Thomassen's 5-Choosability Theorem Extends to Many Faces

by
Joshua Alexander Nevin

A thesis
presented to the University of Waterloo in fulfillment of the thesis requirement for the degree of
Doctor of Philosophy
in
Combinatorics and Optimization

Waterloo, Ontario, Canada, 2021
© Joshua Alexander Nevin 2021

Examining Committee Membership

The following served on the Examining Committee for this thesis. The decision of the Examining Committee is by majority vote.

External Examiner: Zdeněk Dvořák
Professor, Computer Science Institute, Charles University

$\begin{array}{ll}\text { Supervisor: } & \text { Bruce Richter } \\ & \text { Adjunct Professor, Dept. of Combinatorics and Optimization, University of Waterloo }\end{array}$

Internal Member 1: Sophie Spirkl
Professor, Dept. of Combinatorics and Optimization, University of Waterloo

Internal Member 2: Jane Gao
Professor, Dept. of Combinatorics and Optimization, University of Waterloo

Internal-External Member: Doug Park
Professor, Dept. of Pure Mathematics, University of Waterloo

Author's Declaration

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis, including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

Abstract

We prove in this thesis that planar graphs can be L-colored, where L is a list-assignment in which every vertex has a 5-list except for a collection of arbitrarily large faces which have 3-lists, as long as those faces are at least a constant distance apart. Such a result is analogous to Thomassen's 5-choosability proof where arbitrarily many faces, rather than just one face, are permitted to have 3-lists. This result can also be thought of as a stronger form of a conjecture of Albertson which was solved in 2012 and asked whether a planar graph can be 5-list-colored even if it contains distant precolored vertices. Our result has useful applications in proving that drawings with arbitrarily large pairwise far-apart crossing structures are 5-choosable under certain conditions, and we prove one such result at the end of this thesis.

Acknowledgments

First and foremost, I would like to thank my supervisor, Bruce Richter. It is difficult for me to put into words the debt of gratitude that I owe Bruce. The project for this thesis ended up being considerably longer than either of us had anticipated, and there were certainly moments over the course of the last several years when it looked like it had hit some roadblocks that simply could not be overcome. Throughout all of this, as the unexpected technical obstacles continued to pile up and the thesis got longer and longer, Bruce was completely unwavering in his belief that I was capable of seeing this thesis through to the end. He always believed in me, even in those moments when I did not believe in me. Without this unwavering commitment from my supervisor to the belief that this project was doable and that my approach was the right one, this document would simply not have been possible.

The two of us spent many hours carefully discussing the numerous and often unexpected highly technical issues that came up seemingly on every page of work. As anyone who has ever written a doctoral thesis in mathematics knows all too well, you essentially have to resign yourself to the fact that it will need to be written twice, since the length and complexity of the document are such that there is really no way to know in advance what the right way to organize and structure the results and their proofs is. Bruce's careful close reading and his extensive and highly detailed comments, questions, sanity checks, and suggestions were all essential to the final version, and I am indebted to him for the amount of work he put in.

Secondly, I would like to thank my partner, Julienne Forrester. As above, it is difficult for me to put into words the full scope of the support I received from Julienne. Julienne and I met in November of 2015, two months after I had begun my PhD program at the University of Waterloo. This means that she has been with me almost since the beginning of the extremely long road from my first day at Waterloo to the end of my PhD . She has had a front-row seat to pretty much the entire thing and supported me at every step: The late nights I spent working on assignments for my many courses, or marking papers as a TA, the stress of preparing for my comprehensive exams, and then later preparing for my thesis proposal, and of course, she supported me throughout the long grind of me writing this thesis, as my stack of notebooks with sketches of ideas (of which some worked and many others did not) got taller and taller. She was always there for me, with infinite patience and infinite support, even though I'm confident that the stress of the work, and the fact that I was constantly lost in thought, made me insufferable (or at least very annoying to live with) at many points over the last 6 years. Like Bruce, she never wavered in the belief that I was capable of getting this done, even in those moments when I did not.

Even under normal circumstances, I would have relied on Julienne always being there for me, but the circumstances under which this thesis was written were very abnormal. I completed about three quarters of the work on this thesis in the period between March 2020 and July 2021, which meant that I did most of the work during the pandemic. Writing a dissertation is often a very isolating experience even without a once-in-a-century public health emergency which forces everyone to physically stay far away from each other, but however isolating the experience is under normal circumstances, it is is triply so when the world comes to a grinding halt and you have to work from home for over 500 days in a row. Without Julienne by my side, I cannot imagine how I would have dealt with the combined stressors of the pandemic and the ever-growing scope of this project. This PhD would simply not have been possible without her.

I would like to thank my parents, who have always been so supportive of me in my very long journey through my time as a student (a 4-year BSc, a 2-year MSc, and a 6-year PhD together make 12 years as a student, for those keeping score). They have always instilled in me the value of learning and intellectual curiosity, and I am so fortunate to have been raised by them. I also suspect that their humoring of my unrealistic early-childhood aspirations, like trying to
build an airplane in our backyard, was an important part of raising me with the stubbornness that I needed in order to complete this PhD .

I would like to thank Dori, Chris E, Chris P, Alex, Wade, and Gjergji. I have very vivid memories from my time at Caltech of the late nights we spent working on math or talking about math. I remember us ordering pizza while we all sat around a blackboard in Sloane and worked through problem sets late into the night. I remember how we all crammed together in the jam room or in the Ricketts library to stare at a whiteboard until one of us had an epiphany that we needed to solve a problem for an assignment that we probably shouldn't have started at the last minute every week. It was such a pleasure doing math alongside all of you.

I would like to thank all of the grad students here in the C\&O Department of the University of Waterloo who I spent so much time working with in the early phase of our PhD program while we were all in the same boat with our courses and preparation for comprehensive exams. I would also like to thank all of the professors here who taught me. When I arrived at Waterloo, I found a fantastic, highly research-intense environment full of intellectually curious people who thrive on tackling difficult problems. The commitment to research and problem-solving in the C\&O Department here is absolutely infectious, and when I think back on how much I have learned from all of you during my time here, I am absolutely floored.

Dedication

This thesis is dedicated to the mathematicians in my family who came before me: My grandfather David Borwein and David's sons (my uncles) Jonathan and Peter Borwein. I had the extraordinary privilege of David being present at the oral defence of this thesis. Jonathan and Peter did not live to see me complete my PhD, as they passed away in 2016 and 2020 respectively. David passed away at 97 , several weeks after the oral defence. This thesis is dedicated to their memories.

Contents

List of Figures xi
List of Tables xii
List of Symbols xiii
0 Introduction 1
0.1 Embeddings and Drawings 1
0.2 Colorings and List-Colorings 3
0.3 Results of this Thesis 4
0.4 Notational Conventions and Formatting of Proofs in this Thesis 6
0.5 Layout and Organization of this Thesis 6
1 Charts, Path Colorings, and Tessellations 8
1.1 Charts and Colorings 8
1.2 Coloring and Deleting Paths 11
1.3 An Overview of the Proof of Theorem 1.1.3 13
1.4 Extending Colorings of 2-Paths: Broken Wheels 16
1.5 Extending Colorings of 2-Paths: The General Case 19
1.6 Extending Colorings of 3-Paths 25
1.7 Path Reduction 31
2 Mosaics and Their Properties 37
2.1 Introduction 37
2.2 Short Generalized Chords of the Rings of Critical Mosaics 49
2.3 Bands of Open Rings in Critical Mosaics 62
3 Vertices of Distance One From Open Rings 68
3.1 2-Chords on One Side of the Precolored Path 68
3.2 3-Chords on One Side of the Precolored Path 71
3.3 2-Chords Incident to an Internal Vertex of the Precolored Path 77
4 Vertices of Distance Two From Open Rings 83
4.1 Sequences of Broken Wheels 83
4.2 4-Chords on One Side of the Precolored Path 93
4.3 3-Chords Incident to an Internal Vertex of the Precolored Path 102
4.4 Completing the Proof of Theorem 4.0.1 113
5 Deleting Vertices of Distance One from Open Rings of Critical Mosaics 133
5.1 Preliminaries 133
5.2 Dealing with 3-Chords of C Near the Precolored Path 138
5.3 Completing the Proof of Theorem 5.1.6 150
6 Deleting Vertices Near the Open Rings of Critical Mosaics 158
6.1 Deleting a C-Wedge 160
6.2 Extending $\operatorname{Span}(z)$ for Vertices of Distance Two from C^{2} 163
6.3 Channel Colorings 167
7 An Internal 2-List Lemma 171
7.1 Broken Wheels with 2-Lists 171
7.2 Completing the Proof of Theorem 7.0.1 177
8 Boundary Analysis for Closed Rings 179
8.1 3-Lists on the 1-Necklace of a Closed Ring 180
8.2 Ruling Out the Remaining Chords 188
8.3 A Box Lemma for Pairs of 2-Paths 196
8.4 An Improved Coloring Result for 4-Chords of Closed Rings 198
8.5 2-Chords of the 1-Necklace with a 2-List on the Small Side 205
9 Corner Colorings 214
9.1 Corner Colorings: Part I 214
9.2 Corner Colorings: Part II 224
10 Coils and Their Applications: Deleting Vertices Near the Closed Rings of Critical Mosaics 232
10.1 Specializing to Closed Rings 235
10.2 Preliminaries to the Proof of 1) of Theorem 10.0.7 238
10.3 Matchable Colors 242
10.4 Non-End-Repelling Vertices 247
10.5 Obstruction Vertices 251
10.6 The Trickiest Case 254
10.7 The Trickiest Case: Part II 262
10.8 Dealing With $\operatorname{Span}(z)$ as a 4-chord: Part III 273
11 Constructing a Smaller Counterexample 286
11.1 Dealing With a Closed Outer Face 287
11.2 Dealing With an Open Outer Face 288
11.3 A Path-Rerouting Result 299
11.4 Completing the Proof of Theorem 2.1.7 302
12 Lenses and Roulette Wheels 309
12.1 Introduction 309
12.2 Precolored Cycles Which Create Many Lists of Size Two 310
12.3 Roulette Wheels and Cycle Connectors: Preliminaries 328
12.4 Roulette Wheels with Close Boundary Cycles 331
12.5 Roulette Wheels with Distant Boundary Cycles 358
13 Reduction to Mosaics 361
13.1 A Simple Edge-Maximality Lemma 361
13.2 Properties of Critical Charts 363
13.3 Boundary Analysis for Critical Charts 370
13.4 Completing the proof of Theorem 1.1.3 373
14 Drawings with Pairwise Far-Apart Nonplanar Regions 379
Bibliography 392
Index 393

List of Figures

4.4.1 Case 1 of Fact 1 125
4.4.2 Case 2 of Fact 1 125
4.4.3 Case 2 of Fact 2 126
4.4.4 Case 1 of Subclaim 4.4.24 128
4.4.5 Main Case 2 132
5.1.1 Vertices and Edges Near the Precolored Path 137
7.1.1 Theorem 1.5.5 does not hold if an internal 2-list is permitted 172
8.3.1 A box between P and P^{\prime} 197
8.5.1 Case 1 of Subclaim 8.5.18 212
8.5.2 Case 2 of Subclaim 8.5.18 212
8.5.3 The last configuration in Claim 8.5.16 212

List of Tables

0.5.1 Chapters and their main results . 7
0.5.2 Sections and their main results . 7

List of Symbols

This index consists of symbolic terminology and definitions which are specific to this thesis. The pages referenced indicate where each piece of terminology is first defined.
$D_{k}(X), 2$
$G_{Q}^{\text {small }}, G_{Q}^{\text {large }}, 63$
$J_{e}^{0}, J_{e}^{1}, 251$
$L_{\phi}^{S}, 9$
$N_{\text {mo }}, 36$
$P_{C}^{w}, 308$
$R_{e}, 251$
$S_{\star}^{\text {path }}, 237$
$T^{\prime}(K ; H ; \phi), 327$
$U^{2 p}(C), 308$
$U^{\geq 3}(C), 308$
$V{ }^{\geq 1 p}(Q), 311$
[$K ; Q ; \phi ; Z], 326$
$\Phi_{G, L}(\phi, H), 10$
$\Pi_{p}^{0}, \Pi_{p}^{1}, 133$
$\mathbf{P}_{\mathcal{T}}^{1}(C), 80$
$\mathbf{P}_{\mathcal{T}}^{1+}(C), 80$
$\mathbf{P}_{\mathcal{T}}(C), 8$
$\mathbf{P}_{\mathcal{T}}(H), 8$
$\mathcal{C} \subseteq H, 38$
$\mathcal{E}(Q), 311$
$\mathcal{E}^{\text {end }}(Q), 315$
$\mathcal{I}(F), 364$
$\mathcal{I}^{m}(F), 364$
$\mathcal{K}(C, \mathcal{T}), 48$
$\mathcal{K}^{\ell}(C, \mathcal{T}), 48$
Sep $(H), 363$
$\mathcal{M}_{L}^{P}\left(H, p_{1} p_{2}\right), 134$
$z_{H, L}^{P}(\bullet, c, d), 16$
$\otimes, 294$
$\phi\langle v: c\rangle, 10$
$\operatorname{Ann}(C), 285$
$\operatorname{Avoid}_{G, L}(P), 11$
Avoid $_{G, L}^{\dagger}(P), 11$
$\operatorname{Bar}_{A}(w z), 13$
$\operatorname{Base}(R), 238$
$\operatorname{Col}_{G, L}(v, \mathcal{F}), 10$
Corner $(R, x), 238$
$\operatorname{Int}_{G}^{+}(C), \operatorname{Ext}_{G}^{+}(C), 10$
$\operatorname{Int}_{G}^{-}(C), \operatorname{Ext}_{G}^{-}(C), 10$
$\operatorname{Link}_{L}(H, C, G), 32$
$\operatorname{Mid}(Q), 311$
$\mathrm{Ob}(u), \mathrm{Ob}\left(u^{\prime}\right), 191$
$\mathrm{Ob}_{z}(e), 250$
Part (H), 311
$\operatorname{Pin}(z), 158$
$\mathrm{Sh}_{k, L}(H, C, G), 31$
$\operatorname{Skip}\left(H_{1}\right), 137$
$\operatorname{Span}(z)$
-for L-coils, 232
-for open rings, 158
$\tilde{G}_{Q}^{\text {small }}, \tilde{G}_{Q}^{\text {large }}, 178$
$\tilde{G}_{z}^{\text {small }}, \tilde{G}_{z}^{\text {large }}, 239$

Chapter 0

Introduction

0.1 Embeddings and Drawings

An embedding of a graph G into the plane is an assignment of the vertices of G to points of \mathbb{R}^{2} and edges of G to arcs in \mathbb{R}^{2} homeomorphic to $[0,1]$, where the following conditions are satisfied.

1) For any edge $e=x y \in E(G)$, the endpoints of the arc associated to e are the points of \mathbb{R}^{2} associated to x and y; AND
2) For any edge $e=x y \in E(G)$ and $v \in V(G)$ with $v \notin\{x, y\}$, the arc associated to e does not contain the point of in \mathbb{R}^{2} associated to v; AND
3) For any two distinct edges $e_{1}, e_{2} \in E(G)$, there is no point in \mathbb{R}^{2} which is both an interior point of the arc associated to e_{1} and an interior point of the arc associated to e_{2}.

An embedding satisfying conditions 1)-3) is called a planar embedding or a planar graph. An assignment of the vertices and edges of a graph G to points and arcs of \mathbb{R}^{2} respectively for which conditions 1) and 2) are satisfied, but for which condition 3) is dropped, is called a drawing of G, or just a drawing. Given a drawing G and two edges $e_{1}, e_{2} \in E(G)$, a point of \mathbb{R}^{2} which is both an interior point of e_{1} and an interior point of e_{2} is called a crossing point of G.

Throughout this thesis, unless otherwise specified, a graph is always understood to be a fixed drawing (or embedding, if the graph is planar) in \mathbb{R}^{2}. In some cases (in particular, in the last chapter), we deal with drawings on the sphere \mathbb{S}^{2} rather than in \mathbb{R}^{2}. We define embeddings and drawings on the sphere analogously to the above, where \mathbb{R}^{2} is replaced by \mathbb{S}^{2} in the definition above.

If we want to talk about a graph G as an abstract collection of vertices and edges, without reference to sets of points and arcs in the plane or the sphere, then we call G an abstract graph. All graphs in this thesis are simple (that is, free of loops or repeated edges). We also do not deal with directed graphs in this thesis. All graphs in this thesis are undirected.

We adopt that standard convention that all drawings G satisfy the property that, if e_{1} and e_{2} are edges which cross in G, then e_{1} and e_{2} share no endpoint (since if e_{1} and e_{2} share an endpoint, then the crossing can be undone by rerouting the two edges and then deforming the arcs in a sufficiently small open neighborhood around the crossing point).

Definition 0.1.1. For any $U \subseteq \mathbb{R}^{2}$ and drawing G in \mathbb{R}^{2}, we have the following terminology.

1) $\mathrm{Cl}(U)$ denotes the closure of U and $\partial(U)$ denotes the boundary of U.
2) A subgraph of G is a drawing obtained by deleting some of the vertices of G, removing some of the arcs from $E(G)$, and, in particular, for each deleted vertex v, removing from $E(G)$ every arc with v as an endpoint. We write $H \subseteq G$ to indicate that H is a subgraph of G.
3) We write $G \subseteq U$ to mean that the vertices and edges of G, regarded as sets of points of \mathbb{R}^{2}, are all contained in U.
4) Given two subgraphs $H_{1}, H_{2} \subseteq G$, the graph $H_{1} \cup H_{2}$ is the drawing consisting of all the vertices in $V\left(H_{1}\right) \cup$ $V\left(H_{2}\right)$ and all the edges in $E\left(H_{1}\right) \cup E\left(H_{2}\right)$.
5) The notation $G \backslash H$ refers to the drawing obtained from G by deleting the points of \mathbb{R}^{2} corresponding to the vertices of H and deleting the interiors of the arcs of \mathbb{R}^{2} corresponding to the edges of G with at least one endpoint in H.

We have analogous definitions in the case where $U \subseteq \mathbb{S}^{2}$ and G is a drawing in \mathbb{S}^{2}.
Given a planar graph G, the deletion of G partitions \mathbb{R}^{2} into a collection of disjoint, open path-connected components called the faces of G. Our main objects of study are the subgraphs of G bounding the faces of G.

Definition 0.1.2. Given a planar graph G and a subgraph H of G, we introduce the following terminology.

1) H is called a facial subgraph of G if there exists a connected component U of $\mathbb{R}^{2} \backslash G$ such that $H=\partial(U)$.
2) H is called a cyclic facial subgraph (or, more simply, a facial cycle) if H is both a facial subgraph of G and a cycle.

Definition 0.1.2 does not require H to be connected. Indeed, if G is not connected, then at least one facial subgraph of G is not connected. We also use the following standard notation.

Definition 0.1.3. Given a planar graph G and a cycle C in G, we let $\operatorname{Int}_{G}(C)$ denote the subgraph of G consisting of all the edges and vertices in the closure of the unique bounded simply connected component of $\mathbb{R}^{2} \backslash C$, and we let $\operatorname{Ext}_{G}(C)$ denote the subgraph $G \backslash\left(\operatorname{Int}_{G}(C) \backslash C\right)$ of G. We now make the following definition: An expression of G as a union of the form $G=G_{0} \cup G_{1}$, where G_{0}, G_{1} is a pair of subgraphs of G, is called the natural C-partition of G if there exists an $i \in\{0,1\}$ such that $G_{i}=\operatorname{Int}_{G}(C)$ and $G_{1-i}=\operatorname{Ext}_{G}(C)$.

We also introduce the following standard notation.
Definition 0.1.4. For any graph G, vertex set $X \subseteq V(G)$, integer $j \geq 0$, and real number $r \geq 0$, we have the following.

1) We set $D_{j}(X, G):=\{v \in V(G): d(v, X)=j\}$.
2) We set $B_{r}(X, G):=\{v \in V(G): d(v, X) \leq r\}$.
3) For any subgraph H of G, we usually just write $D_{j}(H, G)$ to mean $D_{j}(V(H), G)$, and likewise, we usually write $B_{r}(H, G)$ to mean $B_{r}(V(H), G)$.

If the underlying graph G is clear from the context, then we drop the second coordinate from the above notation in order to avoid clutter.

Definition 0.1.5. Given a graph G, a subgraph H of G, a subgraph P of G, and an integer $k \geq 0$, we call P a k-chord of H if $|E(P)|=k$ and P is of the following form.

1) $P:=v_{1} \cdots v_{k} v_{1}$ is a cycle with $v_{1} \in V(H)$ and $v_{2}, \cdots, v_{k} \notin V(H)$; $O R$
2) $P:=v_{1} \cdots v_{k+1}$, and P is a path with distinct endpoints, where $v_{1}, v_{k+1} \in V(H)$ and $v_{2}, \cdots, v_{k} \notin V(H)$.

Given a $k \geq 1$ and a k-chord P of H, P is called a proper k-chord of H if P is not a cycle, i.e P intersects H on two distinct vertices. Note that, for any $1 \leq k \leq 2$, any k-chord of H is a proper k-chord of H, since G has no loops or duplicated edges. A 1-chord of H is simply referred to as a chord of H. In some cases, we are interested in analyzing k-chords of H in G where the precise value of k is not important. We thus introduce the following definition. We call P a generalized chord of H if there exists an integer $k \geq 1$ such that P is a k-chord of H. We call P a proper generalized chord of H if there exists an integer $k \geq 1$ such that P is a proper k-chord of H.

Given a planar graph G, a cyclic facial subgraph C of G, and a proper generalized Q of C, there is a natural way to talk about one or the other "side" of Q in G. That is, analogous to Definition 0.1.3, there is a natural topological way to partition G into two sides of Q, which is made precise below.

Definition 0.1.6. Let G be a planar graph, let C be a cyclic facial subgraph of G, and let Q be a generalized chord of C. The unique natural (C, Q)-partition of G is an expression of G as a union of the form $G=G_{0} \cup G_{1}$, where G_{0}, G_{1} is a pair of subgraphs of G such that the following hold.

1) $G_{0} \cap G_{1}=Q$; AND
2) For each $i \in\{0,1\}$, there is a unique open simply connected region U of $\mathbb{R}^{2} \backslash(C \cup Q)$ such that G_{i} consists of all the edges and vertices of G in the closed region $\mathrm{Cl}(U)$.

If the facial cycle C is clear from the context then we usually just refer to $\left\{G_{0}, G_{1}\right\}$ as the natural Q-partition of G. Note that this is consistent with Definition 0.1 .3 in the sense that, if Q is not a proper generalized chord of C (i.e Q is a cycle) then the natural Q-partition of G is the same as the natural (C, Q)-partition of G.

Throughout this thesis, we frequently analyze paths, and use the following standard notation related to paths.
Definition 0.1.7. Given a graph G, a path P in G, and a pair of vertices $x, y \in V(P)$, we let $x P y$ denote the subpath of P with endpoints x, y. If we have a specified ordering of P as $P:=x_{1} \cdots x_{k}$ for some integer $k \geq 1$, then, for each $i \in\{1, \cdots, k\}$, we write $P x_{i}$ to mean the subpath $x_{1} \cdots x_{i}$ of P, and we write $x_{i} P$ to mean the subpath $x_{i} \cdots x_{k}$ of P. Furthermore, for any path $P:=x_{1} \cdots x_{k}$, we let $\stackrel{\circ}{P}$ denote the path $x_{2} \cdots x_{k-1}$. We also adopt the convention that, for any cycle $C \subseteq G$, we have $\dot{C}=C$.

Definition 0.1.8. Given a graph G and a pair of subsets $X, Y \subseteq V(G)$, a path $P \subseteq G$ is called a (X, Y)-path if $P:=x_{1} \cdots x_{k}$, where $x_{1} \in X, x_{k} \in Y$, and $V(P)$ is otherwise disjoint to $X \cup Y$.

0.2 Colorings and List-Colorings

Given a graph G, a list-assignment for G is a family of sets $\{L(v): v \in V(G)\}$ indexed by the vertices of G, such that $L(v)$ is a finite subset of \mathbb{N} for each $v \in V(G)$. The elements of $L(v)$ are called colors.

Definition 0.2.1. Let G be a graph and let L be a list-assignment for G. Let H be a subgraph of G. A function $\phi: V(H) \rightarrow \bigcup_{v \in V(H)} L(v)$ is called an L-coloring of H if $\phi(v) \in L(v)$ for each $v \in V(H)$, and, for each pair of vertices $x, y \in V(H)$ such that $x y \in E(H)$, we have $\phi(x) \neq \phi(y)$. Given a set $S \subseteq V(G)$ and a function $\phi: S \rightarrow \bigcup_{v \in S} L(v)$, we call ϕ an L-coloring of S if $\phi(v) \in L(v)$ for each $v \in S$ and ϕ is an L-coloring of the induced graph $G[S]$.

Definition 0.2.2. Let $k \geq 1$ be an integer. A graph G is called k-choosable if, for every list-assignment L for G such that $|L(v)| \geq k$ for all $v \in V(G), G$ is L-colorable.

In 1994, Thomassen demonstrated in [17] that all planar graphs are 5-choosable, settling a problem that had been posed in the 1970's.

Theorem 0.2.3. Let G be a planar graph with facial cycle C. Let $x y$ be an edge of G with $x, y \in V(C)$. Let L be a list assignment for $V(G)$ such that the following hold.

1) $x y$ is L-colorable; AND
2) $|L(v)| \geq 3$ for $v \in V(C) \backslash\{x, y\}$; AND
3) $|L(v)| \geq 5$ for $v \in V(G) \backslash V(C)$.

Then G is L-colorable.
This theorem also has the following useful corollary.
Corollary 0.2.4. Let G be a planar graph with outer cycle C, where $|V(C)| \leq 4$, and let L be a list-assignment for $V(G)$ where each vertex of $G \backslash C$ has a list of size at least five and $V(C)$ is L-colorable. Then G is L-colorable.

The proof technique for Theorem 0.2 .3 can be applied to other settings, in order to prove the 5 -choosability of some more general classes of graphs. One such result, which is proven in [6], is as follows.

Theorem 0.2.5. Let G be a graph drawn in the plane so that all crossings in G are pairwise of distance at least 15 apart. Then G is 5-choosable.

In the statement of Theorem 0.2 .5 , the distance between two crossings in a drawing G refers to the graph-theoretic distance between the two pairs of edges which are incident to the respective crossings.

One of the results we rely on in order to prove the results of this thesis is the following useful theorem about two precolored cycles, which follows from Theorem 5.2.9 in [8].

Theorem 0.2.6. There exists an integer $\gamma \geq 1$ such that the following holds: Let G be a planar graph and let C_{1}, C_{2} be cyclic facial subgraphs of G such that $d\left(C_{1}, C_{2}\right) \geq \gamma$ and, for each $i=1,2$, we have $3 \leq\left|V\left(C_{i}\right)\right| \leq 4$. Let L be a 5-list-assignment for G and let ϕ be a proper L-coloring of $V\left(C_{1} \cup C_{2}\right)$. Then ϕ extends to an L-coloring of G.

0.3 Results of this Thesis

This thesis consists of two results. The first result of this thesis is the following, which is a generalization of Theorem 0.2 .3 to a planar graph with a collection of specified faces which are pairwise at least a constant distance from each other.

Theorem 0.3.1. There exists a constant α such that the following holds: Let G be a planar graph and let F_{1}, \cdots, F_{m} be a collection of facial subgraphs of G such that $d\left(F_{i}, F_{j}\right) \geq \alpha$ for each $1 \leq i<j \leq m$. Let $x_{1} y_{1}, \cdots, x_{m} y_{m}$ be a collection of edges in G, where $x_{i} y_{i} \in E\left(F_{i}\right)$ for each $i=1, \cdots, m$. Let L be a list-assignment for G such that the following hold.

1) For each $v \in V(G) \backslash\left(\bigcup_{i=1}^{m} V\left(C_{i}\right)\right),|L(v)| \geq 5$; AND
2) For each $i=1, \cdots, m, x_{i} y_{i}$ is L-colorable, and, for each $v \in V\left(F_{i}\right) \backslash\left\{x_{i}, y_{i}\right\},|L(v)| \geq 3$.

Then G is L-colorable. In particular, letting γ be as in Theorem 0.2.6, the choice $\alpha=48749+3 \gamma$ suffices.

In the process of proving Theorem 0.3.1, we also prove many stand-alone intermediate results along the way which have useful applications in other contexts. Theorem 0.3.1 is a strengthening of the following result, which is proven in [7] and positively resolved a conjecture of Albertson.

Theorem 0.3.2. There exists a constant d such that the following holds: Let G be a planar graph and let $S \subseteq V(G)$, where the vertices of S are pairwise of distance at least d apart. Let L be a list-assignment for $V(G)$ such that every vertex of S has a list of size one and every vertex of $G \backslash S$ has a list of size least five. Then G is L-colorable.

In [13], Postle and Thomas proved a very nice result which is also a strengthening of Theorem 0.3.2.
Theorem 0.3.3. Given a planar graph G, a subgraph H, and a list-assignment L of G, where all the vertices of $G \backslash H$ have lists of size at least five, either G is L-colorable or there is a subgraph of G of size $O(|V(H)|)$ which is not L-colorable.

Theorem 0.3.3 immediately implies a weaker version of Theorem 0.3 .1 where the lower bound on the pairwisedistance between the faces of $\left\{F_{1}, \cdots, F_{m}\right\}$ is linearly dependent on the quantity $\max \left\{\left|V\left(F_{i}\right)\right|: i=1, \cdots, m\right\}$. Our result brings the required lower bound on this pairwise-distance down to a constant. Postle and Thomas also have an independent proof of Theorem 0.3.1, with a different distance constant, which consists of a sequence of papers for which publication is ongoing at the time of writing. The last paper in the sequence, which is [12], appeared several weeks after the oral defence of this thesis.

Theorem 0.3.1 gives a positive answer to a conjecture posed at the very end of [8] and also gives a positive answer to a list-coloring version of the following conjecture from [16] for ordinary colorings, albeit with a different distance constant.

Conjecture 0.3.4. Let G be a planar graph and $W \subseteq V(G)$ such that $G[W]$ is bipartite and any two components of $G[W]$ have distance at least 100 from each other. Can any coloring of $G[W]$ such that each component is 2-colored be extended to a 5-coloring of G ?

A positive answer to Conjecture 0.3 .4 in the special case where each component of W is a lone vertex was provided by Albertson in [1]. Note that Conjecture 0.3.4 generalizes the setting of pairwise far-apart precolored vertices to that of precolored far-apart 2 -colored bipartite components. That is, Theorem 0.3 .2 provides a positive answer to a listcoloring version of Conjecture 0.3 . 4 in the case where each component of W is a lone vertex, albeit with a different distance constant.

The proof of Theorem 0.3 .1 consists of Chapters $1-13$, which is the majority of the thesis. In Chapter 14, we prove an analogue to Theorem 0.2 .5 for more general crossing structures. The lone result of Chapter 14 does not rely on the details of the proof of Theorem 0.3.1. That is, for the purposes of Chapter 14, Theorem 0.3.1 is just a black box, so Chapter 14 can be read independently of Chapters 1-13. Chapter 14 consists of the following result.

Theorem 0.3.5. There exists a constant α^{\prime} such that the following holds: Let G be a drawing on the sphere of a graph and let C_{1}, \cdots, C_{m} be a collection of cycles in G such that $d\left(C_{i}, C_{j}\right) \geq \alpha^{\prime}$ for each $1 \leq i<j \leq m$. Suppose that, for each $1 \leq i \leq m$, there is a connected component U_{i} of $\mathbb{S}^{2} \backslash C_{i}$ such that the following hold.

1) For each crossing point x of G, there is an $i \in\{1, \cdots, m\}$ such that $x \in U_{i}$; AND
2) For each $v \in V\left(C_{i}\right), V(G) \cap U_{i}=\varnothing$ and there is at most one chord of C_{i} in $\mathrm{Cl}\left(U_{i}\right)$ which is incident to v.

Then G is 5-choosable. In particular, letting γ be as in Theorem 0.2.6, the choice $\alpha^{\prime}=48751+3 \gamma$ suffices.

0.4 Notational Conventions and Formatting of Proofs in this Thesis

Definitions and symbols introduced in this thesis can be found in the index or symbol index respectively. Whenever notation and definitions are introduced in this thesis, subscripts, superscripts, and coordinates that denote underlying structures are frequently suppressed in later uses of these definitions in order to avoid clutter, as long as the suppressed symbols are clear from the context. For example, instead of writing $\operatorname{Int}_{G}(C)$ to denote the interior of a cycle C in a planar embedding G, we usually just write $\operatorname{Int}(C)$. The suppressed subscripts, superscripts, and coordinates typically denote ambient graphs and/or list-assignments which are clear from the context.

All proofs in this thesis are structured in the following way. Any proof environment which ends with a white box is the proof of a statement which is contained in one of the environments Theorem, Lemma, Proposition, or Observation. The statement of any intermediate result within a white-box proof environment is contained in the Claim environment, and the proof of this intermediate result is contained within a proof environment which ends with a black box. If the proof within this black-box environment itself requires an intermediate statement, then this statement is contained within the Subclaim environment. The proof of the subclaim is contained in a nested environment that ends with a black box as well, but both the subclaim and its proof are indented so as to easier distinguish them from the proof environment of the claim in which they are nested. There is no further nesting within this thesis (i.e proofs of subclaims do not contain any nested proof environments). The template below shows an example of this.

Proposition 0.4.1. This is a proposition.
Proof. In order to prove Proposition 0.4 .1 we first prove the following intermediate result.

Claim 0.4.2. This is a claim within the proof of Proposition 0.4.1.

Proof: In order to prove Claim 0.4.2, we need the following fact.
Subclaim 0.4.3. This is a subclaim within the proof of Claim 0.4.2.
Proof: This is the proof of Subclaim 0.4.3.
Now we leave the indented environment and continue with the proof of Claim 0.4.2. This completes the proof of Claim 0.4.2.

This completes the proof of Proposition 0.4.1.

0.5 Layout and Organization of this Thesis

Because the proof of Theorem 0.3 .1 is very long, Chapters 1-13 are, to the greatest extent possible, organized in a modular way. More precisely, most of the chapters between 1 and 13 each consist of a lone main result, where this lone main result is an intermediate result in the proof of Theorem 0.3.1. Each of these chapters has the additional property that no subsequent chapter relies on the inner workings of the proof of this lone result. That is, for any $1 \leq k \leq 13$ and any chapter k which consists only of a lone result, we only make reference to Chapter k either to invoke the main result of Chapter k (which is, for the purposes of subsequent chapters, a black box) or to use a definition or a piece of notation which was introduced in Chapter k.

Chapter	Lone Main Result
3	Theorem 3.0.2
4	Theorem 4.0.1
5	Theorem 5.1.6
6	Theorem 6.0.9
7	Theorem 7.0.1

Chapter	Lone Main Result
8	Theorem 8.0.4
9	Theorem 9.0.1
10	Theorem 10.0.7
11	Theorem 2.1.7
13	Theorem 13.0.1

Table 0.5.1: Chapters and their main results
Table 0.5 . 1 shows all chapters with this property. The purpose of this modular organization is to avoid forcing the reader to read all the details of one chapter before moving onto the next. Because the proof of Theorem 0.3.1 is long and technical and contains many intermediate results, it is organized in a way that allows the reader to take note of intermediate results, skip the details of their proofs, read ahead to later chapters to see where and how these intermediate results are applied, and then return to the earlier chapters to read through the details of the proofs of these intermediate results at their leisure. In particular, if a section is part of a chapter which consists of a lone main result and its proof, and that section itself consists only of a lone intermediate result, then that intermediate result is not referenced in subsequent chapters, since it is only used to obtain the main result of the chapter it belongs to. The reader thus has a considerable amount of freedom in deciding which details to skip or read later.

The modular organization of the proof of Theorem 0.3.1 outlined above, is, to the greatest extent possible, replicated at the level of individual chapters. That is, there are many sections of this thesis which each consist solely of a lone intermediate result and its proof, and possibly several corollaries to this result, where the only subsequent references to this section are for the purpose of invoking this result or its corollaries, which are otherwise black boxes. The table below lists, in order, all sections which consist of a lone result.

Chapter	Section	Lone Intermediate Result
1	1.6	Theorem 1.6.1
2	2.2	Theorem 2.2.4
2	2.3	Theorem 2.3.2
3	3.1	Lemma 3.1.1
3	3.3	Lemma 3.3.1
4	4.1	Theorem 4.1.3
4	4.2	Lemma 4.2.1
4	4.4	Theorem 4.4.1
5	5.2	Lemma 5.2.1
5	5.3	Lemma 5.3.1
6	6.3	Theorem 6.3.2
7	7.1	Theorem 7.1.1
8	8.2	Lemma 8.2.1
8	8.3	Lemma 8.3.3
8	8.4	Lemma 8.4.1
8	8.5	Lemma 8.5.1

Chapter	Section	Lone Intermediate Result
9	9.1	Lemma 9.1.1
9	9.2	Lemma 9.2.4
10	10.1	Lemma 10.1.1
10	10.3	Lemma 10.3.2
10	10.4	Lemma 10.4.2
10	10.7	Lemma 10.7.1
10	10.8	Lemma 10.8.1
11	11.1	Theorem 11.1.1
11	11.2	Theorem 11.2.3
11	11.3	Lemma 11.3.2
12	12.2	Theorem 12.2.10
12	12.4	Theorem 12.4.1
12	12.5	Theorem 12.3.3
13	13.1	Lemma 13.1.1
13	13.3	Lemma 13.3.1

Table 0.5.2: Sections and their main results

Chapter 1

Charts, Path Colorings, and Tessellations

In this chapter, we introduce the basic tools, definitions, and language used to prove Theorem 0.3.1. We prove some basic topological and coloring facts which we use over the course of this thesis, and we also give a brief overview of the proof of Theorem 0.3.1.

1.1 Charts and Colorings

We begin with the following definition, which is our main object of study.
Definition 1.1.1. Let $k, \alpha \geq 1$ be integers. A tuple $\mathcal{T}=(G, \mathcal{C}, L)$ is an (α, k)-chart if G is a planar graph with list-assignment L, \mathcal{C} is a family of facial subgraphs of G, and the following conditions are satisfied.

1) For any distinct facial subgraphs $H_{1}, H_{2} \in \mathcal{C}, d\left(H_{1}, H_{2}\right) \geq \alpha$; AND
2) $|L(v)| \geq 5$ for all $v \in V(G) \backslash\left(\bigcup_{H \in \mathcal{C}} V(H)\right)$; AND
3) For each $H \in \mathcal{C}$, there exists a connected subgraph $\mathbf{P}_{\mathcal{T}}(H)$ of H satisfying the following.
i) $\left|E\left(\mathbf{P}_{\mathcal{T}}(H)\right)\right| \leq k$ and $\mathbf{P}_{\mathcal{T}}(H)$ is induced in H; AND
ii) $|L(v)| \geq 3$ for all $v \in V(H) \backslash V\left(\mathbf{P}_{\mathcal{T}}(H)\right)$; AND
iii) $V\left(\mathbf{P}_{\mathcal{T}}(H)\right)$ is L-colorable and $|L(v)|=1$ for all $v \in V\left(\mathbf{P}_{\mathcal{T}}(H)\right)$.

A tuple \mathcal{T} is a chart if there exist integers $k, \alpha \geq 1$ such that \mathcal{T} is an (α, k)-chart. A chart $\mathcal{T}=(G, \mathcal{C}, L)$ is colorable if G is L-colorable.

For any chart $\mathcal{T}=(G, \mathcal{C}, L)$ and any $H \in \mathcal{C}$, we let $\mathbf{P}_{\mathcal{T}}(H)$ denote the uniquely specified subgraph of H satisfying i)-iii) of 3) of Definition 1.1.1. We call $\mathbf{P}_{\mathcal{T}}(H)$ the precolored subgraph of H.

Given a chart $\mathcal{T}=(G, \mathcal{C}, L)$, the elements of \mathcal{C} are called the rings of the chart. This terminology, together with the notation \mathcal{C}, is suggestive of the fact that our primary interest is the case where the rings of the chart are cyclic facial subgraphs of G, but in general, the definition of a chart does not require the elements of \mathcal{C} to be cyclic facial subgraphs of G, or even connected subgraphs of G.

In most applications of the terminology above, we are dealing with the case where each $H \in \mathcal{C}$ is a facial cycle of G, and thus $\mathbf{P}_{\mathcal{T}}(H)$ is either a path or a cycle. If either the underlying chart or the ring containing the precolored subgraph, or both, are clear from the context, we usually drop either the H or the \mathcal{T} or both from the notation $\mathbf{P}_{\mathcal{T}}(H)$ to avoid clutter, i.e we just write \mathbf{P}. The bold-font \mathbf{P} is only ever used to refer to these paths in charts so there is no
danger of confusing them with other paths. For our purposes, it is essential to distinguish the special case in which the entirety of an element of \mathcal{C} is precolored, so we introduce the following terminology.

Definition 1.1.2. Let $\mathcal{T}=(G, \mathcal{C}, L)$ be a chart and let $H \in \mathcal{C}$. We say that H is a closed \mathcal{T}-ring if $\mathbf{P}_{\mathcal{T}}(H)=H$. Otherwise, we say that C is an open \mathcal{T}-ring.

We now restate Theorem 0.3.1 in the language of charts.
Theorem 1.1.3. Every $(48749+3 \gamma, 1)$-chart is colorable, where γ is as in Theorem 0.2.6.
Since we are dealing with graphs as topological objects, we adopt the following standard definitions.
Definition 1.1.4. Let G be a planar embedding, and let A, B, H be subgraphs of G. We say that H disconnects A from B if the following hold.

1) Each of $V(A \backslash H)$ and $V(B \backslash H)$ is nonempty; $A N D$
2) Every (A, B)-path in G contains a vertex of H.

We say that H separates A from B if H satisfies the following stronger properties.

1) $A \cap B \subseteq H$ and each of $E(A) \backslash E(H)$ and $E(B) \backslash E(H)$ are nonempty; AND
2) For any edges $e_{1} \in E(A)$ and $e_{2} \in E(B)$, any points $x \in e_{1}, y \in e_{2}$ with $x, y \notin V(H)$, and any arc $P \subseteq \mathbb{R}^{2}$ with endpoints x, y, P has nonempty intersection with H, where H, e_{1}, e_{2} are regarded as subsets of \mathbb{R}^{2}.

In some cases, to avoid clutter, we abuse this notation in the following way: Given a planar embedding G, a subgraph H of G, an integer $k \geq 1$ and a k-chord P of H, we write " P separates a from b " to mean that the deletion of $H \cup P$ leaves a, b in two connected components of $\mathbb{R}^{2} \backslash(H \cup P)$.

Given a planar graph G, a separating cycle in G is a cycle C in G such that both $\operatorname{Int}(C) \backslash C$ and $\operatorname{Ext}(C) \backslash C$ have nonempty intersection with $V(G)$. Of particular importance to us over the course of the proof of Theorem 1.1.3 are planar graphs which do not have separating cycles of length 3 or 4 .

Definition 1.1.5. Given a planar graph G, we call G short-separation-free if G does not contain any separating cycle of length 3 or 4. Likewise, given a chart $\mathcal{T}=(G, \mathcal{C}, L)$, we call \mathcal{T} a short-separation-free chart if G is a short-separation-free graph.

We now introduce some additional notation related to list-assignments for graphs. We very frequently analyze the situation where we begin with a partial L-coloring ϕ of a subgraph of a graph G, and then delete some or all of the vertices of $\operatorname{dom}(\phi)$ and remove the colors of the deleted vertices from the lists of their neighbors in $G \backslash \operatorname{dom}(\phi)$. We thus make the following definition.

Definition 1.1.6. Let G be a graph, let ϕ be a partial L-coloring of G, and let $S \subseteq V(G)$. We define a list-assignment L_{ϕ}^{S} for $G \backslash(\operatorname{dom}(\phi) \backslash S)$ as follows.

$$
L_{\phi}^{S}(v):=\left\{\begin{array}{l}
\{\phi(v)\} \text { if } v \in \operatorname{dom}(\phi) \cap S \\
L(v) \backslash\{\phi(w): w \in N(v) \cap(\operatorname{dom}(\phi) \backslash S)\} \text { if } v \in V(G) \backslash \operatorname{dom}(\phi)
\end{array}\right.
$$

If $S=\varnothing$, then L_{ϕ}^{\varnothing} is a list-assignment for $G \backslash \operatorname{dom}(\phi)$ in which the colors of the vertices in dom (ϕ) have been deleted from the lists of their neighbors in $G \backslash \operatorname{dom}(\phi)$. The situation where $S=\varnothing$ arises so frequently that, in this case, we simply drop the superscript and let L_{ϕ} denote the list-assignment L_{ϕ}^{\varnothing} for $G \backslash \operatorname{dom}(\phi)$. In some cases, we specify
a subgraph H of G rather than a vertex-set S. In this case, to avoid clutter, we write L_{ϕ}^{H} to mean $L_{\phi}^{V(H)}$. We now introduce the following natural way to combine two partial colorings of a graph.

Definition 1.1.7. Given two subsets $S_{1}, S_{2} \subseteq V(G)$ and, for each $i \in\{1,2\}$, an L-coloring ϕ_{i} of S_{i}, we have the following: If $\phi_{1}(v)=\phi_{2}(v)$ for each $v \in S_{1} \cap S_{2}$, and $\phi_{1}(x) \neq \phi_{2}(y)$ for each $x y \in E(G)$ with $x \in S_{1}$ and $y \in S_{2}$, then there is a well-defined proper L-coloring ϕ of $S_{1} \cup S_{2}$ which is compatible with ϕ_{1}, ϕ_{2}, where

$$
\phi(v):=\left\{\begin{array}{l}
\phi_{1}(v) \text { if } v \in S_{1} \\
\phi_{2}(v) \text { if } v \in S_{2}
\end{array}\right.
$$

We denote this coloring by $\phi_{1} \cup \phi_{2}$.
Definition 1.1.8. Given a graph G, a list-assignment L for $V(G)$, a subgraph H of G, and a partial L-coloring ϕ of G, we let $\Phi_{G, L}(\phi, H)$ denote the set of extensions of ϕ to L-colorings of $\operatorname{dom}(\phi) \cup V(H)$. If ϕ is the empty coloring (i.e $\operatorname{dom}(\phi)=\varnothing$) then $\Phi_{G, L}(\phi, H)$ is just the set of L-colorings of H, which we denote by $\Phi_{G, L}(H)$.

In some cases, it is more convenient to specify a vertex set rather than a subgraph of G. Given a vertex set $S \subseteq V(G)$, we define $\Phi_{G, L}(\psi, S)$ analogously. That is, $\Phi_{G, L}(\psi, S)$ is the set of extensions of ψ to L-colorings of $\operatorname{dom}(\psi) \cup S$.

In certain cases we want to analyze the possible extensions of a partial coloring obtained by extending the domain of the partial coloring by a lone vertex, particularly when we are considering colorings of a subpath of a path, and want to extend this coloring to the next vertex in the path. We thus introduce the following compact notation.

Definition 1.1.9. Let G be a graph and let L be a list-assignment for $V(G)$. Let ψ be a partial L-coloring of G. For each $c \in L_{\psi}(v)$, the notation $\psi\langle v: c\rangle$ denotes the extension of ψ to an L-coloring of $\operatorname{dom}(\phi) \cup\{v\}$ obtained by coloring v with c.

Given a family of partial L-colorings of G, it is useful to keep track of the colors given to a particular vertex by the elements of this family.

Definition 1.1.10. If \mathcal{F} is a family of partial L-colorings of G, then we define $\operatorname{Col}_{G, L}(v, \mathcal{F}):=\{\phi(v): \phi \in \mathcal{F}$ and $v \in$ $\operatorname{dom}(\phi)\}$.

In view of Theorem 0.2.3 and Definition 0.1.2, we introduce the following terminology, which we use repeatedly throughout this thesis.

Definition 1.1.11. Given a graph G, a list-assignment L for G, and a facial subgraph H of G, we call H a Thomassen facial subgraph of G with respect to L if H is a facial subgraph of G and there is an edge $x y \in E(H)$ such that $x y$ is L-colorable, and, for all $v \in V(H) \backslash\{x, y\},|L(v)| \geq 3$.

We also introduce the following natural notation, which we use frequently both in this chapter and subsequent chapters.

Definition 1.1.12. Given a graph G and a cycle C in G, we let $\operatorname{Int}^{+}(C)$ denote the graph $G\left[\operatorname{Int}_{G}(C)\right]$, and, likewise, we let $\operatorname{Ext}_{G}^{+}(C)$ denote the graph $G\left[\operatorname{Ext}_{G}(C)\right]$. That is, $\operatorname{Int}_{G}^{+}(C)$ consists of $\operatorname{Int}_{G}(C)$ together with any chords of C which lie in $\operatorname{Ext}_{G}(C)$, and $\operatorname{Ext}_{G}^{+}(C)$ is defined analogously. Furthermore, we let $\operatorname{Int}_{G}^{-}(C)$ denote the $\operatorname{graph}^{\operatorname{Int}}{ }_{G}(C) \backslash E(C)$ and let let $\operatorname{Ext}_{G}^{-}(C)$ denote the graph $\operatorname{Ext}_{G}(C) \backslash E(C)$.

1.2 Coloring and Deleting Paths

Given a graph G, a list-assignment L for G, and a path P in G, we sometimes want to find an L-coloring ψ of P such that G does not have too many vertices of distance one from P which have L_{ψ}-lists of size less than three. Since we frequently perform analyses of this form throughout this thesis, we introduce the following compact notation.

Definition 1.2.1. Let G be a graph with list-assignment L. Given an integer $n \geq 1$, a path $P:=p_{1} \cdots p_{n}$, and a partial L-coloring ϕ of G with $V(P) \subseteq \operatorname{dom}(\phi)$, we denote the L-coloring $\left.\phi\right|_{P}$ of P as $\left(\phi\left(p_{1}\right), \phi\left(p_{2}\right), \cdots, \phi\left(p_{n}\right)\right)$.

We introduce several more very natural pieces of terminology.
Definition 1.2.2. Let G be a graph and let $P \subseteq G$ be a path.

1) We say that P is a quasi-shortest path if P is an induced path in G with the additional property that, for any $v \in D_{1}(P)$ and any two vertices $w, w^{\prime} \in V(P) \cap N(v)$, the path $w P w^{\prime}$ has length at most two.
2) If P is a quasi-shortest path, then, given a $v \in V(Q)$, we say that v is a P-gap if there is no vertex of $D_{1}(P)$ such that $G[N(v) \cap V(P)]$ is a subpath of P of length two with midpoint v.
3) Given a list-assignment L, we introduce the following sets of L-colorings of P.
i) We let $\operatorname{Avoid}_{G, L}(P)$ be the set of L-colorings ϕ of $V(P)$ such that, for every $v \in D_{1}(P)$, either $|L(v)|<5$ or $\left|L_{\phi}(v)\right| \geq 3$.
ii) We let $\operatorname{Avoid}_{G, L}^{\dagger}(P)$ be the set of L-colorings ϕ of $V(P)$ such that, for some $v^{\dagger} \in D_{1}(P)$, we have either $\left|L\left(v^{\dagger}\right)\right|<5$ or $\left|L_{\phi}\left(v^{\dagger}\right)\right| \geq 2$, and furthermore, for every $v \in D_{1}(P) \backslash\left\{v^{\dagger}\right\}$, either $|L(v)|<5$ or $\left|L_{\phi}(v)\right| \geq 3$.

We now prove a simple results about coloring and deleting paths in short-separation free planar graphs.
Proposition 1.2.3. Let G be a short-separation-free planar graph, where $|V(G)|>5$, and let L be a list-assignment for G. Let $P:=p_{1} \cdots p_{k}$ be a quasi-shortest path, let P^{\prime} be a terminal subpath of P. Suppose further that every vertex of $P \backslash P^{\prime}$ has an L-list of size at least five. Then for any $\phi \in \operatorname{Avoid}_{G, L}\left(P^{\prime}\right), \phi$ extends to an element of $\operatorname{Avoid}_{G, L}(P)$.

Proof. Let $P^{\prime}:=p_{1} \cdots p_{\ell}$ for some $1 \leq \ell \leq r$. For each $j=\ell, \cdots, r$, let B_{j} be the set of extensions of ϕ to an element of $\operatorname{Avoid}_{G, L}\left(p_{1} P p_{j}\right)$. Note that $\phi \in B_{\ell}$. We claim that $B_{j} \neq \varnothing$ for all $j=\ell, \cdots, r$. We show this by induction on j. This holds if $j=\ell$ since $\phi \in B_{\ell}$. If $r=\ell$, then we are done, so let $j \in\{\ell, \cdots, r-1\}$ and let $\psi \in B_{j}$.

Since P is an induced subpath of G, we have $\left|L_{\psi}\left(p_{j+1}\right)\right| \geq 4$. If p_{j} is a P-gap, then any extension of ψ to an L-coloring of $V\left(p_{1} P p_{j+1}\right)$ lies in B_{j+1}, so we are done in that case, so now suppose that p_{j} is not a P-gap. Since $|V(G)|>5$ and G is short-separation-free, G is $K_{2,3}$-free, so there is a unique vertex w such that $G[N(w) \cap V(P)]=p_{j-1} p_{j} p_{j+1}$. If $|L(w)|<5$, then, as above, any any extension of ψ to an L-coloring of $V\left(p_{1} P p_{j+1}\right)$ lies in B_{j+1}, so we are done in that case, so now suppose that $|L(w)| \geq 5$. Thus, we have $\left|L_{\psi}(w)\right| \geq 3$, as $N(w) \cap \operatorname{dom}(\psi)=\left\{p_{j-1}, p_{j}\right\}$.

Since $\left|L_{\psi}\left(p_{j+1}\right)\right| \geq 4$, there is an extension of ψ to an L-coloring ψ^{*} of $p_{1} P p_{j+1}$ such that $\left|L_{\psi^{*}}(w)\right| \geq 3$, and thus $\psi^{*} \in B_{j+1}$. We conclude that $B_{j+1} \neq \varnothing$, as desired.

Now we have the following.
Proposition 1.2.4. Let G be a short-separation-free planar graph, where $|V(G)|>5$, and let L be a list-assignment for G. Let P be a quasi-shortest path in G with $|E(P)|=4$. Let L be a list-assignment for G such that each endpoint of P has a list of size at least one and each internal vertex of P has a list of size at least five. Then $\operatorname{Avoid}_{G, L}^{\dagger}(P) \neq \varnothing$.

Proof. Let $P:=p_{1} p_{2} p_{3} p_{4} p_{5}$. Let ψ be an L-coloring of $\left\{p_{1}, p_{5}\right\}$. Let $\operatorname{Sub}^{\square}(P):=\left\{w \in D_{1}(P):|L(w)| \geq 5\right\}$. Since P is a quasi-shortest path and $\left|L_{\psi}\left(p_{3}\right)\right| \geq 5$, there is a $d \in L_{\psi}\left(p_{3}\right)$ such that either no vertex of $\operatorname{Sub}^{\square}(P)$ adjacent to all of p_{1}, p_{2}, p_{3}, or there is a unique $w \in \operatorname{Sub}^{\square}(P)$ such that $\left|L_{\psi}\left(w_{2}\right) \backslash\{d\}\right| \geq 4$.
Let ψ^{\prime} be an extension of ψ to an L-coloring of $\left\{p_{1}, p_{3}, p_{5}\right\}$ obtained by coloring p_{3} with d. Since P is a quasi-shortest path, we have $\left|L_{\psi^{\prime}}\left(p_{2}\right)\right| \geq 3$ and $\left|L_{\psi^{\prime}}\left(p_{4}\right)\right| \geq 3$, and thus, there is an extension of ψ^{\prime} to an L-coloring ψ^{*} of $V(P)$ such that either no vertex of $\operatorname{Sub}^{\square}(P)$ is adjacent to all three of $p_{2} p_{3} p_{4}$, or there is a $w_{3} \in \operatorname{Sub}^{\square}(P)$ such that $G\left[N\left(w_{3}\right) \cap V(P)\right]=p_{2} p_{3} p_{4}$ and $\left|L_{\psi^{*}}\left(w_{3}\right)\right| \geq 3$. If there is a $w \in \operatorname{Sub}^{\square}(P)$ with $\left|L_{\psi^{*}}(w)\right|<3$, then $\left|L_{\psi^{*}}(w)\right|=2$ and w is the unique vertex of G adjacent to all three of p_{3}, p_{4}, p_{5}, so $\psi^{*} \in \operatorname{Avoid}^{\dagger}(P)$ and we are done.

We have an analogous result for paths of length six.
Proposition 1.2.5. Let G be a short-separation-free planar graph, where $|V(G)|>5$, and let L be a list-assignment for G. Let P be a quasi-shortest path in G with $|E(P)|=6$, and suppose that the midpoint of P is a P-gap. Let L be a list-assignment for G such that each endpoint of P has a list of size at least one and each internal vertex of P has a list of size at least five. Then $\operatorname{Avoid}_{G, L}^{\dagger}(P) \neq \varnothing$.

Proof. Let $P:=p_{1} p_{2} p_{3} p_{4} p_{5} p_{6} p_{7}$. Let ψ be an L-coloring of $\left\{p_{1}, p_{7}\right\}$. Let $\operatorname{Sub}^{\square}(P):=\left\{w \in D_{1}(P):|L(w)| \geq 5\right\}$. Since P is a quasi-shortest path, there exist colors $d_{3} \in L_{\psi}\left(p_{3}\right)$ and $d_{5} \in L_{\psi}\left(p_{5}\right)$ such that both of the following hold.

1) Either no vertex of $\operatorname{Sub}^{\square}(P)$ is adjacent to all three of p_{1}, p_{2}, p_{3} or, letting w_{2} be the unique vertex of $\operatorname{Sub}^{\square}(P)$ such that $G\left[N\left(w_{2}\right) \cap V(P)\right]=p_{1} p_{2} p_{3}$, we have $\left|L_{\psi}\left(w_{2}\right) \backslash\left\{d_{3}\right\}\right| \geq 4$; AND
2) Either no vertex of $\operatorname{Sub}^{\triangle}(P)$ is adjacent to all three of p_{5}, p_{6}, p_{7} or, letting w_{6} be the unique vertex of $\operatorname{Sub}{ }^{\square}(P)$ such that $G\left[N\left(w_{6}\right) \cap V(P)\right]=p_{5} p_{6} p_{7}$, we have $\left|L_{\psi}\left(w_{6}\right) \backslash\left\{d_{5}\right\}\right| \geq 4$.

