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Abstract 

In this paper, the theoretical foundations of generalised 

fuzzy Bayesian Network based on Vectorial Centroid 

defuzzification is introduced. The extension of Bayesi-

an Network takes a broad view by examples labelled by 

a fuzzy set of attributes, instead of a classical set. Com-

bining fuzzy set theory and Bayesian Network’s 

knowledge allows the use of fuzzy variables or attrib-

utes that widely used in various applications in science 

and engineering. It is so highlights the integration of 

both knowledge’s considers the need of human intuition 

in data analysis. Through the experimental comparison 

and analysis on the BUPA-liver disorder dataset, the 

proposed methodology is then validated theoretically 

and empirically. 

Keywords: Centroid defuzzification; Vectorial Cen-

troid; Bayesian Network; Human Intuition. 

1. Introduction  

Over the last decade, a lot of techniques dealing 

with vagueness and imprecision have drawn the atten-

tions of researchers and applied scientists. In real world 

phenomena, decisions are made based on information 

given which is known as data. However, information 

about decision is always uncertain. The uncertain in-

formation may include randomness, vagueness and 

fuzziness. Tang et al, (2002) claim, there are critical 

problems of the artificial intelligence research field that 

always arise which are: how to represent the uncertain 

information precisely; and how to reason using uncer-

tain information. The theory of probability either in 

subjective or objective cases can deal with uncertainty 

due to randomness. Bayesian knowledge has been im-

portant tools that can represent the human knowledge 

under uncertain circumstances. On the other hand, the 

uncertainty due to vagueness and randomness can be 

dealt with the fuzzy knowledge.  

Bayesian Network is developed method from clas-

sical mathematics theory where has a mathematical ba-

sis and stable structure development. Theoretically, the 

Bayesian Network model uncertain knowledge repre-

sentation and reasoning where the fundamental bases 

are on probabilities and graph theory (Tang & Liu, 

2007). It shows the factors and their interactions that 

relate to a response of interest (Jensen & Nelsen, 2007; 

Pearl 1998). Constructing Bayesian Network is a graph-

ical and qualitative illustration of relationships among 

different nodes using directed arcs. In establishing the 

structure of constructing Bayesian Network is using da-

ta sets in machine learning either based on complete or  

 

 

incomplete data (Gasse et al, 2014). The second way in 

constructing the Bayesian Network is some researchers 

have proposed several approaches by using existing 

models of the system (Boujla et al, 2014). Aguilera et 

al. (2010) claim one of the most essential advantage of 

Bayesian Network is that the directed acyclic graphs 

determine the dependence and independence relation-

ships among the variables, where it is possible to find 

out, with no need of carrying out any numerical calcula-

tions, which variables are relevant and irrelevant for 

some other variable of interest. The frequentist’s model 

only take mean values into account where the Bayesian 

construct the model by means of probability distribu-

tions. Since nodes are modelled by means of probability 

distributions, risk and uncertainty can be estimated 

more accurately (Uusitalo, 2007). Bayesian Network 

capable to model complex systems with a large num-

bers of variable and manageable missing values in input 

data in proper prediction (Getoor et al, 2004; Uusitalo, 

2007).  

However, there are some limitations in handling 

Bayesian Network where in real world problems, the 

fact that most of the data available are continuous or 

hybrid and sometime in fuzzy nature. Even though 

Bayesian Network can manage them, the limitations are 

too restrictive (Nyberg et al, 2006; Uusitalo, 2007). In 

dealing with imprecision or fuzzy events, Bayesian 

Network is useful tool to deal with probabilistic theory, 

but unable to handle these fuzzy events properly since 

to express the ambiguity of data sets in a model. These 

models also are not yet incorporated to the typical 

commercial Bayesian Network software.  

In dealing with imprecision or fuzzy events, Zadeh 

(1965) was introduced fuzzy set theory to represent 

vagueness or imprecision in a mathematical approach. 

The main motivation of using fuzzy set theory shows its 

ability in appropriately dealing with imprecise numeri-

cal quantities and subjective preferences of decision 

makers (Deng, 2013). It is typical needed that defuzzi-

fication plays a significant role in the performance of 

fuzzy system’s modelling techniques (Yager, 1994). 

Defuzzification process is guided by the output fuzzy 

subset that one value would be selected as a single crisp 

value as the system output. Zimmerman (2000) claims 

that the fuzzy numbers are represented as possibility 

distribution where most of the real-world phenomena 

that exist in nature are fuzzy rather than probabilistic or 

deterministic.     

