
Theoretical Computer Science 403 (2008) 71–88

Contents lists available at ScienceDirect

Theoretical Computer Science

journal homepage: www.elsevier.com/locate/tcs

When – and how – can a cellular automaton be rewritten as a lattice gas?
Tommaso Toffoli a,∗, Silvio Capobianco b, Patrizia Mentrasti c
a Electrical and Computer Engineering, Boston University, United States
b School. Comp. Sci., Reykjavik University, Iceland
c Dip. di Matematica, Università di Roma ‘‘La Sapienza’’, Italy

a r t i c l e i n f o

Article history:
Received 9 December 2007
Received in revised form 21 April 2008
Accepted 23 April 2008
Communicated by G. Rozenberg

a b s t r a c t

Both cellular automata (CA) and lattice-gas automata (LG) provide finite algorithmic
presentations for certain classes of infinite dynamical systems studied by symbolic
dynamics; it is customary to use the terms ‘cellular automaton’ and ‘lattice gas’ for a
dynamic system itself as well as for its presentation. The two kinds of presentation share
many traits but also display profound differences on issues ranging from decidability to
modeling convenience and physical implementability.

Following a conjecture by Toffoli and Margolus, it had been proved by Kari that any
invertible CA, at least up to two dimensions, can be rewritten as an isomorphic LG. But
until now it was not knownwhether this is possible in general for noninvertible CA—which
comprise ‘‘almost all’’ CA and represent the bulk of examples in theory and applications.
Even circumstantial evidence – whether in favor or against – was lacking.

Here, for noninvertible CA, (a) we prove that an LG presentation is out of the question
for the vanishingly small class of surjective ones.We then turn our attention to all the rest –
noninvertible and nonsurjective – which comprise all the typical ones, including Conway’s
‘Game of Life’. For these (b) we prove by explicit construction that all the one-dimensional
ones are representable as LG, and (c)wepresent andmotivate the conjecture that this result
extends to any number of dimensions.

The tradeoff between dissipation rate and structural complexity implied by the
above results have compelling implications for the thermodynamics of computation at a
microscopic scale.

© 2008 Elsevier B.V. All rights reserved.

I do not know of any single instancewhere something useful for thework on lattice gases has been borrowed from the
cellular automata field. . .. Lattice gases differ in essence from cellular automata. A confusion of the two fields distorts
our thinking, hides the special properties of lattice gases, and makes it harder to develop a good intuition. (Michel
Hénon [16], with specific reference to Wolfram [41])

1. Introduction

Cellular automata (CA) provide a quickmodeling route to phenomenological aspects of nature—especially the emergence
of complex behavior in dissipative systems. But lattice-gas automata (LG) are unmatched as a source of fine-grained models
of fundamental aspects of physics, especially for expressing the dynamics of conservative1 systems.

∗ Corresponding author.
E-mail addresses: tt@bu.edu (T. Toffoli), silvio@ru.is (S. Capobianco), mentrasti@mat.uniroma1.it (P. Mentrasti).

1 A dynamics is called ‘conservative’ if it is the manifest expression of an invertible microscopic mechanism. It is called ‘dissipative’ if the underlying
mechanism is not invertible to begin with, or if its invertibility is de facto irrelevant because one is not capable, or willing, to maintain a strict accounting
of microscopic states—perhaps owing to lack of precise knowledge of the initial state and the evolution laws, unpredictable influences on the part of the
environment, or the sheer size of the task.

0304-3975/$ – see front matter© 2008 Elsevier B.V. All rights reserved.
doi:10.1016/j.tcs.2008.04.047

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector

https://core.ac.uk/display/82153357?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.elsevier.com/locate/tcs
http://www.elsevier.com/locate/tcs
mailto:tt@bu.edu
mailto:silvio@ru.is
mailto:mentrasti@mat.uniroma1.it
http://dx.doi.org/10.1016/j.tcs.2008.04.047

72 T. Toffoli et al. / Theoretical Computer Science 403 (2008) 71–88

In the quote at the beginning of this paper, onemaywell sympathizewithHénon’s annoyance: it turns out that dynamical
behavior that is synthesized with the utmost naturalness when using lattice gases as a ‘‘programming language’’ become
perversely hard to express in the cellular automata language. Yet, Hénon’s are visceral feelings, not argued conclusions.
With as much irritation one could retort, ‘‘How can lattice gases differ ‘in essence’ from cellular automata if they are merely
a subset of them?What are these CA legacies thatmay ‘distort our thinking’ and ‘hide the special properties of lattice gases’?
And aren’t there dynamical systems that are much more naturally and easily modeled as cellular automata’’?

Today, with the benefit of twenty years’ hindsight – and especially after the results of the present paper – we are in a
position to defuse the argument. Hénon’s appeal could less belligerently be reworded as follows: ‘‘Even though CA and LG
describe essentially the same class of objects, for sound pedagogical reasons itmay be expedient to deal with them in separate
chapters—or even in separate books for different audiences and applications. What is ox in the stable may well be beef on
the table’’.

The bottom line is that these two modeling approaches do not reflect mutually exclusive strategies, but just opposite
tradeoffs between the structural complexity of a piece of computingmachinery and its thermodynamic efficiency. By casting
essential aspects of dynamics in a precise formal context, it becomes possible to explicitly show why

• Total recycling of information waste can in principle be achieved even in noninvertible dynamics.
• At the same time, while waste is so easy to produce with simple machinery operating on a local scale, effective recycling

of waste may not be possible without very complex machinery insuring coordination on a wide-range scale. ‘‘Logic for
capitalists’’? (cf. [10].)

2. Preview

Let C and L be the sets of dynamical systems representable, respectively, as cellular automata and lattice gases. Our
overall question is, How are these two sets related? On one hand, we shall see that any lattice gas can be trivially rewritten
as a cellular automaton—hence L ⊂ C. As for the converse issue, i.e., how much of C is in L, let’s recall that C is naturally
partitioned into three classes which reflect fundamental categorical properties, namely,

descriptive name categorical property
C+ invertible injective and surjective
C◦ almost invertible noninjective but surjective
C− locally lossy noninjective, nonsurjective

According to a conjecture made by one of us in 1990 and proved by Kari in 1996 for up to two dimensions, the vanishingly
small class C+ of invertible cellular automata is definitely ‘‘in’’. For the other two classes, evidence has been lacking either
way2 —which is particularly irritating for such deceptively simple CA as the one consisting merely of a row of 2-input and
gates.

Herewe first dismiss, as definitely ‘‘out’’ for any number of dimensions, the vanishingly small classC◦ of almost invertible
CA—where, while the system as a whole loses in one step a nonzero amount of information, the amount of loss per site is
nonetheless zero.

What is left is the class C− of locally lossy CA; these lose in one step a nonzero amount of information per site. This class
comprises almost all cellular automata. Here we present a procedure for rewriting any one-dimensional C− CA into an LG
(which will have a more complex unit cell, consisting of two layers and spanning more than one site of the original CA). We
also show a procedure for a simple 2-D example. Work is in progress on an analogous construction (with a number of layers
that increases with the number of dimensions) hoped to be of general applicability.

On the basis of the above evidence, we propose the conjecture that – with the exception made for the paradoxical class
C◦ already dismissed above – the family of dynamical systems presentable as cellular automata and that presentable as lattice
gases coincide.

3. Background

Symbolic dynamics studies a class of dynamical systems which display topological continuity (reflecting locality of
interaction) and invariance under space and time translation (the regularity of a ‘‘spacetime crystal’’ [38])—and can thus
be viewed as discrete, locally-finite versions of the partial differential equations of field theories. For example, the local map
of a simple one-dimensional cellular automaton, which is a recurrence relation of the form

qt+1
x = f (qtx, q

t
x+1)

2 Except for second-order cellular automata, already proved ‘‘in’’ by us in 2004 (see Section 7.1), and a few other sporadic cases. Of course, for any CA
that was obtained from an LG as per Theorem 1, an LG presentation is automatically available.

T. Toffoli et al. / Theoretical Computer Science 403 (2008) 71–88 73

Fig. 1. A simple one-dimensional cellular automaton; this circuit can be thought of as a presentation of a dynamical system on the full shift [24,25]. For
concreteness, assume that the site state alphabet is binary and the local transition function at each site, denoted by a shaded gate, is a logic and; the gates
are fed by fanout (or ‘‘signal replicator’’) nodes, denoted by dots. Is there an equivalent lattice gas?

Fig. 2. Format of a simple one-dimensional lattice gas. Here we may imagine g to be an arbitrary function of two binary inputs, yielding as a result two
distinct binary outputs. No fanout of signals (cf. the fanout nodes of Fig. 1) is permitted. The labels a and b distinguish the two inputs as well as the two
outputs; they actually are labels for arcs rather than I/O ports.

is analogous to the well-known forward-time, forward-space finite-difference scheme [31, p. 13]

qt+1
x = g(qtx, q

t
x+1) = qtx + a

k
h
(qtx+1 − qtx)

for the differential equation
∂q
∂t

= a
∂q
∂x

;

see also the approach in [15]. (One must keep in mind that in a cellular automaton the state set for qtx is restricted to a finite
alphabet A, while for a differential equation it ranges over the whole continuum R. On the other hand, the local map f of
a cellular automaton is an unrestricted function of its arguments, while the corresponding map g of the finite-difference
scheme can only see its arguments through ‘‘small differences’’—qx+1 − qx, of the order of h, in space, and qt+1

− qt , of the
order of k, in time.)

Though symbolic dynamics systems are generally infinite, both cellular automata and lattice-gas automata manage to
provide finite algorithmic presentations for certain classes of them. These two kinds of presentation share a number of traits
but also display profound differences – on issues ranging from decidability to physical implementability – to the point that
one might suspect that CA and LG specify quite different kinds of dynamical systems (see the Hénon quote at the beginning
of this paper).

