
1 

 

Published as: Vanclooster, A., Neutens, T., Fack, V., Van de 

Weghe, N. & De Maeyer, P. (2012), Measuring the exitability 

of buildings: A new perspective on indoor accessibility. 

Applied Geography, vol. 34, pp. 507-518. 

 

Measuring the exitability of buildings: a new perspective 

on indoor accessibility 
 

 

 

Abstract 

In the last decades, geographers’ attention has been drawn to the vertical dimension of 

space and indoor environments due to population growth and concomitant city expansion. 

While traditional geography has long studied merely horizontal relationships of spatial 

processes and phenomena, recent years have also witnessed a growing number of studies 

that have sought to extend traditional spatial analysis tools to three-dimensional and indoor 

environments. In line with these developments, this paper proposes a new indoor 

accessibility measure which quantifies the quality of access to exits, called exitability. In this, 

the movement of people with respect to its three-dimensional environment, the user 

characteristics and the surrounding occupant interactions is considered key. Since the 

accessibility of exits is most important during evacuations, the calculation of exitability uses 

existing evacuation flow models. In a case study, we demonstrate the usefulness of 

exitability measurements through an application on existing building data. 
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1. Introduction 

In the last decades, population growth and concomitant city expansion have exerted more 

and more pressure on urban space. Recent years have not only witnessed horizontal 

urbanized spreading, but also vertical building developments. These are triggered by a 

pinching deficit in land availability (e.g. Hong Kong), constructions of iconic single-phase 

mega-projects (e.g. Dubai) and enforced rules from governments revitalizing residential 

inner-city areas (Abel, 2010; Hwang, 2006; Wilson, 2010). The three-dimensional vertical city 

was born and with it the requirement of dealing with the corresponding complexities of multi-

level building structures. 

Past urban geographical research has unfolded the opportunities and limits of cities through 

extensive geospatial analysis (Ban & Ahlqvist, 2009; Batisani & Yarnal, 2009). Research of 

inner-city mobility (Antipova, et al., 2011; Keeling, 2008), accessibility analysis and studies of 

optimal time-space distributions (Kwan & Weber, 2003; Neutens, et al., 2012; Neutens, et al., 

2010; Versichele, et al., 2012) all reveal elements of the spatial distribution and interactions 

of people and businesses within the two-dimensional urban city. 

In this paper, however, we focus on the city as a three-dimensional complex and more 

specifically on the multiple units that make up the 3D environment. We argue that spatial 

concepts need to be adapted to the intricacies of indoor environments, given the following 

differences between indoor and outdoor environments. First, the space itself is physically 

highly divergent. Outdoor space is considered mostly as non-built environment, not enclosed 

and large scale while indoor environments are mainly enclosed and constrained by the 

architectural infrastructure on a small scale (Li, 2008; Walton & Worboys, 2009). Second, 

wayfinding tasks in multi-level buildings have proven to be more challenging than outdoors, 

for reasons of disorientation (due to multiple floor levels and staircases), and less visual aid 

(e.g. landmarks are less obviously recognizable; corners and narrow corridors prevent a 

complete overview) (Hölscher, et al., 2007). As such, building occupants are faced with a 

deficient perspective on the building structure, influencing their movement behavior 

(Hölscher, et al., 2007). Third, the scale level of analysis is for indoor building complexes 

more restricted than outdoors. Analysis techniques are required to cover the range of macro- 

to microscale environments when combining indoor with outdoor space. As a result, the 

increased complexity of the three-dimensional vertical city induced by these differences can 

impact movement patterns and wayfinding choices of building occupants. Spatial analytical 

functions that focus on discovering and measuring this relationship between spaces and 

human movement will have to consider these intricacies. 

With the increasing attention to the specificities of indoor spaces, the challenge was raised of 

adjusting analytical methodologies to the indoor environment. In this paper, we focus on one 

type of spatial analysis, namely accessibility. The aim is to examine accessibility within an 

indoor three-dimensional environment. A methodology will be put forward to analyze the 

accessibility of exits from building units (room-to-exit accessibility). Hence, the proposed 

accessibility measure will be termed exitability. The measure builds upon traditional outdoor 

accessibility concepts and extends those to the three-dimensional indoor environment. 

Relying on commonly used evacuation models, we will demonstrate how the concept of 

exitability can serve as a measure for the efficiency of the spatial building design in enabling 

evacuation of building occupants. 
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The remainder of the paper is organized as follows. Section 2 elaborates on the definition of 

exitability and its relationship to accessibility. In section 3, the model behind the exitability 

measure is discussed and framed within the existing state-of-the-art on evacuation modeling. 