Centroid defuzzification is most commonly tech-

nique that has been applied in various discipline areas 

where has been explored for the last decade. In ranking 

fuzzy numbers, centroid defuzzification is classified as 

one of the major classes where it can provide a very 
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useful to support the representation of fuzzy numbers 

possibility distribution. The involvement of centroid 

defuzzification concept in ranking fuzzy numbers only 

started in 1980 by Yager. Followed by Murakami et al.  

(1983), Cheng (1998), Chu and Tsao (2002), Chen and 

Chen (2003), Liang et al. (2006), Chen and Chen 

(2007) and Wang and Lee (2008). All researchers have 

their own definition of centroid concept in ranking in-

dex. Some of them contribute in ranking fuzzy numbers 

that are based on the value of x~  alone whilst some are 

based on the contribution of both x~  and y~ values. 

Ramli and Muhamad (2009) claim that Wang et al. 

(2006) and Shieh (2007) methods produce correct cen-

troid point formula for fuzzy numbers that very useful 

computational support in ranking fuzzy numbers based 

on the centroid concepts. Wang et al. (2006) and Shieh 

(2007) not focused on finding the best ranking fuzzy 

numbers, but on producing the correct formula for cen-

troid defuzzification point )~,~( yx  itself that can be used 

in many applications in real world problems other than 

ranking only. Shieh (2007) proposed the following cen-

troid formulation for all fuzzy numbers 
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The centroids of fuzzy numbers normally are extracted 

from geometric aspects where is to construct various 

order relationship from the perspective of membership 

function to some extent. Fuzzy set theory has done for 

every single part of the official analysis when dealing 

with the vagueness and imprecision in human decision 

making. The power of human being in making logical 

decisions using imprecise and incomplete information 

has led to the uncertainty in terms of decision in forma-

tiveness.  

This paper presents a novel approach that combines 

fuzzy set theory and Bayesian Network approach using 

Vectorial Centroid defuzzification which discusses the 

imprecision in probability of the fuzzy events. While 

classical Bayesian Network and established Shieh 

(2007) centroid method that used in Bayesian Network 

have been employed in this study, the proposed meth-

odology is used there to work only if one can give a 

probability distribution for all attributes which doesn’t 

seem meaningful in the case of fuzzy truth values. The 

proposed research covers all possible cases of fuzzy 

numbers that exist nowadays. This study employs alter-

native approach to extend the algorithm to cater all pos-

sible fuzzy cases. The extension of Bayesian Network 

into fuzzy states will increase robustness, allows impre-

cise or contradictory inputs, permits fuzzy thresholds of 

probabilistic dependence and reconciles conflicting that 

relates input to output.  

The rest of this paper is organised as follows: In 

Section 2, this paper discuss the theoretical preliminar-

ies of fuzzy set theory, generalised trapezoidal fuzzy 

number, Bayesian equation and Bayesian Network for-

mulation. This is then proceeded to the proposed work 

of generalised fuzzy Bayesian Network using Vectorial 

Centroid method in Section 3. Section 4 discusses vali-

dation processes of proposed methodology theoretically 

and empirically.    

 

2.  Theoretical Preliminaries 

In this section, some basic definitions and arithme-

tic operations concepts are presented in this paper 

 

2.1 Fuzzy Set Theory 

Fuzzy set is an extension of regular set of numbers in 

the sense that does not refer to one single crisp value 

but rather to a connected set of possible values with the 

membership function is between 0 and 1. The elemen-

tary function 
A
~  of a crisp set XA assign a value ei-

ther 0 or 1 to each member in X. This function can be 

universal to a function 
A
~  such that the value is as-

signed to the element of the universal set X fall within a 

specified range. The assigned value indicates the mem-

bership grade of the element in the set A. The function  

)(~ x
A

  is known as a membership function where the set 

 XxxxA
A

 ));(,(
~

~  defined by )(~ x
A

  for each Xx is 

called fuzzy set. Fuzzy set A
~

is defined on the universal 

set of real numbers , where has the following charac-

teristics (Kaufmann & Gupta, 1988) 

a. ]1,0[:~ 
A

 is continuous 

b. 0)(~ x
A

 for all ),[],(  dax   

c. )(~ x
A

 is strictly increase on ],[ ba and strictly 

decrease on ],[ dc  

d. 1)(~ x
A

 for all ],[ cbx , where dcba   

 

2.2 Generalised Trapezoidal Fuzzy Number 

A generalized trapezoidal fuzzy number can be repre-

sented by the following membership function is given 

by (Chen & Chen, 2009)  
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For a trapezoidal fuzzy number, if cb  , then the fuzzy 

number is in the form of the triangular fuzzy number. 
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Whereas, if dcba   for both triangular and trape-

zoidal fuzzy numbers, then both fuzzy numbers are said 

to be in the sort of singleton fuzzy number. The length 

between a and d are known as the core of the fuzzy 

number. 

