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Structured abstract

Purpose

Studies in complexity of cellular automata do usually deal with measures taken
on integral dynamics or statistical measures of space-time configurations. No
one every tried to analyze a generative power of cellular-automaton machines.
We aim to fill the gap and develop a basis for future studies in generative
complexity of large-scale spatially extended systems.

Methodology and approach

Let all but one cells be in alike stat in initial configuration of a one-dimensional
cellular automaton. A generative morphological diversity of the cellular au-
tomaton is a number of different three by three cell blocks occurred in the
automaton’s space-time configuration.

Findings

We build a hierarchy of generative diversity of one-dimensional cellular automata
with binary cell-states and ternary neighborhoods, discuss necessary conditions
for a cell-state transition rule to be on top of the hierarchy, and study stability
of the hierarchy to initial conditions.

Research implications

The method developed will be used — in conjunction with other complexity
measures — to built a complete complexity maps of one- and two-dimensional
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cellular automata, and to select and breed local transition functions with highest
degree of generative morphological complexity.

Originality /value

The hierarchy built presents first ever approach to formally characterize gener-
ative potential of cellular automata.
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1 Introduction

Morphological diversity — the variety of local patterns emerging in development
of a spatially-extended system — is an underlying concept in analysis of natural
systems and design of technical systems. The diversity’s value is particularly
pronounced in modern studies of biological populations adaptability and evolu-
tion, identification of spatially-extended systems and physical constructibility.

With regards to population developments, it is widely accepted that a di-
versity is a vehicle of evolution of biological [5, 8, 6] and socio-cultural pop-
ulation [14], and a key factor determining progress in socio-economical sys-
tems [24, 19]. Diversity of computational processes is an essential feature of
adaptable and optimal cooperative computing systems mimicking biological
populations [22, 23, 21].

Identification of spatially-extended system is the second application domain
of morphological diversity. Identification of a discrete system, e.g. automaton
array, is a reconstruction of local transition rules from a given series of global
transformations [1]. Typically, an identification algorithm scans each pair of
global configurations of a given system, extract a list of different neighborhood
states present in one configuration and corresponding states of cells in subse-
quent configuration. Completeness of identification of a system, measured in
a number of local transitions extracted, depends on morphological diversity of
the system. In the framework of identification the generative diversity — a mor-
phological diversity of a system evolving from a singleton state — characterizes
response of the system to a local stimulation, or perturbation. The closest anal-
ogy would be a physiological experiment when we electrically stimulate living
cells or tissues and record their response to stimulation. The richer response
the more features of the cells or tissues we uncover.

Construction of physical objects in discrete spaces is the third application
domain for morphological diversity, particularly in the framework of cellular-
automaton based design. Cellular automata are emerging computational tools
of designing structure parts of building architectures [9], conglomerates of build-
ings [7] and urban developments [4]. By constructing a hierarchy of morpholog-
ical diversity of a discrete system modeling some structure one enables selection
of local transition rules with reach behavior to be used in structural designs.

The paper presents first ever attempt to exhaustive study of morphological
complexity. We have chosen elementary cellular automata — one-dimensional



arrays of cells, each cell takes two states and updates its states depending on
states of its two closes neighbors — as most primitive but behaviorally rich
models of discrete systems. Results presented in the paper based on previous
studies in cellular-automaton complexity [25, 26] and classification and param-
eterization of one-dimensional cellular automata [10, 11, 12, 20].

The paper is structured as follows. In Sect. 2 we recall definitions of ele-
mentary cellular automata and introduce generative morphological diversity. A
hierarchy of diversity is built and its sensitivity to certain initial conditions is
analyzed in Sect. 3. Prospectives of further research are outlined in Sect. 4.

2 Basics

An elementary cellular automaton (ECA) is a one-dimensional array of cells,
which take states 0 and 1 and each cell x updates its state z! depending on
states of its two neighbors zf_; and z!,, by function f : {0,1}* — {0,1}. All
cells update their states at the same time and by the same function. There
are 256 possible functions f which for brevity can encoded by digital numbers
0...255 by taking output table of each function as binary encoding of a digital
number. For example, the cell-state transition table

Ti T Ty xﬁﬂ
0 0 0 0
0 0 1 1
0 1 0 1
0 1 1 1
1 0 0 1
1 0 1 1
1 1 0 1
1 1 1 0

can be represented by a sequence of bits (01111110) which in turn is a binary
representation of number 126. The encoding was popularized in [25].

Let ECA of n cells evolved for 7 steps then one can represent space-time
configuration of the automaton by matrix M=(m;;)1<i<n,1<;<- such that m;; =
xf . A morphological diversity p is a number of different 3 x 3 site blocks

Mi—15—1 | M4j—1 | My4i415—-1
mi—1j Myij M4,

MG—1541 | Maj41 | Myi415+41

of cell-states found in M. For example, blocks extracted from the space-time
configuration of Rule 126 ECA are shown in Fig. 1.