Since P is an induced path, ψ extends to an L-coloring ψ^{\prime} of $\left\{p_{1}, p_{3}, p_{5}, p_{7}\right\}$ such that $\psi^{\prime}\left(p_{3}\right)=d_{3}$ and $\psi^{\prime}\left(p_{5}\right)=d_{5}$. We have $\left|L_{\psi^{\prime}}\left(p_{2}\right)\right| \geq 3$ and $\left|L_{\psi^{\prime}}\left(p_{4}\right)\right| \geq 3$, and since P is a quasi-shortest path, it follows that ψ^{\prime} extends to an L-coloring $\psi^{\prime \prime}$ of $P-p_{6}$ such that either no vertex of $\operatorname{Sub}^{\square}(P)$ is adjacent to all three of p_{2}, p_{3}, p_{4}, or there is a $w_{3} \in \operatorname{Sub}^{\square}(P)$ with $G\left[N\left(w_{3}\right) \cap V(P)\right]=p_{2} p_{3} p_{4}$ and $\left|L_{\psi^{\prime \prime}}\left(w_{3}\right)\right| \geq 3$.

In any case, we have $\left|L_{\psi^{\prime \prime}}\left(p_{6}\right)\right| \geq 3$, and $\psi^{\prime \prime}$ extends to an L-coloring ψ^{*} of $V(P)$. If there is no vertex w_{5} of $\operatorname{Sub}^{\square}(P)$ with $G\left[N\left(w_{5}\right) \cap V(P)\right]=p_{4} p_{5} p_{6}$, then we have $\psi^{*} \in \operatorname{Avoid}(P)$, as p_{4} is a P-gap vertex. In that case, we are done since $\operatorname{Avoid}(P) \subseteq \operatorname{Avoid}^{\dagger}(P)$. If such a vertex w_{5} exists, then w_{5} is unique and $\left|L_{\psi^{*}}\left(w_{5}\right)\right| \geq 2$. In that case, since p_{4} is a P-gap, we again have $\psi^{*} \in \operatorname{Avoid}^{\dagger}(P)$, so we are done.

Now we have the following.
Proposition 1.2.6. Let G be a short-separation-free planar graph with $|V(G)|>5$ and let $P:=p_{1} p_{2} \cdots p_{k}$ be a path in G which is a shortest path between its endpoints. Suppose that there exists $a j \in\{2, \cdots, k-3\}$ such that no vertex of $p_{j} p_{j+1} p_{j+2}$ is a P-gap. Then there exists a $w \in D_{1}(P)$ such that $G[N(w) \cap V(P)]=p_{j+1} p_{j+2} p_{j+3}$ and such that, letting P^{*} be the path obtained from P by replacing p_{j+2} with w, the vertex p_{j+1} is a P^{*}-gap.

Proof. Since no vertex of $p_{j} p_{j+1} p_{j+2}$ is a P-gap and P is a shortest path between its endpoints, it follows that, for each $r=0,1,2$, there is a $w_{r} \in D_{1}(P)$ such that $G\left[N\left(w_{r}\right) \cap V(P)\right]=p_{(j+r)-1} p_{j+r} p_{j+r+1}$.

Note that P^{*} is also a shortest path between its endpoints. Suppose toward a contradiction that p_{j+1} is not a P^{*}-gap. Thus, there exists a $q \in D_{1}\left(P^{*}\right)$ such that $G\left[N(q) \cap V\left(P^{*}\right)\right]=p_{j} p_{j+1} w_{2}$. If $q=w_{1}$, then $w_{1} w_{2} \in E(G)$ and G contains a copy of K_{4} on the vertices $\left\{w_{1}, w_{2}, p_{j+1}, p_{j+2}\right\}$, contradicting the fact that G is short-separation-free.

If $q=w_{0}$, then $w_{0} w_{2} \in E(G)$, contradicting the fact that P is a shortest path between its endpoints. Thus, we have $q \neq w_{0}, w_{2}$, and G contains a $K_{2,3}$ with bipartition $\left\{w_{0}, w_{1}, q\right\},\left\{p_{j}, p_{j+1}\right\}$, contradicting the fact that G is short-separation-free.

Likewise, we have the following
Proposition 1.2.7. Let G be a short-separation-free planar graph and let P be a shortest path between its endpoints, where $|V(P)|>6$. Suppose that there exists a subpath Q of $\stackrel{\circ}{P}$ with $|E(Q)|=4$ such that no vertex of Q is a P-gap. Then there exists a $w \in D_{1}(P)$ such that $G[N(w) \cap V(P)]=\stackrel{\circ}{Q}$ and such that, letting P^{*} be the path obtained by from P by replacing the midpoint of Q with w, P^{*} is a quasi-shortest path and each endpoint of Q° is a P^{*}-gap.

Proof. Let $Q:=p_{j} \cdots p_{j+4}$ for some $j \in\{2, \cdots, k-5\}$. The result just follows by applying Proposition 1.2.6 to each of the two paths $p_{j} p_{j+1} p_{j+2}$ and $p_{j+2} p_{j+3} p_{j+4}$

We use the results above to color and delete paths between facial subgraphs of short-separation-free graphs. We also use the following useful notation.

Definition 1.2.8. Let G be a short-separation-free planar graph. Given a cycle $A \subseteq G$ be a cycle and an edge $e=w z$ of G with $w \in D_{3}(A)$ and $z \in D_{2}(A)$, we let $\operatorname{Bar}_{A}(w z)$ be the set of vertices $v \in V(G) \backslash\{w, z\}$ such that $v \in N(w) \cap N(z)$ and v has a neighbor in $D_{1}(A)$.

We conclude this section with the following simple observation.
Observation 1.2.9. Let G be a short-separation-free planar graph with $|V(G)|>5$, let $A \subseteq G$ be a cycle, and let $w \in D_{3}(A)$, where $N(w) \nsubseteq D_{2}(A)$. Then there exists a $z \in N(w) \cap D_{2}(A)$ such that $\left|\operatorname{Bar}_{A}(w z)\right| \leq 1$.

Proof. We first note the following simple observation.

Claim 1.2.10. Each connected component of $G\left[N(w) \cap D_{2}(A)\right]$ is an induced path.
Proof: Since G is short-separation-free and $|V(G)|>5, G$ is $K_{2,3}$-free, so each vertex of $N(w)$ has degree at most two in the graph $G[N(w)]$. If there is a connected component of $G\left[N(w) \cap D_{2}(A)\right]$ in which every vertex has degree two, then G contains a wheel with central vertex w, where every other vertex of the wheel lies in $N(w) \cap D_{2}(A)$. Since G is short-separation-free, it then follows that $N(w) \subseteq D_{2}(A)$, contradicting our assumption. Since every vertex of $N(w)$ has degree at most two in $G[N(w)]$, it follows that every connected component of $G\left[N(w) \cap D_{2}(A)\right]$ is an induced path.

For each $z \in N(w) \cap D_{2}(A)$ and $u \in \operatorname{Bar}_{A}(w z)$, we have $u \in D_{2}(A)$, as u has a neighbor of distance one from A and a neighbor of distance three from A. In particular, for any connected component P of $G\left[N(w) \cap D_{2}(A)\right]$ and any endpoint p of P, we have $\left|\operatorname{Bar}_{A}(w p)\right| \leq 1$.

1.3 An Overview of the Proof of Theorem 1.1.3

We now provide a brief overview of the proof of Theorem 1.1.3, whose remaning details are worked out in chapters 2-13 of this thesis. We first introduce the following terminology. One of the key ingredients in the proof of Theorem 1.1.3 is the reduction to a particular subclass of charts which are easier to study.

Definition 1.3.1. Let $\mathcal{T}=(G, \mathcal{C}, L)$ be a chart.

1) We call \mathcal{T} near-triangulated if, for every facial subgraph H of G, with $H \notin \mathcal{C}, H$ is a triangle.
2) We call \mathcal{T} a tessellation if it is near-triangulated and short-separation-free.
3) Given integers $k, \alpha \geq 1$, we call \mathcal{T} an (α, k)-tessellation if it is both a tessellation and an (α, k)-chart.

In Chapters 2-11, we show that, for some $\beta \geq 1$, all $(\beta, 1)$-tessellations are colorable. More precisely, we prove something stronger by defining a structure called a mosaic and showing that all mosaics are colorable. This result, which is the main step in the proof of Theorem 1.1.3, is stated in Theorem 2.1.7, and the entirety of Chapters 2-11 consists of the proof of Theorem 2.1.7.

In Chapters 12 and 13, we complete the proof of Theorem 1.1.3 by showing that Theorem 2.1.7 implies Theorem 1.1.3. That is, we show that, since all mosaics are colorable, there exists an $\alpha \geq 1$ such that $(\alpha, 1)$-charts are colorable.

The key to the proof of Theorem 2.1.7 is to choose the right definition of mosaics, i.e to choose the right induction hypothesis. We show that Theorem 2.1.7 holds by a minimal counterexample argument. In Chapter 2, we gather some basic structural properties of minimal counterexamples, and we also analyze k-chords of the rings of a minimal counterexample for small values of k. The primary purpose of Chapter 2 is to show that, given a minimal counterexample $\mathcal{T}=(G, \mathcal{C}, L)$ (for some suitable definition of minimal counterexample, which is made precise later) and a $C \in \mathcal{C}$, for sufficiently small values of k, there is no k-chord of C which separates the faces of $\mathcal{C} \backslash\{C\}$. This means that, given a k-chord of C in G, there is a "small" side of the k-chord in G in which all vertices outside of C have L-lists of size at least five. This fact is essential to our construction of a smaller counterexample from a minimal counterexample.

In Chapters 3 and 4, we continue to investigate k-chords of the open rings of a minimal counterexample, where $k \leq 5$, and show that a minimal counterexample has a very regular structure near each open ring. In Chapters 5 and 6, we show how to carefully color and delete vertices on and near each open ring of a minimal counterexample. In Chapters 7 and 8 , we perform an analysis for closed rings analogous to the results for open rings proven in Chapters 3 and 4. In Chapters 9 and 10, we show how to carefully color and delete vertices on and near each closed ring of a minimal counterexample, i.e we prove a result for closed rings which is analogous to the result for open rings in Chapter 6. Finally, in Chapter 11, we use the work of Chapters 2-10 to produce a smaller counterexample by carefully coloring and deleting a path between two rings of a minimal counterexample. Over the course of this proof, we repeatedly rely on the following simple standard fact.

Theorem 1.3.2. Let G be a planar graph and let F, F^{\prime} be facial subgraphs of G (possibly $F=F^{\prime}$). Let $T \subseteq G$ be a subgraph of G satisfying the following properties.

1) T has nonempty intersection with each of F, F^{\prime}, and $T \cup F \cup F^{\prime}$ is connected; AND
2) Either $F=F^{\prime}$ or $F \cap F^{\prime} \subseteq T$; AND
3) For every $v \in V(T)$, every facial subgraph of G containing v, except possibly F, F^{\prime}, is a triangle.

Then there is a facial subgraph F^{*} of $G \backslash T$ such that $V\left(F^{*}\right)=D_{1}(T) \cup V\left(\left(F \cup F^{\prime}\right) \backslash T\right)$ and $E\left(\left(F \cup F^{\prime}\right) \backslash T\right) \subseteq E\left(F^{*}\right)$.
Given a graph G with a list-assignment L, and a subgraph H of G, we frequently deal with situations where we construct a partial L-coloring ϕ of H such that, for any extension ψ of ϕ to $G \backslash(H \backslash \operatorname{dom}(\phi)), \psi$ extends to the rest of $V(H)$. This is very useful in instances where we have a set of vertices that we want to delete, and it is desirable
to color as few vertices in the deletion set as possible. We thus introduce the following definition, which we use all throughout the remainder of this thesis.

Definition 1.3.3. Let G be a graph with a list-assignment L. Given a subset $Z \subseteq V(G)$ and a partial L-coloring ϕ of $V(G)$, we say that Z is (L, ϕ)-inert in G if every extension of ϕ to an L-coloring of $G \backslash(Z \backslash \operatorname{dom}(\phi))$ extends to an L-coloring of all of G.

If the ambient graph G is clear from the context, then we just say that Z is (L, ϕ)-inert. If ϕ is the empty coloring, then we just say that Z is L-inert in G. Note that, for a partial L-coloring ϕ of G, if $Z \subseteq V(G) \backslash \operatorname{dom}(\phi)$, then Z is (L, ϕ)-inert in G if and only if Z is L_{ϕ}-inert in $G \backslash \operatorname{dom}(\phi)$.

In situations where we color and delete vertices on or near a specified facial subgraph C of a given graph, where the vertices of C have lists of size three, it is useful to be able to delete some vertices without coloring them, which we do if any coloring of the remaining graph extends to the uncolored vertices. Given a chart $\mathcal{T}=(G, \mathcal{C}, L)$, the two cases where this usually arises are the case where some specified subgraph of G is separated from all the vertices of G with lists of size less than five by a short cycle, and the case where, for some $C \in \mathcal{C}$, some specified subgraph of G is separated from all the vertices of $G \backslash C$ with lists of size less than five by a generalized chord of C with short length. In the remaining sections of Chapter 1 , we gather some results which provide inertness conditions for a vertex set S of a specified planar graph G with a list assignment L, where, for some facial cycle C of G, S is separated from all the vertices of $G \backslash C$ with lists of size less than five by a 2- or 3-chord of C.

The proof of Theorem 1.1.3 outlined in the paragraphs above is mostly self-contained. However, in addition to Theorem 0.2.3 and Theorem 0.2.6, we rely on two additional useful results which we state below. The first of these results is proven in [9].

Theorem 1.3.4. Let G be a planar graph, let F be a facial subgraph of G, and let $v, w \in V(F)$. Let L be a listassignment for $V(G)$ where $|L(v)| \geq 2,|L(w)| \geq 2$, and furthermore, for each $x \in V(F) \backslash\{v, w\},|L(x)| \geq 3$, and, for each $x \in V(G \backslash F),|L(x)| \geq 5$. Then G is L-colorable.

In addition to Theorem 1.3.4, we use a simple but very useful theorem from [2] that characterizes the obstructions to extending a precoloring of a short cycle in a planar graph.

Theorem 1.3.5. Let G be a short-separation-free graph with facial cycle C, and let L be a list-assignment for G where $|L(v)| \geq 1$ for each $v \in V(C)$ and $|L(v)| \geq 5$ for all $v \in V(G \backslash C)$. Suppose that $|V(C)| \leq 6$ and $V(C)$ is L-colorable, but G is not L-colorable. Then $5 \leq|V(C)| \leq 6$, and the following hold.

1) If $|V(C)|=5$, then C is induced in G and $G \backslash C$ consists of a lone vertex which is adjacent to all five vertices of C; AND
2) If $|V(C)|=6$, then $G \backslash C$ consists of at most three vertices, each of which has at least three neighbors in $G \backslash C$. Furthermore, if C is induced in G, then $G \backslash C$ is one of the following.
i) A lone vertex adjacent to all six vertices of C; $O R$
ii) An edge $x_{1} x_{2}$ such that, for each $i=1,2$, the graph $G\left[N\left(x_{i}\right) \cap V(C)\right]$ is a path of length three; OR
iii) A triangle $x_{1} x_{2} x_{3}$ such that $G\left[N\left(x_{i}\right) \cap V(C)\right]$ is a path of length two for each $i=1,2$.

Proof. This is just an immediate consequence of Theorem 7 of [2], since, in each of the three configurations a), b), c) listed, the obstruction is the entirety of $G \backslash C$, as G is short-separation-free.

Theorem 1.3.5 has the following immediate corollary.
Corollary 1.3.6. Let H be a short-separation-free planar graph with facial cycle $C:=p_{1} p_{2} p_{3} p_{4} p_{5}$. Let L be a list-assignment for H where $\left|L\left(p_{i}\right)\right| \geq 1$ for each $1 \leq i \leq 5, C$ is L-colorable, and each vertex of $H \backslash C$ has an L-list of size at least five. Let $S \subseteq V(C)$ and let ϕ be an L-coloring of S. If either $|V(H \backslash C)|>1$, or there is a vertex w of $H \backslash C$ adjacent to all five vertices of C, where $|L(w) \cap\{\phi(p): p \in S\}|<|S|$, then $V(H \backslash C)$ is L_{ϕ}-inert in H.

We use the standard terminology for the structure specified in Corollary 1.3.6.
Definition 1.3.7. A wheel is a graph H with a vertex $p \in V(H)$ such that $H-p$ is a chordless cycle and p is adjacent to all of the vertices of $V(H) \backslash\{p\}$.

In the remaining four sections of this chapter, we gather some preliminary facts we need about the list-coloring situations which occur very frequently in the subsequent chapters.

1.4 Extending Colorings of 2-Paths: Broken Wheels

Throughout this thesis, we frequently analyze planar graphs with a list-assignment in which a specified facial subgraph has a precolored path of length two. In Sections 1.4 and 1.5, we gather some facts which we use all throughout the remainder of the proof of Theorem 1.1.3.

Definition 1.4.1. Let H be a graph and let $P:=p_{1} p_{2} p_{3}$ be a specified subpath of H of length two. Let L be a list-assignment for $V(H)$.

1) For each color $c \in L\left(p_{2}\right)$ and $d \in L\left(p_{3}\right)$, we set $Z_{H, L}^{P}(\bullet, c, d) \subseteq L\left(p_{1}\right)$ to be the set of colors $f \in L\left(p_{1}\right)$ such that there is a proper L-coloring of H using f, c, d on the respective vertices p_{1}, p_{2}, p_{3}.
2) For any $f \in L\left(p_{1}\right)$ and $c \in L\left(p_{2}\right)$, we define the subset $Z_{H, L}^{P}(f, c, \bullet)$ of $L\left(p_{3}\right)$ analogously to 1), and, for any $f \in L\left(p_{1}\right)$ and $d \in L\left(p_{3}\right)$, we define the subset $z_{H, L}^{P}(f, \bullet, d)$ of $L\left(p_{2}\right)$ analogously to 1$)$.

In practice, the notation above is always used in the context where H is a planar graph and P is a subpath of a specified facial cycle of H, since we are interested in precolorings of paths of length two of a specified subpath of a facial cycle which extend to the entire graph. The use of the notation above always requires us to specify an ordering of the vertices of given 2-path. That is, whenever we write $z_{H, L}^{P}(\cdot, \cdot, \cdot)$, where two of the coordinates are colors of two of the vertices of P and one is a bullet denoting the remaining uncolored vertex of P, we have specified beforehand which vertices the first, second, and third coordinates correspond to. By Theorem 0.2.3, we immediately have the following:

Observation 1.4.2. Let G be a planar graph with facial cycle C, and let $P:=p_{1} p_{2} p_{3}$ be a subpath of C of length two. Let L be a list-assignment for $V(G)$ where each vertex of $C \backslash P$ has a list of size at least three, and each vertex of $G \backslash C$ has an L-list of size at least five. If ϕ is an L-coloring of $p_{1} p_{2}$ and $\left|L\left(p_{3}\right) \backslash\left\{\phi\left(p_{2}\right)\right\}\right| \geq 2$, then ϕ extends to an L-coloring of G.

One of the structures analyzed frequently throughout the remaining chapters is the broken wheel, which is defined as follows.

Definition 1.4.3. A broken wheel is a graph H with a vertex $p \in V(H)$ such that $H-p$ is a path $q_{1} \cdots q_{r}$ with $r \geq 2$, where $N(p)=\left\{q_{1}, \cdots, q_{r}\right\}$. The subpath $p_{1} q p_{r}$ of H is called the principal path of H. The vertex q is called the principal vertex of H.

Note that, if $|V(H)|<4$, then the above definition does not uniquely specify the principal path, although in practice, whenever we deal with broken wheels in this thesis, we specify the principal path beforehand so that there is no ambiguity.

In this section, we state and prove several useful facts about broken wheels which we use frequently throughout the remainder of this thesis. In Section 1.5, we consider the general case of a 2-path of a facial cycle in an arbitrary planar graph which is not necessarily a broken wheel. In Theorem 1.5.3, we show that in a certain sense, the broken wheel is the only nontrivial case. The first of the facts which make up Section 1.4, which is stated below, is trivial and is stated without proof.

Proposition 1.4.4. Let H be a broken wheel with principal path $P:=p_{1} p_{2} p_{3}$, and let L be a list-assignment for H such that $|L(u)| \geq 3$ for all $u \in V(H \backslash P)$. Let $H-p_{2}=p_{1} u_{1} \cdots u_{t} p_{3}$ for some $t \geq 0$. Then the following hold.

1) If $t \geq 1$ and ϕ is an L-coloring of P which does not extend to H, then $\phi\left(p_{1}\right) \in L\left(u_{1}\right), \phi\left(p_{3}\right) \in L\left(u_{t}\right)$, and, for each $i=1, \cdots, t$, we have $\left|L\left(u_{i}\right)\right|=3$ and $\phi\left(p_{2}\right) \in L\left(u_{i}\right) ;$ AND
2) If ψ is an L-coloring of $p_{1} p_{2}$ with $\left|L\left(p_{3}\right) \backslash\left\{\psi\left(p_{2}\right)\right\}\right| \geq 2$, and $\left|z_{H}\left(\psi\left(p_{1}\right), \psi\left(p_{2}\right), \bullet\right)\right|=1$, then $\psi\left(p_{1}\right) \in L\left(u_{1}\right)$, $\left|L\left(p_{3}\right) \backslash\left\{\psi\left(p_{2}\right)\right\}\right|=2$, and, for each $i=1, \cdots, t$, we have $\left|L\left(u_{i}\right)\right|=3$ and $\psi\left(p_{2}\right) \in L\left(u_{i}\right)$.

We now have the following facts.
Proposition 1.4.5. Let H be a broken wheel with principal path $P:=p_{1} p_{2} p_{3}$, and let L be a list-assignment for H such that $\left|L\left(p_{1}\right)\right| \geq 1$ and $|L(v)| \geq 3$ for all $v \in V(H) \backslash\left\{p_{1}, p_{2}\right\}$. Let $c \in L\left(p_{1}\right)$, and suppose further that $\left|L\left(p_{2}\right) \backslash\{c\}\right| \geq 3$. Then the following hold.

1) There exists a color $d \in L\left(p_{2}\right) \backslash\{c\}$ such that $\left|\mathcal{Z}_{H}(c, d, \bullet)\right| \geq 2$; AND
2) If $d_{1}, d_{2}, d_{3} \in L\left(p_{2}\right) \backslash\{c\}$ are distinct colors and there is a lone color $e \in L\left(p_{3}\right)$ such that $\mathcal{Z}_{H}\left(c, d_{1}, \bullet\right)=$ $\mathcal{Z}_{H}\left(c, d_{2}, \bullet\right)=\{e\}$, then $\mathcal{Z}_{H}\left(c, d_{3}, \bullet\right) \supseteq L\left(p_{3}\right) \backslash\{e\}$.

Proof. Fact 1 is trivial if H is a triangle, so suppose now that H is not a triangle. Let $H \backslash\left\{p_{2}\right\}$ be the path $p_{1} x_{1} \cdots x_{t} p_{3}$, where $t \geq 1$. If $c \in L\left(x_{1}\right)$, then, since $\left|L\left(x_{1}\right)\right| \geq 3$ and $\left|L\left(p_{2}\right) \backslash\{c\}\right| \geq 3$, there is a color $d \in L\left(p_{2}\right) \backslash\{c\}$ with $\left|L\left(x_{1}\right) \backslash\{c\}\right| \geq 3$. In that case, for any color $e \in L\left(p_{3}\right) \backslash\{d\}$, the coloring (c, d, e) of the principal path $p_{1} p_{2} p_{3}$ extends to an L-coloring of H, so $\left|z_{H}(c, d, \bullet)\right| \geq 2$, since $z_{H}(c, d, \bullet)=L\left(p_{3}\right) \backslash\{d\}$. Thus, if $c \in L\left(x_{1}\right)$, then we are done. Now suppose that $c \notin L\left(x_{1}\right)$. In that case, for any color $d \in L\left(p_{2}\right) \backslash\{c\}$ and any color $e \in L\left(p_{3}\right) \backslash\{d\}$, the coloring (c, d, e) of the principal path $p_{1} p_{2} p_{3}$ extends to an L-coloring of H, so $\left|z_{H}(c, d, \bullet)\right| \geq 2$ for any $d \in L\left(p_{2}\right) \backslash\{c\}$. So, again, we are done.

Now we prove Fact 2. By removing colors from p_{2} if necessary, we may suppose that $L\left(p_{2}\right) \backslash\{c\}=\left\{d_{1}, d_{2}, d_{3}\right\}$. Suppose that $\mathcal{Z}_{H}\left(c, d_{1}, \bullet\right)=\mathcal{Z}_{H}\left(c, d_{2}, \bullet\right)=\{e\}$. In that case, we have $d_{1}, d_{2} \in \bigcap_{u \in V(H) \backslash\left\{p_{1}, p_{2}\right\}} L(u)$ by Proposition 1.4.4. Thus, H is not a triangle, or else we have $d_{1} \in \mathcal{z}_{H}\left(c, d_{2}, \bullet\right)$ and $d_{2} \in \mathcal{z}_{H}\left(c, d_{1}, \bullet\right)$, contradicting our assumption. Thus, let $H \backslash\left\{p_{2}\right\}=p_{1} v_{1} \cdots v_{t} p_{3}$ for some $t \geq 1$. Now, since $\mathcal{z}_{H}\left(c, d_{1}, \bullet\right)=\mathcal{z}_{H}\left(c, d_{2}, \bullet\right)=\{e\}$, we have $L\left(x_{t}\right)=L\left(p_{3}\right)=\left\{d_{1}, d_{2}, e\right\}$ by Proposition 1.4.4. Thus, if $d_{3} \neq e$, then $z_{H}\left(c, d_{3}, \bullet\right)=L\left(p_{3}\right)$, so we are done in that case. Now suppose that $d_{3}=e$. By Fact 1, we have $\left|\mathcal{Z}_{H}(c, e, \bullet)\right| \geq 2$. Since $e \notin \mathcal{Z}_{H}(c, e, \bullet)$, we have $\mathfrak{z}_{H}(c, e, \bullet)=\left\{d_{1}, d_{2}\right\}=L\left(p_{3}\right) \backslash\{e\}$, so, again, we are done. This completes the proof of Fact 2.

Proposition 1.4.5 has the following immediate corollary.

Corollary 1.4.6. Let H be a broken wheel with principal path $P:=p_{1} p_{2} p_{3}$, and let L be a list-assignment for H such that $\left|L\left(p_{1}\right)\right| \geq 1$, and $|L(v)| \geq 3$ for all $v \in V(H) \backslash\left\{p_{1}, p_{2}\right\}$. Let $c \in L\left(p_{1}\right)$, and suppose further that $\left|L\left(p_{2}\right) \backslash\{c\}\right| \geq 3$. Then the following hold.

1) There exists a pair of distinct colors $d, d^{\prime} \in L\left(p_{3}\right)$ such that $\mathcal{Z}_{H}(c, \bullet, d) \cap \mathcal{Z}_{H}\left(c, \bullet, d^{\prime}\right) \neq \varnothing$; AND
2) There exists a pair of distinct colors $f, f^{\prime} \in L\left(p_{2}\right) \backslash\{c\}$ such that $\mathcal{Z}_{H}(c, f, \bullet) \cap \mathcal{Z}_{H}\left(c, f^{\prime}, \bullet\right) \neq \varnothing$.

The remainder of Section 1.4 consists of two useful propositions.
Proposition 1.4.7. Let H be a broken wheel with principal path $p_{1} p_{2} p_{3}$ and let L be a list-assignment for H where $|L(v)| \geq 3$ for all $v \in V(H) \backslash\left\{p_{1}, p_{2}\right\}$. Then we have the following two facts.

1) Let $c \in L\left(p_{1}\right)$ and suppose there exist distinct colors $c_{1}, c_{2} \in L\left(p_{2}\right) \backslash\{c\}$ such that $\left|\mathcal{Z}_{H}\left(c, c_{1}, \bullet\right)\right|=\left|\mathcal{Z}_{H}\left(c, c_{2}, \bullet\right)\right|=$ 1 and $z_{H}\left(c, c_{1}, \bullet\right) \neq z_{H}\left(c, c_{2}, \bullet\right)$. Then $c_{1}, c_{2} \in L\left(p_{3}\right), z_{H}\left(c, c_{1}, \bullet\right)=c_{2}$, and $z_{H}\left(c, c_{2}, \bullet\right)=c_{1} ;$ AND
2) Suppose there exist two L-colorings ϕ, ϕ^{\prime} of $p_{1} p_{2}$ such that $\phi\left(p_{1}\right) \neq \phi^{\prime}\left(p_{1}\right)$, where $\mathcal{Z}_{H}\left(\phi\left(p_{1}\right), \phi\left(p_{2}\right), \bullet\right)=$ $\mathcal{z}_{H}\left(\phi^{\prime}\left(p_{1}\right), \phi^{\prime}\left(p_{2}\right), \bullet\right)$ and $\left|z_{H}\left(\phi\left(p_{1}\right), \phi\left(p_{2}\right), \bullet\right)\right|=\left|z_{H}\left(\phi^{\prime}\left(p_{1}\right), \phi^{\prime}\left(p_{2}\right), \bullet\right)\right|=1$. Then $\phi\left(p_{1}\right)=\phi^{\prime}\left(p_{2}\right)$ and $\phi\left(p_{2}\right)=\phi^{\prime}\left(p_{1}\right)$.

Proof. We first prove 1). Let H be a vertex-minimal counterexample to 1) and let L, c_{1}, c_{2} be as in the statement of 1). It is trivial to check that a triangle satisfies 1), so H is not a triangle. Thus, let $H \backslash\left\{p_{2}\right\}=p_{1} u_{1} \cdots u_{t} p_{3}$ for some $t \geq 1$. Let $H^{\prime}:=H \backslash\left\{p_{3}\right\}$. Then H^{\prime} is a broken wheel with principal path $p_{1} p_{2} u_{t}$. We claim now that $\left|\mathcal{Z}_{H^{\prime}}\left(c, c_{1}, \bullet\right)\right|=\left|\mathcal{Z}_{H^{\prime}}\left(c, c_{2}, \bullet\right)\right|=1$. Suppose not, and suppose without loss of generality that $\left|\mathcal{Z}_{H^{\prime}}\left(c, c_{1}, \bullet\right)\right|>1$. Let $d, d^{\prime} \in \mathcal{Z}_{H^{\prime}}\left(c, c_{1}, \bullet\right)$. Then $L\left(p_{3}\right) \backslash\left\{c_{1}, d\right\} \subseteq \mathcal{z}_{H}\left(c, c_{1}, \bullet\right)$, and $L\left(p_{3}\right) \backslash\left\{c_{1}, d^{\prime}\right\} \subseteq \mathcal{z}_{H}\left(c, c_{1}, \bullet\right)$, so we have $\left|\mathcal{Z}_{H}\left(c, c_{1}, \bullet\right)\right|>1$, contradicting our assumption.

Thus, we indeed have $\left|\mathcal{Z}_{H^{\prime}}\left(c, c_{1}, \bullet\right)\right|=\left|\mathcal{Z}_{H^{\prime}}\left(c, c_{2}, \bullet\right)\right|=1$. We claim now that $\mathcal{Z}_{H^{\prime}}\left(c, c_{1}, \bullet\right) \neq \mathcal{Z}_{H^{\prime}}\left(c, c_{2}, \bullet\right)$. Suppose that $\mathcal{Z}_{H^{\prime}}\left(c, c_{1}, \bullet\right)=\mathcal{Z}_{H^{\prime}}\left(c, c_{2}, \bullet\right)$ and let d be the common color of both sets. Since $d \notin\left\{c_{1}, c_{2}\right\}$, we then have $c_{1} \in \mathcal{Z}_{H}\left(c, c_{2}, \bullet\right)$ and $c_{2} \in \mathcal{Z}_{H}\left(c, c_{1}, \bullet\right)$, as each of the colorings $\left(c, c_{1}, c_{2}\right)$ and $\left(c, c_{2}, c_{1}\right)$ of $p_{1} p_{2} p_{3}$ leaves d for u_{t}. But then, since $\left|\mathcal{Z}_{H}\left(c, c_{1}, \bullet\right)\right|=\left|\mathcal{Z}_{H}\left(c, c_{2}, \bullet\right)\right|=1$. we have $\mathcal{Z}_{H}\left(c, c_{1}, \bullet\right)=\left\{c_{2}\right\}$, and $\mathcal{Z}_{H}\left(c, c_{2}, \bullet\right)=\left\{c_{1}\right\}$, contradicting our assumption that H is a counterexample.

We conclude that $\left|\mathcal{Z}_{H^{\prime}}\left(c, c_{1}, \bullet\right)\right|=\left|\mathcal{Z}_{H^{\prime}}\left(c, c_{2}, \bullet\right)\right|=1$ and $\mathcal{Z}_{H^{\prime}}\left(c, c_{1}, \bullet\right) \neq \mathcal{z}_{H^{\prime}}\left(c, c_{2}, \bullet\right)$. Since $\left|\mathcal{Z}_{H}\left(c, c_{1}, \bullet\right)\right|=$ $\left|\mathcal{Z}_{H}\left(c, c_{2}, \bullet\right)\right|=1$, it follows from 2) of Proposition 1.4.4 that $c_{1}, c_{2} \in L\left(u_{t}\right)$, and, by the minimality of H, we have $\mathcal{Z}_{H^{\prime}}\left(c, c_{1}, \bullet\right)=\left\{c_{2}\right\}$ and $\mathcal{Z}_{H^{\prime}}\left(c, c_{2}, \bullet\right)=\left\{c_{1}\right\}$. But then, letting $d \in L\left(p_{3}\right) \backslash\left\{c_{1}, c_{2}\right\}$, we have $d \in \mathcal{Z}_{H}\left(c, c_{1}, \bullet\right) \cap$ $\mathcal{z}_{H}\left(c, c_{2}, \bullet\right)$, contradicting our assumption that $\mathcal{Z}_{H}\left(c, c_{1}, \bullet\right) \neq \mathcal{z}_{H}\left(c, c_{2}, \bullet\right)$. This proves 1$)$.

Now we prove 2). Suppose that 2) does not hold and let H be a vertex-minimal counterexample to 2). Let (r, r^{\prime}) and $\left(s, s^{\prime}\right)$ be two L-colorings of $p_{1} p_{2}$, where these colorings satisfy the conditions of 2) but either $r \neq s^{\prime}$ or $r^{\prime} \neq s$. Since r, s are distinct, we we have $\left\{r, r^{\prime}\right\} \neq\left\{s, s^{\prime}\right\}$. Let c be the lone color of $L\left(p_{3}\right)$ such that $\mathcal{Z}_{H}\left(r, r^{\prime}, \bullet\right)=\mathcal{Z}_{H}\left(s, s^{\prime}, \bullet\right)=$ $\{c\}$. As above, it is trivial to check that a triangle satisfies 2), so H is not a triangle. Now we have the following:

Claim 1.4.8. $r^{\prime} \neq s^{\prime}$.

Proof: Suppose there is a color d such that $r^{\prime}=s^{\prime}=d$. Thus, we have $r, s \in L\left(p_{1}\right) \backslash\{d\}$. Since $\left|L\left(p_{3}\right)\right| \geq 3$, let $d^{\prime} \in L\left(p_{3}\right) \backslash\{c, d\}$. Then, by Observation 1.4.2, since $r \neq s$, the L-coloring ($\left.d, d^{\prime}\right)$ of $p_{2} p_{3}$ extends to an L-coloring of H using one of r, s on p_{1}, contradicting the fact that $d^{\prime} \notin \mathcal{Z}_{H}(r, d, \bullet) \cup \mathcal{z}_{H}(s, d, \bullet)$.

Since H is not a triangle, let $H-p_{2}=p_{1} u_{1} \cdots u_{t} p_{3}$ for some $t \geq 1$. Since $\left|z_{H}\left(r, r^{\prime}, \bullet\right)\right|=\left|\mathcal{Z}_{H}\left(s, s^{\prime}, \bullet\right)\right|=$ 1, it follows from Proposition 1.4.4 that, for all $j=1, \cdots, t,\left|L\left(u_{j}\right)\right|=3$ and $\left\{r^{\prime}, s^{\prime}\right\} \subseteq L\left(u_{j}\right)$. Furthermore, $\{r, s\} \subseteq L\left(u_{1}\right),\left|L\left(p_{3}\right)\right|=3$, and $\left\{r^{\prime}, s^{\prime}\right\} \subseteq L\left(p_{3}\right)$. By assumption, we have $|\{r, s\}|=2$, and, by Claim 1.4.8, we have $\left|\left\{r^{\prime}, s^{\prime}\right\}\right|=2$. Since $\left|L\left(u_{1}\right)\right|=3$, we have $\{r, s\} \cap\left\{r^{\prime}, s^{\prime}\right\} \neq \varnothing$, so suppose without loss of generality that $r \in\left\{r^{\prime}, s^{\prime}\right\}$. Since $r \neq r^{\prime}$, we have $r=s^{\prime}$, and our two L-colorings of $p_{1} p_{2}$ are $\left(r, r^{\prime}\right)$ and (s, r).

Claim 1.4.9. $t>1$.

Proof: Suppose that $t=1$. Since $r=s^{\prime}$, we have $r \in L\left(p_{3}\right) \backslash\{c\}$, and the L-coloring $\left(r, r^{\prime}, r\right)$ of $p_{1} p_{2} p_{3}$ leaves a color for u_{1}, so $r \in \mathcal{Z}_{H}\left(r, r^{\prime}, \bullet\right)$, contradicting the fact that $\mathcal{Z}_{H}\left(r, r^{\prime}, \bullet\right)=\{c\}$.

Let $H^{*}:=H-\left\{p_{3}, u_{t}\right\}$. Since $t>1, H^{*}$ is a broken wheel with principal path $p_{1} p_{2} u_{t-1}$. By Theorem 0.2.3, each of $\mathcal{z}_{H^{*}}\left(r, r^{\prime}, \bullet\right)$ and $\mathcal{Z}_{H^{*}}\left(r, r^{\prime}, \bullet\right)$ is nonempty. If $\left|z_{H^{*}}\left(r, r^{\prime}, \bullet\right) \cup \mathcal{Z}_{H^{*}}\left(s, s^{\prime}, \bullet\right)\right|=1$, then it follows from the minimality of H that $\left\{r, r^{\prime}\right\}=\left\{s, s^{\prime}\right\}$, contradicting our assumption. Thus, there exist distinct colors $f, g \in L\left(u_{t-1}\right)$ such that $f \in \mathcal{Z}_{H^{*}}\left(r, r^{\prime}, \bullet\right)$ and $g \in \mathcal{Z}_{H^{*}}\left(s, s^{\prime}, \bullet\right)$.

Let H^{\dagger} be the broken wheel with principal path $u_{t-1} p_{2} p_{3}$, where $H^{\dagger}-p_{2}=u_{t-1} u_{t} p_{3}$. Since each of $z_{H^{\dagger}}\left(f, r^{\prime}, \bullet\right)$ and $\mathcal{z}_{H^{\dagger}}\left(g, s^{\prime}, \bullet\right)$ is nonempty, it follows that $\mathcal{Z}_{H^{\dagger}}\left(f, r^{\prime}, \bullet\right)=\mathcal{z}_{H^{\dagger}}\left(g, s^{\prime}, \bullet\right)=\{c\}$. Since $\left\{r^{\prime}, s^{\prime}\right\}=L\left(p_{3}\right) \backslash\{c\}$, it follows that $\left\{s^{\prime}\right\}=L\left(u_{t}\right) \backslash\left\{f, r^{\prime}\right\}$ and $\left\{r^{\prime}\right\}=L\left(u_{t}\right) \backslash\left\{g, s^{\prime}\right\}$. But then, since $f \neq r^{\prime}$ and $g \neq s^{\prime}$, it follows that $\{f, g\}$ and $\left\{r^{\prime}, s^{\prime}\right\}$ are two disjoint sets of size two, each of which lies in $L\left(u_{t}\right)$, contradicting the fact that $\left|L\left(u_{t}\right)\right|=3$. This completes the proof of Proposition 1.4.7.

The last fact we prove in Section 1.4 is the following result which we use in the special case where we have a broken wheel with a vertex outside the principal path with a list of size two.

Proposition 1.4.10. Let H be a broken wheel with principal path $P:=p_{1} p_{2} p_{3}$. Let $u \in V(H \backslash P)$ and L be a list-assignment for such that the following hold.

1) $|L(u)| \geq 2$ and, for each $v \in V(H \backslash P) \backslash\{u\},|L(v)| \geq 3$; AND
2) $\left|L\left(p_{1}\right)\right| \geq 1$ and $\left|L\left(p_{3}\right)\right| \geq 2$; AND
3) $\left|L\left(p_{2}\right)\right| \geq 5$.

Then H is L-colorable.

Proof. Let $H-p_{2}=p_{1} v_{1} \cdots v_{t} p_{3}$ for some $t \geq 1$, where $u \in\left\{v_{1}, \cdots, v_{t}\right\}$. Let c be the lone color of $L\left(p_{1}\right)$. By removing some colors from some of the lists if necessary, we suppose that $|L(u)|=\left|L\left(p_{3}\right)\right|=2$ and we also suppose that either $u=v_{1}$ or $\left|L\left(v_{1}\right) \backslash\{c\}\right|=2$. Suppose toward a contradiction that H is not L-colorable. Let $d \in L\left(p_{2}\right) \backslash\{c\}$. Since the L-coloring (c, d) of $p_{1} p_{2}$ does not extend to L-color H, it follows that d is in at least two of the lists $L(u)$, $L\left(p_{3}\right), L\left(v_{1}\right) \backslash\{c\}$. This is true for each $d \in L\left(p_{2}\right) \backslash\{c\}$, so we have $u \neq v_{1}$ and $\left|L\left(v_{1}\right) \backslash\{c\}\right|=2$. But then there are at most three colors that lie in at least two of the lists among $L(u), L\left(p_{3}\right), L\left(v_{1}\right) \backslash\{c\}$. Since $\left|L\left(p_{1}\right) \backslash\{c\}\right| \geq 4$, we have a contradiction.

1.5 Extending Colorings of 2-Paths: The General Case

In many instances in the subsequent chapters, we partition a planar graph into two sides which intersect on a generalized chord of a specified cycle in this graph, color one side of this cycle and then show that this coloring extends to
the other side. In particular, the two situations described in the proposition below occur very frequently. Note that the proposition below deals with paths of arbitrary length, not just 2-paths.

Proposition 1.5.1. Let G be a planar graph with facial cycle C and let P be a subpath of C. Let L be a list-assignment for G such that, for each $v \in V(G \backslash C),|L(v)| \geq 5$, and, for each $v \in V(C \backslash P),|L(v)| \geq 3$. Then the following hold.

1) If there exists an L-coloring ϕ of $V(P)$ which does not extend to an L-coloring of G, then either there is a chord of C with an endpoint in P, or there is a vertex $v \in V(G \backslash C)$ with $\left|L_{\phi}(v)\right| \leq 2$. In particular, v has at least three neighbors in P; AND
2) If ϕ is an L-coloring of the endpoints of P which does not extend to L-color G, then there exists a vertex of $\stackrel{\circ}{P}$ with an L_{ϕ}-list of size less than three. In particular, if every vertex of $\stackrel{\circ}{P}$ has an L-list of size at least five, then any L-coloring of the endpoints of P extends to an L-coloring of G.

Proof. For convenience, we suppose, by applying an appropriate stereographic projection, that C is the outer face of G. Since ϕ does not extend to an L-coloring of G, it follows from Theorem 0.2 .3 that $|V(P)| \geq 3$, so $V(\stackrel{\circ}{P}) \neq \varnothing$. Let p, p^{\prime} be the endpoints of P and let $C \backslash \stackrel{\circ}{P}=p u_{1} \cdots u_{t} p^{\prime}$ for some $t \geq 0$ (if $t=0$ then $V(C)=V(P)$). Let F be the outer face of $G \backslash P$. By our assumption, every vertex of $F \backslash C$ has an L_{ϕ}-list of size at least three, and since there is no chord of C with an endpoint in P, each internal vertex of the path $C \backslash P$ has an L_{ϕ}-list of size at least three as well. If $t=0$ then $G \backslash P$ is L_{ϕ}-colorable by Theorem 0.2.3. Likewise, if $t=1$, then $\left|L_{\phi}\left(u_{1}\right)\right| \geq 1$, since $p_{2} u_{1} \notin E(G)$, and thus, again applying Theorem $0.2 .3, G \backslash P$ is L_{ϕ}-colorable. Finally, if $t \geq 2$, then, since there is no chord of C with an endpoint in P, we have $\left|L_{\phi}\left(u_{1}\right)\right| \geq 2$ and $\left|L_{\phi}\left(u_{t}\right)\right| \geq 2$. Thus, by Theorem 1.3.4, $G \backslash P$ is L_{ϕ}-colorable. Thus, in any case, ϕ extends to an L-coloring of G, contradicting our assumption. This proves 1).

Now we prove 2). Suppose toward a contradiction that 2) does not hold and let G be a vertex-minimal counterexample to the proposition. Let $P:=p_{1} \cdots p_{k}$ for some $k \geq 1$. By assumption, there is an L-coloring ϕ of $\left\{p_{1}, p_{k}\right\}$ which does not extend to L-color G, and every vertex of $\stackrel{\circ}{P}$ has an L_{ϕ}-list of size at least three. By Theorem 0.2.3, we have $|E(P)|>1$. Let $C \backslash \stackrel{\circ}{P}=p_{1} u_{1} \cdots u_{t} p_{k}$ for some $t \geq 0$. If $t=0$, then it again follows from Theorem 0.2 .3 that ϕ extends to an L-coloring of G, contradicting our assumption, so $t>0$.

Claim 1.5.2. Any chord of C has an endpoint in $\stackrel{\circ}{P}$.

Proof: Suppose toward a contradiction that there is a chord $x y$ of C with $x, y \notin V(\stackrel{\circ}{P})$. Let $G=G_{0} \cup G_{1}$ be the canonical $x y$-partition of G, where $P \subseteq G_{0}$. Note that, for each $i=0,1,\left|V\left(G_{i}\right)\right|<|V(G)|$. By the minimality of G, ϕ extends to an L-coloring ψ of G_{0}, and, by Theorem $0.2 .3, G_{1}$ is $L_{\psi}^{x y}$-colorable, so ϕ extends to an L-coloring of G, contradicting our assumption.

Let F be the outer face of $G \backslash\left\{p_{1}, p_{k}\right\}$. By Claim 1.5.2, there is no chord of C with one endpoint in $\left\{p_{1}, p_{k}\right\}$ and the other endpoint in $V(C) \backslash\left\{p_{2}, \cdots, p_{k-1}\right\}$, so each vertex of $\left\{u_{2}, \cdots, u_{t-1}\right\}$ has an L_{ϕ}-list of size at least three. Furthermore, every vertex of $\left\{p_{2}, \cdots, p_{k-1}\right\}$ also has an L_{ϕ}-list of size at least three. By assumption, all the vertices of P have L_{ϕ}-lists of size at least three, so every vertex of $F \backslash\left\{u_{1}, u_{t}\right\}$ has an L_{ϕ}-list of size at least three.

If $t=1$, then, since $\left|L_{\phi}\left(u_{1}\right)\right| \geq 1$, it follows from Theorem 1.5.2 that ϕ extends to an L-coloring of G, contradicting our assumption. If $t>1$ then $\left|L_{\phi}\left(u_{1}\right)\right| \geq 2$ and $\left|L_{\phi}\left(u_{t}\right)\right| \geq 2$, and it follows from Theorem 1.3.4 that ϕ extends to an L-coloring of G, contradicting our assumption.

A useful consequence of Proposition 1.5.1 is the following.

Theorem 1.5.3. Let G be a short-separation-free planar graph with facial cycle C and let $P:=p_{1} p_{2} p_{3}$ be a subpath of C of length two. Let L be a list-assignment for G such that, for each $v \in V(G \backslash C),|L(v)| \geq 5$, and, for each $v \in V(C \backslash P),|L(v)| \geq 3$. Suppose further that every chord of C has p_{2} as an endpoint. Then either G is a broken wheel with principal path P, or there is at most one L-coloring of $V(P)$ which does not extend to an L-coloring of G.

Proof. Let G be a vertex minimal counterexample to the theorem. For convenience, we suppose, by applying an appropriate stereographic projection, that C is the outer face of G. Let $P:=p_{1} p_{2} p_{3}$ be a subpath of C and L be a list-assignment for G such that the specified conditions are satisfied. Let ϕ, ϕ^{\prime} be two distinct L-colorings of P, neither of which extends to an L-coloring of G. Since neither ϕ nor ϕ^{\prime} extends to an L-coloring of G, it follows from Corollary 0.2.4 that $|V(C)| \geq 5$. Let $C=p_{3} p_{2} p_{1} u_{1} \cdots u_{t}$ for some $t \geq 2$.

Claim 1.5.4. C is an induced subgraph of G.

Proof: By assumption, any chord of C has p_{2} as an endpoint, so suppose toward a contradiction that there is a chord $p_{2} u_{j}$ of C for some $j \in\{1, \cdots, t\}$, and let $G=G^{*} \cup G^{* *}$ be the natural $p_{2} u_{j}$-partition of G, where $p_{1} \in V\left(G^{*}\right)$ and $p_{3} \in V\left(G^{* *}\right)$. Let $P^{*}:=p_{1} p_{2} u_{j}$ and $P^{* *}:=u_{j} p_{2} p_{3}$. Let $C^{*}:=p_{1} u_{1} \cdots p_{j} p_{2}$ and $C^{* *}:=p_{3} u_{t} \cdots u_{j} p_{2}$. Since every chord of C in G has p_{2} as an endpoint, every chord of C^{*} in G^{*} has p_{2} as an endpoint.

If G^{*} is a broken wheel with principal path P^{*}, and $G^{* *}$ is a broken wheel with principal path $P^{* *}$, then G is a broken wheel with principal path P, contradicting our assumption, so suppose without loss of generality that G^{*} is not a broken wheel with principal path P^{*}. Since G is short-separation-free, G^{*} is not a triangle, and $u_{j} \neq u_{1}$.

By Theorem 0.2.3, there are colors $r, r^{\prime} \in L\left(u_{j}\right)$ such that the colorings $\left(\phi\left(p_{3}\right), \phi\left(p_{2}\right), r\right)$ and $\left(\phi^{\prime}\left(p_{3}\right), \phi^{\prime}\left(p_{2}\right), r^{\prime}\right)$ of $P^{* *}$ extend to an L-coloring of G. If either of the colorings $\left(\phi\left(p_{1}\right), \phi\left(p_{2}\right), r\right),\left(\phi^{\prime}\left(p_{1}\right), \phi^{\prime}\left(p_{2}\right), r^{\prime}\right)$ of P^{*} extends to an L-coloring of G^{*}, then one of ϕ, ϕ^{\prime} extends to an L-coloring of G, contradicting our assumption. Thus, since G^{*} is not a broken wheel with principal path P^{*}, and every chord of C^{*} in G^{*} has p_{2} as an endpoint, it follows from the minimality of G that the colorings $\left(\phi\left(p_{1}\right), \phi\left(p_{2}\right), r\right)$ and $\left(\phi^{\prime}\left(p_{1}\right), \phi^{\prime}\left(p_{2}\right), r^{\prime}\right)$ of P^{*} are not distinct, so ϕ, ϕ^{\prime} use the same color on p_{1} and the same color on p_{2}, and $r=r^{\prime}$. Since $\phi \neq \phi^{\prime}$, it follows that ϕ, ϕ^{\prime} differ precisely on p_{3}. Let $a=\phi\left(p_{1}\right)=\phi^{\prime}\left(p_{1}\right)$ and $b=\phi\left(p_{2}\right)=\phi^{\prime}\left(p_{2}\right)$.

By Theorem 0.2.3, there is an extension of the coloring (a, b) of $p_{1} p_{2}$ to an L-coloring ψ of G^{*}. Since the colors of $\left\{b, \phi\left(p_{3}\right), \phi^{\prime}\left(p_{3}\right)\right\}$ are all distinct, it follows from Observation 1.4.2 that there is an extension of the coloring $\left(\psi\left(u_{j}\right), b\right)$ of $u_{j} p_{2}$ to an L-coloring of $G^{* *}$ using one of $\phi\left(p_{3}\right), \phi^{\prime}\left(p_{3}\right)$ on p_{3}. But then one of ϕ, ϕ^{\prime} extends to an L-coloring of G, contradicting our assumption.

Since there is no chord of C in G it follows from 1) of Proposition 1.5.1 that $G \backslash C$ contains a vertex v^{*} adjacent to all three vertices of P, and, since neither ϕ nor ϕ^{\prime} extends to an L-coloring of G, we have $\left|L_{\phi}\left(v^{*}\right)\right|=\left|L_{\phi^{\prime}}\left(v^{*}\right)\right|=2$. Let $L_{\phi}\left(v^{*}\right)=\{r, s\}$ and $L_{\phi^{\prime}}\left(v^{*}\right)=\left\{r^{\prime}, s^{\prime}\right\}$.

Since G is short-separation-free, $G-p_{2}$ has outer cycle $p_{1} v^{*} p_{3} u_{t} \cdots u_{1}$, and there is no chord of $p_{1} v^{*} p_{3} u_{t} \cdots u_{1}$ which is not incident to v^{*}, or else there is a chord of C in G which is not incident to p_{2}. Thus, if $G-p_{2}$ is not a broken wheel with principal path $p_{1} v^{*} p_{3}$, then it follows from the minimality of G that one of the two colorings $\left(\phi\left(p_{1}\right), r, \phi\left(p_{3}\right)\right),\left(\phi\left(p_{1}\right), s, \phi\left(p_{3}\right)\right)$ extends to an L-coloring of $G-p_{2}$. If that holds, then ϕ extends to an L-coloring of G, contradicting our assumption. We conclude that v^{*} is adjacent to each of u_{1}, \cdots, u_{t}, and G is a wheel with central vertex v^{*}. Since neither ϕ nor ϕ^{\prime} extends to an L-coloring of G, we have the following by Proposition 1.4.4.
i) $\phi\left(p_{1}\right), \phi^{\prime}\left(p_{1}\right) \in L\left(u_{1}\right)$ and $\phi\left(p_{3}\right), \phi^{\prime}\left(p_{3}\right) \in L\left(u_{t}\right)$; AND
ii) For each $i=1, \cdots, t,\left|L\left(u_{i}\right)\right|=3,\{r, s\} \subseteq L\left(u_{i}\right)$ and $\left\{r^{\prime}, s^{\prime}\right\} \subseteq L\left(u_{i}\right)$

Now consider the following cases.
Case 1: ϕ, ϕ^{\prime} use the same color on p_{1} and the same color on p_{3}
In this case, let $a=\phi\left(p_{1}\right)=\phi^{\prime}\left(p_{1}\right)$ and $b=\phi\left(p_{3}\right)=\phi^{\prime}\left(p_{3}\right)$. Since $L\left(v^{*}\right)=\left\{\phi\left(p_{1}\right), \phi\left(p_{2}\right), \phi\left(p_{3}\right), r, s\right\}=$ $\left\{\phi^{\prime}\left(p_{1}\right), \phi^{\prime}\left(p_{2}\right), \phi^{\prime}\left(p_{3}\right), r^{\prime}, s^{\prime}\right\}$, we have $\left\{\phi\left(p_{2}\right), r, s\right\}=\left\{\phi^{\prime}\left(p_{2}\right), r^{\prime}, s^{\prime}\right\}$. Since ϕ, ϕ^{\prime} are distinct colorings of P, we have $\phi\left(p_{2}\right) \neq \phi^{\prime}\left(p_{2}\right)$, so $\left|\left\{r, s, r^{\prime}, s^{\prime}\right\}\right| \geq 3$. But then, by ii), $L\left(u_{1}\right)$ consists of three colors which are not a, b, contradicting i).

Case 2: ϕ, ϕ^{\prime} differ on at least one of p_{1}, p_{3}
In this case, suppose without loss of generality that $\phi\left(p_{1}\right) \neq \phi^{\prime}\left(p_{1}\right)$. Let $\phi\left(p_{1}\right)=a$ and $\phi^{\prime}\left(p_{1}\right)=b$. By i), we have $\{a, b\} \subseteq L\left(u_{1}\right)$. By ii), $\{r, s\} \subseteq L\left(u_{1}\right)$ and $\left|L\left(u_{1}\right)\right|=3$. Since $\{r, s\}=L_{\phi}\left(v^{*}\right)$, it follows that $b \in\{r, s\}$. Likewise, since $L_{\phi^{\prime}}\left(v^{*}\right)=\left\{r^{\prime}, s^{\prime}\right\}$ and $\left\{r^{\prime}, s^{\prime}\right\} \subseteq L\left(u_{1}\right)$, we have $a \in\left\{r^{\prime}, s^{\prime}\right\}$. Suppose without loss of generality that $a=r^{\prime}$ and $b=r$. Since $\left|L\left(u_{1}\right)\right|=3$, it follows that $s=s^{\prime}$, and, by ii), we have $L\left(u_{i}\right)=\{a, b, s\}$ for each $i=1, \cdots, t$. Since $\{r, s\}=L_{\phi}\left(v^{*}\right)$ and $\left\{r^{\prime}, s^{\prime}\right\}=L_{\phi^{\prime}}\left(v^{*}\right)$, and $\phi\left(p_{3}\right), \phi^{\prime}\left(p_{3}\right) \in L\left(u_{t}\right)$, it follows that $\phi\left(p_{3}\right), \phi^{\prime}\left(p_{3}\right) \in\{a, b\}$. Since $\mid L_{\phi}\left(v^{*}\right)=2$, we have $\phi\left(p_{1}\right) \neq \phi\left(p_{3}\right)$, so we get $\phi\left(b_{3}\right)=b$, contradicting the fact that $b \in L_{\phi}\left(v^{*}\right)$.

