2,849 research outputs found

    Queue Length Asymptotics for Generalized Max-Weight Scheduling in the presence of Heavy-Tailed Traffic

    Full text link
    We investigate the asymptotic behavior of the steady-state queue length distribution under generalized max-weight scheduling in the presence of heavy-tailed traffic. We consider a system consisting of two parallel queues, served by a single server. One of the queues receives heavy-tailed traffic, and the other receives light-tailed traffic. We study the class of throughput optimal max-weight-alpha scheduling policies, and derive an exact asymptotic characterization of the steady-state queue length distributions. In particular, we show that the tail of the light queue distribution is heavier than a power-law curve, whose tail coefficient we obtain explicitly. Our asymptotic characterization also contains an intuitively surprising result - the celebrated max-weight scheduling policy leads to the worst possible tail of the light queue distribution, among all non-idling policies. Motivated by the above negative result regarding the max-weight-alpha policy, we analyze a log-max-weight (LMW) scheduling policy. We show that the LMW policy guarantees an exponentially decaying light queue tail, while still being throughput optimal

    A critical look at power law modelling of the Internet

    Get PDF
    This paper takes a critical look at the usefulness of power law models of the Internet. The twin focuses of the paper are Internet traffic and topology generation. The aim of the paper is twofold. Firstly it summarises the state of the art in power law modelling particularly giving attention to existing open research questions. Secondly it provides insight into the failings of such models and where progress needs to be made for power law research to feed through to actual improvements in network performance.Comment: To appear Computer Communication

    Delay Bound: Fractal Traffic Passes through Network Servers

    Get PDF
    Delay analysis plays a role in real-time systems in computer communication networks. This paper gives our results in the aspect of delay analysis of fractal traffic passing through servers. There are three contributions presented in this paper. First, we will explain the reasons why conventional theory of queuing systems ceases in the general sense when arrival traffic is fractal. Then, we will propose a concise method of delay computation for hard real-time systems as shown in this paper. Finally, the delay computation of fractal traffic passing through severs is presented

    Conditional limit theorems for regulated fractional Brownian motion

    Full text link
    We consider a stationary fluid queue with fractional Brownian motion input. Conditional on the workload at time zero being greater than a large value bb, we provide the limiting distribution for the amount of time that the workload process spends above level bb over the busy cycle straddling the origin, as bb\to\infty. Our results can be interpreted as showing that long delays occur in large clumps of size of order b21/Hb^{2-1/H}. The conditional limit result involves a finer scaling of the queueing process than fluid analysis, thereby departing from previous related literature.Comment: Published in at http://dx.doi.org/10.1214/09-AAP605 the Annals of Applied Probability (http://www.imstat.org/aap/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Self-generated Self-similar Traffic

    Get PDF
    Self-similarity in the network traffic has been studied from several aspects: both at the user side and at the network side there are many sources of the long range dependence. Recently some dynamical origins are also identified: the TCP adaptive congestion avoidance algorithm itself can produce chaotic and long range dependent throughput behavior, if the loss rate is very high. In this paper we show that there is a close connection between the static and dynamic origins of self-similarity: parallel TCPs can generate the self-similarity themselves, they can introduce heavily fluctuations into the background traffic and produce high effective loss rate causing a long range dependent TCP flow, however, the dropped packet ratio is low.Comment: 8 pages, 12 Postscript figures, accepted in Nonlinear Phenomena in Complex System
    corecore