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Chapter 1

Introduction

In the last few years, we have witnessed a revolution in the field of comput-
ing architectures, since the multi-core paradigm has been extensively applied
to commercial processors that dominate the market of home computers and
gaming consoles. Modern graphics cards, which integrate dozens of process-
ing units implementing a real parallel hardware, are a clear example of this
tendency [1]. A similar approach has found room in many fields, including
arrays of tactile sensors [2] and nanoantennas [3]. Last but not least, this
concept has a physiological counterpart, as recent studies on the human brain
processes show [4].

Moreover, the technical advances in electronic device manufacturing have
encouraged architectures based on simple processing cores locally connected.
This arrangement shortens the buses, resulting in two positive effects: firstly,
it reduces the amount of wiring required hence favoring integration; secondly,
it allows to overcome the problem of transmitting a high frequency clock
signal uniformly throughout the whole chip. Furthermore, the possibility
of integrating sensors on chip [5] has opened new scenarios in which this
novel approach plays a key role. In 2007 Cellular Neural Network devices
were indicated as one of the most promising among the emerging research
materials by the International Technology Roadmap for Semiconductors in
its annual report [6].

In the following, we will refer to arrays of processing units arranged in or-
dered structures (usually two-dimensional grids) as cellular paradigms. This
notion allows us to abstract our conclusions from a specific problem, and
then they will be valid whichever the field of application. The concept of
cellular paradigm involves three different levels of characterization: devices,
architectures, and algorithms.

As for the first level, we already mentioned how successfully the cellular
paradigm has been employed in cutting-edge general-purpose processors, like
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IBM Blue Gene supercomputer [7], IBM-Sony-Toshiba CELL multiprocessor
chip [8], and Intel 80-tile processor chip [9].

The second point, regarding the definition of a suitable architecture for
this new generation of devices, is a big challenge. This issue is indeed an-
terior to the creation of parallel hardware, and both Turing and von Neu-
mann conjectured computational structures taking advantage of the synergy
among processing elements locally connected. Their studies were the pre-
cursors of the modern cellular architectures, including the Cellular Neural
Network (CNN), introduced in 1988 by Chua and Yang. On the ground of
the studies on CNNs, Roska and Chua defined the ‘Cellular Neural Network
- Universal Machine’ (CNN-UM), a supercomputer combining analog and
digital operations into a unique computing structure. The natural extension
of this architecture is the ‘Cellular Wave Computer’ (CWC) , a machine
working on flows — e.g., video streams — that represents a breakthrough
in research on cellular paradigms: it goes beyond the Boolean logic, work-
ing on analogic inputs and using partial differential equations as elementary
instructions.

While the issue of defining devices and architectures for cellular paradigms
has already been addressed, the third aspect - algorithms - is far from being
completely understood. In fact, there are still numerous open questions on
this subject, some of which will be answered in this dissertation. In our
analysis, we follow two main threads, both regarding theoretical and practical
aspects of processing on cellular paradigms.

The first thread concerns programs for the Cellular Wave Computer
which, being universal, is capable of performing any computable algorithm,
if properly programmed. In our search for a systematic way to design pro-
grams for the CWC, we focused on the parallelism between the CNN-UM
and another computation paradigm called ‘Genetic Programming + Indexed
Memory machine’. This approach allowed us to find an alternative proof
of universality for the CNN-UM as well as two other remarkable results:
firstly, a general form for all CNN-UM programs; secondly, the feasibility of
the exploration of the solution space by means of a machine learning tech-
nique called ‘Genetic Programming’ (GP). As confirmed by the experiments
reported here, the method we propose results to be a valid aid to create
effective algorithms to deal with all sort of image processing tasks.

The second thread regards ‘Cellular Automata’ (CA), a particular case
of Cellular Wave Computer already proposed by von Neumann, but popu-
larized by Stephen Wolfram through his book “A new kind of science” which
settles the bases for a systematic study of this topic. Recently, Leon Chua
has analyzed CA through the means of nonlinear dynamics in his series of
books entitled “A nonlinear dynamics perspective of Wolfram’s new kind
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of science”, providing rigorous explanations for some well-known phenom-
ena and presenting numerous new results. Our contribution has embraced a
number of aspects of CA, such as the emergence of fractals and the study of
the so-called Bernoulli στ -attractors.

The dissertation reflects the structure illustrated so far.
Chapter 2 reviews cellular paradigms, introducing the nomenclature and
sketching their physical implementations with a particular focus on simula-
tion on graphics cards, one of the most promising applications for the future.
Chapter 3 starts with fundamental notions of theory of computation, which
are then used to explain the significance of the proof of universality of the
CNN-UM detailed further in the same chapter.
Chapter 4 includes an overview of Genetic Programming as well as the de-
scription of its application in the automatic design of programs for the CNN-
UM.
Chapter 5 focuses on the experiments in which our approach has proved to
be effective, illustrating also what kinds of practical problems the designer
faces when dealing with real-life applications.
Chapter 6 includes general explanations of the nonlinear dynamics perspec-
tive of Cellular Automata, describing the main characteristics of this ap-
proach and introducing the basic tools for the analysis.
Chapter 7 is completely dedicated to new results found through the nonlinear
dynamics perspective of Cellular Automata; the work on this topic is still in
progress, hence we have chosen to include here only a few results regarding
particular aspects.
Finally, Chapter 8 draws the conclusions of the work and suggests possible
scenarios for the future.





Chapter 2

Cellular paradigms

The last findings of the electronic industry suggest that one way to keep on
integrating technology though controlling the power dissipation is relying on
simple processing units locally connected. Thanks to this approach, usu-
ally referred to as ‘cellular’, nowadays it is possible to manufacture devices
with a billion of transistors at nanometer scale size integrating sensing and
processing, which are the basis for high-speed processing cameras.

Physiologists point out that human brain differs from a modern computer
in many aspects: for instance, signals are not digital but analog, there is
no centralized clock, and spatial arrangement of processing units matters.
These considerations have led to the search of computation models capable
of mimicking the brain functionalities: neural networks and fuzzy logic are
probably two of the most-known examples of such attempts. Nevertheless,
the application of such studies have often remained limited to particular
spheres of interest, and they failed to become a real alternative to the von
Neumann architecture.

Many elements indicate that cellular paradigms can be the link between
computer science, since they are an efficient and effective computation model,
and physiology, because they find impressive analogies in the way our brain
works.

In this chapter we go through some of the cellular paradigms that have
been considered in this thesis, exploring the relationship among them, and
presenting a brief overview of their electronic implementations.

2.1 Cellular Neural Networks

Cellular Neural Networks (CNNs) [10] [11] are arrays of dynamical artificial
systems (cells) with local connections only. Cells can be arranged in several
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configurations (e.g. [12] [13]), however here we consider only two-dimensional
CNNs organized in a eight-neighbor rectangular grid; this choice is justified
by the fact that other CNNs of various regular grids can be mapped onto this
configuration by applying weight matrices of periodic space variance [14]. A
visual representation of a typical 2D Cellular Neural Network is shown in
Fig. 2.1.

Figure 2.1: Two-dimensional CNN: the red cell has nine neighbors (the eight
blue cells and itself) to which is connected through the green connections.

In the standard model, the output of each cell depends only on the input and
the output of its neighbor cells; the number of neighbors is usually defined
by the radius of neighborhood r : when r = 1, the neighborhood includes
the cell itself plus its eight nearest cells; when r = 1 we add to this set 16
more cells, corresponding to a further level of surrounding cells. A CNN
cell can be thought as an electrical circuit, whose dynamics can be analyzed
through the usual mathematical tools of systems theory. In particular, each
cell of the so-called Chua-Yang model contains linear (resistors, capacitors,
controlled sources) and nonlinear (controlled sources) circuit elements, as
well as independent sources (see Fig. 2.2). Since variables are continuous
valued signals, this model is also called continuous-time CNN.
For the sake of clarity, we denote by uij the input voltage of the cell in
position (i, j); analogously, xij and yij are the state and the output voltages,
respectively, of the same cell. As for the controlled current sources, their
equations are

Ixu = B(i, j; k, l) · ukl; Ixy = A(i, j; k, l) · ykl; Iyx =
1

Ry
f(xij) (2.1)

where the indices k and l denote a generic cell belonging to the neighborhood
of the cell in position (i, j). Therefore, the dynamics of the array can be
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Figure 2.2: A standard CNN cell.

described by the state equation

C
dxij(t)

dt
= − 1

Rx
xij(t) +

∑

(k,l)∈N (i,j)

A(i, j; k, l) · ykl(t)

+
∑

(k,l)∈N (i,j)

B(i, j; k, l) · ukl(t) + z(i, j; k, l) (2.2)

In this notation N (i, j) is the set of indexes corresponding to cell (i, j) itself
and its neighborhood. For example, a common assumption in CNNs is using
a radius 1 neighborhood, which means that the 9 neighbors of the cell (i, j)
have indices (k, l) with 1 ≤ k ≤ 3 and 1 ≤ l ≤ 3. Note that often the value
RxC is interpreted as a time constant τ .
The set of matrices {A, B, z}, usually called cloning template, defines the
operation performed by the network, and, in general, the values of A, B,
and z vary for each pair of cells (i, j) and (k, l). However, the case in which
the weights of the network depend on the difference between cell indices is
particularly interesting to analyze, because few parameters - the values of
the cloning template - set the behavior of the whole network. This kind of
CNN is called ‘space-invariant’, and it will be used throughout this work. For
instance, when radius 1 neighborhood is used, A and B are 3×3 matrices, z
is a scalar, and all values are independent of the indices (i, j, k, l):

A =




a−1,−1 a−1,0 a−1,1

a0,−1 a0,0 a0,1

a1,−1 a1,0 a1,1



 B =




b−1,−1 b−1,0 b−1,1

b0,−1 b0,0 b0,1

b1,−1 b1,0 b1,1



 z = z0,0

The expression for the output voltage yij can be easily obtained by Fig. 2.2
and Eq. 2.1. Usually, it is assumed that Ry = 1 and f(xij(t)) is as follows

yij(t) = f(xij(t)) = 1
2(|xij(t) + 1|−| xij(t)− 1|) =

=






1, if xij ≥ 1
xij, if −1 ≤ xij ≤ 1
−1, if 1 ≤ xij

(2.3)
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even though other functions f(·) are also possible [15].
It is not difficult to prove that all states xij in a CNN are bounded for any
t > 0 (see Theorem 1 in [10]) and the convergence of the network can be stud-
ied through the analysis of the Lyapunov function. Some simple conditions
on the circuit parameters guarantee the stability of the network, in particular
the CNN can be set to have only binary (±1) output yij. Given a cloning
template, the steady state reached by the network depends on the initial state
and the input. There exist alternative CNN models with better characteris-
tics in particular contexts, like the ‘discrete-time’ CNN (DT-CNN) [16], and
the ‘full signal range’ CNN (FSR-CNN) [17].
Image processing is one of the main applications of CNNs: images are fed into
the network as initial state and/or input, associating each cell of the CNN
with a pixel of the image, whereas the matrices A, B and z define the opera-
tion to perform; the network settings to execute a great number of tasks can
be found in [18]. A single-layer CNN has some computational limitations,
however it is possible to prove that a multi-layer CNN is as universal as a
Turing machine, and then it can deal with any computable algorithm [19],
as detailed in chapter 3.

2.2 CNN Universal Machine

The potentialities of a Cellular Neural Network can be fully exploited by
using it as computing core of a paradigm called CNN-Universal Machine
(CNN-UM) [20] whose architecture, composed by a grid of CNN nuclei
with extended capabilities controlled by a Global Analogic Programming Unit
(GAPU), is shown in Fig. 2.3 [21].
The GAPU consists of four main functional blocks: first, the Global Analogic
Control Unit (GACU) that stores the CNN-UM program and synchronizes
the communication with external controlling devices; second, the Analog Pro-
gram Register (APR) that contains the CNN templates used as instructions
of the program in the GACU; third, the Logic Program Register (LPR) that
includes the control sequences for the individual cells LLU; fourth, the Switch
Configuration Register (SCR) that stores the switch states governing the cell
configurations used in the CNN-UM program.
The elements extending the standard CNN nucleus are: two memories, one
for for analog values - Local Analog Memory (LAM) - and one for logic values
- Local Logical Memory (LLM) - used to store variables in each cell; a Local
Analog Output Unit (LAOU) and a Local Logic Unit (LLU) to execute cell-
wise analog and logic operations, respectively, on the storable values; and
finally, a Local Communication and Control Unit (LCCU) that is in charge
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Figure 2.3: Scheme of the CNN-UM.

of communicating with the GAPU, according to the mechanism described
in [22].
A typical CNN-UM program is composed by a sequence of logic and ana-
log operations, defined by either linear or nonlinear templates. Intermediate
results are storable in the local memories (LAMs and LLMs), whereas the
final output can be defined both in fixed and non-fixed state of the network
(equilibrium and non-equilibrium computing) depending on the control of
the transient length.

2.3 Cellular wave computer

A Cellular Wave Computer [23] is an extension of the Cellular Neural Net-
work - Universal Machine in which input and output are image flows and
elementary instructions are differential equations. The philosophy of this
paradigm is completely different from the one of a standard digital com-
puter: in some sense it is the practical realization of what von Neumann
called analytic theory of computing [24] as well as the basis for generating
the Turing patterns [25]. Problems intractable with ‘traditional’ computers,
like a typical reaction-diffusion equation, become trivial in this architecture
because they are performed by a single instruction.
In the case of 2D image flows the only discretization is in space, and a finite
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time image flow Φ(t) is defined as

Φ(t) := {ϕij(t), t ∈ [0, td]},

where 1 ≤ i ≤ m and 1 ≤ j ≤ n (considering image flows with size m × n),
td > 0 (time duration), ϕij ∈ C1 (continuously differentiable) and bounded.
At t = t∗, P = Φ(t∗) is a m× n picture

P : pij ∈ R

A binary picture is usually called mask M, hence

M : mij ∈ {−1, 1} (or equivalently, mij ∈ {0, 1})

The elementary instruction, also called wave instruction, of the Cellular Wave
computer operating on the input flow Φinput(t) is defined as

Φoutput(t) := Ψ(Φinput(t),P , ∂);

being Ψ a function on image flows, P a picture defining initial state and/or
bias map, and ∂ the boundary conditions.
A matrix functional Γ is defined as

Poutput := Γ(Φinput(t),P , ∂);

Both Ψ and Γ operate on image flows (i.e. a video stream), but in the first
case the output is another image flow Φoutput(t) whereas in the the other the
output is a picture Poutput.
Finally, a scalar functional γ is defined as

q := γ(Φinput(t),P , ∂);

where q is a real number. Examples of scalar functionals are the Global White
operator, detecting the presence of at least one black pixel in the flow, and
the Nonlinear Hausdorff wave metric, measuring closeness of an object in
Φinput to P (see Sec. 4.4.3).
Not always the output is settled for t > td, but there may exist grid positions
(i,j) for which dϕij

dt &= 0; in this case, the spatial-temporal instruction is called
of non-equilibrium type.

The spatial-temporal algorithms are called analogic because they are ana-
log and logic at the same time, and they are described through the so-called
α-recursive functions, defined by

• initial settings of image flows, pictures, masks, and boundary values:
Φ(0), P , M, ∂, respectively;
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• equilibrium and non-equilibrium solutions of partial differential differ-
ence equations defined via the canonical CNN equations on Φ(t);

• global (and local) minimization on the above;

• arithmetic and logic combinations of the results of the above operations,
analog comparisons (thresholding), and logic conditions;

• recursions on the above operations.

A collection of analogic algorithms can be found in [18], whereas the symbols
describing them will be analyzed in Sec. 3.4.1.

2.4 Cellular automata

Cellular automata (CA) consist of regular uniform lattice of cells assuming a
finite number of states; here, we consider one-dimensional CA in which cells
are arranged in an array of length L = I + 1 and can take only two states, 0
and 1. For instance, a generic bit string x is

x = (x0x1 . . . xI−1xI)

where the subscript indicates the position of the cell in the array.
Cells are updated synchronously (discrete-time evolution) and, introducing
a superscript indicating the iteration, it is possible to summarize the time
evolution of a bit string as

xn+1
i = f(xn) (2.4)

The state of each cell at iteration n + 1 depends on the states of the cells in
its neighborhood (here we consider only the nearest neighbors) at iteration
n

xn+1
i = f(xn

i−1x
n
i x

n
i+1) (2.5)

and this dependence can be conveniently represented through a truth table,
as shown in Table 2.1.
The values βk are binary, βk ∈ {0, 1}, and the array (β8β7 . . . β0) defines
univocally the behavior of the Cellular Automaton. Therefore, there are
223

= 256 ways to set the function f in Eq. 2.5, corresponding to all outcomes
of the array (β8β7 . . . β0) in Table 2.1. Each of these functions is called local
rule N , and the univocal correspondence between a rule and a truth table is
defined through the formula

N =
7∑

i=0

βi · 2i
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Table 2.1: Truth table for a CA local rule.

xn
i−1x

n
i xn

i+1 xn+1
i

000 β0

001 β1

010 β2

011 β3

100 β4

101 β5

110 β6

111 β7

hence, rules are numbered from 0 to 255.
Therefore, we denote the transformation of the bit string xn into xn+1 under
rule N by

xn+1 = TN (xn)

and the evolution of a generic cell xn
i by

xn+1
i = TN (xn

i−1x
n
i x

n
i+1)

In the following, we use periodic boundary conditions, which means

xn+1
0 = TN (xn

I x
n
0x

n
1 ) and xn+1

I = TN (xn
I−1x

n
I x

n
0 )

Equivalently, rules can be described through Boolean cubes, in which the
table truth is mapped onto the vertices of a cube, like in the example of
Fig. 2.4.
Cellular Automata were originally introduced by Ulam [26] and von Neu-
mann [27] with the purpose of modeling biological system self-reproduction;
however, their divulgation is mainly due to Wolfram [28], who defined the
notation, pointed out interesting properties, and proposed possible appli-
cations. In the last years, the analysis of CA from a ‘nonlinear dynamics
perspective’ [29] has provided new elements to this discipline. For example,
it has been possible to prove that the 256 rules in fact belong to only 88
equivalence classes: in particular, each rule N can be transformed into an
equivalent one by using one of the three global equivalence transformations -
left-right transformation T †(N ), global complementation T (N ), and left-right
complementation T ∗(N ) - whose details are explained in [30]. The 256 local
rules and their global equivalent rules are shown in Table 2.2.
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Table 2.2: CA local rule N (first column), left-right transformation T †(N )
(second column), global complementation T (N ) (third column), left-right
complementation T ∗(N ) (fourth column).

N T †(N) T (N ) T ∗(N ) N T †(N) T (N ) T ∗(N )
0 0 255 255 32 32 251 251
1 1 127 127 33 33 123 123
2 16 191 247 34 48 187 243
3 17 63 119 35 49 59 115
4 4 223 223 36 36 219 219
5 5 95 95 37 37 91 91
6 20 159 215 38 52 155 211
7 21 31 87 39 53 27 83
8 64 239 253 40 96 235 249
9 65 111 125 41 97 107 121
10 80 175 245 42 112 171 241
11 81 47 117 43 113 43 113
12 68 207 221 44 100 203 217
13 69 79 93 45 101 75 89
14 84 143 213 46 116 139 209
15 85 15 85 47 117 11 81
16 2 247 191 48 34 243 187
17 3 119 63 49 35 115 59
18 18 183 183 50 50 179 179
19 19 55 55 51 51 51 51
20 6 215 159 52 38 211 155
21 7 87 31 53 39 83 27
22 22 151 151 54 54 147 147
23 23 23 23 55 55 19 19
24 66 231 189 56 98 227 185
25 67 103 61 57 99 99 57
26 82 167 181 58 114 163 177
27 83 39 53 59 115 35 49
28 70 199 157 60 102 195 153
29 71 71 29 61 103 67 25
30 86 135 149 62 118 131 145
31 87 7 21 63 119 3 17
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(a) (b)

Figure 2.4: (a) Truth table and (b) Boolean cube for rule 110. Note the
correspondence between input codes of the truth table and vertices of the
Boolean cube.