We now prove two short, extremely useful theorems which are consequences of Theorem 1.5.3.
Theorem 1.5.5. Let H be a planar graph with facial cycle C, and let $P:=p_{1} p_{2} p_{3}$ be a subpath of C of length two. Let L be a list-assignment for H where $|L(v)| \geq 3$ for all $v \in V\left(C \backslash\left\{p_{1}, p_{2}\right\}\right)$ and $|L(v)| \geq 5$ for all $v \in V(H \backslash C)$. Then, for any color $c \in L\left(p_{1}\right)$, there exists a color $d \in L\left(p_{3}\right)$ such that the following hold.

1) If $p_{1} p_{3} \in E(H)$, then $c \neq d$; AND
2) For any L-coloring ϕ of $V(P)$ using c, d on p_{1}, p_{3} respectively, ϕ extends to an L-coloring of G.

Proof. Suppose this does not hold, and let H be a vertex-minimal counterexample to the theorem. Let C, P, L be as in the statement of the theorem, where $P:=p_{1} p_{2} p_{3}$, and let $c \in L\left(p_{1}\right)$. If $|V(C)| \leq 4$, then, by Corollary 0.2 .4 , any L-coloring of $V(C)$ extends to an L-coloring of H, contradicting our assumption that H is a counterexample. Thus, $|V(C)|>4$. For convenience, we suppose, by applying an appropriate stereographic projection, that C is the outer face of H.

Claim 1.5.6. $p_{1} p_{3} \notin E(H)$.

Proof: Suppose that $p_{1} p_{3} \in E(H)$. Since $|V(C)|>4, p_{1} p_{3}$ is a chord of H. Let $H=H_{0} \cup H_{1}$ be the natural $p_{1} p_{3}$-partition of H, where $p_{2} \in V\left(H_{0}\right)$. Let $d \in L\left(p_{3}\right) \backslash\{c\}$. By Theorem 0.2.3, the L-coloring (c, d) of $p_{1} p_{3}$ extends to an L-coloring of H_{1}. By Corollary 0.2 .4 , any L-coloring of $p_{1} p_{2} p_{3}$ extends to an L-coloring of H_{0}. Thus, any L-coloring of $V(P)$ using c, d on the respective vertices p_{1}, p_{3} extends to an L-coloring of H, contradicting our assumption.

Since $p_{1} p_{3} \notin E(H)$ and H does not satisfy the claim, it follows that, for any $d \in L\left(p_{3}\right)$, there exists a proper L-coloring σ_{d} of $V(P)$, with $\sigma_{d}\left(p_{1}\right)=c$ and $\sigma_{d}\left(p_{3}\right)=d$, such that σ_{d} does not extend to an L-coloring of H.

Claim 1.5.7. H is short-separation-free.

Proof: Suppose toward a contradiction that there is a separating cycle D of length at most four in H. If necessary, we suppose that D is an induced subgraph of H. This is permissible since if this does not hold, then there is a separating triangle T in H whose vertices lie in $V(D)$, so we replace D with T, and T is an induced subgraph of H. Since D is a separating cycle, we have $\left|V\left(\operatorname{Ext}_{H}(D)\right)\right|<|V(H)|$, and, by the minimality of H, there is a $d \in L\left(p_{3}\right)$ such that σ_{d} extends to an L-coloring ψ of $\operatorname{Ext}_{H}(D)$. Since D is an induced cycle of H, ψ is a proper L-coloring of the subgraph of H induced by $V\left(\operatorname{Ext}_{H}(D)\right.$. By Corollary $0.2 .4, \psi$ extends to an L-coloring of $\operatorname{Int}_{H}(D)$, so σ_{d} extends to an L-coloring of H, contradicting our assumption.

Now we have the following.

Claim 1.5.8. Every chord of C has p_{2} as an endpoint.

Proof: Suppose toward a contradiction that there is a chord U of C without p_{2} as an endpoint. Let $H=H^{\prime} \cup H^{\prime \prime}$ be the natural U-partition of H, where $P \subseteq H^{\prime}$. By the minimality of $|V(H)|$, there is a $d \in L\left(p_{3}\right)$ such that σ_{d} extends to an L-coloring ϕ of G^{\prime}, and, by Theorem $0.2 .3, H^{\prime \prime}$ is L_{ϕ}^{U}-colorable, so ϕ extends to an L-coloring of G. But then σ_{d} extends to an L-coloring of H, which is false.

We claim now that H is a broken wheel with principal path P. If this does not hold, then, since every chord of C is incident to p_{2} and there at least three colorings of P in $\left\{\sigma_{d}: d \in L\left(p_{3}\right)\right\}$ and, it follows from Theorem 1.5.3 that at least one of these colorings extends to an L-coloring of H, contradicting our assumption.

Claim 1.5.9. For any distinct colors $d, d^{\prime} \in L\left(p_{3}\right)$, we have $\sigma_{d}\left(p_{2}\right) \neq \sigma_{d^{\prime}}\left(p_{2}\right)$.

Proof: Suppose toward a contradiction that there is a color f such that $\sigma_{d}\left(p_{2}\right)=\sigma_{d^{\prime}}\left(p_{2}\right)=f$. Let L^{*} be a listassignment for $V(H)$ where $L^{*}\left(p_{1}\right)=\{c\}, L^{*}\left(p_{2}\right)=\{f\}$, and $L^{*}\left(p_{3}\right)=\left\{d, d^{\prime}, f\right\}$, where $L^{*}=L$ otherwise. Since $\sigma_{d}\left(p_{2}\right)=\sigma_{d^{\prime}}\left(p_{2}\right)=f$, we have $\left|\left\{d, d^{\prime}, f\right\}\right|=3$. Thus, by Theorem 0.2 .3 , there is an L^{\prime}-coloring ψ of $V(H)$. Since $\psi\left(p_{3}\right) \neq f$, either σ_{d} or $\sigma_{d^{\prime}}$ extends to an L-coloring of H, which is false.

Since H is not a triangle, let $H \backslash\left\{p_{2}\right\}=p_{1} u_{1} \cdots u_{t} p_{3}$ for some $t \geq 1$. Let $H^{\prime}:=H \backslash\left\{p_{3}\right\}$. Then H^{\prime} is a broken wheel with principal path $P^{\prime}:=p_{1} p_{2} u_{t}$. Since $\left|L\left(u_{t}\right)\right| \geq 3$, there exists a color $d^{*} \in L\left(u_{t}\right)$ such that $V(P)$ admits a proper L-coloring using c, d^{*} on p_{1}, u_{t} respectively, and, for any proper L-coloring ϕ of $V\left(P^{\prime}\right)$ using c, d^{*} on p_{1}, u_{t} respectively, ϕ extends to an L-coloring of $V\left(H^{\prime}\right)$. Let $d_{1}, d_{2} \in L\left(p_{3}\right) \backslash\left\{d^{*}\right\}$. By Claim 1.5.9, there exists a $j \in\{1,2\}$ such that $\sigma_{d_{j}}\left(p_{2}\right) \neq d^{*}$. Since the coloring $\left(c, \sigma_{j}\left(p_{2}\right), d^{*}\right)$ of $V\left(P^{\prime}\right)$ extends to an L-coloring of H^{\prime}, the coloring $\left(c, \sigma_{j}\left(p_{2}\right), d_{j}\right)$ of $V(P)$ extends to an L-coloring of H, which is false.

We have the following analogue of Theorem 1.5.5 in the case where the endpoints of the specified path have 2lists.

Theorem 1.5.10. Let H be a planar graph with facial cycle C, and let $P:=p_{1} p_{2} p_{3}$ be a subpath of C of length two. Let L be a list-assignment for H where $|L(v)| \geq 3$ for all $v \in V(C \backslash P)$ and $|L(v)| \geq 5$ for all $v \in V(H \backslash C)$. Suppose further that $\left|L\left(p_{1}\right)\right| \geq 2$ and $\left|L\left(p_{3}\right)\right| \geq 2$. Then there exists a $c \in L\left(p_{1}\right)$ and a $d \in L\left(p_{3}\right)$ such that the following holds.

1) If $p_{1} p_{3} \in E(H)$, then $c \neq d$; $A N D$
2) For any L-coloring ϕ of $V(P)$ using c, d on p_{1}, p_{3} respectively, ϕ extends to an L-coloring of G.

Proof. Suppose that this does not hold, and let H be a vertex-minimal counterexample to the theorem. Let C, P, L be as in the statement of the theorem, where $P:=p_{1} p_{2} p_{3}$. As in the proof above, applying Theorem 0.2 .3 and Corollary 0.2 .4 , we immediately have the following from the minimality of H.

Claim 1.5.11. H is short-separation-free and every chord of C has p_{2} as an endpoint.

The theorem holds trivially if H is a triangle, so H is not a triangle. For convenience, we suppose, by applying an appropriate stereographic projection, that C is the outer face of H. Let $c_{1}, c_{2} \in L\left(p_{1}\right)$ and let $d_{1}, d_{2} \in L\left(p_{3}\right)$. Since H does not satisfy the claim and $p_{1} p_{3} \notin E(H)$, it follows that, for each $i \in\{1,2\}$ and $j \in\{1,2\}$, there is an L-coloring $\sigma_{i j}$ of $V(P)$ using c_{i}, d_{j} on p_{1}, p_{3} respectively, where $\sigma_{i j}$ does not extend to an L-coloring of H.

We claim now that H is a broken wheel with principal path P. If this does not hold, then, since there are four colorings of P in $\left\{\sigma_{i j}: 1 \leq i, j \leq 2\right\}$ and every chord of C is incident to p_{2}, it follows from Theorem 1.5.3 that at least one of them extends to an L-coloring of H, contradicting our assumption. Thus, H is a broken wheel with principal path P.

Since H is not a triangle, let $H-p_{2}=p_{1} u_{1} \cdots u_{t} p_{3}$ for some $t \geq 1$. Let $H^{*}:=H-p_{3}$. Then H^{*} is a broken wheel with principal path $P^{*}:=p_{1} p_{2} u_{t}$. By Proposition 1.4.4, since none of the four colorings $\left\{\sigma_{i j}: 1 \leq i, j \leq 2\right\}$ extends to L-color H, we have $d_{1}, d_{2} \in L\left(u_{t}\right)$ and $\left|L_{(}\left(u_{t}\right)\right|=3$, so let $L\left(u_{t}\right)=\left\{d_{1}, d_{2}, r\right\}$ for some color r.

Claim 1.5.12. For each $j=1,2, \sigma_{j 1}\left(p_{2}\right) \neq \sigma_{j 2}\left(p_{2}\right)$.

Proof: Suppose there is a $j=1,2$ such that $\sigma_{j 1}\left(p_{2}\right)=\sigma_{j 2}\left(p_{2}\right)=f$ for some color f. By Observation 1.4.2, since $\left|\left\{d_{1}, d_{2}, f\right\}\right|=3$, there is an L-coloring of H in which the edge $p_{1} p_{2}$ is colored with $\left(c_{j}, f\right)$ and p_{3} is colored with one of d_{1}, d_{2}. But then one of $\sigma_{j 1}, \sigma_{j 2}$ extends to an L-coloring of H, which is false.

By the minimality of H, there exist colors $c, c^{\prime} \in\left\{c_{1}, c_{2}\right\}$ (possibly $c=c^{\prime}$) and distinct colors $d, d^{\prime} \in L\left(u_{t}\right)$ such that $V\left(P^{*}\right)$ admits an L-coloring using c, d on p_{1}, u_{t} respectively, and any such L-coloring extends to an L-coloring of H^{*}, and likewise, $V\left(P^{*}\right)$ admits an L-coloring using c^{\prime}, d^{\prime} on p_{1}, u_{t} respectively, and any such L-coloring extends to an L-coloring of H^{*}.

Without loss of generality, let $c=c_{1}$. Since at least one of d, d^{\prime} lies in $\left\{d_{1}, d_{2}\right\}$, suppose without loss of generality that $d=d_{1}$. Since the coloring σ_{12} of P does not extend to an L-coloring of H, we have $\sigma_{12}\left(p_{2}\right)=d_{2}$. By Claim 1.5.12, there is a $j \in\{1,2\}$ such that $\sigma_{1 j}\left(p_{2}\right) \neq r$. Thus, if $d^{\prime}=r$, then the coloring $\left(c_{1}, \sigma_{1 j}\left(p_{2}\right), r\right)$ of P^{\prime} extends to an L-coloring of H^{\prime} and leaves the color d_{j} for p_{3}. But then $\sigma_{1 j}$ extends to an L-coloring of H, which is false. Thus, we have $d^{\prime} \neq r$, so $d^{\prime}=d_{2}$. Since σ_{12} does not extend to an L-coloring of H, we have $\sigma_{12}\left(p_{2}\right)=d_{1}$, or else the coloring $\left(c_{1}, \sigma_{12}\left(p_{2}\right), d_{1}\right)$ of P^{\prime} extends to L-color H^{\prime} and leaves d_{2} for p_{3}. Since $\sigma_{i j}$ does not extend to an L-coloring of H for an $1 \leq i, j \leq 2$, we have $\left|L\left(u_{1}\right)\right|=3$ and $c_{1}, c_{2} \in L\left(u_{1}\right)$.

Claim 1.5.13. $\left\{d_{1}, d_{2}\right\} \subseteq L\left(u_{i}\right)$ for each $i=1, \cdots, t$.

Proof: Suppose first that $c=c^{\prime}$. In this case, since $d^{\prime}=d_{2}$, we have $\sigma_{11}=d_{2}$, or else the coloring $\left(c_{1}, \sigma_{11}\left(p_{2}\right), d_{2}\right)$ of $V\left(P^{\prime}\right)$ extends to an L-coloring of H^{\prime} and leaves the color d_{1} for p_{3}. Since neither σ_{11} nor σ_{12} extends to an L-coloring of H, we have $\left\{d_{1}, d_{2}\right\} \subseteq L\left(u_{i}\right)$ for each $i=1, \cdots, t$ by Proposition 1.4.4.

Now suppose that $c \neq c^{\prime}$. In this case, we have $c^{\prime}=c_{2}$. Since $d^{\prime}=d_{2}$, we have $\sigma_{21}\left(p_{2}\right)=d_{2}$, otherwise $\left(c_{2}, \sigma_{21}\left(p_{2}\right), d_{2}\right)$ is a proper L-coloring of $V\left(P^{\prime}\right)$ which extends to an L-coloring of H^{\prime} and leaves the color d_{2} for p_{3}, so σ_{22} extends to an L-coloring of H, which is false. Thus, we indeed have $\sigma_{21}\left(p_{2}\right)=d_{2}$. Recall that $\sigma_{12}\left(p_{2}\right)=d_{1}$.

Thus, as above, we have $\left\{d_{1}, d_{2}\right\} \subseteq L\left(u_{i}\right)$ for each $i=1, \cdots, t$ by Proposition 1.4.4, since neither σ_{21} nor σ_{12} extends to an L-coloring of H.

Applying Claim 1.5.13, since $\left|L\left(u_{1}\right)\right|=3$ and each of $\left\{c_{1}, c_{2}\right\}$ and $\left\{d_{1}, d_{2}\right\}$ is contained in $L\left(u_{1}\right)$, there exist $1 \leq \ell \leq 2$ and $1 \leq k \leq 2$ such that $c_{\ell}=d_{k}$. Since $\left\{d_{1}, d_{2}\right\} \subseteq L\left(u_{i}\right)$ for each $i=1, \cdots, t$, it follows that t is even, or else, if t is odd, then we color each of $u_{2}, u_{4}, \cdots, u_{t-1}, p_{3}$ with d_{k} and thus extend $\sigma_{\ell k}$ to an L-coloring of H. This is permissible since there is a color left over for each of $u_{1}, u_{3}, \cdots, u_{t}$, including u_{1}, u_{t}, as each endpoint of P is colored with d_{k}.

Since $\sigma_{12}\left(p_{2}\right)=d_{1}$, we have $d_{1} \neq c_{1}$. Since t is even, we extend σ_{11} to an L-coloring of H by coloring each of $u_{1}, u_{3}, \cdots, u_{t-1}$ with d_{1}. This is permissible as $c_{1} \neq d_{1}$. For each of $u_{2}, u_{4}, \cdots, u_{t}$, there is a color left over, including for u_{t}, since each of u_{t-1}, p_{3} are colored with d_{1}. This contradicts the fact that σ_{11} does not extend to an L-coloring of G.

The final result of Section 1.5 is the following simple fact.
Proposition 1.5.14. Let G be a planar graph, let C be a facial cycle of G, and let $P:=p_{1} p_{2} p_{3}$ be a subpath of C of length two. Let L be a list-assignment for $V(G)$ where $|L(v)| \geq 3$ for all $v \in V(C) \backslash\left\{p_{1}, p_{2}\right\}$ and $|L(v)| \geq 5$ for all $v \in V(G \backslash C)$. Let $c \in L\left(p_{1}\right)$ and suppose that $\left|L\left(p_{2}\right) \backslash\{c\}\right| \geq 3$. Then there exists a $d \in L\left(p_{2}\right) \backslash\{c\}$ such that $\left|Z_{G, L}^{P}(c, d, \bullet)\right| \geq 2$.

Proof. Suppose that this does not hold and let G be a vertex minimal counterexample to the claim. For convenience, we suppose that C is the outer face of G. Applying Theorem 0.2 .3 and Corollary 0.2 .4 , it immediately follows from the minimality of G that G is short-separation-free and any chord of C has p_{2} as an endpoint.

Claim 1.5.15. $|V(C)|>3$.

Proof: Suppose not. Thus, $C=p_{1} p_{2} p_{3}$. Since $\left|L\left(p_{2}\right) \backslash\{c\}\right| \geq 3$, there is a $d \in L\left(p_{2}\right) \backslash\{c\}$ such that $\left|L\left(p_{3}\right) \backslash\{c, d\}\right| \geq$ 2. Thus, by Corollary 0.2 .4 , we have $\left|Z_{G, L}^{P}(c, d, \bullet)\right| \geq 2$, contradicting our assumption.

Since $|V(C)|>3$ and any chord of C has p_{2} as an endpoint, we have $p_{1} p_{3} \notin E(G)$. If G is a broken wheel, then, applying 1) of Proposition 1.4.5, we contradict the fact that G is a counterexample. Thus, G is not a broken wheel. Since $p_{1} p_{3} \notin E(G)$ and $\left|L\left(p_{2}\right) \backslash\{c\}\right| \geq 3$, it follows from Theorem 1.5.3 that there exist two colors $c_{1}, c_{2} \in$ $L\left(p_{2}\right) \backslash\{c\}$ such that, for each $i=1,2$, we have $z_{G, L}^{P}\left(c, c_{i}, \bullet\right)=L\left(p_{3}\right) \backslash\left\{c_{i}\right\}$, contradicting our assumption that G is a counterexample.

1.6 Extending Colorings of 3-Paths

This section consists of a result for 3-paths which is an analogue of Theorem 1.5.5. When we delete a path between two faces in a planar graph, we use the results of Sections 1.4 and 1.5 to delete one side of a 2 -chord of one of the faces without having to choose a color for the middle vertex of the 2-chord. Under restricted circumstances, we are able to do something similar for 3-chords.

Theorem 1.6.1. Let H be a planar graph with facial cycle C, and let $P:=p_{1} p_{2} p_{3} p_{4}$ be a subpath of C of length three. Let L be a list-assignment for H such that, for each $v \in V(H \backslash C),|L(v)| \geq 5$, and, for each $v \in V(C) \backslash\left\{p_{1}, p_{2}, p_{3}\right\}$,
$|L(v)| \geq$ 3. Suppose further that $N\left(p_{3}\right) \cap V(C)=\left\{p_{2}, p_{4}\right\}$. Then, for each color $c \in L\left(p_{1}\right)$, there exists a color $d \in L\left(p_{4}\right)$ such that the following hold.

1) If $p_{1} p_{4} \in E(H)$ then $c \neq d$; $A N D$
2) For any L-coloring ϕ of $V(P)$ using c, d on p_{1}, p_{4} respectively, ϕ extends to an L-coloring of H.

Proof. Note that the statement of Theorem 1.6.1 does not specify anything about the number of colors available for p_{2}, p_{3}, since it does not matter how many colors are available for these vertices, and the result is vacuously true if $p_{2} p_{3}$ is not L-colorable. Let H be a vertex-minimal counterexample to the theorem. For convenience, we suppose, by applying an appropriate stereographic projection, that C is the outer face of H. By adding edges to H if necessary, we suppose further that every facial subgraph of H, except possibly C, is a triangle. This is permissible as it is always possible to triangulate the interior of C without adding any chord of C with p_{3} as endpoint.

Claim 1.6.2. Any chord of C has p_{2} as an endpoint. Furthermore $p_{1} p_{4} \notin E(H)$.

Proof: Suppose toward a contradiction that there is a chord U of C which does not have p_{2} as an endpoint. By assumption, p_{3} is also not an endpoint of U. Let $H:=H_{0} \cup H_{1}$ be the natural U-partition of H, where $P \subseteq H_{0}$. Note that, for each $i=0,1,\left|V\left(H_{i}\right)\right|<|V(H)|$. If $p_{1} p_{4} \in E(H)$, then $p_{1} p_{4} \in E\left(H_{0}\right)$, since, if U has an endpoint in $C \backslash P$, then at least one of p_{1}, p_{4} lies outside of H_{1}. Furthermore, p_{3} has no neighbors in the outer face of H_{0}, except for p_{2}, p_{4}. Thus, by the minimality of H, there is a $d \in L\left(p_{4}\right)$, where, $c \neq d$ if $p_{1} p_{4} \in E\left(H_{0}\right)$, such that, for any L-coloring ϕ of $V(P)$, if ϕ uses c, d on p_{1}, p_{4} respectively, then ϕ extends to an L-coloring of H.

Since H is a counterexample, there is an L-coloring ψ of $V(P)$ using c, d on p_{1}, p_{4} respectively, such that ψ does not extend to an L-coloring of H. Yet ψ extends to an L-coloring ψ^{*} of H_{0}, and, by Theorem $0.2 .3, H_{1}$ is $L_{\psi^{*}}^{U}$-colorable. Thus, ψ extends to an L-coloring of H, a contradiction. We conclude that no such U exists. Now suppose toward a contradiction that $p_{1} p_{4} \in E(H)$. Since $p_{1} p_{4}$ is not a chord of C, we have $C:=p_{1} p_{2} p_{3} p_{4}$. By Corollary 0.2 .4 , any L-coloring of $V(P)$ extends to an L-coloring of H, contradicting our assumption that H is a counterexample.

Since H is a minimal counterexample and $p_{1} p_{4} \notin E(H)$, it follows that, for each $d \in L\left(p_{4}\right)$, there is an L-coloring ϕ_{d} of $V(P)$ such that $\phi_{d}\left(p_{1}\right)=c, \phi_{d}\left(p_{4}\right)=d$, and ϕ_{d} does not extend to an L-coloring of H. Applying Corollary 0.2.4, it immediately follows from the minimality of H that H is short-separation-free.

Claim 1.6.3. $p_{2} p_{4} \notin E(H)$.
Proof: Suppose toward a contradiction that $p_{2} p_{4} \in E(H)$. Let $H=H_{0} \cup H_{1}$ be the natural $p_{2} p_{4}$-partition of H, where $p_{1} \in V\left(H_{0}\right)$. Since H is short-separation-free, H_{1} is a triangle, and the outer face of H_{1} contains the 2-path $P^{*}:=p_{1} p_{2} p_{4}$. By Theorem 1.5.5, since $\left|L\left(p_{4}\right)\right| \geq 3$, there is a color $d \in L\left(p_{4}\right)$ such that any L-coloring of P^{*} using c, d on p_{1}, p_{4} respectively extends to an L-coloring of H_{0}. Since $V(H)=V\left(H_{0}\right) \cup\left\{p_{3}\right\}, \phi_{d}$ extends to an L-coloring of H, which is false.

Combining Claim 1.6.3 and Claim 1.6.2, it follows that P is an induced subpath of H. Since $p_{1} p_{4} \notin E(H)$, let $C:=p_{4} p_{3} p_{2} p_{1} u_{1} \cdots u_{t}$ for some $t \geq 1$.

Claim 1.6.4. For any vertex $w \in V(H \backslash C)$, if $|N(w) \cap V(P)| \geq 3$, then w is adjacent to at most one of p_{1}, p_{4}.

Proof: Suppose toward a contradiction that w is adjacent to each of p_{1}, p_{4} and let $H=H_{0} \cup H_{1}$ be the natural $p_{1} w p_{4}$-partition of H, where $P \subseteq H_{0}$. Since w is adjacent to at least one of p_{2}, p_{3}, and H is short-separation-free, we have $V(H)=V\left(H_{1}\right) \cup\left\{p_{2}, p_{3}\right\}$. By Theorem 1.5.5, since $\left|L\left(p_{4}\right)\right| \geq 3$, there is a color $d \in L\left(p_{4}\right)$ such that, for any L-coloring ϕ of $p_{1} w p_{4}$, if ϕ uses c, d on p_{1}, p_{4} respectively, then ϕ extends to an L-coloring of H_{1}. Since $\left|L_{\phi_{d}}(w)\right| \geq 1$, it follows from our choice of d that ϕ_{d} extends to an L-coloring of H, which is false.

Claim 1.6.5. There is no common neighbor of p_{2}, p_{4} in $H \backslash C$.
Proof: Suppose toward a contradiction that there is a $w \in V(G \backslash C)$ adjacent to each of p_{2}, p_{4}. Let $P^{*}:=p_{1} p_{2} w p_{4}$ and let $H=H_{0} \cup H_{1}$ be the natural $p_{2} w p_{4}$-partition of H, where $p_{3} \in V\left(H_{0}\right)$. Since H is short-separation-free, we have $V(H)=V\left(H_{1}\right) \cup\left\{p_{3}\right\}$, and H_{1} is bounded by outer face $C^{*}:=u_{1} \cdots u_{t} p_{4} w p_{2} p_{1}$. We claim now that there is a chord of C^{*} with w as an endpoint. Suppose that this does not hold. By the minimality of H, there is a $d \in L\left(p_{4}\right)$ such that any L-coloring of $V\left(P^{*}\right)$ using c, d on p_{1}, p_{4} respectively extends to an L-coloring of H_{1}. Since $\left|L_{\phi_{d}}(w)\right| \geq 1$, it follows that ϕ_{d} extends to an L-coloring of H, which is false.

Thus, there is a chord of C^{*} in H_{1} with w as an endpoint. By Claim 1.6.4, $p_{1} \notin N(w)$, so w has a neighbor in $\left\{u_{1}, \cdots, \cdots, u_{t}\right\}$. Let $j \in\{1, \cdots, t\}$ be the minimal index among $\left\{1 \leq j \leq t: u_{j} \in N(w)\right\}$.

Let $H=H^{\prime} \cup H^{\prime \prime}$ be the natural $p_{2} w u_{j}$-partition of H, where $p_{1} \in V\left(H^{\prime}\right)$ and $p_{3}, p_{4} \in V\left(H^{\prime \prime}\right)$. Then H_{0} is bounded by outer face $p_{1} p_{2} w u_{j} \cdots u_{1}$, and, by our choice of j, there is no chord of the outer face of H^{\prime} with w as an endpoint. Thus, since $\left|V\left(H^{\prime}\right)\right|<|V(H)|$, and $\left|L\left(u_{j}\right)\right| \geq 3$, there is a color $d \in L\left(u_{j}\right)$, where $c \neq d$ if $u_{j} p_{1} \in E\left(H^{\prime}\right)$, such that any L-coloring of $p_{1} p_{2} w u_{j}$ using c, d on p_{1}, u_{j} respectively extends to an L-coloring of H^{\prime}.

Since H is short-separation-free, $H^{\prime \prime}-p_{3}$ is bounded by outer face $p_{4} w u_{j} \cdots u_{t}$. By Theorem 1.5.5, since $\left|L\left(p_{4}\right)\right| \geq 3$, there is a color $f \in L\left(p_{4}\right)$, where $f \neq d$ if $u_{j} p_{4} \in E\left(H^{\prime \prime}-p_{3}\right)$, such that any L-coloring of $u_{j} w p_{4}$ using d, f on u_{j}, p_{4} respectively extends to an L-coloring of $H^{\prime \prime}-p_{3}$. Now, since $p_{1} \notin N(w)$, we have $\left|L_{\phi_{f}}(w)\right| \geq 2$, so there is a color $d^{\prime} \in L_{\phi_{f}}(w)$ with $d^{\prime} \neq d$. Coloring w with d^{\prime} and u_{j} with d, we then extend ϕ_{f} to an L-coloring of H by our choice of d, f. This contradicts our assumption.

We now rule some more possible 2-chords of C.

Claim 1.6.6. There are no common neighbors of p_{1}, p_{3} in $H \backslash C$.
Proof: Suppose toward a contradiction that there is a $w \in V(H \backslash C)$ adjacent to each of p_{1}, p_{3}. Let $H=H_{0} \cup H_{1}$ be the natural $p_{1} w p_{3}$-partition of H, where $p_{2} \in V\left(H_{0}\right)$. Since H is short-separation-free, we have $V\left(H_{0}\right)=$ $\left\{p_{1}, p_{2}, p_{3}, w\right\}$, and H_{1} is bounded by outer cycle $p_{4} p_{3} w p_{1} u_{1} \cdots u_{t}$. Let $P^{*}:=p_{1} w p_{3} p_{4}$. Since there is no chord of the outer face of H_{1} with p_{3} as an endpoint, it follows from the minimality of H that there is a $d \in L\left(p_{4}\right)$ such that any L-coloring of $V\left(P^{*}\right)$ using c, d on p_{1}, p_{4} respectively extends to an L-coloring of H_{1}. Since $\left|L_{\phi_{d}}(w)\right| \geq 2$ and $V(H)=V\left(H_{1}\right) \cup\left\{p_{2}\right\}, \phi_{d}$ extends to an L-coloring of H, which is false.

We claim now that there is a chord of C with an endpoint in P. Suppose not, and let $d \in L\left(p_{4}\right)$. By 1) of Proposition 1.5.1, since there is no chord of C with an endpoint in P, and ϕ_{d} does not extend to an L-coloring of H, there is a vertex $w \in V(H \backslash C)$ with at least three neighbors in P. By Claim 1.6.4, w is adjacent to at most one of p_{1}, p_{4}, so $N(w) \cap V(P)$ is either $\left\{p_{1}, p_{2}, p_{3}\right\}$ or $\left\{p_{2}, p_{3}, p_{4}\right\}$. In the former case, we contradict Claim 1.6.6, and, in the latter case, we contradict Claim 1.6.5.

Thus, there is a chord U of C with an endpoint in P. By Claim 1.6.2, p_{2} is an endpoint of U, and, by Claim 1.6.3, there is a $u_{m} \in\left\{u_{1}, \cdots, u_{t}\right\}$ such that $U=p_{2} u_{m}$. We choose m to be the maximal index among $\{1 \leq j \leq t$:
$\left.u_{j} \in N\left(p_{2}\right)\right\}$. Let $H=H_{0} \cup H_{1}$ be the natural U-partition of H, where $p_{1} \in V\left(H_{0}\right)$ and $p_{3}, p_{4} \in V\left(H_{1}\right)$. Let $P_{1}:=u_{m} p_{2} p_{3} p_{4}$. Then H_{1} is bounded by outer cycle $C_{1}:=p_{4} p_{3} p_{2} u_{m} \cdots u_{t}$. By the maximality of m, there is no chord of C_{1} in H_{1} with p_{2} as an endpoint. Since $V\left(C_{1}\right) \subseteq V(C)$, it follows from Claim 1.6.2, that C_{1} is an induced subgraph of H_{1}.

Claim 1.6.7. $u_{m} \neq u_{t}$.

Proof: Suppose toward a contradiction that $u_{m}=u_{t}$. Then H_{1} is bounded by outer cycle $u_{t} p_{2} p_{3} p_{4}$, and, since no 4-cycle of H separates p_{1} from a vertex of $H_{1} \backslash C_{1}$, we have $V\left(H_{1}\right)=V\left(C_{1}\right)=\left\{u_{t}, p_{2}, p_{3}, p_{4}\right\}$. For each $d \in L\left(p_{4}\right)$, since ϕ_{d} does not extend to an L-coloring of H, we have $z_{H_{0}}\left(c, \phi_{d}\left(p_{2}\right), \bullet\right)=\{d\}$. In particular, we have $L\left(p_{4}\right) \subseteq L\left(p_{2}\right)$, and, for any distinct $d, d^{\prime} \in L\left(p_{4}\right)$, the colors $\phi_{d}\left(p_{2}\right), \phi_{d^{\prime}}\left(p_{2}\right)$ are distinct. Since $\left|L\left(p_{4}\right)\right| \geq 3$, $\left\{\phi_{d}\left(p_{2}\right): d \in L\left(p_{4}\right)\right\}$ is a set of size at least three in $L\left(p_{2}\right) \backslash\{c\}$. Thus, by 1$)$ of Prop 1.5.5. that there is a $d \in L\left(p_{r}\right)$ such that $\mathcal{Z}_{H_{0}}\left(c, \phi_{d}\left(p_{2}\right), \bullet\right) \mid \geq 2$, contradicting the fact that $\mathcal{Z}_{H_{0}}\left(c, \phi_{d}\left(p_{2}\right), \bullet\right)=\{d\}$.

Since $u_{m} \neq u_{t}$ and C^{1} is an induced cycle of H_{1}, it follows that, for each $d \in L\left(p_{4}\right)$ and $f \in \mathcal{Z}_{H_{0}}\left(c, \phi_{d}\left(p_{2}\right), \bullet\right)$, the coloring $\left(f, \phi_{d}\left(p_{2}\right), \phi_{d}\left(p_{3}\right), d\right)$ is a proper L-coloring of $u_{m} p_{2} p_{3} p_{4}$, and, since ϕ_{d} does not extend to an L-coloring of H and $f \in \mathcal{Z}_{H_{0}}\left(c, \phi_{d}\left(p_{2}\right), \bullet\right)$, this coloring of $u_{m} p_{2} p_{3} p_{4}$ does not extend to an L-coloring of H.

Claim 1.6.8. For each $d \in L\left(p_{4}\right)$, we have $\left|\mathcal{Z}_{H_{0}}\left(c, \phi_{d}\left(p_{2}\right), \bullet\right)\right|=1$.

Proof: Suppose there is a $d \in L\left(p_{4}\right)$ with $\left|\mathcal{Z}_{H_{0}}\left(c, \phi_{d}\left(p_{2}\right), \bullet\right)\right| \geq 2$. Since C_{1} is an induced subgraph of H_{1}, each vertex of u_{m+1}, \cdots, u_{t-1} has an $L_{\phi_{d}}$-list of size at least three. By Claim 1.6.5, there is no vertex of $H_{1} \backslash C$ adjacent to each of p_{2}, p_{4}, so each vertex of the outer face of $H_{1} \backslash\left\{p_{2}, p_{3}, p_{4}\right\}$, except u_{m}, u_{t}, has an $L_{\phi_{d}}$-list of size at least three, and $\left|L_{\phi_{d}}\left(u_{t}\right)\right| \geq 2$. By Claim 1.6.7, $u_{m} \neq u_{t}$, and, by Theorem 1.3.4, there is an $L_{\phi_{d}}$-coloring ψ of $H_{1} \backslash\left\{p_{2}, p_{3}, p_{4}\right\}$ using one of d_{1}, d_{2} on u_{m}. Thus, ϕ_{d} extends to an L-coloring of $V(P) \cup V\left(H_{1}\right)$ using one of d_{1}, d_{2} on u_{m}. Since $d_{1}, d_{2} \in \mathcal{Z}_{H_{0}}\left(c, \phi_{d}\left(p_{2}\right), \bullet\right), \phi_{d}$ extends to an L-coloring of H, contradicting our assumption.

We now note that there is a $w^{\star} \in V\left(H_{1} \backslash C_{1}\right)$ with $N\left(w^{\star}\right) \cap V\left(P_{1}\right)=\left\{u_{m}, p_{2}, p_{3}\right\}$. To see this, let $d^{*} \in L\left(p_{4}\right)$ and $f \in \mathcal{Z}_{H_{0}}\left(c, \phi_{d^{*}}\left(p_{2}\right), \bullet\right)$. Since the coloring $\left(f, \phi_{d^{*}}\left(p_{2}\right), \phi_{d}\left(p_{3}\right), d^{*}\right)$ of P_{1} does not extend to an L-coloring of H_{1}, and C^{1} is an induced cycle of H_{1}, it follows from 1) of Proposition 1.5.1 that there is a vertex $w^{\star} \in V\left(H_{1} \backslash C_{1}\right)$ with at least three neighbors in P_{1}. By Claim 1.6.5, w^{\star} is adjacent to at most one of p_{2}, p_{4}, and since H is short-separationfree and C^{1} is an induced subpath of H, it follows from our triangulation conditions that $H\left[N\left(w^{\star}\right) \cap V\left(P_{1}\right)\right]$ is a subpath of P_{1} of length precisely two. Again applying Claim 1.6.5, this path is $u_{m} p_{2} p_{3}$, and w^{\star} is the unique vertex of $H_{1} \backslash C_{1}$ with at least three neighbors in P_{1}.

We claim now that there are distinct $d, d^{\prime} \in L\left(p_{4}\right)$ such that $\phi_{d}\left(p_{2}\right)=\phi_{d^{\prime}}\left(p_{2}\right)$. Suppose that this does not hold. Then $\left\{\phi_{d}\left(p_{2}\right): d \in L\left(p_{2}\right)\right\}$ is a set of at least three distinct colors of $L\left(p_{2}\right) \backslash\{c\}$. By 1) of Prop 1.5.5, there is a $d \in\left\{d_{1}, d_{2}, d_{3}\right\}$ such that $\mathcal{Z}_{H_{0}}\left(c, \phi_{d}\left(p_{2}\right), \bullet\right) \mid \geq 2$, contradicting Claim 1.6.8. Thus, let $d, d^{\prime} \in L\left(p_{4}\right)$ with $\phi_{d}\left(p_{2}\right)=\phi_{d^{\prime}}\left(p_{2}\right)=c^{*}$ for some color c^{*}. Applying Claim 1.6.8, let $\mathcal{Z}_{H_{0}}\left(c, c^{*}, \bullet\right)=\left\{f^{*}\right\}$ for some color f^{*}. Since $L\left(p_{4}\right) \mid \geq 3$, let $d^{\prime \prime} \in L\left(p_{4}\right) \backslash\left\{d, d^{\prime}\right\}$. Applying Claim 1.6.8, let $z_{H_{0}}\left(c, \phi_{d^{\prime \prime}}\left(p_{3}\right), \bullet\right)=\left\{f^{* *}\right\}$ for some $f^{* *} \in L\left(u_{m}\right)$.

Claim 1.6.9. $f^{* *} \neq f^{*}$ and $\phi_{d^{\prime \prime}}\left(p_{2}\right) \neq c^{*}$.

Proof: By the minimality of H, there is a color among $d^{*} \in\left\{d, d^{\prime \prime}, d^{\prime \prime}\right\}$ such that any L-coloring of P_{1} using f^{*}, d^{*} on u_{m}, p_{4} respectively extends to an L-coloring of H_{1}. If $d^{*} \in\left\{d, d^{\prime \prime}\right\}$, then one of the colorings $\left(f^{*}, c^{*}, \phi_{d}\left(p_{3}\right), d\right)$, $\left(f^{*}, c^{*}, \phi_{d^{\prime}}\left(p_{3}\right), d^{\prime}\right)$ of $u_{m} p_{2} p_{3} p_{4}$ extends to an L-coloring of H_{1}, and thus, by our choice of f^{*}, one of $\phi_{d}, \phi_{d^{\prime}}$
extends to an L-coloring of H, which is false. Thus, we have $d^{*}=d^{\prime \prime}$. If $f^{*}=f^{* *}$, then the L-coloring $\left(f^{*}, \phi_{d^{\prime \prime}}\left(p_{2}\right), \phi_{d^{\prime \prime}}\left(p_{3}\right), d^{\prime \prime}\right)$ of $u_{m} p_{2} p_{3} p_{4}$ extends to an L-coloring of H_{1}, and thus, by ouur choice of $f^{* *}, \phi_{d^{\prime \prime}}$ extends to an L-coloring of H, which is false. Thus, we have $f^{*} \neq f^{* *}$. Since $\mathcal{Z}_{H_{0}}\left(c, \phi_{d^{\prime \prime}}\left(p_{3}\right), \bullet\right)=\left\{f^{* *}\right\}$ and $\mathcal{Z}_{H_{0}}\left(c, c^{*}, \bullet\right)=\left\{f^{*}\right\}$, we have $\phi_{d^{\prime \prime}}\left(p_{3}\right) \neq c^{*}$.

We now have the following.

Claim 1.6.10. $\phi_{d}\left(p_{3}\right) \neq \phi_{d^{\prime}}\left(p_{3}\right)$.
Proof: Suppose toward a contradiction that there is a color h such that $\phi_{d}\left(p_{3}\right)=\phi_{d^{\prime}}\left(p_{3}\right)=h$. Let L^{\prime} be a listassignment for $H_{1}-p_{2}$ where $L^{\prime}\left(p_{4}\right)=\left\{d, d^{\prime}, h\right\}$ and otherwise $L^{\prime}=L$. Since h is distinct from either of d, d^{\prime}, we have $\left|L^{\prime}\left(p_{4}\right)\right|=3$. Since $\phi_{d}\left(p_{2}\right)=\phi_{d^{\prime}}\left(p_{2}\right)=c^{*}$, we have $c^{*} \neq h$ as well. Since H is short-separation-free, $H_{1}-p_{2}$ is bounded by outer cycle $p_{4} p_{3} w^{\star} u_{m} \cdots u_{t}$. Since $u_{t} \in V\left(H_{1}-p_{2}\right)$ and $p_{4} \notin N\left(w^{\star}\right), H_{1}-p_{2}$ is not a broken wheel with principal path $u_{m} w^{\star} p_{3}$. Thus, there is at most one L^{\prime}-coloring of $u_{m} w^{\star} p_{3}$ which does not extend to an L^{\prime}-coloring of $H_{1}-p_{2}$. Since $L^{\prime}\left(w^{\star}\right) \backslash\left\{f^{*}, c^{*}, h\right\} \mid \geq 2$, there is an L^{\prime}-coloring ψ of $H_{1}-p_{2}$ which uses f^{*} on u_{m} and h on p_{3}, where $\psi\left(w^{\star}\right) \neq c^{*}$. Since $\psi\left(p_{3}\right)=h$, we have $\psi\left(p_{4}\right) \in\left\{d, d^{\prime}\right\}$, so ψ is an L-coloring of $H_{1}-p_{2}$, and ψ extends to an L-coloring of H_{1} using c^{*} on p_{2}. Thus, by our choice of f^{*}, one of the two colorings $\phi_{d}, \phi_{d^{\prime}}$ of P extend to an L-coloring of H, which is false.

We now have the following key claim.
Claim 1.6.11. $N\left(w^{\star}\right) \cap\left\{u_{m}, \cdots, u_{t}\right\}=\left\{u_{m}\right\}$.

Proof: Suppose that this does not hold, and let $n \in\{m+1, \cdots, t\}$ with $u_{n} \in N\left(w^{\star}\right)$. Let n be the minimal index among $\left\{m+1 \leq j \leq t: u_{j} \in N\left(w^{\star}\right)\right\}$. Let K^{\dagger} be the subgraph of H bounded by outer cycle $u_{m} w^{\star} u_{n} \cdots u_{m+1}$. Then the outer face of K^{\dagger} contains the 2-path $u_{m} w^{\star} u_{n}$.

Now let H^{\prime} be the subgraph of H bounded by outer cycle $u_{n} \cdots u_{t} p_{4} p_{3} p_{2} w^{\star}$. Then the outer cycle of H^{\prime} contains the 2-path $P^{\prime}:=w^{\star} p_{3} p_{4}$. Furthermore, by Claim 1.6.2, every chord of the outer face of H^{\prime} has w^{\star} as one of its endpoints. Since $N\left(p_{3}\right) \cap V(C)=\left\{p_{2}, p_{4}\right\}$ and u_{t} lies on the outer face of H^{\prime}, H^{\prime} is not a broken wheel with principal path $w^{\star} p_{3} p_{4}$. Since there are no chords of the outer face of H^{\prime} which do not have w^{\star} as an endpoint, it follows from Theorem 1.5.3 that there is at most one proper L-coloring of $w^{\star} p_{3} p_{4}$ which does not extend to an L-coloring of H^{\prime}.

Subclaim 1.6.12. K^{\dagger} is a triangle.
Proof: Suppose toward a contradiction that K^{\dagger} is not a triangle. By the minimality of n, K^{\dagger} is not a broken wheel with principal path $u_{m} w^{\star} u_{n}$, and furthermore, there is no chord of the outer face of K^{\dagger} which does not have w^{\star} as an endpoint, or else there is a chord of C which does not have p_{2} as an endpoint, contradicting Claim 1.6.2. By the minimality of n, K^{\dagger} is not a broken wheel with principal path $u_{m} w^{\star} u_{n}$. Thus, by Theorem 1.5 .3 , there is at most one L-coloring of $u_{m} w^{\star} u_{n}$ which does not extend to an L-coloring of K^{\dagger}.

Since $\left|L\left(w^{\star}\right) \backslash\{c, f\}\right| \geq 2$, it follows from Theorem 0.2.3 that there is an L-coloring ψ of H^{\prime} in which $\psi\left(w^{\star}\right) \notin\left\{c^{*}, f^{*}\right\}, \psi\left(p_{3}\right)=\phi_{d}\left(p_{3}\right)$, and $\psi\left(p_{4}\right)=d$. If ψ extends to an L-coloring of H_{1} using c^{*}, f^{*} on the respective vertices p_{2}, u_{m}, then ϕ_{d} extends to an L-coloring of H, which is false. Since H is not a triangle, $\left(f^{*}, \psi\left(w^{\star}, \psi\left(u_{n}\right)\right)\right.$ is a proper L-coloring of the path $u_{m} w^{\star} u_{n}$, so this is the lone coloring of $u_{m} w^{\star} u_{n}$ which does not extend to an L-coloring of K^{\dagger}.

Now, since there is at most one proper L-coloring of $w^{\star} p_{3} p_{4}$ which does not extend to an L-coloring of H, and $\mid L\left(w^{\star}\right) \backslash\left\{c^{*}, d^{*}, \psi\left(w^{\star}\right) \mid \geq 2\right.$, there is an $h \in L\left(w^{\star}\right) \backslash\left\{c^{*}, d^{*}, \psi\left(w^{\star}\right)\right.$ such that any L-coloring of $w^{\star} p_{3} p_{4}$ using h on w^{\star} extends to an L-coloring of H^{\prime}. By Claim 1.6.10, we suppose without loss of generality that $h \neq \phi_{d}\left(p_{3}\right)$. Since $p_{4} \notin N\left(w^{\star}\right),\left(h, \phi_{d}\left(p_{3}\right), d\right)$ is a proper L-coloring of $w^{\star} p_{3} p_{4}$ which extends to an L-coloring ψ^{\prime} of H^{\prime}. Since $\psi^{\prime}\left(w^{\star}\right) \neq \psi\left(w^{\star}\right), \psi^{\prime}$ extends to an L-coloring of $H_{1}-p_{2}$ in which u_{m} is colored with f^{*}, and the color c^{*} is left for p_{2}, so ψ^{\prime} extends to an L-coloring of H in which P is colored by ϕ_{d}, contradicting our assumption.

Since K^{\dagger} is a triangle, we have $u_{n}=u_{m+1}$. We now fix a color $h \in L\left(u_{n+1}\right) \backslash\left\{f^{*}, f^{* *}\right\}$. Recall that $f^{* *}$ is the lone color of $\mathcal{Z}_{H_{0}}\left(c, \phi_{d^{\prime \prime}}\left(p_{2}\right), \bullet\right)$. Since there is no chord of the outer face of H_{1} with p_{3} as an endpoint, it follows from the minimality of H that there is a color $d^{*} \in\left\{d, d^{\prime}, d^{\prime \prime}\right\}$, where $d^{*} \neq h$ if $u_{m+1}=u_{t}$, such that any L-coloring of $u_{m+1} w^{\star} p_{3} p_{4}$ extends to an L-coloring of H^{\prime}.

Suppose that $d^{*} \in\left\{d^{\prime}, d^{\prime \prime}\right\}$. Let ψ be an L-coloring of $u_{m+1} w^{\star} p_{3} p_{4}$ using h, d^{*} on u_{m+1}, p_{4} respectively, where $\psi\left(p_{3}\right)=\phi_{d^{*}}\left(p_{3}\right)$ and $\psi\left(w^{\star}\right) \in L\left(w^{\star}\right) \backslash\left\{f^{*}, c^{*}, h, \phi_{d^{*}}\left(p_{2}\right)\right\}$. Such a ψ exsts, because $\left|L\left(w^{\star}\right)\right| \geq 5$. Then ψ extends to an L-coloring ψ^{\prime} of H^{\prime}. By our choice of ψ, the colors f^{*}, c^{*} are left over for the respective vertices u_{m}, p_{2}, so ψ extends to an L-coloring of H whose restriction to P is $\phi_{d^{*}}$. This contradicts our assumption.

Thus, we have $d^{*}=d^{\prime \prime}$. Let ψ be an L-coloring of $u_{m+1} w^{\star} p_{3} p_{4}$ using $h, d^{\prime \prime}$ on u_{m+1}, p_{4} respectively, where $\psi\left(p_{3}\right)=\phi_{d^{\prime \prime}}\left(p_{3}\right)$ and $\psi\left(w^{\star}\right) \in L\left(w^{\star}\right) \backslash\left\{f^{* *}, \phi_{d^{\prime \prime}}\left(p_{2}\right), h, \phi_{d^{\prime \prime}}\left(p_{3}\right)\right\}$. Such a ψ exists, because $\left|L\left(w^{\star}\right)\right| \geq 5$. Then ψ extends to an L-coloring ψ^{\prime} of H^{\prime}. By our choice of ψ, the colors $f^{* *}, \phi_{d^{\prime \prime}}\left(p_{2}\right)$ are left over for the respective vertices u_{m}, p_{2}, so ψ extends to an L-coloring of H whose restriction to P is $\phi_{d^{\prime \prime}}$. This contradicts our assumption

Recall that $H_{1}-p_{2}$ is bounded by outer cycle $C_{1}^{*}:=w^{\star} p_{3} p_{4} u_{t} \cdots u_{m}$, and $P_{1}^{*}:=u_{m} w^{\star} p_{3} p_{4}$ is a subpath of C_{1}^{*} of length three. By assumption, $H_{1}-p_{2}$ has no chord of C_{1}^{*} with p_{3} as an endpoint, as any such chord of C_{1}^{*} is also a chord of C, contradicting our assumption. Likewise, by Claim 1.6.11, there is no chord of C_{1}^{*} with w^{\star} as an endpoint. If there is any other chord of C_{1}^{*}, then this chord is also a chord of C with endpoints in $\left\{u_{m}, \cdots, u_{t}, p_{4}\right\}$, contradicting Claim 1.6.2. Thus, C_{1}^{*} is an induced cycle of $H_{1}-p_{2}$.

We claim now that there is a vertex $v^{\star} \in V\left(H_{1}-p_{2}\right) \backslash V\left(C_{1}^{*}\right)$ such that $N\left(v^{\star}\right) \cap V\left(P_{1}^{*}\right)=\left\{w^{\star}, p_{3}, p_{4}\right\}$. Let $h \in L\left(u_{\star}\right) \backslash\left\{f^{*}, c^{*}, \phi_{d}\left(p_{3}\right)\right\}$. If the coloring $\left(f^{*}, h, \phi_{d}\left(p_{3}\right), d\right)$ of $u_{m} w^{\star} p_{3} p_{4}$ extends to an L-coloring of $H_{1}-p_{2}$, then the color c^{*} is left for p_{2}, and thus ϕ_{d} extends to an L-coloring of H, contradicting our assumption. Since C_{1}^{*} is an induced subgraph of $H_{1}-p_{2}$, it follows from 1) of Proposition 1.5.1 that there is a $v^{*} \in V\left(H_{1}-p_{2}\right) \backslash V\left(C_{1}^{*}\right)$ with at least three neighbors in P_{1}^{*}.

Note that v^{\star} is adjacent to at most one of u_{m}, p_{3}, or else H contains a copy of $K_{2,3}$ with bipartition $\left\{p_{2}, v^{\star}\right\}$, $\left\{u_{m}, w^{\star}, p_{3}\right\}$, contradicting the fact that H is short-separation-free. Thus, v^{\star} is adjacent to both of w^{\star}, p_{4}. Since $p_{4} \notin N\left(w^{\star}\right)$ and H is short-separation-free, it follows from our triangulation conditions that v^{\star} is adjacent to p_{3} as well, so $N\left(v^{\star}\right) \cap V\left(P_{1}^{*}\right)=\left\{w^{\star}, p_{3}, p_{4}\right\}$. Thus v^{\star} is the unique vertex of $H_{1}-p_{2}$ which lies outside the outer face of $H_{1}-p_{2}$ and has at least three neighbors on P_{1}^{*}.

Claim 1.6.13. There is a color b such that $L\left(w^{\star}\right)=\left\{c^{*}, f^{*}, \phi_{d}\left(p_{3}\right), \phi_{d^{\prime}}\left(p_{3}\right), b\right\}$ and $L\left(v^{\star}\right)=\left\{d, d^{\prime}, \phi_{d}\left(p_{3}\right), \phi_{d^{\prime}}\left(p_{3}\right), b\right\}$. Furthermore, $d, d^{\prime} \notin L\left(w^{\star}\right) \backslash\left\{c^{*}, f^{*}\right\}$.

Proof: We first show that $\left\{c^{*}, f^{*}, \phi_{d}\left(p_{3}\right), \phi_{d^{\prime}}\left(p_{3}\right)\right\} \subseteq L\left(w^{\star}\right)$ and $\left|L\left(w^{\star}\right)\right|=5$. Suppose at least one of these conditions does not hold. Thus, either $\left|L\left(w^{\star}\right) \backslash\left\{c^{*}, f^{*}, \phi_{d}\left(p_{3}\right)\right\}\right| \geq 3$ or $\left|L\left(w^{\star}\right) \backslash\left\{c^{*}, f^{*}, \phi_{d^{\prime}}\left(p_{3}\right)\right\}\right| \geq 3$, so suppose without loss of generality that $\left|L\left(w^{\star}\right) \backslash\left\{c^{*}, f^{*}, \phi_{d}\left(p_{3}\right)\right\}\right| \geq 3$. Since w^{\star} is the unique vertex of $H_{1} \backslash C_{1}$ with at least three neighbors on $u_{m} p_{2} p_{3} p_{4}$, and $p_{4} \notin N\left(w^{\star}\right)$, it follows from 1) of Proposition 1.5.1 that the L-coloring
$\left(f^{*}, c^{*}, \phi_{d}\left(p_{3}\right), d\right)$ of $u_{m} p_{2} p_{3} p_{4}$ extends to an L-coloring of H_{1}, so ϕ_{d} extends to an L-coloring of H, contradicting our assumption.

Thus, there is a color b such that $L\left(w^{\star}\right)=\left\{c^{*}, f^{*}, \phi_{d}\left(p_{3}\right), \phi_{d^{\prime}}\left(p_{3}\right), b\right\}$. Now suppose toward a contradiction that one of d, d^{\prime} lies in $L\left(w^{\star}\right) \backslash\left\{c^{*}, f^{*}\right\}$, say d without loss of generality. Then $\psi=\left(f^{*}, d, \phi_{d}\left(p_{3}\right), d\right)$ is a proper L coloring of $u_{m} w^{\star} p_{3} p_{4}$ which leaves c^{*} for p_{2}, and since $\left|L_{\psi}\left(v^{\star}\right)\right| \geq 3$, it follows from 1) of Proposition 1.5.1 that ψ extends to an L-coloring of $H_{1}-p_{2}$ and thus an L-coloring of H_{1} using c^{*} on p_{2}. Thus, ϕ_{d} extends to an L coloring of H, contradicting our assumption, so we indeed have $d, d^{\prime} \notin L\left(w^{\star}\right) \backslash\left\{c^{*}, f^{*}\right\}$. In particular, we have $\left\{d, d^{\prime}\right\} \cap\left\{\phi_{d}\left(p_{3}\right), \phi_{d^{\prime}}\left(p_{3}\right)\right\}=\varnothing$.

Now suppose toward a contradiction that $L\left(v^{\star}\right) \neq\left\{d, d^{\prime}, \phi_{d}\left(p_{3}\right), \phi_{d^{\prime}}\left(p_{3}\right), b\right\}$. In that case, there is a $d^{*} \in\left\{d, d^{\prime}\right\}$ and a $b^{\prime} \in L\left(w^{\star}\right) \backslash\left\{c^{*}, f^{*}, d^{*}, \phi_{d^{*}}\left(p_{3}\right)\right\}$ such that $\left|L\left(v^{\star}\right) \backslash\left\{b^{\prime}, d^{*}, \phi_{d^{*}}\left(p_{3}\right)\right\}\right| \geq 3$. Since, it follows that the L-coloring $\left(f^{*}, b^{\prime}, \phi_{d^{*}}\left(p_{3}\right), d^{*}\right)$ of $u_{m} w^{\star} p_{3} p_{4}$ extends to an L-coloring of $H_{1}-p_{2}$, and thus to an L-coloring of H_{1} using c^{*} on p_{2}. Thus, $\phi_{d^{*}}$ extends to an L-coloring of H, contradicting our assumption.

An analogous observation holds for the remaining color $d^{\prime \prime}$ of $L\left(p_{4}\right)$.

Claim 1.6.14. $\left\{f^{* *}, \phi_{d^{\prime \prime}}\left(p_{2}\right), \phi_{d^{\prime \prime}}\left(p_{3}\right)\right\}$ is a subset of $L\left(w^{\star}\right)$ of size three. Furthermore, $L\left(w^{\star}\right) \backslash\left\{f^{* *}, \phi_{d^{\prime \prime}}\left(p_{2}\right), \phi_{d^{\prime \prime}}\left(p_{3}\right)\right\} \subseteq$ $L\left(v^{\star}\right)$ and $\left\{\phi_{d^{\prime \prime}}\left(p_{3}\right), d^{\prime \prime}\right\} \subseteq L\left(v^{\star}\right)$.