On the other hand, for a number of reasons, some empirical and some aesthetical, we’ve long entertained the notion –
the hope, if you wish, since the evidence was extremely scant either way – that in fact CA and LG just provide different
presentations for the same kind of objects. In other words, letting C denote the set of dynamical systems representable as
cellular automata and L the set of those representable as lattice gases, one may ask, How are C and L related? Are they
disjoint, partially overlapping, or even coincident? If the latter were true, how come that LG presentations of even the very
simplest CA are so hard to come by?

Take, for example, the simplest nontrivial CA, namely, a string of 2-input and gates fed by fanout nodes (Fig. 1). Until now,
no one had managed to exhibit a functionally equivalent LG or, contrariwise, prove that such an LG cannot exist! What’s
perhaps even more intriguing, this very question has never (as far as we know) been raised in the literature, even though
the analogous problem for invertible CA had been stated and made the object of a conjecture fifteen years ago [36] and then
positively solved in the ensuing decade [18]; and similarly, though more recently, for second-order CA [37]. Apparently,
everyone was just as clueless about the present simple and example as we ourselves were until yesterday.

Before proceeding further it will be convenient to informally recall the definition of ‘lattice gas’ and the structural
difference between cellular automata and lattice gases.

The simplest nontrivial3 LG have the format of Fig. 2. Instead of having, as in a cellular automaton (Fig. 1), a single output
from each node and making as many copies of it as necessary to ‘‘fan it out’’ to the nodes that at the next time step will
use it as an input, a lattice gas does not make use of signal fanout; instead, each node has as many outputs (these may have
different values, not just copies of the same one) as it has inputs. More precisely, for a CA of state alphabet A and number
of neighbors n the local map is of the form f : An

→ A. In an LG, on the other hand, the state alphabet has the structure
A = A1 × A2 × · · · × An (the factor alphabets A1, . . . , An need not have the same number of elements), and the local map
has the form g : A1 × A2 × · · · × An → A1 × A2 × · · · × An, with no fanout required or permitted.

Aswe shall see in Theorem1, lattice-gas automata can be thought of as a special case of cellular automata. Theywere used
(without being given a special name) by Toffoli in [32,33] and then extensively investigated by Margolus and Toffoli [26,
35,36]; one term used at that time was ‘partitioning cellular automata’. In 1985, a rudimentary CA model of fluid dynamics

3 A CA is trivial if it has a neighborhood of size 1, and thus, up to a translation, the dynamics decomposes into identical independent dynamics for each
site.

74 T. Toffoli et al. / Theoretical Computer Science 403 (2008) 71–88

Fig. 3. A CA presentation of the system described by the LG of Fig. 2. Both a and b, bundled together as q, are duplicated by the fanout nodes, but then one
copy of each (starred) is ignored by g ′ , which in this way effectively acts just as g .

discovered independently by the latter research program turned out to be quite similar to one proposed a few years before
by the hydrodynamicist Yves Pomeau and colleagues; in turn, this convergence soon stimulated awhole industry of ‘‘lattice-
gas hydrodynamics’’ research (see [36] for references). At that time, since the term ‘lattice gas’ had already been used for
sundry discrete models of fluid dynamics, it became customary to call those special cellular automata ‘lattice-gas automata’
or simply ‘lattice gases’; the term ‘block cellular automata’ is also in common use. The no-fanout constraint is used with the
same meaning, though in an independent line of research, in Girard’s linear logic [14]. There, as here, multiple uses require
explicit duplication, with all the costs (in infrastructure or running expenses) that may entail (see also [3]).

The prototypical event in a lattice gas is the collision of abstract tokens or ‘‘particles.’’ In many practical cases this may
involve a mere reshuffling of them. A generalization of this process is when what is permuted are not the particles but the
states of the input tuple (a reshuffling of particle is then the special case of a permutation of the indices of this tuple); this
‘‘transmutation’’ may be visualized as the creation, out of the collision of particles, of an ‘‘excited state’’ (corresponding to a
lattice-gas node), which on decaying releases particles that may differ from the original ones.

Note that in Fig. 1 aswell as Fig. 2 the state qt of the system at time t is the infinite collection of signals crossing the dashed
line t . The combinational-logic diagram drawn between the two dashed lines constitutes a presentation of the dynamical
system, that is, a way to indicate by an explicit, locally-finite algorithm the functional dependency of the state at time t + 1
on that at time t . Namely, for the CA of Fig. 1, using i as a sequential site index, the algorithm specifies that

qt+1
i = and (qti , q

t
i+1);

different presentations are of course possible for the same system. In the LG of Fig. 2, the state-component at each site
consists of a pair of signals, labeled a and b, and the local algorithm specifies that

at+1
i = ga(ati , b

t
i+1) and bt+1

i = gb(ati , b
t
i+1).

Either in a CA or in an LG the presentation may consist of any finite number of combinational-logic layers, as in Fig. 5, rather
than a single layer as in the previous two figures, each layer obeying the respective discipline for a CA or an LG.

Finally, two dynamical-system presentations are equivalent (or conjugate [24]) if the systems they describe are
isomorphic—the presentations are ‘‘merely different views of the same underlying object’’. Note that, in rewriting a CA as an
LG, for the latter to be equivalent to the former in the strict sense used here one is not permitted to introduce supplementary
variables, or ‘ancillae’, to be used as a scratchpad for intermediate computations (cf. [34] and [5]); one must make do with
whatever state-variables are already available to each site.

To anticipate Section 12, we mention here that the above distinction between CA and LG makes a vital difference when
one turns to the physical implementation of an algorithm. Even in ideal conditions, a fanout node – which creates copies
of a signal – needs by its very nature a source of energy to operate; moreover, as Landauer argued in [21], energy is then
turned into heat when signals are erased, discarded, or destroyed – as in the and gates of Fig. 1, which take in two binary
lines but only put out one. In this sense, CA provide – for the same functionality – cheaper mechanisms than LGs: they are
easier to fabricate (as we shall see in a moment), but need a power source to operate.

From the above definitions, one can see that

Theorem 1. Any LG is immediately rewritable as a CA.

Proof. We use the LG of Fig. 2 as a specific example, but the construction method is fully general; starting with that LG, we
gradually modify it into a CA. Represent the pair of signals 〈a, b〉 leaving or entering a node as a single signal q = 〈a, b〉 (if
a ∈ A and b ∈ B, then q ∈ A× B). With reference to Fig. 3, as soon a signal q at site i crosses the time line t we put it through
a fanout element to obtain two copies of it, and feed one copy to the node (embodying a function g ′) at site i and the other
to that at i − 1. A node receives, through inputs qi = 〈ai, bi〉 and qi+1 = 〈ai+1, bi+1〉), one a input from site i + 1 and one b
input from site i – just like a node g of Fig. 2 – as well as two extra inputs, namely, one b from site i+ 1 and one a from i. We
define g ′ as the function which ignores the latter two inputs (starred, in the figure) and otherwise acts identically to g . The
resulting system is a CA isomorphic to the original LG. �

The outcome of this is that, despite the difference in presentation, the functional dependence of the global state at t + 1
on that at t is the same in both Fig. 2 and Fig. 3. Clearly, transcribing from an LG format to a CA one is easy; how hard is the
opposite direction?

We shall now draw a rough chart of the area we intend to explore; this area need not extend beyond C since, by
Theorem 1, all of L (whatever its extent may turn out to be) is contained in C.

T. Toffoli et al. / Theoretical Computer Science 403 (2008) 71–88 75

(1)

In diagram (1) the class C of symbolic dynamics systems presentable as cellular automata is shown partitioned into
four subclasses according to whether or not a system is surjective (or ‘‘onto’’) and whether or not it is injective (or ‘‘one-
to-one’’). This classification, which is of a fundamental category-theoretical nature, dates back to the earliest attempts to
deal with cellular automata from a mathematical (rather than merely phenomenological) viewpoint [28,29]. The diagram’s
proportions remind one that surjective systems represent a vanishing fraction of the entire class, or a subset of measure
zero—in the sense that, as one increases a cellular automaton’s complexity in terms of size of the state alphabet and of the
neighborhood, the fraction of cellular automata that are surjective goes to zero; similarly for injective systems.

It turns out that there are no cellular automata that are injective but not surjective [30]; we indicate this by graying out
the corresponding area, which henceforth will no longer be of concern to us. Thus, injective CA make up a vanishing subset
not only of the whole set but also of even just the surjective ones.

We shall denote byC+ theminuscule class of systems that are both surjective and injective, called invertible (or, in physics,
‘‘microscopically reversible’’). As we mentioned in Section 2 and shall more amply discuss relate in Section 5, any invertible
cellular automaton – at least up to two dimensions – can indeed be rewritten as a lattice gas; thus, at least up to 2-D, all of
C+ is in L.

In Section 6 we discuss the class C◦ of almost invertible cellular automata – those that are surjective but not injective –
and we prove that, for any number of dimensions, none of C◦ is in L.

What is left is the class C− of locally lossy cellular automata—that is, those that, not being especially marked as invertible
or surjective, are (as one used to say) in ‘‘general position’’ (we’ll give amore concrete characterization of them in amoment).
These,whichmake up the bulk of all cellular automata, are this paper’smain concern. Only a feware known to be presentable
as lattice gases. Here we show, by means of an explicit construction, that all one-dimensional cellular automata of this class
are so presentable, and indicate how this construction might be extended to multidimensional systems. On the basis of this
evidence, we conjecture that any cellular automaton, with the exception of those of class C◦, can be rewritten as a (possibly
much more complicated) lattice gas; in other words, that L = C+

+ C− (cf. diagram (1)).
In brief, concerning what parts of C are in L,

• C+ is ‘‘in’’ (proved by Kari [18] up to 2-D).
• C◦ is ‘‘out’’ (proved here).
• C− is ‘‘in’’ (proved here for 1-D; conjectured here for the general case, with an actual working 2-D example; the latter

provides a plausible outline for a general proof).

