3,906 research outputs found

    A Fuzzy-Logic Approach to Dynamic Bayesian Severity Level Classification of Driver Distraction Using Image Recognition

    Get PDF
    open access articleDetecting and classifying driver distractions is crucial in the prevention of road accidents. These distractions impact both driver behavior and vehicle dynamics. Knowing the degree of driver distraction can aid in accident prevention techniques, including transitioning of control to a level 4 semi- autonomous vehicle, when a high distraction severity level is reached. Thus, enhancement of Advanced Driving Assistance Systems (ADAS) is a critical component in the safety of vehicle drivers and other road users. In this paper, a new methodology is introduced, using an expert knowledge rule system to predict the severity of distraction in a contiguous set of video frames using the Naturalistic Driving American University of Cairo (AUC) Distraction Dataset. A multi-class distraction system comprises the face orientation, drivers’ activities, hands and previous driver distraction, a severity classification model is developed as a discrete dynamic Bayesian (DDB). Furthermore, a Mamdani-based fuzzy system was implemented to detect multi- class of distractions into a severity level of safe, careless or dangerous driving. Thus, if a high level of severity is reached the semi-autonomous vehicle will take control. The result further shows that some instances of driver’s distraction may quickly transition from a careless to dangerous driving in a multi-class distraction context

    Using a fuzzy inference system for the map overlay problem

    Get PDF

    Automated software quality visualisation using fuzzy logic techniques

    Get PDF
    In the past decade there has been a concerted effort by the software industry to improve the quality of its products. This has led to the inception of various techniques with which to control and measure the process involved in software development. Methods like the Capability Maturity Model have introduced processes and strategies that require measurement in the form of software metrics. With the ever increasing number of software metrics being introduced by capability based processes, software development organisations are finding it more difficult to understand and interpret metric scores. This is particularly problematic for senior management and project managers where analysis of the actual data is not feasible. This paper proposes a method with which to visually represent metric scores so that managers can easily see how their organisation is performing relative to quality goals set for each type of metric. Acting primarily as a proof of concept and prototype, we suggest ways in which real customer needs can be translated into a feasible technical solution. The solution itself visualises metric scores in the form of a tree structure and utilises Fuzzy Logic techniques, XGMML, Web Services and the .NET Framework. Future work is proposed to extend the system from the prototype stage and to overcome a problem with the masking of poor scores

    Neuro-fuzzy knowledge processing in intelligent learning environments for improved student diagnosis

    Get PDF
    In this paper, a neural network implementation for a fuzzy logic-based model of the diagnostic process is proposed as a means to achieve accurate student diagnosis and updates of the student model in Intelligent Learning Environments. The neuro-fuzzy synergy allows the diagnostic model to some extent "imitate" teachers in diagnosing students' characteristics, and equips the intelligent learning environment with reasoning capabilities that can be further used to drive pedagogical decisions depending on the student learning style. The neuro-fuzzy implementation helps to encode both structured and non-structured teachers' knowledge: when teachers' reasoning is available and well defined, it can be encoded in the form of fuzzy rules; when teachers' reasoning is not well defined but is available through practical examples illustrating their experience, then the networks can be trained to represent this experience. The proposed approach has been tested in diagnosing aspects of student's learning style in a discovery-learning environment that aims to help students to construct the concepts of vectors in physics and mathematics. The diagnosis outcomes of the model have been compared against the recommendations of a group of five experienced teachers, and the results produced by two alternative soft computing methods. The results of our pilot study show that the neuro-fuzzy model successfully manages the inherent uncertainty of the diagnostic process; especially for marginal cases, i.e. where it is very difficult, even for human tutors, to diagnose and accurately evaluate students by directly synthesizing subjective and, some times, conflicting judgments

    Biplots of fuzzy coded data

    Get PDF
    A biplot, which is the multivariate generalization of the two-variable scatterplot, can be used to visualize the results of many multivariate techniques, especially those that are based on the singular value decomposition. We consider data sets consisting of continuous-scale measurements, their fuzzy coding and the biplots that visualize them, using a fuzzy version of multiple correspondence analysis. Of special interest is the way quality of fit of the biplot is measured, since it is well-known that regular (i.e., crisp) multiple correspondence analysis seriously under-estimates this measure. We show how the results of fuzzy multiple correspondence analysis can be defuzzified to obtain estimated values of the original data, and prove that this implies an orthogonal decomposition of variance. This permits a measure of fit to be calculated in the familiar form of a percentage of explained variance, which is directly comparable to the corresponding fit measure used in principal component analysis of the original data. The approach is motivated initially by its application to a simulated data set, showing how the fuzzy approach can lead to diagnosing nonlinear relationships, and finally it is applied to a real set of meteorological data.defuzzification, fuzzy coding, indicator matrix, measure of fit, multivariate data, multiple correspondence analysis, principal component analysis.

    Performance comparison between PID and fuzzy logic controller in position control system of dc servomotor

    Get PDF
    The objective of this paper is to compare the time specification performance between conventional controller and artificial intelligence controller in position control system of a DC motor. This will include design and development of a GUI software using Microsoft Visual Basic 6.0 for position control system experiment. The scope of this research is to apply direct digital control technique in position control system. Two types of controller namely PID and fuzzy logic controller will be used to control the output response. An interactive software will be developed to visualize and analyze the system. This project consists of hardware equipment and software design. The hardware parts involve in interfacing MS150 Modular servo System and Data Acquisition System with a personal computer. The software part includes programming real-time software using Microsoft Visual Basic 6.0. Finally, the software will be integrated with hardware to produce a GUI position control system
    corecore