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Delay analysis plays a role in real-time systems in computer communication networks. This paper gives our results in the aspect of
delay analysis of fractal traffic passing through servers. There are three contributions presented in this paper. First, we will explain
the reasons why conventional theory of queuing systems ceases in the general sense when arrival traffic is fractal. Then, we will
propose a concise method of delay computation for hard real-time systems as shown in this paper. Finally, the delay computation
of fractal traffic passing through severs is presented.

1. Introduction

There are two categories of communications to perform the
delivery of a message M from the source A to the destination
B. One is in the sense of best effort. By best effort, one
means that the computer communication system, which is
denoted by S, does not guarantee the connection of sending
M fromA to B, and accordingly, the quantity of the time delay
𝐷 that M suffers from S may not be guaranteed, generally.
User Datagram Protocol (UDP) is used for communications
by best effort (Tanenbaum [1], Postel [2]). The other is in
the sense of Transmission Control Protocol (TCP), which
is connection oriented, implying that the connection for
sending M from A to B is guaranteed ([1], Postel [3]).
Guaranteed connection is the premise for guaranteeing the
quantity of the time delay𝐷 thatM suffers fromS fromA toB.
This is particularly the case whenmission critical applications
are required (Zhao and Ramamritham [4], Zhao et al. [5],
Zhao and Stankovic [6], Mahapatra and Zhao [7], Rader [8],
and Mahmoodi et al. [9]).

In the case of guaranteed connections, there are two
types of communication systems. One is in the type of real-
time systems. The other is in the type of nonreal-time ones.
By real-time system, one implies that the predetermined
time delay should be guaranteed (Natarajan and Zhao [10],
Chakraborty and Eberspcher [11]). If the delay, which M

suffers from S, exceeds the predetermined deadline of delay,
one will consider that the message M is meaningless, and
communication ofM fromA to B is taken to be a failure from
a view of real-time systems.

In the field of computer communications, there are two
categories of real-time systems. One is for hard real-time
systems, and the other is for soft ones. By hard real-time
systems, wemean that the time constraint, more precisely, the
predetermined time delay, has to be assured. Otherwise, the
communication is regarded as a failure ([4, 5, 10, 11], Buttazzo
[12], Raha et al. [13], Malcolm and Zhao [14], Malcolm et al.
[15], Budka et al. [16], and Liem and Mendiratta [17]). By
soft real-time systems, on the other side, we imply that the
predetermined time constraint may be statistically violated
with a predetermined probability ([10], Zhao and Chong [18],
and Wang et al. [19]).

Recall that the time constraint mentioned above is the
message delay suffering from S from A to B (Sandmann [20],
Rodŕıguez-Pérez et al. [21], Anjum et al [22], Papastergiou et
al. [23], Panshenskov and Vakhitov [24], Kumar et al. [25],
Ferrandiz et al. [26], Pin et al. [27], Florens et al. [28], Lenzini
et al. [29], and Tu et al. [30]). More precisely, in the case of
the Internet, this term specifically means the delay of data
packets. Unless otherwise stated, this paper uses the term
packet delay or delay for short.
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While we mentioned above that delay serves as a key
parameter in the aspect of traffic passing through servers
in the field of computer networks, one may say that the
delay denoted by 𝑑 is actually queuing time denoted by 𝑡𝑞 in
terms of queuing system as illustrated in Figure 1. Queuing
theory may appear complex mathematically. From the point
of view of applications, however, it may be quite easy to
do the performance analysis of a queuing system with the
basic knowledge of statistical means and standard deviations
together with a pen and a piece of paper or with a few lines
of code of simple computer program (Cooper [31], Reich [32],
Kendall [33], Luchak [34], Little [35],Whitt [36, 37], and Li et
al. [38]). Indeed, we said so if arrival traffic𝑋(𝑡) is Markovian
as those discussed in [33–38], Jagerman [39], Doshi [40],
McKenna and Mitra [41], Li and Chen [42], Brandão and
Nova [43], Reiman and Simon [44], Ancker Jr. and Gafarian
[45, 46], Daley [47], and Casale et al. [48].