N T †(N) T (N ) T ∗(N ) N T †(N) T (N ) T ∗(N )
64 8 253 239 96 40 249 235
65 9 125 111 97 41 121 107
66 24 189 231 98 56 185 227
67 25 61 103 99 57 57 99
68 12 221 207 100 44 217 203
69 13 93 79 101 45 89 75
70 28 157 199 102 60 153 195
71 29 29 71 103 61 25 67
72 72 237 237 104 104 233 233
73 73 109 109 105 105 105 105
74 88 173 229 106 120 169 225
75 89 45 101 107 121 41 97
76 76 205 205 108 108 201 201
77 77 77 77 109 109 73 73
78 92 141 197 110 124 137 193
79 93 13 69 111 125 9 65
80 10 245 175 112 42 241 171
81 11 117 47 113 43 113 43
82 26 181 167 114 58 177 163
83 27 53 39 115 59 49 35
84 14 213 143 116 46 209 139
85 15 85 15 117 47 81 11
86 30 149 135 118 62 145 131
87 31 21 7 119 63 17 3
88 74 229 173 120 106 225 169
89 75 101 45 121 107 97 41
90 90 165 165 122 122 161 161
91 91 37 37 123 123 33 33
92 78 197 141 124 110 193 137
93 79 69 13 125 111 65 9
94 94 133 133 126 126 129 129
95 95 5 5 127 127 1 1
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N T †(N) T (N ) T ∗(N ) N T †(N) T (N ) T ∗(N )
128 128 254 254 160 160 250 250
129 129 126 126 161 161 122 122
130 144 190 246 162 176 186 242
131 145 62 118 163 177 58 114
132 132 222 222 164 164 218 218
133 133 94 94 165 165 90 90
134 148 158 214 166 180 154 210
135 149 30 86 167 181 26 82
136 192 238 252 168 224 234 248
137 193 110 124 169 225 106 120
138 208 174 244 170 240 170 240
139 209 46 116 171 241 42 112
140 196 206 220 172 228 202 216
141 197 78 92 173 229 74 88
142 212 142 212 174 244 138 208
143 213 14 84 175 245 10 80
144 130 246 190 176 162 242 186
145 131 118 62 177 163 114 58
146 146 182 182 178 178 178 178
147 147 54 54 179 179 50 50
148 134 214 158 180 166 210 154
149 135 86 30 181 167 82 26
150 150 150 150 182 182 146 146
151 151 22 22 183 183 18 18
152 194 230 188 184 226 226 184
153 195 102 60 185 227 98 56
154 210 166 180 186 242 162 176
155 211 38 52 187 243 34 48
156 198 198 156 188 230 194 152
157 199 70 28 189 231 66 24
158 214 134 148 190 246 130 144
159 215 6 20 191 247 2 16
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N T †(N) T (N ) T ∗(N ) N T †(N) T (N ) T ∗(N )
192 136 252 238 224 168 248 234
193 137 124 110 225 169 120 106
194 152 188 230 226 184 184 226
195 153 60 102 227 185 56 98
196 140 220 206 228 172 216 202
197 141 92 78 229 173 88 74
198 156 156 198 230 188 152 194
199 157 28 70 231 189 24 66
200 200 236 236 232 232 232 232
201 201 108 108 233 233 104 104
202 216 172 228 234 248 168 224
203 217 44 100 235 249 40 96
204 204 204 204 236 236 200 200
205 205 76 76 237 237 72 72
206 220 140 196 238 252 136 192
207 221 12 68 239 253 8 64
208 138 244 174 240 170 240 170
209 139 116 46 241 171 112 42
210 154 180 166 242 186 176 162
211 155 52 38 243 187 48 34
212 142 212 142 244 174 208 138
213 143 84 14 245 175 80 10
214 158 148 134 246 190 144 130
215 159 20 6 247 191 16 2
216 202 228 172 248 234 224 168
217 203 100 44 249 235 96 40
218 218 164 164 250 250 160 160
219 219 36 36 251 251 32 32
220 206 196 140 252 238 192 136
221 207 68 12 253 239 64 8
222 222 132 132 254 254 128 128
223 223 4 4 255 255 0 0

Despite the limited number of global independent rules, summarized in
Table 2.3, CA can show an extraordinary variety of behaviors: some rules
have no practical interest (like 0 or 255, mapping the whole space onto a
single point), others are even capable of universal computation, like rule 110.
A further intrinsic characteristic of a local rule is its complexity index κ,

defined as the number of planes needed to separate blue and red vertices -
corresponding to the two states (0 and 1, respectively) - in its Boolean cube.
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Table 2.3: 88 global equivalence classes for CA local rules.

0 1 2 3 4 5 6 7
8 9 10 11 12 13 14 15
18 19 22 23 24 25 26 27
28 29 30 32 33 34 35 36
37 38 40 41 42 43 44 45
46 50 51 54 56 57 58 60
62 72 73 74 76 77 78 90
94 104 105 106 108 110 122 126
128 130 132 134 136 138 140 142
146 150 152 154 156 160 162 164
168 170 172 178 184 200 204 232

In general, κ ∈ {1, 2, 3}: rules with κ = 1 are in red in Tables 2.2 and 2.3,
in blue when κ = 2, and in green when κ = 3. Note that the mapping of
the eight possible patterns {(000), . . . (111)} onto the vertices of the Boolean
cubes is not unique; however, different mappings lead to the same complexity
index κ for all rules, showing that its value is independent of the particular
representation chosen.
It might be thought that CA with greater values of κ have also greater
computational power, however this is not true. It is true that rules with
κ = 1 can be easily characterized because they describe linearly separable
CA, but even rules with κ = 2 can have extremely complex behaviors as in
the case of rule 110, which is known to be equivalent to a Universal Turing
Machine. This phenomenon, already hypothesized by Wolfram, is called
threshold of complexity. It is noteworthy to mention that not all rules with
high complexity index have complex behaviors, as it will be show in chapter 6
about additive rules.

2.5 A glimpse of physical implementations of
cellular paradigms

One of the original purposes of Cellular Neural Networks was performing real
parallel computation on-chip. In fact, throughout the last 30 years many
CNN implementations have been proposed, and nowadays topographic cell
processor arrays are a reality (e.g. [31] [32]). Moreover, the cellular paradigm
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has been employed also in cutting-edge general-purpose processors, as already
mentioned in the introduction, suggesting that this approach will be widely
applied in the near future. The research in this field - especially for vision sys-
tems based on the CNN-UM architecture - has been mainly carried out by the
Analogic and Neural Computing Laboratory of the Hungarian Academy of
Sciences [33], jointly with the Microelectronic Institute of Seville (Spain) [34].
The devices are manufactured and commercialized by Anafocus [35] and Eu-
tecus [36], and they are employed in some of the fastest cameras available on
the market.
These devices have the advantages of any special-purpose implementation,
like impressive performances and low power consumption, but on the other
hand their cost and availability can be an obstacle to their spread use. When
a short time-to-prototype is required or in case low cost is an fundamental
restriction, it can be better resorting to CNN software simulation [37].
A great compromise in terms of performances and flexibility is given by
Graphics Processing Units (GPUs), constituting the core of the last genera-
tion of computer graphics cards. Due to their intrinsic parallel hardware and
user-oriented software, GPUs combine the positives of hardware implementa-
tions and software simulations, and they may become the leading architecture
for simulating cellular paradigms.
In the following, we present some of the most-known implementations as well
as an outline of the realization of cellular paradigms on GPUs. However, an
exhaustive study of the problem goes beyond our purposes, and a deeper
analysis can be made thanks to the numerous references provided.

2.5.1 Chips and emulations on reconfigurable devices

Studies about CNN processors trace back to the 90’s, when the first proto-
types implementing continuous and discrete time CNNs were realized (e.g.
[38] [39] [40]). Unfortunately, these devices were not programmable, and the
advantages of the parallel computation were overtaken by the delay transfer
from the sensors to the processing system.
The invention of smart-pixel chips [41] represented a great improvement in
this field, since the capability of processing signals at a focal plane level
eliminated the necessity of transmitting large amount of data, one of the
bottlenecks of conventional image processing systems. This paradigm has
been widely employed in devices based on CNN architecture [5] [42] [43] [44],
including modern chips capable of operating with grayscale images at frame-
rates larger than 1000 frames per second [45]. In the last years, the architec-
ture of these devices has tried to resemble the natural vision systems where
parallel processing is made at the retina and significant reduction of the in-
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formation happens as signals travel from the retina up to the visual cortex;
therefore, they combine a first fully parallel analog processing layer, and a
second layer composed by digital processors [46]. It is worth to mention that
there exist also specific architectures emulating the spatial-temporal dynamic
evolutions observed in mammalian retinas [47] [48].
Despite their performances, application specific chips for parallel processing
are not extensively used, mainly due to their cost and time-to-market. In
order to obtain flexible and inexpensive implementations in a short design
time, many authors have emulated cellular architectures on reconfigurable
devices, like DSPs and FPGAs . This vein has been particularly successful
and it has given rise to dozens of different implementations, whose charac-
teristics are summarized in [49]. As an example, we mention the ‘Falcon’ [50]
architecture, based on a previous implementation called ‘CASTLE’ [51] [52].
The Falcon processor and its developments have proved to overperform the
most advanced general purpose microprocessors on a number of tasks, like
the real-time emulation of a digital retina [53]. Remarkably, there are also
several examples of CNN systems implemented on FPGA applied to real-life
problems [54][55][56]. An alternative implementation on CNNs can be found
in [57] as well as its application on the vision system of an autonomous mobile
robot [58].

2.5.2 Simulation on Graphics Processing Units

Graphics cards were originally conceived for gaming purposes, but in the
last years they have found also scientific applications, especially when it is
necessary to implement a truly parallel processing [59] [60]. Having a local
network of simple processors, Graphics Processing Units (GPUs) are a natu-
ral candidate for simulating the dynamics of CNNs, and a valid alternative to
dedicated CNN processors, which tend to be expensive and not always widely
available. Simulations on GPUs have the advantage of working on a true par-
allel hardware, in contrast with other common used software tools [37] [61]
that run on traditional sequential computers.
The first studies on CNN simulation through GPUs has recently been pre-
sented [62][63], showing promising results. In particular, this solution is as
flexible, available, and expensive as a software simulation, but far more effi-
cient. Graphics cards by nVidia seem to be particularly suitable to this ap-
plication, since they can be programmed through a specific language called
CUDA (Compute Unified Device Architecture) [64], whose syntax is very
similar to C but especially thought to be employed on multiprocessors units.
It should be noticed that the GPU is not used as a general purpose computer,
but it only constitutes the processing core of the system. Consequently, the
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CPU still accomplishes several tasks, like the transmission of the data to the
local memory of the graphics card.
There are several issues that have to be considered when a Cellular Neural
Network is implemented on a graphics card, like the divisions of the images
into blocks, the handling of variables and data, etc. Often, extracting general
rules to set these parameters is not possible, and the best values for them
have to be found experimentally.
Nowadays, powerful graphics cards are hosted on most personal computers,
and in the short term more software tools will be available to design pro-
grams specifically for GPUs. For these reasons, we strongly believe that
CNN simulation on GPUs will be an hot topic in the future.



Chapter 3

Alternative proof for the
universality of the CNN-UM

Scientists addressed the notion of computability even before the invention
of digital computers, trying to define a priori what classes of problems can
be solved by means of algorithms. A thorough analysis of this issue goes
beyond the purposes of this dissertation because of its deep mathematical
and philosophical implications, however in the following we briefly introduce
the concepts of computability, universality, and Turing machines which will
be extensively used in the rest of this chapter. In the remaining sections, we
present an alternative proof of the universality of the CNN-UM which does
not make use of the Game of Life. This result has two main consequences:
first, it defines a general form for all CNN-UM programs; second, it suggests
that the solution space can be explored through a technique called Genetic
Programming [65][66]. In this chapter we discuss the first aspect, whereas
the second one will be tackled in chapter 4.

3.1 Turing machines, universality, and com-
putability

Turing Machine (TM) [67] is a key concept of theory of computation, and it
can be informally described as a system composed by a tape and a head. The
tape is unlimited, in the sense that it is finite but more paper can be always
added, if necessary; it is divided into several cells, each containing a symbol
of a finite alphabet, which has to include a special blank symbol. The head
has an internal state and it can move along the tape; its function is reading
and writing symbols in the cells of the tape. Assuming that the TM works in
discrete-time, we suppose that at the generic time T the head is on the state
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qi and reads the symbol si. Depending on these two values, at the time T +1
it changes its state to qj, writes the symbol sj (deleting previously si), and
moves towards the direction d (left or right), like illustrated in the following
table

Time State Symbol Direction
T qi si -

T+1 qj=qj(qi,si) sj=sj(qi,si) d=d(qi,si)

This behavior can be conveniently summarized through a so-called transi-
tion function, which includes as many 5-tuples < qi, si, qj, sj, d > as possible
combinations of states, symbols, and directions.
After this brief description of its structure, we can give a formal definition [68]
of TM as a 7-tuple

TM =< Q, Γ, b, Σ, δ, q, F > (3.1)

where

• Q is a finite set of states;

• Γ is a finite set of symbols;

• b ∈ Γ is the blank symbol;

• Σ ⊆ Γ\{b} is the set of input symbols;

• δ : Q× Γ → Q× Γ× {L, R} is a transition function, where L (respec-
tively, R) is the left (respectively, right) shift;

• q ∈ Q is the initial state;

• F ⊆ Q is the set of final states, including an halt state.

Note that every part of a TM is finite and discrete, except for the unlim-
ited tape that corresponds to an unbounded amount of storage space. This
mechanism is extremely powerful, though simple: it allows the machine to
perform computation, and printing the result of its calculation somewhere on
the tape. In conclusion, finding an algorithm for doing a problem is equiva-
lent to finding a Turing machine that could solve it [69].
A Turing machine behaves like a computer that executes a given program
performing exclusively a specific task. Nevertheless, according to what Tur-
ing wrote in [67]
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[...] it is possible to invent a single machine which can be used to
compute any computable sequence. [...]

which is usually called Universal Turing Machine (UTM). A UTM mimics
the action of any other Turing machine, which means that, providing the
same input, its output is the same as the original machine. The tape of the
UTM contains the transition function of the original Turing machine as well
as the input data, both properly encoded.
The importance of the concept of UTM derives from the Church-Turing
thesis, according to which

Every effectively calculable function is a computable function.

where in this context “computable” means “produced by a Turing-machine”,
and “effectively calculable” means “produced by any intuitively ‘effective’
means whatsoever”. In other words, a UTM solves all problems for which an
effective method of computation, or algorithm, exists. This property makes
the UTM fundamental in the field of computer science, and any paradigm
behaving like a UTM is itself called ‘universal’.

3.2 Universal CNN models

The Chua-Yang CNN model with a single layer and space-invariant weights
is not complex enough to be universal; hence, several authors have proposed
other CNN models capable of performing universal computation. Remark-
ably, a universal CNN can be obtained by making the original model slightly
more complex, like adding an extra-layer [70] [71] or a simple nonlinear-
ity [72] [73]. The fact that there is a minimal complexity beyond which
a model becomes universal is consistent with the results obtained by Wol-
fram [28] and Chua [29] about the so-called threshold of complexity in one-
dimensional Cellular Automata. Other possibilities are using time-varying
templates [74], or nonlinear and delayed interactions [75]. The research into
this field led to the creation of the Cellular Neural Network-Universal Ma-
chine (CNN-UM) [20], already described in Sec. 2.2.
Note that the universality of all CNN models mentioned previously was
proved through the Game of Life, a two-state two-dimensional cellular au-
tomaton equivalent to a UTM [76] [77]. In practice, if a CNN model can run
the Game of Life, then it is universal. On the one hand, the analogy with
the Game of Life is widely used, because it is extremely simple to verify; on
the other, its relevance is exclusively theoretical, since it does not provide
any practical information about the structure of an algorithm performing a
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certain task.
In order to find an alternative proof of universality of the CNN-UM, we
analyzed other paradigms that are proved to be UTM. The Genetic Pro-
gramming + Indexed Memory machine (GP+IM machine) is one of those,
and because of its importance it is described in detail in the next section.

3.3 GP+IM machine: an example of univer-
sal Turing machine

The GP+IM machine was introduced in [78], and it manipulates expressions
consisting of terminals (e.g. variables and constants), non-terminals (in-
structions), and if-then-else statements, which can be conveniently written
in form of strings by using the inverse Polish notation (the operator precedes
the operands). For example,

y = (∗ 2 (IF (= 3 x) THEN (− 1 x) ELSE(+ 5 x)))

is a valid expression with six terminals (the input x, the output y, and the
constants 2, 3, 1, and 5 ), four functions (*, =, -, and +), and one if-then-
else statement. The set of terminals and functions depends on the problem
under consideration: for instance, terminals can be real numbers, arrays, im-
ages etc.; consequently, functions can be arithmetic operations, like in this
example, or any structure manipulating properly the terminals.
This kind of expressions can be easily handled by computer languages like
Lisp [79], and they are therefore called “Lisp-like expressions”. The name
of this paradigm derives from the fact that Lisp-like expressions are also the
main elements of Genetic Programming (GP), described in Sec. 4.1, but in
this case an Indexed Memory (IM) is also used to store and retrieve val-
ues. In order to use the indexed memory we add two new non-terminals in
the language: (Read MP) returns the value stored in memory position MP ,
(Write V MP) returns the value of memory position MP and change it to
V .
The simplest program for the GP+IM machine is called GP+IM function,
which is a mapping from inputs to outputs containing only Lisp-like ex-
pressions, without iterative or recursive processes. An example of GP+IM
function is

y = (IF (= 4 (Read 25)) THEN (Write 1 30) ELSE (Write − 1 30))

Lisp-like expressions in general, and GP+IM functions in particular, can
be represented by using a class of graphs called Directed Acyclic Graphs
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(DAGs) [80], which can be also used to describe CNN-UM functions, as
explained in Sec. 3.4.2.
Generic GP+IM programs are obtained by including iterative instructions
repeat-until into the Lisp-like expressions. However, as proved in [78], any
program for the GP+IM machine can be written in the form

Repeat
Evaluate < GP+IM function >
Until
< Some specific state of the memory >

Remarkably, this result was not obtained through an analogy with the Game
of Life, which would have been the typical method, but showing that the
GP+IM machine can duplicate the functionality of an arbitrary Turing Ma-
chine. Therefore, not only we can affirm that the GP+IM machine is a UTM,
but also we know how a generic GP+IM program looks like.
The proof of the universality of the GP+IM machine is obtained by showing
that it is always possible to construct a GP+IM machine duplicating the the
functionalities of an arbitrary TM. According to the notation introduced in
Eq. 3.1, we can suppose that a certain algorithm can be expressed by an
arbitrary TM described by the 7-tuple

TM =< QTM , ΓTM , bTM , ΣTM , δTM , qTM , FTM >

Now, we want to find a GP+IM machine whose behavior is isomorphic to
the one of TM, and expressed by the 7-tuple

GP + IM =< QG, ΓG, bG, ΣG, δG, qG, FG >

where the subscript ‘GP+IM’ has been shortened to ‘G’. As it happens in
the definition of Turing Machine, the memory available to TM and GP+IM
is unlimited. Here we only sketch the proof, whose complete version can be
found in [78].
The proof takes into consideration a GP+IM machine with only three generic
operands - X, Y, and Z - which can be either terminals (constants and vari-
ables) or sub-functions composed by non-terminals. The set of non-terminals
(instructions) contains the following elements:

• (IF X THEN Y ELSE Z):] it returns Y if X is non-zero, otherwise it
returns Z;

• (= X Y): it returns 1 if the two arguments are equal, otherwise it
returns 0;



26 Alternative proof for the universality of the CNN-UM

• (AND X Y): it returns 0 if either argument is zero, otherwise it returns
1;

• (ADD X Y): it returns the addition of X and Y;

• (SUB X Y): it returns X minus Y;

• (Read X): it returns Memory[X], which is the value of the memory in
the position X;

• (Write Y X): it returns Memory[X], and then writes Y in this memory
position.

