simplicity
let’s consider a baseband signal r(t) with no data encoded and modulated with a BPSK. Its
autocorrelation is the result of the correlation between the signal r(t) and a time-shifted replica
r(t− τ) and can be computed as:

R(τ) = lim
T→∞

1
2T

∫ T

−T
r∗(t)r(t+ τ)dτ (3.1)

In the case of a perfectly random binary code Equation 3.1 leads to:

R(τ) =

{
A2(1− |τ|

Tc
) for |τ| ≤ Tc

0 elsewhere
(3.2)

The figure below shows a graphical representation ofR(τ).

Figure 3.4: Autocorrelation between two copies of r(t). Illustration by [1]

Figure 3.5 displays how different modulations result in different ACFs, the higher slope
around themain peak provided by theMBOCmodulation improves the tracking performance
in respect to the simpler BPSK-R [19].
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Figure 3.5: Autocorrelation functions of a GPS signal, a simple BOC modulated signal and a GALILEO signal exploiting a
MBOC modulation. Illustration by [5]

The shape of R(τ) is the key to the acquisition and tracking process performed by the re-
ceiver; by maximising the correlation between a local replica of the PRN waveform and the
incoming signal, it can estimate the delay, phase and frequency offsets required to demodulate
correctly the navigation data and to compute the pseudoranges.
Finally, the orthogonality between signals transmitted at the same frequency is ensured, since
the cross-correlation between two different random sequences of sufficient length is close to
zero. This is necessary to share the commonmedium without inter-signal interference.

Figure 3.6: Autocorrelation of a 1023 chip long PRN sequence and cross correlation between two different PRN sequences.
Illustration by [6]
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3.3 Acquisition

The purpose of the acquisition process is to determine approximate values of the code delay
and carrier frequency of a signal emitted by a specified satellite exploiting its unique and known
PRN sequence. The code delay estimate is required to precisely align in time the local replica
of the PRNwaveform, so that it can be properly removed from the acquired signal. Meanwhile
the frequency of the local replica generated by the receiver’s oscillator has to match the actual
frequency of the incoming signal to downconvert it correctly. In fact, even if the transmitting
frequency of a given satellite is precisely known, it will deviate from its original value because of
the Doppler effect caused by the mutual velocity between the receiver and the satellite, which
shifts the signal’s frequency of values up to±10kHz.
Recalling the correlation properties introduced in Section 3.2, the acquisition process is a two-
variable maximization problem; the correct frequency and code delay values will be those that
maximize the correlation between the incoming signal and the local replica. This optimisation
problem can be performed by computing the correlation several times, adjusting the two pa-
rameters (serial search algorithm) or by using more advanced techniques such as the parallel
frequency space search acquisition or the parallel code delay search acquisition [16].

Figure 3.7: Example of acquisition process result where the desired satellite is found to be present. Illustration by [5]
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3.4 Tracking

The coarse code phase and frequency estimates obtained from the acquisition process must be
refined and constantly updated in order to keep upwith the changes in the receiver and satellite
dynamics. This ensures a correct removal of the PRN sequence, an accurate computation of
the pseudorange and precise decoding of the navigation message; this is done by the tracking
loop. The structure of a single channel signal processing block responsible of the tracking part
is displayed in Figure 3.8. The upper loop is denoted as the code tracking loop or delay locked
loop (DLL), while the lower one is the carrier tracking loop which can be ether a phase locked
loop (PLL) or a frequency locked loop (FLL).

Figure 3.8: Standard GNSS receiver’s tracking engine. Illustration by [7]

3.4.1 Correlators

The received signal is filtered, amplified and sampled before being separated into its in-phase
and quadrature components, I andQ. These two components, obtained exploiting the carrier
generated by the receiver at the current estimated carrier frequency, are thenmultiplied by three
distinct replicas of the PRN code: a prompt one with a delay equal to the current estimate, a
slightly late one and a slightly early one. These six signals are then integrated by the integrate
and dump blocks (I&D) over an integration interval defined asTint typically ranging from 1ms
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to 100ms. This process is performed by the correlators and results in six signals: IE, IP, IL, QE,
QP andQL.

3.4.2 Discriminators

The purpose of the discriminators is to sense and extract, from the correlator outputs, the cur-
rent amount of error in the local replica frequency and code phase in respect to the incoming
signal. Different types of discriminators define different tracking loops.

Carrier loop discriminator

The carrier tracking loop can be either a carrier-phase tracking loop, if the value being tracked
is the carrier’s phase, or a carrier-Doppler tracking loop, where instead is the carrier’s frequency
being tracked.
Carrier-phase tracking loops are mainly of two types, pure PLL and Costas PLL. The latter
is insensitive to the presence of the phase inversions due to the data bit modulation while the
first one has to care about bit inversions caused by the encoded data message. In both cases the
inputs are the Ip andQp components computed by the correlators and the output is the carrier
phase error which will be used as input to the PLL loop filter to reduce noise.
Table 3.1 and Table 3.2 present the most common PLL discriminators alongside with their
main characteristics.

Table 3.1: Common pure PLL discriminators.

Discriminator Characteristics

atan2(Qp, Ip)
Computes the four-quadrant arctangent, corresponds to the
maximum likelihood estimator at both high and low SNR.
Computationally hard.

Qp

average(
√
I2p + Q2

p)

Qp normalized by the average prompt envelope, normalization
provides insensitivity at high and low SNR. Low computa-
tional burden.
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Figure 3.9: Pure PLL discriminators outputs. Illustration by [1]

Table 3.2: Common Costas PLL discriminators.