We have chosen 3 x 3 cell blocks to characterize morphology of space-time
configuration because a minimal block must include a cell neighborhood (three
cells), include at least two subsequent local configurations (to characterize iden-
tifiability) and sides corresponding to time and space must be have the same



000 000 000 000 000 000 000 000 000 001
000 000 000 000 001 001 100 100 101 011
000 001 100 101 011 111 110 111 111 110
001 001 011 011 011 100 100 100 101 110
011 111 110 111 111 110 110 111 111 011
111 000 111 000 100 011 111 000 000 111
110 110 111 111 111 111 111 111 111 111
111 111 000 000 000 001 001 100 100 101
000 001 000 001 100 011 111 110 111 111
(b)

Figure 1: Space-time configuration of Rule 126 ECA developing form a single
1-state cell (a) and 3 x 3 blocks (b) occurred in the space-time configuration.
In the configuration (a) cells in state 1 are shown by black rectangles, cells in
state 0 are blank; time arrow points downward.



number of cells. We calculate morphological diversity using blocks of neighbor-
hood states taken at three subsequent time steps. This reflects the fact that
physical constructions are built in time intervals and that their structure, as
a norm, could not be reversed. Another advantage of choosing 3 x 3 blocks
to calculating diversity is that it can be used to characterize formation of d-
dimensional structures by (d — 1)-dimensional systems.

We calculate p for a singleton configurations: at the beginning of evolution
only one cell takes state 1 and others state 0. We allow automaton to evolve
for 7 steps and extract list £ of 3 x 3 blocks from its space-time configuration
M. Experimentally we found that for most rules list £ stabilizes over at most
hundred time steps, which is indicator of 7 choice.

Due to symmetries the elementary transition rules can be grouped in the
classes with equivalent behavior [11, 12, 13]. We analyze morphological diversity
for one rule, with minimal decimal value, from each equivalence class. The p-
hierarchy is an ordering of the representative rules by values of u calculated
from space-time configurations generated by the rules.

3 Hierarchy of generative morphological diver-
sity

The morphological diversity hierarchy, p-hierarchy, of the equivalence classes
is shown in Fig. 2. When comparing the hierarchy with behavioral classifica-
tion [20] we see that top third of the hierarchy is occupied by rules, which are
commonly classified as chaotic. Bottom third of the hierarchy includes rules
with two-cycle, fixed point and null behavior. Rules with periodic behavior lie
closer to the top of p-hierarchy.

Domination of rules classified as chaotic is due to the number of different
3 x 3 blocks generated, which is indeed will be higher for truly random cell-state
transitions. In the examples of space-time configurations generated by rules
with p > 30, shown in Fig. 3, we see that Rule 30 and 45 exhibits varieties of
traveling defects, localizations. The mobile localization collide one with another
and produce other traveling localizations in the result of collisions. Generators
of mobile localizations, aka glider guns, are also observed in the space-time
configurations generated by Rules 30 and 45 (Fig. 3ab). Spatial dynamics of
interacting localizations is rather asymmetrical, thus wider range of 3 x 3 blocks
emerge in the space-time dynamics. Other rules with ¢ > 30 (but Rule 110)
produce patterns with reflection symmetry, mirror line is a time arrow cross-
ing origin of the space-time pattern, cell assigned the state ’1’ in the initial
configuration.

Is it possible to predict morphological diversity of the rules using only cell-
state transition table? So far we do not see any reliable techniques of such
prediction. We compare the diversity p with two most know ‘internal’ param-
eters — Langton’s A [10] and Wuensche’s Z [26, 27] (Fig. 4). We found that
top three highest-diversity rules have A ratio equals 0.5, and top two rules in
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Figure 2: Morphological diversity p-hierarchy of equivalence classes [11, 12, 13]
(only one representative rule is shown for each class) versus behavioral classifi-
cation of the classes [20].



(¢) Rule 150 (d) Rule 105

(e) Rule 110 (f) Rule 73

(g) Rule 126 (h) Rule 161

Figure 3: Exemplary space-time configurations of rule classes with p > 30.
Initial condition is (1)-start, time arrow points downward, cells in state '0’ are
blank, cells in state ’1’ are black.
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Figure 4: Morphological diversity u versus Lagton’s A (a) and Wuensche’s Z (b)

parameters.




p-hierarchy have Z value 1. These can indicate that equal ratio of cell-states
in the outputs of cell-state transition table of an ECA rule is a necessary but
not sufficient condition for the rule to exhibit highest morphological diversity.
A positive outcome of the finding is that we can significantly reduce a search
space when looking for a high-diversity rules in CA with large neighborhoods
or great number of states.