The first step of the proof consists in constructing the elements of the 7-
tuple of the GP+IM machine, with a particular emphasis on the transition
function. Then, we need to prove the so called ‘equivalence claim’ stating
that

For any input placed in the GP+IM memory array, the GP+IM
machine will accept the input when and only when the target ma-
chine accepts the isomorphic input on its tape.

where a TM can be said to accept its input if it halts in one of the final states
In the original paper the authors divide this claim into three short lemmas:

1. All transitions preserve isomorphic equivalence between the two ma-
chines;

2. The two machines halt after the same number of transitions;

3. The target machine accepts an input when and only when the GP+IM
machine accepts the isomorphically equivalent input;

which are rigorously proved in [78].

3.4 Equivalent ways of describing CNN-UM
functions

In general, programs for the CNN-Universal Machine can be represented as
a flow diagram containing the following elements:

E1: global input/output operations,
E2: CNN operations with specified cloning templates,
E3: local storage,
E4: local exchange of information between local memory units,
E5: local computation combining locally stored values.
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We can draw easily an analogy with the GP+IM machine, since also the
CNN-UM handles Lisp-like expressions consisting of terminals (global in-
put/output operations, E1), non-terminals (CNN templates, E2), and uses
a memory to store and retrieve values (elements E3, E4, and E5). There-
fore, by analogy with the GP+IM machine, we define ‘CNN-UM function’
the simplest kind of CNN-UM program in which the flow diagram contains
only if-then-else statements and no iterative process, whereas ‘CNN-UM pro-
grams’ are obtained by including iterative instructions repeat-until. This
nomenclature for CNN-UM is not standard, however it helps to notice the
similarities between the two kinds of machines taken into consideration.
In the following we analyze four equivalent ways of describing CNN-UM func-
tions: through Universal Machine on Flows algorithms, strings, binary trees,
and Directed Acyclic Graphs.

3.4.1 Universal Machine on Flows diagrams

CNN-UM functions and programs are usually described through Universal
Machine on Flows (UMF) diagrams [18]. Terminals - which can be logic
values and arrays, or analog values and arrays - are represented like in
Fig. 3.1(a), whereas the boundary conditions are in Fig. 3.1(b).

(a) (b)

Figure 3.1: Representation for (a) terminals (signals and variables) and (b)
boundary conditions in UMF diagrams.

The standard representation for non-terminals (CNN templates) is depicted
in Fig. 3.2: Temk is the name of the template, whose parameters can be
specified explicitly or found in the CNN template library [18]; τ is the time
constant; z the bias; U , X0 and Y are the input, the initial state, and the
output, respectively. Complex functions can be created by combining cas-
cade and parallel structures (Fig. 3.3), and if-then-else statements (Fig. 3.4).
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Figure 3.2: Standard representation for CNN templates in UMF diagrams.

(a) (b)

Figure 3.3: Algorithmic structures in UMF diagrams: (a) cascade, (b) par-
allel.

3.4.2 Strings and binary trees

CNN-UM functions can be also represented by means of strings. In the
following, we analyze the case of linear and space-invariant templates, but
the conclusions can be easily extended to more general cases.
Following the scheme of Fig. 3.2, we need to specify the input U and the
initial state X0 for each template, along with other parameters like boundary
conditions and integration constant. Therefore, a template Temk can be
described as

Y = Temk(U, X0, Params)

This representation can be easily extended to multi-template functions as
follows

Y = Tem3(Tem1(U1, X01, Params1), Tem2(U2, X02, Params2), Params3)
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Figure 3.4: If-then-else statement in UMF diagrams.

The input of Tem3 is the output of Tem1, whereas its initial state is the
output of Tem2.
Lisp-like functions - and then CNN-UM functions - can be also represented
by means of trees, in which leaves correspond to terminals (e.g. input, out-
put, initial state) and branches to non-terminals, such as CNN templates,
like in Fig. 3.5.

Figure 3.5: Representation for CNN templates in binary trees.

Note that this description focuses exclusively on the structure of the algo-
rithm, without giving any indication about other features like type of ter-
minals or boundary conditions. The input and the initial state of each level
of the tree are either outputs of previous levels or terminals (there are no
iterative processes in CNN-UM functions); therefore, the first level of the
tree is supplied with the inputs, and the output is retrieved from the last
level (see Fig. 3.6). Since a CNN template has always two inputs (input and
initial state), the resulting trees will be always binary. These two models are
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equivalent: a binary tree representation can be straightforwardly derived by
a string, and vice versa.

(a) (b)

Figure 3.6: Binary trees representing single-template (a) and multi-template
(b) CNN-UM functions.

3.4.3 Directed Acyclic Graphs

There is a fourth way of representing CNN-UM functions, which is through
Directed Acyclic Graphs (DAGs). DAGs were already mentioned in Sec. 3.3,
and in fact they constitute the bridge between the GP+IM machine and the
CNN-UM machine, as it will be detailed in Sec. 3.5. In order to explain what
a DAG is, we need to define the concept of graph [81].

Definition 3.1 (Graph) A graph G is an ordered pair G:=(V,E) that is
subject to the following conditions:
1) V is a set of points, whose elements are called vertices or nodes,
2) E is a multiset of unordered pairs of distinct vertices (not necessarily
distinct), called edges,
The degree of a vertex is the number of other vertices it is connected to by
edges.

Definition 3.2 (Directed (Acyclic) Graph) A graph G is said to be di-
rected if all edges are directed, where an edge e = (v1, v2) is considered to be
directed from v1 to v2; v2 is called the head, and v1 is called the tail of the
edge.
A directed acyclic graph (DAG) is a directed graph with no directed cycles.
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A DAG can be considered as a generalization of trees in which certain sub-
trees can be shared by different parts of the tree. When DAGs are used to
describe CNN-UM functions, the vertices with degree 1 are inputs and out-
put, whereas the vertices with degree greater than 1 are CNN templates. In
this case, the maximum in-degree of a vertex - that is, the number of edges
entering the vertex - is 2 because each CNN template receives one input and
one initial state; however, there is no maximum for the out-degree - which
is the number of edges exiting the vertex - because the output of a level can
be used as input (or initial state) of an arbitrary number of other levels.
A binary tree is a particular case of DAG; moreover, any DAG with maximum
in-degree 2, like those representing CNN-UM functions, can be transformed
into a binary tree according to the following algorithm:

Algorithm 1 (From DAGs to binary trees) While there is a vertex v ∈
V with out-degree n > 1
1) Make n copies of v, each with the same incoming edges but no outgoing
edges;
2) Attach one of the outgoing edges of v to each vertex;
3) Delete v.

3.4.4 Different representations are equivalent

In order to illustrate the equivalence of the four representations illustrated
previously, we show how the same CNN-UM function can be described by
any of them without loss of generality.
The CNN-UM function considered deletes a selected object [18], and it is
fairly simple, containing only five CNN templates: two different shadow tem-
plates (Shadow HD and Shadow Right), two kind of edge detectors (Edge Top
and Edge Left), plus the Recall template; two logic operators (AND and
NOT); input (U) and output (Y) images, and no if-then-else- statements. Its
UMF diagram is shown in Fig. 3.7, and it is described by the following string

Y = AND (U,NOT (Recall (Edge Left (AND (Edge Top (
Shadow HD (U)) , Shadow Right (U))) , U )))

The representations of this CNN-UM function through a binary tree and a
DAG are illustrated in Figs. 3.8 (a) and 3.8 (b), respectively.
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3.5 Analogy between GP+IM machine and
CNN-UM

From the results obtained in the previous sections, we can draw a strong
analogy between GP+IM machine and CNN-UM machine: in both cases
functions can be represented through DAGs, and a number of memories
are used to store and retrieve results. Therefore, the results obtained for
the GP+IM machine can be automatically extended to the CNN-UM. As a
consequence, we can state that the CNN-UM, like the GP+IM machine, is
universal; as for our knowledge it is the first time that this result is proved
without making use of the Game of Life.
Moreover, we can now assert that any CNN-UM program has the following
structure

Repeat
Evaluate < CNN-UM function >
Until
< Some specific state of the memory >

in which the difference between a CNN-UM program and a CNN-UM function
is the same as between GP+IM machine and GP+IM function: the former
can contain iterative and recursive processes, the latter cannot. In conclusion,
a generic CNN-UM is composed by a single repeat-until loop containing a
CNN-UM function, which is a combination of CNN templates and nested
if-then-else statements.
Although this result gives a general structure for CNN-UM programs, it
provides no indication about the details of a CNN-UM program performing
a certain task, like what CNN templates need to be used and how the if-
then-else statements should be nested. As observed in [78],

[...] this notion is similar to saying that Shakespeare is expressible
in some language X. This may be good to know, but it does not
guarantee that any particular line from language X will be quality
literature. Similarly, the language of a typewriter is expressive
enough to capture Shakespeare. However, Shakespearean prose
will, in practice, never arise from a monkey playing with the keys.
[...]

The techniques that can be used to explore efficiently the space of CNN-UM
programs will be discussed in the next chapter.
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Figure 3.7: UMF diagram of the CNN-UM function to remove a selected
object.
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(a) (b)

Figure 3.8: (a) Binary tree and (b) DAG of the CNN-UM function to remove
a selected object.



Chapter 4

Genetic programming for the
CNN-UM

The results presented in the previous chapter define a common structure for
all CNN-UM programs, but they do not give any hint about how to choose
the CNN templates performing a complex operation and in which order they
must be used. In general, there is no systematic way to design CNN-UM
programs, and most of the times they are created on purpose for the prob-
lem under consideration (e.g., [82][83][84]).
In the past, other authors have investigated the possibility of using machine
learning techniques, especially those based on genetic approaches, to explore
the search space defined by all CNN-UM programs [85] [86]. Due to the high
number of existing CNN templates, such search space is huge and contains all
sort of CNN-UM programs, even those with no practical application; without
introducing any previous knowledge about the problem, this method is des-
tined to fail. The same system was successively improved [87] allowing the
designer to select the CNN templates forming part of the ‘candidate’ CNN-
UM programs evolved by the genetic system. Nevertheless, this change was
still not enough to cope with the exploration of the space, and the system
either got stuck into local minima, or converged after hundreds of generations
even for simple problems, showing little improvement with respect to a mere
random search.
Other studies [88] do not focus on CNN-UM programs but on multi-layer
CNNs, leaving the choice of the number of network layers to the designer.
This system lacks of flexibility, and it suffers from the typical problems of
neural network learning. Nevertheless, it achieves some remarkable results in
contour extraction and segmentation, successively applied to complex tasks
like anti-personnel mine detection [89].
On this ground, we propose a tool combining automatic methods with de-
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signer skills to develop effective CNN-UM programs for complex tasks [90]
[91] [92]. In particular, we put forward a technique called Genetic Program-
ming (GP), illustrated in Sec. 4.1, to explore the search space composed by
CNN-UM programs. It is worth emphasizing that the main difference be-
tween our system and the existing ones is that in the former the designer
plays a key role, setting many parameters of the system according to the a
priori knowledge of the problem, whereas in the latter there is practically no
place for the algorithm designer.

4.1 Working principles of Genetic Program-
ming

Genetic programming [65][66] is a machine learning technique capable of
generating automatically a computer program to perform a given task. It is
based on the principles of biological evolution, and its superiority over simi-
lar searching algorithms, random search in primis, is well-documented in the
literature [93][94].
The standard GP flow diagram is shown in Fig. 4.1. The first step to define a
GP system is specifying a representation for computer programs (individuals)
and an appropriate method to measure their performance (fitness); succes-
sively, a set of random programs (population) is created: if it meets a certain
requirement (stop condition) then the process stops, otherwise a sequence
of operations (generation) is executed. During a generation, the GP sys-
tem tries to improve the population fitness by combining different programs
or creating new ones (genetic operations); these modified programs form a
new population (offspring) that replaces the old one (parents). These steps
are analyzed in detail in the following, however an exhaustive study of this
paradigm goes beyond our purposes.

Fitness function and stop condition

The choice of the fitness function is crucial to the effectiveness of the GP
system, and it has to be defined case-by-case depending on the problem
analyzed. Usually, several components concur in the definition of the fitness,
which are then combined into a unique factor through a weighted sum: for
example, the resemblance of the outcome of the algorithm with a reference
output; the complexity of the programs (number of instructions or time to
execute them) etc.
The population of computer programs is expected to improve - in other
words, its fitness is expected to increase - generation after generation until
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Figure 4.1: GP flow diagram.

the GP halts for having met the stop condition, either because it reached the
maximum number of generations allowed or because it found a solution to
the problem.

Genetic operators

The number of GP operators is virtually unlimited because new genetic op-
erators can be always be created ad hoc for specific cases [95]. In general,
they are applied to a subset of individuals probabilistically selected from
the population, favoring individuals with higher fitness in order to guarantee
that only advantageous features are perpetuated to the following generations.
Each operator is employed with a given probability, which can be either fixed
a priori or varied over the generations. In our system we used only the three
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main GP operators: reproduction, crossover, and mutation.
The reproduction is the simplest operator: it copies an individual from the
current generation to the following one, assuring a minimal continuity among
generations.
The crossover acts on two individuals, selecting a random node in each of
them and swapping the subtrees rooted at such positions (see Fig. 4.2); fi-
nally, the two new individuals become part of the offspring. Thanks to the
crossover, favorable features of different programs can be combined into new
individuals.

Parents

(a) (b)
Offspring

(c) (d)

Figure 4.2: Crossover: a random node is selected in each parent (a) and (b),
and the resultant ‘sub-trees’ are swapped to form two new individuals (c)
and (d).

The mutation operates on a single individual, choosing randomly a node of
the tree: then, either the whole branch from that point downwards is substi-
tuted by a new one, like in Fig. 4.3(b), or the instruction corresponding to
that node is modified, like in Fig. 4.3(c). The mutation provides diversity to
the population, avoiding local minima.
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(a) (b) (c)

Figure 4.3: Mutation: a point is randomly chosen in an individual (a), then
a new tree is created either substituting the whole branch from that point
downwards (b), or modifying the instruction corresponding to the node (c).

Population size and number of generations

There are no rules to set the population size and the maximum number of
generations of the GP system, and the suitable values for these parameters
depend on the nature of the problem. In general, the decision is up to the
designer, who determines them according to his or her expertise.
Usually, the population size ranges from few dozens to several hundreds of
individuals; there are experimental evidences [96] that a larger population
does not imply a faster convergence to the solution, as it might be thought.
The number of generations is strictly connected with the population size [97]:
in principle, smaller populations take more generations to converge, and vice
versa.
In some cases, the GP system does not converge to a solution even evolving
a large population for many generations. This may be due to a lack of di-
versity in the population (number of different individuals) lost - and never
recovered - because of an incorrect setting of the operators probabilities; al-
ternatively, the operation set proposed for the experiment may not contain
all instructions necessary to represent a solution. In these situations, increas-
ing the number of individuals or generations would not improve the result,
but other parameters have to be changed by the designer before repeating
the experiment.

Number of runs and premature convergence

It is not infrequent that a large percentage of the population converges to a
suboptimal result, causing a drop in the population diversity, and making the
creation of new individuals through the crossover very difficult. This phe-



40 Genetic programming for the CNN-UM

nomenon has a counterpart in nature called niche preemption principle [98],
which states that

[...] a biological niche in nature tends to become dominated by a
single species, which may or may not be globally optimal [...]

In general, the species that dominates a given niche depends on the initial
conditions and the history of probabilistic events. The negative effect of pre-
mature convergence can be minimized by performing multiple independent
runs, using a new random-chosen population at every run. The results ob-
tained on the different runs are then compared, and the individual with best
fitness is designated as result of the experiment.
Multiple runs can also measure the amount of computational resource re-
quired by the GP solver to yield a success with a certain probability. Be
P(M,i) the cumulative probability of success for all generations between 0
and i using a population of size M , and R(p) the number of independent runs
required to satisfy the success predicate by generation i with a probability
of p = 1-ε; then, the following relation holds [65]

P(M, i) = 1− 10
log10(ε)

R(p) (4.1)

whose graph is shown in Fig. 4.4. Equation 4.1 allows to calculate the prob-
ability of finding the solution using a population size M after i generations.

4.2 A GP system to evolve CNN-UM pro-
grams

In our system, the population consists of CNN-UM programs described through
any of the representations detailed in Sec. 3.4. Here, we use binary trees
in which leaves (terminals) are input and output images, and nodes (non-
terminals) are instructions, like CNN templates of if-then-else statements.

The operation set of the GP system contains all instructions and terminals
that can be used during the evolution of the population, and it is defined by
the designer. It includes the input image(s) and some basic CNN templates
(like the ‘Threshold’ template to binarize greyscale images) as well as any
other feature the designer considers appropriate (constants, complex CNN
templates, if-then-else statements) taken from [18]. This assures that any a
priori knowledge about the problem is used profitably, reducing the search
space to a manageable size. In principle, there exists always a minimal
set of templates suitable for the experiment, or even for all experiments,
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Figure 4.4: Relationship between the average number of runs R(p) and the
probability to obtain a solution with a probability p=0.99, given the popu-
lation size M and the the number of generations i.

because the CNN-UM is universal; this concept is strictly connected with
the sufficiency of the system (see Sec. 4.3).

The population of CNN-UM programs is initialized randomly, though
considering the information we may have about the algorithm. For example,
if we know that a given sequence of instructions certainly appears, we can
include it in all individuals; moreover, we can also preserve it from disruptive
operations (e.g. mutation) so that it is transmitted unaltered to the follow-
ing generations. There are several ways to set the initial population, and
we compared the performances of three of them: ‘full’ (all trees have same
depth), ‘grow’ (no fixed depth, each new node is randomly chosen between
terminals and non terminals), and ‘ramped half-and-half’ (an equal number
of individuals are initialized for each possible depth, half of the individuals
are initialized ‘full’, and the other half ‘grow’). We found experimentally
that the ‘ramped half-and-half’ method produces a more diverse population,
giving the best results in terms of average number of generations to converge
to the solution.

Our experiments regard image processing problems, then the natural fit-
ness function for our system is a measure of resemblance between the output
of a program and the reference image. The choice of the image metric will
be discussed in Sec. 4.4. Our fitness function includes also information about
the complexity (number of levels and nodes) of the trees: the simpler the
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tree, the better its fitness.

