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Statistical fluctuations in pedestrian evacuation times and the effect of social contagion
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Mathematical models of pedestrian evacuation and the associated simulation software have become essential
tools for the assessment of the safety of public facilities and buildings. While a variety of models is now available,
their calibration and test against empirical data are generally restricted to global averaged quantities; the statistics
compiled from the time series of individual escapes (“microscopic” statistics) measured in recent experiments are
thus overlooked. In the same spirit, much research has primarily focused on the average global evacuation time,
whereas the whole distribution of evacuation times over some set of realizations should matter. In the present
paper we propose and discuss the validity of a simple relation between this distribution and the microscopic
statistics, which is theoretically valid in the absence of correlations. To this purpose, we develop a minimal
cellular automaton, with features that afford a semiquantitative reproduction of the experimental microscopic
statistics. We then introduce a process of social contagion of impatient behavior in the model and show that the
simple relation under test may dramatically fail at high contagion strengths, the latter being responsible for the
emergence of strong correlations in the system. We conclude with comments on the potential practical relevance
for safety science of calculations based on microscopic statistics.
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I. INTRODUCTION

Large buildings or public facilities should allow a safe and
quick evacuation of the attendance in the event of an emer-
gency, such as a fire. Indeed, the uncontrolled movement of
large crowds may involve excessive delays due to obstruction
at narrowings and, in the most extreme cases, presents a risk
of injury or even death because of pushing and trampling. To
limit these risks, the design and construction of public facilities
must obey strict standards, specified in building codes. In
addition to design criteria that can render environments safer,
a reliable prediction tool for the total evacuation time Tesc,
as a function, e.g., of the number N of attendants, would
be extremely valuable. To this end, a better understanding of
the dynamical processes governing crowd motion might be
crucial.

In spite of being the primary concern of much research,
the mean evacuation time T̄esc(N ) does not convey enough
information to assess the safety of a facility: The fact that
T̄esc(N ) lies in safe bounds does not tell us how often the
evacuation will be excessively long. Fluctuations are indeed
expected to be large in such complex finite-size systems.
Therefore, one should consider the whole distribution of
total evacuation times [1] over some (uncontrolled) space of
realizations, i.e., for different compositions of the attendance,
states of mind, times of the day, etc.

An evacuation may be delayed by various possible factors,
but a bottleneck that has turned fatal many times is the
congested passage through an (insufficiently wide) exit door.
Amidst many other similar tragedies, severe congestion at an
exit or a narrowing was reported in the 1863 Church of the
Company of Jesus fire catastrophe in Santiago (Chile) [2],
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causing more than 2000 fatalities; in the 1903 Iroquois Theatre
fire disaster in Chicago, with a death toll above 600 [3] (for
the full story, see [4]); in the largely documented 1989 crowd
disaster at the Hillsborough stadium (England) [5,6] (in this
case, congestion actually occurred at the entrance, under the
pressure of the incoming crowd of supporters); in the 2010
crowd disaster during the Love Parade in Duisburg (Germany)
[7], where the same tunnel was used as both the entrance and
the exit from the premises; in the 2004 fire disaster in the
nightclub República de Cromañón in Buenos Aires [8]; and in
the recent fire disaster in the Colectiv nightclub in Bucharest
in October 2015 [9], where clear problems with the emergency
exits were reported.

Recently, quantitative analogies have been brought to light
by Zuriguel and co-workers between the flow of grains through
a small orifice and pedestrian evacuation through a narrow
door, at least in the controlled conditions in which the experi-
ments were conducted [10,11], thus suggesting that the process
is dominated by basic physical mechanisms. The escape
dynamics were probed microscopically (i.e., at the level of the
individual); in particular, statistically, the distribution of time
lapses �t between successive egresses was shown to be well
described by a power law at long jam durations �t , regardless
of the behavior prescribed to the participants. If the bulk evac-
uation can indeed be robustly characterized microscopically,
the following approach seems very promising: Compute the
statistics of time lapses associated with a given exit geometry
(microscopic statistics), using existing and future recordings of
real emergency evacuations (or evacuation drills in conditions
as realistic as ethically possible), and infer the sought-after
distribution of Tesc(N ) (macroscopic distribution) from the
microscopic one, as a sum of random time lapses.

Here we wonder about the validity and relevance of such a
tempting connection between the microscopic statistics and the
macroscopic distribution, henceforth called the micro-macro
relation for brevity. To explore this problem and illustrate our
findings, we have developed a highly economical cellular
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automaton model that is loosely inspired by the granular
analogy but also has a behavioral component [12–15] and
reproduces semiquantitatively the experimental data of [11].
In particular, we show that the micro-macro relation may
break down, notably owing to the empirically established
possibility of psychosocial contagion (or behavioral imitation,
i.e., an enhanced tendency of neighbors of aggressive people
to behave competitively).

In Sec. II we clarify the theoretical underpinning of the
micro-macro connection and expose possible causes leading
to its violation. Section III is dedicated to the presentation
of the model, which is then tested against experimental data
in Sec. IV in the absence of social contagion. In Sec. V we
implement the latter effect in the model in a simple way and
study its consequences. We conclude by critically commenting
on the potential interest for safety science of the micro-macro
relation, beyond our specific implementation.

II. THEORETICAL EXPOSURE OF THE PROBLEM

Suppose that a given facility needs to be evacuated.
Schematically, the individual escape towards a safe point may
be decomposed into the following phases: (a) a delay before
reacting to the emergency (for various possible reasons),
known as premovement time, (b) a phase of relatively
unconstrained motion, alone or in group, known as travel time,
and (c) possible delays due to obstruction at narrowings and
exits.

Here we exclusively focus on the last point.1 To this day,
the question of whether this is actually the bottleneck in tragic
evacuations remains controversial. If an emergency arises,
precious time is often lost in the premovement phase, which
is believed to take of the order of one minute [17], thus
sometimes longer than the subsequent evacuation. Moreover,
a significant portion of the social psychology literature of past
decades questions the prevalence of competitive moves, that
is, selfish rushes towards the exit causing clogs [18–22], and
hints at pieces of evidence of conserved social norms and
cohesive behaviors, such as the will to assist fallen people, in
emergencies. Yet reports on crowd tragedies (see references
above) make the occurrence of selfish rushes in some situations
unquestionable. In fact, even if the individual pedestrians are
intrinsically willing to cooperate, we will see with our simple
model that a global competitive response can emerge and
propagate in some cases.