Discriminator Characteristics

Qp × Ip Classic Costas analog discriminator, nearly optimal at low
SNR, moderate computational needs.

Qp × sign(Ip) Decision directed Costas discriminator, nearly optimal at high
SNR, least computational burden.

Qp

Ip
Suboptimal but good at both high and low SNR, higher com-
putational burden.

atan
(Qp

Ip

) Computes the two-quadrant arctangent, maximum likelihood
estimator solution at high and low SNR but high computa-
tional burden.
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Figure 3.10: Costas PLL discriminators outputs. Illustration by [1]

On the other hand the carrier Doppler tracking loop, defined as FLL, produces the carrier
Doppler frequency error, which is fed into the FLL loop filter for the same reason described
above.

Table 3.3: Common FLL discriminators.

Discriminator Characteristics

cross
Δt

Classic Costas analog discriminator, nearly optimal at low
SNR, moderate computational needs.

cross× sign(dot)
Δt

Decision directed Costas discriminator, nearly optimal at high
SNR, least computational burden.

atan2(dot, cross)
Δt

Suboptimal but good at both high and low SNR, higher com-
putational burden.

where: cross = Ip(t1)× Qp(t2)− Ip(t2)× Qp(t1), Δt = t2 − t1
and dot = Ip(t1)× Ip(t2) + Qp(t1)
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Figure 3.11: FLL discriminators outputs. Illustration by [1]

Overall, these threemethods aimat achieving the same goal of local carrier adjustment. Their
performances, however, are slightly different. Themain trade-off lies between robustness to dy-
namics and accuracy. In general a PLL produces more accurate estimates whereas the FLL is
more robust to high dynamics.

The use of a FLL or PLL in the carrier tracking loop is not always exclusive; there exist more
complex configurations that utilize both. An example is the FLL assisted PLL architecture [1],
which is employed in Qascom’s semi-analytic simulator.
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Code loop discriminator

The fundamental concept is similar to that of the PLL discriminator; the main difference lies
in the fact that the latter is based on the derivatives of the maximum likelihood estimation cost
functions, whereas the cost function of the code delay, a triangular shaped correlation func-
tion, is not differentiable at the apex, precisely when the code delay error is zero. Therefore the
DLL discriminators exploit the use of the early and late correlators to obtain an approximation
of the derivative of the cost function.
Figure 3.12 shows some examples of correlators outputs for four different code delay errors. If
the replica code is perfectly aligned, the early and late correlators are equal in amplitude and no
error correction will be generated by the discriminator. Conversely, if the code local replica is
misaligned, the early and late envelopes will differ in amplitude and the discriminator will sense
the amount of error and compute a correction.

Figure 3.12: Code correlator outputs for different code delay errors. Illustration by [1]

The most common types of DLL discriminators are presented alongside with their charac-
teristics in Table 3.4.
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Table 3.4: Common DLL discriminators

Discriminator Characteristics

1
2
E− L
E+ L Normalized early minus late, high computational load.

1
2
(E2 − L2) Noncoherent earlyminus late power,moderate computational

load.

1
2
[(IE − IL)IP + (QE − QL)QP]

Quasi-coherent dot product power, exploits all three correla-
tors, computationally simple.

1
2
[(IE − IL)IP]

Coherent dot product, it’s the most accurate code discrimina-
tor, with a low computational load, but needs the carrier loop
to be phase locked.

where: E =
√

I2E + Q2
E and L =

√
I2L + Q2

L

Figure 3.13: DLL discriminators outputs. Illustration by [1]
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3.4.3 Loop Filter

Both the delay and carrier discriminator outputs are affected by a significant noise component.
As a solution a filter is introduced in the loop tomitigate this noise element and generate amore
accurate estimate of the code and carrier errors.
The general behaviour of a loop filter is mainly determined by two parameters: the loop filter
order and the noise bandwidth. A loop filter can be of first, second or third order and, depend-
ing on this, it will be more sensitive to velocity, acceleration or jerk respectively.
The noise bandwidth controls the accuracy of the error estimates as well as the robustness to
the dynamics. Higher bandwidths result in higher robustness to dynamics but lower accuracy,
lower bandwidths produce more accurate estimates but it will be more affected by dynamics.

3.4.4 NCO and replica generator

The numerically controlled oscillator (NCO) paired with the carrier and code generators pro-
duce a local replica of the PRN code and of the carrier wave according to the current estimates
computed by the loop filter. These replicas will be the ones used in the next integration interval
by the correlators.

Having described the main components of a tracking loop, a condensed view of a tracking
loop is displayed in Figure 3.14.

Figure 3.14: Tracking loop structure.
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4
GNSS signal degradations and possible

solutions

Any GNSS signal encounters many factors that contribute to its degradation on its journey
from transmitter to receiver. Firstly, the electromagnetic wave as it travels through the atmo-
sphere is effected by radio frequency interference, whether caused by someone deliberately
threatening the service’s reliability, e.g. spoofing [20], or caused by other transmission occur-
ring at nearby frequencies [21]. In addition, the ionosphere introduces frequency-dependent
delays in the signals, as well as fading and scattering phenomena commonly referred to as iono-
spheric scintillations which can result in loss of signal power and the subsequent loss of lock
on tracking loops [22].
Things get evenmore complicated if the receiver is placed in an urban scenario where buildings
as long as trees, lampposts andotherurban infrastructures strongly affect the signal integrity[23]
[21]. As displays Figure 4.1, only a few LOS signals will be available to the receiver; many will
be completely blocked and many delayed and attenuated copies of the original signal will be
captured by the receiver due to multipath effect.
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Figure 4.1: Urban canyon.

