9 research outputs found

    Defective and Clustered Graph Colouring

    Full text link
    Consider the following two ways to colour the vertices of a graph where the requirement that adjacent vertices get distinct colours is relaxed. A colouring has "defect" dd if each monochromatic component has maximum degree at most dd. A colouring has "clustering" cc if each monochromatic component has at most cc vertices. This paper surveys research on these types of colourings, where the first priority is to minimise the number of colours, with small defect or small clustering as a secondary goal. List colouring variants are also considered. The following graph classes are studied: outerplanar graphs, planar graphs, graphs embeddable in surfaces, graphs with given maximum degree, graphs with given maximum average degree, graphs excluding a given subgraph, graphs with linear crossing number, linklessly or knotlessly embeddable graphs, graphs with given Colin de Verdi\`ere parameter, graphs with given circumference, graphs excluding a fixed graph as an immersion, graphs with given thickness, graphs with given stack- or queue-number, graphs excluding KtK_t as a minor, graphs excluding Ks,tK_{s,t} as a minor, and graphs excluding an arbitrary graph HH as a minor. Several open problems are discussed.Comment: This is a preliminary version of a dynamic survey to be published in the Electronic Journal of Combinatoric

    On Two problems of defective choosability

    Full text link
    Given positive integers pkp \ge k, and a non-negative integer dd, we say a graph GG is (k,d,p)(k,d,p)-choosable if for every list assignment LL with L(v)k|L(v)|\geq k for each vV(G)v \in V(G) and vV(G)L(v)p|\bigcup_{v\in V(G)}L(v)| \leq p, there exists an LL-coloring of GG such that each monochromatic subgraph has maximum degree at most dd. In particular, (k,0,k)(k,0,k)-choosable means kk-colorable, (k,0,+)(k,0,+\infty)-choosable means kk-choosable and (k,d,+)(k,d,+\infty)-choosable means dd-defective kk-choosable. This paper proves that there are 1-defective 3-choosable graphs that are not 4-choosable, and for any positive integers k3\ell \geq k \geq 3, and non-negative integer dd, there are (k,d,)(k,d, \ell)-choosable graphs that are not (k,d,+1)(k,d , \ell+1)-choosable. These results answer questions asked by Wang and Xu [SIAM J. Discrete Math. 27, 4(2013), 2020-2037], and Kang [J. Graph Theory 73, 3(2013), 342-353], respectively. Our construction of (k,d,)(k,d, \ell)-choosable but not (k,d,+1)(k,d , \ell+1)-choosable graphs generalizes the construction of Kr\'{a}l' and Sgall in [J. Graph Theory 49, 3(2005), 177-186] for the case d=0d=0.Comment: 12 pages, 4 figure

    Improper choosability and Property B

    Full text link
    A fundamental connection between list vertex colourings of graphs and Property B (also known as hypergraph 2-colourability) was already known to Erd\H{o}s, Rubin and Taylor. In this article, we draw similar connections for improper list colourings. This extends results of Kostochka, Alon, and Kr\'al' and Sgall for, respectively, multipartite graphs, graphs of large minimum degree, and list assignments with bounded list union.Comment: 12 page

    Generalized Colorings of Graphs

    Get PDF
    A graph coloring is an assignment of labels called “colors” to certain elements of a graph subject to certain constraints. The proper vertex coloring is the most common type of graph coloring, where each vertex of a graph is assigned one color such that no two adjacent vertices share the same color, with the objective of minimizing the number of colors used. One can obtain various generalizations of the proper vertex coloring problem, by strengthening or relaxing the constraints or changing the objective. We study several types of such generalizations in this thesis. Series-parallel graphs are multigraphs that have no K4-minor. We provide bounds on their fractional and circular chromatic numbers and the defective version of these pa-rameters. In particular we show that the fractional chromatic number of any series-parallel graph of odd girth k is exactly 2k/(k − 1), confirming a conjecture by Wang and Yu. We introduce a generalization of defective coloring: each vertex of a graph is assigned a fraction of each color, with the total amount of colors at each vertex summing to 1. We define the fractional defect of a vertex v to be the sum of the overlaps with each neighbor of v, and the fractional defect of the graph to be the maximum of the defects over all vertices. We provide results on the minimum fractional defect of 2-colorings of some graphs. We also propose some open questions and conjectures. Given a (not necessarily proper) vertex coloring of a graph, a subgraph is called rainbow if all its vertices receive different colors, and monochromatic if all its vertices receive the same color. We consider several types of coloring here: a no-rainbow-F coloring of G is a coloring of the vertices of G without rainbow subgraph isomorphic to F ; an F -WORM coloring of G is a coloring of the vertices of G without rainbow or monochromatic subgraph isomorphic to F ; an (M, R)-WORM coloring of G is a coloring of the vertices of G with neither a monochromatic subgraph isomorphic to M nor a rainbow subgraph isomorphic to R. We present some results on these concepts especially with regards to the existence of colorings, complexity, and optimization within certain graph classes. Our focus is on the case that F , M or R is a path, cycle, star, or clique

    Master index to volumes 251-260

    Get PDF

    Implementing path coloring algorithms on planar graphs

    Get PDF
    Master's Project (M.S.) University of Alaska Fairbanks, 2017A path coloring of a graph partitions its vertex set into color classes such that each class induces a disjoint union of paths. In this project we implement several algorithms to compute path colorings of graphs embedded in the plane. We present two algorithms to path color plane graphs with 3 colors based on a proof by Poh in 1990. First we describe a naive algorithm that directly follows Poh's procedure, then we give a modified algorithm that runs in linear time. Independent results of Hartman and Skrekovski describe a procedure that takes a plane graph G and a list of 3 colors for each vertex, and computes a path coloring of G such that each vertex receives a color from its list. We present a linear time implementation based on Hartman and Skrekovski's proofs. A C++ implementation is provided for all three algorithms, utilizing the Boost Graph Library. Instructions are given on how to use the implementation to construct colorings for plane graphs represented by Boost data structures

    Improper colourings inspired by Hadwiger’s conjecture

    Get PDF
    Hadwiger’s Conjecture asserts that every Kt-minor-free graph has a proper (t − 1)-colouring. We relax the conclusion in Hadwiger’s Conjecture via improper colourings. We prove that every Kt-minor-free graph is (2t − 2)-colourable with monochromatic components of order at most 1/2 (t − 2). This result has no more colours and much smaller monochromatic components than all previous results in this direction. We then prove that every Kt-minor-free graph is (t − 1)-colourable with monochromatic degree at most t − 2. This is the best known degree bound for such a result. Both these theorems are based on a decomposition method of independent interest. We give analogous results for Ks,t-minorfree graphs, which lead to improved bounds on generalised colouring numbers for these classes. Finally, we prove that graphs containing no Kt-immersion are 2-colourable with bounded monochromatic degree

    Thomassen’s 5-Choosability Theorem Extends to Many Faces

    Get PDF
    We prove in this thesis that planar graphs can be L-colored, where L is a list-assignment in which every vertex has a 5-list except for a collection of arbitrarily large faces which have 3-lists, as long as those faces are at least a constant distance apart. Such a result is analogous to Thomassen’s 5-choosability proof where arbitrarily many faces, rather than just one face, are permitted to have 3-lists. This result can also be thought of as a stronger form of a conjecture of Albertson which was solved in 2012 and asked whether a planar graph can be 5-list-colored even if it contains distant precolored vertices. Our result has useful applications in proving that drawings with arbitrarily large pairwise far-apart crossing structures are 5-choosable under certain conditions, and we prove one such result at the end of this thesis

    Subject Index Volumes 1–200

    Get PDF
    corecore