4. Local recognition criteria for C+ and C−

The categorical characterization of an invertible CA according to diagram (1) – that it be surjective and injective, that
is to say, that every global state (or configuration) must have one and only one predecessor – is rather impractical, since
configurations are countably infinite objects and their number is uncountably infinite.

In [36] we had provided a practical local criterion for recognizing invertibility—one that involved only local maps applied
to a finite number of sites; namely,

Lemma 1. There is an effective procedure for deciding, for any two local maps f and f ′, whether the corresponding global maps
F and F ′ are inverses of one another.

In a similar vein, our term ‘‘locally lossy’’ for a noninjective, nonsurjective CA reflects the following practical local criterion
(Lemma 2), which is the only one that we’ll have a need for in this paper, and which likewise involves only a CA’s local map
applied to a finite number of sites.

In both cases, we feel that the reader may gain more immediate access to the arguments and constructions discussed
below by taking the local recognition criterion as the very definition of the kind of system in question, and the categorical
properties as an equivalent, more elegant but more remote, characterization.

76 T. Toffoli et al. / Theoretical Computer Science 403 (2008) 71–88

We recall that the neighbors of a site i are those sites from which the local map f takes its arguments at time t in order
to compute i’s new value for time t + 1. The neighborhood4 X is a function which, when applied to a site i, yields the site’s
neighbors i+ j0, . . . , i+ jh; it can thus be thought of as the collection j0, . . . , jh of these offsets. (In d dimensions, sites i and
offsets j are represented by d-tuples.)

We shall call patch any collection of sites, and pattern the collective state of a patch. If I is a patch, X(I) is defined in the
obvious way as the union of the neighborhoods X(i) for all sites i of the patch. When X is understood we write Ī for X(I)
and call it the (causal) closure of I—as it consists of all those sites the knowledge of whose state may be needed5 in order to
determine the new state of I . Just as f maps the state of the neighborhood ī of a site i to that of the site itself, so does the
induced function f (I)

: AĪ
→ AI , which is but a spatial iterate (a convolution) of f , map the state of a patch’s I closure, Ī , to

the state of the patch itself. When the patch I is understood, there will be no need to distinguish between f and f (I). The
global map F of a cellular automaton of local map f is f (Zd), where Zd represents the entire infinite d-dimensional array of
sites. If p is a pattern on a patch I , then I is the support of that pattern. A pattern P that has no predecessors, i.e., for which
the equation f (P ′) = P has no solutions, is called an orphan pattern.

We define a cellular automaton locally lossy if it has finite orphan patterns, that is, if for some finite set of sites I the
application of f to Ī fails to yield all possible states for I itself.

Lemma 2. A cellular automaton is locally lossy iff it is not surjective.

Proof. If in a CA there is a finite patch I that has an orphan pattern, then any configuration containing this pattern is itself
an orphan—and thus the CA is not surjective.

To prove the converse, i.e., that the CA is surjective if there are no finite orphan patterns, assume that the CA is not
surjective, and thus has a configuration C with no predecessors under the global map F . Take a sequence C0, C1, . . . of finite
patterns each containing the preceding one, all agreeing with C on their respective supports, and such that these supports
cover the whole space of sites. If there are no finite orphans, each pattern Cj will have, on the closure of its support, at
least one predecessor that we’ll call Bj. If we extend in any manner Bj to the entire space we get a configuration, Kj. The
sequence K0, K1, . . . being defined on a compact space,6 has at least one accumulation point K , and from it one can extract a
subsequence Kj0 , Kj1 , . . . that has K as its limit. By construction, F(Kjn) coincides with C on the support of Cjn ; by continuity,
F(K) = C , which contradict the absurdum hypothesis that C had no predecessors. (This proof is patterned after one by
Fiorenzi [12, Prop. 3.2.7].) �

See footnote 9 for ties to other equivalent characterizations.
We use decidable as a synonym for ‘recursive’, and semidecidable for ‘recursively enumerable’. A consequence of Lemma 1

is that the class C+ is semidecidable. Similarly, Lemma 2 implies that the class C− as well is semidecidable. From this, it
follows that the classC◦ itselfmust be not only undecidable, but also not even semidecidable. In fact, ifC◦ were semidecidable,
all three classes C+, C◦, and C−, which make up a partition of the universe C , would be decidable. But C+ had been proven
undecidable by Kari [17], which leads to a contradiction!

We shall call regular a cellular automaton for which either invertibility or noninvertibility is eventually recognizable by
local means (cf. Section 4), and thus one of class C+ or C−, and singular one that is not recognizable in that way, and thus
of class C◦. The results of this paper will make this terminology particularly suggestive (see Proposition 2).

5. Invertible cellular automata

The state of the art in invertible cellular automata was first reviewed in [36]; to avoid much repetition, we assume some
familiarity with that material and with Kari’s recent follow-up [20]. In the first of those two papers, one of us conjectured
that all invertible cellular automata can be rewritten as lattice gases. This conjecture was subsequently proved, by Kari
[18] for up to two dimensions7; this in spite of the undecidability of invertibility itself.8 This undecidability nevertheless
extracted a steep price; namely, there can be no computable upper bound to the increase in complexity (in terms of size
of the state alphabet and of the neighborhood) in going from a cellular automaton to a functionally equivalent lattice gas.
What this means in practice is that, though an invertible cellular automaton can always be emulated by a lattice gas, the
latter may need arbitrarily more complex machinery per site.

A strictly analogous undecidability issue applies to the present quest for lattice-gas counterparts of locally lossy cellular
automata, and consequently we must expect analogous complexity tradeoffs.

4 Also called neighborhood function, neighborhood index, or neighborhood template.
5 At least for some f having that neighborhood.
6 The configurations set of a CAwith the natural product topology is compact by Tychonoff’s theorem.Moreover, the globalmap of a CA is by construction

continuouswith respect to this topology.
7 A later paper by Durand–Lose [8] addressed the conjecture in the general case, and actually gave a construction for any number of dimensions. That

construction, however, only provides an embedding rather than an isomorphism; in other words, it makes use of ancillary variables (see the considerations
preceding Theorem 1). Though the resulting system is indeed an invertible LG, its state set is augmentedwith respect to that of the original CA; the ancillary
variables themselves must be given specific initial values to guarantee correct behavior.

8 The invertibility of a dynamical system on the basis of its presentation as a cellular automaton is undecidable—though semidecidable [36].

T. Toffoli et al. / Theoretical Computer Science 403 (2008) 71–88 77

6. Almost invertible cellular automata

Here we use, for the class C◦ of surjective but not invertible cellular automata, the mnemonic almost invertible. In fact,
invertible cellular automata (class C+) do not lose information at all, while locally lossy cellular automata (class C−) lose
in one step a nonzero amount of information per site. On the other hand, the automata of class C◦, while not information-
lossless, lose in one step such a small amount of information over the entire infinite array of sites that the loss per site is zero
just as in the invertible case.9

The simplest example is obtained by replacing the and gates of Fig. 1 with xor gates. In that case every infinite
configuration has exactly two predecessors, as in

· · · 000001111 · · ·
↘

· · · 111110000 · · ·
↗

· · · 000010000 · · ·

and thus the dynamics loses just one bit of information per time step over the entire array.
Our question in this section is what part of C◦ is in L, that is, which almost invertible cellular automata can be rewritten

as lattice gases.
For the purposes of mathematical analysis, a chief advantage of a lattice-gas presentation of a dynamical system over a

cellular-automaton presentation is that, with the former, the system directly inherits certain categorical properties that can
be ascertained, by mere inspection, on the presentation itself. Namely,

Lemma 3. If a shift dynamical system admits of a lattice-gas presentation, then it is injective (resp. surjective) if and only if every
node of the lattice gas is.

Proof. First let us observe that if S is a Cartesian product of finite sets and F is a componentwisemap on S, that is, S =
∏

i∈I Si
and (F(s))i = fi(si), then F is surjective iff each of the fi is surjective. In fact, if fi(Si) = Si for all i, then F(S) = S; if, on the
contrary, xi ∈ Si \ fi(Si) and (s)i = xi, then s ∈ S \ F(S). This is also true for injectivity: there can be two s’s with the same
image under F if and only if there are two si’s with the same image under fi for some i.

We’ve seen in Section 1 that, in a lattice gas, the state alphabetA is the Cartesian product ofn factor alphabets,A1×· · ·×An.
In turn, the state set for the entire system is= AZd

, where d is the number of dimensions of the site array. Using Fig. 2, where
d = 1 and n = 2, for sake of illustration, we can write S as

S = · · · × A1 × A2︸ ︷︷ ︸
x−1

× A1 × A2︸ ︷︷ ︸
x

× A1 × A2︸ ︷︷ ︸
x+1

× · · ·

where x is the site index. Even though it is true that the local map g maps A1 × A2 into A1 × A2, one may observe that, while
output 1 of site x is used as input 1 of the same site, output 2 of site x is used as the input 2 of the preceding site, x − 1,
and so forth. In general, the signal transport operation denoted by the arrows performs a reshuffling of homologous state
components between neighboring sites. This local coordinate reshuffling, fromwhich there ensues at the global level amere
state reshuffling within S, is obviously invertible, and thus immaterial for the sake of injectivity and surjectivity. The thesis
follows from the previous observation. �

Now, for a finite set – like the state alphabet A of a lattice gas – it is evident by the pigeonhole principle that a
transformation f on it cannot fail to be injective without failing to be surjective as well, and vice versa; that is, if there
is a point of A that is not in the image of f , then there must be some other point that has two counterimages. Thus a lattice
gas can only be either both injective and surjective — that is, invertible – or neither – that is, locally lossy. We thus have that
L ⊂ C+

∪ C−, or

Theorem 2. No almost invertible cellular automaton can be rewritten as a lattice gas.