Figure 4.2 displays the effect of multipath in the received signal’s ACF. The distortion ob-
served depends not only on the attenuation and delay of the signal’s echo, but also on weather
the two signals interfere instructively or desctructively. In both cases the distortion causes a
general loss of accuracy in the pseudoranges estimates and robustness in the code and carrier
phase tracking.

Figure 4.2: Effect of multipath on the signal’s ACF. Illustration by [8]

4.1 Mitigation solutions

Over the years, many strategies have been developed tomitigate the effects of signal degradation
in urban scenarios. These may involve the structure of the receiver, but also the design of the
antenna and external sensors belonging to the device on which the receiver is mounted. This
chapter presents some of the most interesting state-of-the-art solutions.
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Antennas designs

Particular antenna designs can have a key role in multipath effects mitigation effects; a proper
antenna pattern could reduce theNLOS components which usually come to the receiver from
low elevation angles. Article [24] analyses the performance of a choke ring antenna, but in
recent years more complex designs have been developed with the general aim of reducing an-
tenna dimensions. Authors of [25], [26] and [27] considered different antenna arrays, whereas
in [28] and [29] performance improvements are observed by designing different groundplanes.
Another approach is to exploit the change in polarisation that occurs upon reflection of a sig-
nal. In particular the GNSS Right Hand Circular Polarized (RHCP) signals, after a single
reflection, becomes Left Hand Circular Polarized (LHCP). This difference in polarization has
been shown to be a good feature to exploit [30].
Lastly interesting results are presented in [31], where the use of an antenna array is combined
with an independent component analysis algorithm which filters noise and reduces multipath
interference.

Context Aware Navigation

A common simple approach is Context Aware Navigation. The basic idea is simple: define dif-
ferentworking environment categories andproperly adjust the receiver parameters tomaximize
its performance in each scenario. Different metrics and features can be exploited to define and
detect the channel status, and different parameters can be adjusted on the receiver. Examples
of this approach can be found in [32] and [9] where standard, degradated and highly degra-
dated working environments are defined taking into account the number of satellites in view,
their evolution over time and the DOP of the calculated position by the receiver. The most
common parameters adjusted by the receiver are the loop filters bandwidths and the Carrier-
to-Noise Ratio mask which defines the minimum C/N0 of a signal required to be included in
the Positioning Navigation and Timing (PNT) estimations.
Figure 4.3, taken from [9], presents an example where the detection of the environment condi-
tion is based on a change factor linked to the evolution of the satellite in view.
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Figure 4.3: Example of CAN algorithm output. Illustration by [9]

Tracking loop enhancements

Other strategies that focus on mitigating the effects of multipath act directly on the tracking
loop, for example by defining new discriminators. Article [33] suggests a general methodology
for designing a multi-correlator discriminator for the code tracking loop, based on a heuristic
minimisation of a cost function, the mean multipath error. The same authors in [34] propose
a code discriminator based on the steepest descent algorithm.
Other approaches are required to improve the robustness of the receiver against signal power
losses, a common solution is the use of Kalman Filters. For instance, [35] and [22]describe the
application of such filter to mitigate ionospheric scintillations, but a similar approach proved
to be effective in urban scenarioswhere a signal’sC/N0 often drops due to the presence of trees,
lampposts and buildings that interrupt the LOS signal [36]. An advanced approach involves
the use of extendedKalman Filters and vector tracking (VT): instead of using separate tracking
loops for each channel, VT processes all channels at the same time with and Extended Kalman
Filter for both tracking and PNT estimations [37] [38].
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External aidings

Another interesting approach involves the use of external aids, such as the vision-aided receiver
presented in [10] which employs an omnidirectional camera to capture images of the sky above
the receiver. After some processing the satellites that are supposed to be in view are projected
on these images and, by recognizing which satellites are behind buildings, only the LOS signals
are retained.

Figure 4.4: The image processing procedure and below the resulting image with projected satellites. Illustration by [10]

Machine learning

Finally, there has been a recent shift towards utilizing Machine Learning methods. Examples
ofMultipath detection algorithms can be found in the literature, including the use of convolu-
tion neural networks [39] [11], support vector machines [40], and gated recurrent units [41].
Figure 4.5 displays the structure of convolutional neural network that uses as input a represen-
tation of the IQ samples as a 2D image to detect heavy multipath components.
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Figure 4.5: 2D image representation of IQ samples and below the convolutional neurale network proposed. Illustration by
[11]
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5
Proposed Tracking Loop Design

Taking into account all possible approaches to mitigate signal degradation in urban scenarios
outlined in Section 4.1 and comparing them with the interests and needs of Qascom, it was
decided to implement a Kalman filter within the tracking loop. This decision was based on the
following reasons:

• The algorithm’s scope was decided to be restricted to the tracking loop, with no involve-
ment of the PVT computations or the antenna design, as it is independent of the re-
ceiver.

• For sake of simplicity no external aiding methods were considered, such as vision-aiding
or inertial measurement units (IMU).

• The current version of Qascom’s software defined GNSS receiver, the QN400, proved
to be quite unstable when subjected to frequent signal outages rather then to strong
multipath components. This forces the receiver to perform the acquisition procedure
every time the LOS signal gets interrupted.

• The algorithm’s computational demands had to be limited due to limited resources for
real-time computations, consequently the more complex VT had to be excluded.
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5.1 Overview

An high-level summary of the proposed tracking loop is illustrated in Figure 5.1. In respect to
the standard design presented in Figure 3.14, an extra block, placed between the discriminator
and the loop filter, have been added which consists in a Kalman filter assisted by an outage
detection algorithm.
In the following sections the inner structure and working procedure of these two is presented.