The only operators available to the GP system are those described in
the previous section, which have been applied with the following probabili-
ties: 0.1 reproduction, 0.9 crossover, 0.01 mutation. In theory, an adaptive
approach that changes the probabilities at every generation according to a
credit-penalty procedure should perform better, but in practice we have not
observed any noticeable improvement of the results, despite its computa-
tional cost. Note that the system is closed with respect to the operations
(see Sec. 4.3), and then crossover and mutation can be performed with any
problem.

Our system includes two different mechanisms for the mutation, both ap-
plied to a randomly selected individual. The first one acts on the program
structure, replacing an arbitrary subtree with a new one; the other one fo-
cuses on a single instruction, modifying it partially (e.g., changing the value
of the parameter in case of a parametric CNN template) or totally, which
means substituting it for another instruction taken from the operation set.

Sometimes, the GP system generates individuals containing redundant
subtrees, called introns in analogy with the language of genetics. Whether
introns are useful is a long-standing issue: some authors claim that they
protect effective subtrees from the destructive action of the operators; others
state that introns introduce noise into the system, making the convergence
to the solution slower. Probably, the answer to this question depends on
the kind of experiments performed. For example, we found experimentally
that in our system introns deteriorate the result, hence we implemented a
procedure to remove them, as shown in Fig. 4.5.

(a) (b)

Figure 4.5: The tree in (a) contains a reduntant subtree (intron) that can be
simplified (b).
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4.3 Closure and sufficiency of the GP system

In any GP system the operation set has to satisfy the conditions of closure
and sufficiency [99]: closure means that any individual created during the
evolution is valid, in the sense that it can be correctly evaluated; sufficiency
implies that the operation set is sufficient to express the solution of the
problem analyzed. In the following, we explain how our system meets these
requirements.
The first step to prove the closure of the system is verifying that any operation
is well-defined for the arguments it may encounter. In our system this is
assured thanks to a mechanism very similar to the one used in the CNN-
UM. In short, analog and logic values (and arrays) occupy different memory
locations, and the instructions can access only to memory slots corresponding
to the type of data they handle. For example, CNN templates always use
analog and logic arrays to store and retrieve results; if-then-else statements
can accept any kind of input, but their output has to be a memory location
etc. Note that also the results illustrated in the previous section about the
form of the CNN-UM programs are fundamental for proving the closure of
the system. We recall that any CNN-UM program can be written as

Repeat
Evaluate < CNN-UM function >
Until
< Some specific state of the memory >

Therefore, we only need to prove the closure of CNN-UM functions. This
result is fundamental, because it means that we do not have to deal with
iterations or recursions which would cause problems, as explained in the
following example.
Let us consider the two CNN-UM programs in Figs. 4.6(a) and (b), and
the offspring obtained by crossing them using the suggested selection points,
shown in Figs. 4.6(c) and (d). Note that since the selection point for the
tree in Fig. 4.6(b) is inside the backward loop, the structure of the tree in
Fig. 4.6(c) is not univocally determined. Should its loop go two templates
backward, or rather after the first template of the algorithm? Both cases
are compatible with the behavior of the tree in Fig. 4.6(a), and there is no
possibility to solve this ambiguity. A similar problem happens for the tree in
Fig. 4.6(d), because is this case either the branch goes immediately before the
loop instruction (causing an infinite loop), or even before the input, which
is absurd. This example shows that the presence of loops does not allow
the closure of the system. For this reason, the fact that CNN-UM functions
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Parents

(a) (b)
Offspring

(c) (d)

Figure 4.6: Two parents are crossed to obtain an offspring: due to the loops
in (a) and (b), the trees in (c) and (d) are not well-defined.

contain only CNN templates and if-then-else statements is crucial, and allows
to conclude that the closure property holds.
As for the sufficiency, it is guaranteed by the universality of the CNN-UM (or
equivalently, the GP+IM machine). However, the operation set of the GP
system is chosen by the designer, who selects the CNN templates that seem
promising to solve a given problem. In theory, this may be not a sufficient set,
but in practice more CNN templates, terminals, or memory locations, can be
added, according to the results of the unsuccessful runs. This process ends
in a finite (usually very low) number of steps, after which the designer has
selected a suitable operation set for the problem. Obviously, this procedure
works when the problem has a solution, or in other words it is computable,
according to the definition given in Sec. 3.1.
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4.4 Metric functions for images

The choice of an appropriate fitness function is a fundamental aspect of
any genetic system because it plays a key role in ranking the individuals.
The results of our experiments are images obtained as output of CNN-UM
programs, therefore we need to evaluate the similarity between each of these
outputs and the reference image. A function calculating the resemblance of
two (or more) images is called metric function, often shortened to metric,
and it is defined as follows:

Definition 4.1 (Metric function) A function dAB of two variables defined
on a set S (metric space) is called a metric function if:
1. dAB = d(A, B) ≥ 0, dAB = 0 ⇔ A = B (Positiveness and Identity);
2. dAB = dBA (Symmetry);
3. dAB + dBC ≥ dAC (Triangle Inequality).

In general, there is no metric suitable for all situations: some are very simple
to calculate, but they fail to work in non-trivial cases; other succeed in a
wide range of different conditions (e.g. they are insensitive to rotations or
scale-factors), but they require a huge computational effort. Therefore, the
choice of the fitness function is strictly related to the problem considered,
and it has to be defined case-by-case.
In the following, we present several metrics that have been used during our
experiments. Images are represented by two sets of points denoted by A=(a1,
a2, ..., an) and B=(b1, b2, ..., bn). For the sake of simplicity, we consider linear
arrays, in which the index goes from 1 to n; two-dimensional images can be
easily represented by this notation. Here, the metrics are defined for binary
images (0 for white, 1 for black), because in our experiments we always
binarize the input by applying the ‘Threshold’ CNN template; however, they
can easily be extended to greyscale images.

4.4.1 Hamming distance

One of the most used metrics is the Hamming distance (HM), defined as:

HM(A, B) =
n∑

i=1

|ai − bi| (4.2)

The Hamming distance measures the number of different points between the
two images, and it is equivalent to the pixel-wise exclusive OR (XOR) op-
eration of A and B. On the one hand, it has the indubitable advantage
of being simple to implement, but on the other it is strongly sensitive to
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noise. Moreover, it does not take into account the shape of the objects, and
it cannot be used with scaled or rotated images. To sum up, the Hamming
distance is a useful resource when we need a fast evaluation of the fitness
function, especially for synthetic images, but it may mislead when applied to
real images.
The Hamming distance is symmetrical because it does not make any distinc-
tion between reference (A) and test (B) images. In many experiments such
distinction is necessary in order to differentiate ‘false positives’ (1’s in the
test image corresponding to 0’s in the reference image) from ‘false negatives’
(0’s in the test image corresponding to 1’s in the reference image): in the
first case the test image in noisier than the reference but no information is
lost, while the opposite happens in the second case. We can make a further
distinction between ‘true positives’ (1’s in the test image corresponding to
1’s in the reference image) and ‘true negatives’ (0’s in the test image cor-
responding to 0’s in the reference image), which is useful in some practical
situations.

4.4.2 Binary correlation

Another well-known metric is the Binary Correlation (C), defined as:

C(A, B) =
A ·B

n2 ·
√

A2 ·B2
(4.3)

where n is the array size, and · is the scalar product.
The binary correlation is usually more accurate than the Hamming distance,
but also more complex, because of the number of sums and multiplications
it involves. Modern machines allow to compute it efficiently, although the
performances in terms of speed on parallel hardware are not comparable with
those achieved by Hausdorff-like distances, illustrated in next section, which
have a direct implementation on CNN-like processors.
The binary correlation, like the Hamming distance, is symmetrical, but in
this case it is not easy to weight false positives and negatives. Due to this
lack of flexibility, the application of binary correlation in our experiments is
limited.

4.4.3 Hausdorff distance and its variations

Some metrics take into consideration the shape of the objects, and they
are particularly effective for several classes of problems. As an example,
we present the Hausdorff distance (HS) [100] that measures the mismatch
between two sets by finding the distance of the point of A that is farthest
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from any point of B, and vice versa. From a quantitative point of view, the
Hausdorff distance can be calculated by using the function dHSAB - directed
Hausdorff distance from A to B - defined as

dHSAB = max
a∈A

(min
b∈B

||a− b||) (4.4)

In practice, dHSAB identifies the point a ∈ A that is farthest from any point
b ∈ B, and then it measures the distance from a to its nearest neighbor in
B by using some norm ‖ ·‖ . Analogously, we can define dHSBA - directed
Hausdorff distance from B to A - as

dHSBA = max
b∈B

(min
a∈A

||a− b||) (4.5)

In general, the directed Hausdorff distance is not symmetric, dHSAB &=
dHSBA, and then, strictly speaking, it could not be called ‘distance’.
The Hausdorff distance HSAB is the maximum of dHSAB, and dHSBA:

HSAB = max(dHSAB, dHSBA) (4.6)

Note that HSAB = HSBA. Intuitively, if HSAB = d, then each point of
A must be within the distance d of some point of B, and vice versa (see
Fig. 4.7).
Unfortunately, the Hausdorff distance is extremely sensitive to noise. In order
to overcome this drawback, it can be modified by measuring the distance
between A ∪ B and A ∩ B, but only in contiguous regions. It is possible to
prove that this metric is a nonlinear version of the Hausdorff distance, and
hence it is called ‘Nonlinear Hausdorff’ distance (nlHS) [101], defined as:

nlHSAB = HSAB(A ∪B, A ∩B)except incontiguous regions (4.7)

A further improvement on the Hausdorff distance is the Integrated Haus-
dorff distance (iHS), already successfully used in object segmentation and
recognition [102]. The Integrated Hausdorff distance is calculated integrat-
ing (summing) the Hausdorff distance over all pixels for which the Hamming
distance is not zero, that is

iHS(A, B) =
n∑

i,j=1;ai $=bj

HS(ai, bj) (4.8)

In this context, HS is the local Hausdorff distance, where ‘local’ means that
the Hausdorff distance is calculated for each pixel ai as if it was the farthest
point of the set A. This distance is particularly robust to noise, and it
considers the information about the shape of the objects. Furthermore, it
can be implemented efficiently on a Cellular Wave Computer [103], but its
computation is slow on a traditional computer.
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Object A Object B

dHSAB dHSBA

Figure 4.7: Two objects and their direct Hausdorff distances. Note that
dHSAB &= dHSBA and HSAB = max(dHSAB, dHSBA).

4.4.4 Fast computation of the Integrated Hausdorff
distance

The computational effort to calculate the Integrated Hausdorff distance on a
traditional computer can be sensibly reduced by using an image processing
operation called Distance Transform [104], defined as follows:

Definition 4.2 (Distance transform) Given a binary image A, the Dis-
tance Transform (DT ) creates an image A′ of the same size as A in which
each pixel assumes the value given by its distance (using a certain metric)
from the nearest nonzero pixel of A.

There are two metrics usually employed to compute the Distance Transform:
the Manhattan distance, using a 4-connectivity scheme (pixels are connected
if their edges touch), and the Chessboard distance, using a 8-connectivity
scheme (pixels are connected if their edges or corners touch). For example,
the distance between a1 = (x1, y1) and a2 = (x2, y2) is:

Manhattan distance: |x1 − x2|+ |y1 − y2| ,
Chessboard distance: max(|x1 − x2| , |y1 − y2|).

An example of computation of the Distance Transform is shown in Fig. 4.8.
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DT using Manhattan distance

Reference image
DT using Chessboard distance

Figure 4.8: Distance Transform calculated using two different kinds of dis-
tances.

Given a reference image A and a test image B, it is possible to prove that
the local Hausdorff distance of a pixel bi ∈ B ⇒ bi = 1 corresponding to
ai /∈ A ⇒ ai = 0, is obtained as the value of the Distance Transform of
A corresponding to the grid point i. An intuitive explanation of this result
can be deduced comparing Fig. 4.8 and Eq. 4.6. Therefore, the Integrated
Hausdorff distance between A and B is

iHS(A, B) =
n∑

i=1

XOR(A, B). ∗DT (A)

where XOR(A, B) is the exclusive OR between the two images, DT (A) is
the Distance Transform of A, and .∗ is the entry-by-entry product of the two
terms.
This method to calculate the Integrated Hausdorff distance is faster than
the standard one for two reasons: firstly, the Distance Transform has to be
computed only once for each reference image (in most of our experiments
we use few reference images), and then the Integrated Hausdorff distance
is obtained through a simple multiplication; secondly, our system is imple-
mented in MATLAB which has an optimized function (bwdist) to calculate
the Distance Transform.
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4.4.5 Performance comparison

As we mentioned previously, the choice of the metric is strictly related to
the experiment considered; however, some metrics are generally more accu-
rate than others, which means that they perform better in a wide range of
situations. Here we compare the metrics described previously an example,
taken from [103], which illustrates clearly advantages and disadvantages of
each metric.
Differently from what done before, now we deal with continuous functions
because they allow to handle integrals and probabilistic distributions. The
reference image A for this experiment is shown in Fig. 4.9(a), and it corre-
sponds to the function

ξ(x) = k (4.9)

whereas all test images are based on the Gaussian distribution ϕ(x) (with
mean 0)

ϕ(x) = k +
1

σ
√

2π
e−

x2

2σ2 (4.10)

represented in Fig. 4.9(b). For the sake of simplicity, in the following we
assume k = 0 in our calculations, although images are shown for k &= 0 to
avoid clutter.

(a) (b)

Figure 4.9: (a) Reference function ξ(x), and (b) Gaussian distribution ϕ(x)
used for the test.

The Hamming distance between A and the test image B is always equal to
the area of the Gaussian distribution

HM(A, B) =

∫ −∞

+∞
ϕ(x) = 1. (4.11)

whereas the Hausdorff and Nonlinear Hausdorff distances have always the
same value because objects form only contiguous areas, and it is equal to the
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maximum assumed by the function ϕ(x)

HS(A, B) = nlHS(A, B) = max(ϕ(x)) = ϕ(0) =
1

σ
√

2π
(4.12)

Now, we examine how the metrics behave in three different test images B,
corresponding to a function f(x) obtained by modifying ϕ(x). In the first
case, the Gaussian distribution is multiplied by a scalar c, f(x) = c · ϕ(x);
in the second case, f(x) = ϕ(x, σ), corresponding to variations of the stan-
dard deviation σ (B will have always the same area); in the third case,
f(x) = ϕ(c ·x) (B will have always the same maximum). The results for sev-
eral values of c and σ, obtained by using Eqs. 4.11 and 4.12, are in Table 4.1;
a graphical interpretation is given in Fig. 4.10.

Table 4.1: Functions used in the experiment and its evaluation using different
distances.

f(x) HM =
∫ −∞

+∞ f(x) HS = max(f(x))
1. c · ϕ(x) c · ϕ(x) c · ϕ(0)
2. ϕ(x, σ) 1 1

σ · ϕ(0)
3. ϕ(c · x) ec2 · ϕ(x) 1

σ
√

2π

In the first case, both HM and HS are linear functions of the parameter c;
in the second case, HM is constant and HS depends on the parameter σ;
in the third case, HM depends on c, whereas HS does not. However, in the
three cases the distance should increase for bigger values of the parameter,
because A and B become more different. The results obtained can be ex-
plained as follows: the Hamming distance measures only differences in area
regardless the shape of the objects (see Eq. 4.11) and then it does not make
any distinction between images having equal area, like in the second case;
the (nonlinear) Hausdorff distance considers only the farthest points between
the two sets, then it fails in classifying images containing peaks with equal
value, like in the third example.
Remarkably, the Integrated Hausdorff distance has the desired behavior in
the three cases, as shown in Fig. 4.11. This allows us to conclude that, at least
in principle, this distance is capable of dealing with misleading situations,
and then it is indicated in the most complex experiments.
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Figure 4.10: Three different experiments: the horizontal axis corresponds to
the parameter c or σ, and the vertical axis shows the normalized distances.
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Figure 4.11: Results using the Integrated Hamming distance iHS.





Chapter 5

Experimental results

We have tested our system on several experiments regarding real-life situa-
tions taken from the CNN literature. The results, reported in this chapter,
are comparable - and in same cases even better - to those presented in the
original articles, supporting the effectiveness of our approach. Note that
the nature of these problems suggests that a massive parallel computation
paradigm, like CNN, can efficiently solve them; however, traditional image
processing techniques could have been used too.
Each task is defined through a set of inputs and their correspondent outputs,
as usual in a supervised learning framework. Nevertheless, our system does
not need a large database of examples as statistical learning methods typi-
cally do, but it is able to identify the correct CNN-UM program performing
a certain task from a reduced training set. This is because we are not inter-
ested in setting the weights of a neural network (we use exclusively standard
templates, whose corresponding weights are well-known) but we look how to
execute complex tasks by combining elementary ones. Consequently, we per-
form a sort of morphological learning, in which the system can infer general
properties from the characteristics of few representative examples.
The success of our approach relies mainly on the automatic GP-based system,
but the human designer still plays a key role by choosing important features
like the fitness function, the CNN templates the system can use during the
evolution, and the GP parameters (population size, number of generations,
runs etc.). Sometimes, the best setting is not achieved at the first attempt,
but it has to be found through a trial-and-error process.
The whole system is implemented with MATLAB 7.0, adding two specific
toolboxes for Cellular Neural Networks (MATCNN [61]) and Genetic Pro-
gramming (GPLAB [105]). The time taken by the experiments depends on
the setting of the GP parameters and the size of the images, ranging from
few minutes to some hours on a 3 GHz Pentium 4 computer.
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5.1 CNN template decomposition with restricted
weights

In general, hardware CNN implementations accept only a limited set of val-
ues for the templates; hence, being able to decompose CNN templates with
restricted weights is critical [106]. Here, we take into consideration the Hor-
izontal Connected Component Detector (HCCD) template showing how our
system is capable of finding a combination of ‘fundamental’ cloning tem-
plates (in the sense of CNN templates meeting our restrictions) replicating
its functionality.
First of all, we need to identify what CNN model suitable for this case and
the form of the matrices A, B, and z. Since the HCCD template detects
the number of connected components of each row of the input image, this
problem is clearly one-dimensional; therefore, the CNN templates A and B
are 1×3 horizontal arrays, and the bias z is a scalar. Moreover, the HCCD
template is conveniently performed by a DT-CNN [16] in which at each time
step all pixels are moved one position to the right. In this CNN model the
input U and the initial state X0 are in practice two different inputs controlled
by the matrices A and B, respectively; in the HCCD template the matrix A
is set permanently to 0, because there is only one image to process [18]. We
can follow the same approach, considering a space-invariance DT-CNN with
A = 0 and B &= 0, a 1×3 input pattern U , and a scalar output Y . The input
U and output Y images follow the standard CNN notation, in which -1 and
+1 represent white and black pixels, respectively. To sum up,

A = 0, B = (b−1b0b1), z = z0; U = (u−1u0u1), Y = y0.

There exist several ways of setting the weights of the CNN to realize the
HCCD template, all leading to the same result, but with different interme-
diate steps and convergence speeds. They can conveniently described either
through the matrices B and z, or, due to the binary nature of input and the
output, by means of a truth table in which each combination of U=(u−1 u0u1)
corresponds to a value of Y=y0. In the following, we consider two different
implementations of the HCCD template: the first one [107] corresponds to
the matrices

BL = (1 1.5 − 2), zL = −1.5 (5.1)

whereas the values for the second one [16] are

BH = (1 1 − 1), zH = 0 (5.2)

where the subscripts refer to the initials of the first author. The equivalent
truth tables, which will be used as training sets of our system, are in Ta-
ble 5.1. Note that both mappings lead to the same result; however, it can
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be easily proved that the the first one converges faster, as confirmed by the
example in Fig. 5.2.