Note that traffic of the Markovian type implies that it is
light tailed. By light tail, we mean that its autocorrelation
function (ACF) is exponentially decayed and so are its power
spectrum density (PSD) function and probability density
function (PDF) (Li and Zhao [49, 50], Li [51]). Nevertheless,
traffic is heavy tailed (Loiseau et al. [52], Hernández-Campos
et al. [53], Resnick [54], Takayasu et al. [55], Willinger
et al. [56], Leland et al. [57], Paxson and Floyd [58],
Willinger and Paxson [59], and Beran et al. [60]), which
implies that the ACF of traffic is hyperbolically decayed,
that is, slowly decayed (Tsybakov and Georganas [61]). To
be precise, the ACF of traffic decays slowly such that it is
nonintegrable, which implies long memory or long-range
dependence (LRD) (Csabai [62], Adas [63], Terdik andGyires
[64], Callado et al. [65], Owczarczuk [66], Scherrer et al.
[67], Devetsikiotis and da Fonseca [68], Smith [69], Tadaki
[70], Erramilli et al. [71], Karasaridis and Hatzinakos [72],
Stathis and Maglaris [73], López-Ardao et al. [74], and Beran
[75]). The LRD of traffic may be so strong that the variance
of traffic may not exist or may be infinite ([54], Willinger
et al. [76], Resnick et al. [77], López-Oliveros and Resnick
[78], D’Auria and Resnick [79], and Fishman and Adan [80]).
Consequently, conventional queuing theory may stop being
used for analyzing queuing time or delay when arrival traffic
is fractal with heavy tails or LRD such that it is of infinite
variance.

Possible applications of conventional queuing theory to
delay analysis are in the case of fractal traffic models with
finite variance, such as fractional Brownian motion (fBm),
fractional Gaussian noise (fGn); see, for example, Norros [81],
Jin and Min [82], Iftikhar et al. [83], Dahl and Willemain
[84], Chevalier and Wein [85], Ou and Wein [86], Wein
[87, 88], Harrison and Wein [89], Murata et al. [90], Boxma
and Cohen [91], Haddad and Mazumdar [92], Ghosh and
Weerasinghe [93], Duncan et al. [94], Li and Zhao [95],
and Yue et al. [96]. However, overlarge buffer size may be
required even when arrival fractal traffic is of finite variance
(Albin and Samorodnitsky [97], Massoulie and Simonian
[98], Heath et al. [99], Simonian and Guibert [100], Tsybakov
and Georganas [101, 102], Willinger et al. [103], Kozachenko
et al. [104], Carpio [105], Juneja [106], Shah and Wischik
[107], and Vieira et al. [108]). The required buffer size may

be so large that the value of the delay time obtained with
conventional queuing theory may be impractically large for
real-time systems.

The previous discussions imply that the key reason that
makes the conventional queuing theory very difficult, if not
impossible, to be used in the delay analysis of communication
systems with fractal arrivals is the fractal properties of traffic,
namely, self-similarity and LRD. Thus, fractal arrival traffic
substantially challenges queuing theory of real-time systems.

As known, performance analysis of conventional queuing
systems has to assume that statistical means and variances of
arrival traffic exist (Cooper et al. [31–47], Pitts and Schormans
[109], Stalling [110, 111], andGibson [112]). However, generally
speaking, it is inappropriate to assume that the variance of
fractal traffic exists ([76–78], Li and Zhao [113], andDoukhan
et al. [114]). Thus, new methodology that does not rely on
statistical means and variances of arrival traffic is desired in
the field of computer communication networks and real-time
systems in particular.

Note that variance analysis of random functions or time
series plays a key role in statistics (Bendat and Piersol [115],
Gelman [116], Freedman [117], Sheskin [118], Meyer [119],
Lindgren and McElrath [120], and Fuller [121]) as well as
conventional queuing theory [31–47], which is actually a
branch of statistics (Papoulis [122], Bhat [123]). Therefore,
one may see how it is significant for us to turn away from
variance analysis of arrival traffic and queuing systems to
treat delay analysis of fractal traffic passing through servers.
Network calculus may be a promising theory to deal with
delay analysis of queuing systems, irrelevant to means and
variances of arrival traffic, exhibiting remarkable advances in
the aspect of queuing theory.

There are two categories with respect to the theory of
network calculus. One is for deterministic delay analysis
of queuing systems (Le Boudec and Thiran [124], Firoiu
et al. [125], Le Boudec [126], and Cruz [127]). The other
is stochastic network calculus (Jiang and Liu [128], Wang
et al. [129], Burchard et al. [130], Ciucu et al. [131], and
Li and Knightly [132]). We should keep in mind that the
theory of stochastic network calculus substantially differs
from conventional queuing theory in methodology because
it follows the criterion of being irrelevant to means and
variances of arrival traffic.