In the case study in section 4, the exitability measure is calculated for a university building 

with multiple analyses showing its strength for spatial analysis of the 3D indoor environment. 

This paper is completed with a conclusion on the discussed issues. 

2. Exitability in relation to accessibility 

2.1 Defining exitability 

To measure the quality of access to exit points, a function is required to objectively 

characterize spatial differences in access within and across buildings. For this, we develop a 

new type of indoor accessibility measure, termed exitability, which measures the occupants' 

ease of reaching exits within a building. Therefore, exitability is focused on the movement of 

the building occupants itself. This occupant movement depends on the structure of the 

spatial environment, including the topological building structure, the semantic structure and 

the building geometry, as well as the user environment, with the distribution of people per 

spatial unit. Access to exits is most important during emergency situations and the ensuing 

evacuation. As such, our definition of exitability accounts for movement of all building 

occupants to the exits during evacuations. For each room, it is calculated as the exit time 

needed for the movement of every occupant in the room to the exit. The total exitability of a 

building is quantified through averaging the individual exitability values of the separate 

rooms. The methodology for the calculation of exitability is explained in more detail in section 

3. 

2.2 Analogies and differences with accessibility measures 

The developed exitability measure intersects with various threads of research. Its foundation 

relies on traditional outdoor accessibility measures. Both have a similar goal of quantifying 

the qualitative degree of connectivity between different places or persons (Kwan, 1999). 

Accessibility measures are widely used in urban transport and planning research as a tool to 

analyze and model activity patterns of customers in outdoor space (Kwan & Weber, 2008; 

Neutens, et al., 2008). However, the setting for exitability has changed to the indoor three-

dimensional world. Exitability has also more strictly defined origin and destination sets. The 

interior building entities correspond to the origins while the exit features represent the 

destinations. In addition, the attraction of exit locations is modeled by closely considering the 

collective movement from building occupants to these exits. 

Since exitability is defined for indoor environments, it is conceptually linked to indoor 

accessibility measures. So far, the latter has been developed from two divergent angles of 

research: (i) the quantification of individuals’ indoor mobility limitations and (ii) spatial 

analysis of the built environment. The first strand of research aligns with a growing 

awareness of movement difficulties of people in buildings in the last decade (Sakkas & 

Pérez, 2006). This has lead to requirements for building design and standards to measure 

and compare their proficiency at appropriately adapting space to everyone's needs. By 

considering buildings as user service providers, Sakkas and Pérez (2006), for example, 

defined indoor accessibility as a measure of quality of all representative service paths 

through a building. Church and Marston (2003), for their part, proposed a relative 
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accessibility measure, which allowed the detection of access differences relative to distinct 

user groups. Beside these theoretical approaches, the European Union developed the 

European Passe-Partout index ("Le Site Officiel de l'Indice Passe-Partout (IPP)," 2012) as a 

method to assess the accessibility of buildings with regard to disabled people, following legal 

recommendations from various countries. This index lists for every building how well it is 

adapted to the specific requirements of persons with limited mobility based on predefined 

parameters. These indoor accessibility indices are mostly used as recommendations for 

adapting existing buildings to the requirements of physically impaired persons (Otmani, et al., 

2009), limiting their scope to solely this specific group of people. However, when assessing 

the general accessibility of building exits, all building occupants should be taken into account, 

while still retaining a high interest in previously considered groups. Therefore, these indoor 

accessibility measures cannot be used as a model for grasping the spatial interrelationships 

between multiple building units. 

The second line of inquiry includes recent work from Kim et al. (2008) and Thill et al. (2011) 

which demonstrates the calculation of accessibility measures in buildings by considering 

human movement. They both use a different methodology, with Kim et al. (2008) buttressing 

up their method with the space syntax theory; while Thill et al. (2011) employ a traditional 

gravity-based model. Apart from their incorporation in a three-dimensional built environment, 

both approaches calculate the accessibility of a single spatial unit with regard to pedestrian 

movement under non-emergency situations, while in our research, exitability is measured 

under evacuation scenarios. Also, our calculation is based on the actual movement of 

occupants and not like the aforementioned approaches based solely on distance and 

geometric characteristics of the building. With these limitations, none of the currently 

available indoor accessibility measures is able to fully quantify the quality of access to exits 

during evacuations, on which we focus in this paper. 

3. Methodology for calculating exitability 

3.1 State-of-the-art in evacuation modeling 

Evacuation analysis and response has a wide interest for various researchers in 

understanding and preventing hazardous situations (VanLandegen & Chen, 2012). Partly 

due to a string of major world events (e.g. attacks on the WTC in 2001, London bombing and 

hurricane Katrina in 2005), the need for developing evacuation models for building 

environments has grown progressively over the last decades. This renewed interest brought 

along a boost in the development of sophisticated computer simulation models. 