Recently, the escape dynamics through a narrow (≈70-cm-
wide) door were studied experimentally in controlled evacu-
ation drills [11,23]. Three distinct degrees of competitiveness
were successively prescribed to the participants, from the
prohibition of any contact in the most cooperative settings
to the permission of moderately soft pushes to elbow one’s
way, in the most competitive settings. In each case, for a fine
characterization of the dynamics, the distribution p(�t) of
time intervals �t between successive escapes was computed,
with seemingly robust bulk statistics; similarly to the case of
granular hopper flows, the distributions were found to be well

1As a first step, the delays due to these distinct phases can be
summed additively, under the assumption of independence [16].

described by power laws at large �t , viz.,

p(�t) ∝ �t−α, (1)

where the exponent α decreases with increasing crowd
competitiveness. Thus, long clogging events were more likely
in the more competitive crowds, which resulted in longer
evacuation times. Note that only values of α larger than 3 were
measured; this implies that �t has a well-defined mean value
and standard deviation. From this microscopic characterization
of relatively competitive egresses, one may aspire to derive the
practically relevant distribution PN (Tesc) of global evacuation
times of N evacuees over an uncontrolled space of evacuation
realizations, where Tesc(N ) = ∑N

i=1 �ti and �ti is the time
lapse between the (i − 1)th and ith escape (for convenience,
the zeroth escape is defined as the start of the evacuation). To
do so, one can think of Tesc as a sum of N independent random
time-lapse variables �t and write

PN (Tesc) = p∗N (Tesc), (2)

where the superscript ∗N should be understood as a convolu-
tion product. Regardless of the nature of the distribution p(�t),
Eq. (2) yields a direct connection between the microscopic
statistics and the global distribution. In particular, if the mean
value �t and the standard deviation σt of p(�t) are well
defined, the central limit theorem implies that, in the limit of
large attendance N � 1,

PN (Tesc) ∼ N (N�t,
√

Nσt ), (3)

whereN (m,σ ) denotes the normal law of mean m and standard
deviation σ .2

Theoretically, it is well known that the micro-macro
connection of Eq. (2) fails if the �ti display strong correlations,
instead of being independent. Yet, for practical purpose, it is
tempting to discard this mathematical caveat. Indeed, it is
virtually impossible to collect sufficient data on PN , whereas
the microscopic statistics p could readily be compiled from
recordings of real emergency evacuations in the studied ge-
ometry (or, all ethical issues left aside, competitive evacuation
drills). In how far is this neglect justified in practice?

Here we claim that, beyond the variations in the crowd
composition and the correlations in pressure in the crowd, a
major limitation to the micro-macro relation originates in the
propagation of noncooperative alarmed behaviors.3 Although
this process of behavioral contagion, whether deliberate or not,
may be less widespread than traditionally thought (or even per-
haps reported [18]), it did occur in major crowd disasters and
very generally aggravated the situation. Therefore, it should be
heeded in the extreme conditions where safety is most imper-
iled. A recent example that demonstrates this effect is a video
showing the beginning of a crowd movement at a gathering fol-
lowing the 13 November 2015 terrorist attacks in Paris [24]; an-
other arresting example is the following statement by Marshall,

2Some details about the limit distribution expected in the hypo-
thetical case of a power law with exponent α � 3 are provided in
Appendix A.

3This contagion process is often referred to as panic spreading, but
the denomination may be improper [20].
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based on his combat experience during World War II: “Every
large panic starts with some very minor event . . .. Troops will
always run if they see others running and do not understand
why” [25]. Since competitive rushes towards the exit have an
impact on the microscopic distribution p, contagion induces
correlations that may strongly affect the global distribution PN .

Let us illustrate this point with an extreme example.
Suppose that the crowd is extremely susceptible to fear; for
instance, consider the two foregoing examples of suggestible
crowds. In the (unlikely) event of someone actually displaying
signs of alarm, fear will quickly pervade the whole crowd. As
a result, the evacuation will be either slow, if someone actually
gets panicky, or fast, in the opposite case. Accordingly, the
distribution of global evacuation times cannot be inferred from
the sole microscopic distribution p(�t), because the latter, as
an average, mingles escape data for different crowd states. In
particular, the micro-macro relation would predict far rarer
sluggish evacuations than actually occur.

III. PRESENTATION OF THE CONTAGION-FREE MODEL

To test these ideas in a more concrete framework, we wish
to develop a minimalistic model for pedestrian evacuation dy-
namics, focusing on congestion effects [point (c) above]. The
model should reproduce the following microscopic statistical
features suggested by experiments [10], without obfuscating
the picture with complex modeling details: (i) a broader-than-
exponential, power-law-like tail in the distribution p(�t) for
narrow doors, as in Eq. (8), with exponents comparable to
empirical values, and (ii) an exponential-like distribution of
burst sizes, where a burst is defined as a series of uninterrupted
escapes.

Inspired by previous work [14], we develop a lattice-
based cellular automaton. Importantly, its key ingredients can
loosely be interpreted in the context of granular flows, given
the aforementioned analogies [10] (also see [26]), but we
account for the fact that unlike fluid particles, pedestrians
are responsive to the environment and may take decisions and
move accordingly. The semiquantitative agreement attained by
our model with respect to the specific statistical features (i) and
(ii) is, as far as we know, unprecedented in cellular automata
(see Appendix C for remarks pertaining to the observation of
power laws, notably in previous works).

Briefly, agents (representing pedestrians) will be positioned
on the cells of the lattice grid, with at most one agent per site,
due to steric constraints. At each time step, agents target, and
may move to, one of the adjacent sites. The chosen direction is
controlled by a static floor field that directs them towards the
exit [27]. We insist that the model is deliberately minimalistic.
Among other simplifications, we make no attempt to describe
the architecture of a real facility or to account for the existence
of social bonds in the evacuating crowd, even though they may
be important in practice [19,28].

We opt for a simple geometry, namely, a square of side L,
with a single door of width Ld in the middle of one of the
walls. Space is divided into square cells, of unit length.

At each time step, each agent targets one of the (at most)
four adjacent sites, the so-called von Neumann neighborhood,
or chooses to stay at its current location. The probability of
selection of a site depends on its attractiveness, quantified by

the absolute static floor field

As(x,y) = d̄ −
√

(x − xT )2 + (y − yT )2︸ ︷︷ ︸
proximity to target

, (4)

where (xT ,yT ) = (L
2 ,−Ld ) are the coordinates of the targeted

“safe point” behind the door and d̄ is a large value that
maintains the attractiveness positive in all cases. Conceptually,
As(x,y) can be regarded as the negative of a potential energy
in a granular system. The floor field could naturally be refined
by describing, e.g., wall effects, but our simple choice turned
out to be satisfactory for the present study.