This paper aims at presenting novel computation meth-
ods of delay of fractal traffic passing through servers without
relating to the concepts of means and variances of arrival
traffic.

The rest of the paper is organized as follows. We will give
the brief of fractal traffic in Section 2. In Section 3, we will
exhibit the result for the delay analysis of deterministic queu-
ing theory. Section 4 presents our delay analysis of fractal
traffic passing through servers. Finally, Section 5 concludes
the paper.

2. Brief of Fractal Traffic

Denote by𝑥(𝑡𝑖) the arrival traffic time series (traffic for short),
where 𝑡𝑖 is the timestamp of the 𝑖th packet, where 𝑖 is a natural
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Figure 1: Queuing system for single server.

number (Li et al. [133]). Then, 𝑥(𝑡𝑖) implies the data size of
the 𝑖th packet. Since statistics of 𝑥(𝑡𝑖) is consistent with that
of 𝑥(𝑖), we use 𝑥(𝑖) to indicate traffic for simplicity.

2.1. Non-Markovian Property and LRD. Denote by 𝑟𝑥𝑥(𝑘) =
𝐸[𝑥(𝑖)𝑥(𝑖 + 𝑘)] the ACF of 𝑥(𝑖), where 𝑘 is the time lag. The
ACF 𝑟𝑥𝑥(𝑘) indicates how the size of the 𝑖th packet correlates
to that of another packet (𝑖 + 𝑘) apart. If an ACF 𝑅(𝑘) is
exponentially decayed, 𝑅(𝑘)may be neglected even for small
𝑘. For instance, suppose the ACF of a time series 𝐵(𝑖) that
follows the Poisson distribution. It is given by (Bendat and
Piersol [115])

𝑅𝐵𝐵 (𝑘) = exp (−2𝜆 |𝑘|) (𝜆 > 0) . (1)

Then, in the case of 𝜆 = 1, we have

𝑅𝐵𝐵 (1) ≈ 0.135; 𝑅𝐵𝐵 (2) ≈ 0.018. (2)

Equation (2) implies that𝑅𝐵𝐵(1) can be neglected in engineer-
ing because 𝑥(𝑖) is almost orthogonal to 𝑥(𝑖+1), letting along
𝑅𝐵𝐵(𝑘) for 𝑘 > 1. Therefore, 𝑅𝐵𝐵(𝑘) ≈ 0 for 𝑘 > 0. That means
that 𝐵(𝑖) is memoryless. Accordingly, it is Markovian ([121,
122], Bunin [134], and Benes [135]). However, traffic 𝑥(𝑖) is
non-Markovian,which is a property that distinguishes it from
conventional time series, because 𝑟𝑥𝑥(𝑘) is hyperbolically
decayed in the form

𝑟𝑥𝑥 (𝑘) ∼ 𝑘
−𝛽
, 0 < 𝛽 < 1, 𝑘 󳨀→ ∞. (3)

The above implies that
∞

∑

0

𝑟𝑥𝑥 (𝑘) = ∞. (4)

Thus, 𝑥(𝑖) is LRD or of longmemory. Consequently, it is non-
Markovian (Yulmetyev et al. [136], Asgari et al. [137], van
Kampen [138], Mura et al. [139], and Luczka [140]).

2.2. Property of 1/𝑓 Noise. Let 𝑆𝑥𝑥(𝜔) be the PSD of 𝑥(𝑖),
where 𝜔 is angular frequency. According to the Wiener
theorem, which is also known as theWiener-Khintchine the-
orem and sometimes as the Khinchin-Kolmogorov theorem
(Robinson [141], Wiener [142, 143], Khintchine [144], and
Yaglom [145]), 𝑆𝑥𝑥(𝜔) is the Fourier transformof 𝑟𝑥𝑥(𝑘). Since

∞

∑

0

𝑟𝑥𝑥 (𝑘) = 𝑆𝑥𝑥 (𝜔)
󵄨󵄨󵄨󵄨𝜔=0

= ∞, (5)

it is easy to infer that 𝑆𝑥𝑥(𝜔) is in the form

𝑆𝑥𝑥 (𝜔) ∼
1

𝜔
. (6)

Therefore, 𝑥(𝑖) follows 1/𝑓 noise (Mandelbrot [146, 147],
Ruseckas et al. [148], Lenoir [149], Aquino et al. [150], Amir et
al. [151], Carlini et al. [152, 153], Beran [154, 155], Lim and Teo
[156], Eab andLim [157],Muniandy andLim [158],Muniandy
et al. [159], Muniandy and Stanslas [160], Pinchas [161, 162],
Wang and Yan [163], Bakhoum and Toma [164, 165], Yang et
al. [166], Wang [167], Wornell [168], Barnes and Allan [169],
Kasdin [170], and Corsini and Saletti [171]).