Table 5.1: Truth tables for the two implementations of the HCCD template.

Input Training set [107] Training set [16]
(-1, -1, -1) -1 -1
(-1, -1, 1) -1 -1
(-1, 1, -1) 1 1
(-1, 1, 1) -1 -1
(1, -1, -1) 1 1
(1, -1, 1) -1 -1
(1, 1, -1) 1 1
(1, 1, 1) -1 1

Table 5.2: The two implementations of the HCCD template converge to the
same result, but with different speeds.

Time steps Training set [107] Training set [16]

t = 0

t = 1

t = 2

t = 3

t = 4

t = 5

As mentioned previously, we want to decompose these templates into combi-
nations of other templates whose elements belong to a given range of values.
In this experiment, we set bi ∈ {0, 1} and z0 ∈ {±0.5, ±1.5, ±2.5, ±3.5},
corresponding to the restrictions of the hardware implementation proposed
in [107].
This choice determines also the operation set for our system, which contains
all CNN templates combining the 8 allowed values for the triplet (b−1b0b1)
with the 8 possible values of z0; this would give rise to a huge search space
formed by 8×8=64 different CNN templates. Nevertheless, it is not difficult
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to notice that the behavior of these 64 templates can be summarized by only
10 CNN templates, henceforth ‘fundamental’ templates, reported in the fol-
lowing by using the notation Temk= ((b−1b0b1), z0):

Tem1= ((0,0,1), -0.5); Tem2= ((1,0,0), -0.5); Tem3= ((0,1,1), -0.5);
Tem4= ((0,1,1), -1.5); Tem5= ((1,0,1), -0.5); Tem6= ((1,0,1), -1.5);
Tem7= ((1,1,0), -0.5); Tem8= ((1,1,0), -1.5); Tem9= ((1,1,1), -0.5);
Tem10= ((1,1,1), -1.5).

In [107] it was proposed a decomposition into 14 ‘fundamental’ templates of
the HCCD defined in Eq. 5.1, whereas no solution is known for the the one
described by Eq. 5.2.
As for the fitness function to be used by the genetic system, we notice that
the best choice is probably a simple Hamming distance, because the problem
does not involve any complex images processing requiring a Hausdorff-based
metric.
In the first part of the experiment, we evolved 100 individuals over 30 gen-
erations, repeating the experiment 200 times (runs). As observed in the
previous chapter, these values do not follow any rigorous prescription, but
their choice is rather dictated by the designer’s expertise and convenience.
For instance, in this case the population is large enough to assure a certain
diversity among the individuals, but at the same time it is sufficiently small
to notice the effects of the evolution on it, since a far larger initial population
would probably contain a solution due to the effects of randomness. The best
solutions - in terms of number of templates - obtained for both training sets
are represented in Figs. 5.1(a) and (b). Remarkably, the tree that our system
suggests for the training set in Eq. 5.1 is simpler than the one proposed in
the original paper [107], containing only 3 templates instead of 14.
Some interesting conclusions can be drawn by analyzing the number of suc-
cessful runs (hits) in the two cases: we reported 60 hits with the first training
set, and 97 hits with the second one. The cumulative probability of find-
ing a solution, calculated through the Eq. 4.1 (with M=100 and i=30), is
P(100,30)=75% in the first case, and P(100,97)=90% in the second case. Ob-
viously, these data suggest that the search case defined by the second training
set is easier to explore. This statement is confirmed by the fact that decreas-
ing the population size and the number of generations, the solution for the
second training set is still found with high probability. For instance, with
only 50 individuals and 10 generations, we obtained 45 hits over 200 runs,
resulting in a cumulative probability of P(50,10)=60%.
The second part of the experiment consisted in changing the operation set,
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reducing it exclusively to the templates Tem1 and Tem2, because all others
are Boolean combinations of these two. The trees describing the solution,
shown in Figs. 5.1(c) and (d), are similar to those found with the previous
operation set, but now they contain more instructions because of the obvious
trade-off between size of the operation set and complexity of the solution.

Training set [107] Training set [16]

(a) (b)

(c) (d)

Figure 5.1: Best solutions for both training sets; the two rows correspond to
different operation sets.

5.2 Roughness measurement

A problem arisen in a real-life application was distinguishing engine debris
from gas bubbles in helicopter gasoline: the former may damage irremedia-
bly the motor, whereas the latter are innocuous. A successful approach to
tackle this task was suggested in [84], which consists in measuring the object
roughness by finding its edge concavities: approximately rounded objects are
considered to be bubbles, all others, showing all kinds of irregularities, are
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debris. A CNN-UM algorithm solving the problem is depicted in Fig. 5.2:
it is very effective despite its simplicity, as shows the example in Fig. 5.3.

Figure 5.2: CNN-UM algorithm measuring the roughness of an object pro-
posed in [84].

(a) (b)

Figure 5.3: Input image (a) showing a debris and output (b) obtained thanks
to the algorithm proposed in [84]. These same images have been used as
training set of our genetic system.

Now, we want to discover whether our system is capable of finding a solution
- either the same as [84] or a new one - to this problem.
In this experiment we use a training set composed by one pair of input-output
images shown in Fig. 5.3. Although it may seem too small, this reduced set
of examples is sufficient to train properly the system, due to the ‘morphologi-
cal learning’ performed by our system, completely different from a statistical
learning used for a traditional neural network.
As for the fitness function, we use the Integrated Hausdorff distance (Sec. 4.4),
which was created on purpose for this experiment [84]. The choice is dic-
tated by the nature of the problem, in the performances of the system are
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(a) (b)

Figure 5.4: Roughness measurement: the first tree (a) proposed by the sys-
tem, corresponding to the output in (b) which differs slightly from the the
one in Fig. 5.3(b).

evaluated thanks to considerations on the shape of the objects.
The operation set should contain the main CNN templates performing mor-
phological operations, like the Edge template, detecting the edge of the ob-
jects; the Hollow template, which fills the hollow parts of the objects; the
Figure extraction template, extracting all connected figures in the input im-
age corresponding to black pixels in the initial state image; and the Find
area template, which finds solid black framed areas in the image. We include
also the Threshold template - which transforms the input greyscale image
into a binary one - as well as basic logic operations like AND, OR, NOT, and
XOR. The final operation set is therefore: {Edge, Hollow, Figureextraction,
Findarea, Threshold, AND, OR, NOT , XOR}.
The complexity of the problem, at least in principle, is similar to the one
of the previous section, hence also the parameters for the GP system should
be approximately the same. Therefore, we evolved 100 individuals during
25 generations, but it turned out that in none of the runs the system was
able to find a solution matching exactly the desired output; the CNN-UM
program with best fitness is depicted in Fig. 5.4(a), whereas its output Y is
in Fig. 5.4(b).
Although the output obtained is substantially correct, it is still necessary to
remove small imperfections to get exactly the desired result. Therefore, we
include the Erosion template - which makes this kind of small refinements
- in the operation set, removing at the same time the Figure extraction and
the Find area templates, which have not been used in the solution; hence,
the final operation set is: {Threshold, Hollow, Erosion, XOR, AND, OR,
NOT}. Note that the search space is now smaller than before because there
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are fewer available templates (7 vs. 9); consequently, also the population size
and the number of generations can be reduced. Evolving only 50 individuals
over 15 generations, we obtain the solution at practically every repetition
of the experiment. Remarkably, our system finds not only the CNN-UM
program proposed in [84], reproposed in Fig. 5.5(a), but also an alternative
one, shown in Fig. 5.5(b). This confirms that this approach helps to find
innovative solutions, not always evident to the human designer.

(a) (b)

Figure 5.5: The two solutions found by our system for the roughness mea-
surement.

5.3 Texture segmentation

The CNN templates listed in the standard library [18] can solve many but
not all problems. Sometimes, it is necessary to create ad hoc a CNN suitable
for a certain task, as for example in [108], presenting a CNN-UM program
to perform texture segmentation that includes a CNN template expressly de-
signed for this experiment. The main drawback of this CNN template is that
it contains double-digit decimal values that make it very sensitive to noise
when implemented on hardware devices. Moreover, it has been designed
thanks to a genetic-based method based on statistical learning: it means
that many examples have been shown to the system, which set the weights
of the Cellular Neural Network accordingly. This template might not work
with other examples too, but this depends on how representative the training
set is.
In this section we show how our system is capable of decomposing this
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specific-purpose CNN template into a sequence of standard CNN templates.
Such simplification gives two main advantages: first, standard templates are
usually robust, and their optimal implementation on CNN hardware is well-
known; second, we do not need a complex training set, but we rely entirely
on one example, showing that the results found are valid for all others.
The pair of input-output images defining the task are displayed in Figs. 5.6(a)
and (b). They represent two different textures (one horizontal, and the other
vertical), whose interlacement forms the word ’CNN’.

(a) (b)

(c) (d)

(e) (f)

Figure 5.6: Texture segmentation: (a) input image, (b) result found in [108],
(c) Vertical Line Remover, (d) Erosion, (e) Horizontal Erosion, (f) output of
our algorithm.

According to what said in Sec. 4.4, the fitness function for this experiment
should be based on the Hausdorff distance, because we need to take into
consideration the shape of the objects. Unfortunately, this is not possible
because the input and output images used are quite big (192×154 pixels),
and the evaluation of the individuals with a Hausdorff-based fitness would be
excessively slow. As a consequence, we resort to a Hamming-based fitness,
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modifying the standard Hamming distance to make a distinction between
false negatives and false positives. The presence of ’holes’ in the figure (false
negatives) would diminish the intelligibility of the word ’CNN’, whereas a
black noise (false positives) would not have a negative effect (within certain
limits) because the contours of the letters hidden in the texture are not well-
defined. Consequently, we assign a greater weight to false negatives than to
false positives.
As usual, the operation set contains the CNN templates that seem be appro-
priate for this experiment. In this case we include standard logic operations
- like AND, OR, NOT and XOR -, templates to remove noise from images
- like Erosion, Dilation, Isolated point remover, Vertical erosion, and Hor-
izontal erosion - and templates to eliminate horizontal and vertical lines
(Horizontal line remover and Vertical line remover templates), because we
need to discern horizontal and vertical lines in the textures. The details
of these templates can be found in [18], except for the Horizontal erosion
template whose parameters are:

A =




0 0 0
0 2 0
0 0 0



 ; B =




0 0 0
1 1 1
0 0 0



 ; z = −4.

Note that the Vertical erosion template can be obtained by rotating the B
matrix. We also combined the Dilation and the Erosion templates into a sub-
routine called Closing. Tu sum up, the operation set employed is: {AND,
OR, NOT, XOR, Closing, Isolated point remover, Vertical erosion, Horizon-
tal erosion, Horizontal line remover, Vertical line remover }.
The task is definitely more complicated than the ones presented in the previ-
ous sections, then we increased the population size to 150 individuals evolving
them over 30 generations. The algorithm obtained is depicted in Fig. 5.7,
where letters within brackets refer to the correspondent images shown in
Figs. 5.6(c) to (f). Comparing the result obtained (Fig. 5.6(f)) with the one
proposed in the original paper (Fig. 5.6(b)), we can conclude that the two
solutions are very similar, and both allow to identify the word hidden in the
texture. Our algorithm, though, has the advantage of using only standard
templates, and then being more robust and implementable easily on real
devices.
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Figure 5.7: Algorithm for the texture segmentation. The letters within brack-
ets refer to Fig. 5.6.

5.4 Route number localization on public trans-
port vehicles

Cellular Neural Networks have been successfully employed in a number of
real-life applications like the Bionic Eyeglass [109], an ambitious project to
create a device to aid visually impaired people in their daily life. The Bionic
Eyeglass consists in a portable camera based on the CNN technology, which
can efficiently perform image processing algorithms. The challenge is defin-
ing CNN-UM programs that can be used in real scenarios faced by visually
impaired people, like crosswalks identification, banknote recognition etc. Ob-
viously, the CNN-UM programs have to be robust, since they have to work
within a wide range of conditions, and simple enough to be executed in real-
time.
Here we tackle the problem of localizing the route number sign of a public
transport vehicle on a low-resolution monochrome image. In particular, we
consider black signs on a white background, corresponding to a realistic case
in many cities (e.g. Budapest). The images to train and test our system were
taken with a camera of a cell phone under different conditions of brightness;
the goal is identifying reliably the sign in the figure, like the number ’19’ in
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the image of Fig. 5.8(a). This is the only image used to train our GP system,
whereas other images showing different vehicles will be employed to validate
the result obtained. The fact of using such a reduced training set shows how
easily a morphological learning technique can generalize.

(a) (b)

Figure 5.8: Input (a) image for the rout number localization, and output (b)
obtained by our system.

The considerations about the fitness function are similar to those made in
Sec. 5.3. We would like to use a Hausdorff-based metric, but the size of
the input and output images (122×84 pixels) would make this process very
time-consuming; therefore, we resort to a modified Hamming-distance. Also
in this example we prefer to have a slightly noisy output (false positives)
rather than removing parts of the numbers in the image (false negatives),
which would make the number recognition task extremely difficult. In other
words, false positives do not influence the final result as much as false nega-
tives, and then we changed the fitness function consequently.
The operation set contains the CNN templates that seem to be useful for this
experiment. We included basic logic operations (AND, NOT, OR, XOR); a
template to make a logic difference between two binary images (DIF tem-
plate); the Closing routine, which remove noise by dilating and shrinking the
image; the Edge template, detecting the edges of the objects; the Find area
template, which finds solid black framed areas in the image; the Hole tem-
plate, filling the holes in the image; and finally the Recall template, recalling
the objects marked by black pixels. To sum up, the operation set for this
experiment contains 10 CNN templates, namely {AND, NOT, OR, XOR,
DIF, Closing, Edge, Find area, Hole, Recall} , all coming from the standard
CNN template library [18]. Note that the greyscale input images need to be
thresholded in order to transform them into binary.
We evolve 100 individuals over 30 generations, limiting the maximum num-
ber of levels of the tree to 20 (because of the complexity of the problem,
the system may tend to use excessively big trees, whose fitness evaluation is
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time-consuming).
The CNN-UM program found automatically by the GP system is depicted in
Fig. 5.9(a), and the output obtained is shown in Fig. 5.8(b). It is noteworthy
that the resulting tree contains only 7 levels between the input image U and
the output image Y .

(a) (b)

Figure 5.9: Route number localization: solution found by the automatic
system (a) and the one presented in the original paper (b).

The generalization capability of our CNN-UM program can be testing it on
two validation examples, representing different scenarios. The input images
are in Figs. 5.10(a) and (c), and the output obtained are in Figs. 5.10(b)
and (d), respectively. In both cases our algorithm detects the route number
correctly, and the small residual noise, which can be noticed especially in
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Input Output

(a) (b)

(c) (d)

Figure 5.10: Validation of the algorithm for the route number localization
on two different input images (a) and (c); the results are in (b) and (d),
respectively.

Fig. 5.10(d), can be easily removed by a further post-processing.
With respect to our algorithm, the one presented in the original paper [109]
and shown in Fig. 5.9(b), contains more levels (12), non-standard templates
(e.g. Melt left and Melt down), and complex terminals, like ’80%’ which is a
vertical line with a certain length. We can then conclude that the solution
found through automatic methods is better than the original one, both in
terms of complexity (number of templates) and robustness (standard tem-
plates and terminals), and its execution on a real device - still to be done -
should be faster and more reliable.



Chapter 6

Nonlinear dynamics perspective
of Cellular Automata

Cellular automata (CA) have been known for decades, since von Neumann
conjectured that interdependent elementary structures can generate complex
dynamics [27]. In fact, despite their apparent simplicity, CA have not been
completely characterized yet, but they have already found application in a
variety of fields (e.g., physical [110] and biological [111] systems modeling,
social sciences [112], and game theory [113]).
Researches have been particularly active after the publication of Wolfram’s
works [114] [28], which formalized many properties of CA, proposed a clas-
sification of local rules based on empirical criteria, and proved that even a
one-dimensional two-state Cellular Automaton is indeed universal.
In the very last years, Chua has addressed the problem by using the theory of
nonlinear dynamics [29]: thanks to this insight into CA, it has been possible
to define new concepts, like the complexity index of a CA rule, and give a
rigorous explanation of well-known properties, such as the global equivalence
of local rules. Moreover, Chua advanced a new classification of CA rules,
based on the properties of the cycles obtained by evolving finite length bit
strings under local rules.
In this dissertation we summarize this new perspective of Cellular Automata,
introducing fundamental concepts in the first part, which will be used in the
next chapter to prove some important practical consequences.
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6.1 Cellular Automata are a special case of
Cellular Neural Networks

As proved in [115], it is possible to design a CNN cell, defined by a scalar non-
linear differential equation, whose output tends to an attractor that codifies
any binary CA local rule, independently of the sphere of influence r and the
spatial dimension. This result can be particularized for r = 1 (equivalent to
the nearest neighbors case) and one-dimensional structures, as summarized
by the following theorem

Theorem 6.1 A one-dimensional nearest neighbors binary cellular automa-
ton is a special case of a linear CNN with the same neighborhood size.

Therefore, each CA local rule can be mapped into a nonlinear dynamical
system whose attractors encode the associated truth table (see Table 2.1).
The scalar differential equation generating the 256 rules of a one-dimensional
binary Cellular Automaton is [116]

xn+1
i = sgn{z2 + c2|(z1 + c1|z0 + b1x

n
i + b2x

n
i+1 + b3x

n
i−1i + 1|)|} (6.1)

where the choice of the eight parameters {z2, c2, z1, c1, z0, b1, b2, b3} determines
the CA local rule N performed (see Table 4 in [116]). Note that each realiza-
tion of {z2, c2, z1, c1, z0, b1, b2, b3} ∈ N8 defines one rule, but there are infinite
combinations of the parameters {z2, c2, z1, c1, z0, b1, b2, b3}, corresponding to
regions of the space N8, realizing a local rule. As found experimentally, the
choice of the parameters is quite robust for any of the 256 CA local rules,
and hence the regions of the space are relatively large.
To sum up, Eq. 6.1 describes a CNN cell (neuron) performing all CA rules,
including the universal rule 110, and then it is called universal neuron. From
the information theory point of view, the universal neuron is also a minimal
representation, since the number of its parameters (8) is equal to the number
of bits describing a CA rule.