7. Locally lossy cellular automata

All that is left at this point is determinewhich locally lossy cellular automata (these, aswe’ve remarked, comprise virtually
all cellular automata) can be rewritten as lattice gases. There is little in the literature to guide one in this task.

7.1. Second-order cellular automata

Indeed the only systematic result concerns second-order cellular automata, where the new state of a site x at time t + 1
depends not only on the state at time t of a number of neighboring sites but also on the state at time t−1 of x itself, as in Fig. 4.
Of course, these can be rewritten as ordinary (i.e., first-order) cellular automata by means of a transformation analogous
to the Legendre transform of classical mechanics: the second-order ‘‘Lagrangian’’ system with state set Q (the solid lines

78 T. Toffoli et al. / Theoretical Computer Science 403 (2008) 71–88

Fig. 4. A second-order cellular automaton. This example is in one dimension and has three neighbors per site (‘‘left’’, ‘‘center’’, and ‘‘right of right’’), besides
an input from the previous time, indicated by a dotted line. Alternatively, the dotted signal can be thought of as a second state-component, and the system
viewed as a first-order one with two coupled equations, like a Hamiltonian system.

Fig. 5. Overall structure of a lattice gas representing a system isomorphic to that of Fig. 4. Note that each lattice gas node straddles four sites, and that it
takes four layers of nodes to process one time step.

traversing time t in the figure) is viewed as a first-order ‘‘Hamiltonian’’ system with state set P × Q (the Q component is
denoted by the dotted lines as they traverse time t).

In our 2004 paper [37] we showed that all second-order cellular automata, invertible or not, can be rewritten as lattice
gases. For example, the cellular automaton of Fig. 4 can be rewritten as a lattice gas having the format of Fig. 5. There, each
of the shaded blocks is a very simple 8-input, 8-output logic function (most signals happen to go through it unchanged), and
the overall complexity of themachinery per site and time step is notmuch larger than that of the original cellular automaton.
Note that each lattice-gas node straddles four of the original cellular-automaton sites, and it takes four layers of nodes to
process one time step. Thus, the structure of the LG repeats itself only every four sites and every four layers. However, the
function computed by the lattice gas is translation-invariant for shifts of a single site, just as the original cellular automaton.
That is, we achieve a dynamical law having a given spatial regularity in spite of using a mechanism whose regularity pitch
is four times as coarse!

The straddling of several sites and the attendant coarsening of the structure’s translation group is a general feature of
lattice-gas presentations vis-à-vis cellular automata presentations—it is, as it were, the price one has to pay to be able to
sense many neighbors without making recourse to signal fanout. In the case of second-order cellular automata, the pitch
ratio (4, in the present example) coincides with the span of the neighborhood10; in general, though (and, specifically, in
the case of invertible cellular automata), the pitch ratio is an unbounded function of the cellular automaton’s complexity,
owing to the undecidability mentioned in Section 5. Thus one must expect to find cellular automata for which the simplest
lattice-gas counterpart, if one exists, has an arbitrarily larger andmore complex ‘‘unit cell’’ (cf. [38]) than the original cellular
automaton. We shall see that this is also the case with locally lossy cellular automata, and touch upon the concrete reason
why.

9 This is just a more intuitive way of stating Moore and Myhill’s classic theorem [28,29], namely, that (in Maruoka and Kimura’s terms [27]), a cellular
automaton’s global map is surjective if it admits of no erasable patterns. See Calude’s section ‘‘Randomness in cellular automata’’ [6, 9.5] for a review and
consolidation of these concepts.
10 In more than one dimension, this ‘‘ratio’’ will be a vector with one component for each dimension.

T. Toffoli et al. / Theoretical Computer Science 403 (2008) 71–88 79

Fig. 6. Here the cellular automaton of Fig. 1 has been sliced into four-site segments, and each segment lumped into a lattice-gas node.

Fig. 7. Adding a second layer of nodes to bridge the gaps left from the first layer (cf. Fig. 6). Unfortunately, the lone and gate on the second layer gets its
right-neighbor signal as it will be at time t + 1, rather than as it was at time t .

7.2. When information loss helps

We shall now sketch in an intuitive way the argument on which our proof and conjecture rest. Let us go back to the
‘‘and’’ cellular automaton of Section 3 and attempt to transform it into a lattice gas. A naive approach would be to cut it up
into segments of, say, four sites each, and turn each segment into a lattice-gas node, as in Fig. 6. In this way, the neighbor
links that used to connect adjoining segments are severed11: neighbor data coming out of the left of each segment are lost,
while the right input to the rightmost gate of each segment remains unspecified. We may force this input to a constant
value—say, 1.

We have now obtained a lattice gas with 4-input, 4-output nodes each straddling four of the cellular automaton sites.
The picture inside each node – the and gate and the fanout junction – is merely a reminder of what function the node is
supposed to compute, not a representation of its internal structure. In fact a lattice-gas node, like any logic gate, has no
internal structure at all associated with it—only an assigned correspondence (onemay think of it as a lookup table) between
input and output states. Specifically, no actual fanout (in some presumed internal mechanism?) is implied by the use of
fanout icons in the picture.

Moreover, the data transformation performed by this lattice gas from time t to t +1 is clearly identical to that performed
by the original cellular automaton—except for each node’s rightmost output (markedwith a star), which just echoes the input
from the corresponding sitewithout and ing itwith its right neighbor. Our next taskwill be to fix this problemwithout giving
up the lattice-gas format.

In order to avoid ‘‘lateral’’ transmission of information within the same layer (which is against the rules for an LG—and
indeed it would create a path for instantaneous transmission of information across infinite distances) we may try to add
a second layer to the lattice gas, with the nodes of this layer bridging the gaps left from the first layer, as in Fig. 7. In this
way, the lone and gate on the second layer does get, as intended, a right-neighbor signal as well as a center signal. However,
while the center signal is that of time t , as desired, the right-neighbor signal has already been processed by the first layer
and thus has the state it will display at time t + 1. We do get an LG, it is true, but still one with the wrong dynamics!

To obviate the above problem, we could get the right-input to the second-layer gate by tapping line a ahead of first-layer
processing, at a′, so as to forward a copy of this as-yet-unprocessed signal (dotted line) directly to the second layer, as in
Fig. 8. In thiswaywe certainly obtain the right dynamics – that of Fig. 1 – between t and t+1, but the interveningmechanism
is no longer a lattice gas! In fact, the first-layer nodes have four binary input lines but five output lines – and vice versa for the
second-layer nodes – while we had postulated (in Section 1) that lattice-gas nodes should have equal input and output state
sets. Intuitively, to perform a transformation involving four state variables, we have taken the liberty here of introducing ex
nihilo a fifth state variable, for intermediate storage. From a physical viewpoint, the dynamics relies on external degrees of
freedom and is no longer self-contained.

Fortunately, there is one feature that hasn’t yet been brought into play; namely, that we are dealing with the class of
nonsurjective cellular automata, which lose information on a local basis—that is, a nonzero amount per site. Specifically,
even as the input lines at time t range over all possible combinations of binary states, not all eight possible states for lines
a, b, c will actually be produced; in fact, one may verify that, with the given dynamics, state 101 will never appear at the
output. In other words, in going from time t to t + 1 with the and rule, the 3-bit ‘‘channel’’ 〈a, b, c〉 is not utilized at full

11 By definition, a distributed dynamical system cannot have ‘‘lateral’’ transmission of information – that is, between nodes that belong to the same
time slice – because that would introduce infinite regress (‘‘infinite speed of propagation of information’’) and thus leave the global state under- or over-
determined.

80 T. Toffoli et al. / Theoretical Computer Science 403 (2008) 71–88

Fig. 8. Here we tap the state of the a line at a′ – ahead of first-layer processing – and forward it (dotted line) directly to the second layer.

Fig. 9. To avoid running an additional signal line between first and second layer, in the first layer we use an encoder φ to squeeze the dotted signal into the
underutilized channel provided by the next k sites, and in the second layer a decoder φ−1 to get this signal back out.

capacity. Can one use the spare capacity to transport some unrelated information? For instance, that now carried by the
dotted line in Fig. 8?

To this purpose, let us set up a two-layer lattice gas just as in Fig. 8, but with a k-site wide channel, with k to be chosen
large enough to provided the required capacity. As shown in Fig. 9, in the first layer a (k+1)-to-k encoder φ will squeeze the
extra signal (dotted line) together with the k underutilized signal lines into k better utilized lines; conversely, in the second
layer a k-to-(k+1) decoder φ−1 will separate the extra signal from the other k signals and deliver it to its destination gate.
Such a coder/decoder pair is termed, in the trade, a codec.

What is theminimum codecwidth k for the given and-rule CA? For a first rough estimate, let’s observe that by taking one
step of the and rule starting from themaximally random ensemble U0 of configurations, which has an entropy of one bit per
site, we obtain an ensemble U1 where at any site a 1 will appear with a probability of 1/4. The entropy per site η of this new
ensemble will be nomore than 1/4 lg2 4+3/4 lg2 4/3, or≈ .811 (row 1 of Table 1)—and possibly somewhat less because of
local correlations. In fact, a tabulation of η for blocks of increasing length n allows us to estimate an actual entropy density
of approximately .7 bits/site, and thus an entropy defect of about .3 bits/site. This is the spare ‘‘channel capacity’’ per site of
the and CA thought of as an infinite array of binary lines filled with a noise distribution S1.

