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Abstract 

In this contribution, the problem of ill aligned spatial data is considered. The problem is commonly 

known as the map overlay problem, and occurs when data from different grids are combined. When the 

different grids don't line up properly, determining what portion of the data associated with a tile in one 

grid is relevant for the data associated with a partially overlapping tile in the latter grid becomes a 

problem. As it is in general not possible to derive an exact value, we opted for an approach that results in 

fuzzy sets. Rather than process the data itself, a seemingly intelligent system to make a decision on which 

portions could be relevant, was developed. The presented approach makes use of a fuzzy inference 

system, a system built up of a number of if-then rules containing fuzzy predicates. These rules are used to 

evaluate set of input values to yield one or more output values. The input values can be fuzzy sets 

themselves, output values are always fuzzy sets (in our case fuzzy numbers) which are then defuzzified.  

Keywords: Map overlay problem, fuzzy inference system 

1. Introduction 

When dealing with gridded data, it can be necessary to combine data from different 

sources: one source could supply data of emissions of specific gasses, whereas another 

source could supply land use information; the combination of both is needed to derive a 

link between the data. In our case, one grid concerns emission data, while a finer grid 

contains covariate data, e.g. information of land use or population data that is known to 

have a relation with the emissions represented in the former grid. In literature, there have 

been a number of approaches, ranging from simple aerial weighting to spatial smoothing 

and various regression methods to solve this problem [1]. In general however, it can be 

concluded that no exact solution is possible: the gridded data itself is usually an 

approximation, interpreting it to match a different grid will only increase the uncertainty or 

the imprecision. Unlike the aforementioned methods that describe algorithms to 

manipulate the data to better match the other grid, we considered a different approach, 

using fuzzy set theory and a fuzzy inference system.  

The more detailed workings of fuzzy sets and the inference system will be explained 

in the next sections. The concept of the approach is that we derived rules that describe how 

data of one grid should be redistributed over the second grid. These rules were mainly 

derived from specific example cases; once implemented, the inference system applies these 

rules on the real data and redistributes the values accordingly. The accuracy of the result 

depends largely on the number of rules considered, the fuzzy sets used to represent the data 

and on how well the rules reflect the desired behaviour.  

In the next section, we will introduce the fuzzy inference system. For this, a brief 

introduction in fuzzy set theory is required, with some explanation on fuzzy numbers and 

representation of linguistic terms. After this, the concept of the fuzzy rulebase and its 

workings can be explained. The subsequent section will elaborate on the application of the 



inference system in the context of the map overlay problem. First, a simple example will 

be used to derive the rules and explain the concept. A more advanced example will then 

illustrate the feasibility of this approach so far. The conclusion will summarize the 

findings. 

2. Fuzzy inference system 

2.1. Introduction to fuzzy set theory 

Fuzzy set theory was introduced by Zadeh in [2] as an extension of classical set 

theory. In a fuzzy set, the elements are assigned a membership grade in the range [0,1]. 

These membership grades can have different interpretations [3]: a veristic interpretation 

implies that all the elements belong to some extent to the set, with the membership grade 

indicating the extent; whereas a possibilistic interpretation implies there is doubt on which 

elements belong, now the membership grade is expressing the possibility that an element 

belongs to the set. Last, it is also possible for the membership grades to represent degrees 

of truth. In [3] it was shown that all other interpretations can be traced back to one of these 

three. The formal definition of a fuzzy set A
~

in a universe U and its membership function 

A
µ~  is given in (1) 
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Various operations on fuzzy sets are possible: intersection and union are defined by 

means of functions that work on the membership grades, called respectively t-norms and t-

conorms. Any function that satisfies these criteria is a t-norm, respectively t-conorm. 

 

T-norm T-conorm 

   xyTyxT ,,      xySyxS ,,   

   dcTbaT ,,   if ca   and db      dcSbaS ,,   if ca   and db   

     cbaTTcbTaT ,,,,        cbaSScbSaS ,,,,   

  aaT 1,    aaS 0,  

 

Commonly used t-norms and t-conorms are the Zadeh-min-max norms, which use 

minimum as the intersection and the maximum as the union (other examples are limited 

sum and product, Lukasiewicz, ...) [4].  