Proof: If either if these facts do not hold, then the coloring $\left(\phi_{d^{\prime \prime}}\left(p_{3}\right), d^{\prime \prime}\right)$ of $p_{3} p_{4}$ extends to an L-coloring ψ of $u_{m} w^{\star} p_{3} p_{4}$ in which $\psi\left(u_{m}\right)=f^{* *}, \psi\left(w^{\star}\right) \neq \phi_{d^{\prime \prime}}\left(p_{2}\right)$, and $\left|L_{\psi}\left(v^{\star}\right)\right| \geq 3$. But then, by 1$)$ of Proposition 1.5.1, ψ extends to an L-coloring of $H_{1}-p_{2}$ and leaves the color $\phi_{d^{\prime \prime}}\left(p_{2}\right)$ for p_{2}. Thus, by our choice of $f^{* *}, \psi$ extends to an L-coloring of H in which P is colored with $\phi_{d^{\prime \prime}}$, contradicting our assumption.

Recall that $f^{*} \neq f^{* *}$ by Claim 1.6.9. Since $\mathcal{Z}_{H_{0}}\left(c, c^{*}, \bullet\right)=\left\{f^{*}\right\}$ and $\mathcal{Z}_{H_{0}}\left(c, \phi_{d^{\prime \prime}}\left(p_{2}\right), \bullet\right)=\left\{f^{* *}\right\}$, and there is no chord of the outer face of H_{0} without p_{2} as an endpoint, it follows from Theorem 1.5.3 that H_{0} is a broken wheel with principal path $p_{1} p_{2} u_{m}$, or else, since $p_{1} u_{m}$ is not a chord of C, one of these two sets has size at least two. It then follows from 1) of Proposition 1.4.7 that $\left\{c^{*}, f^{*}\right\}=\left\{\phi_{d^{\prime \prime}}\left(p_{2}\right), f^{* *}\right\}$. We claim that $d^{\prime \prime} \in L\left(w^{\star}\right) \backslash\left\{c^{*}, f^{*}\right\}$. Suppose not. By Claim 1.6.14, we have $d^{\prime \prime} \in L\left(v^{\star}\right)$. Thus, since $d^{\prime \prime} \notin L\left(w^{\star}\right) \backslash\left\{c^{*}, f^{*}\right\}$, we have $d^{\prime \prime} \in L\left(v^{\star}\right) \backslash\left\{\phi_{d}\left(p_{3}\right), \phi_{d^{\prime}}\left(p_{3}\right), b\right\}$ by the first fact of Claim 1.6.13, and thus, by the second fact of Claim 1.6.13, we have $d^{\prime \prime} \in\left\{d, d^{\prime}\right\}$, which is false.

Thus, we indeed have $d^{\prime \prime} \in L\left(w^{*}\right) \backslash\left\{c^{*}, f^{*}\right\}$. Since $\left\{c^{*}, f^{*}\right\}=\left\{\phi_{d^{\prime \prime}}\left(p_{2}\right), f^{* *}\right\}$, it follows that $\psi=\left(f^{* *}, d^{\prime \prime}, \phi_{d^{\prime \prime}}\left(p_{3}\right), d^{\prime \prime}\right)$ is a proper L-coloring of the path $u_{m} w^{\star} p_{3} p_{4}$, and $\phi_{d^{\prime \prime}}\left(p_{2}\right) \in L_{\psi}\left(p_{2}\right)$. Since $\left|L_{\psi}\left(v^{\star}\right)\right| \geq 3$, and v^{\star} is the lone vertex of $V\left(H_{1}-p_{2}\right) \backslash V\left(C_{1}^{*}\right)$ with at least three neighbors on P_{1}^{*}, it follows from 1) of Proposition 1.5.1 that ψ extends to an L-coloring of $H_{1}-p_{2}$, and thus to an L-coloring of H_{1} in which p_{2} is colored with $\phi_{d^{\prime \prime}}\left(p_{2}\right)$ and u_{m} is colored with $f^{* *}$. But then, by our choice of $f^{* *}, \phi_{d^{\prime \prime}}$ extends to an L-coloring of H, which is false.

1.7 Path Reduction

As indicated in Section 1.3, when we delete a path between two cyclic facial subgraphs C_{1}, C_{2} in a short-separationfree graph G with a specified list-assignment L, we do so in a special setting, where the designated cycles C_{1}, C_{2} satisfy the property that, for each $j=1,2$ and for sufficiently small values of k, there is no k-chord of C_{i} which separates vertices of $G \backslash C_{i}$ with lists of size less than five. Thus, it is natural to introduce the following notation.

Definition 1.7.1. Let G be a planar graph with facial cycle C, let L be a list-assignment for $V(G)$. Let $k \geq 1$ and let H be a connected subgraph of C, where either H is a subpath of C, or, if $H=C$, then at least one vertex of $G \backslash B_{k / 2}(C)$
has a list of size less than five. We associate to H a vertex set $\operatorname{Sh}_{k, L}(H, C, G)$, where $v \in \operatorname{Sh}_{k, L}(H, C, G)$ if there is a generalized chord Q of C of length at most k, and with both endpoints in H, such that, letting $G=G_{0} \cup G_{1}$ be the natural (C, Q)-partition of G, there exists an $i \in\{0,1\}$ such that the following hold.

1) $G_{i} \cap H$ is a connected subgraph of H; AND
2) $v \in V\left(G_{i} \backslash Q\right)$ and every vertex of $G_{i} \backslash C$ has an L-list of size at least five.

If $H=C$, then we just write $\operatorname{Sh}_{k, L}(C, G)$ instead of $\operatorname{Sh}_{k, L}(C, C, G)$. If the list-assignment L is clear from the context then we drop the subscript L from the notation above. If G, C are also clear from the context then we just write $\operatorname{Sh}_{k}(H)$. Note that, if H is a subpath of C, then, given a proper generalized chord Q of C with both endpoints in H, there is precisely one side of the generalized chord intersecting with H on precisely a subpath of H, i.e there is a precisely one $i \in\{0,1\}$ such that $G_{i} \cap H$ is connected, although this is not true if $H=C$. In practice, we are interested in the case where there are vertices of $G \backslash C$ with lists of size less than five, and in that case, the definition above uniquely specifies a side of any generalized chord of C.

Definition 1.7.2. Let G be a planar graph with facial cycle C, let L be a list-assignment for $V(G)$, and let $k \geq 1$ be an integer. Let H be a connected subgraph of C, where either H is a subpath of C, or, if $H=C$, then at least one vertex of $G \backslash B_{k / 2}(C)$ has a list of size less than five. We then have the following terminology.

1) We say that H is (k, L)-short in (C, G) if, for any generalized chord Q of C with both endpoints in H and length at most k, letting $G=G_{0} \cup G_{1}$ be the natural (C, Q)-partition of G, there exists an $i \in\{0,1\}$ such that the following hold.
a) Every vertex of $G_{i} \backslash H$ has an L-list of size at least five; $A N D$
b) If Q is not a cycle (i.e Q is a proper generalized chord of C), and at least one endpoint of Q lies in $\stackrel{\circ}{H}$, then $G_{i} \cap H$ has one connected component.
2) We define $\operatorname{Link}_{L}(H, C, G)$ to be the set of proper L-colorings ϕ of $V(P) \backslash \operatorname{Sh}_{2}(H)$ in $G \backslash(E(C) \backslash E(H))$ such that $\mathrm{Sh}_{2}(H)$ is L_{ϕ}-inert in $G \backslash \operatorname{dom}(\phi)$.
Recall that $\stackrel{\circ}{H}=H$ if $H=C$. In most uses above, both the graph G and the facial cycle C are clear from the context and we simply say that H is (k, L)-short to mean that H is (k, L)-short in (C, G). In general, if the facial cycle C and graph G are clear from the context, then we just write $\operatorname{Link}_{L}(H)$. Some care must be taken with the definition above. Given a subpath P of C and a $\phi \in \operatorname{Link}_{L}(P)$, Definition 1.7.2 does not preclude the possibility that P is a subpath of C consisting of all but a lone edge of C, and ϕ uses the same color on both endpoints of P. In practice, whenever we deal with the situation in which P is a path consisting of all but an edge of the specified facial cycle, we ensure that we obtain an element of $\operatorname{Link}_{L}(P)$ which does not use the same color on the endpoints of P, so that we obtain a proper L-coloring of $V(P) \backslash \mathrm{Sh}_{2}(P)$ in G.

This section consists of two results, the first of which consists of some basic properties of the colorings of the form specified in definition 1.7.2, and the second of which provides some conditions under which these colorings exist. We begin with the following definition.

Definition 1.7.3. Given a planar graph G, a cyclic facial subgraph C and a subpath P of C, a vertex $v \in V(P)$ is called a P-hinge of C if one of the following holds: Either v is an endpoint of P, or, if v is an internal vertex of P, then, for each $k=1,2$, there is no k-chord of C with an endpoint in each connected component of $P-v$. If the facial subgraph C is clear from the context then we just call v a P-hinge.

We now state the first of the two results which make up this section. This result consists of the following simple facts.

Theorem 1.7.4. Let G be a planar graph with facial cycle C and let P be a subpath of C. Let L be a list-assignment for G and suppose that P is $(2, L)$-short

1) Let $v \in V(P)$ be a P-hinge and let P_{1}, P_{2} be the two subpaths of P such that $P_{1} \cap P_{2}=v$ and $P_{1} \cup P_{2}=P$. For any $\psi_{1} \in \operatorname{Link}\left(P_{1}\right)$ and $\psi_{2} \in \operatorname{Link}\left(P_{2}\right)$ with $\psi_{1}(v)=\psi_{2}(v)$, we have $\psi_{1} \cup \psi_{2} \in \operatorname{Link}(P) ;$ AND
2) If each vertex of $D_{1}(C)$ has an L-list of size at least five, then, for any $\phi \in \operatorname{Link}(P)$, each vertex of $D_{1}(C) \backslash$ $\left.\mathrm{Sh}_{2}(P)\right)$ has an L_{ϕ}-list of size at least three.
3) Suppose that every vertex of $G \backslash C$ has an L-list of size at least five. Then, for any $\phi \in \operatorname{Link}(P)$, the following holds:
a) For any nonempty subpath Q of $C \backslash P$ of length at most one, if all the vertices of $C \backslash(Q \cup P)$ have L_{ϕ}-lists of size at least three, then, for any L_{ϕ}-coloring ψ of $Q, \phi \cup \psi$ extends to an L-coloring of $G ; A N D$
b) In particular, if $1 \leq|V(C \backslash P)| \leq 2$ then, for any any extension of ϕ to an L-coloring of $\operatorname{dom}(\phi) \cup V(P)$, ψ extends to an L-coloring of G.

Proof. 1) is immediate from the definition of $\operatorname{Link}(P)$, so we now prove 2). Suppose there is a $\left.v \in D_{1}(C) \backslash \operatorname{Sh}_{2}(P)\right)$ with $\left|L_{\phi}(v)\right|<3$. Thus, v has at least three neighbors in $\operatorname{dom}(\phi)$. Let S be the set of vertices of $G \backslash C$ with L-lists of size less than five. Since P is $(2, L)$-short, there is a unique pair of vertices $w, w^{\prime} \in N(v) \cap V(H)$ such that the unique subpath of P with endpoints w, w^{\prime} contains all the vertices of $N(v) \cap V(P)$. But then, since $|N(v) \cap \operatorname{dom}(\phi)| \geq 3$, there is an element of $\operatorname{dom}(\phi)$ which is separated from an edge of $E(C) \backslash E(P)$ by the 2-chord $w v w^{\prime}$, contradicting the fact that $\operatorname{dom}(\phi) \cap \operatorname{Sh}_{2}(P)=\varnothing$.

Now we prove 3). Note that b) follows immediately from a) by setting $Q=C \backslash P$, since $C \backslash(Q \cup P)=\varnothing$ and the conditions of a) are automatically satisfied. Thus, we just need to prove a). Firstly, since $|V(Q)| \geq 1, P$ does not consist of all but an edge of C, so any element of $\operatorname{Link}(P)$ is a proper L-coloring of its domain in G. Let $S:=V(C \backslash P)$ and let $G^{\prime}:=G \backslash \operatorname{Sh}_{2}(P)$. Then G^{\prime} has a unique facial subgraph F^{\prime} such that $C \backslash P \subseteq F^{\prime}$ and, by 2), every vertex of $F^{\prime} \backslash S$ has an L_{ϕ}-list of size at least three and thus an $L_{\phi \cup \psi}^{Q}$-list of size at least three. By assumption, every vertex of $S \backslash Q$ has an L_{ϕ}-list of size at least three and thus an $L_{\phi \cup \psi}^{Q}$-list of size at least three. Every vertex of $G^{\prime} \backslash F^{\prime}$ has an $L_{\phi \cup \psi}^{Q}$-list of size at least five, and thus, by Theorem 0.2.3, G^{\prime} admits an $L_{\phi \cup \psi}^{Q}$-coloring σ. $\operatorname{Since} \operatorname{Sh}_{2}(P)$ is L_{ϕ}-inert in $G \backslash \operatorname{dom}(\phi)$, it follows that σ extends to an L-coloring of G, so $\phi \cup \psi$ extends to an L-coloring of G, as desired.

The following result, which is the second of the two results which make up this section, provides some conditions under which the colorings defined in Definition 1.7.2 exist.

Theorem 1.7.5. Let G be a planar graph with facial cycle C and let P be a subpath of C. Let L be a list-assignment for G such that each internal vertex of P has an L-list of size at least three, and suppose further that P is $(2, L)$-short. Let p, p^{\prime} be the endpoints of P. Then the following hold.
i) For any $c \in L(p)$, there is a $\phi \in \operatorname{Link}(P)$ with $\phi(p)=c$. Furthermore, if $p \neq p^{\prime}$, then, for any $c \in L(p)$ and $A \subseteq L\left(p^{\prime}\right)$ with $|A|=3$, there is a $\phi \in \operatorname{Link}(P)$ such that $\phi(p)=c$ and $\phi\left(p^{\prime}\right) \in A ; A N D$
ii) If $|V(P)| \geq 2$ then, for any sets $B \subseteq L(p)$ and $B^{\prime} \subseteq L\left(p^{\prime}\right)$ with $|B|=\left|B^{\prime}\right|=2$, there is a $\psi \in \operatorname{Link}(P)$ such that $\psi(p) \in B$ and $\psi\left(p^{\prime}\right) \in B^{\prime}$.

Proof. By some appropriate stereographic projection of G from the sphere onto the plane, we suppose without loss of generality that C is the outer face of G (this is just for notational convenience in the proof of the theorem). We show i) and ii) together by induction on the length of P. This is trivial of P is a singleton so now suppose that $|V(P)| \geq 2$. If P is just an edge, then both i) and ii) trivially hold, since it follows from Corollary 0.2 .4 that any L-coloring of P lies in $\operatorname{Link}(P)$. Now suppose that $|V(P)|>2$ and that both i) and ii) hold for any subpath of C of length smaller than $|V(P)|$ which satisfies the specified conditions. Let $P:=p_{r} \cdots p_{1}$ for some $r \geq 3$, where $p^{\prime}=p_{r}$ and $p=p_{1}$. Let S be the set of vertices of $G \backslash C$ with L-lists of size less than five.

For any $1 \leq k \leq 2$ and any k-chord Q of C with both endpoints in P, we let $C_{Q}^{\text {long }}$ and $C_{Q}^{\text {short }}$ be the two cycles intersecting precisely on $p_{i} w p_{j}$ such that $C_{Q}^{\text {long }} \cup C_{Q}^{\text {short }}=C \cup Q$ and $C_{Q}^{\text {short }} \backslash Q$ is a subpath of P. Let $\mathcal{P}_{\text {end }}$ be the set of proper generalized chords Q of C of length at most two such that p_{1}, p_{r} are the endpoints of Q. Since P is a path, the above definition uniquely specifies $C_{Q}^{\text {short }}$ and $C_{Q}^{\text {long }}$. Let \mathcal{P} be the set of generalized chords of C of length at most two with one endpoint in $P-p_{1}$ and p_{1} as the other endpoint. Since each element of \mathcal{P} shares a common endpoint, and this endpoint is also an endpoint of P, we trivially have the following:

Claim 1.7.6. For any $Q, Q^{\prime} \in \mathcal{P}$, we have either $\operatorname{Int}\left(C_{Q}^{\text {short }}\right) \subseteq \operatorname{Int}\left(C_{Q^{\prime}}^{\text {short }}\right)$ or $\operatorname{Int}\left(C_{Q^{\prime}}^{\text {short }}\right) \subseteq \operatorname{Int}\left(C_{Q}^{\text {short }}\right)$.

We now define a subset $\mathcal{P}_{\text {end }}$ of \mathcal{P}, where $Q \in \mathcal{P}_{\text {end }}$ if and only if p_{1}, p_{r} are the endpoints of Q and there is a vertex with an L-list of size less than five in the open disc bounded by $C_{Q}^{\text {short }}$. Note that even though P is $(2, L)$-short, Definition 1.7.2 does not preclude the possibility that $\mathcal{P}_{\text {end }}$ is nonempty.

We now fix sets A, B, B^{\prime} and a color c, where $A, B^{\prime} \subseteq L\left(p_{r}\right), c \in L\left(p_{1}\right)$ and $B \subseteq L\left(p_{1}\right),|A|=3$, and $|B|=$ $\left|B^{\prime}\right|=2$. Note that $P-p_{1}$ is also $(2, L)$-short, and each internal vertex of $P-p_{1}$ has an L-list of size at least three. Suppose first that $\mathcal{P} \backslash \mathcal{P}_{\text {end }}=\varnothing$. In that case, we have $\operatorname{Sh}_{2}(P)=\operatorname{Sh}_{2}\left(P-p_{1}\right)$. Since $\left|L\left(p_{2}\right)\right| \geq 3$, let $d \in L\left(p_{2}\right) \backslash\{c\}$. Since $|V(P)| \geq 3$, it follows from our induction hypothesis that there is a $\phi \in \operatorname{Link}\left(P-p_{1}\right)$ with $\phi\left(p_{r}\right) \in A$ and $\phi\left(p_{2}\right)=d$. Let ϕ^{\prime} be the extension of ϕ to $\operatorname{dom}(\phi) \cup\left\{p_{1}\right\}$ obtained by coloring p_{1} with c. Since there is no chord of C with p_{1} as an endpoint and the other endpoint in $P-p_{1}, \phi^{\prime}$ is a proper L-coloring of its domain in $G \backslash(E(C) \backslash E(P))$. Since $\operatorname{Sh}_{2}(P)=\operatorname{Sh}_{2}\left(P-p_{1}\right)$, we have $\phi^{\prime} \in \operatorname{Link}(P)$, so P satisfies i). By our induction hypothesis, there is a $\psi \in \operatorname{Link}\left(P-p_{1}\right)$ with $\psi\left(p^{\prime}\right) \in B^{\prime}$. Since $|B|=2$, let $d \in B \backslash\left\{\psi\left(p_{2}\right)\right\}$ and let ψ^{\prime} be the L-coloring of $\operatorname{dom}(\psi) \cup\left\{p_{1}\right\}$ obtained by coloring p_{1} with d. As above, ψ^{\prime} is a proper L-coloring of its domain in $G \backslash(E(C) \backslash E(P))$. Since $\operatorname{Sh}_{2}(P)=\operatorname{Sh}_{2}\left(P-p_{1}\right)$, we have $\psi^{\prime} \in \operatorname{Link}(P)$, so P satisfies ii). Thus, if $\mathcal{P} \backslash \mathcal{P}_{\text {end }}=\varnothing$, then we are done. Now suppose that $\mathcal{P} \backslash \mathcal{P}_{\text {end }} \neq \varnothing$ and let $Q \in \mathcal{P} \backslash \mathcal{P}_{\text {end }}$ maximize the quantity $\mid V\left(\operatorname{Int}\left(C_{Q}^{\text {short }}\right) \mid\right.$. Let $t \in\{2, \cdots, r\}$, where p_{1}, p_{t} are the endpoints of Q.

Claim 1.7.7. There is no chord of C of the form $p_{1} p_{j}$ for some $j \in\{t+1, \cdots, r\}$. Furthermore, $\operatorname{Sh}_{2}(P)=$ $\mathrm{Sh}_{2}\left(p_{r} P p t\right) \cup\left(\operatorname{Int}\left(C_{Q}^{\text {short }}\right) \backslash V(Q)\right)$ as a disjoint union.

Proof: If there is a chord of C of the form $p_{1} p_{j}$ for some $j \in\{t+1, \cdots, r\}$, then, by Claim 1.7.6, $p_{1} p_{j}$ separates p_{t} from $E(C) \backslash E(P)$, contradicting the maximality of Q. Likewise, there is no 2-chord of C of the form $p_{1} w p_{j}$ for some $j \in\left\{t_{1}, \cdots, r\right\}$, or else, by Claim 1.7.6, $p_{1} w p_{j}$ separates p_{t} from $E(C) \backslash E(P)$, contradicting the maximality of Q. Thus, we indeed, have $\operatorname{Sh}_{2}(P)=\operatorname{Sh}_{2}\left(p_{r} P p t\right) \cup\left(\operatorname{Int}_{G}\left(C_{Q}^{\text {short }}\right) \backslash V(Q)\right)$ as a disoint union.

Now we show that P satiisfies i) and ii). Consider the following cases.
Case 1: Q is a chord of C
We break this into two subcases.

Subcase 1.1 $p_{r}=p_{t}$
In this case, by Claim 1.7.7, we have $\operatorname{Sh}_{2}(P)=\left(\operatorname{Int}\left(C_{Q}^{\text {short }}\right) \backslash V(Q)\right)$. Since $|A| \geq 3$, we choose a color $d \in A \backslash\{c\}$. Let ϕ be the L-coloring of $\left\{p_{1}, p_{r}\right\}$ using c, d on p_{1}, p_{r} respectively. Then, by $0.2 .3, \phi$ extends to an L-coloring of $\operatorname{Int}\left(C_{Q}^{\text {short }}\right)$, so $\mathrm{Sh}_{2}(P)$ is L_{ϕ}-inert in $G \backslash \operatorname{dom}(\phi)$, and thus $\phi \in \operatorname{Link}(P)$. Thus, P satisfies i). Likewise, for any $f \in B$ and $f \in B^{\prime}$ with $f \neq f^{\prime}$, if ψ is the L-coloring of $\left\{p_{1}, p_{r}\right\}$ using f, f^{\prime} on p_{1}, p_{r} respectively, $\operatorname{Sh}_{2}(P)$ is L_{ψ}-inert in $G \backslash \operatorname{dom}(\psi)$, and $\psi \in \operatorname{Link}(P)$. Thus, P satisfies ii) as well.

Subcase $1.2 p_{r} \neq p_{t}$
Since $\left|L\left(p_{t}\right)\right| \geq 3$, we choose a color $d \in L\left(p_{t}\right) \backslash\{c\}$. By our induction hypothesis, since $\left|V\left(p_{r} P p_{t}\right)\right| \geq 2$, there is a $\phi \in \operatorname{Link}\left(p_{r} P p_{t}\right)$ such that $\phi\left(p_{r}\right) \in A$ and $\phi\left(p_{t}\right)=d$. Let ϕ^{\prime} be the extension of ϕ to $\operatorname{dom}(\phi) \cup\left\{p_{1}\right\}$ obtained by coloring p_{1} with c. By Claim 1.7.7, ϕ^{\prime} is a proper L-coloring of its domain in $G \backslash(E(C) \backslash E(P))$. Applying Theorem 0.2.3, ϕ^{\prime} extends to an L-coloring of $\operatorname{Int}\left(C_{Q}^{\text {short }}\right)$, and thus, by Claim 1.7.7, $\operatorname{Sh}_{2}(P)$ is $L_{\phi^{\prime}}$-inert in $G \backslash \operatorname{dom}\left(\phi^{\prime}\right)$, so $\phi^{\prime} \in \operatorname{Link}(P)$. Thus, P satisfies i).

Applying our induction hypothesis again, since $\left|L\left(p_{t}\right)\right| \geq 3$, there is a $\psi \in \operatorname{Link}\left(p_{r} P p_{t}\right)$ with $\psi\left(p_{r}\right) \in B^{\prime}$. Let $f \in B \backslash\left\{\psi\left(p_{t}\right)\right\}$ and let ψ^{\prime} be an extension of ψ to $\operatorname{dom}(\psi) \cup\left\{p_{1}\right\}$ obtained by coloring p_{1} with c. By Claim 1.7.7, ψ^{\prime} is a proper L-coloring of its domain in $G \backslash(E(C) \backslash E(P))$. Applying Theorem 0.2.3, ψ^{\prime} extends to an L-coloring of $\operatorname{Int}\left(C_{Q}^{\text {short }}\right)$. Thus, by Claim 1.7.7, $\mathrm{Sh}_{2}(P)$ is $L_{\psi^{\prime}}$-inert in $G \backslash \operatorname{dom}\left(\psi^{\prime}\right)$, so $\psi^{\prime} \in \operatorname{Link}(P)$. Thus, P satisfies ii) as well.

Case 2: Q is a 2-chord of C
As above, we break this into two subcases.
Subcase $2.1 p_{r}=p_{t}$
By Theorem 1.5.5, there is a $d \in A$, such that, letting ϕ be the L-coloring of $\left\{p_{1}, p_{r}\right\}$ using c, d on p_{1}, p_{t} respectively, ϕ is a proper L-coloring of its domain in $\operatorname{Int}\left(C_{Q}^{\text {small }}\right)$, and any L-coloring of Q using c, d on p_{1}, p_{r} respectively extends to an L-coloring of $\operatorname{Int}\left(C_{Q}^{\text {small }}\right)$. Thus, $V\left(\operatorname{Int}\left(C_{Q}^{\text {small }}\right)\right) \backslash V(Q)$ is L_{ϕ}-inert in $G \backslash \operatorname{dom}(\phi)$. If $p_{t}=p_{r}$, then, by Claim 1.7.7, $\mathrm{Sh}_{2}(P)$ is L_{ϕ}-inert in $G \backslash \operatorname{dom}(\phi)$, so $\phi \in \operatorname{Link}(P)$. Thus, P satisfies i).

Likewise, by Theorem 1.5.10, there is an $f \in B$ and an $f^{\prime} \in B^{\prime}$ such that, letting ψ be the L-coloring of $\left\{p_{1}, p_{r}\right\}$ using f, f^{\prime} on p_{1}, p_{r} respectively, ψ is a proper L-coloring of its domain in $\operatorname{Int}\left(C_{Q}^{\text {small }}\right)$, and any L-coloring of Q using f, f^{\prime} on p_{1}, p_{r} respectively extends to an L-coloring of $\operatorname{Int}\left(C_{Q}^{\text {small }}\right)$. Thus, $V\left(\operatorname{Int}\left(C_{Q}^{\text {small }}\right)\right) \backslash V(Q)$ is L_{ψ}-inert in $G \backslash \operatorname{dom}(\psi)$. By Claim 1.7.7, $\mathrm{Sh}_{2}(P)$ is L_{ψ}-inert in $G \backslash \operatorname{dom}(\psi)$, so $\psi \in \operatorname{Link}(P)$. Thus, P satisfies ii).

Subcase $2.2 p_{r} \neq p_{t}$.
By Theorem 1.5 .5 , since $\left|L\left(p_{t}\right)\right| \geq 3$, there is a $d \in L\left(p_{t}\right)$, such that, letting ϕ be the L-coloring of $\left\{p_{1}, p_{t}\right\}$ using c, d on p_{1}, p_{t} respectively, ϕ is a proper L-coloring of its domain in $\operatorname{Int}\left(C_{Q}^{\text {small }}\right)$, and any L-coloring of Q using c, d on p_{1}, p_{t} respectively extends to an L-coloring of $\operatorname{Int}\left(C_{Q}^{\text {small }}\right)$. Thus, $V\left(\operatorname{Int}\left(C_{Q}^{\text {small }}\right)\right) \backslash V(Q)$ is L_{ϕ}-inert in $G \backslash \operatorname{dom}(\phi)$. Furthermore, $\left|V\left(p_{t} P p_{r}\right)\right| \geq 2$, and, by our induction hypothesis, there is a $\phi^{\prime} \in \operatorname{Link}\left(p_{t} P p_{r}\right)$ with $\phi^{\prime}\left(p_{t}\right)=d$ and $\phi^{\prime}\left(p_{r}\right) \in A$. By Claim 1.7.7, the union $\phi \cup \phi^{\prime}$ is a proper L-coloring of its domain in $G \backslash(E(C) \backslash E(P))$, and $\mathrm{Sh}_{2}(P)$ is $L_{\phi \cup \phi^{\prime}}$-inert in $G \backslash \operatorname{dom}\left(\phi \cup \phi^{\prime}\right)$. Thus, $\phi \cup \phi^{\prime} \in \operatorname{Link}(P)$. Thus, P satisfies i).

By Theorem 1.5.10, since $\left|L\left(p_{t}\right)\right| \geq 3$, there is a pair of L-colorings ψ_{1}, ψ_{2} of $\left\{p_{1}, p_{t}\right\}$ using distinct colors on p_{t}, such that, for each $j=1,2, \psi_{j}$ is a proper L-coloring of its domain $\operatorname{int} \operatorname{Int}\left(C_{Q}^{\text {small }}\right), \psi_{j}\left(p_{1}\right) \in B$, and any extension of ψ_{j} to an L-coloring of Q extends to an L-coloring of $\operatorname{Int}\left(C_{Q}^{\text {small }}\right)$. By our induction hypothesis, there is a $\psi^{\prime} \in$ $\operatorname{Link}\left(p_{t} P p_{r}\right)$ with $\psi^{\prime}\left(p_{t}\right) \in\left\{\psi_{1}\left(p_{t}\right), \psi_{2}\left(p_{t}\right)\right\}$ and $\psi^{\prime}\left(p_{r}\right) \in B^{\prime}$, say $\psi^{\prime}\left(p_{t}\right)=\psi_{1}\left(p_{t}\right)$ without loss of generality. By

Claim 1.7.7, the union $\psi_{1} \cup \psi^{\prime}$ is a proper L-coloring of its domain in $G \backslash(E(C) \backslash E(P))$, and $\operatorname{Sh}_{2}(P)$ is $L_{\psi_{1} \cup \psi^{\prime}}$-inert in $G \backslash \operatorname{dom}\left(\psi_{1} \cup \psi^{\prime}\right)$. Thus, $\psi_{1} \cup \psi^{\prime} \in \operatorname{Link}(P)$ and P satisfies ii) as well. This completes the proof of Theorem 1.7.5.

Chapter 2

Mosaics and Their Properties

We begin by fixing constants N_{mo}, β, where $N_{\mathrm{mo}} \geq 96$ and set $\beta:=\frac{17}{15} N_{\mathrm{mo}}^{2}$. The subscript of N refers to mosaics, which is the term we use for our strengthening of tessellations defined below. We show that every $\left(\beta+4 N_{\mathrm{mo}}, 1\right)$ tessellation is colorable, by showing that any tessellation which satisfies some stronger properties stated below is colorable. In particular, we allow our tessellations to contain some precolored faces (i.e closed rings) of length at most N_{mo}, where each precolored face satisfies some additional properties. In Chapters 2-11, we then show that any tessellation satisfying these properties is colorable by showing that no minimal counterexample to colorability exists, where the term minimal counterexample to the claim is made precise in the section below.

2.1 Introduction

In order to state our stronger induction hypothesis, we begin with the following definitions:
Definition 2.1.1. Given a planar embedding G and a cyclic facial subgraph $C \subseteq G$, we say that C is a highly predictable facial subgraph of G if, for every induced cycle $K \subseteq G[V(C)]$, the following hold.

1) For every $v \in D_{1}(K) \backslash V(C)$, the graph $G[N(v) \cap V(K)]$ is either a path of length at most two or K is a triangle with $G[N(v) \cap V(K)]=K$; AND
2) There is at most one $v \in D_{1}(K) \backslash V(C)$ such that $|N(v) \cap V(K)|=3$.

We have the following simple observation, which is immediate and is stated without proof.
Observation 2.1.2. Let G be a short-separation-free graph with facial cycle F, where $3 \leq|F| \leq 4$ and $\mid V(G) \backslash$ $V(F) \mid>1$. Suppose further that, for each $v \in V(F)$, every facial subgraph of G containing v, except possibly F, is a triangle. Then F is a highly predictable facial subgraph of G.

We now introduce the following weakened version of the definition above.
Definition 2.1.3. Given a planar embedding G, a cyclic facial subgraph $C \subseteq G$ and a list-assignment L for $V(G)$, we say that C is an L-predictable facial subgraph of G if $V(C) \neq V(G)$, and, for every induced cycle $K \subseteq G[V(C)]$ the following hold.

1) For every $v \in D_{1}(K, G) \backslash V(C)$, the graph $G[N(v) \cap V(K)]$ is either a proper subpath of K or all of K; AND
2) There is a vertex $v \in D_{1}(K, G) \backslash V(C)$ such that, for any proper L-coloring ϕ of $V(K)$, the following hold.
i) $\left|L_{\phi}(v)\right| \geq 2$; AND
ii) For each $v^{\prime} \in D_{1}(K, G) \backslash(V(C) \cup\{v\}),\left|L_{\phi}\left(v^{\prime}\right)\right| \geq 3$.

Note that, for any planar embedding G and cyclic facial subgraph $C \subseteq G$, if C is highly predictable facial subgraph of G, then C is also an L-predictable facial subgraph of G for any list-assignment L for $V(G)$.

There are several additional useful properties we want our minimal counterexample to satisfy. To state this, it is necessary to attach a specified orientation to a chart.

Definition 2.1.4. A chart (G, \mathcal{C}, L) is called oriented if the embedding of G in the plane is such that there exists a $C_{*} \in \mathcal{C}$ such that C_{*} is the outer face of G.

For convenience, an oriented chart (G, \mathcal{C}, L) with outer face $C_{*} \in \mathcal{C}$ is usually denoted as $\left(G, \mathcal{C}, L, C_{*}\right)$ in order to keep track of the outer face. In order to state the distance conditions we impose on our tessellations, we introduce the following notation.

Definition 2.1.5. Let $\mathcal{T}=(G, \mathcal{C}, L)$ be a chart, let $C \in \mathcal{C}$ and let $\mathbf{P}:=\mathbf{P}_{\mathcal{T}}(C)$ be the precolored subgraph of C. We define a subset $w_{\mathcal{T}}(C)$ of $V(C)$ as follows.

$$
w_{\mathcal{T}}(C):=\left\{\begin{array}{l}
V(C) \text { if } C \text { is a closed } \mathcal{T} \text {-ring } \\
V(C \backslash \stackrel{\circ}{\mathbf{P}}) \text { if } C \text { is an open } \mathcal{T} \text {-ring }
\end{array}\right.
$$

We also introduce a rank function $\operatorname{Rk}(\mathcal{T} \mid \cdot): \mathcal{C} \rightarrow \mathbb{R}$ defined as follows.

$$
\operatorname{Rk}(\mathcal{T} \mid C):=\left\{\begin{array}{l}
|V(C)| \text { if } C \text { is a closed } \mathcal{T} \text {-ring } \\
2 N_{\text {mo }} \text { if } C \text { is an open } \mathcal{T} \text {-ring }
\end{array}\right.
$$

If the underlying chart \mathcal{T} is clear from the context then we drop the symbol \mathcal{T} from $w_{\mathcal{T}}(C)$ or $\operatorname{Rk}(\mathcal{T} \mid C)$ respectively. We now state our induction hypothesis:

Definition 2.1.6. An oriented chart $\mathcal{T}:=\left(G, \mathcal{C}, L, C_{*}\right)$ is called a mosaic if \mathcal{T} is a tessellation which satisfies the following conditions:

M0) For each closed \mathcal{T}-ring C, we have $|V(C)| \leq N_{\mathrm{mo}}$, and for each open \mathcal{T}-ring C^{\prime}, we have $\left|E\left(\mathbf{P}_{\mathcal{T}}\left(C^{\prime}\right)\right)\right| \leq \frac{2 N_{\mathrm{mo}}}{3}$.
M1) For each open ring $C \in \mathcal{C}$, letting $\mathbf{P}:=\mathbf{P}_{\mathcal{T}}(C)$, there is no chord of C with an endpoint in $\stackrel{\circ}{\mathbf{P}}$, and, for each $v \in D_{1}(C, G)$, the graph $G[N(v) \cap V(\mathbf{P})]$ is a subpath of \mathbf{P} of length at most one; AND

M2) For each closed ring $C \in \mathcal{C}, C$ is an L-predictable cyclic facial subgraph of G; AND
M3) For each $C \in \mathcal{C} \backslash\left\{C_{*}\right\}$, we have $d\left(w_{\mathcal{T}}\left(C_{*}\right), w_{\mathcal{T}}(C)\right) \geq \frac{\beta}{3}+\operatorname{Rk}(C)+\operatorname{Rk}\left(C_{*}\right)$; AND
M4) For any distinct $C_{1}, C_{2} \in \mathcal{C} \backslash\left\{C_{*}\right\}$, we have $d\left(w_{\mathcal{T}}\left(C_{1}\right), w_{\mathcal{T}}\left(C_{2}\right)\right) \geq \beta+\operatorname{Rk}\left(C_{1}\right)+\operatorname{Rk}\left(C_{2}\right)$.
Chapters 2-11 consist entirely of the proof of the following result.
Theorem 2.1.7. Let $\mathcal{T}=\left(G, \mathcal{C}, L, C_{*}\right)$ be a mosaic. Then G is L-colorable.
We begin with the following.
Observation 2.1.8. For any mosaic $\mathcal{T}=\left(G, \mathcal{C}, L, C_{*}\right)$, \mathcal{T} is a $\left(\frac{\beta}{3}, N_{\mathrm{mo}}\right)$-tessellation. In particular, we have the following.

1) For any distinct $C_{1}, C_{2} \in \mathcal{C} \backslash\left\{C_{*}\right\}$, we have $d\left(C_{1}, C_{2}\right) \geq \beta$; AND
2) For any distinct $C \in \mathcal{C} \backslash\left\{C_{*}\right\}$, if at least one of C, C_{*} is an open \mathcal{T}-ring, then $d\left(C, C_{*}\right) \geq \frac{\beta}{3}+3 N_{\text {mo }}$.

Proof. For any open ring $C \in \mathcal{C}$, since $\left|E\left(\mathbf{P}_{\mathcal{T}}(C)\right)\right| \leq \frac{2 N_{\text {mo }}}{3}$, any vertex of the precolored path of C is of distance at most $\frac{N_{\mathrm{mo}}}{3}$ from $C \backslash \stackrel{\circ}{\mathbf{P}}_{\mathcal{T}}(C)$. Thus, for any two distinct elements $C_{1}, C_{2} \in \mathcal{C}$, we have $d\left(C_{1}, C_{2}\right) \geq$ $d\left(w_{\mathcal{T}}\left(C_{1}\right), w_{\mathcal{T}}\left(C_{2}\right)\right)-\frac{2 N_{\mathrm{mo}}}{3}$, so the claimed bounds follow immediately from M3) and M4).

Now we introduce the following terminology for our minimal counterexamples.
Definition 2.1.9. Let $\mathcal{T}=\left(G, \mathcal{C}, L, C_{*}\right)$ be a mosaic. We say that \mathcal{T} is critical if the following hold.

1) G is not L-colorable; AND
2) For any mosaic $\left(G^{\prime}, \mathcal{C}^{\prime}, L^{\prime}, D\right)$ with $\left|V\left(G^{\prime}\right)\right|<|V(G)|, G^{\prime}$ is L^{\prime}-colorable; AND
3) For any mosaic $\left(G^{\prime}, \mathcal{C}^{\prime}, L^{\prime}, D\right)$ with $\left|V\left(G^{\prime}\right)\right|=|V(G)|$ and $\sum_{v \in V\left(G^{\prime}\right)}|L(v)|<\sum_{v \in V(G)}|L(v)|, G^{\prime}$ is L^{\prime} colorable.

The remainder of the work of Chapters 2-11 consists of showing that there are no critical mosaics. We begin with the following:

Observation 2.1.10. Let $\mathcal{T}=\left(G, \mathcal{C}, L, C_{*}\right)$ be a critical mosaic. Then the following hold:

1) G is connected; AND
2) For each $C \in \mathcal{C}$ and $v \in V(C) \backslash V\left(\mathbf{P}_{\mathcal{T}}(C)\right),|L(v)|=3$; AND
3) For each $v \in V(G) \backslash\left(\bigcup_{C \in \mathcal{C}} V(C)\right),|L(v)|=5$ and $\operatorname{deg}_{G}(v) \geq 5$.

Proof. 1) follows immediately from the minimality of $|V(G)|$. Likewise, 2) and the first part of 3) both follow directly from the minimality of $\sum_{v \in V(G)}|L(v)|$, or else we can remove colors from the lists of some vertices of G. Now suppose toward a contradiction that there is a $v \in V(G) \backslash\left(\bigcup_{C \in \mathcal{C}} V(C)\right)$ such that $\operatorname{deg}_{G}(v) \leq 4$. Note that every face of G containing v is bounded by a triangle, so $N(v)$ induces a cycle of length at most four and $G[N(v)]=K_{4}$. Since G is short-separation-free, we have $G=K_{4}$, and G is trivially L-colorable, contradicting the fact that \mathcal{T} is a counterexample.

Note that the proof of 3) of Observation 2.1.10 is somewhat atypical. In a minimal counterexample argument involving list-assignments, we usually deal with a vertex v such that $\operatorname{deg}(v)<|L(v)|$ by deleting v to produce a smaller counterexample, but in the context above, the graph $G-v$ does not satisfy the triangulation conditions of Definition 1.3.1, i.e it is not the underlying graph of a tessellation. In general, some care must be taken when constructing smaller counterexamples from critical mosaics.

Definition 2.1.11. Given a chart $\mathcal{T}=(G, \mathcal{C}, L)$ and a subgraph H of G, we let $\mathcal{C} \subseteq H$ denote the set $\{C \in \mathcal{C}: C \subseteq H\}$.
Now we have the following.
Proposition 2.1.12. Let $\mathcal{T}=\left(G, \mathcal{C}, L, C_{*}\right)$ be a critical mosaic. Then each $H \in \mathcal{C}$ is a cyclic facial subgraph of G.

Proof. Let $H \in \mathcal{C}$ and suppose towards a contradiction that H is not a cycle. By M2), H is an open \mathcal{T}-ring (possibly, G is not connected and H has several components). Since H is a facial subgraph of G and H is not a cycle, there is a set $A \subseteq V(H)$ with $|A| \leq 1$, such that $G \backslash A$ has more than one connected component.

Let G_{1}, \cdots, G_{r} be the connected components of $G \backslash A$. For each $j=1, \cdots, r$, we let $H_{j}:=H \cap\left(G_{j}+A\right)$ and $\mathcal{C}_{j}:=\left\{H^{\prime} \in \mathcal{C} \backslash\{H\}: H^{\prime} \subseteq G_{j}+A\right\}$. Note that H_{j} is a facial subgraph of $G_{j}+A$. For each $j=1, \cdots, r$, let C_{*}^{j}
be the outer face of $G_{j}+A$. Note that if $H=C_{*}$ then $H_{j}=C_{*}^{j}$ for each $j=1, \cdots, r$. For each $j=1, \cdots, r$, we set $\mathcal{T}_{j}:=\left(G_{j}+A, \mathcal{C}_{j} \cup\left\{H_{j}\right\}, L, C_{*}^{j}\right)$. Note that \mathcal{T}_{j} is an oriented tessellation for each $j=1, \cdots, r$.

Claim 2.1.13. For each $j \in\{1, \cdots, r\}$, the following hold.
i) $G_{j}+A$ is L-colorable; AND
ii) If $V\left(G_{j} \cap \mathbf{P}_{\mathcal{T}}(H)\right)=\varnothing$ and $|A|=1$ then, letting $A=\{v\}$ and choosing any $c \in L(v)$, the following hold: letting L^{\prime} be the list-assignment for $V(G)$ in which $L^{\prime}(v)=\{c\}$ and $L^{\prime}(x)=L(x)$ for all $x \in V\left(G_{j}\right)$, we get that $\mathcal{T}_{j}^{\prime}:=\left(G_{j}+v, \mathcal{C}_{j} \cup\left\{H_{j}\right\}, L^{\prime}, C_{j}^{*}\right)$ is a mosaic.

Proof: Let $j \in\{1, \cdots, r\}$. Note that if \mathcal{T}_{j} is a mosaic, then it immediately follows that $G_{j}+A$ is L-colorable by the minimality of \mathcal{T}, since $\left|V\left(G_{j}+A\right)\right|<|V(G)|$. Let $\mathbf{P}:=\mathbf{P}_{\mathcal{T}}(H)$.

We first prove ii). Suppose that $V\left(G_{j} \cap \mathbf{P}_{\mathcal{T}}(H)\right)=\varnothing$ and $A \neq \varnothing$. In that case, let \mathcal{T}_{j}^{\prime} be as in the statement of ii) and let $A=\{v\}$. Then H_{j} is an open \mathcal{T}_{j}^{\prime}-ring. Since $V\left(G_{j} \cap \mathbf{P}_{\mathcal{T}}(H)\right)=\varnothing, H$ is an open \mathcal{T}-ring, and since H_{j} has a precolored path in \mathcal{T}_{j}^{\prime} consisting of one vertex, \mathcal{T}_{j}^{\prime} also satisfies M3), so \mathcal{T}_{j}^{\prime} is a mosaic.

Now we prove i). If H_{j} is an open \mathcal{T}_{j}-ring then we immediately get that \mathcal{T}_{j} is also a mosaic, so i) holds in this case. The only nontrivial possibility is that H_{j} is a closed \mathcal{T}_{j}-ring (i.e that $V\left(H_{j}\right) \subseteq V(\mathbf{P})$) so suppose that $V\left(H_{j}\right) \subseteq V(\mathbf{P})$. If H_{j} contains no cycles, then, since H_{j} is a facial subgraph of $G_{j}+A$, we have $V\left(G_{j}+A\right)=V\left(H_{j}\right)$, so $G_{j}+A$ is L-colorable in that case. Now suppose that the walk H_{j} contains at least one cycle. Let $U \subseteq \mathbb{R}^{2} \backslash H_{j}$ be an open subset of \mathbb{R}^{2} with $H_{j}=\partial(U)$ and $G_{j}+A \subseteq \mathbb{R}^{2} \backslash U$. Now we have the following:

Subclaim 2.1.14. Let $D \subseteq H_{j}$ be a cycle and let $U^{\prime} \subseteq \mathbb{R}^{2} \backslash D$ be the unique open connected component of $\mathbb{R}^{2} \backslash D$ disjoint to U. Let $G^{*} \subseteq G_{j}+v$ be the graph consisting of all edges and vertices of $G_{j}+A$ in $\mathrm{Cl}\left(U^{\prime}\right)$. Then G^{*} is L-colorable.

Proof: Let C^{\dagger} be the outer face of G^{*} (possibly $C^{\dagger}=D$). Let $\mathcal{C}^{*}:=\left\{C \in \mathcal{C}: C \subseteq G^{*}\right\}$. We just need to check that $\mathcal{T}^{*}:=\left(G^{*}, \mathcal{C}^{*} \cup\{D\}, L, C^{\dagger}\right)$ is a mosaic. Note that \mathcal{T}^{*} is a tessellation. Since H is an open \mathcal{T}-ring it follows from M1) that, for each $v \in V\left(G^{*} \backslash D\right)$, if v has a neighbor in D, then $G^{*}[N(v) \cap V(D)]$ is a subpath of D of length at most one. Thus, D is a highly predictable cyclic facial subgraph of G^{*}, and thus an L-predictable cyclic facial subgraph of G^{*} so \mathcal{T}^{*} is a mosaic. Since $|V(D)| \leq \frac{2 N_{\mathrm{mo}}}{3}$, M 0), M1), and M2) are satisfied by \mathcal{T}^{*}, so we just need to check that \mathcal{T}^{*} satisfies M3) and M4). Suppose toward a contradiction that there is a $C \in \mathcal{C}^{*}$ such that $d\left(w_{\mathcal{T}^{*}}(C), w_{\mathcal{T}^{*}}(D)\right)$ violates one of M3) or M4).

Let $\beta^{*} \in\{\beta, \beta / 3\}$, where $\beta^{*}=\beta$ if neither C nor D is the outer face of G^{*}, and otherwise $\beta^{*}=\beta / 3$. We claim now that we have the following bound:

$$
d\left(w_{\mathcal{T}}(C), w_{\mathcal{T}}(H)\right) \geq \beta^{*}+\operatorname{Rk}(\mathcal{T} \mid C)+2 N_{\mathrm{mo}}
$$

If neither H nor C is the outer face of G, then, since \mathcal{T} is a mosaic and H is an open \mathcal{T}-ring, we have $d\left(w_{\mathcal{T}}(C), w_{\mathcal{T}}(H)\right) \geq \beta+\operatorname{Rk}(\mathcal{T} \mid C)+2 N_{\mathrm{mo}} \geq \beta^{*}+\operatorname{Rk}(\mathcal{T} \mid C)+2 N_{\mathrm{mo}}$, so we are done in that case. If C is the outer face of G, then C is also the outer face of G^{*}, so $\beta^{*}=\frac{\beta}{3}$, and, since \mathcal{T} is a mosaic, we have $d\left(w_{\mathcal{T}}(C), w_{\mathcal{T}}(H)\right) \geq \beta^{*}+\operatorname{Rk}(\mathcal{T} \mid C)+2 N_{\text {mo }}$. Finally, suppose that H is the outer face of G. Then D is the outer face of G^{*}, so we again have $\beta^{*}=\frac{\beta}{3}$, and $d\left(w_{\mathcal{T}}(C), w_{\mathcal{T}}(H)\right) \geq \beta^{*}+\operatorname{Rk}(\mathcal{T} \mid C)+2 N_{\mathrm{mo}}$. This proves (\dagger). Now let $\mathbf{P}^{\prime}:=\mathbf{P}_{\mathcal{T}}(C)$ and consider the following cases.

Case 1: C is an open \mathcal{T}-ring

In this case, by inequality (\dagger), we have $d\left(C \backslash \stackrel{\circ}{\mathbf{P}}^{\prime}, H \backslash \stackrel{\circ}{\mathbf{P}}\right) \geq \beta^{*}+4 N_{\text {mo }}$. Since $V(D) \subseteq V(\mathbf{P})$ and any vertex of \mathbf{P} is of distance at most $\left\lfloor\frac{V(P)}{2}\right\rfloor$ from $H \backslash \stackrel{\circ}{P}$, we have $d\left(C \backslash \stackrel{\circ}{\mathbf{P}}^{\prime}, D\right) \geq \beta^{*}+4 N_{\mathrm{mo}}-\left\lfloor\frac{V(\mathbf{P})}{2}\right\rfloor$. Since H is an open \mathcal{T}-ring, we have $|E(\mathbf{P})| \leq \frac{2 N_{\mathrm{mo}}}{3}$ by M0), so $4 N_{\mathrm{mo}}-\left\lfloor\frac{V(\mathbf{P})}{2}\right\rfloor \geq \frac{11 N_{\mathrm{mo}}}{3}$. On the other hand, since $V(D) \subseteq V(\mathbf{P})$, we have $2 N_{\text {mo }}+|V(D)| \leq \frac{8 N_{\text {mo }}}{3}$. Thus, we obtain $d\left(D, C \backslash \mathbf{P}^{\prime}\right) \geq \beta^{*}+2 N_{\text {mo }}+|V(D)|$. Since C has the same rank in \mathcal{T} and \mathcal{T}^{*}, and $w_{\mathcal{T}}(C)=w_{\mathcal{T}^{*}}(C)$, this contradicts our assumption that $d\left(w_{\mathcal{T}^{*}}(C), w_{\mathcal{T}^{*}}(D)\right)<$ $\beta^{*}+\operatorname{Rk}\left(\mathcal{T}^{*} \mid C\right)+|V(D)|$.

Case 2: C is a closed \mathcal{T}-ring
In this case, $w_{\mathcal{T}}(C)=w_{\mathcal{T}^{*}}(C)=V(C)$, and, again by inequality (\dagger), we have $d(C, H \backslash \stackrel{\circ}{\mathbf{P}}) \geq \beta^{*}+2 N_{\mathrm{mo}}+$ $|V(C)|$. Since $V(D) \subseteq V(\mathbf{P})$ and any vertex of \mathbf{P} is of distance at most $\left\lfloor\frac{V(\mathbf{P})}{2}\right\rfloor$ from $H \backslash \stackrel{\circ}{\mathbf{P}}$, we obtain

$$
d\left(C, w_{\mathcal{T}^{*}}(D)\right) \geq \beta^{*}+2 N_{\mathrm{mo}}+|V(C)|-\left\lfloor\frac{V(\mathbf{P})}{2}\right\rfloor
$$

Since $|V(\mathbf{P})| \leq \frac{2 N_{\mathrm{mo}}}{3}$, we have $2 N_{\mathrm{mo}}-\left\lfloor\frac{V(\mathbf{P})}{2}\right\rfloor \geq \frac{8 N_{\mathrm{mo}}}{3}>|V(D)|$. Thus,. we conclude that $d\left(C, w_{\mathcal{T}^{*}}(D)\right) \geq$ $\beta^{*}+|V(C)|+|V(D)|$, contradicting our assumption that $d\left(w_{\mathcal{T}^{*}}(C), w_{\mathcal{T}^{*}}(D)\right)<\beta^{*}+\operatorname{Rk}\left(\mathcal{T}^{*} \mid C\right)+|V(D)|$.

Thus, \mathcal{T}^{*} is a mosaic, as desired. Since $\left|V\left(G^{*}\right)\right|<|V(G)|, G^{*}$ is indeed L-colorable by the minimality of \mathcal{T}, as desired. This completes the proof of Subclaim 2.1.14.

Now we return to the proof of Claim 2.1.13. Since H_{j} is a facial subgraph of $G_{j}+A$, it follows that, for each $w \in V\left(G_{j}+v\right) \backslash V\left(H_{j}\right)$, there is a unique cycle $D \subseteq H_{j}$ such that w lies in the unique open connected component of $\mathbb{R}^{2} \backslash D$ disjoint to U. Since $|L(w)|=1$ for each $w \in V\left(H_{j}\right)$, it follows from Subclaim 2.1.14 that any L-coloring of H_{j} extends to an L-coloring of $G_{j}+A$. Since H_{j} is L-colorable, this completes the proof Claim 2.1.13.

Now we retuirn to the proof of Proposition 2.1.12. If $A=\varnothing$, then $G_{j}+A=G_{j}$ for each $j=1, \cdots, r$, and, by Claim 2.1.13, G_{j} is L-coloring for each $j=1, \cdots, r$, and thus G is L-colorable, contradicting the fact that \mathcal{T} is critical. Now suppose that $|A|=1$ and let $A=\{v\}$. We first rule out the possibility that $v \in V\left(\mathbf{P}_{\mathcal{T}}(H)\right.$. Suppose that $v \in V\left(\mathbf{P}_{\mathcal{T}}(H)\right)$. By Claim 2.1.13, for each $j=1, \cdots, r$, there is an L-coloring ϕ_{j} of $G_{j}+v$. Since $|L(v)|=1$ in this case, the union of these colorings is an L-coloring of G, contradicting the fact that \mathcal{T} is critical. Thus, we have $v \notin V\left(\mathbf{P}_{\mathcal{T}}(H)\right)$. Since $\mathbf{P}_{\mathcal{T}}(H)$ is a connected subgraph of H, there exists a $j \in\{1, \cdots, r\}$ such that $\mathbf{P}_{\mathcal{T}}(H) \subseteq G_{j}+v$ and, for each $j^{\prime} \in\{1, \cdots, r\} \backslash\{j\}$, we have $V\left(\mathbf{P}_{\mathcal{T}}(H)\right) \cap V\left(G_{j^{\prime}}+v\right)=\varnothing$.

By Claim 2.1.13, $G_{j}+v$ admits an L-coloring ϕ, and, for each $j^{\prime} \in\{1, \cdots, r\} \backslash\{j\}$, the precoloring $\phi(v)$ extends to an L-coloring of $G_{j^{\prime}}+v$. The union of these colorings is then an L-coloring of G, contradicting the fact that \mathcal{T} is critical. Thus, our assumption that H contains a cut-vertex of G is false.

Proposition 2.1.12 has the following corollary:
Corollary 2.1.15. Let $\mathcal{T}=\left(G, \mathcal{C}, L, C_{*}\right)$ be a critical mosaic. Then G is 2-connected.

Proof. Applying Proposition 2.1.12, for each $C \in \mathcal{C}, C$ is a cyclic facial subgraph of G. Since G is a tessellation, every facial subgraph of G, other than those lying in \mathcal{C}, is a triangle, so every facial subgraph of G is cyclic. Thus, G is 2-connected.

We also have the following very simple bound:

Observation 2.1.16. Let $\mathcal{T}=\left(G, \mathcal{C}, L, C_{*}\right)$ be a critical mosaic, and let $K \subseteq G$ be a separating cycle in G. Let $G=G_{0} \cup G_{1}$ be the natural K-partition of G. Let $i \in\{0,1\}$, let $m \geq 1$ be an integer and suppose there exists a $C \in \mathcal{C}$ with $C \subseteq G_{i}$ and $d(K, C) \geq m$. Then, for each $j \in\{1, \cdots, m\}$, we have $\left|D_{j}\left(K, G_{i}\right)\right| \geq 5$. In particular, we have $\left|V\left(G_{i} \backslash K\right)\right|>5(m-1)$ and $\left|V\left(G_{i}\right)\right|>5 m$.