2.3. Self-Similarity. Traffic 𝑥(𝑖) approximately satisfies the
definition of self-similarity given by

𝑥 (𝑎𝑖) ≡ 𝑎
𝐻
𝑥 (𝑖) , 𝑎 > 0, (7)

where ≡ denotes equality in the sense of probability distribu-
tion and 0 < 𝐻 < 1 stands for the Hurst parameter [58, 61].
In general,𝐻 varies with time. Hence, traffic has the property
of multifractals ([108], Vieira et al. [172], Vieira and Lee [173],
Masugi and Takuma [174], Masugi [175], Veitch et al. [176],
Salvador et al. [177], Nogueira et al. [178], Krishna et al. [179],
Feldmann et al. [180], Ayache at al. [181], Ayache [182], Liao
et al. [183], Liao [184], Carbone et al. [185, 186], Stanley and
Meakin [187], Yang et al. [188], Song and Shang [189], Shang et
al. [190], Kantelhardt et al. [191], Ostrowsky et al. [192], Sastry
et al. [193], and Min et al. [194]).

2.4. The Hurst Parameter and Fractal Dimension. Expressing
𝛽 in (3) by𝐻 yields

𝛽 = 2 − 2𝐻. (8)

The parameter 𝛽 is the index of LRD, and 𝐻 is the measure
of LRD ([52, 60, 75, 76, 154], Roughan et al. [195], Abry et al.
[196], and Hall and Hart [197]). In the fields, people usually
use 𝐻 instead of 𝛽 to characterize LRD of time series for
dedicating the famous hydrologist Hurst [198].

We consider the local behavior of traffic𝑥(𝑖) using its ACF
𝑟𝑥𝑥(𝑘). For 𝑘 → 0, if 𝑟𝑥𝑥(𝑘) is sufficiently smooth on (0,∞)

and if

[𝑟𝑥𝑥 (0) − 𝑟𝑥𝑥 (𝑘)] ∼ 𝑐1|𝑘|
𝛼
, 0 < 𝛼 ≤ 2, (9)
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where 𝑐1 is a constant and 𝛼 is the fractal index of 𝑥(𝑖) (Adler
[199], Chan et al. [200], Davies and Hall [201], Constantine
and Hall [202], Hall and Roy [203], Kent and Wood [204],
Gneiting and Schlather [205], Gneiting [206], and Lim and
Teo [207]), then the fractal dimension, denoted by𝐷𝑓, of 𝑥(𝑖)
is given by

𝐷𝑓 = 2 −
𝛼

2
. (10)

Under the constraint of 0 < 𝛼 ≤ 2, one has

1 ≤ 𝐷𝑓 < 2. (11)

2.5. Power Laws and Heavy Tails. Taqqu’s law says that the
PDF of a random function 𝑥(𝑡) is in the form of a power
function if it is LRD (Loiseau et al. [52], Doukhan et al.
[114], Abry et al. [196], and Samorodnitsky and Taqqu [208]).
Therefore, the PDF, ACF, and PSD of traffic are all in the form
of power functions as can be seen from (3) and (6). When the
PDF of a random function follows power laws, one says that
it is heavy tailed (Adler et al. [209], Podobnik et al. [210, 211],
Chen et al. [212], Xu et al. [213], Buraczewski et al. [214], Kulik
and Soulier [215], Pisarenko and Rodkin [216], Resnick [217],
Stanley [218], Bowers et al. [219], Eliazar and Klafter [220],
Jakšić [221], Bansal et al. [222], Milojević [223], and Pareto
[224]).

Denote by 𝑝(𝑥) the PDF of 𝑥(𝑡). Then, the tail of 𝑝(𝑥)
may be so heavy that its mean and variance, expressed,
respectively, by (12) and (13), may not exist:

𝐸 [𝑥 (𝑡)] = ∫

∞

−∞

𝑥𝑝 (𝑥) 𝑑𝑥, (12)

Var (𝑥) = ∫
∞

−∞

(𝑥 − 𝜇)
2
𝑝 (𝑥) 𝑑𝑥. (13)

2.6. Remarks. Previous discussions imply the following
remarks.

Remark 1. Traffic follows power laws.