 

Fuzzy sets can be defined over any domain, but of particular interest here are fuzzy 

sets over the numerical domain, called fuzzy numbers [5]: the membership function 

represents uncertainty about a numeric value. The fuzzy set must be convex and 

normalized (some authors also claim the support must be bounded, but this property is not 

strictly necessary). Using Zadeh’s extension principle [1], it is possible to define 

mathematical operators on such fuzzy numbers (addition, multiplication, etc.).  

Fuzzy sets can also be used to represent linguistic terms, such as high, low; this allows 

one to determine which numbers are considered high in a given context.  Linguistic 

modifiers also exist and are usually a function that alters the membership function for the 

term it is associated with, allowing for an interpretation of the words like very and 

somewhat. It is necessary to make a distinction between an inclusive and an exclusive 



interpretation: are values that match very high still considered to be high? In real world, 

people could say about a person: “he is not tall, he is very tall”, which is an exclusive 

interpretation: “very tall” does not imply “tall”. 

The main difficulty when using fuzzy sets is the definition of the membership 

functions: why are the fuzzy sets and membership grades chosen as they are, and on what 

information is this choice based. 

2.2. Fuzzy rule base 

In the fuzzy inference system, a rulebase using fuzzy premises and conclusions are 

used. The rulebase is comprised a set of rules that are of the form “if x is A, then y is B”. 

Here “x is A” is the premise and “y is B” is the conclusion; x and y are values, with x the 

input value and y the output value. Both are commonly represented by fuzzy sets, even 

though x can be a crisp value. In the rule, A and B are labels, such as “high” or “low”, also 

represented by fuzzy sets as described above. It is also possible to combine premises using 

logical operators (and, or, xor) to yield more complex rules. The “is” in the premise of the 

rules is a fuzzy match, implying that a value can (and most likely will) match multiple 

premises: a value 80 can match both “high” and “very high” albeit to a different extent. For 

any input (fuzzy or crisp), the process of matching the value will yield a fuzzy value 

indicating how well the input matches. The “is” in the conclusion is a basic assignment. It 

is important to note that x and y can be from totally different domains, a classic example 

from fuzzy control is “if temperature is high, then cooling fan speed is high”.  

2.3. Interpreting the output 

Typical is that all the rules are evaluated and that more than one rule can match: a 

value x can be classified as high to some extent and at the same time as low to much lesser 

extent. As multiple rules can match, y can be assigned multiple values by different rules: 

all these values are aggregated using a fuzzy aggregator to one single fuzzy value. For each 

rule, the extent to which the premise matches impacts the function that is assigned to y. 

While the output of the inference system is a fuzzy set, in practise the output will be used 

to make a decision and as such needs to a crisp value. To derive a crisp value 

(defuzzification), different operators exist. The centroid calculation is the most commonly 

used; it returns the centre of the area under the membership function.  

2.4. Example 

Consider the simple example of a fan controller, with 3 temperature distinctions (low, 

normal and high). The fuzzy sets used to indicate these distinctions are shown on Figure 1. 

Similarly shaped fuzzy sets are used to indicate a low, normal or high fan speed. On Figure 

2, the rulebase used to link the temperatures with the a speed for the fan is shown; with 

only a single input, the rulebase is very straightforward. 

 

 

Figure 1. The fuzzy sets 

used to represent low, 

normal and high. 

 

 

Figure 2. The rulebase used 

for the example of the 

temperature and fan. 

IF temp=low THEN fanspeed=low 

IF temp=normal THEN fanspeed=normal 

IF temp=high THEN fanspeed=high 

 



 

If the given input temperature matches one membership function, the outputted value 

of the y is exactly the function that matches. For temperatures that match multiple rules, 

the value of y is calculated from the output values of all the matching rules, as illustrated 

on figures 3 and 4. 
 

 

Figure 3. An input of 10 

(left) and the resulting 

output (right) of 13 after 

defuzzification. 

 

 

Figure 4. An input 70 (left) 

and the resulting output 

(right) of 64 after 

defuzzification. 

On figures 3 and 4 it can be seen that the output is a fuzzy set, which needs to be 

defuzzified. There are several methods to define the defuzzification, and choosing a 

different method will lead to different – but very similar – results.  