Furthermore, occupied sites should always be less attractive
than free ones. Thus the static attractiveness is complemented
with a dynamic part: Should a site be currently occupied
by another pedestrian, its attractiveness will be penalized
by a large constant value H0 = −10, viz., A = As − H0, so
that free sites (A = As) will virtually always be preferred to
occupied ones.

A priori, pedestrians should always try to move to the
adjacent free site of highest attractiveness. However, this
deterministic local rule traps the system in metastable config-
urations, with unrealistic density profiles in front of the exit.
Accordingly, some stochasticity is introduced, in the form of
a small amount η of noise (which would be a measure of the
amplitude of the vibrations in a granular system). A pedestrian,
on site μ, selects a nearby site ν in her vicinity (including the
current site), with a probability

pμ→ν ≡ e(Aν−Aμ)/η∑
σ∈�μ∪{μ} e(Aσ −Aμ)/η

, (5)

where the denominator is a normalization factor and �μ refers
to the set of sites adjacent to μ. A vanishing noise intensity
η yields the same issues as the deterministic algorithm, while
high η values produce very loose pedestrian configurations; the
selected intensity η = 1 offers a good compromise between
these extreme cases.

Once the desired sites are selected, distinct pedestrians may
aim for the same site. Because this site cannot accommodate
more than one agent, this generates a conflict and the physical
contacts that it involves (“friction” in the terminology of [29])
hamper motion. For simplicity, we consider a limit of strong
friction, in which competitive conflicts are always sterile:
Nobody then moves forward.

Our simulations have shown that the foregoing rules do
not lead to a power-law-tailed distribution p(�t), condition (i)
above. This aspect turned out to be difficult to reproduce with
a cellular automaton and convinced us to examine its origin
in granular flows more carefully, for these systems are better
understood and display similar microscopic statistics. In gran-
ular hopper flows, clogging occurs because of the formation of
pressure-bearing structures such as arches [30,31]. The large
time lapses �t between successive escapes, forming the tail
of p(�t), are dominated by the time that vibrations take to
break these arches. Lozano et al. elucidated that the extent of
time an arch resists vibrations on average is controlled by its
weakest point, i.e., the grain that forms the largest angle with
its two neighbors in the arch [32]. Geometry, more specifically,
the variable weaknesses of the arches depending on their
geometry, thus plays a central role. This calls into question
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the relevance of a lattice-based model such as ours. However,
we succeeded in taking into account these aspects, without
introducing computationally costly geometric considerations.

We started by taking up the original distinction proposed in
[14] between cooperative (patient) and competitive (impatient
or selfish) pedestrians: Here, at each time step, either of
the behaviors is chosen probabilistically, on the basis of
one’s propensity to cooperate �i(t) ∈]0,1]; one will behave
cooperatively with probability �i(t) and competitively with
probability 1 − �i(t), where �i(t) is fixed to its intrinsic value
�

(intr)
i in the absence of interpedestrian contagion. In effect, the

two possible behaviors or strategies differ in the tolerance for
not moving. Owing to their drive, competitive pedestrians find
the option to stay at their current position (xi,yi) less attractive
than cooperators, the difference being set by �i(t):

A(xi,yi)
impatient−→ A(xi,yi) + k ln �i(t), (6)

A(xi,yi)
patient−→ A(xi,yi). (7)

The constant k is set to 0.5 to get results quantitatively
comparable to the experimental measurements of [11]. Thus,
competitive agents will be more prone to push for one of
the neighboring sites than patient ones. Using Eq. (5), one
can readily see that, in a given environment of cooperative and
competitive agents, an impatient individual will be more likely
to opt for a forward move and therefore will move faster on
average, compared to their patient counterparts.

At the constriction close to the exit, an agent will only
be able to move forward if, at this time step, the neighbors
accept not to attempt a move to the desired site, which
depends on their propensities �i(t) via Eqs. (6) and (7).
In a granular system, this would tentatively correspond to a
situation in which neighboring grains in the arch move slightly
backward due to the vibration, thus leaving free space to their
neighbor. Finally, to account for the heterogeneous resistances
of the arches, the intrinsic propensities �

(intr)
i are randomly

(Gaussian) distributed [remember that, without contagion,
�i(t) = �

(intr)
i ]. This disorder is critical with respect to

law (i).
To sum up, at each time step, (1) all pedestrians start by

selecting a target site, (2a) if the target site is occupied, the
pedestrian just waits, (2b) otherwise, the pedestrian moves to
it, unless other agents are competing for it (in which case no
one moves). (3) Following this first round of motion, some
sites have been freshly vacated, which may allow waiting
pedestrians to move to their target site. Steps (2) are thus
iterated until all possibilities of motion have been exhausted.

The iterative rule (3) allows the formation of files of moving
pedestrians, without voids, and avoids an artificial pulsating
dynamics. Note that agents cannot move more than once during
a time step (tentatively corresponding to a fraction of a second
in reality).

This completes the description of the contagion-free model,
that is, the model featuring fixed propensities to cooperate
�i(t) = �

(intr)
i for all agents i. Before introducing contagion,

we dedicate the next section to the study of the fixed-behavior
model, which reflects the situation expected in controlled
evacuations with prescribed behaviors [11].

IV. MAIN RESULTS FOR THE CONTAGION-FREE MODEL

Though the foregoing rules seem rather sensible, it is not
granted that they can reproduce the microscopic statistical laws
(i) and (ii). Here we compare the numerical simulations of the
contagion-free model with experimental data on pedestrian
and sheep passages through a narrow door [10,11,23,33].

In Ref. [11], three levels of pedestrian cooperativeness were
tested: very competitive, moderately competitive, and coop-
erative. We arbitrarily define the corresponding distributions
of propensities �(intr) as Gaussian distributions of standard
deviation 0.2, peaked at �0 = 0, 0.4, and 0.8, respectively, and
truncated to the interval ]0,1[, but the results are qualitatively
robust to variations of these specific values.

Initially, the agents are distributed randomly in the room,
with a uniform distribution conditioned upon the volume ex-
clusion constraint, i.e., having no more than one agent per cell.
The initial positions are independent of the agents’ intrinsic
probabilities and only affect the travel time towards the door
[point (b) at the beginning of Sec. II]. In our simulations,
this process marks the beginning of the evacuation, but takes
a negligible time compared to the clogging-induced delays
[point (c)], provided that the crowd is large enough (typically,
L � 20 for a density ρ = 0.6). The evacuation ends when the
last individual has left the room.