Historically, studies on building evacuation modeling originated from pedestrian movement 

models since the 1970s. In these studies, human behavior and movement was quantified 

and modeled under both non-emergency and emergency conditions and this mostly from a 

static context (Cepolina, 2004; Gwynne, et al., 1999). From this period onward, flow-based 

mathematical formulas became widely available (e.g. the formulas from Fruin (1971) and 

Predtechenskii and Milinskii (1978)) (Hamacher & Tjandra, 2001; Santos & Aguirre, 2004). A 

second research surge began in the early 1980s with the development of computer 

simulations for evacuation modeling (Gwynne, et al., 1999; Hamacher & Tjandra, 2001; 

Santos & Aguirre, 2004). Here, at least two strands of research can be recognized. First, 

ball-bearing, fluid-dynamic and flow-based models extended the mathematical flow models 

with individual occupant modeling and queuing. However, these aggregate models still 
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treated individuals as homogenous groups acting together (Castle & Longley, 2008; Santos 

& Aguirre, 2004) with the speed and direction of human movement determined by physical 

constraints. The aforementioned models were later on slowly replaced by individual level 

modeling with humans as active agents, which made it possible to link human movement 

with human behavior (Gwynne, et al., 1999). The development of automata allowed for the 

processing of dynamic characteristics (Castle & Longley, 2008; Gwynne, et al., 1999). 

Based on the above review, we can draw some conclusions on the existing models and the 

remaining research challenges. First, a multitude of highly complex and sophisticated 

simulation models is available for evacuation and pedestrian movement. The chosen model 

for a certain application depends on the purpose of the application, the scope and the 

requirements on among other things the level of detail, input data, output, computational 

strength and runtime (Kuligowski, 2008). Second, many parameters influence the evacuation 

process, ranging from the characteristics of the emergency situation to the human reaction 

and behavior, user experience and built environment. Even within this research field, there is 

no consensus yet on the correct implementation of all these parameters; with criticism 

especially towards the method and data of human behavior incorporation (Averill, 2010). 

Gwynne et al. (1999) recognized a trend towards implementing more and more behavioral 

characteristics to match the real human reaction in case of emergencies. More recently,  

Zheng et al. (2009) confirmed this trend by proposing combinations of various approaches to 

study crowd evacuation, employing rules from one approach on the basic principles of the 

other approach. However, no evacuation model already fully addresses all behavioral 

aspects involved in emergency situations and evacuations. Additionally, not all of the 

behaviors involved are yet fully understood and analyzed (Gwynne, et al., 1999; Kuligowski, 

2008). 

With the above conclusions in mind, we chose to employ a coarse network flow model from a 

global perspective with homogenous mapping of occupants and queuing. While this model is 

used for calculating the exitability based on flow movement during evacuations, it is 

important to emphasize that the evacuation principle is not the main parameter of interest 

here, but is solely comprehended as the most stringent situation precluding optimal 

accessibility. The focus is on the general level of exitability within buildings, not on the effects 

of a particular emergency event on occupant movement (as is generally the case in previous 

work). Therefore, the individual and random characteristics of an emergency situation and 

ensuing evacuation itself are left unconsidered. This allows us to make not only comments 

about the accessibility during evacuations, but also under non-emergency situations and 

their effects on particular spatial inter-room differences. 

3.2 Calculation of exitability 

Spatial model 

For calculating exitability, a representation model of the enclosure space is required, in this 

case a three-dimensional data model that represents the internal structures of the built 

environment. We employ a coarse network model implemented as a network graph that 

discretizes space into subregions, all internally connected (Gwynne, et al., 1999). This has 

the advantage of representing all necessary topological relationships between the spatial 

building units while preserving a close connection with the actual movement of human beings 

(Lee, 2004). The model is equivalent to the widely used 'Geometric Network Model' (GNM) of 
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Lee (2004) where the pure connectivity graph ('Combinatorial Network') (Figure 1a), 

containing solely topological relationships, is transformed into a geometric network (Figure 

1c). This is attained through enhancing the 'Combinatorial Network' with geometry 

information and creating a subgraph for linear phenomena (e.g. corridors) into the node-edge 

structure. 

<Insert Figure 1> 

As such, the GNM is an abstraction of every building's connectivity structure with additional 

geometric information enabling network analysis equivalent to road network analysis. 

Additional information necessary for this analysis can be stored in either the nodes or the 

links interconnecting these nodes, or in both. 