2. Application of the inference system 

2.1. Conceptual example 

2.1.1. Description 

To illustrate the workings of the fuzzy inference system for the map overlay problem; 

first a simple conceptual example will be considered. The example consists of a grid 

comprised of two square grid tiles that holds emission data (em1 and em2) and a grid built 

up of three grid squares that holds covariate data (cov1, cov2 and cov3); illustrated on 

Figure 5. Both grids cover the same area, so the different tiles don’t line up properly; cov2 

is split into cov2a and cov2b. While all covi and emi are known, the question is how the 

emission values can be distributed over the grid with covariates. This problem is 

equivalent to correctly distributing the covariate values of a tile over its different portions: 

knowing how the cov2 tile should be split is sufficient to derive an appropriate distribution 

of the related emission. In this simple example, the calculation can be done very easily; but 

this example will it allows us to derive the rules and verify results. 

 

Figure 5. The grids used in the conceptual example. 

2.1.2. Deriving the rules 

In order to derive the rules for this simple example, we first consider a number of 

extreme cases as shown on Table 1. For ease of interpretation; all the values (both for 

covariates and emissions) are in the range 0-100. The first 5 rows show the known data; 

the rows cov2a and cov2b show how cov2 should be distributed based on the known data. 



Table 1. Examples for the conceptual dataset 

em1 100  100  0  100  

em2 100  0  100  100  

cov1 100  0  100  0  

cov2 100  100  100  100  

cov3 100  100  0  0  

cov2a 50 normal 100 high 0 low 50 normal 

cov2b 50 normal 0 low 100 high 50 normal 

 

In the rulebase, values are compared against predefined fuzzy sets, not against each 

other. To derive the rules, first assume that the covariates are equal: cov1= cov3. If the 

emission em1=em2, then it is obvious that cov2 should be evenly split over both cov2a and 

cov2b. If em1<em2, it implies that cov2 contributes more to em2 than to em1; as a result 

cov2b>cov2a. To make a rule that represents this case, we need to define the rule as:  

 
for every value of A (big, small, ...). The output value clearly depends on the 

difference between em1 and em2: the greater this difference is (em1=very small and 

em2=very big), the smaller the value of cov2a should be. This yields a number of additional 

rules. An analogue reasoning holds when em1>em2. 

Next, assume the emissions are equal: em1=em2. If cov1<cov3, then it implies that, as 

emissions are equal, cov2 contributes more to em1 than to em2; so cov2a>cov2b; the greater 

the difference between cov1 and cov3, the more this should be reflected in the output. 

Consequently, we obtain the rule: 

 
This is again for every value of A, and again the greater the difference between cov1 

and cov2; the more cov2a should differ from cov2b. A similar reasoning holds when 

cov1>cov3.  

In general, neither the emissions nor the covariates will be equal. This implies that 

rules for those cases must be defined as well. In the current example, we considered the 

impact of changes to either emissions and covariates to be similar. To define the rules, we 

considered three predefined fuzzy sets for the emissions (representations for low, normal 

and high), three possible values for the covariates and nine possible values for the 

outputted percentage; all the fuzzy sets are shown on Figure 6. The fuzzy sets for the 

emissions were chosen as triangular fuzzy sets, whereas the sets for covariates and 

percentages are bell-shaped.  

 

 

(a) 

 

(b) 

 

(c) 

Figure 6. The fuzzy sets used to represent low, normal and high emissions (a); 

low, normal and high covariates (b) and the fuzzy sets used to determine the 

outputted percentages (c). For each variable, every function has a name mfi, 

starting from mf0 for the leftmost function. 

IF cov1=small AND cov2=big AND em1=A AND em2=A AND THEN cov2a=small 

IF em1=small AND em2=big AND cov1=A AND cov3=A THEN cov2a=small 



Below are some examples of the rules are shown using the fuzzy sets – the whole 

rulebase consists of 80 rules: 

 

2.1.3. Examples 

Using the above rulebase, we can verify some of the examples. The outputted number 

represents which percentage of the covariate of cov2 is said to relate to cov2a.  