 

 

 

 

 

  

 

 

 

 

     

 

Fig. 1: Trapezoidal Fuzzy Number 

 

2.3 Bayesian Equation 

The principal of Bayesian knowledge applying simple 

Bayesian theory in complex causality events. If X and Y 

are events, where 0)( YP , then the conditional proba-

bility of A, given B is (Liu, 2000) 
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The joint probability is  

  )()()()()( XYPXPYXPYPXYP                (5) 

Assume that   niBi ,  is a number collection of events. 

Let X be another event and suppose that )( iYP  and 

)( iYXP  for each ni . 

The total probability formula is denoted as 
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Then the Bayesian equation is 

  
)(

)(
)(

j

ij
ji

XP

YXP
XYP   

   





n

i

iji

iJi

YXPYP

YXPYP

1

)()(

)()(
             (7) 

  ;,...,2,1 ni   mj ,...,2,1  

Suppose that NVVV ,...,, 21  are events in a general case 

where intersection has positive probability. The multi-

plication rule of probability of Bayesian equation is 

  ),...,,( 21 NVVVP  

  ),...,,()...()( 121121  NN VVVVPVVPVP            (8) 

 

2.4 Bayesian Network 

Bayesian Network represents a directed acyclic graphs 

(DAG), which consist of nodes, directed arcs and the 

conditional probability (Pearl, 2000). According to 

Cheng et al. (2012), Bayesian Network is inference en-

gine for the computation of beliefs of events given the 

observation of other events which is known as evi-

dence, where the calculation of the probabilities of the 

occurrences of some events given the evidence. For 

every single node represents each event or variable. The 

directed arc between two events represent the direct 

causality and its degree can be expressed as by condi-

tional probability formulation. In Bayesian Network, a 

node )"(" iV  given its parents is conditionally independ-

ent of its non-descendants. 

        ))(())(),(( iiiii VFVPVFVAVP                 (9) 

:)( iVA  The set of non-descendants of "" iV  

:)( iVF  The set of parent nodes of "" iV  

Referring to the conditional probability, the NVVV ,...,, 21  

are nodes of a Bayesian Network and the joint probabil-

ity can be expressed as  

  
N

iiN VFVPVVVP

1

21 ))((),...,,(             (10) 

where )( iVF  is the set of parent nodes of "" iV  and the 

marginal probability of "" iV  is  

  

iexceptV

Ni VVVPVP ),...,,()( 21              (11) 

Let assume that the evidence e is given, and then the 

Bayesian Network formula can be denoted as  
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3. Proposed Methodology 

 As noted in the introduction, the useful of fuzzy 

numbers nowadays a widely applied in many research 

problems in dealing with human intuition in data analy-

sis. In machine learning systems, most of researchers 

attempt to eliminate the need of human intuition in their 

data analysis. Human intuition or human judgment 

can’t be eliminated because it can lead us to uncertain-

ty, vagueness and randomness.  

 In the fuzzy case, the authors generalise the con-

cept of attributes to ]1,0[~ 
A

 . The values of the varia- 

a  b  c  

h  

x  

 x
A
~  

d  
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bles correspond to generalised trapezoidal fuzzy num-

bers where capable to represent all type of fuzzy num-

bers in such a way that can cater human intuition in ma-

chine learning systems properly. In various applications 

in science and engineering, there will be a need to de-

fuzzy the fuzzy values into crisp values. In this section, 

this study propose a new centroid defuzzification meth-

od that can be applied properly in Bayesian Network 

algorithm. The methodology consist of two stages here 

namely 
 

A.  Stage one 

The development of Vectorial Centroid defuzzification 

method for fuzzy sets. 

B. Stage two 

The implementation of Vectorial Centroid in Bayesian 
Network algorithm. 
 