This very crude level of analysis tells us that the width of the encoder may have to be of the order of k = 4—since with
a .3 bit/site capacity it would take at least 4 sites to squeeze through one extra bit. A more precise analysis must take into
consideration two additional factors:

1. We want a finite, deterministic encoder, which cannot tolerate errors and yet cannot, as in Shannon’s theory, fix errors by
sharing resources with adjacent blocks. In our case, a more appropriate quantity than the entropyH of a random variable
is the variety V of a function. Intuitively, variety corresponds to the number of distinct values that the function takes over
its domain. Like entropy, variety is customarily expressed on a logarithmic scale [2] in an appropriate base (we shall be
using base 2 for the moment). The (logarithmic) variety V (y) of the output k-tuple y = 〈a, b, . . . , z〉, when the k + 1
inputs to a block at time t range over all their possible 2k+1 values, is given by column V of Table 1. We see that only for
k = 8 does the variety of the ‘‘new state’’ drop below 7 (the boldface value 6.83 on row 8), thus leaving enough space for
one extra bit (for example, a′) to be squeezed by the encoder into the same k lines.

2. On the other hand, a′ is in general to some extent correlated with the y k-tuple, since a′ is part of y’s ‘‘cause’’. Thus we
may expect that a′ may contribute less that one bit of additional variety to the (k + 1)-tuple 〈a′, a, b, . . . , z〉. In fact, it
turns out that in our case the variety V ′ of the (k + 1)-tuple 〈a′, a, b, . . . , z〉 drops to no more than k already for k = 4
(boldface value 4 for V ′ on row 4). That is the threshold we were looking for!

We conclude that, for the CA in question, an equivalent LG presentation with two layers of blocks of width n = k+1 and
an appropriate codec of width k is possible as soon as k ≥ 4.

T. Toffoli et al. / Theoretical Computer Science 403 (2008) 71–88 81

Table 1
Total entropy H , entropy density (per site) η, and variety per site V of the output pattern of width k produced in one step by the ‘‘and’’ cellular automaton
of Fig. 1 from a maximally-random input neighborhood of width k + 1

k H η V V ′

1 0.81 .811 1.00 1.58 2
2 1.55 .774 2.00 2.32 3
3 2.25 .750 2.81 3.17 4
4 2.95 .737 3.58 4.00 5
5 3.65 .730 4.39 4.81 6
6 4.35 .725 5.21 5.61 7
7 5.05 .721 6.02 6.43 8
8 5.75 .718 6.83 7.24 9
9 6.45 .716 7.64 8.05 10

10 7.15 .715 8.46 8.86 11
11 7.84 .713 9.27 9.67 12
12 8.54 .712 10.08 10.48 13
13 9.24 .711 10.89 11.30 14
14 9.94 .710 11.70 12.11 15
15 10.64 .709 12.51 12.92 16
16 11.34 .709 13.32 13.73 17

The last column, V ′ , gives the variety when the output k-tuple is augmented by the input signal a′ (see Fig. 9). Note that, because of internal correlations,
this extra binary line only adds about 1/2 bit of variety.

8. The one-dimensional case in general

The foregoing construction was given for a simplest nontrivial CA (cf. Section 3), which (a) is one-dimensional, (b) uses
a 2-state alphabet (the Boolean values 0 and 1), (c) has a 2-element neighborhood template (consisting of the two offsets 0
and 1), and (d) uses the and function as a local map on this neighborhood.

Here, while remaining within one dimension, we shall generalize that construction to any state alphabet A, neighborhood
X , and local map f . In subsequent sectionswe shall pursue themost general goal along these lines, i.e., a constructionmethod
that applies to any number of dimensions.

In one dimension, the diameter of the neighborhood is the distance between leftmost and rightmost neighbors, or jh − j0.
(In the and CA used in Section 7.2 the offsets were 0 and 1 and thus the neighborhood diameter was h = 1 − 0 = 1.) A
neighborhoodmay be sparse, in the sense that some offsets between the lowest and the highest are missing; the diameter is
not affected by sparseness. Henceforward, without loss of generality, we shall assume that the neighborhood is not sparse
(gaps may always be filled by dummy neighbors), and shall add a constant to all offsets so as to make the least offset 0. With
this convention, the neighborhood diameter coincides with the highest offset h, where h + 1 is the number of neighbors.

The construction template we propose below for the general one-dimensional case, illustrated by the sequence of steps
of Fig. 10, has two adjustable parameters. The first is the neighborhood diameter h; the second, the codec size k (i.e., the
number of sites spanned by it). The corresponding block size will be n = k + h.

In Fig. 10 we have used two conventions to avoid clutter. First of all, instead of having h + 1 neighbor wires converge
onto a gate as inputs (as, for instance, in Fig. 4), we have retained a separate wire only for the neighbor of offset 0; all other
h neighbors are picked up by a side extension of the gate itself which senses them but also lets them go through, so that
they may be sensed in turn by all the gates of which they are neighbors. We thus have a notation suggestive of a cross-point
matrix connecting vertical ‘‘source’’ wires to horizontal ‘‘destination’’ wires. This notation is standard in reversible logic [34]
and quantum computing [4]. Secondly, instead of indicating an indeterminate number of repetitions of a certain feature
(such as the circuitry of one site) by explicitly giving the first and the last occurrence of the feature and implying all the
intermediate occurrences by ellipsis dots (‘‘. . .’’), as in Fig. 9, we imply the intermediate occurrences by a single grayed-out
icon, as well as a brace indicating how many occurrences are intended in all. Thus, the h neighbors of a site (not including
the site itself, or neighbor 0) are indicated by an icon for neighbor 1, one for the last neighbor h, and a single grayed-out icon
standing for the remaining h − 2 neighbors.

For the construction to work as intended, the k lines running from the encoder φ in the first layer to the decoder φ−1

in the second must be able to carry, distributed among themselves, not only the corresponding k new states just computed
within the first layer, but also information about the old state of the leftmost h of those k sites, which is still needed for
updating h left-over sites in the second layer. The encoder must be wide enough for this purpose. To show that a k large
enough to provide the required extra capacity can always be found we shall be making use of Fekete’s lemma [11], which we
restate here in a form similar to that used by van Lint and Wilson [39].12

Lemma 4 (Fekete). Let g : N → R+ be a function for which g(i + j) ≤ g(i)g(j) for all i, j ∈ N. Then limi→∞ g(i)1/i exists and
equals infi≥1 g(i)1/i.

12 As remarked by a referee, if one is not only told that the CA is locally lossy but is also presented with a specific orphan pattern, then, instead of the
existential proof represented by Fekete’s lemma one can directly home in on a bound by using an argument analogous to Moore’s [28].

82 T. Toffoli et al. / Theoretical Computer Science 403 (2008) 71–88

Fig. 10. General template for converting into a two-layer lattice gas an arbitrary one-dimensional locally lossy cellular automaton. The dome-like ‘‘gate’’
denotes the local map f . The parameter h is the neighborhood diameter; k is the size of the codec, and n = k + h the block size. Note how, in the second
layer, neighbor inputs other than the 0 neighbor are not taken from the new-state lines but from the corresponding old-state lines, which had been store-
and-forwarded from the first layer. Notation conventions are explained below.

Theorem 3. Any one-dimensional locally lossy cellular automaton can be rewritten as an isomorphic lattice gas.

Proof. Consider a one-dimensional CA of state alphabet A of cardinality a, neighborhood X of diameter h, and local map
f : AX

→ A.
Given a patch I and its closure Ī , for any state x ∈ AĪ the local map f will determine the corresponding new state y = f (x)

(with y ∈ AI). Observe that, if the CA is not trivial, at least one state of I must have more than one pre-image among the
states of Ī . On the other hand, theremay be states of I that do not arise from any state of Ī; these are I ’s orphans. By definition,
a CA is locally lossy if for some i the corresponding patch I has orphans.

Let us denote by g(i) the variety of the range of f , that is, the number of distinct states for I that actually arise from
y = f (x) as x runs over f ’s domain, AĪ . Consider now two adjacent patches, I and J , spanning, respectively, i and j sites, and
their juxtaposition IJ of length i + j. If the I portion of a pattern on IJ happens to be an orphan of I , then that entire pattern is
an orphan for IJ , immaterially of whether or not the J portion of it is an orphan for J . It immediately follows that g(i+ j) can
be at most as large as g(i)g(j), and Fekete’s lemma as given above applies verbatim.

If we now express variety in a logarithmic fashion (see Section 7.2) using a for a base – that is, if variety is represented by
the quantity v(i) = loga g(i) – then the appropriate form of Fekete’s lemma to be applied to this quantity is the sub-additive
(rather than sub-multiplicative) one, that is,

v(i + j) ≤ v(i) + v(j) =⇒ ∃η∈R lim
i→∞

v(i)/i = inf
i>1

v(i) = η.

Since the variety v(i) is in any case comprised between i (when the range of f is all of ai) and 0 (when all of I ’s neighborhood
states map into one and the same state for I), the above limit η is a number between 0 and 1.

For the construction of Fig. 10 to work, the k lines of the codec (which collectively have a variety capacity of k) must be
able to distinguish between all effectively occurring combinations of values for the new state of k sites together with the old
state of the adjacent h neighboring sites. Therefore, the joint variety k̃ of all these combinations must not exceed the variety
capacity k of the codec ‘‘channel’’. An upper bound to k̃ is given by the sum of the marginal varieties, namely, h for the h
neighbors and k′ (to be determined below) for the new state of the k sites.