Table 2. Verification of the example dataset 

em1 100 100 0 100 

em2 100 0 100 100 

cov1 100 0 100 0 

cov2 100 100 100 100 

cov3 100 100 0 0 

desired 

cov2a 

50 100 0 50 

fuzzy 

result 

    
defuzzified 50 95.78 4.22 50 

2.1.4. Remarks 

Due to the fact that all the conditions are fuzzy, some results appear less optimal than 

we could envision them; this is mainly the case in the extreme values. Simply adding rules 

for the cases where one of the emissions or covariates that play a part in determining the 

portion is equal to 0 will not really help, as this does not prevent the other rules from 

matching. For a more optimal performance, testing for zero values and then applying a 

more customized rulebase could yield better results for those situations. For values other 

than these extreme cases, the outputs are nicely in between. For contradictory inputs (e.g. 

high emission but low covariate on one side), the results may appear a bit awkward, but 

this is a result of the inconsistent input. 

2.2. Advanced example 

2.2.1. Description 

The simple example served as a means of explaining the concept. A more complicated 

example will be considered now. The previous example is scaled up somewhat: we now 

consider a 2x2 grid representing emissions and perfectly overlapping 3x3 grid containing 

covariates, as shown in figure 7. In this example, there basically are 3 different cases to be 

considered: covariate squares covered by one emission square (cov11,cov13,cov31,cov33), 

squares covered by two emission squares (cov12, cov21, cov23,cov32) and squares covered by 

if (em_a == mf0 & em_b == mf0 & cov_a == mf0& cov_b == mf0 ) -> cov_percentage = mf4; 

if (em_a == mf1 & em_b == mf0 & cov_a == mf0& cov_b == mf0 ) -> cov_percentage = mf5; 

if (em_a == mf2 & em_b == mf0 & cov_a == mf0& cov_b == mf0 ) -> cov_percentage = mf6; 

if (em_a == mf0 & em_b == mf1 & cov_a == mf0& cov_b == mf0 ) -> cov_percentage = mf3; 

if (em_a == mf1 & em_b == mf1 & cov_a == mf0& cov_b == mf0 ) -> cov_percentage = mf4; 

if (em_a == mf2 & em_b == mf1 & cov_a == mf0& cov_b == mf0 ) -> cov_percentage = mf5; 

if (em_a == mf0 & em_b == mf2 & cov_a == mf0& cov_b == mf0 ) -> cov_percentage = mf2; 

if (em_a == mf1 & em_b == mf2 & cov_a == mf0& cov_b == mf0 ) -> cov_percentage = mf3; 

 



4 emission squares (cov22). As the circumstances are quite different, each of these three 

cases will require a different approach. 

 

Figure 7. The grids used in the advanced example. 

2.2.2. Deriving the rule bases 

The concept is similar as before: the emission and covariates for known and related 

squares is used in the premise of the rulebase. Due to the larger nature of the example, it is 

impossible to consider all the possible combinations of emissions and covariates like 

before (this would yield 3^12 cases). Various options exist to limit the number of rules. As 

a simple approach,  we opted to consider the ratios between emissions and covariates. As a 

reference to determine which ratios are high and which are low the following value is used. 


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Values greater than this ratio are considered to be high, values lower considered to be 

low.   

For the first cases, the completely covered tiles cov11, cov13, cov31 and cov33, there is 

no need for the fuzzy inference system, as the covariate is known and needs not to be split.  

For the second case, the tiles covered by 2 emission squares (cov12,cov21, cov23, cov32) 

we need to determine which portions are relevant; we will use cov12 as the example (the 

other three are similar); and determine the value for the portion of cov12 covered by em11. 

Values for the relevant ratios are needed; the neighbouring tiles that are completely 

covered by emission tiles are considered to determine the ratios; we will consider 2 ratios 

for cov12. The first ratio R1 will be defined such that it has a proportional relation to cov12a, 

whereas R2 will be defined to have an inverse proportional relation to cov12a. As possible 

definitions for R1, we have: 

312111
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R
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ememem
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The choices for R2 are similar 

332313
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2
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emem
R

or 
3132332313

212212
2
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


ememem
R  

Initial tests have shown that using either definition does not make for a big difference 

in the end result. Note that in the above definitions only make use of the covij that are fully 

covered by the emission squares considered. It is possible to also include the covij that are 

partly covered by the considered emission squares definitions for R1 could use the partially 

covered covij as well, yielding 



22312111

2111
1

covcovcovcov 




emem
R

or
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

ememem
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There could be similar alternative definitions for R2, but this change most likely of 

little impact in the end result and would complicated things too much for a proof of 

concept. In the example, we will therefore consider the initial definitions.  