Proof. Firstly, by Corollary 2.1.15, G_{i} is 2-connected, and furthermore, for each $r \in\{1, \cdots, m-1\}$, each of the three vertex-sets $D_{r-1}(K) \cap G_{i}, D_{r}(K) \cap V\left(G_{i}\right)$, and $D_{r+1}(K) \cap V\left(G_{i}\right)$ is nonempty, since $d(K, C) \geq m$ and $C \subseteq G_{i}$. Since G_{i} is 2-connected, the graph $G\left[D_{r}(K) \cap V\left(G_{i}\right)\right]$ separates $D_{r-1}(K) \cap V\left(G_{i}\right)$ from $D_{r+1}(K) \cap V\left(G_{i}\right)$. Thus, since G is short-separation-free, we have $\left|D_{r}(K) \cap V\left(G_{i}\right)\right| \geq 5$. Summing over $\left|D_{r}(K) \cap V\left(G_{i}\right)\right|$ for each $r=1, \cdots, m-1$, we have $\left|V\left(G_{i}\right)\right|-(|V(K)|+|V(C)|) \geq 5(m-1)$. Thus, we have $\left|V\left(G_{i} \backslash K\right)\right|>5(m-1)$, and since K is a separating cycle in G, we have $|V(K)| \geq 5$. Thus, we have $\left|V\left(G_{i}\right)\right|>5 m$.

We now show that, if we have a separating cycle D of bounded length in a critical mosaic $\left(G, \mathcal{C}, L, C_{*}\right)$, then the subgraph of G consisting of everything on one side of D is L-colorable under certain conditions.

Definition 2.1.17. Let K be a 2-connected outerplanar embedding, where K is bounded by outer cycle D. Given a planar embedding K^{*}, we say that K^{*} is a K-web if the following conditions are satisfied.

1) $K \subseteq K^{*}$, and D is the outer face of K^{*}; AND
2) For every $v \in D_{1}\left(K, K^{*}\right)$, the induced graph $K^{*}[N(v) \cap V(K)]$ is a path in K of length at most one; AND
3) Every connected component of $K^{*}\left[D_{1}(K)\right]$ is an induced cycle of K^{*}, and furthermore, for any distinct $v, w \in$ $D_{1}\left(K, K^{*}\right)$, if each of v, w is adjacent to an edge of K, then $v w \notin E\left(K^{*}\right)$; AND
4) Every facial subgraph of K^{*}, except D, is a triangle; $A N D$
5) For any two vertices $x, y \in V(K), d_{K^{*}}(x, y)=d_{K}(x, y)$.

Now we show the following:
Proposition 2.1.18. Let K be a 2-connected outerplanar embedding, where K is bounded by an outer cycle $D:=$ $v_{1} \cdots v_{r}$. Suppose K satisfies the additional condition that, for any cycle $C \subseteq K$, if $|V(C)|=4$, then C is not an induced subgraph of K. Then there exists a short-separation-free K-web K^{*} such that $\left|V\left(K^{*}\right)\right| \leq|V(K)|^{2}$.

Proof. If $|V(K)|=3$, then K is a short-separation-free K-web, so we are done in that case. Likewise, if $|V(K)|=4$, then, by our conditions on K, every facial subgraph of K is a triangle, so K is again a short-separation-free K-web. Now we show that the claim holds for any $|V(K)| \geq 5$ where D is a chordless cycle.

Suppose that $|V(K)| \geq 5$, and let $K:=v_{1} v_{2} \cdots v_{r}$ for some $r \geq 5$, where $K=D$ is a chordless cycle. We extend K to a short-separation-free annulus $K^{\prime \prime}$ defined as follows: Let K^{\prime} be a graph obtained from K by adding to the open disc bounded by K a length $2 r$-cycle $K^{\dagger}:=w_{1} w_{1}^{*} w_{2} w_{2}^{*} \cdots w_{r} w_{r}^{*}$ and adding the following edges to the open disc bounded by K. For each $i \in\{1, \cdots, r\}$, we add the edges $\left\{w_{i} v_{i}, w_{i} v_{i+1}, w_{i}^{*} v_{i}\right\}$, where the indices are read mo r. Now let $K^{\prime \prime}$ be the graph obtained from K^{\prime} by adding to the open disc bounded by K^{\dagger} a length- r cycle $K^{\dagger \dagger}:=v_{1}^{1} v_{2}^{1} \cdots v_{r}^{1}$, and, for each $i \in\{1, \cdots, r\}$, adding the edges $\left\{v_{i}^{1} w_{i}^{*}, v_{i}^{1} w_{i}, v_{i}^{1} w_{i+1}^{*}\right\}$, whre the subscripts are read $\bmod r$.

Let $r^{*}:=\lceil r / 4\rceil-1$. We define a sequence of graphs $K_{1}, K_{2}, \cdots, K_{r^{*}}$, and a sequence of cycles $C_{1}, \cdots, C_{r^{*}}$, each of length r, where $C_{j}:=v_{1}^{j} v_{2}^{j} \cdots v_{r}^{j}$ for each $j=1, \cdots, r^{*}$, as follows:

1. $K_{1}:=K^{\prime \prime}$ and $C_{1}:=K^{\dagger} ; A N D$
2. For $1 \leq j<r^{*}, K_{j+1}$ is obtained from K_{j} by adding to the open disc bounded by C_{j} a set of vertices $v_{1}^{j+1}, \cdots, v_{r}^{j+1}$, and, for each $i \in\{1, \cdots, r\}$, the edges $v_{i}^{j+1} v_{i+1}^{j+1}, v_{i}^{j} v_{i}^{j+1}$ and $v_{i+1}^{j} v_{i}^{j+1}$, where the subscripts are read $\bmod r$.

Let K^{*} be a graph obtained from $K_{r^{*}}$ by adding to the open disc bounded by $C_{r^{*}}$ a lone vertex z and the edges $z v_{i}^{r_{*}}$ for each $i=1, \cdots, r$. Then $\left|V\left(K^{*}\right)\right| \leq 3 r+r^{*} r+1 \leq r^{2}$. Furthermore K^{*} is short-separation-free, and every facial subgraph of K^{*}, except for K, is a triangle. Now let $v, v^{\prime} \in V(K)$ and suppose toward a contradiction that $d_{K^{*}}\left(v, v^{\prime}\right)<d_{K}\left(v, v^{\prime}\right)$, and let P be a path in K^{*} with endpoints v, v^{\prime} such that $|E(P)|<d_{K}\left(v, v^{\prime}\right)$. By construction of K^{*}, the path P then contains the vertex z. Thus, we have $|E(P)|=|E(v P z)|+\left|E\left(z P v^{\prime}\right)\right| \geq 2\left(r^{*}+1\right) \geq\lfloor r / 2\rfloor \geq$ $d_{K}\left(v, v^{\prime}\right)$, contradicting our assumption. Thus, we have $d_{K^{*}}\left(v, v^{\prime}\right) \geq d_{K}\left(v, v^{\prime}\right)$, and so $d_{K^{*}}\left(v, v^{\prime}\right)=d_{K}\left(v, v^{\prime}\right)$, since $K \subseteq K^{*}$. We conclude that K^{*} is a short-separation-free K-web. Since $\left|V\left(K^{*}\right)\right| \leq|V(K)|^{2}$, we are done in this case.

No we show that Proposition 2.1.18 holds in general. We show this by induction on $|V(K)|$. The case where $|V(K)| \leq 4$ is done above. Now let K be a 2 -connected outerplanar embedding satisfying the conditions of Proposition 2.1.18, where $|V(K)| \geq 5$. Suppose that, for any 2-connected outerplanar embedding K^{\prime} satisfying the conditions of Proposition 2.1.18, if $\left|V\left(K^{\prime}\right)\right|<|V(K)|$, then there exists a short-separation-free K^{\prime}-web $K^{\prime \prime}$ with $\left|V\left(K^{\prime \prime}\right)\right| \leq\left|V\left(K^{\prime}\right)\right|^{2}$.

Let D be the outer face of K. If $D=K$, then, as shown above, we are done, so now suppose that K contains a chord of of D, and suppose without loss of generality that this chord is of the form $v_{1} v_{j}$ for some $j \in\{1, \cdots, r-1\}$. Let $K=K_{1} \cup K_{2}$, where $K_{1} \cap K_{2}=v_{1} v_{j}, K_{1}$ is bounded by outer cycle $D_{1}:=v_{1} \cdots v_{j}$, and K_{2} is bounded by outer cycle $v_{j} \cdots v_{r}$. Note that, for each $i \in\{1,2\}$ and any cycle $C \subseteq K_{i}$, if $|V(C)|=4$, then C is not an induced subgraph of K_{i}, or else C is an induced subgraph of K. Thus, for each $i=1,2$, there exists a short-separation-free K_{i}-web K_{i}^{*} with $\left|V\left(K_{i}^{*}\right)\right| \leq\left|V\left(K_{i}\right)\right|^{2}$.

Now let $K^{*}=K_{1}^{*} \cup K_{2}^{*}$. Then K^{*} is a short-separation-free planar embedding, with outer face D, where $K \subseteq K^{*}$ and every facial subgraph of K^{*}, except for D, is a triangle. Furthermore, we have $\left|V\left(K^{*}\right)\right| \leq\left|V\left(K_{1}\right)\right|^{2}+\left|V\left(K_{2}\right)\right|^{2}=$ $\left|V\left(K_{1}\right)\right|^{2}+\left(\left|V\left(K \backslash K_{1}\right)\right|+2\right)^{2}$. Thus, we obtain $\left|V\left(K^{*}\right)\right| \leq\left|V\left(K_{1}\right)\right|^{2}+\left|V\left(K \backslash K_{1}\right)\right|^{2}+2\left|V\left(K \backslash K_{1}\right)\right|+4$. We have $|V(K)|^{2}=\left(\left|V\left(K_{1}\right)\right|+\left|V\left(K \backslash K_{1}\right)\right|\right)^{2}=\left|V\left(K_{1}\right)\right|^{2}+\left|V\left(K \backslash K_{1}\right)\right|^{2}+2\left|V\left(K_{1}\right)\right|\left|V\left(K \backslash K_{1}\right)\right|$. Since $\left|V\left(K_{1}\right)\right| \geq 3$ and $\left|V\left(K \backslash K_{1}\right)\right| \geq 1$, we have $\left|V\left(K_{1}\right)\right|\left|V\left(K \backslash K_{1}\right)\right| \geq\left|V\left(K \backslash K_{1}\right)\right|+2$, so $\left|V\left(K^{*}\right)\right| \leq|V(K)|^{2}$. This completes the proof of Proposition 2.1.18.

We now note the following.
Observation 2.1.19. Let G be a short-separation-free planar embedding and let D be a cycle in G with $|V(D)| \geq 5$. Let $D^{\prime}:=G[V(D)] \cap \operatorname{Int}(D)$, and suppose further that, for any 4-cycle T in $\operatorname{Int}(D)$ whose vertices lie in $V(D), T$ is an induced subgraph of D^{\prime}. Let G^{\dagger} be the graph obtained from G by deleting all vertices in $\operatorname{Int}(D) \backslash V(D)$ and replacing them with a short-separation-free D^{\prime}-web D^{*} in the closed disc bounded by D. Then G^{\dagger} is short-separation-free.

Proof. Suppose toward a contradiction that there is a separating cycle $F \subseteq G^{\dagger}$ with $|V(F)| \leq 4$. Since Ext ${ }^{+}(D)$ is short-separation-free, and D^{*} is short-separation-free, $E(F)$ has nonempty intersection with each of $E\left(\operatorname{Ext}^{+}(D)\right) \backslash$ $E(D)$ and $E\left(D^{*}\right) \backslash E\left(D^{\prime}\right)$. In particular, since $|E(F)| \leq 4$, and D is a separating cycle in G^{\dagger}, D^{*} contains an ℓ-chord of D^{\prime}, where $1 \leq \ell \leq 3$, whose endpoints are non-adjacent in D^{\prime}, contradicting the fact that D^{*} is a D^{\prime}-web.

With the above in hand, we show the following:

Proposition 2.1.20. Let $\mathcal{T}=\left(G, \mathcal{C}, L, C_{*}\right)$ be a critical mosaic, and let D be a cycle in G with $|V(D)| \leq N_{\mathrm{mo}}$, such that D separates an element of $\mathcal{C} \backslash\left\{C_{*}\right\}$ from C_{*}. Suppose that there exist a $C \in \mathcal{C} \backslash\left\{C_{*}\right\}$ with $C \subseteq \operatorname{Int}(D)$, such that $d(C, D) \geq \frac{|V(D)|^{2}}{5}$. Then $V(\operatorname{Ext}(D))$ is L-colorable.

Proof. Set $G^{*}:=\operatorname{Ext}^{+}(D)$. Let D^{\prime} be the subgraph of G^{*} consisting of D and all chords of $D \operatorname{in} \operatorname{Int}(D)$. Then D^{\prime} is an outerplanar embedding, and, since G is short-separation-free and D is a separating cycle, we have $|V(D)| \geq 5$. Furthermore, for any cycle $D^{\prime \prime} \subseteq D^{\prime}$ of length four, $D^{\prime \prime}$ is not an induced subgraph of $G[V(D)]$ by our triangulation conditions, since G is short-separation-free. Thus, applying Proposition 2.1.18, Let G^{\dagger} be the graph obtained from G^{*} by adding to G^{*} a D^{\prime}-web D^{*} in the closed disc of \mathbb{R}^{2} bounded by D, where $\left|V\left(D^{*}\right)\right| \leq|V(D)|^{2}$ and the embedding D^{*} is short-separation-free. Let L^{\dagger} be a list-assignment for G^{\dagger} where $L^{\dagger}(v)=L(v)$ for all $v \in V\left(G^{\dagger}\right) \backslash V\left(D^{*} \backslash D\right)$ and $L^{\dagger}(v)$ is an arbitrary 5-list for all $v \in V\left(D^{*} \backslash D\right)$.

We claim now that the tuple $\mathcal{T}^{\dagger}=\left(G^{\dagger}, \mathcal{C}^{G^{*}}, L^{\dagger}, C_{*}\right)$ is a mosaic. By Observation 2.1.19, G^{\dagger} is short-separation-free, and, by construction of D^{*}, every face of G^{\dagger}, except those of $\mathcal{C} \subseteq G^{*}$, is a triangle, so \mathcal{T}^{\dagger} is an oriented tessellation. M0), M1), and M2) of Definition 2.1.6 are immediate. In particular, by construction of $D^{*}, \mathcal{T}^{\dagger}$ still has the property that, for each open \mathcal{T}^{\dagger}-ring C, there is no chord of C with one endpoint in $\mathbf{P}_{\mathcal{T}^{\dagger}}(C)$, and, for each $v \in D_{1}\left(C, G^{\dagger}\right)$, $G^{\dagger}\left[N(v) \cap V\left(\mathbf{P}_{\mathcal{T}^{\dagger}}(C)\right)\right]$ is a subpath of $\mathbf{P}_{\mathcal{T}^{\dagger}}(C)$ of length at most one. We just need to check that \mathcal{T}^{\dagger} satisfies distance conditions M3) and M4) of Definition 2.1.6.

If one of the distance conditions M3), M4) is not satisfied then there exists a pair of distinct rings $C, C^{\prime} \in \mathcal{C} \subseteq G^{*}$ and a pair of vertices u, v with $u \in V(C)$ and $v \in V\left(C^{\prime}\right)$ such that $d_{G^{\dagger}}(u, v)<d_{G}(u, v)$. In that case, there exists a path in D^{*}, with endpoints x, y in D, such that $d_{D^{*}}(x, y)<d_{D}(x, y)$, contradicting the fact that D^{*} is a D-web. Thus, $\left(G^{\dagger}, \mathcal{C} \subseteq G^{*}, L, C_{*}\right)$ is indeed a mosaic.

Suppose toward a contradiction that $\left|V\left(G^{\dagger}\right)\right| \geq|V(G)|$. In that case, we have $\left|V\left(D^{*}\right)\right| \geq|V(\operatorname{Int}(D))|$. By assumption there is a ring $C^{\dagger} \in \mathcal{C}$ with $C^{\dagger} \subseteq \operatorname{Int}(D)$ such that $d\left(C^{\dagger}, D\right) \geq \frac{|V(D)|^{2}}{5}$. Thus, by Observation 2.1.16, we have $|V(\operatorname{Int}(D))|>|V(D)|^{2}$, so we have $\left|V\left(D^{*}\right)\right|<|V(\operatorname{Int}(D))|$, a contradiction. Since $\left|V\left(G^{\dagger}\right)\right|<|V(G)|, G^{\dagger}$ is L^{\dagger}-colorable by the minimality of \mathcal{T}, and thus G^{*} is L-colorable. This completes the proof of Proposition 2.1.20.

We have an analogous fact for the other side:
Proposition 2.1.21. Let $\mathcal{T}=\left(G, \mathcal{C}, L, C_{*}\right)$ be a critical mosaic, and let D be a separating cycle in G with $|V(D)| \leq$ N_{mo}, such that there is $a C \in \mathcal{C}$ with $C \subseteq \operatorname{Int}(D)$ and $d(C, D) \leq \frac{\beta}{3}-\frac{N_{\mathrm{mo}}}{2}-\frac{|V(D)|^{2}}{5}$. Then $V(\operatorname{Int}(D))$ is L-colorable.

Proof. Let $\mathcal{C}^{\prime}:=\{C \in \mathcal{C}: C \subseteq \operatorname{Int}(D)\}$ and let G^{\prime} be a planar embedding of $\operatorname{Int}^{+}(D)$ obtained by setting C to the outer face of G^{\prime} by an appropriate stereographic projection. Let D^{\prime} be the subgraph of G^{\prime} consisting of the edges and vertices corresponding to D in G. Then we have $V\left(\operatorname{Int}_{G^{\prime}}\left(D^{\prime}\right)\right)=V\left(D^{\prime}\right)$, and the chords of D in $\operatorname{Ext}(D)$ correspond to the chords of D^{\prime} in $\operatorname{Int}\left(D^{\prime}\right)$. Thus, $G^{\prime}\left[V\left(D^{\prime}\right)\right]$ is an outerplanar embedding, and since D is a separating cycle in G, we have $\left|V\left(D^{\prime}\right)\right| \geq 5$. . Furthermore, for any cycle $D^{\prime \prime} \subseteq G^{\prime}\left[V\left(D^{\prime}\right)\right]$ of length four, $D^{\prime \prime}$ is not an induced subgraph of $G^{\prime}\left[V\left(D^{\prime}\right)\right]$ by our triangulation conditions, since G is short-separation-free. Thus, applying Proposition 2.1.18, let $G^{\prime \prime}$ be an embedding obtained from G^{\prime} by adding to G^{\prime} a short-separation-free $G^{\prime}\left[V\left(D^{\prime}\right)\right]$-web D^{\dagger} in the closed disc bounded by D^{\prime}, with $\left|V\left(D^{\dagger}\right)\right| \leq|V(D)|$. By our construction of D^{\dagger}, each face of $G^{\prime \prime}$, except those in \mathcal{C}^{\prime}, is a triangle, and thus, by Observation 2.1.19 the tuple $\mathcal{T}^{\dagger}:=\left(G^{\prime \prime}, \mathcal{C}^{\prime}, L, C\right)$ is an oriented tessellation. We claim now that $\mathcal{T}^{\dagger}:=\left(G^{\prime \prime}, \mathcal{C}^{\prime}, L, C\right)$ is a mosaic. As in Proposition 2.1.20, The only nontrivial conditions to check are M3) and M4).

If M4) is not satisfied then, since $C_{*} \notin \mathcal{C}^{\prime} \backslash\{C\}$, there exists a pair of distinct rings $C_{1}, C_{2} \in \mathcal{C}^{\prime} \backslash\{C\}$ and a pair of vertices u, v with $u \in V\left(C_{1}\right)$ and $v \in V\left(C_{2}\right)$ such that $\left.d_{G^{\dagger}}\right)(u, v)<d_{G}(u, v)$. In that case, there exists a path in D^{*},
with endpoints x, y in D, such that $d_{D^{\dagger}}(x, y)<d_{D}(x, y)$, contradicting the fact that D^{\dagger} is a D-web. Likewise, since the distance condition on the new outer face C has only weakened, the same argument shows that M3) is satisfied as well. Thus, \mathcal{T}^{\dagger} is indeed a mosaic.

We claim now that $\left|V\left(G^{\dagger}\right)\right|<|V(G)|$. Suppose that $\left|V\left(G^{\dagger}\right)\right| \geq|V(G)|$. In that case, we have $\left|V\left(D^{\dagger}\right)\right| \geq$ $|V(\operatorname{Ext}(D))|$. Note that $d\left(C_{*}, D\right) \geq \frac{|V(D)|^{2}}{5}$, or else, since any two vertices of D are distance at most $\frac{|V(D)|}{2}$ apart, we have $d\left(C_{*}, C\right) \leq \frac{\beta}{3}$, contradicting Observation 2.1.8.
Since $d\left(D, C_{*}\right) \geq \frac{|V(D)|^{2}}{5}$ and $\left|V\left(D^{\dagger}\right)\right|<|V(D)|^{2}$, we have $\left|V\left(D^{*}\right)\right|<|V(\operatorname{Ext}(D))|$ by Observation 2.1.16, a contradiction. Since $\left|V\left(G^{\dagger}\right)\right|<|V(G)|, G^{\dagger}$ admits an L-coloring by the minimality of \mathcal{T}, so the subgraph of G induced by $\operatorname{Int}(D)$ is L-colorable.

We also repeatedly use the following basic property of critical mosaics:
Proposition 2.1.22. Let $\mathcal{T}=\left(G, \mathcal{C}, L, C_{*}\right)$ be a critical mosaic. Then, for each open ring $C \in \mathcal{C}$, the cycle C has no chords in G.

Proof. Let $C \in \mathcal{C}$ be an open \mathcal{T}-ring and let $\mathbf{P}:=\mathbf{P}_{\mathcal{T}}(C)$. By Proposition 2.1.12, C is a cycle. Suppose toward a contradiction that there is a chord $x y$ of C. By M1), no endpoint of $x y$ is an internal vertex of P, so let $G=G_{0} \cup G_{1}$ be the natural $x y$-partition of G, where $\mathbf{P} \subseteq G_{0}$. For each $i=0$, 1 , let C_{i} be the cycle $\left(C \cap G_{i}\right)+x y$. Let C_{*}^{0} be the outer face of G_{0} and let $\mathcal{T}_{0}:=\left(G_{0}, \mathcal{C} \subseteq G_{0} \cup\left\{C_{0}\right\}, L, C_{*}^{0}\right)$.

Claim 2.1.23. \mathcal{T}_{0} is a mosaic.

Proof: We begin with the following observation:
Subclaim 2.1.24. For each $C^{\prime} \in \mathcal{C} \subseteq G_{0}$, we have $\left.d\left(w_{\mathcal{T}_{0}}\left(C^{\prime}\right), w_{\mathcal{T}_{0}}\left(C_{0}\right)\right) \geq d\left(w_{\mathcal{T}}\left(C^{\prime}\right), w_{\mathcal{T}} C\right)\right)$.
Proof: This is an immediate consequence of the fact that, for any $C \in \mathcal{C}^{G^{0}}$ and any subgraph $H \subseteq C$, any shortest (H, C)-path in G has its C-endpoint in C_{0}.

Now consider the following cases.
Case 1: C_{0} is the outer face of G_{0}
In this case, we have $C_{0}=C_{*}^{0}$. To check that \mathcal{T}_{0} is a mosaic, it just suffices to check that M3) holds. Since \mathcal{T} satisfies M3) and M4), we get that $d\left(w_{\mathcal{T}}\left(C^{\prime}\right), w_{\mathcal{T}}(C)\right) \geq \frac{\beta}{3}+\operatorname{Rk}\left(\mathcal{T} \mid C^{\prime}\right)+2 N_{\text {mo }}$ for each $C^{\prime} \in \mathcal{C} \subseteq G_{0}$. Thus, if C_{0} is an open \mathcal{T}_{0}-ring, then applying Subclaim 2.1.24, we immediately get that $d\left(w_{\mathcal{T}_{0}}\left(C_{0}\right), w_{\mathcal{T}_{0}}\left(C^{\prime}\right)\right) \geq \frac{\beta}{3}+\operatorname{Rk}\left(\mathcal{T}_{0} \mid C^{\prime}\right)+2 N_{\text {mo }}$ for each $C^{\prime} \in \mathcal{C} \subseteq G_{0}$. Possibly, C_{0} is a closed \mathcal{T}_{0}-ring (i.e x, y are the endpoints of $\mathbf{P}_{\mathcal{T}}(C)$). In that case, since $\operatorname{Rk}\left(\mathcal{T}_{0} \mid C_{0}\right)<\operatorname{Rk}(\mathcal{T} \mid C)$, we again get that \mathcal{T}_{0} satisfies M3) by Subclaim 2.1.24. Thus, \mathcal{T}_{0} is a mosaic, as desired.

Case 2: C_{0} is not the outer face of G_{0}
In this case, C_{1} separates $V\left(G_{1} \backslash C_{1}\right)$ from C_{*}, and $C_{*} \subseteq G_{0}$, so we have $C_{*}^{0}=C_{*}$. To show that \mathcal{T}_{0} is a mosaic, just suffices to check that M3) and M4) hold. If M3) does not hold, then we have $d\left(w_{\mathcal{T}_{0}}\left(C_{0}\right), w_{\mathcal{T}_{0}}\left(C_{*}\right)\right)<\frac{\beta}{3}+\operatorname{Rk}\left(\mathcal{T}_{0} \mid C_{0}\right)+$ $\operatorname{Rk}\left(\mathcal{T} \mid C_{*}\right)$. As above, since C is an open \mathcal{T}-ring, we have $\operatorname{Rk}\left(\mathcal{T}_{0} \mid C_{0}\right) \leq \operatorname{Rk}(\mathcal{T} \mid C)$, and since $\operatorname{Rk}\left(\mathcal{T}_{0} \mid C_{*}\right)=\operatorname{Rk}\left(\mathcal{T} \mid C_{*}\right)$, it follows from Subclaim 2.1.24 that $d\left(w_{\mathcal{T}}(C), w_{\mathcal{T}}\left(C_{*}\right)\right)<\frac{\beta}{3}+\operatorname{Rk}\left(\mathcal{T} \mid C_{*}\right)+2 N_{\text {mo }}$, contradicting the fact that \mathcal{T} is a tessellation. The same argument shows that, for each $C^{\prime} \in \mathcal{C} \subseteq G_{0} \backslash\left\{C_{*}\right\}$, we have $d\left(w_{\mathcal{T}_{0}}\left(C_{0}\right), w_{\mathcal{T}_{0}}\left(C^{\prime}\right)\right) \geq$ $\beta+\operatorname{Rk}\left(\mathcal{T}_{0} \mid C_{0}\right)+\operatorname{Rk}\left(\mathcal{T}_{0} \mid C^{\prime}\right)$. Thus, \mathcal{T}_{0} is a mosaic, as desired.

Since \mathcal{T}_{0}, since $\left|V\left(G_{0}\right)\right|<|V(G)|, G_{0}$ admits an L-coloring ϕ by the minimality of \mathcal{T}. Let C_{*}^{1} be the outer face of G_{1}. Consider the oriented tessellation $\mathcal{T}_{1}:=\left(G_{1}, \mathcal{C} \subseteq G_{1} \cup\left\{C_{1}\right\}, L_{\phi}^{x y}, C_{*}^{1}\right)$. Since C_{1} is a cycle with a precolored path of length one in \mathcal{T}_{1}, C_{1} is an open \mathcal{T}_{1}-ring. Analogous to Subclaim 2.1.24, we have the following:

Subclaim 2.1.25. For each $C^{\prime} \in \mathcal{C} \subseteq G_{1}$, we have $d\left(w_{\mathcal{T}_{1}}\left(C^{\prime}\right),\left(w_{\mathcal{T}_{1}}\left(C_{1}\right)\right) \geq d\left(w_{\mathcal{T}}\left(C^{\prime}\right), w_{\mathcal{T}}(C)\right)\right.$.
Proof: This is an immediate consequence of the fact that, for any $C \in \mathcal{C}^{G^{1}}$ and any subgraph $H \subseteq C$, any shortest (H, C)-path in G has its C-endpoint in C_{1}.

Now we claim that \mathcal{T}_{1} is a mosaic. Since C_{1} is an open \mathcal{T}_{1}-ring and C_{1} has a precolored path of length one in \mathcal{T}_{1}, M0), M1), and M2), are trivially satisfied, so as above, we just need to chek M3) and M4). Consider the following cases:

Case 1: C_{1} is the outer face of G_{1}
In this case, we have $C_{1}=C_{*}^{1}$. To check that \mathcal{T}_{1} is a mosaic, it just suffices to check that M3) holds. Since \mathcal{T} satisfies M3) and M4), we get that $d\left(w_{\mathcal{T}}\left(C^{\prime}\right), w_{\mathcal{T}}(C)\right) \geq \frac{\beta}{3}+\operatorname{Rk}\left(\mathcal{T} \mid C^{\prime}\right)+2 N$. Let $C^{\prime} \in \mathcal{C} \subseteq G_{1}$. Since C_{1} is an open \mathcal{T}_{1}-ring, we immediately get that $d\left(w_{\mathcal{T}_{1}}\left(C_{1}\right), w_{\mathcal{T}_{1}}\left(C^{\prime}\right)\right) \geq \frac{\beta}{3}+\operatorname{Rk}\left(\mathcal{T}_{1} \mid C^{\prime}\right)+2 N_{\text {mo }}$ by applying Subclaim 2.1.24, so \mathcal{T}_{1} is indeed a mosaic in this case.

Case 2: C_{1} is not the outer face of G_{1}
In this case, C_{0} separates $V\left(G_{0} \backslash C_{0}\right)$ from C_{*}, and $C_{*} \subseteq G_{1}$, so we have $C_{*}^{1}=C_{*}$. To show that \mathcal{T}_{1} is a mosaic, just suffices to check M3) and M4). If M3) does not hold, then we have $d\left(w_{\mathcal{T}_{1}}\left(C_{1}\right), w_{\mathcal{T}_{1}}\left(C_{*}\right)\right)<\frac{\beta}{3}+\operatorname{Rk}\left(\mathcal{T}_{1} \mid C_{1}\right)+\left(\mathcal{T} \mid C_{*}\right)$. Since $\operatorname{Rk}\left(\mathcal{T}_{1} \mid C_{1}\right)=2 N_{\mathrm{mo}}$, and $\operatorname{Rk}\left(\mathcal{T}_{1} \mid C_{*}\right)=\operatorname{Rk}\left(\mathcal{T} \mid C_{*}\right)$, it follows from Subclaim 2.1.25 that $d\left(w_{\mathcal{T}}(C), w_{\mathcal{T}}\left(C_{*}\right)\right)<$ $\frac{\beta}{3}+\operatorname{Rk}\left(\mathcal{T} \mid C_{*}\right)+2 N_{\mathrm{mo}}$, contradicting the fact that \mathcal{T} is a tessellation. The same argument shows that, for each $C^{\prime} \in \mathcal{C} \subseteq G_{1} \backslash\left\{C_{*}\right\}$, we have $d\left(w_{\mathcal{T}_{1}}\left(C_{1}, w_{\mathcal{T}_{1}}\left(C^{\prime}\right)\right) \geq \beta+2 N_{\mathrm{mo}}+\operatorname{Rk}\left(\mathcal{T}_{1} \mid C^{\prime}\right)\right.$. Thus, \mathcal{T}_{1} is a mosaic, as desired

Since \mathcal{T}_{1} is a mosaic and $\left|V\left(G_{1}\right)\right|<|V(G)|, G_{1}$ admits an $L_{\phi}^{x y}$-coloring by the minimality of \mathcal{T}, so ϕ extends from G_{0} to an L-coloring of G, contradicting the fact that \mathcal{T} is a critical mosaic.

Now we prove our main results for Section 2.1. We establish some very useful bounds on the distance between separating cycles and rings in a critical mosaic. The first of our two main results for Section 2.1 is the following:

Theorem 2.1.26. Let $\mathcal{T}=\left(G, \mathcal{C}, L, C_{*}\right)$ be a critical mosaic. Then for any cycle $D \subseteq G$, if $|V(D)| \leq N_{\mathrm{mo}}$ and D separates an element of \mathcal{C} from an edge of $E\left(C_{*}\right)$, then there exists a $C \in \mathcal{C}$ with $C \subseteq \operatorname{Int}(D)$ such that $\max \left\{d\left(v, w_{\mathcal{T}}(C)\right): v \in V(D)\right\}<\frac{\beta}{3}+\frac{3}{2}|V(D)|+\operatorname{Rk}(\mathcal{T} \mid C)$.

Proof. Given a cycle $D \subseteq G$, we say that D is bad if $|V(D)| \leq N_{\mathrm{mo}}, D$ separates an element of $\mathcal{C} \backslash\left\{C_{*}\right\}$ from C_{*}, and, for all $C \in \mathcal{C} \backslash\left\{C_{*}\right\}$ with $C \subseteq \operatorname{Int}(D)$, we have $\max \left\{d\left(v, w_{\mathcal{T}}(C)\right): v \in V(D)\right\} \geq \frac{\beta}{3}+\frac{3}{2}|V(D)|+\operatorname{Rk}(\mathcal{T} \mid C)$.

Suppose towards a contradiction that G contains a bad cycle D, and, among all bad cycles in G, we choose D so as to minimize $\mid V(\operatorname{Int}(D))$. Since D separates an element of $\mathcal{C} \backslash\left\{C_{*}\right\}$ from C_{*}, and D is a bad cycle, there exists a $C^{\dagger} \in \mathcal{C} \backslash\left\{C_{*}\right\}$ such that $d\left(D, C^{\dagger}\right) \geq \frac{\beta}{3}$. This is immediate if C^{\dagger} is a closed \mathcal{T}-ring, and, if C^{\dagger} is an open \mathcal{T}-ring, then, since each vertex of $\mathbf{P}_{\mathcal{T}}\left(C^{\dagger}\right)$ is of distance at most $\left\lfloor\frac{\mid V\left(\mathbf{P}_{\mathcal{T}}\left(C^{\dagger}\right) \mid\right.}{2}\right.$ from $C^{\dagger} \backslash \stackrel{\circ}{\mathbf{P}}_{\mathcal{T}}\left(C^{\dagger}\right)$, we have $d\left(D, C^{\dagger}\right) \geq \frac{\beta}{3}$. Since $\frac{N_{\text {mo }}^{2}}{5} \leq \frac{\beta}{3}$, the graph $\operatorname{Ext}^{+}(D)$ is L-colorable by Proposition 2.1.20. Let ϕ be an L-coloring of $\operatorname{Ext}^{+}(D)$. Let $G^{\dagger}:=\operatorname{Int}(D)$. We show now that $\mathcal{T}^{\dagger}:=\left(G^{\dagger},\{D\} \cup \mathcal{C} \subseteq G^{\dagger}, L_{\phi}^{D}, D\right)$ is a mosaic, where D is the precolored subgraph of D.

Claim 2.1.27. D is a highly predictable induced \mathcal{T}^{\dagger}-ring.

Proof: We first show that, for any vertex z, if $z \in V\left(G^{\dagger} \backslash D\right)$ and z has a neighbor in D, then $G^{\dagger}[N(z) \cap V(D)]$ is a subpath of D of length at most two. Let $D:=v_{1} \cdots v_{r}$ for some $5 \leq r \leq N_{\text {mo }}$. We have $r \geq 5$ since G is short-separation-free. Suppose toward a contradiction that there is a $w^{*} \in V\left(G^{\dagger} \backslash D\right)$ such that w^{*} has neighbors $v_{s}, v_{t} \in V(D)$, where $|s-t|>2$. Let $G^{\dagger}=H_{1} \cup H_{2}$, where $H_{1} \cap H_{2}=v_{s} w^{*} v_{t}$, where H_{1} is bounded by outer face $D_{1}:=v_{s} v_{s+1} \cdots v_{t} w^{*}$ and H_{2} is bounded by outer face $D_{2}:=v_{s} v_{s-1} \cdots v_{t} w^{*}$. Since $|s-t|>2$, we have $\left|V\left(D_{i}\right)\right|<|V(D)|$ for each $i=1,2$.

Without loss of generality, let $C^{\dagger} \subseteq \operatorname{Int}\left(D_{1}\right)$. Thus, D_{1} separates an element of $\mathcal{C} \backslash\left\{C_{*}\right\}$ from C_{*}, and $\left|V\left(D_{1}\right)\right| \leq N_{\text {mo }}$. We claim now that D_{1} is also a bad cycle. Let $C \in \mathcal{C} \backslash\left\{C_{*}\right\}$ with $C \subseteq \operatorname{Int}\left(D_{1}\right)$. For any subgraph $H \subseteq C$, we have $\max \left\{d(H, v): v \in V\left(D_{1}\right)\right\} \geq \max \{d(H, v): v \in V(D)\}-1$. Thus, since $\left|V\left(D_{1}\right)\right|<|V(D)|$ and D is a bad cycle, D_{1} is also a bad cycle. Since $\mid V\left(\operatorname{Int}\left(D_{1}\right)|<|V(\operatorname{Int}(D))|\right.$, this contradicts our assumption.

Thus, we have $|s-t| \leq 2$. If $|s-t|=2$, then, letting $t=s+2$, w^{*} is adjacent to each of v_{s}, v_{s+1}, v_{s+2} by our triangulation conditions, since G is short-separation-free. Thus, in any case, for each $w \in D_{1}\left(D, G^{\dagger}\right)$, we get that $G^{\dagger}[N(w) \cap V(D)]$ is a subpath of D of length at most two. To show that D is a highly predictable facial subgraph of G^{\dagger}, it suffices to show that there exists at most one vertex $w \in D_{1}\left(D, G^{\dagger}\right)$ such that $G^{\dagger}[N(w) \cap V(D)]$ is a subpath of D of length at precisely two. Suppose toward a contradiction that there are two such vertices w_{1}, w_{2}. Without loss of generality, let $G^{\dagger}\left[N\left(w_{1}\right) \cap V(D)\right]=v_{1} v_{2} v_{3}$. Thus, there exists an $s \in\{1, \cdots, r\}$ with $s \neq 1$ such that $G^{\dagger}\left[N\left(w_{2}\right) \cap V(D)\right]=v_{s} v_{s+1} v_{s+2}$.

Let $D^{\prime}:=v_{1} w_{1} v_{3} \cdots v_{r}$ and let $D^{\prime \prime}:=v_{1} \cdots v_{s} w_{2} v_{s+2} \cdots v_{r}$. Since G is short-separation-free, we have $\operatorname{Int}\left(D^{\prime}\right)=$ $\operatorname{Int}(D) \backslash\left\{v_{2}\right\}$. By the minimality of D, D^{\prime} is not a bad cycle, so there exists a $C^{\prime} \in \mathcal{C}$ with $C^{\prime} \subseteq \operatorname{Int}\left(D^{\prime}\right)$ such that $\max \left\{d\left(v, w_{\mathcal{T}}\left(C^{\prime}\right)\right): v \in V\left(D^{\prime}\right)\right\}<\frac{\beta}{3}+\frac{3}{2}\left|V\left(D^{\prime}\right)\right|+\operatorname{Rk}\left(\mathcal{T} \mid C^{\prime}\right)$. Thus, since $|V(D)|=\left|V\left(D^{\prime}\right)\right|, v_{2}$ is the unique vertex of maximal distance from $w_{\mathcal{T}}\left(C^{\prime}\right)$ among all vertices of D, and we have $\max \left\{d\left(v, w_{\mathcal{T}}\left(C^{\prime}\right)\right): v \in V(D)\right\}=$ $d\left(v_{2}, w_{\mathcal{T}}\left(C^{\prime}\right)\right)=\frac{\beta}{3}+\frac{3}{2}|V(D)|+\operatorname{Rk}\left(\mathcal{T} \mid C^{\prime}\right)$, and $d\left(v_{s+1}, w_{\mathcal{T}}\left(C^{\prime}\right)\right)<\max \left\{d\left(v, w_{\mathcal{T}}\left(C^{\prime}\right)\right): v \in V(D)\right\}$.

Since G is short-separation-free, we have $\operatorname{Int}\left(D^{\prime \prime}\right)=\operatorname{Int}(D) \backslash\left\{v_{s+1}\right\}$. Thus, since $v_{2} \in V\left(D^{\prime \prime}\right)$, we have $\max \left\{d\left(v, w_{\mathcal{T}}\left(C^{\prime}\right)\right)\right)$: $\left.v \in V\left(D^{\prime \prime}\right)\right\}=\frac{\beta}{3}+\frac{3}{2}\left|V\left(D^{\prime \prime}\right)\right|+\operatorname{Rk}\left(\mathcal{T} \mid C^{\prime}\right)$. By the minimality of $D, D^{\prime \prime}$ is not a bad cycle, so there exists a $C^{\prime \prime} \in \mathcal{C}$ with $C^{\prime \prime} \neq C^{\prime}$ and $C^{\prime \prime} \subseteq \operatorname{Int}\left(D^{\prime \prime}\right)$ such that $\max \left\{d\left(v, w_{\mathcal{T}}\left(C^{\prime \prime}\right)\right): v \in V\left(D^{\prime \prime}\right)\right\}<\frac{\beta}{3}+\frac{3}{2}\left|V\left(D^{\prime \prime}\right)\right|+\operatorname{Rk}\left(\mathcal{T} \mid C^{\prime \prime}\right)$. But then we have $d\left(C^{\prime}, C^{\prime \prime}\right)<\frac{2 \beta}{3}+7 N_{\mathrm{mo}}$. Since $7 N_{\mathrm{mo}}<\frac{\beta}{3}$, this contradicts Observation 2.1.8.
Now we return to the proof of Theorem 2.1.26. By Claim 2.1.27, \mathcal{T}^{\dagger} satisfies M2), since D is highly predictable and thus D is L_{ϕ}^{D}-predictable. M0) and M1 are immediate, so, to show that \mathcal{T}^{\dagger} is a mosaic, it suffices to show that \mathcal{T}^{\dagger} satisfies the distance conditions of Definition 2.1.6.

Suppose toward a contradiction that \mathcal{T}^{\dagger} does not satisfy the distance conditions of Definition 2.1.6. Since D is the outer face of G^{\dagger}, there exists a $C \in \mathcal{C} \subseteq G^{\dagger}$ such that $d\left(w_{\mathcal{T}^{\dagger}}(C), D\right)<\frac{\beta}{3}+\operatorname{Rk}\left(\mathcal{T}^{\dagger}\left|C^{\prime}+|V(D)|\right.\right.$. Since $w_{\mathcal{T}^{\dagger}}(C)=w_{\mathcal{T}}(C)$ and C has the same rank in \mathcal{T} and \mathcal{T}^{\dagger}, we have $d\left(w_{\mathcal{T}}(C), D\right)<\frac{\beta}{3}+\operatorname{Rk}(\mathcal{T} \mid C)+|V(D)|$. Since any two vertices of D are of distance at most $\frac{|V(D)|}{2}$ apart, we have $\max \left\{d\left(v, w_{\mathcal{T}}(C)\right): v \in V(D)\right\}<\frac{\beta}{3}+\operatorname{Rk}(\mathcal{T} \mid C)+\frac{3}{2}|V(D)|$, contradicting the fact that D is bad. We conclude that \mathcal{T}^{\dagger} does indeed satisfy the distance conditions of Definition 2.1.6, so \mathcal{T}^{\dagger} is a mosaic. Since $\left|V\left(G^{\dagger}\right)\right|<|V(G)|, G^{\dagger}$ admits an L_{ϕ}^{D}-coloring by the minimality of \mathcal{T}, and thus G is L-colorable, contradicting our assumption. Thus there does not exist a bad cycle in G. This completes the proof of Theorem 2.1.26.

Analogous to the above, we have the following lower bounds. This is the second of two main results for Section 2.1.

Theorem 2.1.28. Let $\mathcal{T}=\left(G, \mathcal{C}, L, C_{*}\right)$ be a critical mosaic. For any cycle $D \subseteq G$, if $|V(D)| \leq N_{\mathrm{mo}}$ and D separates an element of \mathcal{C} from an edge of $E\left(C_{*}\right)$, then, for each $C \in \mathcal{C}$ with $C \subseteq \operatorname{Int}(D)$, we have $d\left(w_{\mathcal{T}}(C), D\right)>$ $\operatorname{Rk}(\mathcal{T} \mid C)-\frac{3}{2}|V(D)|$.

Proof. We follow a similar argument to that of Theorem 2.1.28. Given a cycle $D \subseteq G$, we say that D is defective if $|V(D)| \leq N_{\mathrm{mo}}, D$ separates an element of $\mathcal{C} \backslash\left\{C_{*}\right\}$ from C_{*}, and there exists a $C \in \mathcal{C}$ with $C \subseteq \operatorname{Int}(D)$ such that $d\left(w_{\mathcal{T}}(C), D\right) \leq \operatorname{Rk}(\mathcal{T} \mid C)-\frac{3}{2}|V(D)|$.

Suppose toward a contradiction that there exists a defective cycle D, and, among all defective cycles in G, we choose D so that $\mid V(\operatorname{Ext}(D))$ is minimized. Let $G^{\dagger}:=\operatorname{Ext}(D)$ and let C^{\dagger} be a \mathcal{T}-ring with $C^{\dagger} \subseteq \operatorname{Int}(D)$ with $d\left(w_{\mathcal{T}}\left(C^{\dagger}\right), D\right) \leq$ $\operatorname{Rk}\left(\mathcal{T} \mid C^{\dagger}\right)-\frac{3}{2}|V(D)|$.

Claim 2.1.29. D is a highly predictable facial subgraph of $\operatorname{Ext}(D)$, and an induced cycle of $\operatorname{Ext}(D)$

Proof: It is immediate from the minimality of D that there is no chord of $D \operatorname{in} \operatorname{Ext}(D)$. We now show that, for any vertex $x \in V\left(G^{\dagger} \backslash D\right)$, if x has a neighbor in D, then $G^{\dagger}[N(w) \cap V(D)]$ is a subpath of D of length at most two. Analogous to the upper bound argument above, if this does not hold, then there exists a cycle $D^{\prime} \subseteq \operatorname{Ext}(D)$ such that $\left|V\left(D^{\prime}\right)\right|<|V(D)|, D^{\prime}$ separates C_{*} from C^{\dagger}, and $d\left(w_{\mathcal{T}}\left(C^{\dagger}\right), D^{\prime}\right) \leq d\left(w_{\mathcal{T}}\left(C^{\dagger}\right), D\right)+1$. Thus, D^{\prime} is also a defective cycle, and since $\left|V\left(\operatorname{Ext}\left(D^{\prime}\right)\right)\right|<|V(\operatorname{Ext}(D))|$, this contradicts our assumption.

Let $D:=v_{1} \cdots v_{r}$. To show that D is a highly predictable facial subgraph of G^{\dagger}, it suffices to show that there exists at most one vertex $w \in D_{1}\left(D, G^{\dagger}\right)$ such that $G^{\dagger}[N(w) \cap V(D)]$ is a subpath of D of length at precisely two Suppose toward a contradiction that there are two such vertices w_{1}, w_{2}. Without loss of generality, let $G^{\dagger}\left[N\left(w_{1}\right) \cap V(D)\right]=$ $v_{1} v_{2} v_{3}$. Thus, there exists an $s \in\{1, \cdots, r\}$ with $s \neq 1$ such that $G^{\dagger}\left[N\left(w_{2}\right) \cap V(D)\right]=v_{s} v_{s+1} v_{s+2}$.

Let $D^{\prime}:=v_{1} w_{1} v_{3} \cdots v_{r}$ and let $D^{\prime \prime}:=v_{1} \cdots v_{s} w_{2} v_{s+2} \cdots v_{r}$. Since G is short-separation-free, we have $\operatorname{Ext}\left(D^{\prime}\right)=$ $\operatorname{Ext}(D) \backslash\left\{v_{2}\right\}$. By the minimality of D, D^{\prime} is not a defective cycle, so we have $d\left(w_{\mathcal{T}}\left(C^{\dagger}\right), D^{\prime}\right)>\operatorname{Rk}\left(C^{\dagger}\right)-\frac{3}{2}\left|V\left(D^{\prime}\right)\right|$. Since $\left|V\left(D^{\prime}\right)\right|=|V(D)|$, and D is a defective cycle, v_{2} is the unique vertex of D of minimal distance to $w_{\mathcal{T}}\left(C^{\dagger}\right)$ among the vertices of D, and thus $d\left(w_{\mathcal{T}}\left(C^{\dagger}\right), D^{\prime \prime}\right) \leq \operatorname{Rk}\left(C^{\dagger}\right)-\frac{3}{2}|V(D)|$. Since $\left|V\left(D^{\prime \prime}\right)\right|=|V(D)|$, $D^{\prime \prime}$ is also a defective cycle, and since $v_{s+1} \notin V\left(\operatorname{Ext}\left(D^{\prime \prime}\right)\right)$, this contradicts the minimality of D.

By Proposition 2.1.21, there is an L-coloring ϕ of $V(\operatorname{Int}(D))$. Now let $\mathcal{C}^{\dagger}:=\{D\} \cup \mathcal{C} \subseteq \operatorname{Ext}(D)$ and set $\mathcal{T}^{\dagger}:=$ $\left(\operatorname{Ext}^{+}(D), \mathcal{C}^{\dagger}, L_{\phi}^{D}, C_{*}\right)$. Now consider the tuple $\mathcal{T}^{*}:=\left(\operatorname{Ext}(D),\{D\} \cup \mathcal{C} \subseteq G^{\dagger}, L_{\phi}^{D}, C_{*}\right)$. We claim that \mathcal{T}^{*} is a mosaic. Since D is a highly predictable cyclic facial subgraph of $\operatorname{Ext}(D), D$ is also an L-predictable closed \mathcal{T}^{*}-ring, so \mathcal{T}^{*} satisfies M2), and M0), M1) are immediate.

Suppose now that \mathcal{T}^{*} is not a mosaic. In that case, there exists a $C \in \mathcal{C} \subseteq G^{\dagger}$ such that $d\left(w_{\mathcal{T}}{ }^{*}(C), D\right)$ either violates M3) or M4) of Definition 2.1.6. Let $\beta^{*} \in\left\{\frac{\beta}{3}, \beta\right\}$, where $\beta^{*}=\frac{\beta}{3}$ if $C=C_{*}$ and otherwise $\beta^{*}=\beta$. Then we have $d\left(w_{\mathcal{T}^{*}}(C), D\right)<\beta^{*}+\operatorname{Rk}\left(\mathcal{T}^{*} \mid C\right)+|V(D)|$. Since $w_{\mathcal{T}^{*}}(C)=w_{\mathcal{T}}(C)$ and C has the same rank in \mathcal{T} and \mathcal{T}^{*}, we have $d\left(w_{\mathcal{T}}(C), D\right)<\beta^{*}+\operatorname{Rk}(\mathcal{T} \mid C)+|V(D)|$. Since D is defective and any two vertices of D are of distance at most $\frac{|V(D)|}{2}$ apart, we then have $d\left(w_{\mathcal{T}}(C), w_{\mathcal{T}}\left(C^{\dagger}\right)<\beta^{*}+\operatorname{Rk}(\mathcal{T} \mid C)+\operatorname{Rk}\left(\mathcal{T} \mid C^{\dagger}\right)\right.$.

Since \mathcal{T} and \mathcal{T}^{*} have the same outer face, this inequality contradicts the fact that \mathcal{T} is a mosaic. Thus, our assumption that \mathcal{T}^{*} is not a mosaic is false. Since \mathcal{T}^{*} is a mosaic and $\left|V\left(G^{*}\right)\right|<|V(G)|, G^{*}$ admits an L_{ϕ}^{D}-coloring by the minimality of \mathcal{T}. But then ϕ extends to an L-coloring of G, contradicting the fact that \mathcal{T} is critical. This completes the proof of Theorem 2.1.28.

To conclude Section 2.1, we have the following useful corollary to the upper bounds in Theorem 2.1.26 and the lower bounds in Theorem 2.1.28.

Corollary 2.1.30. Let $\mathcal{T}=\left(G, \mathcal{C}, L, C_{*}\right)$ be a critical mosaic, let $C \in \mathcal{C}$, and let $D \subseteq G$ be a separating cycle. Suppose further that $|V(D)| \leq N_{\mathrm{mo}}$ and $d\left(D, w_{\mathcal{T}}(C)\right) \leq \operatorname{Rk}(C)-\frac{3}{2}|V(D)|$. Then there does not exist a $C^{\prime} \in \mathcal{C}$ with $C^{\prime} \subseteq \operatorname{Int}(D)$.

Proof. Suppose toward a contradiction that there exists a $C^{\prime} \in \mathcal{C}$ with $C^{\prime} \subseteq \operatorname{Int}(D)$. By Theorem 2.1.28, we have $C \neq C^{\prime}$. Thus, by Theorem 2.1.26, there exists a $C^{\prime \prime} \subseteq \operatorname{Int}(D)$ such that $\max \left\{d\left(v, w_{\mathcal{T}}\left(C^{\prime \prime}\right)\right): v \in V(D)\right\}<$ $\left.\frac{\beta}{3}+\frac{3}{2} \right\rvert\, V(D)+\operatorname{Rk}\left(\mathcal{T} \mid C^{\prime \prime}\right)$, so $d\left(w_{\mathcal{T}}(C), w_{\mathcal{T}}\left(C^{\prime \prime}\right)\right)<\frac{\beta}{3}+\operatorname{Rk}(C)+\operatorname{Rk}\left(C^{\prime \prime}\right)$, contradicting the distance conditions of Definition 2.1.6.

2.2 Short Generalized Chords of the Rings of Critical Mosaics

The purpose of the remaining sections of Chapter 2 is to show that, for sufficiently small values of k, there are no k-chords of any of the rings of a critical mosaic which separate the remaining rings of the mosaic. We first introduce the following notation, which we use throughout the remainder of the proof of Theorem 1.1.3.

Definition 2.2.1. Let $\mathcal{T}=(G, \mathcal{C}, L)$ be a chart, and let $\ell \geq 1$ be an integer. For each $C \in \mathcal{C}$, we let $\left.\mathcal{K}^{\ell} C, \mathcal{T}\right)$ be the set of proper ℓ-chords Q of C such that neither endpoint of Q is an internal vertex of the precolored path $\mathbf{P}_{\mathcal{T}}(C)$. Furthermore, given a $Q \in \mathcal{K}^{\ell}(C, \mathcal{T})$, we let G_{Q}^{0}, G_{Q}^{1} denote the subgraphs of G such that $G_{Q}^{0} \cup G_{Q}^{1}=G$ is the natural (C, Q)-partition of G, where $\mathbf{P}_{\mathcal{T}}(C) \subseteq G_{Q}^{0}$.
Note that if $\left|E\left(\mathbf{P}_{\mathcal{T}}(C)\right)\right| \leq 1$, then, for every $\ell \geq 1$, every k-chord of C lies in $\mathcal{K}^{\ell}(C, \mathcal{T})$. On the other hand, if C is a closed \mathcal{T}-ring, then, for every $\ell \geq 1, \mathcal{K}^{\ell}(C, \mathcal{T})=\varnothing$. We are particularly interested in those paths of $\mathcal{K}^{\ell}(C, \mathcal{T})$ for which all the rings in $\mathcal{C} \backslash\{C\}$ lie on the same side as the precolored path of C.

Definition 2.2.2. Let $\mathcal{T}=(G, \mathcal{C}, L)$ be a chart, and let $C \in \mathcal{C}$ and $Q \in \mathcal{K}(C, \mathcal{T})$. We say that Q is \mathcal{T}-non-separating if $C^{\prime} \subseteq G_{Q}^{0}$ for each $C^{\prime} \in \mathcal{C} \backslash\{C\}$. Otherwise, we say that Q is \mathcal{T}-separating. If the underlying chart \mathcal{T} is clear from the context then we drop the symbol \mathcal{T} and say that Q is non-separating or separating respectively.

In some cases, we analyze ℓ-chords of a $C \in \mathcal{C}$ in which the precise value of ℓ is not relevant. Thus, we also introduce the notation $\mathcal{K}(C, \mathcal{T}):=\bigcup_{\ell \geq 1} \mathcal{K}^{\ell}(C, \mathcal{T})$. Lastly, we introduce the following natural definition:
Definition 2.2.3. Let $\mathcal{T}=(G, \mathcal{C}, L)$ be a chart, let $C \in \mathcal{C}$ and let Q be a generalized chord of C in G with $Q \in$ $\mathcal{K}(C, \mathcal{T})$. Then we define two cycles C_{Q}^{0} and C_{Q}^{1} of G, where $C_{Q}^{0}:=\left(C \cap G_{Q}^{0}\right)+Q$ and $C_{Q}^{1}:=\left(C \cap G_{Q}^{1}\right)+Q$.

We now state and prove our lone main result for Section 2.2. The remainder of Section 2.2 consists of the proof of this result and its corollary.

Theorem 2.2.4. Let $\mathcal{T}=\left(G, \mathcal{C}, L, C_{*}\right)$ be a critical mosaic and let $C \in \mathcal{C}$. Let Q be a generalized chord of C and let $G=G_{0} \cup G_{1}$ be the natural Q-partition of G. Then the following hold.

1) If C is a closed \mathcal{T}-ring and Q is a proper generalized chord of C with $|E(Q)| \leq \frac{N_{\mathrm{mo}}}{3}$, then there exists a $j \in\{0,1\}$ such that $C^{\prime} \subseteq G_{j}$ for each $C^{\prime} \in \mathcal{C} \backslash\{C\} ; A N D$
2) If C is a closed \mathcal{T}-ring and Q is not a proper generalized chord of C (i.e Q is a cycle), with $|E(Q)|<\frac{N_{\mathrm{mo}}}{3}$, then there exists a $j \in\{0,1\}$ such that $C^{\prime} \subseteq G_{j}$ for each $C^{\prime} \in \mathcal{C} \backslash\{C\} ;$ AND
3) If C is an open \mathcal{T}-ring, $Q \in \mathcal{K}(C, \mathcal{T})$, and $|E(Q)| \leq \frac{2 N_{\mathrm{mo}}}{3}$, then, for each $C^{\prime} \in \mathcal{C} \backslash\{C\}, C^{\prime} \subseteq G_{Q}^{0}$; AND
4) If C is an open \mathcal{T}-ring with $\left.\mathbf{P}:=\mathbf{P}_{\mathcal{T}}(C)\right), Q$ is a proper generalized chord of C, and precisely one endpoint of Q lies in $V(\mathbf{P})$, then, for each $j \in\{0,1\}$, at least one of the following holds: Either $\left|E\left(\mathbf{P}_{\mathcal{T}}(C) \cap G_{j}\right)\right|+$ $|E(Q)|>\frac{2 N_{\mathrm{mo}}}{3}$ or, for each $C^{\prime} \in \mathcal{C} \backslash\{C\}, C \subseteq G_{1-j}$.