Flow model 

For calculating exitability, the occupants' movement is represented as a continuous flow of 

homogenous groups of people (Santos & Aguirre, 2004). Flow-based evacuation models are 

commonly based on the following assumptions (Kratchman, 2006): 

(1) All persons will start to evacuate at the same time; 

(2) Occupant flow will not involve any interruptions caused by decisions of other building 

users; 

(3) All or most of the persons involved are free from disabilities that would significantly 

impede their ability to keep up with the movement of a group. 

The above mentioned assumptions will also apply to the calculation methodology of 

exitability for different reasons. For example, the first assumption implies that pre-movement 

times are omitted in the calculation of the final evacuation times. The pre-movement time in 

evacuations is the time for occupants to detect and respond to the emergency situation 

(Fahy & Proulx, 2001; Gwynne, et al., 2003). A multitude of data on delay times has already 

been collected from various studies, but using them should be done with the highest 

prudence (Fahy & Proulx, 2001; Gwynne, et al., 2003). After all, mistakes are frequently 

induced in the sense that the original context of the data is often lost and ignored (Gwynne, 

et al., 2003) and the data is mostly building, situation and occupant specific (Fahy & Proulx, 

2001). Also, an evacuation model with no or less behavioral perspective and homogenous 

groups (like the one applied in our calculation) might benefit from not implementing these 

delay times given the inherent focus on group behavior rather than individualism. After all, 

pre-movement times are a simplification of the behavioral process due to an emphasis on the 

time delay rather than on the decisions and actions of occupants responding to the 

evacuation itself (Kuligowski, 2008). The second assumption implies that occupants are 

homogenously modeled without any personal decision making and behavior. People will 

continuously keep moving in the direction of their choice, only hindered by co-occupants on 

the same path influencing the flow density. In current evacuation modeling research, a 

dichotomy exists between behavioral (individualistic) and non-behavioral (group) modeling of 

occupants (Gwynne, et al., 1999; Kuligowski, 2008). This assumption and our calculation is 

in accordance with the homogenous group modeling. As discussed in section 3.1, there is no 

consensus yet on a comprehensive methodology for modeling human behavior, with current 

models using significant simplifications of the behavioral processes during evacuations 

(Kuligowski, 2008). Their implemented behavior is either predefined by the user or based on 

inconsistent prescribed information entirely dependent on the user's expertise (Kuligowski, 

2008). Also, behavioral modeling would significantly increase the complexity and 
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computational requirements, and differentiations between randomly imposed behavior are 

not crucial to grasp differences in quality of access of exits. For these reasons, we opted to 

leave behavioral decision patterns out of the calculation methodology and only focus on the 

actual movement of the occupants influenced by density variations due to co-occupants' 

movement. The third assumption recalls the focus of the model to non-disabled persons 

making it more general than some of the current indoor accessibility measures only focusing 

on disabilities (Section 2). 

Network flow calculations 

The calculation of exitability is defined by the flow of building occupants departing from the 

central node in each room. Their movement speed is determined by the group density, which 

can change over time, and by the maximum capacity constraints of each edge, which in turn 

are determined by the minimum width of the passageways. This minimum width is used as 

approximation of the maximum possible walking space since in reality groups of people 

spread out to the maximum available space (Yuan, et al., 2009). The crowd density varies 

with time and location according to the non-uniform distribution of occupants. The formulas to 

calculate the speed are based on the pedestrian flow model of Predtechenskii and Milinskii 

(1978). Since the movement speed of people not appears to have changed over the years, 

this flow model can be and is still widely applied in other models (Fahy & Proulx, 2001). 

The crowd density (D) of a stream of people is calculated in this model as a fraction of the 

number of people (N) and the personal space area (f) on the occupied space (Figure 2 and 

equation 1). The personal space area is the area in which no other person will move. It is 

based on the mean dimensions of an adult in mid-season street dress (Fahy, 1994) and has 

a fixed value of 0.113 m². The stream is calculated for a certain occupied area, limited by the 

maximum width of personal interaction (δy) and the maximum length of possible interaction 

for a person (δx). The interaction width can be taken approximately as the maximum width 

without obstacles of the spatial unit. The length of occupant interaction is set as 1 m and 

records as such the number of people moving in the 1 m area around the occupant. 

� = � � �� ��⁄  (m²/m²) (1) 

<Insert Figure 2> 

In non-emergency situations, the mean velocity in open horizontal space (V) can be 

calculated, using equation 2, as a function of the crowd density based on observations of 

people walking (Predtechenskii & Milinskii, 1978): 


 = 112� − 380�� + 434�� − 217� + 57  (m/min) for 0 < � ≤ 0.92 (2) 

The crowd density has an optimal value of 0.92 m²/m², although higher values are accepted. 

