220 research outputs found

    Imaging Land Subsidence Induced by Groundwater Extraction in Beijing (China) Using Satellite Radar Interferometry

    Get PDF
    Beijing is one of the most water-stressed cities in the world. Due to over-exploitation of groundwater, the Beijing region has been suffering from land subsidence since 1935. In this study, the Small Baseline InSAR technique has been employed to process Envisat ASAR images acquired between 2003 and 2010 and TerraSAR-X stripmap images collected from 2010 to 2011 to investigate land subsidence in the Beijing region. The maximum subsidence is seen in the eastern part of Beijing with a rate greater than 100 mm/year. Comparisons between InSAR and GPS derived subsidence rates show an RMS difference of 2.94 mm/year with a mean of 2.41 ± 1.84 mm/year. In addition, a high correlation was observed between InSAR subsidence rate maps derived from two different datasets (i.e., Envisat and TerraSAR-X). These demonstrate once again that InSAR is a powerful tool for monitoring land subsidence. InSAR derived subsidence rate maps have allowed for a comprehensive spatio-temporal analysis to identify the main triggering factors of land subsidence. Some interesting relationships in terms of land subsidence were found with groundwater level, active faults, accumulated soft soil thickness and different aquifer types. Furthermore, a relationship with the distances to pumping wells was also recognized in this work.This work was supported by the National Natural Science Foundation of China under Grant 41201419 and a China Scholarship Council (CSC) scholarship to Mi Chen. Roberto Tomás was supported by the Ministry of Education, Culture and Sport through the project PRX14/00100. Part of this work is also supported by the Spanish Ministry of Economy and Competitiveness and EU FEDER funds under projects TIN2014-55413-C2-2-P, by the UK Natural Environmental Research Council (NERC) through the LICS and IRNHiC projects (ref. NE/K010794/1 and NE/N012151/1, respectively), the ESA-MOST DRAGON-3 projects (ref. 10607 and 10665) and the Open Fund from the Key Laboratory of Earth Fissures Geological Disaster, Ministry of Land and Resources (Geological Survey of Jiangsu Province)

    Spatiotemporal Evolution of Land Subsidence in the Beijing Plain 2003–2015 Using Persistent Scatterer Interferometry (PSI) with Multi-Source SAR Data

    Get PDF
    Land subsidence is one of the most important geological hazards in Beijing, China, and its scope and magnitude have been growing rapidly over the past few decades, mainly due to long-term groundwater withdrawal. Interferometric Synthetic Aperture Radar (InSAR) has been used to monitor the deformation in Beijing, but there is a lack of analysis of the long-term spatiotemporal evolution of land subsidence. This study focused on detecting and characterizing spatiotemporal changes in subsidence in the Beijing Plain by using Persistent Scatterer Interferometry (PSI) and geographic spatial analysis. Land subsidence during 2003–2015 was monitored by using ENVISAT ASAR (2003–2010), RADARSAT-2 (2011–2015) and TerraSAR-X (2010–2015) images, with results that are consistent with independent leveling measurements. The radar-based deformation velocity ranged from −136.9 to +15.2 mm/year during 2003–2010, and −149.4 to +8.9 mm/year during 2011–2015 relative to the reference point. The main subsidence areas include Chaoyang, Tongzhou, Shunyi and Changping districts, where seven subsidence bowls were observed between 2003 and 2015. Equal Fan Analysis Method (EFAM) shows that the maximum extensive direction was eastward, with a growing speed of 11.30 km2/year. Areas of differential subsidence were mostly located at the boundaries of the seven subsidence bowls, as indicated by the subsidence rate slope. Notably, the area of greatest subsidence was generally consistent with the patterns of groundwater decline in the Beijing Plain

    Urban Deformation Monitoring using Persistent Scatterer Interferometry and SAR tomography

    Get PDF
    This book focuses on remote sensing for urban deformation monitoring. In particular, it highlights how deformation monitoring in urban areas can be carried out using Persistent Scatterer Interferometry (PSI) and Synthetic Aperture Radar (SAR) Tomography (TomoSAR). Several contributions show the capabilities of Interferometric SAR (InSAR) and PSI techniques for urban deformation monitoring. Some of them show the advantages of TomoSAR in un-mixing multiple scatterers for urban mapping and monitoring. This book is dedicated to the technical and scientific community interested in urban applications. It is useful for choosing the appropriate technique and gaining an assessment of the expected performance. The book will also be useful to researchers, as it provides information on the state-of-the-art and new trends in this fiel

    Tracking hidden crisis in India's capital from space: implications of unsustainable groundwater use.