6.2 Visual representations for CA local rules

6.2.1 Time-τ characteristic function

We recall from Sec. 2.4 that in a one-dimensional CA with L = I + 1 cells
there are 2L different Boolean strings, constituting the so-called ‘state space’
Σ. A generic CA rule N induces a global map

TN : Σ → Σ (6.2)
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where each string x ∈ Σ is mapped exactly into another through the transfor-
mation TN (x) ∈ Σ, and this mechanism allows the CA to evolve throughout
time. For instance, given the bit string xn = (xn

0x
n
1 . . . xn

I ) at time n, the bit
string xn+1 = (xn+1

0 xn+1
1 . . . xn+1

I ) at time n + 1 is obtained as

xn+1 = TN (xn) (6.3)

To each string x = (x0x1 . . . xI) we can also univocally associate a real num-
ber φ(x) ∈ [0, 1) by means of the following transformation

φ(x) =
I+I∑

i=0

xi · 2−(i+1) (6.4)

For example, if x = (0 . . . 0) then φ(x) = 0, whereas if x = (1 . . . 1) then
φ(x) = 0.99 . . . 9, independently of the length L. It is possible to prove [117]
that if I →∞ then φ(x) tends to assume all rational values belonging to the
interval [0, 1), which, as well-known, are a dense subset of the real numbers;
hence, we use the notation φ to indicate the whole horizontal axis [0, 1).
Equation 6.4 induces a global map similar to Eq. ?? called time-1 character-
istic function defined as

χN : 1[0, 1) → 1[0, 1) (6.5)

and

χN (φ) =
I∑

i=0

TN (xi) · 2−(i+1) (6.6)

where TN (xi) stands for the i-th element of the array TN (x). Note that the
characteristic function is an alternative way to define a rule, and its graph
can be easily drawn as follows:

1. Divide the unit interval φ = [0, 1) into a finite number of uniformly-
spaced points of width ∆φ;

2. For each grid point φ(x) ∈ [0, 1) identify the corresponding binary
string x ∈ Σ;

3. Determine the image TN (x) via the truth table of N ;

4. Calculate the decimal equivalent χN=χN (φ(x)) of TN (x) through Eq. 6.4;

5. Plot the point (φ(x),χN );

6. Repeat these steps over all 1
∆φ + 1 points.
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The reason why this kind of function is called time-1 characteristic function
χ1
N (φ) is that it considers only one iteration of the CA, i.e. xn and xn+1

(or equivalently, φn = φ(xn) and φn+1=φn+1(xn+1)). However, important
properties of CA can be discovered by analyzing the time-τ characteristic
function χτ

N (φ), which takes into consideration a bit string xn and the output
xn+τ obtained by iterating it τ times. The corresponding decimal values of
these bit strings can be used to draw the graph of χτ

N (φ) according to the
algorithm illustrated before. An example of time-1 and time-2 characteristic
functions for rule 150 are shown in Fig. 6.1(a) and (b), respectively. Note
that in general we omit the superscript for the time-1 characteristic function.

(a) (b)

Figure 6.1: (a) Time-1 (a) and (b) time-2 characteristic functions for rule
150. To avoid clutter, only the case for xI = 0 is shown.

6.2.2 Time-τ return plot and Lameray diagram

Another useful way to visualize CA local rules is the time-1 return plot
φ1
N , which focuses on the evolution of a specific bit string throughout time.

In practice, the time-1 return plot can be defined as the set of bit strings
obtained evolving a specific bit string x0 = (x0

0x
0
1 . . . x0

I) under a local rule N

φ1,N (x0) = {TN (x0) T 2
N . . .} (6.7)

where

T 2
N = TN (TN (x0)).
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The time-1 return plot can be conveniently represented in a Cartesian co-
ordinate system, where on the abscissa axis there is the parameter φn−1 =
φ(xn−1) and on the ordinate axis the value φn = φ(xn) (equivalently we can
use φn and φn+1 on the abscissa and the ordinate, respectively). An example
of time-1 return plot for rule 62 is in Fig. 6.2(a); note that in this example
we have chosen a value of x0 such that x0 = T 3

62(x
0), and then the time-1

return plot contains only three points.
The qualitative dynamics of a local rule N can be alternatively represented
through Lameray diagrams [118], also called cobweb diagrams [119]. In a cer-
tain sense, their essence is similar to time-1 return plots because they follow
the evolution of a single bit string x0 = (x0

0x
0
1 . . . x0

I) throughout time, and
it is plotted in a (φn−1,φn) Cartesian coordinate system. However, there are
two main differences with respect to time-1 return plots: first of all, in this
case we draw not only the points, but also the lines connecting them; second,
in Lameray diagrams we discard the transient, hence the circuit depicted will
always be closed.

(a) (b)

Figure 6.2: (a) Time-1 return plot and (b) Lameray diagrams for rule 62.

6.2.3 Final remarks

The time-1 characteristic function χ1
N is a complete representation of the lo-

cal rule N , because it contains the information needed to derive the dynamic
evolutions from any initial state. Each rule has one, and only one, time-1
characteristic function. Something different happens for higher orders: for
example, the time-2 characteristic function for rule 105 is exactly the same
as for rule 150, because of their alternating symmetry duality [120].
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In contrast, the time-1 return plot φ1,N is not unique: a local rule N has
several of such plots (one for ‘orbit’, as we will see in next section) and a
single plot can be shared by different rules (in terms of attractors, it means
that different rules can have the same ‘orbit’). What is peculiar to a rule is
the union of all its time-1 return plots, which is also equivalent to the time-1
characteristic function. Consequently, the points of any time-1 return plot
φ1,N of the local rule N are a subset of the time-1 characteristic function χ1

N ,
and more in general the points of any time-τ return plot φτ

N of the local rule
N are a subset of the time-τ characteristic function χτ

N .

6.3 Analyzing CA rules through their orbits

Remarkable properties of Cellular Automata can be discovered by analyz-
ing exhaustively the evolution of all 2L binary bit strings with finite length
L [121]. Intuitively, evolving any initial state x0 under any local rule N we
will find a bit string xTδ (where xTδ denotes the evolution of x0 after Tδ

iterations) that must eventually repeat itself with a period TΛ ≤ 2L. This
concept can be formally defined as follows:

Definition 6.1 (Transient regime and transient duration) Given any
initial configuration x0 and any local rule N , let Tδ be the smallest non-
negative integer such that

xTδ+TΛ = xTδ

Since xt, for t = 0, 1, . . . , Tδ − 1, will never recur again for all t ≥ Tδ,
the set whose members are the first Tδ-1 iterations of x0 is called transient
regime originating from the initial state x0; the time Tδ-1 is called transient
duration.

When the transient dies away, we enter a so-called attractor, defined as

Definition 6.2 (Period-TΛ attractor Λ) If Tδ >1, then the set whose
members are the TΛ consecutive (under rule N ) configurations xTδ . . . xTδ+TΛ−1

is called a period-TΛ attractor Λ of the local rule N originating from the ini-
tial configuration x0.

Obviously, if Tδ=0, then x0 is an element of the attractor. It is also important
to characterize the collection of initial states evolving into configurations
belonging to an attractor, through the following definition.

Definition 6.3 (Basin of attraction of Λ) The set BΛ of all initial states
x0 that tend to the attractor Λ is called the basin of attraction of Λ.
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In any basin of attraction there must be at least a bit string with no prede-
cessor, which follows under the category of Gardens of Eden [122]:

Definition 6.4 (Garden of Eden) Given a rule N , a bit string xn is said
to be a Garden of Eden if it has no predecessors, or in other words if there
is no other bit string generating xn under the rule N :

xn is a Garden of Eden ⇔ ! xn−1 ∈ Σ : xn = TN (xn−1)

This last definition gives rise to a special kind of orbits with no basin of
attraction dubbed Isles of Eden:

Definition 6.5 (Isle of Eden) An orbit in which there are no Gardens of
Eden is called Isle of Eden.

An example of attractor and Isle of Eden for rule 22 is given in Fig. 6.3. Both
orbits are so-called Bernoulli: by definition, given any string belonging to a
Bernoulli στ -shift orbit, after τ iterations we find the same string shifted σ
positions towards left, if σ is positive.

6.4 Classification of CA rules

6.4.1 Wolfram’s classification

Cellular Automata local rules can be grouped according to many criteria, and
several different classifications have been presented so far [123] [124] [125]
[126] [127] [128] [129] [130]. Probably, the most famous is due to Wolfram,
who proposed to classify CA local rules into four classes (labeled from ‘W1’
to ‘W4’), depending on the evolution of the system from a random initial
state [114]:

• W1: evolution leads to a homogeneous state;

• W2: evolution leads to a set of separated simple stable or periodic
structures;

• W3: evolution leads to a chaotic pattern;

• W4: evolution leads to complex localized structures, sometimes long-
lived.

On the one hand, this classification makes clear that only certain rules can
perform computation, and then they are somehow ‘interesting’; on the other
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(a) (c)

(b) (d)

Figure 6.3: Example of attractor (a) and (b) with transient period Tδ=2 and
period TΛ=4, and Isle of Eden with period TΛ=7 for rule 22 and L = 9. The
parameters σ and τ refer to the fact that both are Bernoulli στ -shift orbits,
as it will be explained in Sec. 7.3.

hand, it has received a lot of criticism for being based on empirical crite-
ria [131]. Moreover, this method is not able to classify all rules of CA with
a number of states greater than 2 and/or radius of influence greater than
1 ([28], pag. 241), and, in general, the class membership of a given rule is
undecidable [132].

6.4.2 Chua’s classification

An alternative classification scheme composed by six different groups (labeled
from ‘C1’ to ‘C6’) was proposed by Chua in [120]. In this case the feature
used to discriminate rules is the robust behavior of attractors found by using
random bit strings:

• C1: local rules exhibiting a robust period-1 steady-state behavior, cor-
responding to fixed points of the time-1 characteristic function χ1

N of
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local rule N ;

• C2: local rules exhibiting a robust period-2 steady-state behavior, cor-
responding to fixed points of the time-2 characteristic function χ2

N of
local rule N ;

• C3: local rules exhibiting a robust period-3 steady-state behavior, cor-
responding to fixed points of the time-3 characteristic function χ3

N of
local rule N ;

• C4: local rules exhibiting a robust στ -shift steady-state behavior cor-
responding to a period-T attractor or Isle of Eden, where T ≤ σL;

• C5: bilateral local rules exhibiting a robust στ -shift steady-state be-
havior in which the parameters σ and τ depend on the initial point or
the length L;

• C6: non-bilateral local rules exhibiting a robust στ -shift steady-state
behavior, in which the parameters σ and τ depend on the initial point
or the length L.

A complete classification of the 88 globally independent CA local rules into
these six classes is given in Table 6.1.
Roughly speaking, there are three macro groups. The first one (44 rules) is
composed by local rules belonging to C1, C2, and C3, having non-Bernoulli
orbits (attractors and Isles of Eden) with very short period; surprisingly, the
maximum robust period is 3, which is verified only by rule 62. The second
macro group coincides with C4, including 30 Bernoulli-στ rules in which the
values assumed by the two parameters are either fixed (like in rule 240, for
which σ = 1 and τ = 1) or in general do not depend on the length L and
the initial state, modulo a finite number of basins of attraction (like in rule
9 [133]). The last macro group (18 rules) includes C5 and C6, whose rules
have attractors characterized by complex values of σ and τ , unrelated with
L.
It is import to remark that Chua’s classification refers exclusively to robust
properties; then, rules may have non-robust attractors of a different kind of
the robust ones. For example, rule 168 has robust period-1 orbits, but it also
shows a chaotic behavior for specific initial conditions [134].
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Table 6.1: Classification of the 88 globally independent CA local rules ac-
cording to Chua.

26 Period-1 rules 13 Period-2 rules
0 4 8 12 13 32 1 5 19 23
28 40 44 72 76 77 28 29 33 37
78 94 104 128 132 136 50 51 108 156
140 160 164 168 172 200 178 4 8 12
204 232 51 54 56 57 0 4 8 12

26 Period-1 rules
30 Bernoulli στ -rules 1 Period-3 rule

2 3 6 7 9 10 62 5 19 23
11 14 15 24 25 27 1 5 19 23
34 35 38 42 43 46 1 5 19 23
56 57 58 74 130 134 1 5 19 23
138 142 152 162 170 184 1 5 19 23

26 Period-1 rules
10 Complex Bernoulli-shift rules 8 Hyper Bernoulli-shift
18 22 54 73 90 105 26 30 41 45
122 126 146 150 25 27 60 106 110 154

6.4.3 Relationship between Wolfram’s and Chua’s clas-
sifications

These two classifications are related one to the other: rules belonging to W1
have a global attractor and hence they are a subgroup of C1; rules belonging
to W2 can in principle be in any of the first four Chua’s groups; finally, rules
belonging to W3 and W4, can be either in C5 or in C6, depending on
their computational capability. Therefore, we can summarize these results
as follows:

W1 ⊂ C1; W2 ≡ ((C1\W1)∪C2∪C3∪C4); (W3∪W4) ≡ (C5∪C6)

Note that this analogy may not hold for two-dimensional CA, for which a
systematic study from nonlinear dynamics perspective does not exist yet.

6.4.4 Additive rules

Among the other classifications that can be done among CA local rules, we
want to mention that into additive and nonadditive rules. Additive rules can
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be described through the expression

xt+1
i = TN (xt

i−1x
t
ix

t
i+1) (6.8)

Since this equation contains three free parameters, there are 23 = 8 distinct
additive rules, which can be represented through simple Boolean functions
as follows

(abc)=(000): xt+1
i = 0 (mod 2) ⇒ Rule 0

(abc)=(001): xt+1
i = xt

i+1 (mod 2) ⇒ Rule 170
(abc)=(010): xt+1

i = xt
i (mod 2) ⇒ Rule 204

(abc)=(011): xt+1
i = xt

i + xt
i+1 (mod 2) ⇒ Rule 102

(abc)=(100): xt+1
i = xt

i−1 (mod 2) ⇒ Rule 240
(abc)=(101): xt+1

i = xt
i−1 + xt

i+1 (mod 2) ⇒ Rule 90
(abc)=(110): xt+1

i = xt
i−1 + xt

i (mod 2) ⇒ Rule 60
(abc)=(111): xt+1

i = xt
i−1 + xt

i + xt
i+1 (mod 2) ⇒ Rule 150

Each additive rule N has a complementary anti-additive rule N c = 255−N .
Table 6.4 shows that 4 additive rules are globally equivalent to their corre-
sponding anti-additive rules, whereas in the remaining four cases additive
and anti-additive rules exhibit an alternating symmetry duality [120].
There are only 9 globally equivalent additive rules: 0, 15, 51, 60, 90, 105,
150, 170, 204. Five of them - namely 0, 15, 51, 170, 204 - have complexity
index κ = 1, and their behavior can be easily analyzed; for this reason we
dub them trivial additive rules. In contrast, the remaining four rules - 60,
90, 105, and 150 - have complexity index κ = 2 (rules 60 and 90) or κ = 3
(rules 105 and 150). According to Chua’s classification, rule 60 belongs to
group 6 (hyper Bernoulli-shift rules) and rules 90, 105, 150 belong to group
5 (complex Bernoulli-shift rules); therefore, they exhibit complex behaviors,
and we dub them non-trivial additive rules.
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Figure 6.4: Relationship between additive and anti-additive rules.



Chapter 7

New results on Cellular
Automata

Thanks to the nonlinear dynamics perspective of Cellular Automata, it has
been possible to find many new results, four of which are illustrated in this
chapter. We start from quasi-ergodicity, a concept defined empirically but
that gives a further reason to justify the CA local rules classification proposed
by Chua. Then, we describe how and why fractals emerge naturally in time-
1 characteristic functions of any local rule, making a further classification
of rules according to the number of fractal patterns they present. Third,
we give some results on Bernoulli orbits, which have important practical
consequences since they allow us to reduce sensibly the number of cases that
have to be simulated. Finally, we give a quantitative explanation of the scale-
free property for additive CA rules, summarizing the results in a theorem and
illustrating them through several examples.

7.1 Quasi-ergodicity

The time-1 return map and the time-1 characteristic function are two differ-
ent kinds of visual representation of a CA rule: the first one illustrates the
evolution from a specific initial bit string as a Lamerey (cobweb) diagram
for all times; the second one shows the output bit string corresponding to
any possible input for one iteration. In general, a local rule has a unique
time-1 characteristic function but many time-1 return maps, one for each
initial condition.
Therefore, a question arises: can the time-1 return map and the time-1 char-
acteristic function coincide? In other words, is it possible to extract infor-
mation about the temporal behavior which is the time-1 return map of a
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Cellular Automaton by looking at its spatial representation, like the time-1
characteristic function? The correspondence between the temporal and the
spatial behaviors of dynamical systems is a well-known concept dubbed ‘er-
godicity’, and it is fundamental for a number of branches of mathematics
and physics. Since a thorough treatment of ergodicity would go beyond the
purpose of this dissertation, we will opt for a pedagogically more transparent
approach by introducing the empirical concept ‘quasi-ergodicity’ to stress
its difference with ‘ergodicity’, which would require an in-depth measure-
theoretic analysis. Note that is this context we use the expression ‘quasi-
ergodicity’ in a different, albeit related, sense with respect to what usually
done in statistical physics.
Remarkably, ‘quasi-ergodicity’ captures a peculiarity unique among the com-
plex and hyper Bernoulli rules, thereby adding a further raison d’être for the
classification proposed by Chua, besides those based on the period or the
Bernoulli στ -shift of the attractors defined in [120].

By visual inspection, we noticed that for certain rules the time-1 return
maps corresponding to different initial conditions are indistinguishable, and
they tend to be very similar to the time-1 characteristic function too. As
we mentioned before, this behavior is somehow related to ergodicity but,
in order to emphasize that this phenomenon has been observed empirically,
we preferred to introduce the property of quasi-ergodicity via the following
definition.

Definition 7.1 (Quasi-ergodicity) A rule is said to be quasi-ergodic iff
given an arbitrary point P belonging to an attractor ΛP , it is possible to find
a point Q arbitrarily close to it which belongs to another attractor ΛQ.

A graphical illustration of the quasi-ergodic property is given in Fig. 7.1
for a generic rule N . Figure 7.2 shows one of the consequences of quasi-
ergodicity of rule 110: since the time-1 return maps corresponding to the 3
different initial conditions cling arbitrarily close to each other, the Lamerey
(cobweb) diagrams (Fig. 7.2 (a), (b) and (c)) obtained from their superposi-
tion in Fig. 7.2 (d) are visually indistinguishable.
We can not overemphasize that Definition 7.1 is only an empirical definition
for the new phenomenon to be described in this section. In particular, we
have found that only the complex and hyper Bernoulli rules, corresponding
to the 5th and 6th group of Chua’s classification [120], are quasi-ergodic. This
observation is remarkable because it introduces a particular feature possessed
by only rules belonging to these two groups, within the more general class of
Bernoulli-shift rules. So far, our distinction between the Bernoulli στ -shift
rules from group 4 and the complex and hyper Bernoulli-shift rules from
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Figure 7.1: Quasi-ergodic property

group 5 and 6 is that the two Bernoulli parameters σ and τ from group 4 do
not depend on the initial point, or the length L.

All 18 complex and hyper Bernoulli rules have Lamerey (cobweb) dia-
grams similar to those in Fig. 7.2, with the exception of rule 73, because in
this case different initial conditions generate different time-1 return maps.
Nevertheless, we noticed that rule 73 has only two kinds of possible time-
1 return maps corresponding to the two sets of mutually exclusive initial
conditions (except, as usual, a finite number of isolated points) exhibited in
Fig. 7.3. Moreover, all initial conditions belonging to the same set give indis-
tinguishable time-1 return maps. Hence, instead of having quasi-ergodicity
all over the axis, there are two regions, each exhibiting quasi-ergodicity.
Therefore, we say that rule 73 is weakly quasi-ergodic, according to the fol-
lowing definition.

Definition 7.2 (Weak Quasi-ergodicity) A rule is said to be weakly quasi-
ergodic iff it is quasi-ergodic in a finite number of disjoint regions, whose
union gives the whole axis.

Among the 256 local rules, 73 and its global topologically-equivalent rule
109 are the only ones to exhibit weak quasi-ergodicity. The property of weak
quasi-ergodicity of rule is evident from Fig. 7.3, in which the two different
time-1 return maps are depicted in Fig. 7.3 (a) and Fig. 7.3 (b) and then
their union in Fig. 7.3 (c) is compared with the time-1 characteristic function
χ1

73 in Fig. 7.3 (d).
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(a) (b)

(c) (d)

Figure 7.2: For rule 110, time-1 return maps corresponding to the 3 different
initial conditions (a), (b), and (c) are visually indistinguishable, as confirmed
by their superposition in (d). Then, rule 110 is quasi-ergodic.