Remark 2. It is LRD.

Remark 3. It is approximately self-similar.

Remark 4. It is a type of 1/𝑓 noise.

Remark 5. It is heavy tailed.

Remark 6. LRD is a global property of traffic, which is
measured by𝐻.

Remark 7. Fractal dimension 𝐷𝑓 characterizes the local self-
similarity or local roughness or local smoothness of traffic.

In general, we do not talk about means and variances of
traffic. Instead, we are interested in other two, namely, local
self-similarity and LRD in the theory of fractal traffic.

Network serverArrival traffic Departure traffic
S(t)A(t) Y(t) = A(t + d)

Figure 2: Traffic passing through single server.

3. Delay of Deterministic Queuing Systems

Network calculus may be applied to the delay analysis with
respect to quality of service (QoS) in computer communi-
cation networks ([124–132], Cruz [225]). The issue of traffic
passing through a server with respect to traffic delay can be
described by Figure 2. The essential questions about it are
stated as follows.

Question 1: how to model arrival traffic 𝐴(𝑡) towards
assuring a predetermined delay, which is denoted by𝐷, such
that 𝑑 ≤ 𝐷?

Question 2: how to design a service scheme, which is
denoted by 𝑆(𝑡), towards assuring a predetermined delay 𝐷,
such that 𝑑 ≤ 𝐷?

Question 3: in order to guarantee the predetermineddelay
when 𝐴(𝑡) passes through 𝑆(𝑡), what is the operation among
𝐴(𝑡), 𝑌(𝑡), and 𝑆(𝑡) such that 𝑑 ≤ 𝐷?

The answer to question 1 is about traffic modeling. The
one to question 2 is about system modeling. That to the third
is the relationship among the arrival𝐴(𝑡), the server 𝑆(𝑡), and
the departure traffic𝑌(𝑡) = 𝐴(𝑡+𝑑).Three answers constitute
the basic of network calculus described in [124–127, 225].

3.1. Deterministic Envelope of Traffic. In order to assure a
predetermined delay 𝐷 such that 𝑑 ≤ 𝐷, one may utilize
an envelope, which is denoted by 𝐴(𝑡), of arrival traffic 𝑥(𝑡).
There are two categories of envelopes of random functions.
One is in the sense of statistical envelopes, and the other is in
the sense of deterministic ones.

The literature regarding statistical envelopes of light-
tailed random functions is rich, as they are needed in many
fields of sciences and technologies, ranging from electronics
engineering to ocean one; see, for example, Rice [226, 227],
Veltcheva et al. [228], Fang and Xie [229], Tayfun and Lo
[230], Ochi and Sahinoglou [231, 232], Longuet-Higgins
[233], Nigam [234], and Yang [235], just mentioning a few.
Nonetheless, they cannot be taken as candidates of traffic
envelopes because means and variances are essential to them
[226–235].

In the society of computer science, people are interested
in a type of envelopes of traffic, called bounding models of
traffic (Michiel and Laevens [236]). Considering that arrival
traffic has the property of 𝑥(𝑡) ≥ 0 (Li and Zhao [237]),
following Cruz [127], and supposing that 𝑥(𝑡) is continuous
for 𝑡 ≥ 0, a possible envelope in the time interval [0, 𝑡] may
be given by the inequality in the form

𝐴 (𝑡) = ∫

𝑡

0

𝑥 (𝑡) 𝑑𝑡 ≤ 𝜎 + 𝜌𝑡. (14)

There are two parameters in the above expression. One
is 𝜎 that characterizes the local property of 𝐴(𝑡) called the
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burtiness in the field of computer networks ([124–127], [225],
McDysan [238], Kouvatsos et al. [239], and Anantharam and
Konstantopoulos [240, 241]). The other is 𝜌 that captures
the property of long-term rate of 𝐴(𝑡), citing two nice
survey papers by Mao and Panwar [242] and Fidler [243],
respectively, about (14).