    Get PDF
    Funder: Helmholtz-Zentrum Potsdam Deutsches GeoForschungsZentrum - GFZNational Capital Region (NCR, Delhi) in India is one of the fastest-growing metropolitan cities which is facing a severe water crisis due to increasing water demand. The over-extraction of groundwater, particularly from its unconsolidated alluvial deposits makes the region prone to subsidence. In this study, we investigated the effects of plummeting groundwater levels on land surface elevations in Delhi NCR using Sentinel-1 datasets acquired during the years 2014-2020. Our analysis reveals two distinct subsidence features in the study area with rates exceeding 11 cm/year in Kapashera-an urban village near IGI airport Delhi, and 3 cm/year in Faridabad throughout the study period. The subsidence in these two areas are accelerating and follows the depleting groundwater trend. The third region, Dwarka shows a shift from subsidence to uplift during the years which can be attributed to the strict government policies to regulate groundwater use and incentivizing rainwater harvesting. Further analysis using a classified risk map based on hazard risk and vulnerability approach highlights an approximate area of 100 square kilometers to be subjected to the highest risk level of ground movement, demanding urgent attention. The findings of this study are highly relevant for government agencies to formulate new policies against the over-exploitation of groundwater and to facilitate a sustainable and resilient groundwater management system in Delhi NCR

    Land subsidence over oilfields in the Yellow River Delta

    Get PDF
    Subsidence in river deltas is a complex process that has both natural and human causes. Increasing human activities like aquaculture and petroleum extraction are affecting the Yellow River delta, and one consequence is subsidence. The purpose of this study is to measure the surface displacements in the Yellow River delta region and to investigate the corresponding subsidence source. In this paper, the Stanford Method for Persistent Scatterers (StaMPS) package was employed to process Envisat ASAR images collected between 2007 and 2010. Consistent results between two descending tracks show subsidence with a mean rate up to 30 mm/yr in the radar line of sight direction in Gudao Town (oilfield), Gudong oilfield and Xianhe Town of the delta, each of which is within the delta, and also show that subsidence is not uniform across the delta. Field investigation shows a connection between areas of non-uniform subsidence and of petroleum extraction. In a 9 km2 area of the Gudao Oilfield, a poroelastic disk reservoir model is used to model the InSAR derived displacements. In general, good fits between InSAR observations and modeled displacements are seen. The subsidence observed in the vicinity of the oilfield is thus suggested to be caused by fluid extraction

    VALIDATION OF FULL-RESOLUTION DINSAR-DERIVED VERTICAL DISPLACEMENT IN CULTURAL HERITAGE MONITORING: INTEGRATION WITH GEODETIC LEVELLING MEASUREMENTS

    Get PDF
    Towards revealing the potential of satellite Synthetic Aperture Radar (SAR) Interferometry (InSAR) for efficient detection and monitoring of Cultural Heritage (CH) encouraging resilient built CH, this study is devoted to the validation of InSAR-derived vertical displacements with a full-resolution perspective taking advantage of high-precision geodetic levelling measurements. Considering the Cathedral of Como, northern Italy, as the case study, two different Persistent Scatterer Interferometry (PSI) techniques have been applied to Cosmo-SkyMed high-resolution SAR images acquired in both ascending and descending orbit tacks within the time interval of 2010–2012. Besides using the simplified approach for obtaining the vertical displacement velocity from Line of Sight (LOS) velocity, a weighted, localized, multi-track Vertical Displacement Extraction (VDE) approach is proposed and evaluated, which uses the technical outcome of Differential InSAR (DInSAR) and spatial information. The results, using a proper PSI technique, showed that the accuracy level of extracted vertical displacement velocities in a full-resolution application is ca. 0.6 [mm/year] with a dense concentration of InSAR-Levelling absolute errors lower than 0.3 [mm/year] which are reliable and reasonable levels based on the employed validation framework in this study. Also, the weighted localized VDE can significantly decrease the InSAR-Levelling errors, adding to the reliability of the InSAR application for CH monitoring and condition assessment in practice

    Spatial Variability of Relative Sea-Level Rise in Tianjin, China: Insight from InSAR, GPS, and Tide-Gauge Observations