The simulations show close agreement with experimental
data, reflected in the following aspects. During the simulated
evacuation, the crowd adopts a semielliptic configuration
in front of the exit, in broad agreement with experimental
observations. As expected, the mean global evacuation time
increases monotonically with the number N of agents.

As in [11], a “faster-is-slower” effect [34,35] is observed,
insofar as the evacuation takes longer for increasing com-
petitiveness of the agents, i.e., going from a cooperative to a
moderately competitive and then a strongly competitive crowd,
although a competitive agent would move faster on average
than a patient one placed in the same given environment (see
Sec. III). From now on, the initial pedestrian density will
always be set to ρ = 0.6.

For a more thorough analysis, we compute the microscopic
statistics of the evacuation, with the help of the PYTHON routine
implemented by Alstott et al. [36] on the basis of the power-
law analysis methods collated by Clauset et al. [37]. Starting
with point (i) above, Figs. 1 and 2 present the complementary
cumulated distribution (or survival function) of time lapses
�t , in various conditions. Overall, the graphs look similar to
the experimental ones [11]. For the narrowest door, their tails
are well fitted by power laws

p(�t) ∼ �t−α, α > 3. (8)

Indeed, for Ld = 1, the goodness of the power-law fit vs
the exponential one is always positive, meaning that the
power law provides a better fit, with p � 0.05 (for about 106

sample points); for strongly competitive crowds, p reaches
truly vanishing values, which makes extremely unlikely the
possibility that the success of the power-law fit over the
exponential one is due to chance. These heavy tails are
largely due to the disorder in the propensities �

(intr)
i : If the

distributions of �
(intr)
i are replaced by a Dirac peak at their

mean value, the power-law fit becomes much poorer (see
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FIG. 1. Survival functions P (τ > �t) for Ld = 1 and different
cooperativeness levels: strongly competitive (red), moderately com-
petitive (green), and cooperative (blue), from top to bottom. The
curves have been shifted vertically to improve the visibility. The
dashed black lines are power-law fits, with the exponents indicated
in Table I. The dotted lines are the survival functions obtained by
replacing the distribution of propensities with Dirac functions peaked
at their mean values.

Fig. 1). Appendix B presents an analytical endeavor towards an
approximate derivation of the microscopic distribution p(�t)
for the strongly competitive crowd, which predicts a power
law with exponent α = 4 (to be compared to the numerical
value α = 3.7).

Large time lapses �t become more frequent for more
competitive crowds, which is reflected by a lower exponent
α, consistently with the experimental observations. The model
parameters were chosen in such a way that the values of the
exponents α tend to match those of Ref. [11] for a 70-cm-wide
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Ld=2
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FIG. 2. Survival functions P (τ > �t) for different door widths
Ld = 1, 2, 3, 4, from top to bottom, with a strongly competitive
crowd.

TABLE I. Values of the fitted exponents α. The values followed
by (?) are strongly dependent on the portion of the curve that is fitted
and is therefore uncertain.

Behavior Ld = 1 Ld = 2 Ref. [11]

Strongly competitive 3.7 4.3 4.2
Moderately competitive 6.6 3.8(?) 5.5
Cooperative 8.4 5.6(?) 6.8

door, which we here consider to be between Ld = 1 and
Ld = 2. The (approximate) fitted values of the exponent are
presented in Table I. In terms of dimensional values, assuming
a time step δt = 0.27 s for cells of size 0.4 × 0.4 m2 [38],
the average time lapse 〈�t〉 is comparable to the experimental
value [11] for Ld = 2 and overestimated by a factor 3 for
Ld = 1; this overestimation is not very surprising, in light of
the limit of strong (infinite) friction considered in the model.

Figure 2 shows the influence of the door width. Widening
the door reduces the probability of long clogs, in agreement
with simulations and experiments on sheep [33], as well as with
the intuition. In addition, for door widths Ld � 2, the quality of
the fit of the tail with a single power law decreases. Moreover,
while a dramatic change is observed as Ld increases from 1 to
2, variations in the distribution p(�t), for �t � 1, are much
more tenuous for Ld � 2. This does not imply that the outflow
rate is then independent of the door width: Simultaneous
escapes �t = 0 will play a more and more important role as
Ld increases. Incidentally, note that an apparent insensitivity
to large door widths was also reported in [39].

The implemented dynamical rules are strictly local, so we
expect the escape dynamics at the door to be mostly insensitive
to finite-size effects. Indeed, for system sizes L � 20 (with
initial density ρ = 0.6), the collected microscopic statistics
are virtually independent of L. For L < 20, variations are
perceptible, because the initial phase in which agents run
towards the (still uncongested) door is no longer negligible.

The large fluctuations in the time lapses �t are suggestive
of intermittent dynamics, in which bursts of escapes, defined as
successive egresses separated by �t � 1, alternate with long
waiting times. In some experimental settings [10], these bursts
of escapes were found to be distributed exponentially; see law
(ii). In our cellular automaton, bursts of escapes (comprising
more than one egress) are observed only for Ld > 1 (the escape
at Ld = 1 is so sluggish that successive escapes are highly
improbable); for Ld = 2, for instance, Fig. 3 demonstrates
that the bursts of escapes do indeed follow an exponential law.
Note that this law is more readily obeyed in cellular automata
than law (i), though not systematically [40].

Micro-macro relation. Since the time lapses �t fluctuate,
the global evacuation time, which is a sum of time lapses,
will also vary between realizations. These variations between
realizations materialize in the distribution PN (Tesc) of global
evacuation times of N � 1 agents, an example of which is
shown in Fig. 4 for a competitive crowd evacuating through
a narrow door. To test whether the statistical fluctuations
can be deduced from p(�t) using the micro-macro relation,
we compare the actual histogram of durations Tesc with the
Gaussian distribution predicted on the basis of Eq. (3) and
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FIG. 3. Distribution of burst sizes for a door width Ld = 2 and a
strongly competitive crowd.

p(�t). The excellent agreement that is obtained validates
the micro-macro relation, as expected in a situation without
long correlations in the successive �t . On a side note, let us
illustrate the importance of heeding the fluctuations in the
distribution, and not just the average. Suppose that safety
standards were set by considering only the mean evacuation
time; as a precaution, this mean value could be inflated by, say,
10% to set the norm. Still, in the particular example of Fig. 4,
actual evacuations would take longer than the norm in about
8% of the realizations, even though the global evacuation time
is a statistical average over ρL2 ≈ 400 evacuees.