Figure 5.1: Proposed tracking loop

5.2 Kalman Filter

The Kalman filter, first introduced by Rudolph E. Kalman in [42], is widely considered as the
optimal solution for tracking and data prediction purposes [43].

The tracked data by the filter is stored in the filter state vector denoted as x̂xxn,n, its dimension
is the Kalman filter’s order. The working cycle, displayed in Figure 5.2, consists in two phases:
”predict” and ”correct”, based on five main equations.
In the prediction phase performed at time n the expected state for time n + 1 is computed
through the state prediction equation:

x̂xxn+1,n = FFFx̂xxn,n + GGGuuun + wwwn (5.1)

Where FFF represents the state transitionmatrix which projects the current state into a predic-
tion for the future iteration,GGG is the control matrix whichmonitors an addition input variable
to the Kalman filter uuun and wwwn is the unknown process noise.
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Alongside the state also its uncertainty PPP is predicted as a combination of the current state un-
certainty andQQQ, the process noise covariance of the dynamic model being tracked.

PPPn+1,n = FFFPPPn,nFFFT + QQQ (5.2)

During the correction phase, the state update equation evaluates the current state; the pre-
viously predicted state x̂xxn,n−1 gets adjusted by a factor which depends on the current measure
of the tracked values zzzn:

x̂xxn,n = x̂xxn,n−1 + KKKn(zzzn −HHHx̂xxn,n−1) (5.3)

The observationmatrixHHH extracts the values of interest from the state x̂xxn,n−1whileKKKn referrs
to the Kalman gain. The term in brackets in Equation 5.3 is commonly referred to as innova-
tion and denoted as δzzz . The gain value controls how much the current measurement affects
the current state x̂xxn,n in respect to the prediction. This value is computed at each iteration as:

KKKn = PPPn,n−1HHHT(HHHPPPn,n−1HHHT + RRRn)
−1 (5.4)

Where PPPn,n−1 is the predicted estimate covariance calculated by Equation 5.2 during the pre-
vious iteration andRRRn denotes the measurement covariance matrix at time n.
Lastly the fifth equation adjusts the estimate covariance matrix:

PPPn,n = (III− KKKnHHH)PPPn,n−1(III− KKKnHHH)T + KKKnRRRnKKKT
n (5.5)
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Figure 5.2: Kalman filter working cycle. Illustration by [12]

This general filter model has to be adapted to the phenomenon being described which is the
challenging part of designing a Kalman filter.
These were the key points of a Kalman filter, for a more precise description refer to [12].

5.2.1 Filter design

The design of aKalman filter starts with the representation of the systemmodel to be described.
Following the model derived in [36], a tracking loop, in particular a PAD (PLL assisted DLL)
where the information coming from the PLL aids the code tracking loop, can be describedwith
the following differential equation.


τ̇(t)
φ̇(t)
ḟ(t)
ȧ(t)


︸ ︷︷ ︸

xxẋ(t)

=


0 0 Rc

fr 0
0 0 1 0
0 0 0 1
0 0 0 0


︸ ︷︷ ︸

AAA


τ(t)
φ(t)
f(t)
a(t)


︸ ︷︷ ︸

xxx(t)

+


wτ(t)
0
0

wa(t)


︸ ︷︷ ︸

www(t)

(5.6)
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Since the Kalman state vector has four entries, the Kalman filter is of fourth order, where:

• τ is the difference between the code delay of the local PRNcode replica and the authentic
one of the incoming signal.

• φ is the difference between the phase of the local carrier replica and the phase of the
incoming signal’s carrier

• f is the difference between the Doppler shift of the local replica and the Doppler shift of
the incoming signal

• a is the difference between the jerk of the local carrier replica and the jerk of the incoming
signal

Note that in the first equation we can notice the term responsible for the PAD:

τ̇(t) =
Rc

fr
f(t) + wτ(t) (5.7)

WhereRc is the chipping rate and fr is carrier frequency of the GNSS signal being tracked.
Another aspect worthmentioning is the model employed for the process noise, which assumes
Brownian motion for both angular acceleration and code delay.

FromEquation5.6, exploiting thebackwardEuler transform, thediscrete time systemmodel
can be derived from the continuous time model:


τn+1,n

φn+1,n

fn+1,n

an+1,n


︸ ︷︷ ︸

xxx̂n+1,n

=


1 0 Rc

fr Tint
Rc
fr T

2
int

0 1 Tint T2
int

0 0 1 Tint

0 0 0 1


︸ ︷︷ ︸

FFF


τn,n
φn,n

fn,n
an,n


︸ ︷︷ ︸

xxx̂n,n

+


Tint 0 Rc

fr T
2
int

Rc
fr T

3
int

0 Tint T2
int T3

int

0 0 Tint T2
int

0 0 0 Tint


︸ ︷︷ ︸

WWW


wτ n

0
0

wa n


︸ ︷︷ ︸

wwwn

(5.8)
This is the state prediction equation of the designedKalman filter presented in Equation 5.1.

Tint is the integration time during which the correlators calculate their output, so the time in-
terval between two Kalman filter iterations.
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The state update equation presented in Equation 5.3 can be written as:
τn,n
φn,n

fn,n
an,n


︸ ︷︷ ︸

xxx̂n,n

=


1 0 Rc

fr Tint
Rc
fr T

2
int

0 1 Tint T2
int

0 0 1 Tint

0 0 0 1


︸ ︷︷ ︸

FFF


τn,n−1

φn,n−1

fn,n−1

an,n−1


︸ ︷︷ ︸

xxx̂n,n−1

+Tint


v3 α3 β3
v2 α2 β2
v1 α1 β1
v0 α0 β0


︸ ︷︷ ︸

KKKnnn


δτn
δφn

δfn
δan


︸ ︷︷ ︸

δzzzn

(5.9)

The vector zzzn is the actual input of the Kalman filter, corresponding to the delay, phase and
frequency discriminator outputs.
The therm δzzzn is commonly known as innovation; it measures the extent of deviation between
the previous prediction and the actual measurements.