However, empirically this is used as the maximum allowed density (Fahy, 1994). In 

emergencies, the movement speeds (Ve) are somewhat different with the same densities, 

since people are reacting more anxiously. Equation 3 shows the relationship between these 

two velocities, differentiating between movement through openings and in horizontal space, 

and movement on stairs (Predtechenskii & Milinskii, 1978): 


� = ��
  (m/min) (3) 
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where �� = 1.49 − 0.36� (for horizontal paths and through openings) 

 �� = 1.21 (for descending stairs) 

Queuing is handled by combining different groups when they meet each other, reducing their 

velocity and adding waiting times. As a result the maximum capacity on each edge may be 

reached. 

General workflow of the model 

In our flow-based movement model, occupants move from a room to the closest exit – that is 

along Dijkstra’s (1959) shortest path (distance-based). However, it would also be possible to 

use the most familiar route or the shortest time to the exit, but this implementation is left for 

future work. The model does not allow dynamic changes in exit choice, which implies that all 

occupants follow the physically shortest path leaving personal decision making 

unconsidered. 

The main parameters in the flow calculation are Path, NodeMovement and 

PassingNodeMovement objects1. Per room (and thus source node) a Path object is created 

storing the shortest path to the selected exit for this room. A NodeMovement object 

represents a group of people moving along an edge from start node to end node. This makes 

it easy to obtain the current position of each group (per time and location) during the 

evacuation. It also allows modeling the flow of people within a certain passing node over 

time. Every passing node stores a PassingNodeMovement object containing lists of 

NodeMovements with the arrival times and waiting times for every source node passing 

through this passing node. 

The main idea behind the flow model is the merging and moving of the crowd to their closest 

exit taking into account in- and outflows of adjacent nodes. The main method Algorithm 

loops through all paths starting with the path with the shortest distance to the selected exit. 

With every selected path, the method EdgePassing runs over the entire path from its source 

node to the selected exit. In this loop, every subsequent edge between two nodes is 

selected, starting with the source node and ending when the exit node is reached. Within this 

method, flows are checked for incoming and outgoing groups to and from the start node of 

the edge. Then, the population is moved over the selected edge from start node to end node. 

The incoming flows of groups of people coming from adjacent nodes are continuously 

calculated in every passing node using the IncomingFlows method (Figures 3 and 4). This 

method checks for every edge arriving in the passing node whether groups of people can 

possibly interact with the currently selected arriving group. Only groups arriving before or 

together with the selected group can interrupt its movement (line 7). Groups arriving earlier in 

the selected passing node have no direct impact on the selected NodeMovement in incoming 

times. However, they can still have a delaying effect on the outflow of the selected 

NodeMovement. The program checks then recursively (line 8) for subsequent 

NodeMovements along the same path, until the resulting time frames overlap. Overlap is 

treated through attaching waiting times or merging both groups, depending on the 

relationship between both timeframes (lines 12-18). The procedure stops when all possible 

interacting flows are calculated in the selected passing node. 

                                                             
1
 The different object classes are indicated with a capital letter and in italic. The methods are in bold. 
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<Insert Figure 3>  

<Insert Figure 4> 

The outgoing flow from this selected passing node can be interrupted by preceding 

NodeMovements moving at a slower speed, which can result in catching up and overtaking 

of groups (Figures 4 and 5). All NodeMovements will form a queue of consecutive groups 

moving at the speed of the first group. The outgoingFlow procedure calculates this by 

iterating over all NodeMovements arriving in the selected passing node until the originally 

selected NodeMovement is reached. If an overtaking risk exists within the movement over 

the selected edge, the speed is adapted to that of the predecessor (line 8). This group is then 

selected and the method EdgePassing is invoked moving this group further towards the exit. 

Afterwards, the outgoingFlow method will pick up from the originally selected 

NodeMovement moving the group to the next passing node. 

<Insert Figure 5>  

At the end of the outgoingFlow method, the selected group will be assigned a certain 

evacuation time. The whole process starts over again by selecting the next Path object in the 

method Algorithm until all paths are scanned and the different evacuation times are known. 

4. Case study 

The goal of this case study is to show the capabilities of exitability for spatial analysis of 

indoor environments and its added value of interpreting inter-room differences in exitability. 

Questions to be answered include (but are not restricted to): How accessible is a certain 

exit?; What is the least accessible area in the building?; How does the exitability change with 

changing population?; and How many people can exit the building within 5, 10 or 15 min?. 