In the remainder of Section 2.2, we prove several lemmas which we then combine to prove Theorem 2.2.4. We begin with the following:

Lemma 2.2.5. Let $\mathcal{T}=\left(G, \mathcal{C}, L, C_{*}\right)$ be a critical mosaic. If $C \in \mathcal{C}$ is a closed \mathcal{T}-ring and Q is a proper generalized chord of C with $|E(Q)| \leq \frac{N_{\text {mo }}}{3}$. Let $G=G_{0} \cup G_{1}$ be the natural Q-partition of G. Then there exists a $j \in\{0,1\}$ such that, for all $C^{\prime} \in \mathcal{C} \backslash\{C\}, C^{\prime} \subseteq G_{j}$.

Proof. Let $C \in \mathcal{C}$ be a closed ring. Given a path $Q \subseteq G$, we say that Q is unacceptable if Q is a proper generalized chord of C such that the following hold.

1) $1 \leq|E(Q)| \leq \frac{N_{\mathrm{mo}}}{3} ; A N D$
2) There exists a pair of rings $D_{0}, D_{1} \in \mathcal{C} \backslash\{C\}$ such that, letting $G=G_{0} \cup G_{1}$ be the natural Q-partition of G, we have $D_{i} \subseteq G_{i}$ for each $i=0,1$.

Thus, it suffices to show that there does not exist an unacceptable path in G. Consider the following cases.
Case 1: $C=C_{*}$
In this case, let $G=G_{-} \cup G_{1}$ be the natural Q-partition of G, where $G_{0} \cap G_{\star}=Q$. Let C_{*}^{i} be the outer face of G_{i} for each $i=0,{ }^{〔}$. Since Q is a proper generalized chord of C_{*}, it follows from Proposition 2.1.12 that C_{*}^{i} is a cyclic facial subgraph of G_{i} for each $i=0,{ }^{〔}$, and we have $\left|E\left(C_{*}^{0}\right)\right|+\left|E\left(C_{*}^{1}\right)\right|=\left|E\left(C_{*}\right)\right|+2|E(Q)| \leq \frac{5 N}{3}$, so there exists an $i \in\{0,1\}$ with $\left|E\left(C_{*}^{i}\right)\right| \leq \frac{2 N_{\mathrm{mo}}}{3}$, say $i=0$ without loss of generality.

Since Q is an unacceptable path, C_{*}^{0} is a cycle of G which separates a ring of $\mathcal{C} \backslash\left\{C_{*}\right\}$ from an edge of $E\left(C_{*}\right)$. By Theorem 2.1.26, there exists a $C^{\dagger} \in \mathcal{C}$ with $C^{\dagger} \subseteq \operatorname{Int}\left(C_{*}^{0}\right)$ such that $\max \left\{d\left(v, w_{\mathcal{T}}\left(C^{\dagger}\right): v \in V\left(C_{*}^{0}\right)\right\}<\right.$ $\left.\frac{\beta}{3}+\operatorname{Rk}\left(\mathcal{T} \mid C^{\dagger}\right)\left|+\frac{3}{2}\right| V\left(C_{*}^{0}\right) \right\rvert\,$. For each $i=0$, 1, let $r_{i}:=E\left(C_{*}^{i} \backslash Q\right) \mid$, and let $\ell=|E(Q)|$.

Claim 2.2.6. $r_{1}+\ell>N_{\mathrm{mo}}$.

Proof: Suppose toward a contradiction that $r_{1}+\ell \leq N_{\mathrm{mo}}$. In that case, since C_{*}^{1} separates an element of $\mathcal{C} \backslash\left\{C_{*}\right\}$ from an edge of $E\left(C_{*}^{0}\right) \mid$, and $\left|E\left(C_{*}^{1}\right)\right| \leq N_{\text {mo }}$, it follows from Theorem 2.1.26 that there exists a $C^{\dagger \dagger} \in \mathcal{C} \backslash\{C\}$ with $C^{\dagger \dagger} \subseteq \operatorname{Int}\left(C_{*}^{1}\right)$ and $\max \left\{\left.d\left(v, w_{\mathcal{T}}\left(C^{\dagger \dagger}\right): v \in V\left(C_{*}^{1}\right)\right\}<\frac{\beta}{3}+\operatorname{Rk}\left(\mathcal{T} \mid C^{\dagger \dagger}\right)\left|+\frac{3}{2}\right| V\left(C_{*}^{1}\right) \right\rvert\,\right.$. Since $C^{\dagger \dagger}$ is a cycle contained $\operatorname{in} \operatorname{Int}\left(C_{*}^{1}\right)$, we have $C^{\dagger} \neq C^{\dagger \dagger}$, and since $C_{*}^{0} \cap C_{*}^{1}=Q$, we have

$$
d\left(C^{\dagger}, C^{\dagger \dagger}\right)<\frac{2 \beta}{3}+\frac{3}{2}\left|V\left(C_{*}^{0}\right)\right|+\frac{3}{2}\left|V\left(C_{*}^{1}\right)\right|+4 N_{\mathrm{mo}}<2\left(\frac{\beta}{3}+\frac{7}{2} N_{\mathrm{mo}}\right)
$$

Since $7 N_{\mathrm{mo}}<\frac{\beta}{3}$, this contradicts 1) of Observation 2.1.8. Thus, we have $r_{1}+\ell>N_{\mathrm{mo}}$.
Since C_{*} is a closed \mathcal{T}-ring in this case, we have $d\left(C_{*}, w_{\mathcal{T}}\left(C^{\dagger}\right)\right) \geq \frac{\beta}{3}+\left|V\left(C_{*}\right)\right|+\operatorname{Rk}\left(\mathcal{T} \mid C^{\dagger}\right)$. On the other hand, we have $\max \left\{d\left(v, w_{\mathcal{T}}\left(C^{\dagger}\right): v \in V\left(C_{*}^{0}\right)\right\}<\frac{\beta}{3}+\frac{3}{2}\left|V\left(C_{*}^{0}\right)\right|+\operatorname{Rk}\left(\mathcal{T} \mid C^{\dagger}\right)\right.$ so we have $\frac{3}{2}\left|V\left(C_{*}^{0}\right)\right|>\left|V\left(C_{*}\right)\right|$. Thus, we obtain $\frac{3}{2}\left(r_{0}+\ell\right)>r_{0}+r_{1}$.
Since $\frac{3}{2}\left(r_{0}+\ell\right)>r_{0}+r_{1}$, we have $\frac{r_{0}}{2}+\frac{3}{2} \ell>r_{1}$. Furthermore, we have $\ell>r_{0}$, or else if $r_{0} \geq \ell$, then, by Claim 2.2.6, we have $\left|E\left(C_{*}\right)\right|=r_{0}+r_{1}>N_{\mathrm{mo}}$, which is false. Thus, we have $2 \ell>r_{1}$. Since $\ell \leq \frac{N_{\mathrm{mo}}}{3}$, we obtain $r_{1}<\frac{2 N_{\mathrm{mo}}}{3}$. But then $r_{1}+\ell \leq N_{\mathrm{mo}}$, contradicting Claim 2.2.6. This completes the case where $C=C_{*}$.

Case 2: $C \neq C_{*}$
In this case, for any proper generalized chord Q of C with $1 \leq|E(Q)| \leq N_{\mathrm{mo}}$, there exists a partition $G=G_{\text {in }} \cup G_{\text {out }}$ of G^{\prime}, and a pair of cycles $C_{\text {in }}, C_{\text {out }}$, such that $G_{\text {in }} \cap G_{\text {out }}=Q, G_{\text {in }}=\operatorname{Int}\left(C_{\text {in }}\right)$, and $G_{\text {out }}=\operatorname{Ext}\left(C_{\text {out }}\right)$. Among all unacceptable paths of C, choose Q so that $\left|V\left(G_{\text {out }}\right)\right|$ is minimized. Since Q is an unacceptable path in G, let $D_{\text {in }} \in \mathcal{C} \backslash\{C\}$, where $D_{\text {in }} \subseteq \operatorname{Int}\left(C_{\text {in }}\right)$. Note that $C \subseteq \operatorname{Ext}\left(C_{\text {in }}\right)$.

Claim 2.2.7. $\left|V\left(C_{\text {in }}\right)\right|>N_{\text {mo }}$ and $\left|V\left(C_{\text {out }}\right)\right|<\frac{2 N_{\text {mo }}}{3}$.
Proof: Suppose toward a contradiction that $\left|V\left(C_{\text {in }}\right)\right| \leq N_{\text {mo }}$. Since $D_{\text {in }} \subseteq \operatorname{Int}\left(C_{\text {in }}\right)$ and $C \subseteq \operatorname{Ext}\left(C_{\text {in }}\right)$, it follows from Theorem 2.1.26 that there exists a $D^{\dagger} \in \mathcal{C} \backslash\{C\}$ with $D^{\dagger} \subseteq \operatorname{Int}\left(C_{\text {in }}\right)$ such that $\max \left\{d\left(v, w_{\mathcal{T}}\left(D^{\dagger}\right): v \in V\left(C_{\text {in }}\right\}<\right.\right.$ $\frac{\beta}{3}+\frac{3}{2}\left|V\left(C_{\text {in }}\right)\right|+\operatorname{Rk}\left(\mathcal{T} \mid D^{\dagger}\right)$. Thus, we have $d\left(C, w_{\mathcal{T}}\left(D^{\dagger}\right)\right)<\frac{\beta}{3}+\frac{7}{2} N_{\mathrm{mo}}<\beta$, contradicting Observation 2.1.8.
Thus, we have $\left|V\left(C_{\mathrm{in}}\right)\right|>N_{\mathrm{mo}}$, as desired. Now suppose toward a contradiction that $\left|V\left(C_{\text {out }}\right)\right| \geq \frac{2 N_{\mathrm{mo}}}{3}$. In that case, we have $\left|E\left(C_{\text {out }}\right) \backslash E(Q)\right|>\frac{N_{\mathrm{mo}}}{3}$. Likewise, since $\left|E\left(C_{\text {in }}\right)\right|>N_{\mathrm{mo}}$, we have $\left|E\left(C_{\text {in }}\right) \backslash E(Q)\right|>\frac{2 N_{\mathrm{mo}}}{3}$, so $|E(C)|>N_{\mathrm{mo}}$, which is false.

Now, we have $C \subseteq \operatorname{Int}\left(C_{\text {out }}\right)$, and $C_{\text {out }}$ separates $D_{\text {in }}$ from C_{*}, $\operatorname{since} \operatorname{Int}\left(C_{\text {in }}\right) \subseteq \operatorname{Int}\left(C_{\text {out }}\right)$. Since C and $C_{\text {out }}$ share a vertex, it immediately follows from Proposition 2.1.21 that $V\left(\operatorname{Int}\left(C_{\text {out }}\right)\right)$ is L-colorable, so let ϕ be an L-coloring of $V\left(\operatorname{Int}\left(C_{\text {out }}\right)\right)$. Let $G^{*}:=\operatorname{Ext}\left(C_{\text {out }}\right)$ consider the chart $\mathcal{T}^{*}:=\left(G^{*},\left\{C_{\text {out }}\right\} \cup \mathcal{C} \subseteq G^{*}, L_{\phi}^{C_{\text {out }}}, C_{*}\right)$. We claim now that \mathcal{T}^{*} is a mosaic. Firstly, \mathcal{T}^{*} is a tessellation in which $C_{\text {out }}$ is a closed ring. By Claim 2.2.7 we have $\left|E\left(C_{\text {out }}\right)\right| \leq N_{\text {mo }}$, so M0) is satisfied, and M1) is immediate. We now have the following:

Claim 2.2.8. $C_{\text {out }}$ is an L-predictable \mathcal{T}^{*}-ring.

Proof: Let $C:=v_{1} \cdots v_{n}$ and suppose without loss of generality that v_{1} is an endpoint of Q. Since Q is a proper generalized chord, let $1<i \leq n$, where $Q:=v_{1} u_{1} \cdots u_{\ell-1} v_{i}$. Without loss of generality, let $C_{\text {in }}:=v_{1} Q v_{i} v_{i} v_{i-1} \cdots v_{1}$ and let $C_{\text {out }}:=v_{1} Q v_{i} v_{i+1} \cdots v_{1}$. We first show that, for any $w \in V\left(G^{*} \backslash C_{\text {out }}\right)$, if w has a neighbor $u \in\left\{u_{1}, \cdots, u_{\ell-1}\right\}$, then for any vertex $y \in N(w) \cap V\left(C_{\text {out }}\right)$, if $y \neq u$, then $u y$ is an edge of $C_{\text {out }}$.

Suppose toward a contradiction that there exists a vertex $w^{\prime} \in V\left(G^{*} \backslash C_{\text {out }}\right)$, a neighbor u of w^{\prime}, with $u^{\prime} \in$ $\left\{u_{1}, \cdots u_{\ell-1}\right\}$, and a neighbor y of w^{\prime} such that $y \in V\left(C_{\text {out }}\right) \backslash\{u\}$ but u, y are not adjacent vertices of $C_{\text {out }}$.

Let P_{1}, P_{2} be the unique subpaths of $C_{\text {out }}$ such that $E\left(P_{1}\right) \cup E\left(P_{2}\right)=E\left(C_{\text {out }}\right)$ and P_{1}, P_{2} intersect precisely on the vertices u, y. If $y \notin V(Q)$, then each of the two paths $y w u Q v_{1}, w y u Q v_{i}$ is a proper generalized chord of C of length at most $\frac{N_{\mathrm{mo}}}{3}$, at least one of which is an unacceptable path, contradicting the minimality of Q. Thus, we have $y \in V(Q)$, so precisely one of P_{1}, P_{2} is a subpath of Q, so suppose without loss of generality that $P_{1} \subseteq Q$, and that $y \in V\left(u Q v_{i}\right)$. Let $Q^{\prime}:=v_{1} Q u w^{\prime} y Q v_{i}$. Since u, y are not adjacent in $C_{\text {out }}$, we have $\left|E\left(Q^{\prime}\right)\right| \leq|E(Q)| \leq \frac{N_{\mathrm{m}}}{3}$. Note that Q^{\prime} is a proper generalized chord of C with the same endpoints as Q. We claim now that Q^{\prime} is an unacceptable path G. We just need to show that the generalized chord Q^{\prime} of C separates $D_{\text {in }}$ from C_{*}.

Suppose not. In that case, $D_{\text {in }}$ lies in the closed disc bounded by the cycle $u Q y w^{\prime}$, and thus C also lies in the closed disc bounded by $u Q y w^{\prime}$. Furthermore, note that the two vertices u, y are of distance at least three apart on Q, or else $u Q y w^{\prime}$ is a cycle of length at most four which separates D_{in} from C_{*}, contradicting short-separation-freeness.

Now we apply Theorem 2.1.28. Let $A:=u Q y w^{\prime}$. We have $|V(A)| \leq \frac{N_{\mathrm{mo}}}{3}+2$, and, by Claim 2.2.7, we have $\left|E\left(C_{\mathrm{in}}\right)\right|>N_{\mathrm{mo}}$, and thus $|V(C)| \geq \frac{2 N_{\mathrm{mo}}}{3}+1$. By Theorem 2.1.28, we have $d(A, C)>|V(C)|-\frac{3}{2}|V(A)|$, so we
have $d(A, C)>\left(\frac{2 N_{\mathrm{mo}}}{3}+1\right)-\left(\frac{N_{\mathrm{mo}}}{2}+3\right)=\frac{N_{\mathrm{mo}}}{6}-2$. However, since $|E(Q)| \leq \frac{N_{\mathrm{mo}}}{3}$, and u, y are of distance at least three apart on Q, at least one of u, y is of distance at most $\frac{N_{\mathrm{mo}}}{6}-3$ from $\left\{v_{1}, v_{i}\right\}$, so we have a contradiction.

Thus, Q^{\prime} is indeed an unacceptable path in G^{\prime}, contradicting the minimality of Q, so our original assumption on the vertex w^{\prime} is false. We conclude that, for each vertex $w \in V\left(G^{*} \backslash C_{\text {out }}\right)$, if w has a neighbor $u \in\left\{u_{1}, \cdots, u_{\ell-1}\right\}$, then for any vertex $y \in N(w) \cap V\left(C_{\text {out }}\right)$, if $y \neq u$, then $u y$ is an edge of $C_{\text {out }}$. An identical argument shows that there does not exist a chord $x y$ of $C_{\text {out }}$ in $E\left(G^{*}\right)$ such that $x y$ has at least one endpoint in $\left\{u_{1}, \cdots, u_{\ell-1}\right\}$.

Now suppose toward a contradiction that $C_{\text {out }}$ is not an L-predictable \mathcal{T}^{*}-ring. Combining the above facts, there exists a $w \in V\left(G^{*} \backslash C_{\text {out }}\right)$ such that w is adjacent to each of v_{1}, u_{1}, v_{i}. By the minimality of $Q, v_{1} w v_{i}$ is not an unacceptable path, and thus the 2 -chord $v_{1} w v_{i}$ of C does not separate $D_{\text {in }}$ from C_{*}, and thus the cycle $v_{1} w v_{i} u$ separates $D_{\text {in }}$ from C_{*}, contradicting the fact that G is short-separation-free. This completes the proof of Claim 2.2.8.

Since $C_{\text {out }}$ is an L-predictable cyclic facial subgraph of G^{*}, \mathcal{T}^{*} also satisfied M2). To finish showing that \mathcal{T}^{*} is a mosaic, it suffices to check that \mathcal{T}^{*} satisfies the distance conditions of Definition 2.1.6.

Claim 2.2.9. $|V(C)| \geq\left|V\left(C_{\text {out }}\right)\right|+\frac{\mid E(Q)}{2}$.
Proof: Let $r_{\text {in }}:=\left|E\left(C_{\text {out }}\right) \backslash E(Q)\right|$ and let $r_{\text {out }}:=\left|E\left(C_{\text {out }}\right) \backslash E(Q)\right|$. Suppose toward a contradiction that $|V(C)|<$ $\left|V\left(C_{\text {out }}\right)\right|+\frac{\mid E(Q)}{2}$. Then we have $r_{\text {in }}+r_{\text {out }}<r_{\text {out }}+\frac{\mid E(Q)}{2}$, so $r_{\text {in }}<\frac{|E(Q)|}{2}$. But then $\left|V\left(C_{\text {in }}\right)\right|<\frac{3 \mid E(Q)}{2}$ and thus $\left|V\left(C_{\text {in }}\right)\right|<\frac{N_{\text {mo }}}{2}$, contradicting Claim 2.2.7.
Now, for any $C^{\prime} \in \mathcal{C} \subseteq G^{*}$, we have $d\left(w_{\mathcal{T}}\left(C^{\prime}\right), C\right) \leq d\left(w_{\mathcal{T}}\left(C^{\prime}\right), C_{\text {out }}\right)+\frac{\mid E(Q)}{2}$. For any such $C^{\prime}, w_{\mathcal{T}}\left(C^{\prime}\right)=w_{\mathcal{T}^{*}}\left(C^{\prime}\right)$, and C^{\prime} has the same rank in \mathcal{T} and \mathcal{T}^{*}. By Claim 2.2.9, we have $\operatorname{Rk}\left(\mathcal{T}^{*} \mid C_{\text {out }}\right) \leq \operatorname{Rk}(\mathcal{T} \mid C)-\frac{\mid E(Q)}{2}$. Thus, since \mathcal{T} satisfies the distance conditions of Definition 2.1.6, and \mathcal{T} and \mathcal{T}^{*} have the same outer face, \mathcal{T}^{*} also satisfies the distance conditions of Definition 2.1.6, so \mathcal{T}^{*} is indeed a mosaic, as desired. Since $\left|V\left(\operatorname{Ext}\left(C_{\text {out }}\right)\right)\right|<|V(G)|$,
 \mathcal{T} is critical. This completes the proof of Lemma 2.2.5.

Lemma 2.2.5 has the following corollary.
Corollary 2.2.10. Let $\mathcal{T}=\left(G, \mathcal{C}, L, C_{*}\right)$ be a critical mosaic and let $C \in \mathcal{C}$. Then C is an induced cycle.

Proof. By Proposition 2.1.22, it suffices to show that C is an induced cycle in G in the case where C is closed \mathcal{T}-ring. Suppose toward a contradiction that C is not an induced cycle, and let $x y \in E(G) \backslash E(C)$ be a chord of C. Let $G=G_{0} \cup G_{1}$ be the natural $x y$-partition of G. Applying Lemma 2.2.5, let $C^{\prime} \subseteq G_{0}$ for each $C^{\prime} \in \mathcal{C} \backslash\{C\}$. Let $C_{0}:=\left(C \cap G_{0}\right)+x y$, let $C_{0}^{\text {out }}$ be the outer face of G_{0}, and let $\mathcal{T}_{0}:=\left(G_{0}, \mathcal{C} \backslash\{C\} \cup\left\{C_{0}\right\}, L, C_{0}^{\text {out }}\right)$. Note that, since $\left|V\left(C_{0}\right)\right|<|V(C)|$, and C_{0} is a closed \mathcal{T}_{0}-ring, \mathcal{T}_{0} satisfies the distance conditions of Definition 2.1.6. Thus, \mathcal{T}_{0} is a mosaic, and since $\left|V\left(G_{0}\right)\right|<|V(G)|, G_{0}$ admits an L-coloring ϕ by the minimality of \mathcal{T}.

Let $C_{1}:=\left(G_{1} \cap Q\right)+x y$. We claim now that ϕ extends to L-color G_{1}. By definition, we have $|L(p)|=1$ for each $p \in V(C)$, and since $V(C)$ is L-colorable, ϕ extends to an L-coloring ϕ^{\prime} of $V\left(G_{0}\right) \cup V\left(C_{1}\right)$. Since $|L(v)| \geq 5$ for all $v \in V\left(G_{1}\right) \backslash V\left(C_{1}\right)$, the graph $G_{1} \backslash C_{1}$ contains a lone facial subgraph F such that F contains every vertex of $G_{1} \backslash C_{1}$ with an $L_{\phi^{\prime}}$ list of size less than five. Since C is L-predictable, there exists a vertex $w \in V(F)$ such that $\left|L_{\phi^{\prime}}(v)\right| \geq 3$ for all $v \in V(F-w)$, and $\left|L_{\phi}(w)\right| \geq 2$. Thus, $G_{1} \backslash C_{1}$ is $L_{\phi^{\prime}}$-colorable, so ϕ extends to an L-coloring of G, contradicting the fact that \mathcal{T} is critical.

The above work proves 1) of Theorem 2.2.4. With the lemma below, we prove 2) of Theorem 2.2.4.

Lemma 2.2.11. Let $\mathcal{T}=\left(G, \mathcal{C}, L, C_{*}\right)$ be a critical mosaic and let $C \in \mathcal{C}$ be a closed ring. For any generalized chord Q of C with $|E(Q)|<\frac{N_{\mathrm{mo}}}{3}$ and $V(Q \cap C) \mid=1$, the cycle Q does not separate two elements of $\mathcal{C} \backslash\{C\}$.

Proof. Given a chord Q of C with $|E(Q)|<\frac{N_{\text {mo }}}{3}$ and $V(Q \cap C) \mid=1$, we say that Q is undesirable if Q separates two elements of $\mathcal{C} \backslash\{C\}$. Suppose toward a contradiction that there exists an undesirable cycle Q. We now break the proof of Lemma 2.2.11 into two cases:

Case 1: $C=C_{*}$
In this case, choose Q so that, among all undesirable cycles, $|V(\operatorname{Ext}(Q))|$ is minimized. Let v be the lone vertex of $V(Q \cap C)$. By assumption, there exist $D_{1}, D_{2} \in \mathcal{C} \backslash\left\{C_{*}\right\}$ with $D_{1} \subseteq \operatorname{Int}(Q)$ and $D_{2} \subseteq \operatorname{Ext}(Q)$.

Claim 2.2.12.

1) Q does not have a chord in $\operatorname{Ext}(Q)$; AND
2) There is no edge of $\operatorname{Ext}(Q)$ with one endpoint in $Q \backslash\{v\}$ and one endpoint in $C_{*} \backslash\{v\}$, and likewise, there does not exist a vertex of $V(\operatorname{Ext}(Q)) \backslash V\left(C_{*} \cup Q\right)$ with one neighbor in $V(Q \backslash\{v\})$ and one neighbor in $V\left(C_{*} \backslash\{v\}\right)$; AND
3) For any vertex $x \in V(\operatorname{Ext}(Q)) \backslash V\left(C_{*} \cup Q\right)$, the graph $G[V(Q) \cap N(x)]$ is a subpath of Q of length at most one.

Proof: 1) and 3) follow immediately from the minimality of $|V(\operatorname{Ext}(Q))|$. Likewise, if 2) does not hold, then there exists a proper generalized chord Q^{\prime} of C, which separates D_{1} from D_{2}, such that $\left|E\left(Q^{\prime}\right)\right| \leq|E(Q)|+1$, and thus $\left|E\left(Q^{\prime}\right)\right| \leq \frac{N_{\mathrm{mo}}}{3}$. This contradicts Lemma 2.2.5.

We also have the following.

Claim 2.2.13. For each $D \in \mathcal{C} \backslash\left\{C_{*}\right\}$ with $D \subseteq \operatorname{Ext}(Q)$ we have $d(D, Q)>\frac{2 \beta}{3}-3 N_{\mathrm{mo}}$.

Proof: By Theorem 2.1.26 applied to the cycle Q, there exists a $D^{\prime} \in \mathcal{C} \backslash\left\{C_{*}\right\}$ with $D^{\prime} \subseteq \operatorname{Int}(Q)$, such that $d\left(D^{\prime}, Q\right)<$ $\frac{\beta}{3}+|V(Q)|+2 N_{\mathrm{mo}}$. By Observation 2.1.8, we have $d\left(D, D^{\prime}\right) \geq \beta$. Since any two vertices of Q are of distance at most $\frac{N_{\mathrm{mo}}}{6}$ apart, we then have $d(D, Q) \geq \beta-\frac{N_{\mathrm{mo}}}{6}-\left(\frac{\beta}{3}+|V(Q)|+2 N_{\mathrm{mo}}\right)$. Thus, we have $d(D, Q)>\frac{2 \beta}{3}-3 N_{\mathrm{mo}}$, as desired.

We now write $Q:=v u_{1} \cdots u_{m}$ and $C_{*}:=v b_{1} b_{2} \cdots b_{n}$ for some integers m, n. We then have the following:

Claim 2.2.14. $V(\operatorname{Int}(Q))$ is L-colorable.

Proof: Let $G^{\prime}:=G \backslash(\operatorname{Ext}(Q) \backslash V(C \cup Q))$, and let G_{*} be a graph obtained from G^{\prime} by adding to G^{\prime} an edge $u_{i} b$ with one endpoint in $Q \backslash\{v\}$ and one endpoint in $C_{*}-v$ in the closed region bounded by the graph $C_{*} \cup Q$. Then G^{*} is 2-connected. Furthermore, there exist cycles C_{*}^{1}, C_{*}^{2} of G_{*} which intersect precisely on the vertices v, u_{i}, b, such that $v u_{1} \cdots u_{i} b \subseteq C_{*}^{1}, v u_{m} \cdots u_{i} b \subseteq C_{*}^{2}$, and $G_{*} \backslash(\operatorname{Int}(Q) \backslash Q)=C_{*}^{1} \cup C_{*}^{2}$. For each $i=1,2$, let $G_{*}^{i}:=\operatorname{Int}_{G_{*}}\left(C_{*}^{i}\right)$ and let $\ell_{i}:=\left|V\left(C_{*}^{i}\right)\right|$.

Now we apply Proposition 2.1.18 to the closed disc bounded by C_{*}^{i} for each $i=1,2$. For each $i=1,2$, we embed a short-separation-free C_{*}^{i}-web K^{i} in the closed disc bounded by C_{*}^{i}, where $\left|V\left(K^{i}\right)\right| \leq \ell_{i}^{2}$ for each $i=1,2$. Let G^{\dagger} be the graph obtained from G_{*} in this way, and let $\mathcal{C}^{\dagger}:=\left\{C_{*}\right\} \cup\left\{D \in \mathcal{C} \backslash\left\{C_{*}\right\}: D \subseteq \operatorname{Int}(Q)\right\}$. Then G^{\dagger} is short-separation-free. Let $\mathcal{T}^{\dagger}:=\left(G^{\dagger}, \mathcal{C}^{\dagger}, L, C_{*}\right)$. Then \mathcal{T}^{\dagger} is a tessellation, where C_{*} is a closed \mathcal{T}^{\dagger}-ring. We claim
that \mathcal{T}^{\dagger} is a mosaic as well. Note that, by definition of a $C_{*}^{i} i$-web for each $i=1,2, C_{*}$ is a highly predictable cyclic facial subgraph of G^{\dagger}, and thus an L-predictable \mathcal{T}^{\dagger}-ring, so M2) is satisfied. M0) and M1) are immediate, and, since \mathcal{T} satisfies distance conditions M3)-M4), it follows from the construction of K^{1}, K^{2} that \mathcal{T}^{\dagger} does as well. Thus, \mathcal{T}^{\dagger} is indeed a mosaic. To finish the proof of Claim 2.2.14, it just suffices to check that $\left|V\left(G^{\dagger}\right)\right|<|V(G)|$.

Suppose toward a contradiction that $\left|V\left(G^{\dagger}\right)\right| \geq|V(G)|$. Now, since Q is an undesirable cycle, there exists a $D \in$ $\mathcal{C} \backslash\left\{C_{*}\right\}$ with $D \subseteq \operatorname{Ext}(Q)$. By Claim 2.2.13, we have $d(D, Q)>\frac{2 \beta}{3}-3 N_{\mathrm{mo}}$. By Observation 2.1.16 applied to $\operatorname{Ext}(Q)$, we have $|V(\operatorname{Ext}(Q) \backslash Q)| \geq 5\left(\frac{2 \beta}{3}-3 N_{\mathrm{mo}}\right)$. On the other hand, we have $\left.\mid V\left(G^{\dagger}\right) \backslash V(\operatorname{Int}(Q) \backslash Q)\right) \mid \leq \ell_{1}^{2}+\ell_{2}^{2}$. Since $\left|V\left(G^{\dagger}\right)\right| \geq|V(G)|$, we thus have $\frac{1}{5}\left(\ell_{1}^{2}+\ell_{2}^{2}\right) \geq \frac{2 \beta}{3}-3 N_{\mathrm{mo}}$. Now, we have $\ell_{1}^{2}+\ell_{2}^{2} \leq\left(\ell_{1}+\ell_{2}\right)^{2} \leq(|E(C)|+$ $|E(Q)|+1)^{2} \leq\left(\frac{4 N_{\mathrm{mo}}}{3}\right)^{2}$. Thus, we have $3 N+\frac{16 N_{\mathrm{mo}}^{2}}{45} \geq \frac{2}{3}\left(\frac{17 N_{\mathrm{mo}}^{2}}{15}\right)$, which is false.
Thus, $\left|V\left(G^{\dagger}\right)\right|<|V(G)|$, so G^{\dagger} admits an L-coloring by the minimality of \mathcal{T}. Since Q has no chord in $\operatorname{Ext}(C)$, there is a proper L-coloring of the subgraph of G induced by $V(\operatorname{Int}(Q))$.

Applying Claim 2.2.14, let ϕ be an L-coloring of $V(\operatorname{Int}(Q))$. By Observation 2.2.12, there is no edge of $\operatorname{Ext}(C)$ with one endpoint in $Q-v$ and one endpoint in $C_{*}-v$. Thus, since $|L(p)|=1$ for each $p \in V(C), \phi$ extends to a proper L-coloring ϕ^{\prime} of $V\left(\operatorname{Int}\left(Q^{\prime}\right)\right) \cup V(C)$. Since $C \cup Q$ is connected, the $\operatorname{graph} \operatorname{Ext}(Q) \backslash V(C \cup Q)$ contains a face F containing all the vertices of distance one from $V(C \cup Q)$. Combining 2) of Observation 2.2.12 with the fact that C_{*} is an L-predictable \mathcal{T}-ring, there is a lone vertex $w \in V(F)$ such that $\left|L_{\phi^{\prime}}(w)\right| \geq 2$, and $\left|L_{\phi^{\prime}}(x)\right| \geq 3$ for all $x \in V(F)$.

Now, let H be a connected component of $\operatorname{Ext}(Q) \backslash V(C \cup Q)$, let $F^{\prime} \subseteq F$ be the outer face of H, and let $\mathcal{C}^{\prime}:=$ $\left\{F^{\prime}\right\} \cup\left\{D \in \mathcal{C} \backslash\left\{C_{*}\right\}: D \subseteq H\right\}$. We claim now that $\mathcal{T}^{\prime}:=\left(H, \mathcal{C}^{\prime} L_{\phi^{\prime}}, F^{\prime}\right)$ is a mosaic. Note that if $w \in V\left(F^{\prime}\right)$ then we set $\mathbf{P}_{\mathcal{T}^{\prime}}\left(F^{\prime}\right)=w$, otherwise all the vertices of F^{\prime} have $L_{\phi^{\prime}}$-lists of size at least three, and then we just choose any edge of F^{\prime} to be $\mathbf{P}_{\mathcal{T}^{\prime}}\left(F^{\prime}\right)$. In either case, \mathcal{T}^{\prime} satisfies M0) and M1), and M2) is immediate. It also immediately follows from Claim 2.2.13 that \mathcal{T}^{\prime} satisfies the distance conditions of Definition 2.1.6, so \mathcal{T}^{\prime} is a mosaic. Thus, by the minimality of \mathcal{T}, H is $L_{\phi^{\prime}}$-colorable. Since this holds for each connected component of $\operatorname{Ext}(Q) \backslash V(C \cup Q), \phi^{\prime}$ extends to an L-coloring of G, contradicting the fact that \mathcal{T} is critical. This completes the case of Lemma 2.2.11 in which C is the outer face.

Case 2: $C \neq C_{*}$
In this case, we choose Q so that, among undesirable cycles, the quantity $|V(\operatorname{Int}(Q))|$ is minimized. We now have the following:

Claim 2.2.15. $C \subseteq \operatorname{Int}(Q)$

Proof: Suppose not. Then, since C is a facial subgraph of G, we have $C \subseteq \operatorname{Ext}(D)$. Since Q is an undesirable cycle, it follows from Theorem 2.1.26 that there exists a $D \in \mathcal{C}$ with $D \subseteq \operatorname{Int}(Q)$ such that $d(D, Q)<\frac{\beta}{3}+|V(Q)|+2 N_{\text {mo }}$. Since $C \subseteq \operatorname{Ext}(Q)$, we have $C \neq D$. Furthermore, since any two vertices of Q are of distance at most $\frac{N_{\mathrm{mo}}}{6}$ apart, we have $d(C, D)<\frac{\beta}{3}+\frac{N_{\text {mo }}}{2}+2 N_{\text {mo }}<\beta$, contradicting Observation 2.1.8.

Now the same argument as in Case 1, with the roles of $\operatorname{Ext}(Q)$ and $\operatorname{Int}(Q)$ interchanged, shows that there is an L coloring ϕ of $V(\operatorname{Ext}(Q))$ which extends to an L-coloring ϕ^{\prime} of $V(\operatorname{Ext}(Q) \cup C)$, such that ϕ^{\prime} extends to the interior of Q. This contradicts the fact that \mathcal{T} is not L-colorable. This completes the proof of Lemma 2.2.11.

We now prove 3) and 4) of Theorem 2.2.4. We begin by showing that, for small values of k, if we have a k-chord of an open ring in a critical mosaic, then one side of the k-chord is colorable under certain conditions:

Proposition 2.2.16. Let $\mathcal{T}=\left(G, \mathcal{C}, L, C_{*}\right)$ be a critical mosaic. Let $C \in \mathcal{C}$ be an open \mathcal{T}-ring and let $\mathbf{P}=p_{1} \cdots p_{m}$. Then the following hold.

1) Let Q be a proper generalized chord of C with $|E(Q)| \leq \frac{2 N_{\text {mo }}}{3}$. If $Q \in \mathcal{K}(C, \mathcal{T}), Q$ is \mathcal{T}-separating, and C_{Q}^{1} does not have a chord in G_{Q}^{1}, then the subgraph of G induced by $V\left(G_{Q}^{0}\right)$ is L-colorable; AND
2) Let Q be a proper generalized chord of C with precisely one endpoint in $\stackrel{\circ}{\mathbf{P}}$, and let $G=G_{0} \cup G_{1}$ be the natural Q-partition of G, where $p_{1} \in V\left(G_{0}\right)$ and $p_{m} \in V\left(G_{1}\right)$. For each $i=0,1$, let C_{i} be the cycle $\left(C \cap G_{i}\right)+Q$. If the following conditions hold, then the subgraph of G induced by $V\left(G_{1}\right)$ is L-colorable.
i) $\left|E\left(P \cap G_{1}\right)\right|+|E(Q)| \leq \frac{2 N_{\mathrm{mo}}}{3}$, and there exists a $C^{\prime} \in \mathcal{C} \backslash\{C\}$ with $C^{\prime} \subseteq G_{1}$; AND
ii) There is no chord of C_{1} in G_{1}.

Proof. We first show the following result analogous to Proposition 2.1.18 from Section 2.1:

Claim 2.2.17. Let K be a planar embedding of a chordless cycle, with $|V(K)| \geq 5$. Let P be a subpath of K with $|E(P)|>1$ (possibly $P=K$). Then there exists a short-separation-free planar embedding K^{*} such that the following hold.

1) $K \subseteq K^{*}$, and K is the outer face of K^{*}; AND
2) For every $v \in D_{1}\left(P, K^{*}\right)$, the induced graph $K^{*}[N(v) \cap V(P)]$ is a subpath of P of length one; AND
3) For any distinct $v, w \in D_{1}\left(P, K^{*}\right)$, if each of v, w is adjacent to an edge of P, then $v w \notin E\left(K^{*}\right)$; AND
4) Every facial subgraph of K^{*}, except K, is a triangle; AND
5) For any vertex $x \in V(\stackrel{\circ}{P})$, we have $d_{K}(x, K \backslash P)=d_{K^{*}}(x, K \backslash \stackrel{\circ}{P})$; AND
6) $\left|V\left(K^{*} \backslash K\right)\right| \leq 4|V(P)|^{2}$.

Proof: We break this into two cases:
Case 1: $|V(P)| \geq \frac{|V(K)|}{2}$
In this case, we let K^{*} be a K-web. Then $\left|V\left(K^{*}\right)\right| \leq|V(C)|^{2}$ and $|V(C)| \leq 2|V(P)|$, so $\left|V\left(K^{*}\right)\right| \leq 4|V(P)|^{2}$, and thus $\left|V\left(K^{*} \backslash K\right)\right| \leq 4|V(P)|^{2}$, as desired.
Case 2: $\left\lvert\, V(P)<\frac{|V(K)|}{2}\right.$
In this case, we write $K:=v_{1} \cdots v_{r}$ for some $r \geq 5$, and let $1 \leq \ell<\frac{r}{2}$, where $P:=v_{1} \cdots v_{\ell}$, and let K^{\prime} be a graph obtained from K by adding to K a lone vertex x to the interior of the open disc bounded by K, and adding edges incident to z so that z is adjacent to each of $\left.v_{\ell+1}, v_{\ell+2}, \cdots, v_{r}, v_{1}\right\}$. Let $C:=v_{1} v_{2} \cdots v_{\ell+1} x$. Then $|V(C)| \geq 5$, since $\ell \geq 3$, and thus, by Proposition 2.1.18, there exists short-separation a C-web H with $|V(H)| \leq|V(C)|^{2}$. Let K^{*} be a graph obtained from K^{\prime} by embedding the C-web H into the open disc bounded by C. Note that K^{*} is short-separation-free as well. We claim now that K^{*} satisfies the desired properties. Properties 1), 2), 3), and 4) are immediate from the definition of a C-web.

Now let $x \in V(\stackrel{\circ}{P})$, and suppose toward a contradiction that $d_{K^{*}}(x, K \backslash \stackrel{\circ}{P})<d_{K}(x, K \backslash \stackrel{\circ}{P})$. In that case, there is a shortest $(x, K \backslash \stackrel{\circ}{P})$-path in K^{*} containing the vertex z, and $d_{K *}(x, z)+1<d_{K}(x, K \backslash \stackrel{\circ}{P})$. Now, note that $d_{K^{*}}(x, z)=d_{H}(x, z)$, and $d_{H}(x, z)=d_{C}(x, z)$, since H is a C-web. Thus, we have $d_{C}(x, z)<d_{K}(x, K \backslash \stackrel{\circ}{P})$, which is false. Thus, $d_{K^{*}}(x, K \backslash \stackrel{\circ}{P}) \geq d_{K}(x, K \backslash \stackrel{\circ}{P})$, and so $d_{K^{*}}(x, K \backslash \stackrel{\circ}{P})=d_{K}(x, K \backslash \stackrel{\circ}{P})$, since $K \subseteq K^{*}$. Thus,
K^{*} satisfies 5). Furthermore, $\left|V\left(K^{*} \backslash K\right)\right|=|V(H \backslash P)| \leq(|V(P)|+2)^{2}-|V(P)| \leq 4|V(P)|^{2}$, so 6) is satisfied as well.

Given a planar embedding K of a chordless cycle with $|V(K)| \geq 5$, and a subpath $P \subseteq K$, if K^{*} is a planar embedding satisfying Claim 2.2.17, then we call K^{*} a P-partial K-web. Analogous to Observation 2.1.19, the following is immediate:

Claim 2.2.18. Let G be a short-separation-free graph, let C be a cyclic facial subgraph of G, and let Q be a proper generalized chord of C. Let $G=G_{0} \cup G_{1}$ be the natural Q-partition of G. For each $i=0,1$, let C_{i} by the cycle $\left(G_{i} \cap C\right)+Q$. Suppose that $G_{1}=\operatorname{Int}\left(C_{1}\right)$, and let $G^{*}:=G \backslash\left(G_{1} \backslash C_{1}\right)$. Let Q^{\prime} be a subpath of C_{1}, with $Q \subseteq Q^{\prime}$, and let G^{\dagger} be a graph obtained from G^{*} by adding to G^{*} a Q^{\prime}-partial C_{1}-web in the closed disc bounded by C_{1}. Then G^{\dagger} is short-separation-free.

Proof: Suppose toward a contradiction that there is a separating cycle $D \subseteq G^{\dagger}$ with $|V(D)| \leq 4$. Since G_{0} is short-separation-free, and K^{*} is short-separation-free, $E(D)$ has nonempty intersection with each of $E\left(G_{0}\right) \backslash E(Q)$ and $E\left(K^{*}\right) \backslash E(Q)$. Since $|E(D)| \leq 4$, and D is a separating cycle in G^{\dagger}, K^{*} contains an ℓ-chord of Q, where $1 \leq \ell \leq 4$, whose endpoints are non-adjacent in Q. Since $Q \subseteq Q^{\prime}$, this contradicts the fact that K^{*} is a Q^{\prime}-partial C_{1}-web.

Now we return to the proof of Proposition 2.2.16. Let $\mathcal{T}=\left(G, \mathcal{C}, L, C_{*}\right)$ be a critical mosaic and let $C \in \mathcal{C}$ be an open ring. Let $\mathbf{P}:=\mathbf{P}_{\mathcal{T}}(C)$. We first prove 1). Let Q be a \mathcal{T}-separating proper generalized chord of C with $1 \leq$ $|E(Q)| \leq \frac{2 N_{\mathrm{mo}}}{3}$. C is a cycle by Proposition 2.1.12, so let $C:=v_{1} v_{2} \cdots v_{\ell}$ for some $\ell \geq 3$. Let $Q:=v_{i} w_{1} \cdots w_{t} v_{j}$ for some $j \geq i$, where $t=|V(Q)|-1$ and $C_{Q}^{1}=v_{i} \cdots v_{j} w_{1} \cdots w_{t}$. Consider the following cases:
Case 1: $C_{*}=C$
In this case, let $G_{*}:=G \backslash\left(G_{Q}^{1} \backslash C_{Q}^{1}\right)$. Then G_{*} admits a partition $G_{*}=G_{*}^{0} \cup G_{*}^{1}$, where $G_{*}^{0}=G_{Q}^{0}$ and $G_{*}^{1}=C_{Q}^{1}$. Furthermore, by Proposition 2.1.22, we have $|V(Q)| \geq 3$. We construct a new mosaic from G^{*} as follows. Let G^{\dagger} be a graph obtained from G^{*} by embedding a Q-partial C_{Q}^{1}-web K^{*} in the closed disc of \mathbb{R}^{2} bounded by C_{Q}^{1}. Let L^{\dagger} be a list-assignment for G^{\dagger} obtained by setting $L^{\dagger}(v)=L(v)$ for all $v \in V\left(G_{Q}^{0}\right) \cup V(C)$, and letting $L^{\dagger}(v)$ be an arbitrary 5-list for any $v \in V\left(G^{*}\right) \backslash V\left(G_{Q}^{0} \cup C\right)$. Note that C is a facial subgraph of G^{\dagger}.
We claim that $\mathcal{T}^{\dagger}:=\left(G^{\dagger},\{C\} \cup \mathcal{C} \subseteq G_{Q}^{0}, L^{\dagger}, C\right)$ is a mosaic. By Claim 2.2.18, G^{\dagger} is short-separation-free, and, since every facial subgraph of G, except those of \mathcal{C}, is a triangle, it follows from the construction of K^{*} that every facial subgraph of G, except those of $\{C\} \cup \mathcal{C} \subseteq G_{Q}^{0}$, is a triangle. Thus, \mathcal{T}^{\dagger} is a tessellation, and clearly satisfies M0), M1), and M2) of Definition 2.1.6. It just suffices to check that distance conditions M3 and M4 hold for \mathcal{T}^{\dagger}. If these do not hold, then, there exists a $C^{\prime} \in \mathcal{C} \subseteq G_{Q}^{0}$ and a subgraph H of C^{\prime} such that $d_{G^{\dagger}}(H, C \backslash \stackrel{\circ}{\mathbf{P}})<d_{G}(H, C \backslash \stackrel{\circ}{\mathbf{P}})$. In that case, there exists an $x \in V(\grave{Q})$ such that $d_{G^{\dagger}}\left(x, C_{Q}^{1} \backslash \grave{Q}\right)<d_{G}\left(x, C_{Q}^{1} \backslash \grave{Q}\right)$. On the other hand, since K^{*} is a Q-partial $C_{Q^{-}}^{1}$-web, we have $d_{G}\left(x, C_{Q}^{1} \backslash \stackrel{\circ}{Q}\right) \leq d_{G^{\dagger}}\left(x, C_{Q}^{1} \backslash \stackrel{\circ}{Q}\right)$, so we have a contradiction.
Thus, \mathcal{T}^{\dagger} is indeed a mosaic. To finish, we just need to check that $\left|V\left(G^{\dagger}\right)\right|<|V(G)|$. Suppose toward a contradiction that $\left|V\left(G^{\dagger}\right)\right| \geq|V(G)|$. In that case, we have $\left|V\left(G^{\dagger} \backslash G_{Q}^{0}\right)\right| \geq\left|V\left(G_{Q}^{1} \backslash Q\right)\right|$. Now, $V\left(G^{\dagger} \backslash G_{Q}^{0}\right)=V\left(K^{*} \backslash Q\right)$, so we have $\left|V\left(K^{*} \backslash Q\right)\right| \geq\left|V\left(G_{Q}^{1} \backslash Q\right)\right|$. Since $Q^{*} \subseteq K^{*}$ and $Q \subseteq G_{Q}^{1}$, we then have $\left|V\left(K^{*} \backslash G_{*}^{1}\right)\right| \geq\left|V\left(G_{Q}^{1} \backslash C_{Q}^{1}\right)\right|$.
Since K^{*} is a Q-partial G_{1}^{*}-web, we have $\left|V\left(K^{*} \backslash Q\right)\right| \leq 4|V(Q)|^{2} \leq \frac{16}{9} N_{\mathrm{mo}}^{2}$. On the other hand, since Q is a \mathcal{T}-separating generalized chord of C, there exists a $C^{\dagger} \in \mathcal{C} \subseteq G_{Q}^{1}$, and thus $d\left(C^{\dagger}, C_{Q}^{1}\right) \geq d\left(C^{\dagger}, C\right)-\frac{|V(Q)|}{2}$. Thus, since C is an open \mathcal{T}-ring, G_{Q}^{1} contains a $\left(C^{\dagger}, C_{Q}^{1}\right)$-path of length greater than $\frac{\beta}{3}$ by Observation 2.1.8. Thus, by Observation 2.1.16, we have $\left|V\left(G_{Q}^{1} \backslash C_{Q}^{1}\right)\right|>\frac{5 \beta}{3}$. Combining these, we have $\frac{16}{9} N_{\mathrm{mo}}^{2}>\frac{5 \beta}{3}$, and thus $\frac{16}{15} N_{\mathrm{mo}}^{2}>\beta$, whcih is false. We conclude that $\left|V\left(G^{\dagger}\right)\right|<|V(G)|$, and since \mathcal{T}^{\dagger} is a mosaic we get that G^{\dagger} is L^{\dagger}-colorable by the
minimality of \mathcal{T}, so the subgraph of G induced by $V\left(G_{Q}^{0}\right)$ is L-colorable, as desired. This completes Case 1 of Fact 1) of Proposition 2.2.16.

Case 2.1 $C \neq C_{*}$ and Q does not separate \mathbf{P} from C_{*}
In this case, we have $G_{Q}^{1}=\operatorname{Int}\left(C_{Q}^{1}\right)$. As in Case 1, we create a mosaic $\mathcal{T}^{\dagger}:=\left(G^{\dagger},\{C\} \cup \mathcal{C} \subseteq G_{Q}^{0}, L^{\dagger}, C_{*}\right)$, where G^{\dagger} is obtained from $\operatorname{Ext}\left(C_{Q}^{1}\right)$ by embedding a Q-partial C_{Q}^{1}-web K^{*} in the closed disc of \mathbb{R}^{2} bounded by C_{Q}^{1}, and L^{\dagger} is a list-assignment for G^{\dagger} obtained by setting $L^{\dagger}(v)=L(v)$ for all $v \in V\left(G_{Q}^{0}\right) \cup V(C)$, and letting $L^{\dagger}(v)$ be an arbitrary 5-list for any $v \in V\left(G^{*}\right) \backslash V\left(G_{Q}^{0} \cup C\right)$. An identical argument to the case above then shows that G_{Q}^{0} is L-colorable. Since C_{Q}^{1} does not have a chord in G_{Q}^{1}, the subgraph of G induced by $\operatorname{Int}\left(C_{Q}^{0}\right)$ is L-colorable, so we are done.

Case 2.2 $C \neq C_{*}$ and Q separates \mathbf{P} from C_{*}
This case is easier. In this case we have $G_{Q}^{0}=\operatorname{Int}\left(C_{Q}^{0}\right)$, and we note the following:
Claim 2.2.19. $\mathcal{T}^{0}:=\left(G_{Q}^{0},\left\{C_{Q}^{0}\right\} \cup \mathcal{C}^{\subseteq} G_{Q}^{0}, L, C_{Q}^{0}\right)$ is a mosaic.
Proof: It suffices to show that \mathcal{T}^{0} satisfies M3). The other conditions are immediate. If not, there is a $C^{\prime} \in \mathcal{C}$ with $C^{\prime} \subseteq \operatorname{Int}\left(C_{Q}^{0}\right)$ such that $d\left(w_{\mathcal{T}^{0}}\left(C^{\prime}\right), C \backslash \stackrel{\circ}{\mathbf{P}}\right)<\frac{\beta}{3}+\operatorname{Rk}\left(\mathcal{T}^{0} \mid C^{\prime}\right)+2 N_{\mathrm{mo}}$. Note that $w_{\mathcal{T}^{0}}\left(C^{\prime}\right)=w_{\mathcal{T}}\left(C^{\prime}\right)$, and $C \neq C_{*}$. Since \mathcal{T} is a mosaic, we get $d\left(w_{\mathcal{T}}\left(C^{\prime}\right), C \backslash \stackrel{\circ}{P}\right) \geq \beta+\operatorname{Rk}\left(\mathcal{T} \mid C^{\prime}\right)+2 N_{\text {mo }}$. Since $\operatorname{Rk}\left(\mathcal{T} \mid C^{\prime}\right)=\operatorname{Rk}\left(\mathcal{T}^{0} \mid C^{\prime}\right)$, we have a contradiction.

Since $\left|V\left(G_{Q}^{0}\right)\right|<|V(G)|$ and \mathcal{T}^{0} is a mosaic, $\operatorname{Int}\left(C_{Q}^{0}\right)$ is L-colorable. Since C_{Q}^{1} does not have a chord in G_{Q}^{1}, the subgraph of G induced by $\operatorname{Int}\left(C_{Q}^{0}\right)$ is L-colorable, so we are done. This proves 1) of Proposition 2.2.16.

Now we prove 2). We now apply a similar argument to that of 1). Let $\mathbf{P}:=p_{1} \cdots p_{m}$ and let Q be a proper generalized chord of C with precisely one endpoint in $\stackrel{\circ}{P}$, and let $r \in\{2, \cdots, m-1\}$, where p_{r} is the $\stackrel{\circ}{\mathbf{P}}$-endpoint of Q. Let $G=G_{0} \cup G_{1}$, where G_{0}, G_{1} are as in the statement of 2) of Proposition 2.2.16, and, for each $i=0,1$, let $C_{i}:=\left(G_{i} \cap C\right)+Q$. Finally, let w be the lone endpoint of Q in $V(C \backslash \stackrel{\circ}{\mathbf{P}})$ and set $Q^{\dagger}:=w Q p_{r} p_{r+1} \cdots p_{m}$. Note that each of C_{0}, C_{1} is a cycle by Proposition 2.1.12. Consider the following cases:

Case 1: $C_{*}=C$
In this case, let $G^{\star}:=G \backslash\left(G_{1} \backslash C_{1}\right)$. Then G^{\star} admits a partition $G^{\star}=G_{0}^{\star} \cup G_{1}^{\star}$, where $G_{0}^{\star}=G_{0}$ and $G_{1}^{\star}=C_{1}$. Furthermore, by Proposition 2.1.22, we have $|V(Q)| \geq 3$. We construct a new mosaic from G^{\star} as follows. Let G^{\dagger} be a graph obtained from G^{\star} by embedding a Q^{\dagger}-partial C^{1}-web K^{*} in the closed disc of \mathbb{R}^{2} bounded by C^{1}. Let L^{\dagger} be a list-assignment for G^{\dagger}, where $L^{\dagger}(x)=L(x)$ for each $\left.x \in V\left(G^{*}\right)\right)$, and $L^{\dagger}(x)$ is an arbitrary 5-list for each $x \in V\left(G^{\dagger}\right) \backslash V\left(G^{\star}\right)$. By Claim 2.2.18, G^{\dagger} is short-separation-free, since $Q \subseteq Q^{\dagger}$, and, by construction of K^{*}, every facial subgraph of G^{\dagger}, except those of $\mathcal{C} \subseteq G_{0} \cup\{C\}$, is a triangle. Thus, let \mathcal{T}^{\dagger}) be the oriented tessellation $\left(G^{\dagger},\{C\} \cup \mathcal{C} \subseteq G_{0}, L^{\dagger}, C_{*}\right)$. We claim that \mathcal{T}^{\dagger} is a mosaic. M0) and M2) are trivial, so we now check M1). By construction of K^{*}, the open \mathcal{T}^{\dagger}-ring C still satisfies the property that there is no chord of C in G^{\dagger} with an endpoint in $\stackrel{\circ}{\mathbf{P}}_{\mathcal{T}^{\dagger}}$ (indeed, by construction of K^{*}, C is still an induced subgraph of G^{\dagger}), and, again by construction of K^{*}, for each $v \in D_{1}\left(C, P_{\mathcal{T}^{\dagger}}(C)\right)$, the subgraph of G^{\dagger} induced by $N(v) \cap V\left(P_{\mathcal{T}^{\dagger}}(C)\right.$ is a subpath of P of length at most one. Now we just need to check that distance conditions M3) and M4) hold.

If these do not hold, then there exists a $C^{\prime} \in \mathcal{C} \subseteq G_{0}$ and a subgraph H of C^{\prime} such that $d_{G^{\dagger}}(H, C \backslash \stackrel{\circ}{\mathbf{P}})<d_{G}(H, C \backslash \stackrel{\circ}{\mathbf{P}})$. In that case, there exists an $x \in V(\stackrel{\circ}{Q})$ such that $d_{G^{\dagger}}\left(x, C^{1} \backslash \dot{Q}^{\dagger}\right)<d_{G}\left(x, C_{1} \backslash \grave{Q}^{\dagger}\right)$. On the other hand, since K^{*} is a Q^{\dagger}-partial C_{1}-web, we have $d_{G}\left(x, C_{1} \backslash Q^{\dagger}\right) \leq d_{G^{\dagger}}\left(x, C_{1} \backslash Q^{\dagger}\right)$, so we have a contradiction.