If the CA is locally lossy, then v(i) is eventually less than i, and thus η < 1. In this case, given any desired variety h, and
ε > 0 such that η′

= η + ε < 1, for large enough kwe have v(k)/k < η′ and k − v(k) > k(1 − η′) ≥ h. In other words, for
any neighborhood diameter hwe can always find a patch K of length k having a variety defect k − v(k) at least as large as h.
A codec built on this patch will be able to transmit through k lines the variety of the new state of k sites together with that
of the old state of h of these sites. �

We can apply Theorem 3 to Wolfram’s so-called ‘‘rule 110’’ [42] and conclude that

Corollary 1. There exist noninvertible computation-universal cellular automata that can be isomorphically rewritten as lattice
gases.

T. Toffoli et al. / Theoretical Computer Science 403 (2008) 71–88 83

Proof. It is easy to verify that a codec of sufficient capacity for the construction of Fig. 10 to work – with h = 2 and rule 110
as a local map – can be found as soon as k ≥ 17. �

Remark 1. In [19], Kari determined that, for rewriting the minimum number of layers necessary

9. A two-dimensional example

Before attempting to extend the above result to an arbitrary number of dimensions, it will be expedient to verify at the
very least that the one-dimensional construction of Section 7.2, for a 2-input and cellular automaton, can be leveraged (with
some creativity) to the analogous two-dimensional case, that is, a (2 × 2)-input and automaton.

In the 1-D case of Section 7.2, our CA-to-LG construction yielded a 2-layer lattice gas that employed one codec to negotiate
the information transfer between layers 1 and 2. The codec was four sites wide, and in either layer the block spanned by the
LG node was five site wide—the 1 extra site corresponding to the neighborhood diameter, which was, in that case, 1.

In the present 2-D case, five layers (instead of merely two) will be required for the state of the lattice gas to advance
through one time step of the cellular automaton. Four different codecs will be needed to negotiate the information transfer
between adjacent layers, i.e., 1 → 2, 2 → 3, 3 → 4 and 4 → 5. As for the size of the LG blocks, which is determined by
the size of the smallest codecs that will do the job, let us remark that the most critical passage is from layer 1 to layer 2 (as
we shall see, much less ‘‘spare capacity’’ is needed at the next three passages). Using the lossiest (the ‘‘most noninvertible’’)
nontrivial CA rule on a 2 × 2 neighborhood, namely the and of the four neighbors,13 a codec of size 4 × 4 will have enough
capacity to pass the required edge-neighbor information from layer 1 to layer 2.14 Therefore, since the local map is of the
format 2× 2 → 1× 1, and thus has a neighborhood diameter of 1 in either dimension, to host a codec of size 4× 4 we shall
need an LG block size of 5 × 5 (cf. the analog situation in the 1-D case, as in Fig. 9).

In Fig. 11 we describe the function computed by each layer in terms of a sequence of logical steps (4 for the first layer, 2
for the last, and 5 for each of the intervening three). We stress again that such a sequence gives a heuristics for identifying
that function but is not meant to be a description of an internal mechanism for it. Each layer will consist of LG nodes each
simply taking its inputs from a block of 5×5 sites and returning its 5×5 outputs to a block of the same size; there is no logical
need to analyze this function as a ‘‘computation’’, i.e., as a series/parallel composition of simpler functions. What’s more, in
a physical implementation of the function, in order to have the maximum thermodynamic efficiency (see Section 12) it may
be essential to make use of a custom physical interaction that makes the 5× 5 signals interact with one another all at once!
Whatever the heuristics, in the end it may bemore appropriate to visualize each nodemerely as an indivisible interaction—a
mere lookup table.

Layer 1 (b, c, d)
In Fig. 11, which may be viewed literally as a ‘‘flipbook’’, we enter layer 1 immediately after t = 0; a dot indicates that a

site is in the ‘‘old’’ (t = 0) state. At step 1b the sites are grouped into 5 × 5 blocks. At 1c, we compute the ‘‘new’’ state (the
one that will be appropriate for t = 1), indicated by a circle, of all the sites that can view their entire 2 × 2 neighborhood
within that block; a dot within a circle means that we are at present in possession of the old as well as the new state for a
given site.

Next (1d) we ask ourselves which of the old states will still be needed for eventually computing the new state of the sites
which we haven’t been able to update yet; the 3 × 3 old states which have exhausted their function may now be dropped
from consideration. At 1e we recognize that, owing to the local noninvertibility of the and rule, the variety of the array
of 4 × 4 = 16 new states is less than 16 bits. Therefore, the 16 lines corresponding to those sites have enough ‘‘channel
capacity’’ to carry some extra information, specifically, the 7 old states which we are still carrying over. We thus construct,
in analogy with what we did in Fig. 9, an encoder (gray area) that compresses those 16 + 7 binary lines into just 16 lines
which are passed on to the next layer. The 9 not-yet-updated sites that make the unshaded border are passed on verbatim
to the next stage.

Layer 2 (a, b, c, d, e)
We now shift the block boundaries one site leftwards. At 2a the 16 encoded lines are picked up by a matching decoder

which expands them into the original 16 + 7 lines (step 2b). At 2c we update as many new additional sites as possible on
the basis of old states that have just been made accessible within the block by shifting its boundaries; and at 2d we discard
the old states for which we have no further need. Finally (step 2e) we prepare an encoder for squeezing through to the next
level the 5 old states that still accompany their new states. Note that nowwe havemore channel capacity available (deriving
from a 5 × 4 rather than a 4 × 4 array of new states) for fewer lines to squeeze through (5 instead of 7); in other words,
things become easier once cleared the information bottleneck of the first layer.

13 This rule maps the 16 neighborhood states into 15 zeros and 1 one, while any surjective rule (and thus any invertible one) would need to map the 16
states into 8 zeros and 8 ones—see the ‘‘balanced map’’ criterion in [27].
14 With 16 binary lines, this 4×4 codec has a capacity for 216

= 65,536 different messages, which is more than enough for the 52,886 different messages
(combinations of new and old site values, as explained in point 2 near the end of Section 7.2) which we need to send through the codec from layer 1 to
layer 2.

84 T. Toffoli et al. / Theoretical Computer Science 403 (2008) 71–88

Fig. 11. Construction of a 5-layer lattice gas for the 2 × 2 and cellular automaton.

Layer 3 (a, b, c, d, e)
Block boundaries are now shifted one site upwards. Layer 3 proceeds much like layer 2, with just one novelty. At the

moment (step 3e) of packing 20 new states plus 2 old states into a 4 × 5 encoder, we realize that one site outside of the
nominal span of the encoder has both old and new state with it, while its one line, to be carried over verbatim to the next
layer, will have no room for both. What we do then is let the old state of that site go through in place, but ‘‘tuck away’’ into
the encoder the new state, as indicated by the dashed line.

T. Toffoli et al. / Theoretical Computer Science 403 (2008) 71–88 85

Layer 4 (a, b, c, d, e)
Block boundaries are shifted one site leftwards. Everything proceeds like in layers 2 and 3.

Layer 5 (a, b)
We shift block boundaries rightwards, i.e., back were they were at the end of layer 3. We unpack everything (step 5a)

from the decoder, including the new state that had been tucked away at step 3e, and at 5b we return this state to its original
site. Now (t = 1) that there are no more old states left we are ready to rechristen the new states ‘old states’ and start a new
5-layer cycle.

As long as the neighborhood remains 2 × 2, it is clear that the above construction pattern will work for a larger state
alphabet and an arbitrary local map,15 just as in Section 8; all that will be required is a large enough k × k block size.

In the 1-D case our construction of Section 7.2 yielded a 2-layer LG; in the 2-D case of Section 9, a 5-layer one. What can
one say about the minimum number of layers needed in general? In [19], Kari showed that in d dimensions the rewriting
of invertible CA into isomorphic LG, when possible, need not use more than d + 1 layers. If an analogous bound held for the
locally lossy CA dealt with here, then the 2-D construction of Fig. 11 could be replaced by one with only 3 layers. Even if it
were possible, we did not attempt such a compression, which may entail larger or more complex blocks in each layer; we
feel that the more relaxed approach of Fig. 11 makes it easier to follow the construction’s rationale.

10. General case

The 2-D construction of Section 9 can apparently be generalized to an arbitrary neighborhood size; that would make our
2-D result as general as the 1-D one. Onemay thenwonderwhether an analogous result holds for any number of dimensions.
In support of that thesis, we’d like to observe that, as long as one retains the construction strategy implied by Sections 8 and
9,

1. The strategy does not depend on the size a of the state alphabet; the latter only influences the parameter k—the size of
the codec.

2. The strategy does not depend on the diameter h of the neighborhood; the latter only determines the thickness of the
‘‘boundary layer’’ of neighbors whose old state has to be carried through until no longer needed.

3. The strategy does not depend on the specific local map f ; the latter, assumed to be locally lossy, only influences, through
the extent of the information losses (gaged by the Fekete’s lemma’s limit η of Theorem 3 or its multidimensional
counterpart as in Lemma 5), the size of the codec.

4. The existence of codecs of appropriate sizes for the different stages is guaranteed by the multivariate version of Fekete’s
lemma (below).

Lemma 5 (Multivariate Fekete’s Lemma; Capobianco [7]). Let f : Nd
→ R+ be a function of d variables, subadditive in each,

i.e., for any j
f (x1, . . . , xj + yj, . . . , xd) ≤ f (x1, . . . , xj, . . . , xd) + f (x1, . . . , yj, . . . , xd).
Let η = infx1,...,xd≥1 f (x1, . . . , xd)/x1 · · · xd. For any ε > 0 there exist k1, . . . , kd such that, if xj > kj for all j, then
f (x1, . . . , xd)/x1 · · · xd < η + ε.

Therefore, each of the stages, analogous to those of Section 9, that may be needed for the d-dimensional case, is feasible
for a large enough block size (n1, n2, . . . , nd). All that is missing at this point (but this may well turn out to be a tall order)
is the guarantee that, for any d, an appropriate finite sequence of ‘‘progressive partial updating’’ layers may be constructed
so as to ultimately achieve, in a finite number of steps, a complete updating of the CA.

