3,228 research outputs found

    Optimal Pedestrian Path Planning in Evacuation Scenario

    Get PDF
    Simulation of evacuation plans is a relatively complex problem. It is necessary to simulate a number of separate processes which interact in the result. Namely, they are pedestrian-pedestrian interactions, pedestrian-static object (e.g. wall) interactions and pedestrian-environment (fire, smoke, etc.) interactions. In this case, the evacuation simulation is controled on the microscopic level. Microscopic level considers each individual separately and pedestrian is planning his/her path to the exit with regard to the above-mentioned interactions. In this article we focus on path planning during evacuation and describe algorithms applied in this area. At the end we propose a method of the space evaluation with linear time complexity and planned path compared with commercial software tools

    Statistical fluctuations in pedestrian evacuation times and the effect of social contagion

    Get PDF
    Mathematical models of pedestrian evacuation and the associated simulation software have become essential tools for the assessment of the safety of public facilities and buildings. While a variety of models are now available, their calibration and test against empirical data are generally restricted to global, averaged quantities, the statistics compiled from the time series of individual escapes (" microscopic " statistics) measured in recent experiments are thus overlooked. In the same spirit, much research has primarily focused on the average global evacuation time, whereas the whole distribution of evacuation times over some set of realizations should matter. In the present paper we propose and discuss the validity of a simple relation between this distribution and the " microscopic " statistics, which is theoretically valid in the absence of correlations. To this purpose, we develop a minimal cellular automaton, with novel features that afford a semi-quantitative reproduction of the experimental " microscopic " statistics. We then introduce a process of social contagion of impatient behavior in the model and show that the simple relation under test may dramatically fail at high contagion strengths, the latter being responsible for the emergence of strong correlations in the system. We conclude with comments on the potential practical relevance for safety science of calculations based on " microscopic " statistics

    Effects of communication and utility-based decision making in a simple model of evacuation

    Full text link
    We present a simple cellular automaton based model of decision making during evacuation. Evacuees have to choose between two different exit routes, resulting in a strategic decision making problem. Agents take their decisions based on utility functions, these can be revised as the evacuation proceeds, leading to complex interaction between individuals and to jamming transitions. The model also includes the possibility to communicate and exchange information with distant agents, information received may affect the decision of agents. We show that under a wider range of evacuation scenarios performance of the model system as a whole is optimal at an intermediate fraction of evacuees with access to communication.Comment: 9 pages, 9 figure

    Key challenges in agent-based modelling for geo-spatial simulation

    Get PDF
    Agent-based modelling (ABM) is fast becoming the dominant paradigm in social simulation due primarily to a worldview that suggests that complex systems emerge from the bottom-up, are highly decentralised, and are composed of a multitude of heterogeneous objects called agents. These agents act with some purpose and their interaction, usually through time and space, generates emergent order, often at higher levels than those at which such agents operate. ABM however raises as many challenges as it seeks to resolve. It is the purpose of this paper to catalogue these challenges and to illustrate them using three somewhat different agent-based models applied to city systems. The seven challenges we pose involve: the purpose for which the model is built, the extent to which the model is rooted in independent theory, the extent to which the model can be replicated, the ways the model might be verified, calibrated and validated, the way model dynamics are represented in terms of agent interactions, the extent to which the model is operational, and the way the model can be communicated and shared with others. Once catalogued, we then illustrate these challenges with a pedestrian model for emergency evacuation in central London, a hypothetical model of residential segregation tuned to London data which elaborates the standard Schelling (1971) model, and an agent-based residential location built according to spatial interactions principles, calibrated to trip data for Greater London. The ambiguities posed by this new style of modelling are drawn out as conclusions

    Fire Emergency Evacuation from a School Building Using an Evolutionary Virtual Reality Platform

    Get PDF
    In the last few years, modern technologies such as numerical simulations, virtual and augmented reality, and agent-based models represented effective tools to study phenomena, which may not be experimentally reproduced due to costs, inherent hazards, or other constraints (e.g., fire or earthquake emergencies and evacuation from buildings). This paper shows how to integrate a virtual reality platform with numerical simulation tools to reproduce an evolutionary fire emergency scenario. It is computed in real time based on the building information model and a fluid dynamic software. A specific software was also used to simulate in real time the crowd dynamic in the virtual environment during the emergency evacuation process. To demonstrate the applicability of the proposed methodology, the emergency fire evacuation process for an existing school building is presented. The results show that the proposed virtual reality-based system can be employed for reproducing fire emergency scenarios. It can be used to help decision-makers to determine emergency plans and to help firefighters as a training tool to simulate emergency evacuation actions

    Emergency Evacuation Software Model For Simulation Of Physical Changes

    Get PDF
    Public space such as schools, cinemas, shopping malls, etc. must have an emergency evacuation system in place. Such places are also required to follow certain regulations and protocols for emergency evacuation to assure the safety of their occupants inside from any unpredictable incident. For nearly two decades, companies/organizations are using simulation models/software for evacuation planning. Researchers are working on these software models to improve the efficiency using latest algorithms. This thesis focuses on creating a base software model of evacuation systems for 3D indoor environments to simulate physical changes such as retractable chairs, movable walls etc., to evaluate their effectiveness before committing to those changes. This research tries to address various flaws and shortcomings of previous software. We are using tools like Unity 3D and Autodesk Maya to simulate suggested changes. It provides planners as well as researchers a new perspective to work on new recommended physical changes to design public venues

    Microscopic Characteristics and Modelling of Pedestrian Inflow Process with Inactive Persons

    Get PDF
    Inflow and outflow processes are common phenomena in daily life. Many types of research have been conducted to study the features of the outflow process, especially in scenarios with a single room or a straight corridor. A few scholars have paid attention to the movement characteristics of pedestrian inflow. Further explorations are still under great demand. In this contribution, a set of pre-conducted experiments are used to analyze the characteristics of the pedestrian inflow process with inactive persons. In these experiments, inactive persons were required to randomly cease within the room, leading to intensive detour behavior of pedestrians. The characteristics are carefully investigated using gradient analysis and curl analysis. To mimic the aforementioned inflow process, static global field is constructed to heuristically navigate a social force based microscopic model. The proposed model can reproduce the self-organized phenomena in the experiments. Our work can help understand the field feature of the pedestrian inflow process with inactive persons. High chaos level areas can be marked out providing practical information for managers
    corecore