research

Conditional limit theorems for regulated fractional Brownian motion

Abstract

We consider a stationary fluid queue with fractional Brownian motion input. Conditional on the workload at time zero being greater than a large value bb, we provide the limiting distribution for the amount of time that the workload process spends above level bb over the busy cycle straddling the origin, as bb\to\infty. Our results can be interpreted as showing that long delays occur in large clumps of size of order b21/Hb^{2-1/H}. The conditional limit result involves a finer scaling of the queueing process than fluid analysis, thereby departing from previous related literature.Comment: Published in at http://dx.doi.org/10.1214/09-AAP605 the Annals of Applied Probability (http://www.imstat.org/aap/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 01/04/2019