δzzzn =

zτ n

zφ n

zf n


︸ ︷︷ ︸

zzzn

−

1 0 0 0
0 1 0 0
0 0 1 0


︸ ︷︷ ︸

HHH


τn,n−1

φn,n−1

fn,n−1

an,n−1


︸ ︷︷ ︸

xxx̂n,n−1

(5.10)

Lastly, it is necessary to estimate the twelve terms of the Kalman gain matrix.
Authors of [36] present an interesting approximation that reduces the complexity of runtime
computations. Considering Equation 5.4, the inverse of the matrix in brackets can be compu-
tationally demanding. For this reason by assuming independent measurements and:

RRRi,j ≫
(
HHHPPPn,n−1HHHT)

i,j ∀i, j = 1, 2 (5.11)

Rτ ≫ Rf
Rc

fr

2
≫ Rφ

Rc

fr

2
(5.12)

Equation 5.4 simplifies to :

KKKn = PPPn,n−1HHHTRRR−1
n (5.13)

Which is much easier to evaluate sinceRRRn is a diagonal matrix containing themeasurements
variances: Rτ,Rφ andRf.
The derivationof the estimate covariancePPPproposed in [36] is quite complex; based on a steady
state analysis in continuous time, it involves the solution of aContinuos-timeRiccati Equation
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(CARE). Then Equation 5.13 leads to the continuous time Kalman gains whichmultiplied by
the integration time approximates the discrete time ones.

KKK ≈ Tint


k Rc

fr 2γ
Rc
fr 2γ

2 Rφ
Rf

0 2γ 2γ2 Rφ
Rf

0 2γ2 3γ3 Rφ
Rf

0 γ3 2γ4 Rφ
Rf

 (5.14)

The values γ and k, are equal to:

γ =
(
qa
Rφ

)1/6

k =
(
qτ
Rτ

)1/2

(5.15)

Where qa and qτ are the process noises variances associated to the delay and angular accel-
eration errors. These two values are unknown and γ and k can be modeled as two adjustable
parameters related to the DLL and PLL loop filter bandwidths as follows.

γ =
6
5
PLLband k = 4DLLband (5.16)

It’s important to notice the match between the behaviour of a loop filter depending on its
bandwidths presented in Subsection 3.4.3 and the behaviour of a Kalman filter depending on
its gain. Higher bandwidths lead to higher Kalman gains thus in the state update Equation 5.3
the innovation term gets a bigger weight in respect to the prediction, making the Kalman state
evolution more sensitive to the discriminator’s outputs, so less smooth and more robust to dy-
namics. On the contrary smaller bandwidths and so smaller Kalman gains reduce the impact of
the discriminator’s outputs on the state update equation, making the state evolution smoother
but less robust to dynamics.

To better understand how the Kalman filter works, Figure 5.3 shows the evolution of the
phase discriminator’s output in red, the Kalman state phase estimation in blue and the pre-
diction of the phase error estimate computed by the Kalman filter at the previous iteration in
green. It can be noted how the estimate stored in the Kalman state is basically the prediction
performed at the previous cycle perturbed by the phase discriminator output which is given as
input to the Kalman filter.
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Figure 5.3: Example of Kalman filter evolution of the phase error estimate.

5.3 Outage detection algorithm

When an obstacle interrupts the LOS signal between a satellite and the receiver, an outage oc-
curs. This results in a drop in power of the received signal and consequently the tracking loops
start tracking the channel’s noise. The discriminators outputs also become noisy directly af-
fecting the code delay, carrier phase and frequency error estimates, resulting in the loss of lock
of the signal. At this point the receiver is forced to perform again the acquisition process in
order to demodulate the satellite’s signal once more.
Adding a Kalman filter to the standard loop structure can alleviate this issue. In case of outage
the error estimates of the tracking loop, the first three entries of the state vector, are less affected
by the discriminator outputs since there is the contribution of the predicted state which tends
to propagate the evolution experienced in the past. Despite that first tests made clear that this
wasn’t enough. In order to reduce and actually eliminate the noise contribution when there is
no LOS signal to track, an outage detection algorithm has been developed with the purpose of
temporarily set the discriminator’s outputs to zero and so rely only on the predictions of the
Kalman filter.

The algorithmworking procedure can be separated into two distinct phases: the outage dec-
laration and an outage recovery phase.
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5.3.1 Outage Declaration phase

The outage declaration needs to be as fast as possible. The first tempted approachwas to rely on
theC/N0 estimates produced by the receiver; whenever the carrier to noise ratio drops under a
certain threshold a new outage is declared. However this approach had a significant drawback.
The estimates produced by the receiver are result of a filtration and the transient generated by
the filter when the signal’s power drops, even if it only lasts for a few hundreds of milliseconds,
causes a delay in the outage declaration which is enough to cause the tracking loop to lose the
lock of the incoming signal.
A much faster solution based on the frequency innovation values of the KF has been adopted.
Each time this value gets larger than an adaptive threshold, the outage is declared and the dis-
criminator’s outputs, the zzz vector entries, are set to zero. Note that the choice to rely only on
the frequency innovation was found to be more reliable rather than considering also the delay
and phase innovation evolutions.

