6 research outputs found

    Propriedades decidíveis de autômatos celulares finitos, híbridos, não-lineares, sensíveis e reversíveis

    Get PDF
    We investigated the decidability and complexity of the Predecessor and the Configuration Reachability problems in Non-Linear, Sensitive, Reversible, Hybridand Finite Cellular Automata. We demonstrated the model’s reversibility (defined here as HSR, Híbrido Sensível Reversível, or Hybrid Reversible Toggle), which, in turn solves the Predecessor’s Problem. Using Disjunctive Normal Form to represent transition functions, by Boolean partial derivatives, we could transform them to the Algebraic Normal Form. We show that using matrix form and Boolean partial derivatives sit is possible to calculate several HSR evolution steps in polynomial time; so we demonstrated that the Configuration Reachability Problem belongs to the complexity class “Arthur-Merlin” AM2 and cannot be NP-Complete (unless the hierarchy collapses). We also proposed a new cryptographic method based on the model HSR, whose cryptographic keys are combinations of elementary transition functions, what increases the method’s eficiency, without compromising security, since even small lattice sizes make the key space cardinality very large.Coordenação de Aperfeiçoamento de Pessoal de Nível SuperiorDissertação (Mestrado)Nós investigamos a decidibilidade e complexidade dos problemas do Predecessor e da Alcançabilidade em Autômatos Celulares Finitos, Híbridos, Reversíveis, Sensíveis e Não- Lineares. Demonstramos a reversibilidade do modelo, aqui definido como HSR, resolvendo assim o Problema do Predecessor. Utilizando a Forma Normal Disjuntiva para representar as funções de transição, conseguimos por derivadas parciais booleanas transformá-las para a Forma Normal Algébrica. Mostramos que utilizando a forma matricial e também as derivadas parciais booleanas é possível calcular vários passos da evolução temporal do modelo HSR em tempo polinomial; com isso demonstramos que o Problema da Alcançabilidade pertence à classe “Arthur-Merlin” AM2 e por isso não pode ser NP-Completo (a não ser que a hierarquia colapse). Também propusemos um novo método criptográfico baseado no modelo de AC HSR, cujas chaves criptográficas são combinações de funções de transição elementares, o que aumenta a eficiência do método sem abrir mão da segurança, já que mesmo tamanhos pequenos de reticulado fazem a cardinalidade do espaço de chaves ser muito grande

    Aspects of algorithms and dynamics of cellular paradigms

    Get PDF
    Els paradigmes cel·lulars, com les xarxes neuronals cel·lulars (CNN, en anglès) i els autòmats cel·lulars (CA, en anglès), són una eina excel·lent de càlcul, al ser equivalents a una màquina universal de Turing. La introducció de la màquina universal CNN (CNN-UM, en anglès) ha permès desenvolupar hardware, el nucli computacional del qual funciona segons la filosofia cel·lular; aquest hardware ha trobat aplicació en diversos camps al llarg de la darrera dècada. Malgrat això, encara hi ha moltes preguntes a obertes sobre com definir els algoritmes d'una CNN-UM i com estudiar la dinàmica dels autòmats cel·lulars. En aquesta tesis es tracten els dos problemes: primer, es demostra que es possible acotar l'espai dels algoritmes per a la CNN-UM i explorar-lo gràcies a les tècniques genètiques; i segon, s'expliquen els fonaments de l'estudi dels CA per mitjà de la dinàmica no lineal (segons la definició de Chua) i s'il·lustra com aquesta tècnica ha permès trobar resultats innovadors.Los paradigmas celulares, como las redes neuronales celulares (CNN, eninglés) y los autómatas celulares (CA, en inglés), son una excelenteherramienta de cálculo, al ser equivalentes a una maquina universal deTuring. La introducción de la maquina universal CNN (CNN-UM, eninglés) ha permitido desarrollar hardware cuyo núcleo computacionalfunciona según la filosofía celular; dicho hardware ha encontradoaplicación en varios campos a lo largo de la ultima década. Sinembargo, hay aun muchas preguntas abiertas sobre como definir losalgoritmos de una CNN-UM y como estudiar la dinámica de los autómatascelular. En esta tesis se tratan ambos problemas: primero se demuestraque es posible acotar el espacio de los algoritmos para la CNN-UM yexplorarlo gracias a técnicas genéticas; segundo, se explican losfundamentos del estudio de los CA por medio de la dinámica no lineal(según la definición de Chua) y se ilustra como esta técnica hapermitido encontrar resultados novedosos.Cellular paradigms, like Cellular Neural Networks (CNNs) and Cellular Automata (CA) are an excellent tool to perform computation, since they are equivalent to a Universal Turing machine. The introduction of the Cellular Neural Network - Universal Machine (CNN-UM) allowed us to develop hardware whose computational core works according to the principles of cellular paradigms; such a hardware has found application in a number of fields throughout the last decade. Nevertheless, there are still many open questions about how to define algorithms for a CNN-UM, and how to study the dynamics of Cellular Automata. In this dissertation both problems are tackled: first, we prove that it is possible to bound the space of all algorithms of CNN-UM and explore it through genetic techniques; second, we explain the fundamentals of the nonlinear perspective of CA (according to Chua's definition), and we illustrate how this technique has allowed us to find novel results