 

The approach for the third situation, determining how cov22 should be split, is quite 

similar, but now different definitions for R1 and R2 are needed. To determine the portion of 

cov22 for the part covered by em11, the following formulas will be used: 
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The choice for R2 is similar 
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Using the ratios is bound to provide for less accurate results, so to compensate for 

this, more values have been chosen for both the relations and the covariates: we now 

consider 5 possible reference values for the relations, and 9 possible values for the 

outputted percentages, with a similar naming scheme as before. As in the conceptual 

example, a number of typical, predictable cases with desired results is used to derive the 

rulebase. For the determination of cov12a, some cases are listed in the table below. 

 
em11 100 0 100 100 

em12 0 100 100 0 

em21 0 0 0 100 

em22 0 0 0 0 

cov11 100 0 100 100 

cov12 100 100 100 100 

cov13 0 0 100 0 

cov21 0 0 0 100 

cov22 0 0 0 0 

cov23 0 0 0 0 

cov31 0 0 0 0 

cov32 0 0 0 0 

cov33 0 0 0 0 

R     

R1 1 inf 1 1 

R2 inf inf 1 inf 

cov12a 100 0 50 100 

 



Based on this table, an appropriate rulebase similar to the one for the basic example is 

derived. Below, some of the 25 rules are listed. 

 
The same rulebase can be used to determine the portion of cov22, but of course using 

the appropriate definitions for the inputted relations R1 and R2. 

2.2.3. Results and remarks 

The rulebase exhibits the expected behaviour: the portion of the covariate is estimated 

correctly; the four example cases listed above yield results similar to the simple example. 

The examples are more difficult to verify though, as changing the values of the emissions 

and covariates for the different cases has the side effect of changing the reference ratio R. 

This in turn impacts the fuzzy sets used to describe high, low and so on. So far, the 

rulebase has been tested with simple example, but further verification is needed. As before, 

some very extreme cases (e.g. covariates that are 0) can yield less than optimum results, 

but such cases could be detected and considered separately beforehand.  

3. Optimizations 

3.1. Inputs 

From the two examples, it obvious that the use of the ratio decreases the accuracy. 

Using the actual values however would yield a rulebase of unmanageable size. It may 

however be possible to find better groups to use (e.g. summation of emissions and 

summation of relevant covariates, or multiple ratios) or devise a different rulebase 

altogether, and obtain a better result while still keeping a relatively small rulebase. 

3.2. Rulebase 

In the current models, very intuitive and simple rule were used. These rules should 

just be seen as a first step in a proof of concept. This allows it to work for many cases but 

still may cause it to be less successful in other cases. The use of additional technologies 

(e.g. neural networks) is one approach that could allow the rulebase to be determined 

automatically based on a much large number of cases, rather than constructed from some 

intuitive results. Especially in combination with the above optimization, this should yield 

better results. 

3.3. Use more available information 

Currently, some information is not used: some covariate tiles that partly covered by an 

emission tile are not used. The main reason for this is that the whole point is trying to 

determine how to split them, but of course this may be too much of a simplification for 

general cases. The fuzzy inference system however allows for a more fuzzy input, which 

makes it possible for us to derive a representative fuzzy value for these tiles; a partially 

covered covariate tile could be counted as contributing it surface area (as an 

approximation). At present, it is not clear yet how this fuzzy value should be determined, 

but it will be important: the risk is that introduction more fuzzy data at the inputs could 

make the output value too fuzzy to be truly useful. 

if(R1 == mf0 & R2 == mf0) -> cov12a = mf4; 

if(R1 == mf0 & R2 == mf1) -> cov12a = mf3; 

if(R1 == mf0 & R2 == mf2) -> cov12a = mf2; 

if(R1 == mf0 & R2 == mf3) -> cov12a = mf1; 

 

 

 

 
 



4. Conclusion 

In this contribution, we presented a novel approach to consider the map overlay 

problem. To determine how data should be distributed between ill aligned grids, a fuzzy 

inference system is used. The methodology is still in quite early development, but is 

showing promising results. Future work first concerns employing a better methodology to 

determine and refine the rulebase and the input, and then scaling up the methodology to 

larger and more complex examples. Lastly, realistic examples need to be considered to 

verify the results in more real world situations. 
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