(As an aside, we mention that for wider doors Ld � 3
we observed some anticorrelations between successive time
lapses �t , resulting in a slightly narrower global distribution
of Tesc than predicted by the micro-macro relation. This may
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FIG. 4. Distribution of global evacuation times in the absence of
contagion, for a strongly competitive crowd, Ld = 1, and L = 25.
The solid red curve is the Gaussian distribution predicted on the basis
of Eq. (3).

be in line with experiments on pedestrian flows through
bottlenecks under normal (cooperative) conditions, in which
anticorrelations were also reported and ascribed to a zipper
effect [41].)

V. IMPACT OF CONTAGION

In the previous sections we introduced a minimal model
based on a computationally highly efficient cellular automaton
capable of semiquantitatively reproducing important experi-
mental data for evacuations through a narrow exit and we
showed that its results obeyed the micro-macro relation.
However, so far, the pedestrian behaviors have been kept fixed,
with no possibility of change due to social contagion. This
deficiency is remedied in this section and we demonstrate that
the presence of contagion can lead to the violation of the
micro-macro relation.

In realistic conditions, the propensities to cooperate �i(t)
will vary with time, in particular under the negative influence
of the aggressive acts witnessed in one’s vicinity: Having a
neighbor of ours choose a competitive strategy reduces our
propensity to cooperation in the future; the reverse effect, that
is, the positive influence of cooperative acts, is deemed weaker
and is disregarded here. It is worth remarking that the existence
of such contagion is endorsed by many social psychology
theories, even when they claim that cooperativeness often
prevails. For instance, the experimental results of Kugihara
[42] supported the social identity model according to which
(even in evacuation conditions) people do not break free of
social constraints but conform to the salient local norms; but,
more precisely, they “showed that what directly affects norm
formation is the density of stimulus, that is, the amount of
aggression received from others and of others’ escape activity
divided by group size.”

Contagion occurs only among neighbors. In the model, it
will be implemented by means of an equation of the form

τrel
D�i

Dt
(t) = −[

f (�i) − f
(
�

(intr)
i

)]︸ ︷︷ ︸
relaxation

− JDi(t)︸ ︷︷ ︸
contagion

, (9)

where D
Dt

denotes a discrete time derivative (to be specified
later), τrel sets the duration of the memory, J is the contagion
strength, Di(t) � 4 is the number of neighbors of i who chose a
competitive strategy at time step t , and the function f controls
the return force of the propensity to collaborate �i(t) to its
intrinsic value �

(intr)
i . To make the boundaries at � = 0 or 1

strongly repulsive and introduce nonlinearities in the equation,
we set

f (�) ≡ tan
[
π

(
� − 1

2

)]
. (10)

We should mention a technical aspect associated with the
discrete time derivative in Eq. (9): Defining it as a finite
difference would require an excessively fine time discretization
to keep �i between 0 and 1. Consequently, we changed
variables to ψi = f (�i), wrote D�i

Dt
(t) = 1

f ′(�i )
dψi

dt
, and set

an arbitrary upper bound on the derivative f ′ to impede
too sudden variations of ψi ; �i(t + 1) is then calculated
as f −1[ψi(t + 1)]. This scheme allowed us to use the same
discretization time step δt = 1 for the behaviors and for the
motion.
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Clearly, the foregoing choices are arbitrary to a large extent
and we do not claim that Eq. (9) precisely describes a real
contagion process; yet we will see that it yields an interesting
phenomenology with plausible practical relevance. To better
understand the implications of Eq. (9), consider the case in
which one agent j is suddenly struck with panic, so that
�j (t) reaches a value c � 1. Then, if the crowd is highly
susceptible, with J → ∞, the nervous or impatient behavior
of this agent will contaminate others, so that (in this limit of
strong contagion) the whole crowd may turn nervous.

A. Analytical approach

We now turn to a more quantitative analysis of the
contagion dynamics. The analytical study is premised on a
quasiequilibrium assumption: The evacuation is considered
slow enough for the psychological propensities to reach
their equilibrium values before any significant change in the
geometric configuration of the crowd. A similar assumption
was used in Ref. [13]. Under this hypothesis, in the stationary
state, we can average Eq. (9) over a reasonably large number
of time steps, viz.,

τrel
D�i

Dt
(t) = −[

f (�i(t)) − f
(
�

(intr)
i

)] − JDi(t),

(11)

where the overbars denote time-averaged quantities.
Remarking that Di(t) = ∑

j∈�i
dj (t), where dj (t) = 1 if

agent j behaved competitively at time step t and 0 otherwise
and �i denotes the first neighbors of i, we see that Di(t) =∑

j∈�i
[1 − �j (t)].

Rewriting with a potential. To leading order in [�i(t) −
�i(t)], f [�i(t)] ≈ f [�i(t)] and Eq. (11) can then be recast
into

τrel
D�i

Dt
(t) = − dVi

d�i

(�i) −
∑
j∈�i

dV (2)

d�i

(�i,�j ),

where we have introduced the potentials

Vi(�) ≡ F (�) − �f
(
�

(intr)
i

) + ziJ
(
� − 1

2�2
)
,

V (2)(�i,�j ) ≡ J

2
(�i − �j )2.

Here F is a primitive of f , e.g., F (�) ≡ − 1
π

ln | cos[π (� −
1
2 )]|, and zi is the number of first neighbors of agent i. The pair
potential V (2) is symmetric and is interpreted as an interfacial
cost. Note that the foregoing reasoning is independent of the
function f (�); accordingly, it can be used to predict the
outcome of simulations based on other functional choices.

The total energy of the system is then

V({�i}) =
∑

i

Vi(�i) + 1

2

∑
(i,j )|j∈�i

V (2)(�i,�j ).

If one neglects heterogeneities in the intrinsic distributions
(�(intr)

i → �(intr)) and in the configuration (zi → z), Vi be-
comes independent of i (Vi → V ) and the ground state {�j }
for the energy is obtained for the homogeneous system at �j =

0.0 0.2 0.4 0.6 0.8 1.0
Π

0.6

0.8

1.0

1.2

1.4

1.6
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J=2.5

J=2.62

J=2.7

FIG. 5. Potential V for �(intr) = 0.93, z = 4, and different cou-
pling parameters J , as indicated in the legend.