As a matter of fact, on one hand, we have

lim
𝑡→0

𝐴 (𝑡) = lim
𝑡→0

∫

𝑡

0

𝑥 (𝑡) 𝑑𝑡 ≤ 𝜎. (15)

Thus, 𝜎 characterizes the burtiness of 𝐴(𝑡). On the other
hand, one has

lim
𝑡→∞

𝐴 (𝑡)

𝑡
= lim
𝑡→∞

∫
𝑡

0
𝑥 (𝑡) 𝑑𝑡

𝑡
≤ 𝜌.

(16)

Therefore, 𝜌 represents the long-term rate of𝐴(𝑡).Thismodel
of traffic is denoted by

𝐴 (𝑡) ∼ (𝜎, 𝜌) , (17)
with the special term “Leaky Bucket” [124–127, 225, 238, 242,
243].

The deterministic envelop of traffic, namely, 𝐴(𝑡), has the
properties remarked as follows.

Remark 8. 𝐴(𝑡) is increasing in the wide sense, implying that
𝐴(𝑡2) ≥ 𝐴(𝑡1) if 𝑡2 ≥ 𝑡1.

Remark 9. 𝐴(𝑡) expressed by (14) is irrelevant of statistics of
𝑥(𝑡). Consequently, we do not need the concepts of statistical
means and variances for modeling traffic 𝑥(𝑡) by using (𝜎, 𝜌).

Remark 10. Remark 9 is consistent in philosophy with fractal
models of traffic.

3.2. Service Curves. Denote a service curve of a server by 𝑆(𝑡);
see Figure 2. It represents a scheme of the server to allocate
enough resources, such as bandwidth, to arrival traffic 𝐴(𝑡)
such that the delay 𝑑 does not exceed the predetermined
𝐷. Mathematically, 𝑆(𝑡) has the same properties of 𝐴(𝑡) as
described in Remarks 8–10. Thus, a function 𝑆(𝑡) ≥ 𝐴(𝑡)may
be a candidate of service curve (Yin and Poo [244], Pyun
et al. [245], Khanjari et al. [246], Chu et al. [247], Fulton
and Li [248], Li and Hwang [249], Lau and Li [250], Li and
Pruneski [251], Jamin et al. [252], Wu et al. [253], Chen et al.
[254], Agrawal et al. [255], Feng et al. [256], Raha et al. [257],
and Zhao and Chen [258]). Skills behind the idea of service
curves appear simple, but it is significant in the development
of linearizing nonlinear systems in general (Houssin et al.
[259], Okumura et al. [260], and Shinzawa [261]) and queuing
theory in particular [124].

3.3. Relationship among Arrival 𝐴(𝑡), Service 𝑆(𝑡), and Depar-
ture 𝐴(𝑡 + 𝑑). As previously mentioned, 𝑆(𝑡) has the same
properties as those of 𝐴(𝑡). Thus, we denote by S the set of
increasing functions in the wide sense.That is,𝐴(𝑡), 𝑆(𝑡) ∈ S.

Let 𝑋1(𝑡), 𝑋2(𝑡) ∈ S. Then, the operation expressed by
(18) is called min-plus convolution [126, 262]

𝑋1 (𝑡) ⊗ 𝑋2 (𝑡) = inf
0≤𝑢≤𝑡

{𝑋1 (𝑢) + 𝑋2 (𝑡 − 𝑢)} . (18)

With the tool of min-plus convolution, referring to [124–127],
one has the relationship among𝐴(𝑡), 𝑆(𝑡), and 𝐴(𝑡 + 𝑑) given
by

𝐴 (𝑡) ⊗ 𝑆 (𝑡) ≤ 𝑌 (𝑡) = 𝐴 (𝑡 + 𝑑) . (19)

3.4. Delay Computation of Single Server. The reports regard-
ing delay computation are rich; see, for example, [124–132,
225, 244–258, 262], Raha et al. [263, 264], Ng et al. [265], Jia et
al [266, 267], Amigo et al. [268], Lenzini et al. [269], Boggia
et al. [270], Karam and Tobagi [271], Fukś et al. [272], Wrege
et al. [273], Liebeherr et al. [274], and Golestani [275]. In this
research, we present a novel way of delay computation, which
is stated below.