Full description for both stages are as follow: 

A. Stage one 

Let consider );,,,(
~

hdcbaA   as the generalised trape-

zoidal fuzzy number. The complete method process for 

Vectorial Centroid is signified as follow 

Step 1: Find the centroids of the three parts of ,   and 

  in trapezoid plane representation as shown in Fig. 2 

Fig. 2: Vectorial Centroid plane representation 
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Step 2: Connect all vertices centroids points of ,   

and  each other, where it will create another triangular 

plane inside of trapezoid plane. 

Step 3: The centroid index of Vectorial Centroid of 

)~,~( yx  with vertices ,   and  can be calculated as  
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Vectorial Centroid can be summarised as 
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where 

 x~ : the centroid on the horizontal x-axis 

 y~ : the centroid on the vertical y-axis 

 )~,~( yx : the centroid point of fuzzy number A
~

 

Centroid index of Vectorial Centroid can be generated 

using Euclidean Distance by Cheng (1998) as 

   22 ~~)
~

( yxAR               (18) 

B. Stage two 

Extend the Bayesian Network formulation in fuzzy 

states of nature, where if have fuzzy data set, defuzzifi-

cation process is needed in converting into crisp values 

where at the same time the fuzzy nature is not lost. Re-

interpretation of degree ]1,0[~ 
A

  using Vectorial Cen-

troid to the ),...,,( 21 eVVVP N  is developed as follows: 

Step 1: Lift the reintergration of the fuzzy values mem-

bership function using generalised trapezoidal fuzzy 

numbers. Vectorial Centroid formulation are applied for 

generalised trapezoidal fuzzy numbers rule formula. 

The 
A
~  represents as );,,,( hdcba  in calculation to 

avoid cluttering. Suppose that 
V
~  and e~  are fuzzy 

averts for variable V and e.  

Step 2: The centroid index of Vectorial Centroid, 
22 ~~)

~
( yxAR   is inserted into Bayesian Network 

formulation as  

   )
~

(~~)
~

( 22
iAyxAR   

The computational process of fuzzy Bayesian Network 

using Vectorial Centroid is 
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4. Experimental Setting 

 In this section, we describe the required parameters 

to conduct the experiments. The experiment is conduct-

ed using 10-fold cross validation on BUPA liver-

disorder data set from UCI machine learning repository 

is used where donated by BUPA Medical Research Ltd 

(Forsyth, 2015). This liver-disorder classification da-

taset has 345 examples, 7 attributes and binary classes 

for dependent attribute. The first 5 attributes measure-

ments were taken by blood tests that are thought to be 
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sensitive to liver-disorders and might arise from exces-

sive alcohol consumption. The sixth attribute is a sort of 

selector attribute where the subjects are single male in-

dividuals. The seventh attribute shows a selector on the 

dataset which being used to split into two categories 

that indicating the class identity. The attributes include: 

a. Mean corpuscular volume, 

b. Alkaline phosphatase, 

c. Aspartate aminotransferase, 

d. Gamma-glutamyl transpeptidase, 

e. Alamine aminotransferase, 

f. Number if half-pint equivalents of alcoholic 

beverage drunk per day, and 

g. Output attributes either liver disorder or liver 

normal 

Among all the people, there are 145 belonging to the 

liver-disorder group and 200 belonging to the liver-

normal group. These attributes are selected with the aid 

of experts. In operating centroid methods, the original 

dataset are fuzzified randomly with range 3  in gener-

alised trapezoidal fuzzy number fuzzy set form. Below 

depicts the example of fuzzy sets are used in this re-

search study 

Example: 

 If the generalised trapezoidal fuzzy set 

4.14;0.9)45,93.32,9(90.09,91.


iA , then the centre points 

are computed using proposed (Vectorial Centroid) and 

established Shieh (2007) formulation respectively as 

follows: 

Vectorial Centroid: 

2650.92)~( xVC  and 35.0)~( yVC  

Centroid index Vertical Centroid, 2657.92)
~

( RVC  
 

Shieh centroid: 

2334.92~ x  and 3948.0~ y  

Crisp index Shieh centroid, 2343.92)
~

( RShieh  
 

 

5. Simulation Results 

 This section illustrates the validation process that 

are divided into two parts which are theoretically and 

empirically. Therefore, the theoretical of Vectorial Cen-

troid validation process are as follow 

 

A. Stage one 

 

The relevant properties considered for justifying the ap-

plicability of centroid for fuzzy numbers, where they 

depend on the practically within the area of research 

however, they are not considered as complete.   There-

fore, with no loss of generality, the relevant properties 

of the centroid are as follow:  

Let A
~

 and B
~

 are be trapezoidal and triangular fuzzy 

numbers respectively, while )~,~(~ yxVC
A

 and )~,~(~ yxVC
B

 

be centroid for A
~

 and B
~

 respectively. Centroid index 

of Vectorial Centroid represents the crisp value of cen-

troid point that is denoted as 22 ~~)
~

( yxAR   

 

Property 1: If A
~

 and B
~

 are embedded and symmetry, 

then )
~

()
~

( BRAR  . 