�, where � minimizes V , viz., dV
d�

= 0. Interestingly, for some
values of the coupling parameter J and �(intr), the potential
V displays bistability (see Fig. 5), with two distinct minima
at �↓ and �↑ such that, by definition, V (�↓) < V (�↑). For
z = 4 and �(intr) = 0.94, the minima are approximately of
equal depths when J � 2.62.

Since, at not too high temperature, all �j will dwell close
to the bottom of an energy basin, it is convenient to write
�j = �↓ + �̃ as (↓ ,�̃) [or �j = �↑ + �̃ as (↓ ,�̃)] in the
bistable state. If the thermal deviations �̃ are overlooked, the
model can be mapped directly onto a two-dimensional (2D)
Ising model in an external field h, with the Hamiltonian

H = −h
∑

i

σi − JIsing

2

∑
(i,j )|j∈�i

σiσj ,

and σi,σj ∈ {−1,1}, with

h = V (�↓) − V (�↑)

2
,

JIsing = J

4
(�↑ − �↓)2.

It is well known that, in the absence of an external field h, the
2D Ising system undergoes a phase transition from a disordered
state with mixed spins to an ordered (↑ or ↓) state as the
temperature declines and that the transition is associated with
diverging correlation lengths. The thermodynamic transition
disappears at h �= 0; nevertheless, a vestige of the criticality
persists at small but finite h.

There are no bona fide thermal fluctuations in Eq. (9),
but the instantaneous discrepancies between dj (t) ∈ {0,1} and
1 − �j (t) introduce fluctuations ξ (t) in practice, viz.,

τrel
D�i

Dt
(t)= − dVi

d�i

(�i) − 1

2

∑
(i,j )|j∈�i

dV (2)

d�i

(�i,�j )+ξ (t).

By comparing the first and second moments of ξ , namely,
〈ξ 〉 = 0 and 〈ξ 2〉 ≈ 4J 2�i(1 − �i), with the thermal relation
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FIG. 6. Color maps of the propensities �j (t) in the crowd at time t = 4000 for �(intr) = 0.94 ± 10−7 and J = 2.96 (left), J = 2.9704
(middle), and J = 2.98 (right). Vacant sites appear in black.

〈ξ 2〉 = 2τrelT , we get a lower bound for the effective temper-
ature Teff = 2J 2

τrel
�i(1 − �i).

B. Numerical results

Numerical simulations of the model confirm the validity
of the foregoing analysis. Snapshots of the propensities of
the evacuating crowd are shown in Fig. 6 as color maps, for
different values of the coupling parameter J . Clearly, as J is
varied across a critical value J �, large domains of strongly
correlated propensities are observed in the system, which
is suggestive of the close presence of a critical point. Two
additional spatial feature are noticeable. There is an abundance
of cooperative (high-�) agents in the vicinity of the exit, along
with a cooperative fringe at the outer edge of the crowd, where
each agent has fewer neighbors, i.e., lower coordination (z)
values, and thus fewer contagion possibilities.

These results hold only for a sharply peaked distribution
of intrinsic propensities �(intr); for more broadly distributed
�(intr) (with standard deviations larger than, say, 0.01), the level
of disorder increases and the spatial correlations of the propen-
sity become less visible at J �. As the size L of the system
decreases, the border and vacant sites become proportionally
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FIG. 7. Evacuations in the presence of behavioral contagion for
J = 3.35 and �(intr) = 0.94 in a system of size L = 25. Shown on
the left is the survival function and on the right the normalized
global distribution of evacuation times per pedestrian Tesc

N
, with the

simulations in light blue, the expectations from the micro-macro
relation in hatched pink (see the text), and the Gaussian distribution
of Eq. (3) as a solid red curve.

more important, so the critical contagion strength J �(L) at the
onset of the evacuation shifts to larger values; for example,
we observed that J �(L = 100) ≈ 2.97, J �(L = 40) ≈ 3.11,
and J �(L = 25) ≈ 3.33. This notably implies that the critical
value J � will increase during the evacuation as fewer and fewer
people are left in the room.

Let us now move on to the possible effect of the contagion
rule on the evacuation.

The existence of large correlated domains in the unbounded
system implies that, should the system be small enough, i.e., of
order the correlation length or below, there will be occurrences
where the crowd will escape cooperatively and others, where
panic will spread and foster selfish behavior. We claim that,
notwithstanding the arbitrariness of the chosen rules, this
behavioral dichotomy is a practically relevant general effect
due to social contagion. In particular, taking it into account may
help settle the debate between the staunch supporters of the
maintenance of social cooperation in emergency evacuations
[22,43] and the proponents of the emergence of selfish or
aggressive behaviors4 in emergency, as often implemented in
physics-based models [12,13,15,34,39].

We turn to the micro-macro relation. The microscopic dis-
tribution of time lapses �t , averaged over many realizations,
is plotted in Fig. 7 for a system close to the critical point, J �
J �(L) and L = 25. Despite the presence of correlated domains
in the simulations (not shown), the Gaussian prediction of
Eq. (3) based on the micro-macro relation in the limit N → ∞
seems to capture the actual distribution of global evacuation
evacuation times satisfactorily. To test the agreement more
thoroughly, we measured the distance between the distribution
of Nsim simulated evacuation times and the distribution of Nsim

sums of N time lapses randomly drawn from the microscopic
distribution. As a statistical measure of distance (or rather
proximity) between finite-size distributions, we chose the p

value associated with either the Mann-Whitney test or the
Kolmogorov-Smirnov test. Despite collecting about Nsim ≈
5000 global evacuation times for every set of parameters

4Conversely, the effect of cohesion enhancement through identifica-
tion within the group predicted by the social identity theory would be
accounted for by an increase in �(intr) and possibly by a dependence
of these propensities on the neighbors.
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FIG. 8. Evacuations in the presence of behavioral contagion for
J = 453 and �(intr) = 0.999 05 in a system of size L = 30. The rest
is the same as in Fig. 7.

and averaging over many random distributions, we did not
measure any p value sufficiently small to ascertain a significant
difference between the actual distribution and the random one,
nor did we observe variations of the p value with the contagion
strength J that were substantially above the statistical noise.
Therefore, if the micro-macro relation is violated, the violation
is at most tenuous. This could be due to the finite lifetime of the
domains of correlated propensities or to the aforementioned
persistence of cooperative behaviors near the exit (compared
to the bulk), where time lapses are computed.