Theorem 11. Denote by 𝑌𝐴𝑆(𝑡) = 𝐴(𝑡) ⊗ 𝑆(𝑡). Then, the delay
𝑑(𝑡) that 𝐴(𝑡) suffers from 𝑆(𝑡) at time 𝑡 is given by

𝑑 (𝑡) ≥
𝑌𝐴𝑆 (𝑡) − 𝜎 − 𝜌𝑡

𝜌
. (20)

Proof. According to (14) and (19), we have

𝑌𝐴𝑆 (𝑡) ≤ 𝐴 (𝑡 + 𝑑 (𝑡)) ≤ 𝜎 + 𝜌 (𝑡 + 𝑑 (𝑡)) . (21)

Thus,

𝑌𝐴𝑆 (𝑡) ≤ 𝜎 + 𝜌 (𝑡 + 𝑑 (𝑡)) . (22)

Solving 𝑑(𝑡) from the above yields (20). Thus, the theorem
results.

3.5. Guaranteed Delay of Single Server. Suppose that 𝐷 is
the predetermined deadline of delay. Then, the constraint of
guaranteed delay is expressed by

𝑑 (𝑡) ≤ 𝐷 (𝑡 > 0) . (23)

In order to achieve (23), we let

𝑌𝐴𝑆 (𝑡) − 𝜎 − 𝜌𝑡

𝜌
≤ 𝑑 (𝑡) ≤ 𝐷. (24)

Note that 𝑌𝐴𝑆(𝑡) = 𝐴(𝑡) ⊗ 𝑆(𝑡). Therefore, we may design
either proper 𝑆(𝑡) or 𝐴(𝑡) or both such that (24) is satisfied.
For given 𝐴(𝑡), the following theorem gives the constraint of
𝑆(𝑡) to assure (24).

Theorem 12. Denote the inverse of ⊗ by ⊕. Let 𝐷 be a given
deadline of delay. Then, (24) is satisfied if

𝑆 (𝑡) ≥ 𝐴 (𝑡) ⊕ [𝜌 (𝐷 − 𝑡) − 𝜎] . (25)

Proof. Let (24) be satisfied. Then, we have

𝑌𝐴𝑆 (𝑡) − 𝜎 − 𝜌𝑡

𝜌
≤ 𝐷. (26)

Changing the sign on the left side in the above expression
produces

𝜎 + 𝜌𝑡 − 𝑌𝐴𝑆 (𝑡)

𝜌
≥ 𝐷. (27)
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Figure 3: Arrival traffic 𝐴(𝑡) passing through 𝑛 servers in series.

Therefore, one has

𝑌𝐴𝑆 (𝑡) = 𝐴 (𝑡) ⊗ 𝑆 (𝑡) ≥ 𝜌 (𝐷 − 𝑡) − 𝜎. (28)

From the above, using the inverse of min-plus convolution,
we have 𝑆(𝑡) ≥ 𝐴(𝑡) ⊕ [𝜌(𝐷 − 𝑡) − 𝜎]. This completes the
proof.

3.6. End-to-End Delay in Tandem Network. Consider arrival
traffic𝐴(𝑡) that passes through 𝑛 servers in series as indicated
in Figure 3. In practice, there are a number of arrival traffic
that concurrently join each server at its input port and there
are some traffic thatmay leave at the output port of that server
(Coulouris et al. [276]). Either the number of traffic joining
a server or leaving it is uncertain. For instance, for the first
server that is denoted by 𝑆1(𝑡), there are 𝑚 + 1 arrival traffic
and 𝑗+1 departure ones at time 𝑡.We are only interested in the
arrival denoted by 𝐴(𝑡) and the departure denoted by 𝑌(𝑡).

One way to find the end-to-end delay of 𝐴(𝑡) passing
through 𝑛 servers in series is to find delay 𝑑𝑖(𝑡) that 𝐴(𝑡) suf-
fers from the 𝑖th server using Theorem 11 with the constraint
stated in Theorem 12. Then, the end-to-end delay at time 𝑡 is
given by

𝑑 (𝑡) =

𝑛

∑

𝑖=1

𝑑𝑖 (𝑡) . (29)

Denote 𝑆(𝑡) the service curve of 𝑛 servers in series. Then
[124],

𝑆 (𝑡) = 𝑆1 (𝑡) ⊗ 𝑆2 (𝑡) ⊗ ⋅ ⋅ ⋅ ⊗ 𝑆𝑛 (𝑡) . (30)

Therefore, when 𝑆(𝑡) is designed followingTheorem 12 and it
is decomposed into 𝑛 servers in series, (23) is guaranteed.

The discussions in the previous subsections produce the
following remarks.

Remark 13. The above delay analysis and its computations
do not need any information of the statistics of arrival traffic
𝐴(𝑡).

Remark 14. The delay can be deterministically guaranteed.
Hence, the deterministic queuing systems as Le Boudec and
Thiran stated in [124].