For this analysis, an existing building (S9) on the University Campus De Sterre in Ghent 

(Belgium) was used. This four-story building has three main exits and one evacuation exit. 

The main exits are situated on opposite sides of the longest side of the building with two exits 

closely connected (Exit 2 and 3). The building consists of four main lecture halls, three 

computer rooms, two smaller lecture rooms and many offices. These different compartment 

types correspond to a varying population density. Staircases, exits and corridors have no 

population since they are mainly used as connectors for movement between the various 

compartments. Rooms are one to seven person offices while the lecture halls can 

accommodate between 50 and 300 people each. The total maximum population of the 

building is 1446 occupants. Figure 6 visualizes the spatial location of the various 

compartments with their corresponding population. For this case study, the building was 

digitized and transformed into a dataset of nodes with id, room number, room type and 

population; and edges, with id, start node, end node, cost of the edge, minimal passage 

width and type of the link . The dataset consists of 213 nodes and 470 unidirectional edges. 

<Insert Figure 6> 

We will discuss two separate issues: a basic scenario with various questions with regard to 

the buildings exitability and secondly some scenarios where we change the original dataset 

to see how changes in environmental parameters affect the exitability of the building. 
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4.1 Spatial analysis of the base scenario 

In this scenario, the building is completely occupied with every compartment having its 

maximum number of building occupants. All four exits are available for evacuation with the 

exit choice for the single building occupant based on the shortest distance of the relevant 

room to the closest exit node. Table 1 shows the population load of each exit. Exit 2 and 3 

are joined since no differences in exitability can be detected between both exits due to their 

opposite location. From this table, it can be concluded that overall a major discrepancy exists 

in the load of the three exits as exit 1 handles the majority of the total building occupants 

(more than 50%). 

<Insert Table 1> 

How exitable is this building? What are the least accessible areas? Figure 7 shows the result 

of the exitability calculations for the building with the individual exitability values per room. 

The spatial distribution of arriving times shows that the best exitability can be found in the 

rooms adjacent to the exits and the stairs, while more distant rooms have much higher 

values. The highest exitability values are found on the top floor and in the main lecture halls. 

These areas prove to be the most vulnerable in case of evacuations and require special 

attention. Some rooms have considerably higher exitability values than their neighboring 

rooms, due to higher population rates and queuing. For example, the offices in the main 

corridor on floor 1 have a similar population and distance to the exit but some rooms show 

worse exitability values due to congestion. The total maximum exitability is 626 seconds for 

the main lecture hall on the first floor. The average exitability is fairly low with 180 seconds 

with a standard deviation of 147. Figure 8 shows the percentage of people who are able to 

leave within a range of 1 to 10 minutes. It is demonstrated that 50 percent of the building 

occupants can reach the exit within 5-6 minutes and 95% of the building can be evacuated 

within 10 minutes. 

<Insert Figure 7> 

<Insert Figure 8> 

What is the influence of distance on exitability? Previous results showed that higher floors 

have higher exitability values. This proves to be a logical result due to the direct relationship 

between the physical closeness of those rooms to their selected exit and the times needed 

for evacuating. Figure 9 supports this claim with an almost linear relationship between 

distance and exit times for some source nodes, clearly subdivided per floor (solid ellipses). 

Rooms on higher floors have considerably higher exitability values given the flocking effect 

near stairs along the path to the exit. In fact, those stairs can be seen as intermediate exit 

points and the effect of walking towards stairs is similar as the effect of walking to an exit. 

However, several outliers create a more nuanced view. Higher floor levels show more 

variability in values per level (e.g. more differences in colors in figure 7). This supports the 

spatial pattern of exitability values with fast evacuations for rooms close to the stairs and 

slower exitability for rooms in the middle of the central corridors (delayed by slower groups 

and main lecture halls). Also, the dashed ellipses in figure 9 group source nodes with high 

population densities (e.g. the main lecture rooms on the south end of the building), showing 

higher exitability values than expected due to a slower movement of each group. This 

slackened movement also has a delaying effect on subsequent groups of people from 

adjacent source nodes. The dotted ellipses show these rooms which tend to be located in the 
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middle of the central corridors and are hindered by movement of the rooms closer to the 

stairs. They have higher exitability values than expected given their population and location. 

In contrast, some rooms have low exitability values even with long shortest paths. This 

positive influence is caused by low population values and unhindered movement to the exit 

given their immediate closeness to the stairs (no congestion due to predecessors). 