Thus, \mathcal{T}^{\dagger} is indeed a mosaic. To finish, we just need to check that $\left|V\left(G^{\dagger}\right)\right|<|V(G)|$. Suppose toward a contradiction that $\left|V\left(G^{\dagger}\right)\right| \geq|V(G)|$. In that case, we have $\left|V\left(G^{\dagger} \backslash G_{0}\right)\right| \geq\left|V\left(G_{1} \backslash Q\right)\right|$. Now, $V\left(G^{\dagger} \backslash G_{0}\right)=V\left(K^{*} \backslash Q\right)$, so we have $\left|V\left(K^{*} \backslash Q\right)\right| \geq\left|V\left(G_{1} \backslash Q\right)\right|$. Since $Q \subseteq K^{*}$ and $Q \subseteq C_{1}$, we then have $\left|V\left(K^{*} \backslash C_{1}\right)\right| \geq\left|V\left(G_{1} \backslash C_{1}\right)\right|$. Since K^{*} is a Q^{\dagger}-partial G_{1}^{*}-web, we have $\left|V\left(K^{*} \backslash Q^{\dagger}\right)\right| \leq 4\left|V\left(Q^{\dagger}\right)\right|^{2}$. Thus, we have $\left|V\left(K^{*} \backslash Q\right)\right| \leq\left|V\left(Q^{\dagger} \backslash Q\right)\right|+4\left|V\left(Q^{\dagger}\right)\right|^{2}$. Since $\left.\left\lvert\, V\left(Q^{\dagger} \left\lvert\, \leq \frac{2 N_{\mathrm{mo}}}{3}\right.\right.$, we have $\left.\mid V\left(K^{*} \backslash Q\right)\right)\right. \right\rvert\, \leq \frac{2 N_{\mathrm{mo}}}{3}+\frac{16 N_{\mathrm{mo}}^{2}}{9}$
By assumption, there exists a $C^{\dagger} \in \mathcal{C}$ with $C^{\dagger} \subseteq G_{1}$, and thus $d\left(C^{\dagger}, C_{1}\right) \geq d\left(C^{\dagger}, C\right)-\frac{|V(Q)|}{2}$. Since C is an open \mathcal{T}-ring, G_{1} contains a $\left(C^{\dagger}, C_{1}\right)$-path of length greater than $\frac{\beta}{3}$. By Observation 2.1.16, we have $\left|V\left(G_{1} \backslash C_{1}\right)\right|>\frac{5 \beta}{3}$. Combining these, we obtain $\frac{2 N_{\mathrm{mo}}}{3}+\frac{16 N_{\mathrm{mo}}^{2}}{9}>\frac{5 \beta}{3}$, so $\frac{16 N_{\mathrm{mo}}^{2}}{15}+\frac{2 N_{\mathrm{mo}}}{5}>\beta$. Since $\frac{2 N_{\mathrm{mo}}}{5} \leq \frac{N}{15}$, we have $\frac{17}{15} N_{\mathrm{mo}}^{2}>\beta$, which is false. We conclude that $\left|V\left(G^{\dagger}\right)\right|<|V(G)|$, and since \mathcal{T}^{\dagger} is a mosaic we get that G^{\dagger} is L^{\dagger}-colorable by the minimality of \mathcal{T}, so the subgraph of G induced by $V\left(G_{0}\right)$ is L-colorable. This completes Case 1 of Fact 2) of Proposition 2.2.16.

Case 2: $C_{*} \neq C$
We break this into two subcases.
Case 2.1 $G_{0}=\operatorname{Ext}\left(C_{0}\right)$
In this case, we have $G_{1}=\operatorname{Int}\left(C_{1}\right)$, and, as in Case 1, we create a mosaic $\mathcal{T}^{\dagger}:=\left(G^{\dagger},\{C\} \cup \mathcal{C} \subseteq G_{0}, L^{\dagger}, C_{*}\right)$, where G^{\dagger} is obtained from $\operatorname{Ext}\left(C_{1}\right)$ by embedding a Q-partial C_{1}-web K^{*} in the closed disc of \mathbb{R}^{2} bounded by C_{1}, and L^{\dagger} is a list-assignment for G^{\dagger} obtained by setting $L^{\dagger}(v)=L(v)$ for all $v \in V\left(G_{0}\right) \cup V(C)$, and letting $L^{\dagger}(v)$ be an arbitrary 5-list for any $v \in V\left(G^{\dagger}\right) \backslash V\left(G_{0} \cup C\right)$. An identical argument to the case above then shows that G_{0} is L-colorable. Since C_{1} does not have a chord in G_{1}, the subgraph of G induced by $\operatorname{Ext}\left(C_{0}\right)$ is L-colorable, so we are done.

Case 2.2 $G_{0}=\operatorname{Int}\left(C_{0}\right)$
Let $\mathcal{T}_{0}:=\left(G_{0},\left\{C_{0}\right\} \cup \mathcal{C} \subseteq G_{0}, L, C_{0}\right)$. Analogous to Claim 2.2.19, it is immediate that \mathcal{T}_{0} is a mosaic. Thus, since $\left|V\left(G_{0}\right)\right|<|V(G)|, \operatorname{Int}\left(C_{0}\right)$ is L-colorable by the minimality of \mathcal{T}. Since C_{1} does not have a chord in G_{1}, the subgraph of G induced by $\operatorname{Int}\left(C_{0}\right)$ is L-colorable, so we are done. This completes the proof of Proposition 2.2.16.

Now we prove 3) of Theorem 2.2.4:
Lemma 2.2.20. Let $\mathcal{T}=\left(G, \mathcal{C}, L, C_{*}\right)$ be a critical mosaic and let C be an open \mathcal{T}-ring. Let Q be a proper generalized chord of C with $|E(Q)| \leq \frac{2 N_{\mathrm{mo}}}{3}$ and suppose that Q does not have an endpoint in $\dot{\mathbf{P}}$. Then, for each $C^{\prime} \in \mathcal{C} \backslash\{C\}$, we have $C^{\prime} \subseteq G_{Q}^{0}$.

Proof. We follow a similar argument to that of Lemma 2.2.5. Given a $Q \in \mathcal{K}(C, \mathcal{T})$, we say that Q is unacceptable if $|E(Q)| \leq \frac{2 N_{\mathrm{mo}}}{3}$ and there exists a $C^{\prime} \in \mathcal{C}$ with $C^{\prime} \subseteq G_{Q}^{1}$. We claim that there does not exist an unacceptable generalized chord in $\mathcal{K}(C, \mathcal{T})$. Suppose toward a contradiction that there is an uncceptable $Q \in \mathcal{K}(C, \mathcal{T})$, and, among all unacceptable elements of $\mathcal{K}(C, \mathcal{T})$, we choose Q so that $\left|V\left(G_{Q}^{1}\right)\right|$ is minimized. By Corollary 2.1.30, since $V(Q)$ has nonempty intersection with $V(C \backslash \stackrel{\circ}{\mathbf{P}})$ and C has a rank of $2 N_{\mathrm{mo}}, E\left(C_{Q}^{1}\right) \backslash E(Q)$ does not consist of only an edge. Let $Q:=w_{1} \cdots w_{r}$, where w_{1}, w_{r} are distinct elements of $V(C \backslash \stackrel{\circ}{\mathbf{P}})$ and $\left\{w_{2}, \cdots, w_{r-1}\right\} \cap V(C)=\varnothing$.

Claim 2.2.21. There does not exist a chord of C_{Q}^{1} with both endpoints in Q, and furthermore, for any $v \in V\left(G_{Q}^{1}\right) \backslash$ $V\left(C_{Q}^{1}\right)$, if v has a neighbor in $V(Q)$, then $G_{Q}^{1}[V(Q) \cap N(v)]$ is a subpath of Q of length at most one.

Proof: If this does not hold, then there is a pair of indices $1 \leq i<j \leq r$, where $|j-i|>1$, and a path $Q^{*} \subseteq G_{Q}^{1}$ of length at most two, such that Q^{*} has endpoints w_{i}, w_{j}, and Q^{*} is otherwise disjoint to C_{Q}^{2}. Then Q^{*} is a proper
k-chord of C_{Q}^{1}, where $1 \leq k \leq 2$. Let $Q^{* *}:=w_{1} \cdots w_{i} Q^{*} w_{j} \cdots w_{r}$. Then $Q^{* *}$ is a proper generalized chord of C with $\left|E\left(Q^{* *}\right)\right| \leq|E(Q)|$ and $Q^{* *} \in \mathcal{K}(C, \mathcal{T})$, since neither endpoint of $Q^{* *}$ lies in $\stackrel{\circ}{P}$. Furthermore, G_{Q}^{1} contains the cycle $D:=w_{i} w_{i+1} \cdots w_{j} Q^{*} w_{i}$.

Subclaim 2.2.22. $C \subseteq \operatorname{Ext}(D)$.
Proof: Suppose not. Then $C \neq C_{*}$ and, since C, C_{*} are facial subgraphs of G, we have $C \subseteq \operatorname{Int}(D)$. By Theorem 2.1.28, we have $d(C \backslash \stackrel{\circ}{\mathbf{P}}, D)>2 N_{\mathrm{mo}}-\frac{3}{2}|V(D)|$. Since $|V(D)| \leq \frac{2 N_{\mathrm{mo}}}{3}+1$, we have $d(C \backslash \stackrel{\circ}{\mathbf{P}}, D)>$ $2 N_{\mathrm{mo}}-\left(N_{\mathrm{mo}}+2\right)=N_{\mathrm{mo}}-2$, contradicting the fact that each vertex of $V(D \cap Q)$ is of distance at most $\frac{N_{\mathrm{mo}}}{3}$ from $C \backslash \stackrel{\circ}{\mathbf{P}}$.

Thus, we have $C \subseteq \operatorname{Ext}(D)$. Since $\left|V\left(G_{Q^{* *}}^{1}\right)\right|<\left|V\left(G_{Q}^{1}\right)\right|$ and $\left|E\left(Q^{* *}\right)\right|<|E(Q)|$, it follows from the minimality of Q that there exists a $C^{\prime} \in \mathcal{C} \subseteq G_{Q}^{1}$ with $C^{\prime} \subseteq \operatorname{Int}(D)$, or else $Q^{* *}$ is also an unacceptable element of $\mathcal{K}(C, \mathcal{T})$. Thus, by Theorem 2.1.26, there exists a $C^{\prime \prime} \in \mathcal{C}$ with $C^{\prime \prime} \subseteq \operatorname{Int}(D)$ such that $\max \left\{d\left(v, w_{\mathcal{T}}\left(C^{\prime \prime}\right)\right)<\frac{\beta}{3}+\frac{3}{2}|V(D)|+\right.$ $\operatorname{Rk}\left(\mathcal{T} \mid C^{\prime \prime}\right)$. Since $V(D)$ has nonempty intersection with $V(C \backslash \stackrel{\circ}{P})$, we then have $d\left(w_{\mathcal{T}}(C), w_{\mathcal{T}}\left(C^{\prime \prime}\right)\right)<\frac{\beta}{3}+$ $\frac{3}{2}|V(D)|+\operatorname{Rk}\left(\mathcal{T} \mid C^{\prime \prime}\right)$. But since C has a rank of $2 N_{\mathrm{mo}}$ in \mathcal{T} and $|V(D)| \leq N_{\mathrm{mo}}$, this contradicts the distance conditions of Definition 2.1.6 applied to \mathcal{T}. This completes the proof of Claim 2.2.21.

Now we have the following:

Claim 2.2.23. C_{Q}^{1} is an induced cycle in G_{Q}^{1}, and furthermore, $V\left(G_{Q}^{0}\right)$ is L-colorable.
Proof: Suppose toward a contradiction that there is a chord $x y$ of C_{Q}^{1} in G_{Q}^{1}. By Proposition 2.1.22, at least one endpoint of $x y$ lies in $V(Q) \backslash V\left(C_{Q}^{1}\right)$. By Claim 2.2.21, $x y$ has precisely one endpoint in $V(Q)$, so suppose without loss of generality that $x \in V(\stackrel{\circ}{Q})$ and $y \in V\left(C_{Q}^{1} \backslash Q\right)$. Thus, there exists an $i \in\{2, \cdots, r-1\}$ with $x=w_{i}$. Let $Q_{1}:=w_{1} Q w_{i} y$ and let $Q_{2}:=w_{r} Q w_{i} y$. Each of Q_{1}, Q_{2} is a proper generalized chord of C with both endpoints in $C \backslash \stackrel{\circ}{P}$, and $\left|E\left(Q_{i}\right)\right| \leq|E(Q)|$ for each $i=1,2$. Furthermore, for each $i \in\{1,2\}$, we have $\left|V\left(G_{Q_{i}}^{1}\right)\right|<\left|V\left(G_{Q}^{1}\right)\right|$. Yet there is at least one $i \in\{1,2\}$ such that Q_{i} separates an element of $\mathcal{C} \backslash\{C\}$ from \mathbf{P}, contradicting the minimality of Q. Thus, we conclude that C_{Q}^{1} is an induced cycle of G_{Q}^{1}, as desired. Since C_{Q}^{1} is an induced cycle of G_{Q}^{1}, it immediately follows from Proposition 2.2.16 that $V\left(G_{Q}^{0}\right)$ is L-colorable.

Applying Claim 2.2.23, let ϕ be an L-coloring of $V\left(G_{Q}^{0}\right)$ and let C_{*}^{1} be the outer face of G_{Q}^{1} (possibly $C_{*}^{1}=C_{Q}^{1}$). Let $\mathcal{T}^{*}:=\left(G_{Q}^{1}, \mathcal{C} \subseteq G_{Q}^{1} \cup\left\{C_{Q}^{1}\right\}, L_{\phi}^{Q}, C_{*}^{1}\right)$. We claim that \mathcal{T}^{*} is a mosaic. Firstly, since $V(Q) \neq V\left(C_{Q}^{1}\right), C_{Q}^{1}$ is an open \mathcal{T}^{*}-ring with precolored path Q, and, by Claim 2.2.23, there is no chord of C_{Q}^{1} in G_{Q}^{1}. Combining this with Claim 2.2.21, we get that \mathcal{T}^{*} satisfies M1) of Definition 2.1.6, and M0) and M2) are immediate. Finally, since $C_{Q}^{1} \backslash \stackrel{\circ}{Q} \subseteq C \backslash \stackrel{\circ}{\mathbf{P}}, \mathcal{T}^{*}$ also satisfies the distance conditions of Definition 2.1.6.

Thus, \mathcal{T}^{*} is indeed a mosaic, as desired. Since $\left|V\left(G_{Q}^{1}\right)\right|<|V(G)|, G_{Q}^{1}$ admits an L_{ϕ}^{Q}-coloring by the minimality of \mathcal{T}, so ϕ extends to an L-coloring of G, contradicting the fact that \mathcal{T} is critical. This completes the proof of Lemma 2.2.20.

Lemma 2.2.20 proves 3) of Theorem 2.2.4. To prove 4), we first make the following definition:
Definition 2.2.24. Let $\mathcal{T}=\left(G, \mathcal{C}, L, C_{*}\right)$ be a critical mosaic and let $C \in \mathcal{C}$ be an open \mathcal{T}-ring. Let $\mathbf{P}_{\mathcal{T}}(C):=\mathbf{P}=$ $p_{1} \cdots p_{m}$. Given a proper generalized chord Q of C, we say that Q is \mathcal{C}-splitting if the following hold.

1) $|E(Q)| \leq \frac{N_{\text {mo }}}{3}$; AND
2) Q has precisely one endpoint in $\stackrel{\circ}{\mathbf{P}}$; $A N D$
3) Letting $G=G_{0} \cup G_{1}$ be the natural Q-partition of G, there exists a $j \in\{0,1\}$ such that $\left|E\left(\mathbf{P} \cap G_{j}\right)\right|+|E(Q)| \leq$ $\frac{2 N_{\mathrm{mo}}}{3}$ and there exists a $C^{\prime} \in \mathcal{C} \backslash\{C\}$ with $C^{\prime} \subseteq G_{j}$.

Thus, to prove 4) of Theorem 2.2.4, it suffices to prove the following:
Lemma 2.2.25. Let $\mathcal{T}=\left(G, \mathcal{C}, L, C_{*}\right)$ be a critical mosaic and let $C \in \mathcal{C}$ be an open \mathcal{T}-ring. Then there does not exist a \mathcal{C}-splitting proper generalized chord of C.

Proof. Let $\mathbf{P}=\mathbf{P}_{\mathcal{T}}(C)$, where $\mathbf{P}=p_{1} \cdots p_{m}$ for some $m \geq 2$. Given a proper generalized chord Q of C, we say that Q is left-splitting if Q has precisely one endpoint in \mathbf{P}, and, letting $G=G_{0} \cup G_{1}$ be the natural Q-partition of G, where $p_{1} \in V\left(G_{0}\right)$, we have $\left|E\left(\mathbf{P} \cap G_{0}\right)\right|+|E(Q)| \leq \frac{2 N_{\text {mo }}}{3}$, and there exists a $C^{\prime} \in \mathcal{C} \backslash\{C\}$ with $C^{\prime} \subseteq G_{0}$.

Likewise, given a proper generalized chord Q of C, we say that Q is right-splitting if Q has precisely one endpoint in $\stackrel{\circ}{\mathbf{P}}$, and, letting $G=G_{0} \cup G_{1}$ be the natural Q-partition of G, where $p_{m} \in V\left(G_{1}\right)$, we have $\left|E\left(\mathbf{P} \cap G_{1}\right)\right|+|E(Q)| \leq$ $\frac{2 N_{\mathrm{mo}}}{3}$, and there exists a $C^{\prime} \in \mathcal{C} \backslash\{C\}$ with $C^{\prime} \subseteq G_{1}$.

We claim now that there does not exist a right-splitting proper generalized chord of C. An identical argument then shows that there is no left-splitting proper generalized chord of C. Suppose toward a contradiction that there is a right-splitting proper generalized chord Q of C, and among all such proper generalized chords Q, we choose Q so that $\left|V\left(G_{1}\right)\right|$ is minimized, where $G=G_{0} \cup G_{1}$ is as in the definition of right-splitting generalized chords of C above. Let $r \in\{2, \cdots, m-1\}$, where p_{r} is the $\stackrel{\circ}{\mathbf{P}}$-endpoint of Q, and let $w \in V(C)$ be the other endpoint of Q. Let $Q^{\prime}:=p_{m} p_{m-1} \cdots p_{r} Q w$. By assumption, we have $\left|E\left(Q^{\prime}\right)\right| \leq \frac{2 N_{\text {mo }}}{3}$. Let $C_{1}:=\left(C \cap G_{1}\right)+Q$. If $V\left(C_{1}\right)=V\left(Q^{\prime}\right)$, then C_{1} is a separating cycle of length at most $\frac{2 N_{\mathrm{mo}}}{3}$, and since Q is a right-splitting chord of C, and $d\left(Q^{\prime}, C \backslash \stackrel{\circ}{\mathbf{P}}\right)=0$, this contradicts Corollary 2.1.30. Thus, $E\left(C_{1}\right) \backslash E\left(Q^{\prime}\right)$ does not consist of only one edge. Now we have the following:

Claim 2.2.26. There does not exist a chord of C_{1} with both endpoints in Q, and furthermore, for any $v \in V\left(G_{1} \backslash Q\right)$, if v has a neighbor in $V(Q)$, then $G_{1}[V(Q) \cap N(v)]$ is a subpath of Q of length at most one.

Proof: Let $Q:=w_{1} \cdots w_{s}$, where $w_{1}=p_{r}$ and $w_{s}=w$. If this does not hold, then there is a pair of indices $1 \leq i<j \leq s$, with $|j-i|>1$, and a path $Q^{*} \subseteq G_{1}$ of length at most two such that Q^{*} has endpoints w_{i}, w_{j}, and Q^{*} is otherwise disjoint to Q^{*}. Let $Q^{\dagger}:=w_{1} Q w_{i} Q^{*} w_{j} Q w_{s}$. Then Q^{\dagger} is also a proper generalized chord of C, with precisely one endpoint in $\stackrel{\circ}{\mathbf{P}}$, and $\left|E\left(Q^{\dagger}\right)\right|<|E(Q)|$. Let $G_{1}=H \cup H^{\prime}$ be the natural Q^{\dagger}-partition of G_{1}, where $w_{i+1} \in V\left(H \backslash Q^{\dagger}\right)$. If there exists a $C^{\prime} \in \mathcal{C} \backslash\{C\}$ with $C^{\prime} \subseteq H^{\prime}$, then, since $p_{m} \in V\left(H^{\prime}\right), Q^{\dagger}$ is also a right-splitting proper generalized chord of C. Since $\left|V\left(H^{\prime}\right)\right|<\left|V\left(G_{1}\right)\right|$, this contradicts the minimality of Q. Thus, since Q is right-splitting, there is a $C^{\prime} \in \mathcal{C} \backslash\{C\}$ with $C^{\prime} \subseteq H$, so the cycle $D:=w_{i} Q w_{j} Q^{*} w_{i}$ separates C^{\prime} from $C \backslash\left\{p_{r}\right\}$. Since $|E(Q)| \leq \frac{2 N_{\text {mo }}}{3}$ and Q has an endpoint in $C \backslash \stackrel{\circ}{\mathbf{P}}$, we have $d(D, C \backslash \stackrel{\circ}{\mathbf{P}}) \leq \frac{N_{\mathrm{mo}}}{3}$ and $|V(D)| \leq N_{\text {mo }}$, so, since Q is right-splitting, we contradict Corollary 2.1.30.

Now we deal with the case of chords with an endpoint in the precolored path and the other endpoint in Q :

Claim 2.2.27. There is no chord of C_{1} in G_{1} with one endpoint in $\left\{p_{r+1}, \cdots, p_{m}\right\}$ and one endpoint in $V(Q)$. Likewise, there is no vertex $v \in V\left(G_{1} \backslash C_{1}\right)$ with one neighbor in $\left\{p_{r+1}, \cdots, p_{m}\right\}$ and one neighbor in $V\left(Q \backslash\left\{p_{r}\right\}\right)$.

Proof: Suppose not. Then G_{1} contains a proper k-chord $Q^{*}:=x_{1} \cdots x_{k}$ of C_{1}, where $k \leq 3, x_{1} \in V\left(Q \backslash\left\{p_{r}\right\}\right)$ and $x_{k} \in\left\{p_{r+1}, \cdots, p_{m}\right\}$. Let $Q^{\dagger}:=x_{k} Q^{*} x_{1} Q w$. Then Q^{\dagger} is a proper generalized chord of C. Furthermore, we have $\left|E\left(Q^{\dagger}\right)\right| \leq(|E(Q)|-1)+(k-1) \leq|E(Q)|+1$. Since Q is right-splitting, we have $|E(Q)|+1 \leq \frac{2 N_{\mathrm{mo}}}{3}$, as one endpoint of Q lies in $\stackrel{\circ}{\mathbf{P}}$.

Case 1: $x_{k}=p_{m}$
In this case, we have $Q^{\dagger} \in \mathcal{K}(C, \mathcal{T})$. Since $\left|E\left(Q^{\dagger}\right)\right| \leq \frac{2 N_{\text {mo }}}{3}$, it follows from Lemma 2.2.20 that $C^{\prime} \subseteq G_{Q^{\dagger}}^{0}$ for each $C^{\prime} \in \mathcal{C} \backslash\{C\}$. Thus, since Q is right-splitting, there is a $C^{\prime} \in \mathcal{C} \backslash\{C\}$ such that the cycle $p_{r} \mathbf{P} p_{m} Q^{*} x_{1} Q$ separates C^{\prime} from p_{1}. Since Q is right-splitting, this contradicts Corollary 2.1.30.

Case 2: $x_{k} \neq p_{m}$
In this case, Q^{\dagger} has precisely one endpoint in $\stackrel{\circ}{\mathbf{P}}$. Let $G_{1}=H \cup H^{\prime}$ be the natural Q^{\dagger}-partition of G_{1}, where $p_{r} \in V(H)$. If there exists a $C^{\prime} \in \mathcal{C} \backslash\{C\}$ with $C^{\prime} \subseteq H^{\prime}$, then, since Q^{*} has precisely one endpoint in \mathbf{P}° and $\left|E\left(Q^{\dagger}\right)\right| \leq \frac{2 N_{\mathrm{mo}}}{3}, Q^{\dagger}$ is also right-splitting. Since $\left|V\left(H^{\prime}\right)\right|<\left|V\left(G_{1}\right)\right|$, this contradicts the minimality of Q. Thus, since Q is right-splitting, there is a $C^{\prime} \in \mathcal{C} \backslash\{C\}$ with $C^{\prime} \subseteq H$. But then the cycle $p_{r} \mathbf{P} p_{m} Q^{*} x_{1} Q$ separates C^{\prime} from p_{1}. Since Q is right-splitting, this contradicts Corollary 2.1.30. This completes the proof of Claim 2.2.27.

Lastly, we have the following claim:

Claim 2.2.28. C_{1} is an induced cycle in G_{1}, and furthermore, $V\left(G_{0}\right)$ is L-colorable.

Proof: Suppose toward a contradiction that there is a chord $x y$ of C_{1} in G_{1}. By Proposition 2.1.22, at least one endpoint of $x y$ lies in $V\left(Q^{\prime}\right) \backslash V(C)$, and thus lies in $V(Q)$. Combining Claim 2.2.26 and Claim 2.2.27, $x y$ has precisely one endpoint in $V\left(Q^{\prime}\right)$ and the other endpoint lies in $C \backslash \stackrel{\circ}{\mathbf{P}}$, so suppose without loss of generality that $x \in V(\stackrel{\circ}{Q})$ and $y \in V(C \backslash \stackrel{\circ}{\mathbf{P}})$.

Let $G_{1}=H \cup H^{\prime}$ be the natural $x y$-partition of G_{1}, where $p_{r} \cdots p_{m} \subseteq H$. If there exists a $C^{\prime} \in \mathcal{C} \subseteq G_{1}$ with $C^{\prime} \subseteq H^{\prime}$, then $w Q x y$ is a proper generalized chord of C separating C^{\prime} from \mathbf{P}. Since x is an internal vertex of Q, we have $|E(w Q x y)| \leq \frac{2 N_{\text {mo }}}{3}$, so $w Q x y$ contradicts Lemma 2.2.20. Since Q is right-splitting, there is a $C^{\prime} \in \mathcal{C}^{\subseteq} \subseteq G_{1}$ with $C^{\prime} \subseteq H$. Since x is an internal vertex of Q, we have $\left|E\left(p_{r} \mathbf{P} p_{m}\right)\right|+\left|E\left(p_{r} Q x\right)\right|+1 \leq\left|E\left(p_{r} \mathbf{P} p_{m}\right)\right|+|E(Q)| \leq \frac{2 N_{\text {mo }}}{3}$. But then the proper generalized chord $p_{r} Q x y$ of C is also right-splitting. Since $|V(H)|<\left|V\left(G_{1}\right)\right|$, this contradicts the minimality of Q. Thus, we conclude that C_{1} is an induced cycle of G_{1}, as desired. Since C^{1} is an induced cycle of G_{1}, it follows from 2) of Proposition 2.2.16 that $V\left(G_{0}\right)$ is L-colorable.

Applying Claim 2.2.28, let ϕ be an L-coloring of $V\left(G_{0}\right)$ and let C_{*}^{1} be the outer face of G_{1} (possibly $C_{*}^{1}=C^{1}$). Let $\mathcal{T}^{*}:=\left(G_{1}, \mathcal{C} \subseteq G_{1} \cup\left\{C_{1}\right\}, L_{\phi}^{Q}, C_{*}^{1}\right)$. We claim that \mathcal{T}^{*} is a mosaic. Firstly, since $V\left(Q^{\prime}\right) \neq V\left(C_{1}\right), C_{1}$ is an open \mathcal{T}^{*}-ring with precolored path Q^{\prime}, and, by Claim 2.2.28, there is no chord of C_{1} in G_{1}. Combining this with Claim 2.2.26 and Claim 2.2.27, we get that \mathcal{T}^{*} satisfies M1) of Definition 2.1.6, and M0) and M2) are immediate. Finally, since $C_{1} \backslash \stackrel{\circ}{Q}^{\prime} \subseteq C \backslash \stackrel{\circ}{\mathbf{P}}, \mathcal{T}^{*}$ also satisfies the distance conditions of Definition 2.1.6. Thus, \mathcal{T}^{*} is indeed a mosaic. Since $\left|V\left(G_{1}\right)\right|<|V(G)|, G_{1}$ admits an L_{ϕ}^{Q}-coloring by the minimality of \mathcal{T}, so ϕ extends to an L-coloring of G, contradicting the fact that \mathcal{T} is critical. This completes the proof of Lemma 2.2.25.

The above completes the proof of Theorem 2.2.4. We also have the following useful corollary to this result.
Corollary 2.2.29. Let $\mathcal{T}=\left(G, \mathcal{C}, L, C_{*}\right)$ be a critical mosaic and let $C \in \mathcal{C}$. Then the following hold.

1) C is an induced subgraph of G; AND
2) For any subgraph H of G, if $H \cap C^{\prime}=\varnothing$ for all $C^{\prime} \in \mathcal{C} \backslash\{C\}$, then H is L-colorable. In particular, $|\mathcal{C}|>1$.

Proof. It suffices to prove that the claim on H holds in the case where $C \subseteq H$. By Corollary 2.2.10 C is an induced cycle of G If C is a closed \mathcal{T}-ring, then, since C is an L-predictable \mathcal{T}-ring, so there exists a $w \in V(C)$ and an
L-coloring ϕ of $V(C-w)$ such that $\left|L_{\phi}(w)\right| \geq 1$ and $\left|L_{\phi}(v)\right| \geq 3$ for all $v \in D_{1}(C) \backslash\{w\}$. Thus, $H \backslash(C-w)$ contains a lone facial subgraph F such that every vertex of $H \backslash(C-w)$ with an L_{ϕ}-list of size less than five lies in F, and F contains a a lone vertex w such that $\left|L_{\phi}(w)\right| \geq 1$ and $\left|L_{\phi}(v)\right| \geq 3$ for all $v \in V(F-w)$. Thus, $H \backslash(C-w)$ is L_{ϕ}-colorable, so H is L-colorable.

Now suppose that C is an open \mathcal{T}-ring, let $\mathbf{P}:=\mathbf{P}_{\mathcal{T}}(C)$ and let ϕ be an L-coloring of \mathbf{P}. By M1), we have $\left|L_{\phi}(v)\right| \geq 3$ for all $v \in D_{1}(P, G) \backslash V(C)$. Since C is an induced cycle in G, each vertex of $C \backslash \mathbf{P}$, except those adjacent to \mathbf{P} in C, has an L_{ϕ}-list of size at least three. Thus, $H \backslash \mathbf{P}$ contains a lone facial subgraph F containing all vertices with L_{ϕ}-lists of size less than five. If $|V(C \backslash P)|=1$, then there is a $w \in V(F)$ such that $\left|L_{\phi}(w)\right| \geq 1$ and $\left|L_{\phi}(v)\right| \geq 3$ for all $v \in V(F-w)$, so H is L-colorable by Theorem 0.2 .3 in that case. If $|V(C \backslash \mathbf{P})| \geq 2$, then there exist two vertices $w_{1}, w_{2} \in V(F)$ such that $\left|L_{\phi}(w)\right| \geq 3$ for all $w \in V(F) \backslash\left\{w_{1}, w_{2}\right\}$ and $\left|L_{\phi}\left(w_{i}\right)\right| \geq 2$ for each $i=1,2$. Thus, by Theorem 1.3.4, $H \backslash \mathbf{P}$ is L_{ϕ}-colorable, and thus H is L-colorable. Since \mathcal{T} is critical, we thus have $|\mathcal{C}|>1$.

2.3 Bands of Open Rings in Critical Mosaics

This section consists of a lone main result and two useful corollaries. Ituitively, this main result states that in a critical mosaic $\mathcal{T}=\left(G, \mathcal{C}, L, C_{*}\right)$, if $C \in \mathcal{C}$ is an open \mathcal{T}-ring, then G does not contain any "shortcuts" of the precolored path, which is made precisely below. We begin with the following definition:

Definition 2.3.1. Let $\mathcal{T}=\left(G, \mathcal{C}, L, C_{*}\right)$ be a critical mosaic and let $C \in \mathcal{C}$ be an open \mathcal{T}-ring. Let $\mathbf{P}_{\mathcal{T}}(C):=\mathbf{P}=$ $p_{1} \cdots p_{m}$ and let Q be a generalized chord of \mathbf{P}. Given such a Q, we associate to Q a cycle $Q_{\text {ext }}$ as follows: Let $p_{i}, p_{j} \in V(\mathbf{P})$, with $1 \leq i \leq j \leq m$, where p_{i}, p_{j} are the endpoints of Q in \mathbf{P}, and set $Q_{\text {ext }}:=p_{i} Q p_{j} \mathbf{P} p_{i}$. Note that $Q_{\text {ext }}$ is not necessarily a generalized C-chord, as it possibly intersects with C on many vertices.

We call call Q a C-band if, letting $G=G_{0} \cup G_{1}$ be the natural $Q_{\text {ext }}$-partition of G, the following hold.

1) $E\left(p_{i} \mathbf{P} p_{j}\right) \subseteq E\left(G_{0}\right)$ and $E(P) \backslash E\left(p_{i} \mathbf{P} p_{j}\right) \subseteq E\left(G_{1}\right)$; AND
2) For any $x \in D_{1}(C, G)$, if $G[N(x) \cap V(P)]$ is an edge of $p_{i} \mathbf{P} p_{j}$, then $x \in V\left(G_{0}\right)$; AND
3) There exists a $C^{\prime} \in \mathcal{C} \backslash\{C\}$ with $C^{\prime} \subseteq G_{0}$.

We say that a C-band Q is short if $\left|E\left(Q_{\mathrm{ext}}\right)\right| \leq \frac{11 N_{\mathrm{mo}}}{12}$.
Note that, since $|E(\mathbf{P})| \geq 1$, and \mathcal{T} is a tessellation, the partition $G=G_{0} \cup G_{1}$ satisfying the conditions above uniquely specifies G_{0} and G_{1}, even if $E(\mathbf{P}) \backslash E\left(p_{i} \mathbf{P} p_{j}\right)=\varnothing$, since, if p_{i}, p_{j} are the endpoints of \mathbf{P}, then there is at least one vertex x of $D_{1}(C)$ such that $G[N(x) \cap V(\mathbf{P})]$ is an edge of $p_{i} \mathbf{P} p_{j}$. Possibly, we have $Q_{\text {ext }}=C$, since the unique path Q of length greater than zero in $C \backslash E(\mathbf{P})$ is a C-band. In that case, we have $G_{0}=G$ and $G_{1}=Q_{\text {ext }}$.

Our main result for Section 2.3 is the following.
Theorem 2.3.2. Let $\mathcal{T}=\left(G, \mathcal{C}, L, C_{*}\right)$ be a critical mosaic and let $C \in \mathcal{C}$ be an open \mathcal{T}-ring. Let $\mathbf{P}:=\mathbf{P}_{\mathcal{T}}(C)$, where $\mathbf{P}=p_{1} \cdots p_{m}$. Then the following hold.

1) G does not contain a short C-band. In particular, for any C-band Q, we have $|E(Q)|>\frac{N_{\mathrm{mo}}}{4}$; AND
2) Let Q be a proper generalized chord of C with its C-endpoints in $V(\mathbf{P})$, and let $1 \leq i<j \leq m$, where p_{i}, p_{j} are the endpoints of Q. Suppose further that G, letting $G=G_{0} \cup G_{1}$ be the natural Q-partition of G, we have $p_{i} \mathbf{P} p_{j} \subseteq G_{0}$, and, for each $C^{\prime} \in \mathcal{C} \backslash\{C\}, C^{\prime} \subseteq G_{1}$. Then $\left|E\left(p_{1} \mathbf{P} p_{i}\right)\right|+|E(Q)|+\left|E\left(p_{j} \mathbf{P} p_{m}\right)\right|+|E(Q)|>\frac{2 N_{\mathrm{mo}}}{3}$.

We begin by proving 1):

Lemma 2.3.3. Let $\mathcal{T}=\left(G, \mathcal{C}, L, C_{*}\right)$ be a critical mosaic and let $C \in \mathcal{C}$ be an open \mathcal{T}-ring. Then G does not contain a short C-band. In particular, for any C-band Q, we have $|E(Q)|>\frac{N_{\mathrm{mo}}}{4}$.

Proof. Suppose toward a contradiction that there is a short C-band Q. Let $G=G_{0} \cup G_{1}$, where $G_{0} \cap G_{1}=Q_{\text {ext }}$ and G_{0}, G_{1} are as in Definition 2.3.1. By definition, there is a $C^{\dagger} \in \mathcal{C} \backslash\{C\}$ with $C^{\dagger} \subseteq G_{0}$. Let $\mathbf{P}_{\mathcal{T}}(C):=\mathbf{P}=p_{1} \cdots p_{m}$.

Claim 2.3.4. $C \subseteq G_{1}$

Proof: Suppose not. Since C is a facial subgraph of G and $Q_{\text {ext }}$ is a cycle, we have $C \subseteq G_{0}$. Since Q is a C-band, the \mathbf{P}-endpoints of Q are the endpoints of \mathbf{P}, or else there is a vertex p of \mathbf{P} in $V\left(G_{1} \backslash Q_{\text {ext }}\right)$ and thus $p \notin V\left(C_{0}\right)$. Thus, we have $\mathbf{P} \subseteq Q_{\text {ext }}$, and since $C \subseteq G_{0}$, the short C-band Q is the unique subpath of $C \backslash E(P)$ with endpoints p_{1}, p_{m} and containing all vertices of $C \backslash \mathbf{P}$. Thus, we have $G_{1}=C$, contradicting our assumption that $C \nsubseteq G_{1}$.

We now have the following:

Claim 2.3.5. $Q_{\text {ext }}$ has no chord in G_{0}, and furthermore, for each vertex $v \in D_{1}\left(Q_{\mathrm{ext}}, G_{0}\right), G\left[N(v) \cap V\left(Q_{\mathrm{ext}}\right)\right]$ is a subpath of $Q_{\text {ext }}$ of length at most two.

Proof: Suppose not. Thus, there is a k-chord R of $Q_{\text {ext }}$ in G_{0}, where $1 \leq k \leq 2$. Let $G_{0}=H \cup H^{\prime}$ be the natural R-partition of H, and note that $|V(H)|<\left|V\left(G_{0}\right)\right|$, and $\left.\left|V\left(H^{\prime}\right)\right|<\mid V G_{0}\right) \mid$. Let $K:=\left(H \cap Q_{\mathrm{ext}}\right)+R$ and $K^{\prime}:=\left(H^{\prime} \cap Q_{\text {ext }}\right)+R$. Note that each of K, K^{\prime} is a cycle of length at most $\left|E\left(Q_{\text {ext }}\right)\right|$, since R is either a chord of $Q_{\text {ext }}$ or a 2-chord of $Q_{\text {ext }}$ whose endpoints are not adjacent in $Q_{\text {ext }}$. Consider the following cases:

Case 1: $G_{0}=\operatorname{Int}\left(Q_{\text {ext }}\right)$
In this case, one of the two cycles K, K^{\prime} separates C^{\dagger} from C_{*}. Since each of K, K^{\prime} is of distance at most $\frac{N_{\text {mo }}}{4}$ from $V(\stackrel{\circ}{P})$, and each vertex of $\stackrel{\circ}{\mathbf{P}}$ is of distance at most $\frac{N_{\mathrm{mo}}}{3}$ from $C \backslash \stackrel{\circ}{\mathbf{P}}$, each of K, K^{\prime} is of distance at most $\frac{N_{\mathrm{mo}}}{3}+\frac{N_{\mathrm{mo}}}{4}$ from $C \backslash \stackrel{\circ}{\mathbf{P}}$, so we contradict Corollary 2.1.30.

Case 2: $G_{0} \neq \operatorname{Int}\left(Q_{\text {ext }}\right)$
In this case, we have $G_{0}=\operatorname{Ext}\left(Q_{\mathrm{ext}}\right)$ and $C \neq C_{*}$. By Claim 2.3.4, we have $C \subseteq \operatorname{Int}\left(Q_{\mathrm{ext}}\right)$, and one of the two cycles K, K^{\prime} topoologically separates C from C_{*}. Since each of K, K^{\prime} has length at most $\mid E\left(Q_{\text {ext }}\right)$, we get that each of K, K^{\prime} has length at most $\frac{11 N_{\mathrm{mo}}}{12}$. Now, $2 N_{\mathrm{mo}}-\left(\frac{3}{2}\right)\left(\frac{11 N_{\mathrm{mo}}}{12}\right)=\frac{15 N}{24}$, and each of K, K^{\prime} is of distance at most $\frac{N_{\mathrm{mo}}}{3}+\frac{N_{\mathrm{mo}}}{4}$ from $C \backslash \stackrel{\circ}{\mathbf{P}}$. Since $\frac{N_{\mathrm{mo}}}{3}+\frac{N_{\mathrm{mo}}}{4}=\frac{14 N_{\mathrm{mo}}}{24}<\frac{15 N_{\mathrm{mo}}}{24}$, we contradict Corollary 2.1.30.

Now we return to the proof of Lemma 2.3.3. We have the following:

Claim 2.3.6. $V\left(G_{1}\right)$ is L-colorable

Proof: Suppose that, for each $C^{\prime} \in \mathcal{C} \backslash\{C\}$, we have $V\left(C^{\prime} \cap G_{1}\right)=\varnothing$. In that case, by Corollary 2.2.29, we immediately get that $V\left(G_{1}\right)$ is L-colorable, so now we suppose there is a $C^{\prime} \in \mathcal{C} \backslash\{C\}$ with $V\left(C^{\prime} \cap G_{1}\right) \neq \varnothing$, so we have $C^{\prime} \subseteq G_{1}$, since $C^{\prime} \cap Q_{\text {ext }}=\varnothing$. Note that, if $Q_{\text {ext }}$ is not a separating cycle in G, then we have $V\left(G_{1}\right)=V\left(Q_{\text {ext }}\right)$, contradicting our assumption that $C^{\prime} \subseteq G_{1}$, so $Q_{\text {ext }}$ is a separating cycle. Furthermore, by Observation 2.1.8 we have $d\left(C^{\dagger}, Q_{\text {ext }}\right) \geq d\left(C^{\dagger}, C\right)-\frac{N_{\mathrm{mo}}}{8} \geq \frac{\beta}{3}+3 N_{\mathrm{mo}}-\frac{N_{\mathrm{mo}}}{8}>\frac{\beta}{3}$.
If $G_{1}=\operatorname{Ext}\left(Q_{\text {ext }}\right)$, then we have $C^{\dagger} \subseteq \operatorname{Int}\left(Q_{\text {ext }}\right)$. Since $\beta \geq \frac{3 N_{\mathrm{mo}}^{2}}{5}$, we get that $V\left(G_{1}\right)$ is L-colorable by Proposition 2.1.20. Now suppose that $G_{1}=\operatorname{Int}\left(Q_{\text {ext }}\right)$. By Claim 2.3.4, we have $C \subseteq \operatorname{Int}\left(Q_{\text {ext }}\right)$, and since $d\left(C, Q_{\text {ext }}\right)=0$, it follows from Proposition 2.1.21 that $V\left(G_{1}\right)$ is L-colorable.

Applying Claim 2.3.6, let ϕ be an L-coloring of $V\left(G_{1}\right)$, let C_{*}^{0} be the outer face of G_{0} (possibly $C_{*}^{0}=C_{*}$), and consider the oriented tessellation $\mathcal{T}^{\prime}:=\left(G_{0},\left\{Q_{\text {ext }}\right\} \cup \mathcal{C} \subseteq G_{0}, L_{\phi}^{Q}, C_{*}^{0}\right)$.

Claim 2.3.7. \mathcal{T}^{\prime} is a mosaic.

Proof: Since $\left|V\left(Q_{\text {ext }}\right)\right| \leq N_{\mathrm{mo}}$, we immediately have M0) and M1). By Claim 2.3.5, $Q_{\text {ext }}$ is a highly predictable facial subgraph of G_{0}, so, since $Q_{\text {ext }}$ is a closed \mathcal{T}^{\prime}-ring, we have M2) as well. To finish, we just need to check that the distance conditions M3) and M4) still hold. If these distance conditions do not hold, then, since \mathcal{T} is a mosaic and C is an open \mathcal{T}-ring, there exists a $\beta^{*} \in\left\{\frac{\beta}{3}, \beta\right\}$, and a $C^{\prime} \in \mathcal{C} \backslash\{C\}$ such that $d\left(C, w_{\mathcal{T}^{\prime}}\left(C^{\prime}\right)\right)<\beta^{*}+\operatorname{Rk}\left(\mathcal{T}^{\prime} \mid C^{\prime}\right)+|V(C)|$ and $d\left(C, w_{\mathcal{T}}\left(C^{\prime}\right)\right) \geq \beta^{*}+\operatorname{Rk}\left(\mathcal{T} \mid C^{\prime}\right)+2 N_{\text {mo }}$. Note that $\operatorname{Rk}\left(\mathcal{T}^{\prime} \mid C^{\prime}\right)=\operatorname{Rk}\left(\mathcal{T} \mid C^{\prime}\right)$ and $w_{\mathcal{T}}\left(C^{\prime}\right)=w_{\mathcal{T}^{\prime}}\left(C^{\prime}\right)$, so $2 N_{\text {mo }}<|V(C)|$, which is false. We conclude that \mathcal{T}^{\prime} is also a mosaic, as desired.

Now we finish the proof of Lemma 2.3.3. Consider the following cases:
Case 1: $Q_{\text {ext }}$ is a separating cycle in G
In this case, we have $\left|V\left(G_{0}\right)\right|<|V(G)|$. Since \mathcal{T}^{\prime} is a mosaic by Claim 2.3.7, we get that $V\left(G_{0}\right)$ is L_{ϕ}^{Q}-colorable by the minimality of \mathcal{T}. Thus, ϕ extends to an L-coloring of G, contradicting the fact that \mathcal{T} is critical.

Case 2: $Q_{\text {ext }}$ is not a separating cycle in G
In this case, we have $V\left(G_{1}\right)=V\left(Q_{\text {ext }}\right)$ and $V\left(G_{0}\right)=V(G)$. By the minimality of $\sum_{v \in V(G)}|L(v)|$, the mosaic \mathcal{T}^{\prime} is colorable, so G is L_{ϕ}^{Q}-colorable, and thus G is L-colorable, contradicting the fact that \mathcal{T} is critical. Thus, there does not exist a short C-band. Since $\frac{2 N_{\mathrm{mo}}}{3}+\frac{N_{\mathrm{mo}}}{4}=\frac{11 N_{\mathrm{mo}}}{12}$, it immediately follows that, for any C-band Q, we have $|E(Q)|>\frac{N_{\mathrm{mo}}}{4}$. This completes the proof of Lemma 2.3.3.

The above proves 1) of Theorem 2.3.2. This result, together with the results of Section 2.2, yields the following corollary:

Corollary 2.3.8. Let $\mathcal{T}=\left(G, \mathcal{C}, L, C_{*}\right)$, let $C \in \mathcal{C}$, and let Q be a generalized chord of Q with $|E(Q)| \leq \frac{N_{\mathrm{mo}}}{4}$. Let $G=G_{0} \cup G_{1}$ be the natural Q-partition of G. Then there exists a $j \in\{0,1\}$ such that, for each $C^{\prime} \in \mathcal{C} \backslash\{C\}$, $C^{\prime} \subseteq G_{j}$.

Proof. Suppose toward a contradiction that there exist $C_{0}, C_{1} \in \mathcal{C} \backslash\{C\}$ such that $C_{j} \subseteq G_{j}$ for each $j=0,1$. Suppose first that C is a closed ring. By 1) of Theorem 2.2.4, Q is not a proper generalized chord of C, so Q is a cycle, contradicting 2) of Theorem 2.2.4. Thus, C is an open ring. Let $\mathbf{P}:=\mathbf{P}_{\mathcal{T}}(C)$. If Q is a not a proper generalized chord of C, then Q is a cycle and we contradict Corollary 2.1.30. Thus, Q is a proper generalized chord of C.

By 3) of Theorem 2.2.4, we have $Q \notin \mathcal{K}(C, \mathcal{T})$. By Lemma 2.3.3, Q does not have both endpoints in \mathbf{P}. Thus, precisely one endpoint of Q lies in $V(\stackrel{\circ}{\mathbf{P}})$ and one endpoint of Q lies in $V(C \backslash \mathbf{P})$. Let $\mathbf{P}:=p_{1} \cdots p_{m}$ and let
 $2|E(Q)|<\frac{4 N_{\mathrm{mo}}}{3}$, so either $\left|E\left(p_{1} \mathbf{P} p_{r}\right)\right|+|E(Q)|<\frac{2 N_{\mathrm{mo}}}{3}$ or $\left|E\left(p_{r} \mathbf{P} p_{m}\right)\right|+|E(Q)|<\frac{2 N_{\mathrm{mo}}}{3}$. In either case, we contradict 4) of Theorem 2.2.4.

Given the results of Corollary 2.3.8, it is natural to introduce the following notation, which we use throughout the remaining chapters.

Definition 2.3.9. Let $\mathcal{T}=\left(G, \mathcal{C}, L, C_{*}\right)$ be a critical mosaic, let $C \in \mathcal{C}$, and let Q be a generalized chord of C with $|E(Q)| \leq \frac{N_{\mathrm{mo}}}{4}$. We define two graphs $G_{Q}^{\text {small }}$ and $G_{Q}^{\text {large }}$, each a subgraph of G, in the following way. We let
$G=G_{Q}^{\text {small }} \cup G_{Q}^{\text {large }}$ be the natural Q-partition of G, where $C^{\prime} \subseteq G_{Q}^{\text {large }}$ for all $C^{\prime} \in \mathcal{C} \backslash\{C\}$. In particular, note that if C is an open \mathcal{T}-ring and $Q \in \mathcal{K}(C, \mathcal{T})$ with $|E(Q)| \leq \frac{2 N_{\text {mo }}}{3}$, then $G_{Q}^{\text {small }}=G_{Q}^{1}$ and $G_{Q}^{\text {large }}=G_{Q}^{0}$. By Corollary 2.2.29, the graphs $G_{Q}^{\text {small }}$ and $G_{Q}^{\text {large }}$ are uniquely defined, since there exists a $C^{\prime} \in \mathcal{C} \backslash\{C\}$ with $C^{\prime} \subseteq G_{Q}^{\text {large }}$.

We now prove 2) of Theorem 2.3.2, which we restate below.
Lemma 2.3.10. Let $\mathcal{T}=\left(G, \mathcal{C}, L, C_{*}\right)$ be a critical mosaic and let $\mathbf{P}:=p_{1} \cdots p_{m}$. Let Q be a proper generalized chord of C with its C-endpoints in $V(\mathbf{P})$. Let $1 \leq i<j \leq m$, where p_{i}, p_{j} are the endpoints of Q. Let $G=$ $G_{0} \cup G_{1}$ be the natural Q-partition of G, where $p_{i} \mathbf{P} p_{j} \subseteq G_{0}$, and, for each $C^{\prime} \in \mathcal{C} \backslash\{C\}, C^{\prime} \subseteq G_{1}$. Then $\left|E\left(p_{1} \mathbf{P} p_{i}\right)\right|+|E(Q)|+\left|E\left(p_{j} \mathbf{P} p_{m}\right)\right|+|E(Q)|>\frac{2 N_{\mathrm{mo}}}{3}$.

Proof. Given a proper generalized chord Q of C, we say that Q is defective if Q has both endpoints in P and furthermore, letting $G=G_{0} \cup G_{1}$ be the natural Q-partition of G and letting $1 \leq i<j \leq m$, where p_{i}, p_{j} are the endpoints of Q, the following hold.

1) $p_{i} \mathbf{P} p_{j} \subseteq G_{0}$, and, for each $\left.C^{\prime} \in \mathcal{C} \backslash\{C\}, C^{\prime} \subseteq G\right) ; A N D$
2) $\left|E\left(p_{1} \mathbf{P} p_{i}\right)\right|+|E(Q)|+\left|E\left(p_{j} \mathbf{P} p_{m}\right)\right| \leq \frac{2 N_{\mathrm{mo}}}{3}$.

Suppose toward a contradiction that there is a defective generalized chord Q of C. Among all defective generalized chords of C, we choose Q so that $\left|V\left(G_{Q}^{\text {large }}\right)\right|$ is minimized. By 1) of the definition above, $G_{Q}^{\text {large }}$ and $G_{Q}^{\text {small }}$ are well-defined. Let $1 \leq i<j \leq m$, where p_{i}, p_{j} are the endpoints of Q. Since $\mathcal{C} \backslash\{C\} \neq \varnothing$, we fix a $C^{\prime} \in \mathcal{C} \backslash\{C\}$.

Claim 2.3.11. $G_{Q}^{\text {small }}$ is L-colorable .
Proof: Each vertex of $G_{Q}^{\text {small }} \backslash\left\{p_{i}, \cdots, p_{j}\right\}$ has an L-list of size five. Since $V(\mathbf{P})$ is L-colorable, let ϕ be an L-coloring of $p_{i} \mathbf{P} p_{j}$. By M1), each vertex of $G_{Q}^{\text {small }} \backslash\left\{p_{i}, \cdots, p_{j}\right\}$ with a neighbor in $p_{i} \mathbf{P} p_{j}$ has an L_{ϕ}-list of size at least three. Thus, $G_{Q}^{\text {small }} \backslash\left\{p_{i}, \cdots, p_{j}\right\}$ has a lone facial subgraph F containing all vertices of $G_{Q}^{\text {small }} \backslash\left\{p_{i}, \cdots, p_{j}\right\}$ with L_{ϕ}-lists of size less than five, and each vertex of F has an L_{ϕ}-list of size at least three. By Theorem $0.2 .3, \phi$ extends to an L-coloring of $G_{Q}^{\text {small }}$.
Let $\mathbf{P}^{\dagger}:=p_{1} \mathbf{P} p_{i} Q p_{j} \mathbf{P} p_{m}$ and let $C^{\dagger}:=C \cap G_{Q}^{\text {large }}+Q$. Now we note the following:
Claim 2.3.12. $V\left(\mathbf{P}^{\dagger}\right) \neq V\left(C^{\dagger}\right)$ and there does not exist a chord $x y$ of C^{\dagger} with $x \in V\left(\mathbf{P}^{\dagger}\right)$ and $y \in V\left(C^{\dagger} \backslash P^{\dagger}\right)$.

Proof: Firstly, since $p_{1} p_{m}$ is not an edge of C, we have $V\left(\mathbf{P}^{\dagger}\right) \neq V\left(C^{\dagger}\right)$. Now suppose toward a contradiction that there is a chord $x y$ of C^{\dagger}, where $x \in V\left(\mathbf{P}^{\dagger}\right)$ and $y \in V\left(C^{\dagger} \backslash \mathbf{P}^{\dagger}\right)$. Note that $y \in V(C \backslash \mathbf{P})$ and G contains the paths Q_{1}, Q_{2}, where $Q_{1}:=p_{i} Q x y$ and $Q_{2}:=p_{j} Q x y$. Each of Q_{1}, Q_{2} is a proper generalized chord of C with precisely one endpoint in \mathbf{P} and one endpoint in $C \backslash \mathbf{P}$. Note that $\left|E\left(p_{1} \mathbf{P} p_{i}\right)\right|+\left|E\left(Q_{1}\right)\right| \leq \frac{2 N_{\mathrm{mo}}}{3}$ and $\left|E\left(p_{j} \mathbf{P} p_{m}\right)\right|+\left|E\left(Q_{2}\right)\right| \leq \frac{2 N_{\mathrm{mo}}}{3}$. If each of p_{i}, p_{j} is an endpoint of \mathbf{P}, then we have $i=1$ and $j=m$, and $Q_{1}, Q_{2} \in \mathcal{K}(C, \mathcal{T})$. By 3) of Theorem 2.2.4 applied to Q_{2}, we have $C^{\prime} \subseteq G_{Q_{2}}^{0}$. Thus, Q_{1} separates C^{\prime} from P, contradicting 3) of Theorem 2.2.4 applied to Q_{1}.

Thus, suppose without loss of generality that p_{i} is an internal vertex of P. If $p_{j}=p_{m}$, then, by Theorem 2.2.4, $C^{\prime} \subseteq G_{Q_{2}}^{0}$. But then, by 4) of Theorem 2.2.4, we have $\left|E\left(p_{1} \mathbf{P} p_{i}\right)\right|+\left|E\left(Q_{1}\right)\right|>\frac{2 N_{\mathrm{mo}}}{3}$, which is false. Thus, p_{j} is also an internal vertex of P. Since $\left|E\left(p_{1} \mathbf{P} p_{i}\right)\right|+\left|E\left(Q_{1}\right)\right| \leq \frac{2 N_{\mathrm{mo}}}{3}$, it follows from 4) of Theorem 2.2.4 that Q_{1} separates C^{\prime} from p_{1}. But since $\left|E\left(p_{j} \mathbf{P} p_{m}\right)\right|+\left|E\left(Q_{2}\right)\right| \leq \frac{2 N_{\mathrm{mo}}}{3}$ as well, it again follows from 4) of Theorem 2.2.4 that Q_{2} separates C^{\prime} from p_{m}, so $C^{\prime} \subseteq G_{Q}^{\text {small }}$, which is false. This completes the proof of Claim 2.3.12.

Finally, we show the following:

Claim 2.3.13. \mathbf{P}^{\dagger} is a chordless path, and furthermore, for each vertex $v \in V\left(G^{1} \backslash C^{\dagger}\right), G\left[N(v) \cap V\left(\mathbf{P}^{\dagger}\right)\right]$ is a subpath of \mathbf{P}^{\dagger} of length at most one.