The advantage described by Remarks 13 and 14 is at cost
that more resources are required (Zhao [277], Davaril et al.

[278]). In order to reduce the resource requirements that
deterministic queuing analysis demands, stochastic network
calculus is considered by computer scientists ([19, 95, 128, 130,
131, 243], Jiang et al. [279], Starobinski and Sidi [280], Ng et
al. [281], Borst et al. [282], Liu et al. [283], Li et al. [284], Jiang
[285], and Baccarelli et al. [286]). In what follows, we present
a novel method of stochastic calculus for computing delay of
fractal traffic passing through servers.

4. Novel Delay Analysis of Fractal Traffic
Passing through Servers

We previously reported our bound of arrival traffic by
taking into account its fractal dimension 𝐷𝑓 and the Hurst
parameter𝐻 [287]. It is in the form

𝐴 (𝑡) = ∫

𝑡

0

𝑥 (𝑢) 𝑑𝑢 ≤ 𝑟
2𝐷𝑓−5𝜎 + 𝑎

−𝐻
𝜌𝑡, (31)

where 𝑟 > 0, 𝑎 > 0. Applying (31) toTheorem 11 immediately
yields a novel delay computation as stated below.

Theorem 15. Denote by 𝑌𝐴𝑆(𝑡) = 𝐴(𝑡) ⊗ 𝑆(𝑡). Then, the delay
𝑑(𝑡), which 𝐴(𝑡) suffers from 𝑆(𝑡) at time 𝑡, is given by

𝑑 (𝑡) ≥
𝑌𝐴𝑆 (𝑡) − 𝑟

2𝐷𝑓−5𝜎 − 𝑎
−𝐻
𝜌𝑡

𝑎−𝐻𝜌
. (32)

Proof. According to (14) and (19), we obtain

𝑌𝐴𝑆 (𝑡) ≤ 𝐴 (𝑡 + 𝑑 (𝑡)) ≤ 𝑟
2𝐷𝑓−5𝜎 + 𝑎

−𝐻
𝜌 (𝑡 + 𝑑 (𝑡)) . (33)

Solving 𝑑(𝑡) from the above yields (32), which completes the
proof.

Remark 16. The bandwidth regarding 𝑑(𝑡) expressed by (34)
may be generally less than that expressed by (21).

Remark 16 is true because we take into account two
parameters of fractal traffic, namely, fractal dimension and
the Hurst parameter. As a matter of fact,

(𝜎 + 𝜌𝑡) − (𝑟
2𝐷𝑓−5𝜎 + 𝑎

−𝐻
𝜌𝑡)

= (1 − 𝑟
2𝐷𝑓−5) 𝜎 + (1 − 𝑎

−𝐻
) 𝜌 ≥ 0.

(34)

The above expression implies that, for a given 𝑑(𝑡), the
bandwidth required based on Theorem 15 is less than that
based onTheorem 11.
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Remark 17. Theorem 15 does not relate to statistical means
and variances of arrival traffic.

Note that (31) represents a statistical bound of 𝐴(𝑡)
because 𝐷𝑓 is a fractal parameter [199–207] and so is 𝐻
[198, 205–207]. 𝐷𝑓 expressed by (10) is with probability one
and so is𝐻 expressed by (8).

We previously mentioned several times that we are
studying queuing systems irrelevant to statistical means and
variances of arrival traffic because variances and or means of
traffic may not exist [54, 76–80]. A common case that means
and variances do not exist is for random functions that follow
the Cauchy distribution (G. A. Korn and T. M. Korn [288],
Rice [289], and Meyer [290]). Two papers by Field et al. [291,
292] utilized the Cauchy distribution for modeling traffic.
A concise explanation of random functions without mean
and variance is given by Bassingthwaighte [293]. The point,
namely, irrelevant to statistical means and variances of arrival
traffic, makes the queuing theory based on network calculus
substantially differ from the conventional one. Considering
large queue size based on conventional queuing theory when
arrival is fractal, network calculus may yet be an attractive
theory for guaranteeing queue size in a queuing system.

5. Conclusions

We have explained the reasons why conventional theory of
queuing systems is inappropriate to be used in the delay
analysis of queuing systems when arrival traffic is fractal.
Then, we have given concise method of delay computation of
deterministic queuing systems. Finally, we have derived the
computation method of delay when arrival traffic is fractal.
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