Figure 5.4: Outage declaration example.

In Figure 5.4 is shown an example of outage declaration, precisely at 15.08s. Please notice
how the first innovation sample out of bounds is not displayed since the discriminator’s out-
puts have been already set to zero. Furthermore it can be noticed how at 14s and 16s the thresh-
old value gets updated. The updating criteria will be explained later in Subsection 5.3.3.
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5.3.2 Outage recovery phase

Hopefully, after a certain time, the LOS signal from the satellite will be available again. Assum-
ing that the Kalman filter has propagated correctly, the signal’s power will rise back and the
tracking loop should restart the normal tracking procedure restoring the discriminator’s out-
puts as the inputs to the Kalman filter.
This switch doesn’t need to be instantaneous as it is preferable to tolerate some extra delay in
order to restart the tracking loop with clearer samples. Therefore the end of a signal blockage
can be declared when the estimated C/N0 rises back to a user-defined value. This value has to
be carefully set; a too low threshold would risk to reactivate the tracking loop too soon or even
during an outage because of an oscillation of the C/N0 estimate, on the contrary a high value
could let the Kalman filter propagate even if a weak signal is received after a blockage.
Figure 5.5 provides an example of recovery after an outage.

Figure 5.5: Outage recovery example.

From this example, it is clear that a timeout period is necessary to let the tracking loop adjust
its estimates after a signal blockage before declaring a newone. With this purpose the algorithm
is set ready to declare a new outage only after n innovation samples fall inside the thresholds
consecutively. Different values of n have been tested, between 10 and 100, corresponding on
0.2 s and 2 s since Tint = 20ms.
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A full example of the outage detection algorithm’s working cycle is illustrated in Figure 5.6.

Figure 5.6: Outage detection algorithm working cycle. The two flags isOutage and isReady control when the receiver is
declared to be in outage and when the algorithm is ready to declare a new outage respectively.

In addition, it is crucial to approach the restart of the DLL with extra caution. During the
recovery of the PLL after an outage, the frequency estimation error is high and the difference
between the frequency of local replica of the carrier and the frequency of the incoming signal
may cause the DLL to lose the lock. For this reason the output of the DLL discriminator has
been limited to 1 chip, if an higher value is computed it gets set to zero letting the Kalman filter
propagate with the contribution of the carrier aiding term.

5.3.3 Threshold updating rule

The frequency innovation threshold of the outage detection algorithm gets updated every Tth

seconds according to:

b
√

var(zf) (5.17)

Both b andTth are parameters that the user can set. The variance estimation is computed ev-
ery Tth seconds considering only the discriminator outputs when the receiver is not experienc-
ing an outage and is ready to detect one. If these values are too few for the variance estimation,
the threshold won’t get updated.
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6
Simulations and results

The proposed tracking loop presented in Chapter 5 has been implemented and extensively
tested in Matlab as an upgrade of a semi-analytical software receiver simulator developed by
Qascom back in 2015. This tool simulates the general behaviour of a GNSS receiver tracking
GPS and GALILEO signals at different bands .
Many parameters can be configured to control the receiver (distance betwee E and L correla-
tors, discriminators types, loop filter bandwidths, spoofing mitigation algorithms...) and the
environment in which it’s placed (noise level, multipath channel models, satellite elevation, re-
ceiver’s speed, Doppler evolution, spoofers...).
Despite this, in addition to the implementation of whole tracking loop described in Chapter 5,
other changes and enhancements have been incorporated. The original simulator’s versionwas
improved to simulate the scenario of a dynamic receiver in an urban area. Thiswill be described
in Subsection 6.2.2.
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To test the effectiveness of the proposed design, multiple simulations have been performed
comparing the Kalman filter based loop with the standard one. The characteristics and param-
eters of the two tracking loops being compared are presented in Table 6.1.

Table 6.1: Compared tracking loop configurations

KF based tracking
loop

Standard tracking
loop

DLL bandwidth 2Hz 2Hz
PLL bandwidth 3Hz 3Hz
FLL bandwidth 4Hz 4Hz
DLL discriminator EMLP EMLP
PLL discriminator atan atan
FLL discriminator atan2 atan2
b value 1 12
n value 2 100
C/N0 threshold 17dBHz
Tth

1 2s
1 Checkout Subsection 5.3.3
2 Checkout Subsection 5.3.2

6.1 Artificial outages in AWGNchannel

The initial approach to test the efficacy of the tracking loop implementation was to simulate a
signal blockage by selecting a time window in which the signal power drops.
Figure 6.1 displays how the proposed tracking loop performs during a 5 seconds outage in an
AWGN channel compared to the standard one.
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Figure 6.1: Proposed tracking loop design estimates (on top) and standard tracking loop ones (bottom) while tracking a
simulated outage.
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This demonstrates the effectiveness of the proposed solution. Despite complete signal block-
age and subsequent power loss, the lock is not lost. Code delay and frequency estimates, prop-
agated by the Kalman filter, are reliable enough to restart the tracking procedure upon power
restoration. Note that the phase estimate locks into an integer multiple of a cycle, it could have
also locked to a multiple of half a cycle which would result in a counterphase lock.

6.2 DLR Land mobileMultipath ChannelModel

After verifying the functioning of the tracking loop in a simplified scenario, a more accurate
channel model generated with the DLR (Deutsches Zentrum für Luft- undRaumfahrt) Land
Mobile Multipath Channel Model [44] has been tested.
This channel model, developed by the German Aerospace Centre, is a combination of statisti-
cal and deterministic approaches. The signal’s reflections are modeled statistically, according
to a user-defined geometric scenario, instead the direct path is modeled taking into account
shadowing and refracting phenomena in a deterministic way. This allows the user to design a
schematic of a city road [13] by specifying the receiver position on the street and the mean and
variance values of the buildings length, height and gaps as well as position and dimensions of
trees and lampposts. The values used in the simulations performed are presented in Table 6.2.