A bit of common sense will remind one that

• Just by looking at the increase in logical and graphical construction complexity in going from 1-D to 2-D, one may want
an automated proof – or even an automated proof generator – to tackle the complexity of the sequence of steps needed
for more dimensions and organize it in a comprehensible way. For instance, (a) Will the number of layers be essentially
proportional to the number of dimensions, and thus to the number of (hyper)faces of a block? (b) Will one also need
extra layers to account for (hyper)edges, . . ., and so forth down to the 0-dimensional vertices?

• Numerical verification of representative test cases is invaluable in complicated proofs. (‘‘Pure’’ mathematicians may
argue otherwise, but we suspect that, far from shunning such verifications, they actually do them automatically and
subconsciously.) However, the computational burden of such tests grows exponentially (and extremely fast if one takes
block side as a parameter), to the point that, even for Conway’s ‘‘Game of Life’’ [13] – a moderately lossy 2-state, 3 × 3-
neighborhood cellular automaton – the effective construction of the codecs is a well-nigh intractable task!

15 Though, of course, still one that yields a locally lossy CA.

86 T. Toffoli et al. / Theoretical Computer Science 403 (2008) 71–88

• There are encouraging and discouraging precedents in this area. As we already mentioned at the beginning of Section 2,
a related conjecture, which had taken six years to prove for one and two dimensions, took another six years and a very
complex construction to prove in the general case. On the other hand, in another argument entailing, again, surjectivity
and injectivity in cellular automata, the authors of [1] had thought that their techniques were ‘‘in principle extendable to
arrays of higher dimension’’; since, however, these techniques were ‘‘difficult to manage beyond dimension one’’, they
expected that ‘‘generalizations of their results to higher dimensions’’ would ‘‘most likely require a different approach’’.
In the end (that is, almost twenty years later), the conjecture turned out to be wrong and its object undecidable [17]!

The evidence given, together with more work in progress on actual multi-dimensional exhibits, is strongly suggestive
but not complete. For the moment, we prefer to propose the general case only as a conjecture, namely,

Conjecture 1. Any locally lossy cellular automaton can be rewritten as an isomorphic lattice gas.

In any event, it is remarkable how, in spite of classes C+ and C− being at opposite extremes in the categorical
classification (1), the construction strategy utilized here has strong analogies (blocks, layers, store-and-forward of
information with repeated exchange through block edges) with those used by Kari and by Durand–Lose. This in spite of
the fact that the latter critically rely on a CA’s being strictly information lossless while ours critically depends on their being
locally lossy!

11. Some consequences of the conjecture

From the truth of Conjecture 1 would derive the following remarkable consequences.

Proposition 1. All cellular automata, except the vanishing subset C◦, can be rewritten as isomorphic lattice gases.

Proposition 2. Regular cellular automata (see end of Section 4) are exactly those which can be rewritten as isomorphic lattice
gases; singular cellular automata, those which cannot.

12. Thermodynamic considerations

Here we shall briefly touch on some thermodynamic aspects of the foregoing purely mathematical results. Though we
could have phrased the following purely in terms of entropy, without ever having to embody it into ‘‘energy’’ and ‘‘heat’’,
there will be no harm in using the more familiar, though less general, picture.

Asmentioned right before Theorem1, a concrete physical systempatterned after the ‘‘schematics’’ of a cellular automaton
will require a steady supply of power to operate and a thermal sink capable of steadily dissipating this power – no matter
whether or not the underlying abstract dynamical system is invertible – to support the ‘‘document duplicating services’’
continually performed by the fanout nodes and the ‘‘surplus-document shredding’’ performed by the many-input, one-
output logic gates.

Speaking here, for simplicity, as if our conjecture were true (if not, our arguments will apply at least to the cases we have
proved), for regular cellular automata it is in principle possible to build an alternate implementation, in the form of a lattice
gas that does not require a power supply to operate.16

For those cellular automata that are invertible, besides no power supply, no thermal sinkwill be needed either, since, with
Kari’s and Durand–Lose’s constructions, large enough lattice-gas blocks allow one to make use of all relevant correlations
and thus operate in an efficient, dissipationless fashion. The systemwill work analogously to a planetary system—a complex
nonlinear system17 that can ideally run forever on its own initial energy, without requiring an external power source.

On the other hand, a system like Conway’s ‘‘Game of Life’’ is intrinsically noninvertible, and so to implement it within our
world’s physics one will have to complement it with an ancillary ‘‘entropy drain’’ that is not explicitly represented within
the cellular-automaton model. The combined physical system (cellular automaton plus ancilla) is one that exhibits friction
and gradually converts ‘‘high-grade’’ energy into heat. However, our construction shows that, much as in the invertible case,
this conversion need not entail more than the system’s initial store of energy—no continual power injection from outside is
needed for the system’s operation. Consequently, throughout the system’s infinite course of evolution, no more entropy will
have to be drained from it than the information originally contained in it at time t = 0, which is at most log a per site. This
behavior is like that of an isolated inertial planetary system in which some of the interactions are affected by friction.

As a dissipative system (whether planetary or ‘‘Game of Life’’-like) evolves and its trajectories gradually merge, the
systembecomes effectively closer and closer to being invertible18 and the attendant heat production per time step decreases.
The heat integral over the entire infinite trajectory from a given initial state can never exceed the energy contents of the

16 More precisely, even if some form of friction should be unavoidable because of the nonideal behavior of the implementing mechanism, yet there is no
theoretical lower bound set by thermodynamics to the amount of this friction, and thus to the amount of power that will have to be supplied to overcome
it.
17 Even capable of general-purpose computation, as shown in a stylized way by Margolus’s ‘‘billiard-ball’’ model of computation [26].
18 For instance, a Game-of-Life ‘‘semaphore’’ or a ‘‘glider’’, taken in isolation, may be viewed as obeying an invertible dynamics.

T. Toffoli et al. / Theoretical Computer Science 403 (2008) 71–88 87

initial state. In this sense, the system’s state simply ‘‘flows downhill’’ by itself, rapidly at first but increasingly more slowly,
until it mostly settles into local equilibria or local attractor states, which are essentially nondissipative. If the system is
to be computation-universal, then, for certain initial conditions, flickers of dissipative nontrivial computation may still
occasionally occur, but ever more rarely and sparsely (cf. Dyson [9]).

The perhaps surprising, but not at all paradoxical, conclusion is that a complex CA-like dynamics can run forever, faithfully
applying its local map at each site and each time step, fueled, as it were, just by the negentropy of the input data, i.e., its own
initial state.

A physically plausible scheme for CA-like digital computation fueled by just its input data had been proposed by Lent,
Tougaw, and Porod [22], ostensibly realized by simple interactions between chains of bistable one-electron quantum boxes.
There was some debate at that time as to whether such a scheme could actually work as purported—though objections
mostly reduced to ‘‘the outcome seems too good to be true’’. The specific interactions sketched at that time may well have
been too weak to support the desired behavior; nevertheless, our results show that a scheme like theirs is in principle
feasible, though requiring the deployment, for ‘‘primitive computing elements’’, of rather complex, ad hoc physical effects.

13. Conclusions and perspectives

We have presented and discussed the domain of validity of Proposition 2, (a) proving that it applies to all 1-D cellular
automata and some 2-D ones, (b) giving substantial evidence in favor of its applying to any number of dimensions, and (c)
outlining a plausible path to completing that evidence. In any event, just results (a) above are sufficient to conclude that

• There exist nontrivial noninvertible cellular automata that can be rewritten as isomorphic lattice gases. These include
cellular automata that are computation-universal.

• Much as in the case of invertible cellular automata, the conversion of a noninvertible cellular automaton into an
equivalent lattice gas entails using LG unit cells that span a possibly very large number of CA sites. The resulting LG,
then, while displaying the same functional pitch as the original CA, must make use of a coarser structural pitch—and thus
of a more complex local mechanism.

Intuitively, for a given computing task, the thermodynamic efficiency of a lattice gas – which unlike a CA does not
indulge in wasteful ‘‘photocopying’’ and ‘‘shredding’’ practices – can only be achieved at the cost of using LG nodes that
encompass a sufficiently large number n of CA sites. Such a large node is able to act as a ‘‘clearing house’’, matching ‘‘offer’’
and ‘‘demand’’ for specific pieces of information between faraway CA sites, routing information to successive destinations
as needed (‘‘information recycling’’) and in this way eliminating duplication and waste.

In Section 3 we mentioned the use of finite-difference schemes for the numerical integration of partial differential
equations. In many cases, a number of alternative schemes have been proposed for dealing with the same differential
equation; of these, some may be much more complex than others. Why should one go to such lengths? It turns out that the
extra cost of a certain scheme may be offset by a special benefit, such as improved convergence rate, better stability with
respect to small changes in initial conditions, or strict conservation of quantities that are conserved in the target differential
equation. Even if each ‘‘turn of the crank’’ should bemore expensive, a schememay still be competitive ifmany fewer ‘‘turns’’
are needed for the same result. Or there may be schemes that offer different tradeoffs in the space and time required for a
computation (see Bennett [5] and Li and Vitányi [23]), and from among which one would choose on the basis the relative
‘‘costing’’ of storage and processing resources.

In this paper we have introduced one new type of computational scheme tradeoff, that between the one-off cost of
an efficient but complex infrastructure and the daily drain of energy (or entropy) needed to make a simpler, cheaper
infrastructure do the same job. The spacetime regularity of a CA’s dynamics explicitly forces one to obey the golden rule,
‘‘do unto others as you would have them do unto you’’. That is, to improve the thermodynamic efficiency of its own
computational task, one CA site cannot just borrow some of its right neighbor’s state as a scratchpad, lest its left neighbor
claim some of his state—a vicious infinite regress. But the resources of many CA sites can be pooled together into an LG
‘‘supersite’’. Our results and conjecture deal with how, for any regular CA, a large enough LG supersite can be constructed
that achieves perfect thermodynamic efficiency. To paraphrase [10], we may term this approach ‘‘logic for capitalists’’.