We have built p-hierarchy of morphological diversity based on space-time
configurations developed from the only initial configuration, where all cells but
one take state ’0’. Is the p-hierarchy stable under changing initial conditions? To
answer we consider four initial configurations Z = {0...010...0,0...0110...0,
0...01110...0,0...01010...0}. We will refer to the elements of Z as (1)-, (11)-
, (111)- and (101)-start, respectively. Based on the p-hierarchy versus initial
conditions plot is shown in Fig. 5 we make the following observations.

Equivalence classes 30, 45 and 110 are not affected by variances in initial
configurations from Z, the diversity of rules of these classes always fixed to 64.

Morphological diversity of classes 105 and 150 depends on the choice of
initial configuration from Z. The rules are at the top of p-hierarchy in the
conditions of (11)-start, but slide down to 2nd and 3rd place in the hierarchy
for (1)- and (101)-starts.

There are also rules which disappear from the top of p-hierarchy when initial
conditions are changed. Thus rules of class 73 climb up the hierarchy for (11)-
start, slide down the bottom for (111)-start, and disappear from the list of rules
with g > 30 for (101)-start. These movements of class 73 in p-hierarchy are
due to stationary, or still, cluster of '1’-state in the space-time configuration
developed for (11)-start (Fig. 6a), and briefly expanding domain of ’1’-states for
(111)-start (Fig. 6b).

And finally we should indicate equivalence classes, which demonstrate higher
morphological diversity, u > 30, only for certain initial conditions. These are
classes 90, 26, 60 for (111)-start, and classes 22 and 126 for (101)-start. Classes
41 and 106 appear only for the initial conditions of (11)- and (111)-start. See
space-time configurations generated by representative rules of the classes in
Fig. 7.

4 Discussion

We constructed a hierarchy of generative morphological diversity for equivalence
rule classes of elementary cellular automata. We found that rules with chaotic
behavior are at the top of hierarchy, followed by rules with periodic behavior
and complex rules. Two-cycle and fixed point rules are at the bottom of the
hierarchy. Chaotic rule classes 30 and 45 and complex rule 110 are insensitive
to initial conditions while other high-diversity rules may slide down or climb
up the hierarchy when initial conditions are changed. We did not find simple
criteria to select rules with high morphological diversity without generating
space-time configurations. However we confirmed that equal ratio of cell-states
in outputs of cell-state transition table of a rule is a necessary condition for the
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Figure 5: Hierarchy of morphological diversity p for various initial conditions
Z. Only equivalence rule classes with g > 30 are shown.
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(a) (b)

Figure 6: Exemplary space-time configurations of rule 73 for (11)-start (a),
(111)-start (b) . Time arrow points downward, cells in state ‘0’ are blank, cells
in state "1’ are black.

rule to be on top of morphological diversity hierarchy.

Further studies will concern with building hierarchies of morphological diver-
sity of discrete models of biological populations and establishing links between
morphological diversity and localization dynamics in spatially extended discrete
systems.

We have already obtained first results in this directions while analyzing prim-
itive automaton models of two-species populations [3]. We found that the basic
types of inter-species interactions can be arranged in the following complexity
hierarchy [3]:

commensalism, amensalism < competition < parasitism < mutualism.

which indicates that evolution of populations favors mutualistic interactions due
to their complexity of local interactions between species.

Search for spatially extended non-linear systems with rich localization dy-
namics will discover novel substrates for implementation of collision-based com-
puting devices [2]. In a collision-based computer quanta of information, e.g.
values of Boolean variables, are encoded to states of traveling localizations,
e.g. gliders in cellular automata, solitons in optical media, wave-fragments in
reaction-diffusion chemical media, defects in molecular arrays. When two or
more traveling localizations collide they change their states thus updating val-
ues of the variables they represent. The computation is implemented at the
sites of the collision.

Commonly only complex cellular-automata rules, e.g. rule rule 54 [15] and
rule 110 [17], were considered as capable for universal computation. However
recently we demonstrated that even so-called chaotic rules, e.g. Rule 30, ex-
hibit very rich dynamics of traveling and stationary localizations which can be
discovered by applying certain filtration procedures [16, 18]. This may indicate
to high computational potential of the chaotic cellular automaton rules.

We can speculate that generative morphological diversity is determined, and
proportional to, richness of localization dynamics, therefore the morphological
diversity can be employed to select, or breed, non-linear systems capable for
sophisticated collision-based computing [2]. This hypothesis will be verified in
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(2) (h)

Figure 7: Exemplary space-time configurations of (a) Rule 90, (111)-start,
(b) Rule 26, (111)-start, (¢) Rule 60, (111)-start, (d) Rule 22, (101)-start,
(e) Rule 126, (101)-start, (f) Rule 41, (11)-start, (g) Rule 41, (111)-start,
(h) Rule 106, (11)-start. Time arrow points downward, cells in state ’0’ are
blank, cells in state ’1’ are black.
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our further studies.
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