Thus, deviations from the micro-macro relation in the
bistable system considered above are, at best, moderate. Let us
now consider another mechanism that may induce deviations,
namely, the scenario (mentioned at the end of Sec. II) of an
initially cooperative crowd that is highly susceptible to panic,
i.e., with very large J . In this case, the crowd is initially trapped
in a metastable high-� state and the question is whether, in
a given realization, nervous or impatient behaviors will have
time to nucleate and push the crowd into the stable low-� state,
thus delaying the evacuation (all the more so as these behaviors
have nucleated early), or not. Figure 8 presents the microscopic
and macroscopic distributions associated with this scenario.
Once again, the macroscopic distribution is compared with a
random distribution inferred from the microscopic statistics.
Here the discrepancy is blatant, which reflects the dramatic
failure of the micro-macro relation. In particular, the inferred
distribution captures neither the frequency of fast (cooperative)
evacuations nor the occurrence of sluggish evacuations where
competitive behaviors pervade the crowd.

VI. DISCUSSION AND POTENTIAL RELEVANCE
FOR SAFETY SCIENCE

It is a crucial requirement in any safety protocol that
buildings should provide adequate means of egress in the
event of an evacuation, by preserving unlocked, unobstructed,
and clearly marked emergency exits. There is a plethora of
historical examples where an insufficient outflow capacity
was reported as a decisive factor leading to a crowd disaster.
Indeed, in their haste to exit, pedestrians may tend to push
their neighbors, which can result in the buildup of pressure at
the exit and its congestion. Recent experimental works have
raised the hope of a quantitative characterization of the outflow
capacity of a given exit, based on the distribution of time lapses

between successive egresses and depending on the eagerness
to egress.

In the present work we have developed a minimalistic
cellular automaton model able to reproduce semiquantitatively
the major features observed in (controlled) evacuation experi-
ments. In particular, for competitive egresses we obtained a dis-
tribution exhibiting a large tail that is well described by a power
law. For sure, our model is but a minimal abstraction of the real
problem; still, it is noteworthy that our approach is in line with
more detailed previous studies that endeavored to go beyond
the reliance of the social force paradigm on binary interactions
between pedestrians. In [44] the authors considered that,
instead of being repelled by their neighbors, the individuals
look for a free path through the crowd. In this sense, our
cellular automaton is based on rather similar considerations.

Among other features, we focused on the effect of social
contagion. As expected, in its absence, the (practically
relevant) macroscopic distribution of global evacuation times
is reliably inferred from the microscopic statistics of time
lapses. On the contrary, should there be a possibility of
behavioral contagion, this micro-macro relation may be
violated due to the induced correlations in the behaviors of
the pedestrians within each evacuation. While its origin can
be attributed to complex causes and its study lies in the realms
of social psychology, we have abstracted and illustrated this
point by implementing simple contagion dynamics, which
turned out to be quantitatively connected to the 2D Ising
model: In some regions of parameter space, the crowd displays
bistability, with a cooperative state and an impatient one.
However, large violations of the micro-macro relation were
in fact only observed at very large contagion strengths, when
the crowd initially resided in a metastable cooperative state.

This observation is conceptually interesting in that it shows
that, even in strictly identical conditions, the durations of
evacuation may vary much more than suggested by naive
reasoning (the micro-macro relation), although numerically
this happened only in a select region of parameter space;
the higher variability was then due to contagion-induced
correlations.

In reality, it is highly unlikely that two evacuations take
place in strictly identical conditions: Crowds will differ
in their composition and their psychological states will be
strongly affected by previous circumstances, not to mention
the singularity of each evacuation and the various possible
emergency stimuli. Within the simple framework of our model,
these differences might be accounted for by variations of
both the distribution of intrinsic probabilities �(intr) and the
contagion strength J with the occurrence. In any event, it
is natural to expect that this enhanced variability between
realizations will result in more systematic deviations from the
micro-macro relation than in our study.

Given this failure of the micro-macro relation, should
experts in safety science dedicate any attention whatsoever to
the microscopic distribution of time lapses (which, unlike the
global one, can potentially be compiled)? As a matter of fact,
we believe that this approach still represents a step forward
with respect to the traditional use of a single flow rate value
(e.g., an exit capacity of 82 persons per meter width per minute,
according to the British Guide to Safety at Sports Grounds
[45]), in that it accounts for statistical fluctuations (but not for
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context-related variations). In this spirit, one may envision a
conservative approach to the assessment of the exit capacities.
Regardless of the geometry, it would consist in extracting the
microscopic distribution from the slowest evacuations of a
densely crowded room, from a batch of real video-recorded
evacuations, and deriving the global distribution from the
micro-macro relation, as a function of the attendance. Data
from evacuation drills might also be considered, but this
demands to find a trade-off in the dilemma between prescribing
realistically competitive behaviors to the participants and
ensuring a safe drill. Alternatively, the avoidance of worst-case
scenarios in real evacuations could be left to the responsibility
of other mitigating strategies (i.e., not related to the geometry);
then, under the assumption that the evacuating crowd does not
yield to panic, typical egresses could be used to compile the
microscopic statistics and derive the exit capacity. Finally, it
is worth recalling that the possibilities of delay contemplated
here arise because of congestion at the exit and are naturally
less pronounced with wider doors or a scarcer crowd.

On a more general note, our work is yet another example
of the potential of statistical physics models to provide a phe-
nomenological account of society-related topics [12,46,47].
Along this line, we remark that, both in the (statistical) physics
of complex systems and in the social psychology of crowds
[48,49], many subtleties of the individual entity are left behind
when the entity forms part of an assembly and the collective re-
sponse may be more polarized than that of the isolated entities.
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APPENDIX A: LIMIT DISTRIBUTIONS FOR POWER-LAW
EXPONENTS α � 3

Consistently with empirical measurements of the distribu-
tion p(�t) of time lapses �t between successive egresses, in
the main text we focused on distributions featuring a power-law
tail p(�t) ∼ �t−α with an exponent α > 3. In that case, the
sum of time lapses converges to a Gaussian distribution, as
stated by the central limit theorem. However, what happens
if α � 3? For 2 < α � 3, the mean value of the distribution
is still well defined, but the standard deviation diverges and a
Lévy distribution is expected for the sum of the time lapses.