    Computação evolucionária para indução de regras de autômatos celulares multidimensionais

    Get PDF
    A cellular automata is a discrete dynamic system that evolves thought interactions of rules and can be applied to solve several complex problems. The task to find the transition rule to solve a problem can be generalized as a problem of rule induction for cellular automata. Several approaches, based on evolutionary computation techniques, have been proposed to solve this problem. However, there is no generic methodology capable of being applied to a large range of problems. The main contribution of this work is a generic methodology for rule induction for cellular automata. This research was done in four steps to achieve this objective. In the first step we evaluated the performance of some dynamic behavior forecasting parameters calculated as function of a transition rule. The obtained results indicated that those parameters can be used in a careful way. This is due to the possibility of obtaining valid, but insatisfactory solutions. We stress the importance of considering reference parameters, which for the majority of real problems, are not available. In the second research step we proposed a new method to forecast the dynamic behavior. This method considers the transition rule and the initial configuration of the cellular automata. We used the qualitative dynamic behavior patterns described by Wolfram as reference to the forecast. This method was efficient for null behavior rules. Since the process of dynamic simulation can have a high computational cost, we developed a third methodology: an architecture based on the concept of hardware/software co-design to accelerate the processing time. This architecture implements the evolution of cellular automata using reconfigurable logic and was able to decrease hundreds of times the processing time. In the fourth step we developed a new parallel architecture based on the master-slave paradigm. In this paradigm, the master process implements the evolutionary algorithm and a set of slaves processes divide the task of validating the obtained rules. The system runs in a cluster with 120 processing cores connected by a local area network. The co-evolutionary strategy based on an insular model allowed the search for high quality solutions. The generic system implemented over a parallel environment was able to solve the problems proposed. A task distribution analyses among several processors emphasized the benefits of parallel processing. The experiments also indicated a set of reference parameters that can be used to configure the system. The contributions of this work were theoretical and methodological. The former refers to the evaluations done and the different methods for dynamic behavior forecasting parameters. The latter is about the development of two architectures for processing.Um autômato celular é um sistema dinâmico discreto que evolui pela iteração de regras. Os valores das variáveis do sistema mudam em função de seus valores correntes. Os autômatos celulares podem ser aplicados na resolução de diversos problemas. A tarefa de encontrar uma regra de transição que solucione um determinado problema pode ser generalizada como um problema de indução de regras para autômatos celulares. Várias abordagens baseadas em técnicas de computação evolucionária vêm sendo empregadas neste problema. No entanto, estas restringem-se a aplicações específicas. A principal contribuição deste trabalho é a proposição de uma metodologia genérica para indução de regras de autômatos celulares. Para alcançar este objetivo a pesquisa foi segmentada em quatro etapas. Na primeira etapa avaliou-se o desempenho de alguns parâmetros de previsão de comportamento calculados em função de regras de transição. Os resultados obtidos nesta etapa indicaram que os parâmetros de previsão de comportamento dinâmico