Proof: 

Since A
~

 and B
~

 are embedded and symmetry, hence we 

know that 
BA

xx ~~ ~~   and 
BA

yy ~~ ~~  . 

Then, from equation (18) we have 

2
~

2
~

2
~

2
~ ~~~~

BBAA
yxyx  . Therefore, )

~
()

~
( BRAR  . 

 
 

Property 2: If A
~

 and B
~

 are embedded with 
BA

hh ~~  , 

then )
~

()
~

( BRAR  . 

Proof: 

Since A
~

 and B
~

 are embedded and with 
BA

hh ~~  ,, 

hence we know that BA
xx ~~ ~~   and 

BA
yy ~~ ~~  . 

Then, from equation (18) we have 

2
~

2
~

2
~

2
~ ~~~~

BBAA
yxyx  . Therefore, )

~
()

~
( BRAR  . 

 
 

Property 3: If A
~

 is singleton fuzzy number, then 

2
~

2
~ ~~)

~
(

AA
yxAR  . 

Proof: 

For any crisp (real) numbers, we know that 

A
xdcba ~~  and 1~

~ 
A

y  which are equivalent to 

equation (17). Therefore, 2
~

2
~ ~~)

~
(

AA
yxAR  . 

 
 

Property 4: If A
~

 and B
~

 are any symmetrical or asym-

metrical fuzzy number, then dARa  )
~

(  and 

dBRa  )
~

( . 

Proof:  

Since A
~

 and B
~

 are any symmetrical or asymmetrical 

fuzzy numbers, hence dyxVCa
A

 )~,~(~  and 

dyxVCa
B

 )~,~(~ . Therefore, dARa  )
~

(  and 

dBRa  )
~

(  respectively. 

All validation are related with computation for single 

crisp value )
~

(AR , where A
~

 is any fuzzy number. 

 

B. Stage two 

In this stage, the empirical validation is implemented 

where the BUPA liver-disorder dataset is used. These 

attributes are selected with the aid of experts. The orig-

inal dataset are fuzzified randomly with range 3  as 
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mentioned before. The fuzzy data bases consist of all 

possible cases of fuzzy sets for each variable or attrib-

ute randomly which are: 

a. 4 different cases of trapezoidal fuzzy number 

b. 4 different cases of triangular fuzzy number 

c. 2 different cases of singleton fuzzy number 

Details on all these cases can be found in the Fig. 3 – 

Fig. 12. 

 

Table I presents a comparative results between 

classical Bayesian Network (BN-Classic), fuzzy Bayes-

ian Network using established Shieh centroid method 

(FBN-Shieh), and fuzzy Bayesian Network using Vec-

torial Centroid (FBN-VC). The comparison results are 

based on accuracy, precision, Kappa statistic and some 

error terms. 

 

TABLE I.   ACCURACY, PRECISION, KAPPA 

STATISTIC AND ERRORS RESULTS 
 

BN-Classic FBN-Shieh FBN-VC 

Accuracy 

56.2319% 

Accuracy 

56.8116% 

Accuracy 

57.3913% 

Precision 

0.535 
 

Kappa Statistic 

0.035 

Precision 

0.54 
 

Kappa Statistic 

0.0419 

Precision 

0.552 
 

Kappa Statistic 

0.0644 
 

Errors 

MAE: 0.482 

RMSE: 0.4995 

RAE: 98.8992% 

RRSE: 101.187% 

Errors 

MAE: 0.4804 

RMSE: 0.4963 

RAE: 98.575% 

RRSE: 100.539% 

Errors 

MAE: 0.4759 

RMSE: 0.4956 

RAE: 97.6398% 

RRSE: 100.369% 

 
 

The accuracy and precision of a measurement sys-

tem play important role in quantifying the actual meas-

ure value. It is commonly used as metric for evaluation 

of machine learning systems. Accuracy refers to the 

closeness of agreement between a measured value and 

the true value. The precision is dependent of accuracy 

where the model can be very precise but inaccurate. 