Finally, we can identify a further type of rules within the quasi-ergodic
ones thanks to the following observation. While it is true that the time-1
return map of most quasi-ergodic rules tends to cover almost everywhere the
unit interval φn−1 ∈ [0, 1], sometimes relatively large compact regions are
excluded; in general, this behavior is observable by increasing the length of
the bit strings. Nonetheless, for some rules we cannot see any gap in a generic
time-1 return map independently from the length L of the bit strings. These
rules namely 30, 45, 60, 90, 105, 106, 150, 154 will henceforth be called
strongly quasi-ergodic.

Definition 7.3 (Strong Quasi-ergodicity) A rule is said to be weakly
quasi-ergodic, iff it is quasi-ergodic in a finite number of disjoint regions,
whose union gives the whole axis.
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(a) (b)

(c) (d)

Figure 7.3: For rule 73, there are two different time-1 return maps (a) and
(b) corresponding to different sets of initial conditions, and their superpo-
sition (c) coincides (except for a finite number of points) with the time-1
characteristic function (d). Then, rule 73 is weakly quasi-ergodic.

It is also possible to prove that strongly quasi-ergodic rules, along with
rule 15 and 170, are indeed ergodic, according to a formal mathematical
definition [135] [136].

7.2 Fractality in CA

Fractals arise naturally in the time-1 characteristic functions of one-dimensional
Cellular Automata, and here we give thorough results about this phenomenon,
providing also an analytical formula for finding the fractal patterns. In order
to specify explicitly the number of bits contained in a generic string x, we
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introduce the notation

xI+1 = (x0 · · ·xk−1
...

...xI) (7.1)

to indicate the set of bit strings composed of I + 1 elements in which the

first k elements and the last one are known. For example, x6 = (01
...

...1)
is equivalent to the set {(010001), (010011), (010101), (010111), (011001),
(011011), (011101), (011111)}. Since any bit string x can be uniquely as-
sociated with a real number φ(x) ∈ [0, 1), the set of bit strings defined by
Eq. 7.1 corresponds to a subset of points of the unit interval [0, 1], with the
formula

ΦI+1(xI+1) = φI+1(x0 · · ·xk−1
...

...xI) =
I∑

i=0

xi · 2−(i+1) (7.2)

Similarly, the time-1 characteristic function for the local rule N correspond-
ing to the set of bit strings φI+1(xI+1) is defined by

χ1
N ,I+1(xI+1) = χ1

N ,I+1(x0 · · ·xk−1
...

...xI) =
I∑

i=0

TN (xi−1xixi+1) · 2−(i+1) (7.3)

where TN (xi−1xixi+1) denotes the application of the local rule N to the
triplet (xi−1xixi+1). To avoid clutter, we will henceforth delete the commas
separating bits, and abbreviate χ1

N ,I+1(xI+1) by χ,I+1(xI+1).

7.2.1 All time-1 characteristics are fractal

The main result of this section is the following

Theorem 7.1 (Fractality of the time-1 characteristic function χ1
N ) The

time-1 characteristic function χ1
N of any rule N exhibits a fractal behavior

in any subinterval of φ ∈ [0, 1).

Proof
Given an arbitrary natural number I > 1, we define the two bit strings

xα
I+1 = (0

...
...0) and xβ

I+1 = (1
...

...0) . According to the notation introduced
previously, xα

I+1 is the set of the bit strings composed by I +1 elements with

x0 = 0 and xI = 0, whereas xβ
I+1 is the set of the bit strings composed by

I + 1 elements with x0 = 1 and xI = 0. Their equivalent decimal represen-

tations are φα = φI+1(0
...

...0) and φβ = φI+1(1
...

...0), and it is easy to prove
that 0 ≤ φα ≤ 1

2 and 1
2 ≤ φβ ≤ 1. Since Φα ∪ Φβ = [0, 1) as I → ∞ we can
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divide the time-1 characteristic function χ1
N for a generic rule N into two

parts, one for each interval: χα = χI+1(0
...

...0) in correspondence to Φα and

χβ = χI+1(1
...

...0) in correspondence to Φβ (see Fig. 7.4(a)).
An analogous procedure can be followed when xI = 1, leading to the defi-

nition of the two strings xγ
I+1 = (0

...
...1) and xδ

I+1 = (1
...

...1), and their equiv-

alent decimal representations φγ = φI+1(0
...

...1) and φδ = φI+1(1
...

...1), where
0 ≤ φγ ≤ 1

2 and 1
2 ≤ φδ ≤ 1. Also in this case the time-1 characteristic

function can be divided into two parts: χγ = χI+1(0
...

...1) in correspondence

to Φγ and χδ = χI+1(1
...

...1) in correspondence to Φδ (see Fig. 7.4(b)).
Let us consider a generic set of bit strings xk+I+1, each composed of k+I+1

(a) (b)

Figure 7.4: Intervals for the fractal patterns.

elements, having in common the first k + 1 and the last element

xk+I+1{
k bits︷ ︸︸ ︷

x0x1 . . . xk−1,

I+1 bits︷ ︸︸ ︷
xk

...
...xk+1︸ ︷︷ ︸

k+I+1 elements

} (7.4)

According to the Eq. 7.2, we can associate to the set xk+I+1 a unique interval
of values in [0, 1) called φk+I+1, in which a certain φk+I+1 can be defined.
Our purpose is to explore the behavior of the function φk+I+1 in subintervals
of φk+I+1, thereby showing the emergence of fractal patterns. In general,
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splitting φk+I+1 into n parts corresponds to introducing log2n bits after xk in
the set of bit strings xk+I+1. For example, we can subdivide φk+I+1 into four
regions just by adding two extra bits called xleft and xright after xk in 7.4,
and creating the new set of bit strings xk+I+3

x′k+I+3 =(

k+2 bits︷ ︸︸ ︷
x0x1 . . . xkxleft,

I+1 bits︷ ︸︸ ︷
xright

...
...xk+1) =

k+I+3 bits︷ ︸︸ ︷
(x′0x

′
1 . . . x′k+I+2) (7.5)

The correspondence between xk+I+1 and x′k+I+3 can be obtained by compar-
ing 7.4 and 7.5. 





x′0 = x0
...

x′k = xk

x′k+1 = xleft

x′k+2 = xright

x′k+3 = xk+1
...

x′k+I+2 = xk+I

(7.6)

The first of the four subregions corresponds to the case (xleftxright)= (00), the
second subregion to (xleftxright)= (01), the third subregion to (xleftxright)=
(10), and finally the fourth subregion to (xleftxright)= (11). The expression
for the time-1 characteristic function χk+I+3(x′k+I+3) can be found by using
the Eq. 7.3, obtaining

χk+I+3(x
′
k+I+3) =

k+I+2∑

i=0

TN (x′i−1x
′
ix
′
i+1) · 2−(i+1) (7.7)

=
k+1∑

i=0

TN (x′i−1x
′
ix
′
i+1) · 2−(i+1) +

k+I+2∑

i=k+2

TN (x′i−1x
′
ix
′
i+1) · 2−(i+1)

Let us analyze separately the two terms of this last equation.
By using the Eq. 7.6, we find that the first term is equivalent to

k+1∑

i=0

TN (x′i−1x
′
ix
′
i+1) ·2−(i+1) =

1

2
TN (xk+I−1x0x1)+

k−1∑

i=1

TN (xi−1xixi+1) ·2−(i+1)

(7.8)

+
1

2k+1
TN (xk−1xkxleft) +

1

2k+2
TN (xkxleftxright)

Since for any local rule N the value TN (x′i−1x
′
ix
′
i+1) is either 1 or -1, from

Eq. 7.8 it follows that
∑k+1

i=0 TN (x′i−1x
′
ix
′
i+1) · 2−(i+1) is a rational number,
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with

0 ≤
k+1∑

i=0

TN (x′i−1x
′
ix
′
i+1) · 2−(i+1) ≤

k+2∑

j=1

< 1 (7.9)

The second term of the formula 7.7 can be written as

k+I+2∑

i=k+2

TN (x′i−1x
′
ix
′
i+1) · 2−(i+1) =

I∑

j=0

TN (x′j+k+1x
′
j+k+2x

′
j+k+3) · 2−(j+k+3) =

(7.10)

1

2k+2

I∑

j=0

TN (x′j+k+1x
′
j+k+2x

′
j+k+3) · 2−(j+1) =

=
1

2k+2

(
1

2
TN (xleftxrightxk+1) +

1

4
TN (xrightxk+1xk+2)+

i−1∑

j=2

TN (xj+k−1xj+kxj+k+1) · 2−(j+1) +
1

2I+1
TN (xk+I−1xk+Ixleft)

)

∼=
1

2k+2
χI+1(xright

...
...xleft)

because the actual outcome of the term 1
2I+1 TN (xk+I−2xk+I−1xleft) is negli-

gible for I 5 1, and (xk+1 · · ·xk+I−1) are arbitrary bits, as stated in Eq. 7.4.
Therefore, using Eqs. 7.8 and 7.10, we can rewrite the expression 7.7 as
follows:

χk+I+3 =
k+1∑

i=0

TN (x′i−1x
′
ix
′
i+1) · 2−(i+1)

︸ ︷︷ ︸
vertical shift

+
1

2k+2︸︷︷︸
scale factor

χI+1(xright
...

...xleft) (7.11)

This means that in each subregion there is a scaled and shifted copy of

χI+1(xright
...

...xleft). In particular, in the first subregion χI+1(xright
...

...xleft) =

χI+1(0 · · · 0) = χα, in the second subregion χI+1(xright
...

...xleft) = χI+1(1 · · · 0) =

χβ, in the third subregion χI+1(xright
...

...xleft) = χI+1(0 · · · 1) = χγ, and in the

fourth subregionχI+1(xright
...

...xleft) = χI+1(1 · · · 1) = χδ. Since k and I are
arbitrary, it follows that the time-1 characteristic function of a generic rule
N is composed of the four fractal patterns χα, χβ, χγ, and χδ (in this order)
in any subinterval of φ ∈ [0, 1).

As an example, let us consider rule 110: its fractal patterns for the case
xI = 0 are shown in Fig. 7.5(a), where χα = χI+1(0 · · · 0) is plotted in red and
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χβ = χI+1(1 · · · 0) is in purple; the fractal patterns for the case xI = 1 are in
Fig. 7.5(b), where χγ = χI+1(0 · · · 1) is plotted in blue and χδ = χI+1(1 · · · 1)
is in cyan.

(a) (b)

Figure 7.5: Intervals for the fractal patterns of rule 110.

According to theorem 7.1, these four patterns appear naturally in any subin-
terval of φ ∈ [0, 1). For instance, let us consider φ ∈ [0.25, 0.5), which

corresponds to the set of bit strings xI+2 = (01
...

...0); the restriction of χ
to φ ∈ [0.25, 0.5) is depicted in Fig. 7.6(a). Let us divide this interval into
four parts by adding two additional bits: the first subregion corresponds to

the case xI+4 = (0100
...

...0) and 0.25 ≤ φI+4 < 0.3125, the second subregion

to xI+4 = (0101
...

...0) and 0.3125 ≤ φI+4 < 0.375, the third subregion to

xI+4 = (0110
...

...0) and 0.375 ≤ φI+4 < 0.4375, and the fourth subregion to

xI+4 = (0111
...

...0) and 0.4375 ≤ φI+4 < 0.5. The analytical expressions for
χI+4(xI+4) in the four subregions can be derived from the Eqs. 7.8 and 7.11,
and the results are illustrated in Fig. 7.6(a). In particular

χI+4(0100 · · · 0) = 1
2T110(001) + 1

4T110(101) + 1
8T110(100) + 1

8χI+8(0 · · · 0)
1
2 + 1

4 + 1
8χ

α = 3
4 + 1

8χ
α

χI+4(0101 · · · 0) = 1
2T110(001) + 1

4T110(010) + 1
8T110(101) + 1

8χI+8(1 · · · 0)
1
2 + 1

4 + 1
8 + 1

8χ
β = 7

8 + 1
8χ

β

χI+4(0110 · · · 0) 6 1
2T110(001) + 1

4T110(011) + 1
8T110(110) + 1

8χI+8(0 · · · 1)
1
2 + 1

4 + 1
8 + 1

8χ
γ = 7

8 + 1
8χ

γ
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χI+4(0111 · · · 0) 6 1
2T110(001) + 1

4T110(011) + 1
8T110(111) + 1

8χI+8(1 · · · 1)
1
2 + 1

4 + 1
8χ

δ = 3
4 + 1

8χ
δ

(a) (b)

Figure 7.6: Emergence of fractal patterns in arbitrary subinterval of rule 110.

As expected, the time-1 characteristic function φI+4 in the four subregions is
a scaled and shifted version of χα, χβ, χγ, and χδ, respectively. In Fig. 7.6(b)
a further subdivision of the horizontal axis ? is depicted, and also in this
case the four fractal patterns emerge naturally.

7.2.2 From the time-1 characteristic function to the
rule number

The analytical characterization of the fractality of χ1
N for a generic rule

N makes it possible to obtain the rule number directly from the time-1
characteristic function diagram. Here we consider strings composed by I + 1
bits, and their decimal representation φI+1 defined as in Eq. 6.4. Let us
differentiate between xI = 0 and xI = 1: for the first case, we divide the axis
φ into four intervals, namely φ0,I(00 . . . 0), φ0,II(01 . . . 0), φ0,III(10 . . . 0), and
φ0,IV (00 . . . 0), each corresponding to a quarter of the axis φ. In each of these
interval, the time-1 characteristic functions can be defined by means of the
formula 7.11. For example, in the first subregion

χ0,I = χI+1(00 . . . 0) =
1

2
TN (000) +

1

2
χα

therefore

χ0,I >
1

2
⇔ TN (000) = 1
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This means that the value of TN (000) is completely determined by the po-
sition of the characteristic function in the first quarter of the diagram for
xI = 0: if the function χ0,I is below 1

2 then TN (000) = 0; if it is above 1
2 then

TN (000) = 1.
Following an analogously procedure, we find that

χ0,II = χI+1(01 . . . 0) =
1

2
TN (001) +

1

2
χβ → χ0,II >

1

2
⇔ TN (001) = 1

χ0,III = χI+1(10 . . . 0) 6 1

2
TN (010) +

1

2
χγ → χ0,III >

1

2
⇔ TN (010) = 1

χ0,IV = χI+1(11 . . . 0) =
1

2
TN (011) +

1

2
χδ → χ0,IV >

1

2
⇔ TN (011) = 1

and then the values for TN (001), TN (010), TN (011) depend on the position
of the time-1 characteristic function in the second, third and fourth region,
respectively.
As for the case xI = 1, we can also divide the axis φ into four equal intervals,
namely φ1,I(00 . . . 1), φ1,II(01 . . . 1), φ1,III(10 . . . 1), and φ1,IV (00 . . . 1). The
expression for the time-1 characteristic function in the first interval can be
found through the Eq. 7.11

χ1,I = χI(00 . . . 1) 6 1

2
(TN (100) + χI−1(0 . . . 0)) =

1

2
TN (100) +

1

2
χα

therefore

χ1,I >
1

2
⇔ TN (100) = 1

In this case the value of TN (100) is completely determined by the position of
the characteristic function in the first quarter of the diagram for xI = 1: if the
function χ1,I is below 1

2 then TN (100) = 0; if it is above 1
2 then TN (100) = 1.

We can extend the same result to the other three subregions, obtaining

χ1,II = χI+1(01 . . . 1) =
1

2
TN (101) +

1

2
χβ → χ1,II >

1

2
⇔ TN (101) = 1

χ1,III = χI+1(10 . . . 0) 6 1

2
TN (110) +

1

2
χγ → χ1,III >

1

2
⇔ TN (110) = 1

χ1,IV = χI+1(11 . . . 0) =
1

2
TN (111) +

1

2
χδ → χ1,IV >

1

2
⇔ TN (111) = 1

and then the values for TN (101), TN (110), TN (111) depend on the position
of the time-1 characteristic function in the second, third and fourth region,
respectively.
In conclusion, the number of the local rule can be found straightforwardly
by visual inspection of the time-1 characteristic function diagrams, as sum-
marized in Fig. 7.7.
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(a) (b)

Figure 7.7: The rule number can be easily obtained by looking at the position
of the time-1 characteristic function in the eight intervals.

7.3 Bernoulli orbits

Complex and hyper Bernoulli-shift rules have in general many Bernoulli or-
bits, either attractors of Isles of Eden, and then it is particularly important
to characterize them analytically in order to avoid long and tedious simu-
lations. Here we present a method that allows us to reconstruct the whole
basin-tree diagram of a Bernoulli-shift attractor by analyzing only a fraction
of all bit strings with a given L.
Examples of Bernoulli are in Fig. 6.3, whereas Fig. 7.8 shows a period T=14
Bernoulli-στ orbit for rule 110, in which σ = 1, τ = 4 and L=7. In general,
a left shift by σ positions in the binary representation xn = (xn

0x
n
1 . . . xn

I ) is
equivalent to a multiplication by 2σ in the decimal representation n, where
n =

∑L−1
i=0 xL−1−i · 2i.

Therefore, if n0 is a (decimal) element of a Bernoulli στ -shift orbit and nτ

the result after τ iterations, nτ = T τ
N (n0), it follows that

nτ = n0 · 2σ (mod 2L − 1) (7.12)

Furthermore, this formula can be modified to find not only nτ , but also all
the other elements of the orbit generated by n0. A Bernoulli στ -shift orbit
with period T harbors exactly lcm(τ, T ) different subgroups (lcm indicates
the least common mutiple) each with length T

lcm(τ,T ) , henceforth called order

of the subgroup. This means that Eq. 7.12 can be iterated T
lcm(τ,T )−1 times to

obtain a corresponding number of strings, using at each iteration the result
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Figure 7.8: Example of a Bernoulli στ -shift attractor with σ = 1, τ = 4 for
rule 110 and L=7.

nτ as new value of n0. As a consequence, Eq. 7.12 can be generalized as
follows

np·τ (mod T ) = n0 · 2p·σ (mod 2L − 1), (7.13)

where

0 ≤ p <
T

lcm(τ, T )
, p ∈ N

where the parameter p indicates the current iteration. Obviously, iteration
T

lcm(τ,T ) would give n0 itself.
For example, this procedure can be applied to the Bernoulli στ -shift attractor
with τ = 4 and T=14 of rule 110 when L=7, which is shown in Fig. 7.9.
From what was explained previously, there will be lcm(τ, T ) = 2 different
subgroups, each with length T

lcm(τ,T ) = 7. Starting from an arbitrary element

of period-14 Bernoulli στ -shift orbit (cyan circles in Fig. 7.9), like n0 = 31
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and using the Eq. 7.13 we obtain the values:

p = 1 : n1·4 (mod 14) = n0 · 21·1 (mod 27 − 1) ⇒ n4 = 31 · 2 (mod 127) = 62
p = 2 : n2·4 (mod 14) = n0 · 22·1 (mod 27 − 1) ⇒ n8 = 31 · 4 (mod 127) = 124
p = 3 : n3·4 (mod 14) = n0 · 23·1 (mod 27 − 1) ⇒ n12 = 31 · 8 (mod 127) = 121
p = 4 : n4·4 (mod 14) = n0 · 24·1 (mod 27 − 1) ⇒ n2 = 31 · 16 (mod 127) = 115
p = 5 : n5·4 (mod 14) = n0 · 25·1 (mod 27 − 1) ⇒ n6 = 31 · 32 (mod 127) = 103
p = 6 : n6·4 (mod 14) = n0 · 26·1 (mod 27 − 1) ⇒ n10 = 31 · 64 (mod 127) = 79

Finally, for p = T
lcm(τ,T ) = 7, n7·4 (mod 14) = n0, as expected.

p = 7 : n7·4 (mod 14) = n0 · 27·1 (mod 27 − 1) ⇒ n0 = 31 · 128 (mod 127) = 31

The seven elements belonging to the second subgroup, which can be iden-

Figure 7.9: Basin-tree diagram of the Bernoulli στ -shift attractor with σ = 1,
τ = 4 for rule 110 and L=7.

tified in the period-14 Bernoulli orbit in Fig. 7.9), can be found by using a
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different starting point. Since T110(31) = 49, n0 = 49 is a natural candidate;
hence it follows that:

p = 1 : n1·4 (mod 14) = n0 · 21·1 (mod 27 − 1) ⇒ n4 = 49 · 2 (mod 127) = 98
p = 2 : n2·4 (mod 14) = n0 · 22·1 (mod 27 − 1) ⇒ n8 = 49 · 4 (mod 127) = 69
p = 3 : n3·4 (mod 14) = n0 · 23·1 (mod 27 − 1) ⇒ n12 = 49 · 8 (mod 127) = 11
p = 4 : n4·4 (mod 14) = n0 · 24·1 (mod 27 − 1) ⇒ n2 = 49 · 16 (mod 127) = 22
p = 5 : n5·4 (mod 14) = n0 · 25·1 (mod 27 − 1) ⇒ n6 = 49 · 32 (mod 127) = 44
p = 6 : n6·4 (mod 14) = n0 · 26·1 (mod 27 − 1) ⇒ n10 = 49 · 64 (mod 127) = 88
p = 7 : n7·4 (mod 14) = n0 · 27·1 (mod 27 − 1) ⇒ n0 = 49 · 128 (mod 127) = 49

Also in this case, when p = T
lcm(τ,T ) = 7 we find the initial value n0 = 49, as

expected.