devem ser utilizados de forma criteriosa. Este cuidado reside na possibilidade de se obter soluções válidas, porém, não satisfatórias. Ressalta-se também a necessidade da existência de parâmetros de referência que para a maioria dos problemas reais, não está disponível. Na segunda etapa apresentou-se um novo método para a previsão do comportamento dinâmico. Este método considera a regra de transição e a configuração inicial do autômato celular. Para a previsão utilizou-se como referência os padrões de comportamento dinâmico qualitativos descritos por Wolfram. O método mostrou-se eficiente para regras de comportamento nulo. Como o processo de simulação da dinâmica de um sistema pode ter um custo computacional elevado, desenvolveu-se uma terceira metodologia. Nesta metodologia implementou-se uma arquitetura baseada no conceito de hardware/software co-design com a finalidade de contornar problemas referentes a tempo de processamento. Esta arquitetura realiza a evolução de autômatos celulares utilizando lógica reconfigurável. A arquitetura diminuiu o tempo de processamento por centenas de vezes, mas algumas restrições do modelo, como número limitado de células lógicas e reprogramações do hardware inviabilizaram seu uso. Considerando-se as restrições impostas pela arquitetura implementada, iniciou-se a quarta etapa da pesquisa onde foi desenvolvida uma nova arquitetura paralela fundamentada no paradigma mestre-escravo. Neste paradigma um processo mestre implementa o algoritmo evolucionário e um conjunto de processos escravos dividem a tarefa de validação das regras obtidas. O sistema é executado em um cluster composto por 120 núcleos de processamento que se interligam por meio de uma rede ethernet. A estratégia co-evolucionária baseada em um modelo insular permitiu a busca por soluções que apresentam um melhor valor para função de fitness. O sistema genérico implementado sobre um ambiente paralelo foi capaz de solucionar os problemas abordados. Uma análise de distribuição de tarefas entre vários processadores enfatizou os benefícios do processamento paralelo. Os experimentos também indicaram um conjunto de parâmetros evolucionários de referência que podem ser utilizados para configurar o sistema. As contribuições deste trabalho foram tanto teóricas, com as avaliações realizadas sobre os parâmetros e os diferentes métodos de previsão de comportamento dinâmico, quanto metodológicas, pois desenvolveu-se a proposta de duas arquiteturas de processamento distintas

    Using MapReduce Streaming for Distributed Life Simulation on the Cloud

    Get PDF
    Distributed software simulations are indispensable in the study of large-scale life models but often require the use of technically complex lower-level distributed computing frameworks, such as MPI. We propose to overcome the complexity challenge by applying the emerging MapReduce (MR) model to distributed life simulations and by running such simulations on the cloud. Technically, we design optimized MR streaming algorithms for discrete and continuous versions of Conway’s life according to a general MR streaming pattern. We chose life because it is simple enough as a testbed for MR’s applicability to a-life simulations and general enough to make our results applicable to various lattice-based a-life models. We implement and empirically evaluate our algorithms’ performance on Amazon’s Elastic MR cloud. Our experiments demonstrate that a single MR optimization technique called strip partitioning can reduce the execution time of continuous life simulations by 64%. To the best of our knowledge, we are the first to propose and evaluate MR streaming algorithms for lattice-based simulations. Our algorithms can serve as prototypes in the development of novel MR simulation algorithms for large-scale lattice-based a-life models.https://digitalcommons.chapman.edu/scs_books/1014/thumbnail.jp
    corecore