<Insert Figure 9> 

How accessible are the exits? The distribution of the exitability values differs with the exit 

choice (Figure 10). Most rooms are closest located to exit 1, resulting in on average rather 

low exitability values. This means that rooms evacuating through exit 1 are able to get out in 

a fairly fast way, even with a heavier load on this exit. The statistical values for exit 2 show a 

reasonably concentrated distribution with slightly higher exitability values. Only four rooms 

(i.e. main lecture rooms) use exit 4 in case of an evacuation, resulting in less congestion 

even with the high occupancy rate. The average exitability rate for the entire building is 330 

seconds. Occupants exiting through exit 1 and 2 have 5-10% higher averages, while the 

average exitability for exit 4 is 20% lower than the average for the building. This lower value 

is influenced by the reduced number of compartments evacuating through this exit and a 

smoother occupant movement. Movement to exit 2 is the most unfavorable given the fact 

that a reduced occupant load on this exit results in higher exitability values. 

<Insert Figure 10> 

How does the exitability change with only 1 exit available? In emergency situations, some 

exits might be unavailable for evacuations. This spatial concentration of exit possibilities 

leads in the extreme case to only one usable exit which in turn results in a drastic decrease 

in available exit routes. Since the data set contains three building exits, this scenario is 

subdivided in three cases, one for each exit. Figure 11 shows the statistical distribution in 

each case and for comparison reasons also the distribution of the base scenario with all exits 

in use. Figures 12, 13 and 14 show the exitability results per available exit. From these 

visualizations, it can be concluded that a decline in available exit possibilities with the same 

spatial population distribution has a major influence on the resulting exitability values. 

<Insert Figure 11>  

The results show that evacuations along exit 1 run quite smoothly. This is similar to the base 

scenario where already many occupants usually use this exit. As a result, the extra load on 

this exit (i.e. from occupants normally using exits 2 and 4) has no significant effect on the 

total exitability of the building. Additionally, exit 1 has the largest opening width which 

accelerates the evacuation process even more. However, the exitability values are in 

comparison with the base scenario on average higher and with a greater internal distribution 

(Figure 11). A similar view can be detected for evacuations along exit 4, although the effect is 

worsened. Occupants from the main lecture halls still have immediate access to the exit (due 

to its physical closeness), but a slackening effect occurs to the groups following. This is a 

result of the slower processing of the large groups from the lecture halls and the 

considerable smaller door width of the exit. This in turn affects the exitability values of rooms 

further removed from the exit queuing behind the preceding slower groups. The scenario with 

only exit 2 available is the most alarming for lecture halls opposite to the exit. Occupants 

from those rooms have to walk considerably further and are impeded on their way to the exit 
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by predecessors and smaller opening and corridor widths. The distribution of the different 

values are however similar to the other scenarios with higher base values (Figure 11). 

Secondly, figures 12, 13 and 14 show that the exitability values differ over the multiple floor 

levels, with the lowest value on the ground floor and the highest values on the top floor. This 

is consistent with the direct relationship between distance and evacuation time. However, the 

data show a striking phenomenon with the more unfavorable exitability values from floor level 

1 compared to those from level 2. This is attributed to the initial congestion originating from 

occupants from level 1, while occupants on level 2 have to traverse a longer distance and at 

the time arriving on level 1 already have to deal with less congestion and hinder from 

predecessors. 

Thirdly, rooms with an average occupancy rate and an immediate connection to the stairs 

hold higher exitability values than rooms further away. However, the occupancy rate may 

result in a deteriorating effect (e.g. the main lecture rooms in the south). 

<Insert Figure 12> 

<Insert Figure 13> 

<Insert Figure 14> 

4.2 Effect of population and corridor width on exitability 

How does the population distribution influence exitability? The capability of the building is 

tested for coping with a drastic population decrease which corresponds to reality since during 

holidays the lecture and computer rooms are not used. Compared to the base scenario the 

whole population is more than 5 times smaller with only occupants in the offices resulting in a 

total of 248 persons. 

Figure 15 shows that the exitability values decrease with decreasing occupancy. All rooms 

have considerably lower exitability values, with inter-room differences attributed to disparities 

in physical distance and the slight difference in occupancy rate for some rooms. The result 

also shows a more linear relationship between distance and exitability values compared to 

the base scenario (although slower movement on stairs and discrepancies in occupancy 

rates impedes perfect linearity). 

<Insert Figure 15> 

How does a decreased corridor width change exitability? The corridor width of the main 

corridors on the different floor levels was narrowed from 4m to 2m to be more realistic with 

the presence of cupboards preventing the complete use of the corridor. This test allows 

examining the influence of the physical building characteristics on exitability. Figure 16 

shows that the effect of smaller corridor widths is minimal on the exitability values in this case 

study. This can be explained by the limited number of occupants that is affected by this 

change in corridor width along their path to the exit. As shown previously, the main lecture 

halls with high occupancy rates can considerably deteriorate the evacuation process. 