Figure 6.2: DLR urban environment model. Illustration by [13]
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Table 6.2: DLR urban scenario simulation parameters

Building parameters
BuildingRow1 1
BuildingRow2 1
BuildingRow1YPosition -7 m
BuildingRow2YPosition 7 m
HouseWidthMean 25 m
HouseWidthSigma 1 m
HouseWidthMin 15 m
HouseHeightMin 5 m
HouseHeightMax 30 m
HouseHeightMean 10 m
HouseHeightSigma 5 m
GapWidthMean 8 m
GapWidthSigma 4 m
GapWidthMin 5 m
BuildingGapLikelihood 0.8

Tree parameters
TreeHeight 3 m
TreeDiameter 3 m
TreeTrunkLength 2 m
TreeTrunkDiameter 1 m
TreeAttenuation 1.1 dB/m
TreeRow1Use 1
TreeRow2Use 1
TreeRow1YPosition -5.5 m
TreeRow2YPosition 5.5 m
TreeRow1YSigma 0 m
TreeRow2YSigma 0 m
TreeRow1MeanDistance 15 m
TreeRow2MeanDistance 10 m
TreeRow1DistanceSigma 3 m
TreeRow2DistanceSigma 3 m

Pole parameters
PoleHeight 9 m
PoleDiameter 0.4 m
PoleRow1Use 1
PoleRow2Use 1
PoleRow1YPosition 5.5 m
PoleRow2YPosition -5.5 m
PoleRow1YSigma 0 m
PoleRow2YSigma 0 m
PoleRow1MeanDistance 15 m
PoleRow2MeanDistance 15 m
PoleRow1DistanceSigma 5 m
PoleRow2DistanceSigma 5 m

The satellite’s elevation is set to 50◦, in order to generate fading effects on the LOS signal
fromthe taller buildings. The vehicle’s speed is set to 50km/h and the satellite’s signal is affected
by a Doppler, modeled as a polynomial, with a shift of 10Hz and a Doppler rate of 5Hz/s.
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Figure 6.3: Proposed tracking loop design estimates (on top) and standard tracking loop ones (bottom) while tracking a
polynomial Doppler evolution in a DLR simulated channel.
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6.2.1 Realistic static Doppler profiles

The use of a polynomial Doppler profile is a big limitation in the simulation of a vehicle in a
urban environment. To achieve a more realistic Doppler evolution, data collected from a static
GNSS receiver positionedon the roof ofQascom’s headofficehavebeen analyzed. Inparticular,
the estimated carrier frequency sampled by the receiverwith a period of 1shas been interpolated
using the spline algorithm inMatlab and then used as an authentic Doppler evolution given as
input to the semi-analytic simulator.
Figure 6.4 displays an example of the obtained Doppler profile.

Figure 6.4: Static real Doppler profile example.

Figure 6.5 presents a comparison between the Kalman-based tracking loop and the standard
onewhile tracking the recorded realDoppler profile in theDLR landmobile channel generated
according toTable 6.2. This shows the enhanced reliability of the proposed tracking loopwhile
subjected to a static urban simulated scenario.
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Figure 6.5: Proposed tracking loop design estimates (on top) and the standard tracking loop ones (bottom) while tracking a
static real Doppler evolution in a DLR simulated channel.
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To assess the gain in performance of the designed tracking loop, N = 20 simulations have
been performed with different Doppler profiles and different DLR channel realizations. As a
performance indicator the average lock time of each configuration has been estimated.

tlock =
1
N

N∑
i=1

tlock (6.1)

Note that the simulations last 5 minutes, long enough to ensure that both the standard and
the proposed tracking loop have, most likely, lost the signal’s lock.

Table 6.3: Mean lock times in DLR static scenario estimated with 20 simulations.

Mean lock time
KF-based traking loop 2 minutes and 25 seconds
Standard tracking loop 15 seconds

The evolution over time of the probability that the tracking loop retained the signal lock is
depicted in Figure 6.6.

Figure 6.6: Lock probability evolution of the compared tracking loops in static urban scenarios.
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6.2.2 Realistic dynamic Doppler profiles

To further enhance the authenticity of the simulationmodelling a dynamic receiver in anurban
scenario, theDoppler evolution presented in Subsection 6.2.1 has been adjusted to incorporate
variations in the receiver’s speed. By setting a fixed acceleration/deceleration of the receiver and
fixing a speed gain or loss at a specified time, the staticDoppler evolution ismodified to account
for the new speed values.

Figure 6.7: Static real doppler profile and simulated dynamic profile with speed changes at 10s, 23s ,40s and 50s assuming a
vehicle acceleration/deceleration of 1.38m/s2 (5km/h/s).

These new dynamic Doppler profiles have been tested with the channel impulse response
generated by the DLR simulator. In the figures below the two configurations presented in
Table 6.1 are compared in the same scenario.
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Figure 6.8: Proposed tracking loop design estimates (on top) and standard tracking loop ones (bottom) while tracking a
dynamic Doppler evolution in a DLR simulated channel.
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As expected the robustness enhanced tracking loop demonstrates greater resilience to signal
fluctuations; nonetheless, as shows Figure 6.9, if the outage takes place just prior to, during
or immediately following a change in the receiver dynamics, it becomes more likely that the
Kalman filter won’t propagate the estimates correctly leading to a loss of lock.