The higher the value of accuracy and precision, the bet-

ter classification prediction is made. In this research 

study, Table I shows the accuracy results that show the 

correctness of a model classifies the dataset in each 

class. The accuracy results of BN-Classic, FBN-Shieh 

and FBN-VC are 56.2319%, 56.8116% and 57.3913% 

respectively. It shows that the proposed methodology is 

significantly more accurate compared to others. The 

highest precision in this case study is FBN-VC with 

0.552, followed by FBN-Shieh with 0.54 and BN-

Classic with 0.535. 

 Kappa statistic technique is a chance-corrected 

tool that used to measure the agreement of two classifi-

ers and estimate the probability of two classifiers agree 

simply by chance (Jeong, 2010). The higher the value 

of kappa statistic, the stronger the strength of agreement 

between two classifiers by chance. Referring Table 1, 

FBN-VC shows the highest value of kappa statistic with 

0.0644 followed by FBN-Shieh and BN-Classic with 

0.0419 and 0.035 respectively. 

The last part in Table I depicts the errors for the 

experiment carried out. The errors are computed by us-

ing Mean Absolute Error (MAE), Root Mean Square 

Error (RMSE), Relative Absolute Error (RAE) and 

Root Relative Square Error (RRSE). The proposed 

method, FBN-VC performs better results in error terms 

where all of these errors are less than FBN-Shieh and 

BN-Classic. 

6. Conclusion 

 This study has addressed a generalised of the fuzzy 
Bayesian Network that takes into account the need of 
fuzzy events in variables or attributes in classification 
case study in which vagueness and ordinality are avail-
able. This work recommends new extension of fuzzy 
Bayesian Network methodology which consist of two 
stages which are: the development of Vectorial Cen-
troid defuzzification method for fuzzy sets: and the im-
plementation of Vectorial Centroid in Bayesian Network 
algorithm. For the first stage, the development of new 
centroid method can cater all the possible cases of fuzzy 
numbers precisely that matching for human intuition or 
human judgment. The generalised fuzzy Bayesian Net-
work using proposed method on stage two is easily ca-
pable constructed and handled in data analysis when 
dealing with fuzzy data sets.  
 Shieh (2007) method shows some shortcomings 
where it can’t compute for singleton cases. The pro-
posed Vectorial Centroid method capable in handling 
all possible cases of fuzzy numbers and its looks more 
balance compare to Shieh (2007) method in discovering 
centre point where Vectorial Centroid has three multi-
ple centre points, α, β, and γ that used to support more 
the shape in Cartesian plane before we find the core 
centre point. This proposed method can be used in 
many applications either in fuzzy problems or machine 
learning systems where it can cater all possible cases of 
fuzzy events. 
 Moreover, this study can be valuable alternatively in 
the set of existing Bayesian Network for many prob-
lems in machine learning problems. For the theoretical 
validation, there are four relevant properties for cen-
troid development are constructed and well proved, 
where corresponding with all possible fuzzy numbers 
representation. Several tests for validation have been 
done and the results have been studied in-depth using 
BUPA liver-disorder classification dataset from UCI 
machine learning repository dataset. The validation re-
sults show the proposed research study more efficient 
and consistent in dealing with fuzzy events empirically. 
Finally, it can be concluded that the main focus of this 
research study can be proceeded in order to make some 
contributions by considering real case study drawn for 
diverse fields crossing ecology, health, genetics, finance 
and so forth. In the future, we are planning to focus on 
generalisation of the proposed Vectorial Centroid 
method for type-2 fuzzy sets and Z-numbers under the 
uncertainty and reliability conditions.         
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Fig.  3: Trapezoidal Symmetry Normal 

 

 
Fig.  4: Trapezoidal Non-Symmetry Normal 

 

 
Fig. 5: Trapezoidal Symmetry Non-Normal 

 

 
Fig. 6: Trapezoidal Non-Symmetry Non-Normal 

 

 
Fig. 7: Triangular Symmetry Normal 

 

 
Fig. 8: Triangular Non-Symmetry Normal 

 

 
Fig. 9: Triangular Symmetry Non-Normal 

 

 
Fig. 10: Triangular Non-Symmetry Non-

Normal 

 

 
Fig. 11: Singleton Normal 

 

 
Fig. 12: Singleton Non-Normal 
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