    Get PDF
    The Tianjin coastal region in Bohai Bay, Northern China, is increasingly affected by storm-surge flooding which is exacerbated by anthropogenic land subsidence and global sea-level rise (SLR). We use a combination of synthetic aperture radar interferometry (InSAR), continuous GPS (CGPS), and tide-gauge observations to evaluate the spatial variability of relative SLR (RSLR) along the coastline of Tianjin. Land motion obtained by integration of 2 tracks of Sentinel-1 SAR images and 19 CGPS stations shows that the recent land subsidence in Tianjin downtown is less than 8 mm/yr, which has significantly decreased with respect to the last 50 years (up to 110 mm/yr in the 1980s). This might benefit from the South-to-North Water Transfer Project which has provided more than 1.8 billion cubic meters of water for Tianjin city since 2014 and reduced groundwater consumption. However, subsidence centers have shifted to suburbs, especially along the coastline dominated by reclaimed harbors and aquaculture industry, with localized subsidence up to 170 mm/yr. Combining InSAR observations with sea level records from tide-gauge stations reveals spatial variability of RSLR along the coastline. We find that, in the aquaculture zones along the coastline, the rates of land subsidence are as high as 82 mm/yr due to groundwater extraction for fisheries, which subsequently cause local sea levels to rise nearly 30 times faster than the global average. New insights into land subsidence and local SLR could help the country's regulators to make decisions on ensuring the sustainable development of the coastal aquaculture industry

    PSInSAR Analysis in the Pisa Urban Area (Italy): A Case Study of Subsidence Related to Stratigraphical Factors and Urbanization

    Get PDF
    Permanent Scatterer Interferometry (PSI) has been used to detect and characterize the subsidence of the Pisa urban area, which extends for 33 km2 within the Arno coastal plain (Tuscany, Italy). Two SAR (Synthetic Aperture Radar) datasets, covering the time period from 1992 to 2010, were used to quantify the ground subsidence and its temporal evolution. A geotechnical borehole database was also used to make a correspondence with the detected displacements. Finally, the results of the SAR data analysis were contrasted with the urban development of the eastern part of the city in the time period from 1978 to 2013. ERS 1/2 (European Remote-Sensing Satellite) and Envisat SAR data, processed with the PSInSAR (Permanent Scatterer InSAR) algorithm, show that the investigated area is divided in two main sectors: the southwestern part, with null or very small subsidence rates (<2 mm/year), and the eastern portion which shows a general lowering with maximum deformation rates of 5 mm/year. This second area includes deformation rates higher than 15 mm/year, corresponding to small groups of buildings. The case studies in the eastern sector of the urban area have demonstrated the direct correlation between the age of construction of buildings and the registered subsidence rates, showing the importance of urbanization as an accelerating factor for the ground consolidation process

    InSAR-Based Early Warning Monitoring Framework to Assess Aquifer Deterioration

    Get PDF
    Aquifer surveillance is key to understanding the dynamics of groundwater reservoirs. Attention should be focused on developing strategies to monitor and mitigate the adverse consequences of overexploitation. In this context, ground surface deformation monitoring allows us to estimate the spatial and temporal distribution of groundwater levels, determine the recharge times of the aquifers, and calibrate the hydrological models. This study proposes a methodology for implementing advanced multitemporal differential interferometry (InSAR) techniques for water withdrawal surveillance and early warning assessment. For this, large open-access images were used, a total of 145 SAR images from the Sentinel 1 C-band satellite provided by the Copernicus mission of the European Space Agency. InSAR processing was carried out with an algorithm based on parallel computing technology implemented in cloud infrastructure, optimizing complex workflows and processing times. The surveillance period records 6-years of satellite observation from September 2016 to December 2021 over the city of Chillan (Chile), an area exposed to urban development and intensive agriculture, where ~80 wells are located. The groundwater flow path spans from the Andes Mountain range to the Pacific Ocean, crossing the Itata river basin in the Chilean central valley. InSAR validation measurements were carried out by comparing the results with the values of continuous GNSS stations available in the area of interest. The performance analysis is based on spatial analysis, time series, meteorological stations data, and static level measurements, as well as hydrogeological structure. The results indicate seasonal variations in winter and summer, which corresponds to the recovery and drawdown periods with velocities > −10 mm/year, and an aquifer deterioration trend of up to 60 mm registered in the satellite SAR observation period. Our results show an efficient tool to monitor aquifer conditions, including irreversible consolidation and storage capacity loss, allowing timely decision making to avoid harmful exploitation
    • …
    corecore