Figure 7.10: Detail of the basin-tree diagram of the Bernoulli στ -shift attrac-
tor with σ = 1, τ = 4 for rule 110 and L=7. These 17-bit strings allow us to
reconstruct the whole basin-tree diagram, thanks to formula 7.13

Thanks to Eq. 7.13 all 14 elements of the Bernoulli στ − shift orbit were
found starting just from n0=31 and n0 = 49. Remarkably, this formula can
be also used to find elements that do not belong to the orbit but to the basin
tree. This is because in general

xn TN−−→ xn+1 ⇒ σ(xn)
TN−−→ σ(xn+1) (7.14)

where σ(xn) is the string obtained by shifting σ times the bit string xn. For
example, since T110(13) = 31, we can expect that a shifted version of the
bit string representing 31 is obtained by transforming under the rule N the
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shifted bit string representing 13.

p = 1 : n1·4 (mod 14) = n0 · 21·1 (mod 27 − 1) ⇒ n4 = 13 · 2 (mod 127) = 26

and indeed
13

T110−−→ 31 ⇒ σ(13) = 26
T110−−→ σ(31) = 62

The values for n0 = 13 are

p = 2 : n2·4 (mod 14) = n0 · 22·1 (mod 27 − 1) ⇒ n8 = 13 · 4 (mod 127) = 52
p = 3 : n3·4 (mod 14) = n0 · 23·1 (mod 27 − 1) ⇒ n12 = 13 · 8 (mod 127) = 104
p = 4 : n4·4 (mod 14) = n0 · 24·1 (mod 27 − 1) ⇒ n2 = 13 · 16 (mod 127) = 81
p = 5 : n5·4 (mod 14) = n0 · 25·1 (mod 27 − 1) ⇒ n6 = 13 · 32 (mod 127) = 35
p = 6 : n6·4 (mod 14) = n0 · 26·1 (mod 27 − 1) ⇒ n10 = 13 · 64 (mod 127) = 70

and, as usual, for p = T
lcm(τ,T ) = 7 we obtain the initial value n0 = 13 as

expected.

p = 7 : n7·4 (mod 14) = n0 · 27·1 (mod 27 − 1) ⇒ n0 = 13 · 128 (mod 127) = 13

To sum up, all the information about a Bernoulli attractor can be retrieved
from only one element of each subgroup of the orbit, like 31 and 49, and their
basins of attraction (in this example the basins of attraction are formed by
15 bit strings altogether, as depicted in Fig. 7.10). Then, using only these
17 elements we are able to draw the whole basin-tree diagram, which is com-
posed of 119 bit strings.

Note that the Bernoulli orbit shown in Fig. 7.8 can be interpreted as an
attractor with σ = 4 and τ = 2. It is easy to verify that this fact does
not change the results given by Eq. 7.13, confirming that such formula is
independent from the actual values of the parameters.

7.4 Scale-free property of additive rules

All non-trivial additive rules, presented in Sec. 6.4.4, are wither complex or
hyper Bernoulli-shift rules; hence, their Bernoulli parameters σ and τ - and
consequently, the periods of their orbits - depend crucially on L.
In principle, given L and the corresponding maximum period TL of the orbits
of a non-trivial additive rule, it is not possible to extract any information
about the maximum period TL′ of the orbit L′ &= L; in other words, the ratio
TL
L is unrelated to

T ′
L

L′ . Nevertheless, in [120] it was empirically noticed that
for rule 90, 105, and 150 there exist certain values of L and L′ for which

log(TL′)− log(TL)

log(L′)− log(L)
⇔ TL′

L′
=

TL

L
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This means that such rules exhibit a scale-free property as L → ∞, and
hence there are some L′ &= L for which it is possible to know TL′ by using
only the information on TL; the presence of a scale-free property also for rule
60 is confirmed in [137]. The scale-free property can be easily discovered
at Figs. 7.11, 7.12, 7.12, and 7.12 taken from [138], and noticing that most
points lie on diagonal lines with slope 1 (here we draw only a few of them).

Figure 7.11: Attractors for L ≤ 100 for rule 60: diagonal lines with slope 1
are indicative of the scale-free property. Green stars denotes points for which
the attractor has a period exceeding the simulation time.

In the following we characterize quantitatively this phenomenon, finding out
the values of L and L′ for which the scale-free property holds. We start by
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Figure 7.12: Attractors for L ≤ 100 for rule 90: diagonal lines with slope 1
are indicative of the scale-free property.

giving the following definition:

Definition 7.4 (Scale-free order) Let L be the length of the bit strings
and let T ∗

L be the maximum period of the orbits (attractors of Isles of Eden)
of a non-trivial additive tule, then its scale-free order is defined as ξL

ξL =
T ∗

L

L
=

2s(L) − 1

L

Therefore, we need to find all L and L′, with L &= L′, for which ξL = ξL′ .
In the following we will make extensively use of the notation o(L) and s(L),
indicating the multiplicative order and suborder, respectively, of the natural
number L. A thorough explanation of these concepts is given in Appendix,
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along with the tables with their values for L < 100. Moreover, from now on,
we will refer exclusively to rules 90 and 150 for which, as proved in [138] and

reported in the Appendix, T ∗
L = 2s(L)−1

L ; however, the conclusions for rules 60
and 105 are very similar and can be achieved through a similar procedure.
In the Appendinx are also tabulated the amximum period of the orbits for
rule 60, 90, 105, and 150, which will be used in the examples of this section.
The following theorem represents an important advance towards our goal.

Theorem 7.2 (Scale-free order) Let L be the length of the bit strings and
let ξL be its scale-free order, of o(L) = s(L), then L can be uniquely be
expressed as

L =
2o(ξL) − 1

ξL

n∑

i=0

si·o(ξL) (7.15)

where

n =
o(L)

o(ξL)
− 1

This theorem is very powerful because given any L for which o(L) = s(L)
and its scale-free order ξL, we can easily find analytically all the L′ for which
ξL = ξL′ by varing the parameter n.

Example 7.1 For L = 21, the values of the multiplicative order and subor-
der are o(21) = s(21) = 6, and the maximum period of the orbit is T ∗

L = 63;

therefore, ξL =
T ∗

L
L = 3 and o(ξL) = 2. From Eq. 7.15,

n =
o(L)

o(ξ)
− 1 =

6

2
− 1 = 2

and

n : 2 → L =
22 − 1

3
(1 + 21·2 + 22·2) = 21

as expected.
Considering the following values for the parameter n - i.e. n = 3, 4, 5, etc.
- we can find an infinite number of L &= L′ such that ξL = ξL′. For example,

n : 3 → L′ = 22−1
3 (1 + 21·2 + 22·2) = 21

n : 5 → L′ = 22−1
3 (1 + 21·2 + 22·2 + 23·2) = 85

n : 7 → L′ = 22−1
3 (1 + 21·2 + 22·2 + 23·2 + 24·2) = 341

· · ·
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Example 7.2 For L = 15, the values of the multiplicative order and subor-
der are o(15) = s(15) = 4, and the maximum period of the orbit is T ∗

L = 15;

therefore, ξL =
T ∗

L
L = 1 and o(ξL) = 1. From Eq. 7.15,

n =
o(L)

o(ξ)
− 1 =

4

1
− 1 = 3

and

n : 3 → L =
21 − 1

1
(1 + 21·1 + 21·2 + 21·3) = 15

as expected.
In this case, we consider all values n > 1 - i.e. n=1, 2, 4, etc. - to be sure
of finding all L &= L′ such that ξL = ξL′ = 1. For example,

n : 1 → L′ = 21−1
1 (1 + 21·1) = 3

n : 2 → L′ = 21−1
1 (1 + 21·1 + 22·1) = 7

n : 4 → L′ = 21−1
1 (1 + 21·1 + 21·2 + 23·1 + 24·1) = 31

· · ·

Example 7.3 For L = 73, the values of the multiplicative order and subor-
der are o(73) = s(73) = 9, and the maximum period of the orbit is T ∗

L = 511;

therefore, ξL =
T ∗

L
L = 7 and o(ξL) = 3. From Eq. 7.15,

n =
o(L)

o(ξ)
− 1 =

9

3
− 1 = 2

and

n : 2 → L =
27 − 1

7
(1 + 21·3) = 73

as expected.
If we ‘go backward’ using n = 1, a already done in the previous example, we
apparently find a contradiction because

n : 1 → L′ = 27−1
7 (1 + 21·3) = 9

but the table of the orbit periods (see appendix) indicates that T ∗
9 = 31 and

then ξ9 = 3.44 &= ξ73. However, this happens because o(9) = 6 and s(9) = 3,
and since o(9) &= s(9), Theorem 7.2 cannot be applied to L = 9.

The values of L corresponding to ξL ≤ 15 are presented in Table ??.
The results of this section can be summarized in the following theorem:
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Table 7.1: Length L of the bit strings clssified according to their scale-free
order.

Theorem 7.3 (Scale-free property of additive rules) Let L be the length
of the bit strings and let T ∗

L be the maximum period of the orbit of a non-trivial
additive rule, then for any L′ ∈ N the scale-free property

T ∗
L′

L′
=

T ∗
L

L

holds if, and only if,

1. both L and L′ satisfy the conditions of Theorem 7.2, if L′ is odd;

2. L′ = 2n · L, with n ∈ N, if L′ is even and L, L′ &= 2i.

Figure 7.15 gives a graphical interpretation of this theorem: red lines cor-
respond to values of ξL ∈ N, which will include all odd L obtained from
Theorem 7.2 (as stated in the first point of Theorem 7.3) plus their even
multiples (as stated in the second point of Theorem 7.3); blue lines corre-
spond to values of ξL /∈, and then they include only one odd L (because L
does not satisfy the conditions of Theorem 7.2) plus its even multiples (as
stated in the second point of Theorem 7.3).
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Figure 7.13: Attractors (red stars) and Isles of Eden (blue stars) for L ≤
100 for rule 105: diagonal lines with slope 1 are indicative of the scale-free
property.
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Figure 7.14: Attractors (red stars) and Isles of Eden (blue stars) for L ≤
100 for rule 150: diagonal lines with slope 1 are indicative of the scale-free
property.
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Figure 7.15: Scale-free property: when ξL = T
L ∈ N (in red) the line includes

attractors for infinite values of L, L odd, plus their even multiples; when
ξL = T

L /∈ N (in blue) the line includes attractors for only one value of L, L
odd, plus its even multiples





Chapter 8

Conclusions and future work

Our contribution to the theory of cellular paradigms can be divided into two
main parts, one regarding algorithms for Cellular Wave Computers, and the
other concerning the dynamics of Cellular Automata.

As for the first point, we started by proving that the Cellular Neural
Network - Universal Machine is indeed universal. Although this fundamental
result has been known for more than a decade, what presented here goes
beyond the mere proof of universality, defining also an algorithmic structure
common to all the CNN-UM programs.

These theoretical results has also remarkable practical consequences. For
example, the search space defined by all the CNN-UM programs is now
bounded and well-defined, and then it can be efficiently explored through
machine learning techniques. In particular, we put forward Genetic Pro-
gramming, which has has been successfully employed in similar scenarios.
We proved that our the GP-based system meets the requirements of closure
and sufficiency when dealing with CNN-UM programs, and we also analyzed
in detail a number of other features related to this problem, like metrics to
compare images and the appropriate choice of the genetic operators. Finally,
we tested the effectivity of our approach on several experiments, showing
how our system was capable of finding new efficient solutions in a variety of
cases, including real-life situations.

Several conclusions can be drawn on this part of the work. First of all,
our results about the form of CNN-UM programs are the first contribution
in this field, as for our knowledge. Other authors explored the possibility of
using genetic techniques to create automatically programs for the Cellular
Neural Network - Universal Machine; however, the search space including
all the possible CNN-UM programs is too huge to be explored even by fine
artificial intelligence techniques, unless one does not define a standard form
for all CNN-UM programs, as we did.
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The second part of this dissertation was devoted to the analysis of Cellular
Automata from a nonlinear dynamics perspective. An exhaustive description
of this topic would be impossible here, then we focused on a few aspects
which have seen our direct participation. We started illustrating Chua’s
classification of CA rules, based on the properties of their attractors, and
then we explained fundamental techniques such as the time-τ characteristic
map, the time-1 return plot, and the Lamerey (cobweb) diagram. Thanks to
these tools, it has been possible to uncover fundamental features of CA, like
quasi-ergodicity, the presence of fractal patterns, and the properties of the
so-called Bernoulli orbits. Recently, this topic has become of interest of the
scientific community, and it is possible to expect that more result will follow
soon.

As often happens, many results have been found, but many more ideas
and conjectures have remained to explore. Here, we express some of them to
encourage further investigations into these topics.

The fact that the universality of the CNN-UM was proved without making
use of the Game of Life is certainly important, however it would be interest-
ing to explore how such proof can be applied directly on this paradigm, and
not through an analogy with another universal machine. This may give fur-
ther information about the form of the programs as well as which instructions
are “fundamental” and which are not. A further idea would be studying in
detail how CNN templates can be decomposed into “fundamental” ones, and
defining a minimal set of instructions that implement all the others. This
development may be then extended to devices, analyzing whether the ap-
proach “few instructions, complex programs” gives advantages with respect
to “complex instructions, simple programs” in terms of execution time. The
discussion would be somehow similar to the well-known dilemma of RISC
and CISC architectures.

Also the system based on GP to create automatically CNN-UM programs
can be improved, adding more functionalities and testing it on new examples.
For instance, the inclusion of if-then-else statements in the programs is still
not completely defined, and also the way in which memory is used could be
changed, making the system more efficient and effective. We explored alter-
native techniques, like linear GP [139], without finding relevant advances. It
would be interesting not to limit to Genetic Programming, but also trying
completely different methods that may give better results.

Finally, the nonlinear perspective of CA seems to be very promising,
and we are currently working on it. One of our short term objectives is
proposing a way of describing rules alternative to Chua’s Boolean cubes,
and it may lead to important conclusions about the CA rule dynamics. We
are also investigating whether the 88 classes in which rules are grouped can
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be reduced by using transformations weaker that the Viergrouppe ones, or
limiting the analysis to particular cases.





Appendix A

Euler totient function,
multiplicative order and
suborder

Some of the results given in chapter 7 require the knowledge of three concepts
of number theory, which we introduce here.

Definition A.1 (Euler totient function) Give a positive integer n, the
Euler totient function Φ(n) is the number of positive integers less than n that
are coprime to n.

Definition A.2 (Multiplicative order function) Given a positive inte-
ger n, the multiplicative order of 2 (mod n) is the minimum positive integer
o(n) for which

2o(n) = 1 (mod n)

Definition A.3 (Multiplicative suborder function) Given a positive in-
teger n, the multiplicative suborder of 2 (mod n) is the minimum positive
integer s(n) for which

2s(n) = ±1 (mod n)

Remark A.1 It is possible to prove that

Φ(n) ≤ n− 1

and

s(n) ≤ n− 1

2
and

s(n)|o(n)|Φ(n)
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Table A.1: Values of Φ(n), o(n), and s(n) for n odd and n < 100.
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The values of Φ(n), o(n), and s(n) for n odd and n < 100 are listed in
Table A.1.
It is possible to prove the following theorems [138] that

Theorem A.1 (Maximum period of the orbits of rules 90 and 150)
Let L be the length of the bit strings and let TL be the maximum period of
the orbit (attractor or Isle of Eden) of rules 90 and 150, then

1. If L is odd, then TL divides the quantity T ∗ = 2s(L) − 1, where s(L) is
the multiplicative suborder of 2 (mod n);

2. If L = 2n, then x = (00 . . . 0) is a global attractor;

3. If L is even but not of the form L = 2n, then TL = 2 · TL
2

Theorem A.2 (Maximum period of the orbits of rule 60) Let L be the
length of the bit strings and let TL be the maximum period of the orbit (at-
tractor or Isle of Eden) of rule 60, then

1. If L is odd, then TL divides the quantity T ∗ = 2o(L) − 1, where o(L) is
the multiplicative order of 2 (mod n);

2. If L = 2n, then x = (00 . . . 0) is a global attractor;

3. If L is even but not of the form L = 2n, then TL = 2 · TL
2

Theorem A.3 (Maximum period of the orbits of rule 105) Let L be
the length of the bit strings and let TL be the maximum period of the orbit
(attractor or Isle of Eden) of rule 105, then

1. If L is odd, then TL divides the quantity T ∗ = 2 · (2s(L)−1), where s(L)
is the multiplicative suborder of 2 (mod n);

2. If L is even, then TL divides the quantity T ∗
L = 2 · (2s(L

2 ) − 1)

It is important to notice that the parameter T ∗
L does not give necessarly the

maximum period TL of the orbits, because in general TL|T ∗
L; however, we

found experimentally that TL = T ∗
L for most L. The values of T ∗

L for rules
60, 90, 105, and 150 are given in Table A.2
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Table A.2: Values of T ∗
L for rules 60, 90, 105, and 150.
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cation case studies using CMOS 0.8µm CNN universal chip: Analogic
algorithm for motion detection and texture segmentation,” in Proc.
fourth IEEE International Workshop on Cellular Neural Networks and
their Applications (CNNA’96), Seville, Spain, June 24–26, 1996, pp.
363–368.

[44] G. L. Cembrano, S. Espejo-Meana, R. Domı́nguez-Castro, and
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programming for the CNN-UM,” in Proc. 10th International Work-
shop on Cellular Neural Networks and their Applications (CNNA’06),
Istanbul, Turkey, Aug. 28-30 2006.

[91] G. E. Pazienza, K. Karacs, and X. Vilaśıs-Cardona, “An automatic tool
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