Figure 6.9: Example of loss of lock of the Kalman filter based tracking loop.

As in the case of the static scenario, the two versions of the tracking loop were compared
through N = 20 simulations with the aim of calculating the average lock time Equation 6.1.
The results obtained are shown in Figure 6.10.
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Figure 6.10: Lock probability evolution of the compared tracking loops in dynamic urban scenarios.

Table 6.4: Mean lock times in DLR dynamic scenario estimated with 20 simulations.

Mean lock time
KF-based traking loop 1 minute and 45 seconds
Standard tracking loop 16 seconds

Asmight be expected, the introduction of greater dynamics in the receiver causes a deteriora-
tion in performance. However, by increasing the distance between the early and late correlators,
from0.5chips to 1chip, the performance of the tracking loop becomes similar as in the static sce-
nario, achieving an average lock time close to 2minutes 30 seconds. Wider correlatorsmake the
receiver less accurate butmore robust to dynamics. Figure 6.2.2 displays a comparison between
the three versions.
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Figure 6.11: Lock probability evolution of the compared tracking loops and of a wide correlator KF loop in dynamic urban
scenarios.

6.3 GNSS receiver live records

The last scenario used to test the designed receiver is based on some live recordings of the
Doppler and C/N0 estimates of a Septentrio GNSS receiver placed on a vehicle driven among
streets in Bassano del Grappawhile tracking several satellites belonging toGALILEO andGPS
constellations. In particular these estimates are sampled every second, then interpolated and
used as Doppler and C/N0 profiles as input to the semi-analytic simulator.
Figure 6.12 shows a comparison between the two setup presented in Table 6.1 while tracking
GALILEO’s E21 satellite, transmitting in E5b band.
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Figure 6.12: Proposed tracking loop design estimates (on top) and standard tracking loop ones (bottom) while tracking a live
recorded dynamic scenario.
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The result is quite similar to the simulated one presented in Figure 6.8. Similarly as shown
in Figure 6.9, a change in the vehicle dynamics concurrently with a signal’s blockage will most
likely make the receiver loose the lock.
The lock time has been evaluated over N = 100 windows of 5 minuts taken from data cap-
tured while tracking different satellites belonging to both GPS and GALILEO constellations.
Figure 6.13 displays the obtained results.

Figure 6.13: Lock probability evolution of the compared tracking loops in live dynamic scenarios.

Table 6.5: Mean lock times in live recorded scenario estimated with 100 simulations.

Mean lock time
KF-based traking loop 3 minutes and 12 seconds
Standard tracking loop 2 minutes

Note that at the end of the 5minutes simulations over 20% of KF tracking loop runs where still
locked

The results observed are in line with what the previous simulations underlined. In this case
the average lock time of the proposed tracking loop is over 3 minutes, a bit higher than the one
observed in Subsection 6.2.2 since the simulated scenario tends to be more hostile.
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7
Conclusion

7.1 Summary

The main purpose of this thesis was to enhance the tracking capability of a software defined
GNSS receiver in the hostile scenario of an urban environment. In the previous chapters the
implementation of a Kalman filter-based tracking loop assisted by an outage detection algo-
rithm has been analyzed and the novel tracking loop’s performances have been evaluated in
both completely simulated and more realistic scenarios using a semi-analytic simulator.
Themean lock times in each simulation scenario, of both the standard and the proposed track-
ing loop, are the following:

Table 7.1: Mean lock times in each scenario

DLR static DLR dynamic Live recordings
KF-based traking loop 2 min 25 s 1 min 45 s 3 min 12 s
Standard tracking loop 15 s 16 s 2 min

The enhancementofperformance is evident, nevertheless someclarifications shouldbemade.
Firstly it should be noted that the Doppler andC/N0 evolutions derived from the live receiver
recordings are the outcome of its tracking procedure sampled every second, and not an exact
capture of the actual Doppler and C/N0 measurements of the incoming signal.
Another aspect to be considered is that the 5 minutes long windows generated from the live
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recordings have been manually selected to avoid signal outages longer than 10s and windows
with no signal blockage. In the first case the probability to recover from the blockage is too low
for both the configurations, whereas in the second case both the tracking loops would easily
track the signal.
Lastly the parameters outlined in Table 6.1, employed to configure the proposed and the stan-
dard loop, highly influence the behaviour of the receiver. The values considered have been cho-
sen after a rough optimization for both the Kalman-based and standard tracking loop. There-
fore, the configurations displayed in Table 6.1 may not be optimal.

7.2 Future work

The objective of this study was to find an effective way to make the receiver more robust in an
hostile scenario. The outcomes demonstrated a general improvement, with room for further
developments.
The most important step would be transferring the Kalman filter’s and outage detection al-
gorithm’s codes from Matlab to C++ and integrating them in the software defined QN400
receiver. In this way the effectiveness of the proposed solution could be verified directly by test-
ing the receiver on field.
Another critical aspect is the selection of the Kalman filter and outage detection algorithm pa-
rameters; a Monte Carlo optimization would refine the values presented in Table 6.1.
Moreover an approach similar to theContextAwareNavigation presented in Section 4.1 could
be introduced: the receiver, using perhaps amachine learning based approach, could recognize
the current type of scenario and adjust its settings accordingly.
Some further extensions could be made in the Kalman filter structure: the state prediction
equation could be redefined taking into account IMU aiding which, exploiting measurements
coming fromgyroscopes and accelerometers, could improve the prediction of the tracking loop
estimates taking into account the measured dynamics of the receiver.
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