Having dispensed with a power supply for locally lossy CA, if the resulting LG system has to be embedded within an
invertible physics one must still complement it with a heat sink. Our construction leaves open the issue of how to realize
such a sink while retaining the local finiteness of an LG scheme. Can removing and sequestering a finite amount of heat per
site be achieved by a finite amount (per site) of extra storage and processing resources by an LG mechanism—and thus by
localmeans? This is an area wide open for research.

Finally, there is a rather delicate question that we can barely mention here. We recall that computation is the art of
putting together – even though in as large a number of copies as desired – a finite set of logic primitives given once and for
all. Within any LG this condition is clearly satisfied, as in an LG all processing is done by composition of instances of a single
unit cell, complex as this may be. But to what extent can one accept as bona fide computation an approach that requires
designing, for each CA that one wants to rewrite as an LG, new custom primitives, that is, the nodes that make up the LG’s
very unit cell? Note that these may be arbitrary n-input, n-output Boolean functions.

Among the physical ‘‘effects’’ actually available in nature onemaywell hope to find one that can be exploited for realizing
a simple logic primitive such as the and gate (or an invertible counterpart thereof, such as the so called ‘‘Toffoli gate’’

88 T. Toffoli et al. / Theoretical Computer Science 403 (2008) 71–88

[34,4]). But to what extent will we be able to locate in nature ‘‘custom Hamiltonians’’ capable of realizing (without power
assist) arbitrarily complex n-body interactions? Intuitively, information recycling canmake computation substantiallymore
efficient (cf. [10]). But, at leastwithin the stylized context of CA and LG,we’ve shownconcrete reasonswhy recycling schemes
may become impractical well before one attains perfect thermodynamic efficiency.

Acknowledgments

Weowemuch to a generous referee for correcting a seriousmisunderstandingwehad about one cited result and formany
useful comments and suggestions. One of us (T. Toffoli) would like to thank the Mathematics Institute of the University of
Rome ‘‘La Sapienza’’ (Italy) for a visiting professorship that provided the occasion for this research; we acknowledge the
stimulus received from Charles H. Bennett, Ed Fredkin, Lev Levitin, Norman Margolus, and Michael Frank in the pursuit
of this kind of investigation; and acknowledge the participation of Alex Shpunt, Tony Short, and Sandu Popescu in related
work in progress. One of us (S. Capobianco) was partly supported by the project ‘‘The Equational Logic of Parallel Processes’’
(no. 060013021) of the Icelandic Research Fund.

References

[1] Serafino Amoroso, Y.N. Patt, Decision procedures for surjectivity and injectivity of parallel maps for tessellation structures, J Comp. Syst. Sci. 6 (1972)
448–464.

[2] Ross Ashby, An Introduction to Cybernetics, Wiley, 1956.
[3] Henry Baker, Linear logic and permutation stacks—the Forth shall be first, ACM SigArch, Comput. Architecture News 22 1 (1994) 34–43.
[4] Adriano Barenco, Charles Bennett, Richard Cleve, David DiVincenzo, Norman Margolus, Peter Shor, Tycho Sleator, John Smolin, Harald Weinfurter,

Report on new gate constructions for quantum computation, Phys. Rev. A 52 (1995) 3457–3467.
[5] Charles H Bennett, Time/space trade-offs for reversible computation, SIAM J. Comput. 18 (1989) 766–776.
[6] Cristian Calude, Randomness in cellular automata, in: Sect. 9.5 of Information and Randomness—An Algorithmic Perspective, 2nd ed., Springer, 2002,

pp. 367–383.
[7] Silvio Capobianco, Multidimensional cellular automata and generalization of Fekete’s lemma, Discrete Math. Theor. Computer Sci. (submitted for

publication), arxiv.org/abs/0707.3903.
[8] Jérôme Durand–Lose, Representing reversible cellular automata with reversible block cellular automata, Discrete Math. Theor. Comp Sci. Proc. AA

(DM-CCG) (2001) 145–154.
[9] Freeman Dyson, Time without end: Physics and biology in an open universe, Rev. Mod. Phys. 51 (1979) 447–450.

[10] The Economist (staff), Logic for conservatives: The heath-death of a computer, The Economist 11 (1989) 78–79.
[11] M Fekete, On the distribution of roots in certain algebraic equations with integer coefficients, Math. Zeitschr. 17 (1923) 228–249 (in German).
[12] Francesca Fiorenzi, Cellular automata and finitely generated groups, Ph.D. Th. in Mathematics, U. Rome La Sapienza, 2000.
[13] Martin Gardner, The fantastic combinations of John Conway’s new solitaire game ‘life’, Sci. American 223 (1970) 120–123.
[14] J.-Y. Girard, Linear logic, Theoret. Comput. Sci. 50 (1987) 1–101.
[15] Donald Greenspan, Computer-Oriented Mathematical Physics, Pergamon, 1981.
[16] M. Hénon, On the relation between lattice gases and cellular automata, in: R. Monaco (Ed.), Discrete Kinetic Theory, Lattice Gas Dynamics and

Foundations of Hydrodynamics, World Scientific, Margolus, 1989, pp. 160–161.
[17] Jarkko Kari, Reversibility of 2D cellular automata is undecidable, Physica D 45 (1990) 379–385.
[18] Jarkko Kari, Representation of reversible cellular automata with block permutations, Math. Syst. Theory 29 (1996) 47–61.
[19] Jarkko Kari, On the circuit depth of structurally reversible cellular automata, Fund. Inform. 38 (1999) 93–107.
[20] Jarkko Kari, Theory of cellular automata: A survey, Theoret. Comput. Sci. 334 (2005) 3–33.
[21] Rolf Landauer, Irreversibility and heat generation in the computing process, IBM J. Res. Dev. 5 (1961) 183–191.
[22] Craig Lent, P. Douglas Tougaw, Wolfgang Porod, Bistable saturation in coupled quantum dots for quantum cellular automata, Appl. Phys. Lett. 62

(1993) 714–716.
[23] Ming Li, Vitányi Paul, An Introduction to Kolmogorov Complexity and its Applications, 2nd ed., Springer, 1997, xx+637.
[24] Douglas Lind, Marcus Brian, An Introduction to Symbolic Dynamics and Coding, Cambridge, 1995, p. xvi+495.
[25] Douglas Lind, Multi-dimensional symbolic dynamics [40, 61–79], Proc. Symp. Appl. Math. 60 (2004).
[26] Norman Margolus, Physics-like models of computation, Physica 10D (1984) 81–95.
[27] Akira Maruoka, Kimura Masayuki, Injectivity and surjectivity of parallel maps for cellular automata, J. Comp. Syst. Sci. 18 (1979) 47–64.
[28] Edward Moore, Machine models of self-reproduction, Proc. Symp. Appl. Math. 14 (1962) 17–33.
[29] John Myhill, The converse of Moore’s Garden-of-Eden theorem, Proc. Amer. Math. Soc. 14 (1963) 658–686.
[30] D Richardson, Tessellation with local transformations, J. Comp. Syst. Sci. 6 (1972) 373–388.
[31] John Strickwerda, Finite Difference Schemes and Partial Differential Equations, Chapman & Hall, 1989.
[32] Tommaso Toffoli, Computation and construction universality of reversible cellular automata, J. Comp. Syst. Sci. 15 (1977) 213–231.
[33] Tommaso Toffoli, Cellular automata mechanics, Ph.D. Thesis, The University of Michigan, Comp. Comm. Sci. Dept., 1977.
[34] Tommaso Toffoli, Reversible computing, in: de Bakker, van Leeuwen (Eds.), Automata, Languages and Programming, in: Lecture Notes in Comp. Sci.,

vol. 85, Springer, 1980, pp. 632–644.
[35] Tommaso Toffoli, Margolus Norman, Cellular Automata Machines—A New Environment for Modeling, MIT Press, 1987.
[36] Tommaso Toffoli, Margolus Norman, Invertible cellular automata: A review, Physica D 45 (1990) 229–253.
[37] Tommaso Toffoli, Capobianco Silvio, Mentrasti Patrizia, How to turn a second-order cellular automaton into a lattice gas: A new inversion scheme,

Theoret Comput. Sci. 325 (2004) 329–344.
[38] Tommaso Toffoli, A pedestrian’s introduction to spacetime crystallography, IBM J. Res. Dev. 48 1 (Jan 2004) 13–29 (Special issue on Physics of

Information).
[39] J.H. van Lint, R.M. Wilson, A Course in Combinatorics, Cambridge, 1992.
[40] Williams Susan (Ed.), Symbolic Dynamics and its Applications, in: Proc. Symp. App. Math., vol. 60, Am. Math. Soc., 2004, p. 168.
[41] Stephen Wolfram, Theory and Applications of Cellular Automata, World Scientific, 1986.
[42] Stephen Wolfram, A New Kind of Science, Wolfram Media, 2002.

http://arxiv.org/abs/0707.3903

	When -- and how -- can a cellular automaton be rewritten as a lattice gas?
	Introduction
	Preview
	Background
	Local recognition criteria for C+ and C-
	Invertible cellular automata
	Almost invertible cellular automata
	Locally lossy cellular automata
	Second-order cellular automata
	When information loss helps

	The one-dimensional case in general
	A two-dimensional example
	General case
	Some consequences of the conjecture
	Thermodynamic considerations
	Conclusions and perspectives
	Acknowledgments
	References