However, half of the building occupants in this scenario have the same evacuation path 

characteristics as in the original context. In this case, only some rooms are affected with a 

slightly higher exitability and this mainly on floors 2 and 3. After all, they have to travel the 

longest path and are more sensitive to congestion and queuing behind slower predecessors. 
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The other trends described above are similar for this scenario with major distance influence 

and primarily congestion from highly populated rooms. 

<Insert Figure 16> 

5. Conclusion 

In this paper, we have put forward a new indoor accessibility measure, termed exitability, to 

analyze the accessibility of exits from within the various spatial building units (room-to-exit 

accessibility). Since exitability portrays the easiness with which occupants can reach building 

exits, it focuses on the movement of the building occupants from their internal building 

location to the exit. The calculation methodology is based on flow models and is illustrated in 

a case study regarding the efficiency of a spatial building design and room occupancy on the 

ease to evacuate a building. The results obtained in the case study indicate the importance 

of the physical distance on exitability. The further physically removed from an exit, the higher 

the chances that the exitability will be worse compared to rooms nearby. This effect is 

however modulated by the flow size of building occupants. In particular, congestion or 

extended population movement results in higher exitability values than expected on grounds 

of spatial proximity alone. 

For the building considered in the case study, no significant problems were detected with 

regard to the quality of access of the various rooms (e.g. all rooms have within 10min access 

to an exit). While the results of course specifically apply to this particular building with a 

certain population distribution and building context, it is important to highlight the more 

general advantages and possibilities with calculating exitability. First, comparing room values 

of exitability can result in showing major discrepancies between rooms or floor levels which 

show the quality of the building design. For example, it allows one to see how changes in 

parameters like corridor or door width or the position of exits might affect the overall 

exitability of a building and show the need of changing design configurations. Also, the 

accepted population distribution can be analyzed with regard to the exit load or the spread 

per floor level, which can result in changes to allow a more optimal exitability. In addition, 

clusters of rooms with worse exitability can be detected which might be not noticeable at first 

sight. In addition, several buildings can be compared in terms of overall exitability to reveal 

which buildings allow to be cleared more easily. 

The contribution of our work to the academic literature is at least two-fold. First, with respect 

to evacuation modeling, we have demonstrated the possibilities of spatially analyzing a 

building's feasibility of dealing with emergency situations. Second, exitability quantifies a 

qualitative relationship of access. As such, it can be used to optimize space-time decisions 

for users within buildings. The extension towards indoor environments is in line with the 

gradual refocus of geospatial applications towards the three-dimensional indoor built 

environment. Exitability also deals with the constraints of indoor environments. Previous 

indoor accessibility measures have been developed either for pointing out mobility issues for 

the physically impaired or for spatial analysis. Our work fits in with the latter, but tries to 

calculate accessibility not based on solely geometrical parameters, but also on actual 

movements of people. 

As future work, an extension to this exitability measure can be considered, where exitability 

is calculated under non-emergency situations and even with different destination points. In 
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that case, exitability is closer defined to the traditional accessibility measures. Adaptation to 

this concept opens the world to analysis of accessibility in all situations. As such, we believe 

that we made valuable contributions with our research to a better understanding of the 

intricacies of indoor environments. 

Captions 

Figure 1: Design of the 'Geometric Network Model' (Source: Lee (2004)). 

Figure 2: Parameters in the pedestrian flow model. 

Figure 3: Algorithm of the IncomingFlows in a selected passing node. 

Figure 4: Movement in a passing node. 

Figure 5: Algorithm of the OutgoingFlows in a selected passing node. 

Figure 6: Population distribution in the base scenario. 

Figure 7: Exitability values for evacuation towards all exits in the base scenario. 

Figure 8: Ratio of people able to exit within a certain time limit. 

Figure 9: Comparison between shortest path and exitability. 

Figure 10: Distribution of exitability over the various exits in the base scenario. 

Figure 11: Distribution of exitability over the various exits with only 1 exit available. 

Figure 12: Exitability values for evacuation towards exit 1. 

Figure 13: Exitability values for evacuation towards exit 2/3. 

Figure 14: Exitability values for evacuation towards exit 4. 

Figure 15: Exitability values for evacuation towards all exits with decreased population. 

Figure 16: Exitability values for evacuation towards all exits with decreased corridor width. 

Table 1: Distribution of the population over the different exits. 
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