Indeed, according to the developments in [50,51] and
restricting our attention to the case 2 < α � 3, we find the
following result. Let p(�t) behave as p(�t) = λ�t−α for
large �t and let μ be its mean value. Then the distribution
of Tesc = ∑N

i=1 �ti for large N converges to the Lévy density
function

f (Tesc|α̃,1,γN ,δN,0),

with the notation and parameter prescriptions of Ref. [50],
where α̃ ≡ α − 1 (1 < α̃ � 2), δN ≡ Nμ + γN tan πα̃

2 , and

γN ≡
(

πλN

2α̃ sin
(

πα̃
2

)
�(α̃)

)1/α̃

.

Recall that this result is conditioned by the validity of the
micro-macro connection, which may fail in the presence of
contagion, as discussed in the main text.

APPENDIX B: APPROXIMATE ANALYTICAL
ESTIMATION OF THE MICROSCOPIC DISTRIBUTION

In the main text we presented simulations of the evacuation
of a strongly competitive crowd through a narrow door of unit
width. Numerically, the distribution p(�t) of time lapses �t

was found to be well fitted by a power law of exponent α ≈ 3.7
at large �t . Here we aspire to support these numerical results
with approximate analytical calculations.

First, the rules of the model imply that the largest time
lapses are obtained when three very impatient agents i, j ,
and k (�i,�j ,�k � 1) compete for the site just in front of the
exit. In the worst cases, the sites behind them are also occupied,
which deprives them of the option of stepping backward. Most
probably, the conflict will be resolved only when two of these
agents accept to stay on their current sites, while the third one
attempts to move forward to the desired site.

For �i � 1, considering the probabilities of site selection
of Eq. (5) and the attractiveness defined in Eqs. (6) and (7)
with k = 0.5 and η = 1, the most probable option that leads
agent i to stay on site is not to choose a cooperative strategy,
but rather to adopt a competitive behavior (with probability
1 − �i) and then select the current site (with probability ps

i of
order e−1/η ek ln �i/η ∼ �

k/η

i = √
�i). To leading order in the

propensities and up to numerical prefactors, the probability
P (�t = n) of observing a time lapse of duration n � 1 is
given by the probability of a succession of n − 1 conflicts
finally resolved by two agents choosing to stay on site, viz.,∫

d�iD(�i)
∫

d�jD(�j )
∫

d�kD(�k)(1 − s(2))n−1s(2),

where D(�γ ), γ ∈ {i,j,k}, is the distribution of propensities
and s(2) is shorthand for (ps

i p
s
j + ps

jp
s
k + ps

i p
s
k). For the

strongly competitive crowd, it is fair to approximate the
truncated Gaussian distribution D(�γ ) by a constant for
�γ < ε, where ε is a tiny constant. Changing variables �γ

to ps
γ ≡ √

�γ , we get

P (�t = n) ∼
∫ ε

0
dps

i p
s
i

∫ ε

0
dps

jp
s
j

×
∫ ε

0
dps

kp
s
k(1 − s(2))n−1s(2).

The triple integral can be split into a region ps
k < ps

j < ps
i and

five other symmetric regions. In the first region, we make the
approximation s(2) ≈ ps

i p
s
j so that, up to numerical factors,

P (�t = n) ∼
∫ ε

0
dps

i

∫ ps
i

0
dps

j

∫ ps
j

0
dps

k

(
1 − ps

i p
s
j

)n−1

× (
ps

i

)2(
ps

j

)2
ps

k.

Finally, the integrand reaches its maximum at ps
i ≈ ps

j ≈ ps
k ∼

n−1/2 and rapidly decays for larger ps
i so that, discarding

the part ps
i > n−1/2 and approximating the integrand by its
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maximum, we arrive at

P (�t = n) ∼ n−4,

that is to say, the distribution of time lapses decays as a power
law with exponent α = 4. Considering the many inaccuracies
involved in the foregoing calculation, we deem the agreement
between the analytical result and the numerical one (α � 3.7)
quite satisfactory.

APPENDIX C: POWER-LAW FITS

As stressed by Clauset et al. [37], some care needs to be
taken when fitting empirical data with power laws, insofar as
simple graphical representations of the empirical distribution
function may be misleading. Indeed, before implementing the
cellular automaton described in the main text, we worked with
a slightly different version (which, in particular, did not feature
disorder in the intrinsic probabilities �(intr)). A logarithmic plot
of the distribution of time lapses obtained with that model [see
Fig. 9(a)] made us think that the data were well described by
a power-law tail. However, after plotting the complementary
cumulated distribution (i.e., the survival function), we realized
that the data were in fact better described by an exponential
distribution [compare Fig. 9(b) with the red dotted lines in
Fig. 1].
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FIG. 9. Graphical representations of the distribution function
obtained with the contagion-free model for a strongly competitive
crowd, where the heterogeneous distribution of �intr is replaced
by a Dirac peak. Shown on the left is the probability distribution
function in a logarithmic plot and on the right the survival function
in a semilogarithmic plot.

This experience cast some doubt in our minds about the
observations of power-law distributions of time lapses with
cellular automata reported in the literature [52,53]. By plotting
the survival functions of the data shown in these works
and applying the methods of Refs. [36,37] to compute the
likelihood to be a power law, we found that the data of Ref. [53]
and, to a lesser extent, Ref. [52] are at least as compatible
with an exponential tail as they are with a power-law
one.
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Compañı́a (Librerı́a Española de Nicasio Ezquerra, Valparaı́so,
1863).

[3] X. Pan, C. S. Han, K. Dauber, and K. H. Law, Automat.
Construct. 15, 448 (2006).

[4] A. P. Hatch, Tinder Box: The Iroquois Theatre Disaster 1903
(Chicago Review, Chicago, 2003).

[5] C. E. Nicholson and B. Roebuck, Safety Sci. 18, 249 (1995).
[6] J. Dickie, Safety Sci. 18, 309 (1995).
[7] D. Helbing and P. Mukerji, EPJ Data Sci. 1, 1 (2012).
[8] Tragedia en un boliche de once, Diario Cları́n (31 December

2004).
[9] Bucharest nightclub fire: Death toll reaches 45 as drummer

of band dies, The Guardian (8 November 2015), https://www.
theguardian.com/world/2015/nov/08/bucharest-nightclub-
blaze-death-toll-reaches-45-drummer-metal-band-dies.

[10] I. Zuriguel, D. R. Parisi, R. C. Hidalgo, C. Lozano, A. Janda,
P. A. Gago, J. P. Peralta, L. M. Ferrer, L. A. Pugnaloni, E.
Clément et al., Sci. Rep. 4, 7324 (2014).

[11] J. M. Pastor, A. Garcimartı́n, P. A. Gago, J. P. Peralta, C. Martı́n-
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