We investigate the asymptotic behavior of the steady-state queue length
distribution under generalized max-weight scheduling in the presence of
heavy-tailed traffic. We consider a system consisting of two parallel queues,
served by a single server. One of the queues receives heavy-tailed traffic, and
the other receives light-tailed traffic. We study the class of throughput
optimal max-weight-alpha scheduling policies, and derive an exact asymptotic
characterization of the steady-state queue length distributions. In particular,
we show that the tail of the light queue distribution is heavier than a
power-law curve, whose tail coefficient we obtain explicitly. Our asymptotic
characterization also contains an intuitively surprising result - the
celebrated max-weight scheduling policy leads to the worst possible tail of the
light queue distribution, among all non-idling policies. Motivated by the above
negative result regarding the max-weight-alpha policy, we analyze a
log-max-weight (LMW) scheduling policy. We show that the LMW policy guarantees
an exponentially decaying light queue tail, while still being throughput
optimal