Proof: If this does not hold, then there is a k-chord R of \mathbf{P}^{\dagger}, where $1 \leq k \leq 2$, and either $k=1$ or, if $k=2$, then the endpoints of R are not adjacent in \mathbf{P}^{\dagger}. Let u, v be the endpoints of R. Since \mathcal{T} satisfies M1) and C is an induced subgraph of G, at least one of u, v lies in $V(Q) \backslash\left\{p_{i}, p_{j}\right\}$, so let $v \in V(Q) \backslash\left\{p_{i}, p_{j}\right\}$. Consider the following cases:

Case 1: $u \in\left\{p_{1}, \cdots, p_{i}\right\} \cup\left\{p_{j}, \cdots, p_{m}\right\}$
In this case, suppose without loss of generality that $u \in\left\{p_{1}, \cdots, p_{i}\right\}$. Let $Q^{\prime}:=u R v Q p_{i}$ and let $Q^{\prime \prime}:=u R v Q p_{j}$. Then $Q^{\prime \prime}$ is a proper generalized chord of C with endpoints u, p_{j} in \mathbf{P}. Let $G=G_{0}^{\prime \prime} \cup G_{1}^{\prime \prime}$ be the natural $Q^{\prime \prime}$-partition of G, where $u \mathbf{P} p_{j} \subseteq G_{0}^{\prime \prime}$. Then $G_{1}^{\prime \prime}$ is a proper subgraph of $G_{Q}^{\text {large }}$. Furthermore, since R is either a chord of P^{\dagger} or a 2-chord of \mathbf{P}^{\dagger} with endpoints which are not adjacent in \mathbf{P}^{\dagger}, we have

$$
\left|E\left(p_{1} \mathbf{P} u\right)\right|+\left|E\left(Q^{\prime \prime}\right)\right|+\left|E\left(p_{j} \mathbf{P} p_{m}\right)\right| \leq\left|E\left(p_{1} \mathbf{P} p_{i}\right)\right|+|E(Q)|+\left|E\left(p_{j} \mathbf{P} p_{m}\right)\right| \leq \frac{2 N_{\mathrm{mo}}}{3}
$$

Thus, there exists a $C^{\prime \prime} \in \mathcal{C} \backslash\{C\}$ with $C^{\prime \prime} \subseteq G_{0}^{\prime \prime}$. Since $C^{\prime \prime} \subseteq G_{0}^{\prime \prime}$ and Q does not separate $C^{\prime \prime}$ from $C \backslash P$, the generalized chord Q^{\prime} of C separates $C^{\prime \prime}$ from $C \backslash \mathbf{P}$ as well. By Lemma 2.3.3, we have the following two inequalities:

$$
\begin{aligned}
& |E(R)|+\left|E\left(p_{i} Q v\right)\right|+\left|E\left(u \mathbf{P} p_{i}\right)\right|>\frac{11 N_{\mathrm{mo}}}{12} \\
& |E(R)|+\left|E\left(v Q p_{j}\right)\right|+\left|E\left(u \mathbf{P} p_{j}\right)\right|>\frac{11 N_{\mathrm{mo}}}{12}
\end{aligned}
$$

Combining these, since $|E(R)| \leq 2$, we have $|E(Q)|+2\left|E\left(u \mathbf{P} p_{i}\right)\right|+\left|E\left(p_{i} \mathbf{P} p_{j}\right)\right|+2 \geq \frac{22 N_{\mathrm{mo}}}{12}$. On the other hand, since Q is defective, we have $\left|E(Q) \leq \frac{2 N_{\mathrm{mo}}}{3}-\left|E\left(p_{1} \mathbf{P} p_{i}\right)\right|-\left|E\left(p_{j} \mathbf{P} p_{m}\right)\right|\right.$. Thus, we have the following:

$$
\left(\frac{2 N_{\mathrm{mo}}}{3}-\left|E\left(p_{1} \mathbf{P} p_{i}\right)\right|-\left|E\left(p_{j} \mathbf{P} p_{m}\right)\right|\right)+2\left|E\left(u \mathbf{P} p_{i}\right)\right|+\left|E\left(p_{i} \mathbf{P} p_{j}\right)\right|+2 \geq \frac{22 N_{\mathrm{mo}}}{12}
$$

Since $|E(\mathbf{P})| \leq \frac{2 N_{\text {mo }}}{3}$, we have $\left|E\left(p_{i} \mathbf{P} p_{j}\right)\right| \leq \frac{2 N_{\mathrm{mo}}}{3}-\left|E\left(p_{1} \mathbf{P} p_{i}\right)\right|-\left|E\left(p_{j} \mathbf{P} p_{m}\right)\right|$. Thus, we have

$$
2\left(\frac{2 N_{\mathrm{mo}}}{3}-\left|E\left(p_{1} \mathbf{P} p_{i}\right)\right|-\left|E\left(p_{j} \mathbf{P} p_{m}\right)\right|\right)+2\left|E\left(u \mathbf{P} p_{i}\right)\right|+2 \geq \frac{22 N_{\mathrm{mo}}}{12}
$$

Since $\left|E\left(p_{1} \mathbf{P} p_{i}\right)\right|=\left|E\left(p_{1} \mathbf{P} u\right)\right|+\left|E\left(u \mathbf{P} p_{i}\right)\right|$, we have $\frac{4 N_{\mathrm{mo}}}{3}+2 \geq \frac{22 N_{\mathrm{mo}}}{12}$, which is false. This completes Case 1.
Case 2: $u \in V(Q) \backslash\left\{p_{i}, p_{j}\right\}$
This case is easier than Case 1. In this case, let $Q^{\prime}:=p_{i} Q u R v Q p_{j}$. Let $G=G_{0}^{\prime} \cup G_{1}^{\prime}$, where $G_{0}^{\prime} \cap G_{1}^{\prime}=Q^{\prime}$ and $p_{i} \mathbf{P} p_{j} \subseteq G_{0}^{\prime}$. NOte that, since R us either a chord of Q or a 2 -chord of Q with endpoints which are not adjacent in Q, we have $\left|E\left(p_{1} \mathbf{P} p_{i}\right)\right|+\left|E\left(Q^{\prime}\right)\right|+\left|E\left(p_{j} \mathbf{P} p_{m}\right)\right| \leq \frac{2 N_{\mathrm{mo}}}{3}$. Furthermore, since there is an internal vertex of $x Q y$ lying in $G_{0}^{\prime} \backslash V\left(Q^{\prime}\right)$, we have $\left|V\left(G_{1}^{\prime}\right)<\left|V\left(G_{Q}^{\text {large }}\right)\right|\right.$. Thus, there exists a $C^{\prime \prime} \in \mathcal{C} \backslash\{C\}$ such that Q^{\prime} separates $C^{\prime \prime}$ from $C \backslash \mathbf{P}$, or else Q^{\prime} is a defective path, contradicting the minimality of Q. In that case, since $C^{\prime \prime} \nsubseteq G_{Q}^{\text {small }}$, the cycle $D:=x Q y R x$ separates $C^{\prime \prime}$ from C. Note that, since u, v are not adjacent in Q and $|E(Q)| \leq \frac{2 N_{\text {mo }}}{3}$, each vertex of D is of distance at most $\frac{N_{\mathrm{mo}}}{3}$ from $\left\{p_{i}, p_{j}\right\}$, and thus $d(D, C \backslash \mathbf{P}) \leq \frac{2 N_{\mathrm{mo}}}{3}$. Furthermore, $|E(D)| \leq \frac{2 N_{\mathrm{mo}}}{3}+1$. But then, since D separates C from $C^{\prime \prime}$, we contradict Corollary 2.1.30. This completes the proof of Claim 2.3.13.

Combining Claim 2.3.12 and Claim 2.3.13, since C is an induced subgraph G, it follows that C^{\dagger} is an induced subgraph
 subgraph of G induced by $G_{Q}^{\text {small }}$.

Let L^{\prime} be a list-assignment for $V\left(G_{Q}^{\text {large }}\right)$, where $L^{\prime}(x)=\{\phi(x)\}$ for each $x \in V\left(\mathbf{P}^{\dagger}\right)$ and $L^{\prime}(x)=L(x)$ for all $x \in V\left(G_{1} \backslash \mathbf{P}^{\dagger}\right)$. Note that $V\left(\mathbf{P}^{\dagger}\right)$ is L^{\prime}-colorable, since $|L(p)|=1$ for each $p \in V(\mathbf{P}), C^{\dagger}$ is a chordless cycle in $G_{Q}^{\text {large }}$ and $V\left(\mathbf{P}^{\dagger}\right) \neq V\left(C^{\dagger}\right)$. Let $C_{* *}$ be the outer face of $G_{Q}^{\text {large }}$ (i.e $C_{* *}$ is either C_{*} or C^{\dagger}). Let $\mathcal{T}^{\prime}:=$ $\left(G_{Q}^{\text {large }},\left\{C^{\dagger}\right\} \cup\left(\mathcal{C} \backslash\{C\}, L^{\prime}, C_{* *}\right)\right.$. Since $V\left(\mathbf{P}^{\dagger}\right)$ is L^{\prime}-colorable, \mathcal{T}^{\prime} is a tessellation. Since $V\left(C^{\dagger}\right) \neq V\left(\mathbf{P}^{\dagger}\right), C^{\dagger}$ is an open \mathcal{T}^{\prime}-ring. By assumption on Q, we have $\left|E\left(\mathbf{P}^{\dagger}\right)\right| \leq \frac{2 N_{\mathrm{mo}}}{3}$, so \mathcal{T}^{\prime} satisfies M0). M2) is immediate, and, by Claim 2.3.13, \mathcal{T}^{\prime} satisfies M1) as well. Since each vertex of $C^{\dagger} \backslash \stackrel{\circ}{\mathbf{P}}^{\dagger}$ lies in $V(C \backslash \stackrel{\circ}{\mathbf{P}})$, we immediately get that \mathcal{T}^{\prime} also satisfies distance conditions M3) and M4) of Definition 2.1.6 as well. Thus, \mathcal{T}^{\prime} is indeed a mosaic. Since $\left|V\left(G_{Q}^{\text {large }}\right)\right|<|V(G)|, G_{Q}^{\text {large }}$ admits an L-coloring, so ϕ extends to an L-coloring of G, contradicting the fact that \mathcal{T} is critical. This completes the proof of Lemma 2.3.10.

The above proves 2) of Theorem 2.3.2, and thus completes the proof of Theorem 2.3.2. This result has the following useful corollary:

Corollary 2.3.14. Let $\mathcal{T}=\left(G, \mathcal{C}, L, C_{*}\right)$ be a critical mosaic, let C be an open \mathcal{T}-ring, and let $\mathbf{P}:=\mathbf{P}_{\mathcal{T}}(C)$. Let $\mathbf{P}:=p_{1} \cdots p_{m}$. Then the following hold.

1) Let Q be a proper generalized chord of C with its C-endpoints in $V(\mathbf{P})$, where $|E(Q)| \leq \frac{N_{\text {mo }}}{4}$, and let $1 \leq i<$ $j \leq m$, where p_{i}, p_{j} are the endpoints of Q. Then $\left|E\left(p_{1} \mathbf{P} p_{i}\right)\right|+|E(Q)|+\left|E\left(p_{j} \mathbf{P} p_{m}\right)\right|>\frac{2 N_{\mathrm{mo}}}{3}$; AND
2) $|E(\mathbf{P})|=\left\lfloor\frac{2 N_{\mathrm{mo}}}{3}\right\rfloor$

Proof. 1) is an immediate consequence of Theorem 2.3.2, since Q separates the path $p_{i} \mathbf{P} p_{j}$ from each element of $\mathcal{C} \backslash\{C\}$. Now we prove 2). Suppose $|E(\mathbf{P})| \neq\left\lfloor\frac{2 N_{\text {mo }}}{3}\right\rfloor$. Thus, since $E(\mathbf{P}) \leq \frac{2 N_{\text {mo }}}{3}$ we have $|E(\mathbf{P})|<\left\lfloor\frac{2 N_{\text {mo }}}{3}\right\rfloor$. By our triangulation conditions, p_{1}, p_{2} have a unique common neighbor $x \in D_{1}(C)$. Applying 1) to $Q:=p_{1} x p_{2}$, we have $2+(|E(\mathbf{P})|-1)>\frac{2 N_{\mathrm{mo}}}{3}$, contradicting the fact that $|E(\mathbf{P})|<\left\lfloor\frac{2 N_{\mathrm{mo}}}{3}\right\rfloor$.

Chapter 3

Vertices of Distance One From Open Rings

Given a critical mosaic $\mathcal{T}=\left(G, \mathcal{C}, L, C_{*}\right)$, the goal of this chapter is to characterize the ball of distance one from each open ring $C \in \mathcal{C}$. In order to state our main theorem for Chapter 3, we first introduce the following definition.

Definition 3.0.1. Let $\mathcal{T}=(G, \mathcal{C}, L)$ be a chart, let $C \in \mathcal{C}$ be an open \mathcal{T}-ring, and let $\mathbf{P}:=\mathbf{P}_{\mathcal{T}}(C)$. Given an $x \in D_{1}(C \backslash \stackrel{\circ}{\mathbf{P}})$, we say that x is a \mathcal{C}-shortcut if one of the following conditions holds.

1) There exists a $C^{\prime} \in \mathcal{C} \backslash\{C\}$ such that $d\left(x, w_{\mathcal{T}}\left(C^{\prime}\right)\right)<d\left(C \backslash \stackrel{\circ}{\mathbf{P}}, w_{\mathcal{T}}\left(C^{\prime}\right)\right)$; OR
2) x has a neighbor in $\stackrel{\circ}{\mathbf{P}}$.

We now state our main result for Chapter 3, which we prove over the next three sections.
Theorem 3.0.2. Let \mathcal{T} be a critical mosaic, let C be an open \mathcal{T}-ring, and let $\mathbf{P}:=\mathbf{P}_{\mathcal{T}}(C)$. Then G contains a unique cycle $C^{1}:=w_{1} \cdots w_{r}$ such that $V\left(C^{1}\right)=D_{1}(C, G)$, and such that, letting $G=G_{0} \cup G_{1}$ be the natural C^{1}-partition of G, where $C \subseteq G_{0}$, the following hold.

1) For each $v \in V\left(C^{1}\right)$, the subgraph of G_{0} induced by $\{v\} \cup N(v)$ is either an edge or a broken wheel with principal vertex $v ; A N D$
2) If $w_{i} w_{j}$ is a chord of C^{1}, and each of w_{i}, w_{j} has a neighbor in $C \backslash \stackrel{\circ}{\mathbf{P}}$, then the following hold.
i) $|i-j|=2$ and $w_{i} w_{j} \in E\left(G_{1}\right)$. In particular, $w_{i} w_{j}$ does not separate two vertices of $G_{1} \backslash C^{1} ; A N D$
ii) Neither of w_{i}, w_{j} has a neighbor in \mathbf{P}; AND
iii) Each of w_{i}, w_{j} is a \mathcal{C}-shortcut.

3.1 2-Chords on One Side of the Precolored Path

The main result of this section is the following:
Lemma 3.1.1. Let $\mathcal{T}=\left(G, \mathcal{C}, L, C_{*}\right)$ be a critical mosaic and let $C \in \mathcal{C}$ be an open ring. Let $Q:=v_{1} v_{2} v_{3}$ be a 2-chord of C with $v_{1} v_{2} v_{3} \in \mathcal{K}^{2}(C, \mathcal{T})$. Then $V\left(G_{Q}^{1}\right)=\left\{v_{2}\right\} \cup V\left(C \cap G_{Q}^{1}\right)$, and G_{Q}^{1} is a broken wheel with principal path $v_{1} v_{2} v_{3}$.

Proof. Given a path $x w y \in \mathcal{K}^{2}(\mathcal{T}, C)$, we call $x w y$ a bad path if $V\left(G_{x w y}^{1}\right) \neq\{v\} \cup V\left(C \cap G_{x w y}^{1}\right)$. It suffices to prove that there does not exist a bad path. Fix $\mathbf{P}:=\mathbf{P}_{\mathcal{T}}(C)$ and suppose toward a contradiction that there exists a bad
path $x w y \in \mathcal{K}^{2}(C, \mathcal{T})$, and let $x w y$ be chosen so as to minimize $\left|V\left(G_{x w y}^{1}\right)\right|$ over all bad paths. By 3$)$ of Theorem 2.2.4, each vertex of $G_{x w y}^{1} \backslash C$ has an L-list of size five. Let $S:=V\left(G_{x w y}^{1}\right) \backslash(\{w\} \cup V(C))$.

Claim 3.1.2.

1) $\left|V\left(G_{x w y}^{1} \cap C\right)\right| \geq 4$; $A N D$
2) For every vertex $v \in V\left(G_{x w y}^{1} \cap C\right) \backslash\{x, y\}$, v is not adjacent to w; AND
3) $x, y \notin V(\mathbf{P})$; AND
4) $G_{x w y}^{0}$ is L-colorable.

Proof: Let $G_{x w y}^{1} \cap C=x v_{1} \cdots v_{t} y$ for some integer t. If $t \leq 1$, then the cycle $x w y v_{1} \cdots v_{t}$ has length at most 4 . However, since $x w y$ is a bad path, we have $V\left(G_{x w y}^{1}\right) \neq\{w, x, y\} \cup\left\{v_{1}, \cdots, v_{t}\right\}$, so $x w y v_{1} \cdots v_{t}$ separates a vertex of $V\left(G_{x w y}^{1}\right) \backslash\left\{w, x, y, v_{1}, \cdots, v_{t}\right\}$ from $G_{x w y}^{0}$, contradicting the fact that \mathcal{T} is a tessellation. Thus, we have $t \geq 2$, so $\left|V\left(G_{x w y}^{1} \cap C\right)\right| \geq 4$. This proves Fact 1 .

Now let $i \in\{1, \cdots, t\}$ and suppose toward a contradiction that $v_{i} w \in E(G)$. Now consider the two paths $x w v_{i}$ and $v_{i} w y$. Note that $\left|V\left(G_{x w v_{i}}^{1}\right)\right|<\left|V\left(G_{x w y}^{1}\right)\right|$, since $G_{x w v_{i}}^{1} \subseteq G_{x w y}^{1}$ and $y \notin V\left(G_{x w v_{i}}^{1}\right)$. Likewise, $\left|V\left(G_{v_{i} w y}^{1}\right)\right|<$ $\left|V\left(G_{x w y}^{1}\right)\right|$. Thus, by the minimality of $x w y$, we have $V\left(G_{x w v_{i}}^{1}\right)=\{w\} \cup\left\{x, v_{1}, \cdots, v_{i}\right\}$, and $V\left(G_{v_{i} w y}^{1}\right)=\{w\} \cup$ $\left\{v_{i}, \cdots, v_{t}, y\right\}$. But $G_{x w y}^{1}=G_{x w v_{i}}^{1} \cup G_{v_{i} w y}^{1}$, so we then we have $V\left(G_{x w y}^{1}\right)=\{w\} \cup\left\{x, v_{1}, \cdots, v_{t}, y\right\}$, contradicting the fact that $x w y$ is bad. Thus, for each $i \in\{1, \cdots, t\}, v_{i}$ is not adjacent to w_{i}. This proves Fact 2.

Let $\mathbf{P}=p_{1} p_{2} \cdots p_{m}$. Suppose toward a contradiction that $\{x, y\} \cap\left\{p_{1}, p_{m}\right\} \neq \varnothing$, and suppose without loss of generality that $x=p_{1}$. Since $p_{1} \cdots p_{m} \subseteq G_{x w y}^{0}$, we have $v_{1} \notin V(\mathbf{P})$. Let $L\left(p_{1}\right)=\{c\}$ and let $a, b \in L\left(v_{1}\right) \backslash\{c\}$. Let L^{*} be a list-assignment for $G \backslash\left\{v_{1}\right\}$ where $L^{*}(u)=L(u) \backslash\{a, b\}$ for all $u \in N\left(v_{1}\right) \backslash V(C)$, and $L^{*}(u)=L(u)$ for all $u \in V\left(G \backslash\left\{v_{i}\right\}\right) \backslash\left(N\left(v_{1}\right) \cap V(C)\right)$. Furthermore, there is a facial subgraph C^{\dagger} of $G \backslash\left\{v_{1}\right\}$ such that $V\left(C^{\dagger}\right)=\left(V(C) \backslash\left\{v_{1}\right\}\right) \cup N\left(v_{1}\right)$. We claim now that $G \backslash\left\{v_{1}\right\}$ is L^{*}-colorable. We just need to check that the tessellation $\mathcal{T}^{\prime}:=\left(G \backslash\left\{v_{1}\right\},(\mathcal{C} \backslash\{C\}) \cup\left\{C^{\dagger}\right\}, L^{*}\right)$ is a mosaic. Note that C^{\dagger} is an open \mathcal{T}^{\prime}-ring, and furthermore, since $x w y$ separates $\left(\left\{v_{1}\right\} \cup N\left(v_{1}\right)\right) \backslash\{x, w, y\}$ from $G_{x w y}^{0} \backslash\{x, w, y\}, \mathcal{T}^{\prime}$ still satisfies M1).

Thus, if \mathcal{T}^{\prime} is not a mosaic, then there exists a $C^{\prime} \in \mathcal{C} \backslash\{C\}$ such that $d\left(w_{\mathcal{T}^{\prime}}\left(C^{\prime}\right), w_{\mathcal{T}^{\prime}}\left(C^{\dagger}\right)\right)$ violates either M3) or M4) of Definition 2.1.6. For any subgraph H of C^{\prime} and any shortest ($H, C \backslash \stackrel{\circ}{\mathbf{P}}$)-path P^{*} in G, P^{*} does not have v_{1} as an endpoint, since any such P^{*} has nonempty intersection with $\{x, w, y\}$, and w is not adjacent to v_{1}. Since P^{*} does not have v_{1} as an endpoint, we have $d\left(w_{\mathcal{T}^{\prime}}\left(C^{\prime}\right), w_{\mathcal{T}^{\prime}}\left(C^{\dagger}\right)\right) \geq d\left(w_{\mathcal{T}}\left(C^{\prime}\right), w_{\mathcal{T}}(C)\right)$, so \mathcal{T}^{\prime} is indeed a mosaic.

Thus, by the minimality of $\mathcal{T}, G \backslash\left\{v_{1}\right\}$ admits an L^{*}-coloring ϕ. Then there is a color of $\{a, b\}$ not used among the vertices of $N\left(v_{1}\right) \backslash\left\{v_{2}\right\}$, so there is a color left over for v_{1}. Thus, ϕ extends to an L-coloring of G, contradicting the fact that \mathcal{T} is critical. This proves Fact 3 of Claim 3.1.2.

Now we show that $G_{x w y}^{0}$ is L-colorable. Let G^{*} be a graph with obtained from $G \backslash S$ by adding to $G \backslash S$ the edges $\left\{w v_{i}: i=1, \cdots, t\right\}$ in $G_{x w y}^{1} \backslash S$. The chart $\mathcal{T}^{\prime}:=\left(G^{*}, \mathcal{C}, L\right)$ does not violate distance conditions M3) or M4) of Definition 2.1.6, and, since $\{x, w, y\}$ separates P from $\left.G^{*} \backslash G_{x w y}^{0}, \mathrm{M} 1\right)$ is still satisfied as well, so \mathcal{T}^{\prime} is a mosaic. By assumption, $S \neq \varnothing$ and thus $\left|V\left(G^{*}\right)\right|<|V(G)|$. Since $\left(G^{*}, \mathcal{C}, L\right)$ is a mosaic, G^{*} is L-colorable by the minimality of \mathcal{T}. Since $G_{x w y}^{0} \subseteq G^{*}$, we get that $G_{x w y}^{0}$ is L-colorable, as desired. This completes the proof of Claim 3.1.2.
By Fact 4 of Claim 3.1.2, there exists an L-coloring of $G_{x w y}^{0}$. Since this L-coloring of $G_{x y w}^{0}$ does not extend to L-color G, and C is an induced subgraph of G, it follows from 1) of Proposition 1.5.1 that there exists a vertex $v^{*} \in S$ such that each of x, w, y is adjacent to v^{*}.

Since v^{*} is adjacent to x, y and $v^{*} \notin V(C)$, we have $v^{*} \in D_{1}(C, G)$. Furthermore, note that $G_{x v^{*} y}^{1} \subseteq G_{x w y}^{1}$, and thus $\left|G_{x v^{*} y}^{1}\right|<\left|V\left(G_{x v w y}^{1}\right)\right|$, since $w \notin V\left(G_{x v^{*} y}^{1}\right)$. By the minimality of $x w y$, the path $x v^{*} y$ is not bad. Thus, $V\left(G_{x v^{*} y}^{1}\right)=\left\{v^{*}\right\} \cup V\left(G_{x v^{*} y}^{1} \cap C\right)$. In particular, since G is short-separation-free-, $G_{x y}^{1}$ is a wheel with central vertex v^{*} adjacent to all the vertices of the cycle $x w y v_{1} \cdots v_{t}$. Now we let ψ be an L-coloring of $G_{x w y}^{0}$.

Claim 3.1.3. There is a set of two colors a, b such that the following hold.

1) $L\left(v^{*}\right)=\{a, b\} \cup\{\psi(x), \psi(w), \psi(y)\}$; AND
2) $\{a, b\} \subseteq L\left(v_{i}\right)$ for each $i=1, \cdots, t$.

Proof: Since ψ does not extend to an L-coloring of G, we have $\left|L_{\psi}\left(v^{*}\right)\right|=2$ by 1) of Proposition 1.5.1. This proves 1). Furthermore, each of the two colors in $L_{\psi}\left(v^{*}\right)$ lies in $L\left(v_{i}\right)$ for each $i=1, \cdots, t$, or else, applying Proposition 1.4.4, we obtain an L-coloring of $G_{x v^{*} y}^{0}$ which extends to an L-coloring of G.

Let L^{*} be a list-assignment for $G_{x v^{*} y}^{0}$ such that $L^{*}\left(v^{*}\right)=L(v) \backslash\{a, b\}$, and $L^{*}(u)=L(u)$ for all $u \in V\left(G_{x v^{*} y}^{1}\right) \backslash$ $\left\{v^{*}\right\}$. Let $C^{\prime \prime}:=\left(C \cap G_{x v^{*} y}^{0}\right)+x v^{*} y$. Consider the tessellation $\mathcal{T}^{*}:=\left(G_{x v^{*} y}^{0},(\mathcal{C} \backslash\{C\}) \cup\left\{C^{\prime \prime}\right\}, L^{*}\right)$.

We claim that \mathcal{T}^{*} is a mosaic. Since $\{x, w, y\}$ separates v^{*} from $\mathbf{P}, \mathcal{T}^{*}$ still satisfies M1), and M0) and M2) are immediate. Thus, if \mathcal{T}^{*} is not a mosaic, then there exists a $C^{\prime} \in \mathcal{C} \backslash\{C\}$ such that $d\left(w_{\mathcal{T}^{*}}\left(C^{\prime}\right), w_{\mathcal{T}^{*}}\left(C^{\prime \prime}\right)\right)$ violates either M3) or M4) of Definition 2.1.6. For any subgraph H of C^{\prime} and any shortest (H, C)-path P in G, we have $v^{*} \notin$ $V(P)$, since $v^{*} \notin V(C)$ and the deletion of $\{x, w, y\}$ separates v^{*} from C^{\prime}. Thus, we have $d\left(w_{\mathcal{T}^{*}}\left(C^{\prime}\right), w_{\mathcal{T}^{*}}\left(C^{\prime \prime}\right)\right) \geq$ $d\left(w_{\mathcal{T}}\left(C^{\prime}\right), w_{\mathcal{T}}(C)\right)$. Since \mathcal{T} is a mosaic, \mathcal{T}^{*} is also a mosaic.

Since $\left|V\left(G_{x v^{*} y}^{0}\right)\right|<|V(G)|$, there is an L^{*}-coloring ϕ of $G_{x v^{*} y}^{0}$ by the minimality of \mathcal{T}. Furthermore, since \mathcal{T} is critical, ϕ does not extend to an L-coloring of G. Thus, since $\phi\left(v^{*}\right) \notin\{a, b\}$, we have $\phi(x), \phi(y) \in\{a, b\}$, or else we extend ϕ to an L-coloring of G by coloring the vertices of $v_{1} \cdots v_{t}$ with the colors of $\{a, b\}$. Now let ϕ^{\prime} be the restriction of ϕ to $V\left(G_{x w y}^{0}\right)$.

Claim 3.1.4. There is a pair of colors $r, s \in L_{\phi^{\prime}}\left(v^{*}\right)$ with $r, s \notin\{a, b\}$.

Proof: If $\phi^{\prime}(x)=\phi^{\prime}(y)$, then suppose without loss of generality that $\phi^{\prime}(x)=\phi^{\prime}(y)=a$. In this case, we have $\left|L_{\phi^{\prime}}\left(v^{*}\right)\right| \geq 3$, since $\left|\left\{\phi^{\prime}(x), \phi^{\prime}(w), \phi^{\prime}(y)\right\}\right|=2$. Since $\left|L_{\phi^{\prime}}\left(v^{*}\right) \backslash\{b\}\right| \geq 2$, we have our desired r, s. On the other hand, if $\phi^{\prime}(x) \neq \phi^{\prime}(y)$, then $\left\{\phi^{\prime}(x), \phi^{\prime}(y)\right\}=\{a, b\}$, and thus $L_{\phi^{\prime}}\left(v^{*}\right)$ is disjoint to $\{a, b\}$. Since $\left|L_{\phi^{\prime}}\left(v^{*}\right)\right| \geq 2$ in this case, we again have our desired r, s.

Let $r, s \in L_{\phi^{\prime}}(a)$ be as in Claim 3.1.4. Since $\{a, b\} \subseteq L\left(v_{1}\right)$ by Claim 3.1.3 and $\left|L\left(v_{1}\right)\right|=3$, and least one of r, s does not lie in $L\left(v_{1}\right)$. Suppose without loss of generality that $r \notin L\left(v_{1}\right)$. Then the coloring $\left(\phi^{\prime}(x), r, \phi^{\prime}(y)\right)$ of $x v^{*} y$ extends to an L-coloring of the broken wheel $G_{x v^{*} y}^{1}$, and thus ϕ^{\prime} extends to an L-coloring of G, contradicting the fact that \mathcal{T} is critical. Thus, there is no bad path in $\mathcal{K}^{2}(C, \mathcal{T})$, as desired.
Now let $v \in D_{1}(C, G)$ with $|N(v) \cap V(C)| \geq 2$ and let $x v y \in \mathcal{K}^{2}(C, \mathcal{T})$. Since $x v y$ is not a bad path, we have $V\left(G_{x v y}^{2}\right)=\{v\} \cup V\left(G_{x v y}^{1} \cap C\right)$. Let $G_{x v y}^{1} \cap C=x v_{1} \cdots v_{t} y$ for some $t \geq 0$. Since C is an induced cycle of G, it follows from our triangulation conditions that $v v_{i} \in E\left(G_{x v y}^{1}\right)$ for each $i=1, \cdots, t$, so $G_{x v y}^{1}$ is indeed a broken wheel with principal path $x v y$. This completes the proof proves Lemma 3.1.1.

3.2 3-Chords on One Side of the Precolored Path

In this section, we prove an analogue to Lemma 3.1.1 for 3-chords of C.
Lemma 3.2.1. Let $\mathcal{T}=\left(G, \mathcal{C}, L, C_{*}\right)$ be a critical mosaic, let $C \in \mathcal{C}$ be an open ring, and let $Q:=x_{1} x_{2} x_{3} x_{4}$ be a 3-chord of C with $Q \in \mathcal{K}(C, \mathcal{T})$. Then the following hold.

1) If $\left|V\left(G_{Q}^{1} \backslash Q\right)\right|>1$, then G_{Q}^{0} is L-colorable; AND
2) If $\left|V\left(G_{Q}^{0}\right)\right|<\mid V(G)$, $N\left(x_{2}\right) \cap V\left(C \cap G_{Q}^{1}\right)=\left\{x_{1}\right\}$, and $N\left(x_{3}\right) \cap V\left(C \cap G_{Q}^{1}\right)=\left\{x_{4}\right\}$ then there exists a $v \in V\left(G_{Q}^{1}\right) \backslash V(C)$ with at least three neighbors on Q; AND
3) $V\left(G_{Q}^{1}\right) \subseteq B_{1}(C)$; AND
4) If there exists $a j \in\{2,3\}$ such that x_{j} is not a \mathcal{C}-shortcut, then $V\left(G_{Q}^{1}\right)=V(Q) \cup V\left(C \cap G_{Q}^{1}\right)$.

Proof. We first prove 1). Consider the following cases:
Case 1: For each $j \in\{2,3\}, x_{j}$ is not a \mathcal{C}-shortcut.
In this case, we simply let D be the cycle $\left(C \cap G_{Q}^{0}\right)+Q$. Then, since neither x_{2} nor x_{3} is a \mathcal{C}-shortcut, the tessellation $\left(G_{Q}^{0},(\mathcal{C} \backslash\{C\}) \cup\{D\}, L\right)$ is also a mosaic. Since $\left|V\left(G_{Q}^{0}\right)\right|<|V(G)|, G_{Q}^{0}$ is L-colorable by the minimality of \mathcal{T}.
Case 2: There exists a $j \in\{2,3\}$ such that x_{j} is a \mathcal{C}-shortcut.
In this case, suppose without loss of generality that x_{3} is a \mathcal{C}-shortcut. We break this into two subcases/
Case 2.1 x_{2} is not a \mathcal{C}-shortcut.
In this case, let G^{\dagger} be a graph obtained from G_{Q}^{0} by adding to G_{Q}^{0} a lone vertex v^{*} adjacent to each vertex of $\left\{x_{2}, x_{3}, x_{4}\right\}$. Set $P^{\dagger}:=x_{1} x_{2} v^{*} x_{4}$, and let $C^{\dagger}:=\left(G_{Q}^{1} \cap C\right)+P^{\dagger}$. Let L^{\dagger} be a list-assignment for $V\left(G^{\dagger}\right)$ where $L^{\dagger}(w)=L(w)$ for all $w \in V\left(G^{\dagger}\right) \backslash\left\{v^{*}\right\}$, and $L^{\dagger}\left(v^{*}\right)$ is an arbitrary 3-list. We claim that $\mathcal{T}^{\prime}:=\left(G^{\dagger},(\mathcal{C} \backslash\{C\}) \cup\right.$ $\left\{C^{\dagger}\right\}, L^{\dagger}$) is a mosaic.

M0) and M2) are immediate. Since x_{2} is not a \mathcal{C}-shortcut, \mathcal{T}^{\prime} satisfies M1) and distance conditions M3) and M4) of 2.1.6. It thus suffices to check that G^{\dagger} is short-separation-free. If not, then G_{Q}^{0} contains a k-chord Q^{*} of Q, where Q^{*} has endpoints x_{2}, x_{4} and $1 \leq k \leq 2$. Since G is short-separation-free, the deletion of Q^{*} leaves C^{\prime} and x_{3} in different connected components of $G \backslash Q^{*}$ for each $C^{\prime} \in \mathcal{C}$, and also leaves $V\left(\stackrel{\circ}{\mathbf{P}}_{\mathcal{T}}(C)\right)$ and x_{3} in different connected components of $G \backslash Q^{*}$. But then, since each vertex of Q^{*} lies in $B_{1}(C, G), x_{3}$ is not a \mathcal{C}-shortcut, contradicting our assumption. Thus, \mathcal{T}^{\prime} is indeed a mosaic. By assumption, we have $\left|V\left(G^{\dagger}\right)\right|<|V(G)|$, and thus G^{\dagger} is L^{\dagger}-colorable by the minimality of \mathcal{T}, so G_{Q}^{0} is indeed L-colorable, as desired.

Case $2.2 x_{2}$ is a \mathcal{C}-shortcut.
In this case, let G^{\dagger} be a graph obtained from G_{Q}^{0} by adding to G_{Q}^{0} a lone vertex v^{*} adjacent to each vertex of $\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\}$. Set $P^{\dagger}:=x_{1} v^{*} x_{4}$, and let $C^{\dagger}:=\left(G_{Q}^{0} \cap C\right)+P^{\dagger}$. Let L^{\dagger} be a list-assignment for $V\left(G^{\dagger}\right)$ where $L^{\dagger}(w)=L(w)$ for all $w \in V\left(G^{\dagger}-v^{*}\right)$, and $L^{\dagger}\left(v^{*}\right)$ is an arbitrary 3-list. We claim that $\mathcal{T}^{\prime}:=\left(G^{\dagger},(\mathcal{C} \backslash\{C\}) \cup\right.$ $\left.\left\{C^{\dagger}\right\}, L^{\dagger}\right)$ is a mosaic. The distance conditions M3) and M4) are clearly satisfied in this case, and, since there is no chord of C^{\dagger} with one endpoint in $V\left(\stackrel{\circ}{\mathbf{P}}_{\mathcal{T}}(C)\right)$ where v^{*} is the other endpoint, we have M1). M0) and M2) are immediate. We just need to check that \mathcal{T}^{\prime} is a tessellation. It suffices to check that G^{\dagger} is short-separation-free.

If G^{\dagger} is not short-separation-free, then G_{Q}^{0} contains a k-chord Q^{*} of Q, where $1 \leq k \leq 2$. Since G is short-separation-free, the deletion of Q^{*} leaves a vertex $x^{\prime} \in\left\{x_{2}, x_{3}\right\}$ in a different connected component of $G \backslash Q^{*}$ from
any vertex of $G_{Q}^{0} \backslash Q^{*}$. Since each vertex of Q^{*} lies in $B_{1}(C)$, this contradicts our assumption that each of x_{2}, x_{3} is a \mathcal{C}-shortcut. Thus, \mathcal{T}^{\prime} is indeed a mosaic. By assumption, we have $\left|V\left(G^{\dagger}\right)\right|<|V(G)|$, and thus G^{\dagger} is L^{\dagger}-colorable by the minimality of \mathcal{T}. Thus, G_{Q}^{0} is indeed L-colorable, as desired. This proves 1).
Now we prove 2). Let $N\left(x_{2}\right) \cap V\left(C \cap G_{Q}^{1}\right)=\left\{x_{1}\right\}$ and $N\left(x_{3}\right) \cap V\left(C \cap G_{Q}^{1}\right)=\left\{x_{4}\right\}$. By 1), G_{Q}^{0} is L-colorable, since $\left|V\left(G_{Q}^{1}\right)\right|<\mid V(G)$ by assumption. Since $\left|V\left(G_{Q}^{0}\right)\right|<|V(G)|$, the path $C \cap G_{Q}^{1}$ has length at least two, or else G contains a separating cycle of length at most four. Thus, Q does not have a chord in G_{Q}^{1}, so the subgraph of G induced by G_{Q}^{0} is L-colorable. Let ϕ be an L-coloring of $V\left(G_{Q}^{0}\right)$. Since \mathcal{T} is critical, ϕ does not extend to L-color G. Since $N\left(x_{2}\right) \cap V\left(C \cap G_{Q}^{1}\right)=\left\{x_{1}\right\}$ and $N\left(x_{3}\right) \cap V\left(C \cap G_{Q}^{1}\right)=\left\{x_{4}\right\}$, it follows from 1) of Proposition 1.5.1 that there is a vertex of $V\left(G_{Q}^{1}\right) \backslash V(Q \cup C)$ with at least three neighbors in Q.

Now we prove 3). We proceed analogously to the proof of Lemma 3.1.1. Given a 3-chord Q of C with $Q \in \mathcal{K}(C, \mathcal{T})$, we call Q defective if $V\left(G_{Q}^{1}\right) \backslash V(Q \cup C) \nsubseteq B_{1}(C)$. Suppose toward a contradiction that a defective 3-chord Q of C exists, and, among all defective 3-chords of C, choose Q so that $\left|V\left(G_{Q}^{1}\right)\right|$ is minimized. By Proposition 2.1.22, the graph $G\left[V\left(C \cap G_{Q}^{1}\right)\right]$ is a chordless path with endpoints x_{1}, x_{4}. Furthermore, this path has length at least two, or else, since $V\left(G_{Q}^{1}\right) \backslash V(Q \cup C) \neq \varnothing$, the cycle $x_{1} x_{2} x_{3} x_{4}$ separates a vertex of $V\left(G_{Q}^{1}\right) \backslash V(Q)$ from $G_{Q}^{0} \backslash Q$, contradicting short-separation-freeness. Thus, let $G\left[V\left(C \cap G_{Q}^{1}\right)\right]=q_{0} q_{1} \cdots q_{t+1}$, where $t \geq 1, q_{0}=x_{1}$ and $q_{t+1}=x_{4}$.

Since $V\left(G_{Q}^{1}\right) \backslash B_{1}(C, G) \neq \varnothing$, let $v^{\dagger} \in V\left(G_{Q}^{1}\right) \backslash B_{1}(C)$. Note now that $N\left(x_{2}\right) \cap V\left(C \cap G_{Q}^{1}\right)=\left\{x_{1}\right\}$. To see this, suppose toward a contradiction that there exists an $s \in\{1, \cdots, t+1\}$ such that $x_{2} q_{s} \in E(G)$. Suppose that $s=t+1$, and let $Q^{*}:=x_{1} x_{2} x_{4}$. By Lemma 3.1.1, we have $V\left(G_{Q^{*}}^{1}\right) \backslash V\left(Q^{*} \cup C\right)=\varnothing$, and thus, the 3-cycle $x_{2} x_{3} x_{4}$ separates v^{\dagger} from $G_{Q}^{0} \backslash Q$, contradicting short-separation-freeness. Thus, we have $s \in\{1, \cdots, t\}$. Let $Q^{*}:=x_{1} x_{2} q_{s}$ and let $Q^{* *}=q_{s} x_{2} x_{3} x_{4}$. By Lemma 3.1.1, we have $V\left(G_{Q^{*}}^{1}\right)=\left\{x_{1}, x_{2}\right\} \cup\left\{q_{1}, \cdots, q_{s}\right\}$, and thus $v^{\dagger} \in V\left(G_{Q^{*}}^{1}\right)$. By the minimality of Q, we have $V\left(G_{Q^{* *}}^{1}\right)=\left\{v^{\dagger}, x_{2}, x_{3}\right\} \cup\left\{q_{s}, \cdots, q_{t+1}\right\}$, and thus $V\left(G_{Q}^{1}\right)=V(Q) \cup\left\{v^{\dagger}\right\} \cup\left\{q_{1}, \cdots, q_{t}\right\}$, contradicting the fact that Q is defective. The same argument as above shows that $N\left(x_{3}\right) \cap V\left(C \cap G_{Q}^{1}\right)=\left\{x_{4}\right\}$.

By 2), there exists $v^{*} \in V\left(G_{Q}^{1}\right) \backslash V(Q \cup C)$ such that v^{*} has three neighbors among the vertices of Q. Since v^{*} has at least one neighbor in $\left\{x_{1}, x_{4}\right\}$, we have $v^{*} \in B_{1}(C, G)$. In particular, $v^{*} \neq v^{\dagger}$. Suppose without loss of generality that $x_{1}, x_{3} \in N\left(v^{*}\right)$ and let $Q^{*}:=x_{1} v^{*} x_{3} x_{4}$. If $v^{\dagger} \in V\left(G_{Q^{*}}^{1}\right)$, then Q^{*} is a defective path of $\mathcal{K}^{3}(C, \mathcal{T})$. Since $x_{2} \notin V\left(G_{Q^{*}}^{1}\right)$, we have $\left|V\left(G_{Q^{*}}^{1}\right)\right|<\left|V\left(G_{Q}^{1}\right)\right|$. Thus, we have $v^{\dagger} \notin V\left(G_{Q^{*}}^{1}\right)$, and thus the 4-cycle $x_{1} v^{*} x_{3} v_{4}$ separates v^{*} from v^{\dagger}, contradicting short-separation-freeness.

Now we prove 4). We proceed analogously to the proof of 2). Given a 3-chord Q of C, we call Q a bad 3-chord if the following hold.

1) $Q \in \mathcal{K}(C, \mathcal{T})$; $A N D$
2) There exists an $x \in V(Q)$ such that x is not a \mathcal{C}-shortcut; $A N D$
3) $V\left(G_{Q}^{1}\right) \neq V(Q) \cup V\left(C \cap G_{Q}^{1}\right)$.

Suppose toward a contradiction that there exists a $Q \in \mathcal{K}^{3}(C, \mathcal{T})$ which is bad, and, among all such elements of $\mathcal{K}^{3}(C, \mathcal{T})$, choose Q so that $\left|V\left(G_{Q}^{1}\right)\right|$ is minimized. Let $Q:=x_{1} x_{2} x_{3} x_{4}$ and suppose without loss of generality that x_{2} is not a \mathcal{C}-shortcut. By Proposition 2.1.22, the graph $G\left[V\left(C \cap G_{Q}^{1}\right)\right]$ is a chordless path with endpoints x_{1}, x_{4}. Furthermore, this path has length at least two, or else, since Q is bad, the cycle $x_{1} x_{2} x_{3} x_{4}$ separates a vertex of $V\left(G_{Q}^{1}\right) \backslash V(Q)$ from C^{\prime}, contradicting short-separation-freeness. Thus, let $G\left[V\left(C \cap G_{Q}^{1}\right)\right]=q_{0} q_{1} \cdots q_{t+1}$, where $t \geq 1, q_{0}=x_{1}$ and $q_{t+1}=x_{4}$. Now we note the following :

Claim 3.2.2. Q is an induced subpath of G_{Q}^{1}.

Proof: Suppose towards a contradiction that G_{Q}^{1} contains a chord of Q. Since C is a chordless cycle, G_{Q}^{1} either contains the edge $x_{2} x_{4}$ or $x_{1} x_{3}$. Suppose that $x_{1} x_{3} \in E\left(G_{Q}^{1}\right)$ and let $Q^{*}:=x_{1} x_{3} x_{4}$. By Lemma 3.1.1, x_{3} is adjacent to each vertex of $\left\{q_{0}, q_{1}, \cdots, q_{t+1}\right\}$. Thus, we have $V\left(G_{Q}^{1}\right)=V(Q) \cup\left\{q_{1}, \cdots, q_{t}\right\}$, or else the triangle $x_{1} x_{2} x_{3}$ separates a vertex of $G_{Q}^{1} \backslash V(C \cup Q)$ from G_{Q}^{0}, contradicting the fact that G is short-separation-free. Since $V\left(G_{Q}^{1}\right)=V(Q) \cup\left\{q_{1}, \cdots, q_{t}\right\}$, we contradict the fact that Q is bad. The same argument shows that $x_{2} x_{3} \notin E\left(G_{Q}^{1}\right)$. Thus, Q is indeed an induced subpath of G_{Q}^{1}, as desired.

Since Q is bad, we have $\left|V\left(G_{Q}^{0}\right)\right|<|V(G)|$, and thus G_{Q}^{0} is L-colorable by 1). Since Q is an induced subpth of G_{Q}^{1}, and $C \cap G_{Q}^{1}$ is a chordless path of length at least two, it follows that the subgraph of G induced by $V\left(G_{Q}^{0}\right)$ is L-colorable. We claim now that $N\left(x_{2}\right) \cap V\left(C \cap G_{Q}^{1}\right)=\left\{x_{1}\right\}$, and, likewise, $N\left(x_{3}\right) \cap V\left(C \cap G_{Q}^{1}\right)=\left\{x_{4}\right\}$. Suppose toward a contradiction that there exists a $j \in\{1, \cdots, t+1\}$ such that $x_{2} q_{j} \in E(G)$. Since Q is an induced subpath of G_{Q}^{1} by Claim 3.2.2, we have $j \neq t+1$. Let $Q^{*}:=x_{1} x_{2} q_{j}$ and let $Q^{* *}:=q_{j} x_{2} x_{3} x_{4}$. By Lemma 3.1.1, we have $V\left(G_{Q^{*}}^{1}\right)=\left\{q_{1}, \cdots, q_{j}\right\} \cup\left\{x_{1}, x_{2}\right\}$. Since $V\left(G_{Q}^{1}\right) \neq V(Q) \cup V\left(C \cap G_{Q}^{1}\right)$, there exists a $w \in V\left(G_{Q}^{1}\right) \backslash V(C \cup Q)$ with $w \in V\left(G_{Q^{*}}^{1}\right)$.
Since x_{2} is not a \mathcal{C}-shortcut, $Q^{* *}$ is also a bad path of $\mathcal{K}^{3}(C, \mathcal{T})$, yet $\left|V\left(G_{Q^{* *}}^{1}\right)\right|<\left|V\left(G_{Q}^{1}\right)\right|$, so this contradicts the minimality of Q. We conclude that $N\left(x_{2}\right) \cap V\left(C \cap G_{Q}^{1}\right)=\left\{x_{1}\right\}$, as desired. Now suppose toward a contradiction that there exists a $j \in\{0,1, \cdots, t\}$ such that $x_{3} q_{j} \in E(G)$. Since Q is an induced subpath of G_{Q}^{1} by Claim 3.2.2, we have $j \neq 0$. Let $Q^{*}:=x_{4} x_{3} q_{j}$ and let $Q^{* *}:=x_{1} x_{2} x_{3} q_{j}$. Since $x_{2} \in V\left(Q^{* *}\right)$, an identical argument to the above shows that $Q^{* *}$ is also a bad element of $\mathcal{K}^{3}(C, \mathcal{T})$ with $\left|V\left(G_{Q^{* *}}^{1}\right)\right|<\left|V\left(G_{Q}^{1}\right)\right|$, contradicting the minimality of Q.
By 2), there exists a $v^{*} \in V\left(G_{Q}^{1}\right) \backslash V(Q \cup C)$ such that v^{*} has at least three neighbors among the vertices of Q. We claim now that $V\left(G_{Q}^{1}\right)=V(Q) \cup\left\{v^{*}\right\} \cup\left\{q_{1}, \cdots, q_{t}\right\}$. To see this, suppose toward a contradiction that there is a $v^{\dagger} \in V\left(G_{Q}^{1}\right) \backslash V(Q \cup C)$ with $v^{\dagger} \neq v^{*}$. Note that, since $N\left(v^{*}\right) \cap V(Q) \mid \geq 3, G$ contains a 4-chord Q^{*} of C with endpoints x_{1}, x_{4}, such that $Q^{*} \backslash\left\{x_{1}, x_{4}\right\}=v^{*} x_{j}$ for some $j \in\{2,3\}$. Then $\left|V\left(G_{Q^{*}}^{1}\right)\right|<\left|V\left(G_{Q}^{1}\right)\right|$, since at least one of $\left\{x_{2}, x_{3}\right\}$ lies outside of $V\left(G_{Q^{*}}^{1}\right)$.
Now, v^{*} is not a \mathcal{C}-shortcut, since $V(Q) \subseteq B_{1}(C, G)$ and the deletion of Q leaves v^{*} in a different connected component of $G \backslash Q$ from $V\left(\stackrel{\circ}{\mathbf{P}}_{\mathcal{T}}(C)\right.$ and from every $C^{\prime} \in \mathcal{C} \backslash\{C\}$. Furthermore, we have $v^{\dagger} \in V\left(G_{Q^{*}}^{1}\right)$, or else $G_{Q^{*}}^{0} \cap G_{Q}^{1}$ contains a cycle of length at most four which separates v^{\dagger} from $G_{Q}^{0} \backslash Q$, contradicting short-separationfreeness. But since v^{*} is not a \mathcal{C}-shortcut and $\left|V\left(G_{Q^{*}}^{1}\right)\right|<\left|V\left(G_{Q}^{1}\right)\right|$, this contradicts the minimality of Q.

Thus, we conclude that $V\left(G_{Q}^{1}\right)=V(Q) \cup\left\{v^{*}\right\} \cup\left\{q_{1}, \cdots, q_{t}\right\}$. Since Q is an induced subpath of G_{Q}^{1}, v^{*} is adjacent to all four vertices of Q by our triangulation condition. Applying Lemma 3.1.1, v^{*} is adjacent to each vertex of $V\left(C \cap G_{Q}^{1}\right)$, and furthermore, $V\left(G_{Q}^{1}\right)=V(Q) \cup V\left(C \cap G_{Q}^{1}\right) \cup\left\{v^{*}\right\}$. Since v^{*} is adjacent to each of x_{1}, x_{4}, let $Q^{*}:=x_{1} v^{*} x_{4}$.

Claim 3.2.3. There exist three L-colorings $\phi_{1}, \phi_{2}, \phi_{3}$ of $G_{Q^{*}}^{0}$ such that the following hold.

1) $\left|\left\{\phi_{1}\left(v^{*}\right), \phi_{2}\left(v^{*}\right), \phi_{3}\left(v^{*}\right)\right\}\right|=3$; AND
2) $\left\{\phi_{1}\left(v^{*}\right), \phi_{2}\left(v^{*}\right), \phi_{3}\left(v^{*}\right)\right\} \subseteq L\left(q_{j}\right)$ for each $j=1, \cdots, t$.

Proof: Let $C^{\dagger}:=\left(C \cap G_{Q}^{0}\right)+Q^{*}$ and let $G^{\dagger}=G \backslash\left\{q_{1}, \cdots, q_{t}\right\}$. We claim that $\mathcal{T}^{\dagger}:=\left(G^{\dagger},(\mathcal{C} \backslash\{C\}) \cup\left\{C^{\dagger}\right), L\right)$ is a mosaic. To see this, just note that, since v^{*} is not a \mathcal{C}-shortcut, \mathcal{T}^{\dagger} satisfies the distance conditions of Definition 2.1.6 and satisfies M1) as well. Since $\left|V\left(G^{\dagger}\right)\right|<|V(G)|, G^{\dagger}$ admits an L-coloring ϕ_{1} by the minimality of \mathcal{T}.

Let L^{*} be a list-assignment for G^{\dagger} where $L^{*}(w)=L(w)$ for all $w \in V\left(G^{\dagger}\right) \backslash\left\{v^{*}\right\}$ and $L^{*}\left(v^{*}\right)=L\left(v^{*}\right) \backslash\left\{\phi_{1}\left(v^{*}\right)\right\}$.

Then $\left(G^{\dagger},(\mathcal{C} \backslash\{C\}) \cup\left\{C^{\dagger}\right), L^{*}\right)$ is again a mosaic by the minimality of \mathcal{T} and thus admits an L^{*}-coloring ϕ_{2}. Removing $\phi_{2}\left(v^{*}\right)$ from $L^{*}\left(v^{*}\right)$ and applying the argument a second time, we obtain our desired three colorings $\phi_{1}, \phi_{2}, \phi_{3}$ of $G_{Q^{*}}^{1}$ satisfying 1). We claim that $\phi_{1}, \phi_{2}, \phi_{3}$ also satisfy 2), 3), and 4).

Suppose toward a contradiction that there exists a $j \in\{1, \cdots, t\}$ and an $i \in\{1,2,3\}$ such that $\phi_{i}\left(v^{*}\right) \notin L\left(q_{j}\right)$. Then, since $t \geq 1, \phi_{i}$ extends to an L-coloring of G, contradicting our assumption. Furthermore, if there exists an $i \in\{1,2,3\}$ such that $\phi_{i}\left(x_{1}\right) \notin\left\{\phi_{1}\left(v^{*}\right), \phi_{2}\left(v^{*}\right), \phi_{3}\left(v^{*}\right)\right\}$, then, by 2 , we have $\mid L\left(q_{1}\right) \backslash\left\{\phi_{i}\left(x_{1}\right) \mid \geq 3\right.$, and thus ϕ_{i} extends to an L-coloring of G, contradicting the fact that \mathcal{T} is critical. The same argument shows that $\phi_{i}\left(x_{4}\right) \in$ $\left\{\phi_{1}\left(v^{*}\right), \phi_{2}\left(v^{*}\right), \phi_{3}\left(v^{*}\right)\right\}$ for each $i=1,2,3$.
Let G^{\dagger} be the graph obtained from G by deleting the vertices $\left\{q_{1}, \cdots, q_{t}\right\}$ and the edge $x_{1} v^{*}$. Let $P^{\dagger}:=x_{2} v^{*} x_{4}$ and let $C^{\dagger}:=\left(C \cap G_{Q}^{0}\right)+P^{\dagger}$. Let C_{*}^{\dagger} be the outer face of G^{\dagger} and let $\phi_{1}, \phi_{2}, \phi_{3}$ be as in Claim 3.2.3.Since $\left|L\left(v^{*}\right)\right| \geq 5$, let $r, s \in L\left(v^{*}\right) \backslash\left\{\phi_{1}\left(v^{*}\right), \phi_{2}\left(v^{*}\right), \phi_{3}\left(v^{*}\right)\right\}$. Let L^{\dagger} be a list-assignment for G^{\dagger} where $L^{\dagger}\left(x_{2}\right)=L\left(x_{2}\right) \backslash\{r, s\}$, and $L^{\dagger}(w)=L(w)$ for all $w \in V\left(G^{\dagger}\right) \backslash\left\{x_{2}\right\}$. Consider the tuple $\mathcal{T}^{\dagger}:=\left(G^{\dagger},(\mathcal{C} \backslash\{C\}) \cup\left\{C^{\dagger}, L^{\dagger}, C_{*}^{\dagger}\right)\right.$.

By assumption, x_{2} is not a \mathcal{C}-shortcut, and since v^{*} is not a \mathcal{C}-shortcut, \mathcal{T}^{\dagger} is a mosaic. Since $t \geq 1$, we have $\left|V\left(G^{\dagger}\right)\right|<$ $|V(G)|$, and thus G^{\dagger} admits an L-coloring ϕ^{*} by the minimality of \mathcal{T}. Note that $\phi^{*}\left(x_{1}\right) \in\left\{\phi_{1}\left(v^{*}\right), \phi_{2}\left(v^{*}\right), \phi^{*}\left(v_{3}\right)\right\}$, or else, by Claim 3.2.3, we have $\left|L\left(q_{1}\right) \backslash\left\{\phi^{*}\left(x_{1}\right)\right\}\right| \geq 3$, and thus ϕ^{*} extends to an L-coloring of G, contradicting the minimality of \mathcal{T}. The same argument shows that $\phi^{*}\left(x_{4}\right) \in\left\{\phi_{1}\left(v^{*}\right), \phi_{2}\left(v^{*}\right), \phi^{*}\left(v_{3}\right)\right\}$. Thus, the coloring ϕ^{*} uses at most one of $\{r, s\}$ among the vertices of $V(Q)$. Suppose without loss of gnerality that the color r is not used by ϕ^{*} on the vertices of $V(Q)$. Let $\phi^{* *}$ be the restriction of ϕ^{*} to $V\left(G_{Q}^{0}\right)$. We extend $\phi^{* *}$ to an L-coloring of $G_{Q^{*}}^{0}$ by coloring v^{*} with r. By Claim 3.2.3, we have $\left|L\left(q_{j}\right) \backslash\{r\}\right| \geq 3$ for each $j=1, \cdots, t$, and thus $\phi^{* *}$ extends to an L-coloring of G, contradicting the fact that \mathcal{T} is critical. This completes the proof of Lemma 3.2.1.

Applying the above, we have the following.
Proposition 3.2.4. Let $\mathcal{T}=\left(G, \mathcal{C}, L, C_{*}\right)$ be a critical mosaic, let $C \in \mathcal{C}$, and let $Q:=x_{1} x_{2} x_{3} x_{4}$ be a 3-chord of C with $Q \in \mathcal{K}(C, \mathcal{T})$. Then the following hold.

1) There exists a path $P \subseteq G_{Q}^{1}$ with endpoints x_{2}, x_{3} such that $V(P)=V\left(G_{Q}^{1}\right) \backslash V(C)$ and $V(P) \subseteq B_{1}(C)$, and $|V(P)| \leq 3 ; A N D$
2) If $V\left(G_{Q}^{1} \backslash Q\right) \nsubseteq V(C)$, then $x_{1}, x_{4} \notin V\left(\mathbf{P}_{\mathcal{T}}(C)\right)$.

Proof. Suppose towards a contradiction that there exists a 3-chord Q of C satisfying the conditions of Proposition 3.2.4 such that G_{Q}^{1} does not admit a path with endpoints x_{2}, x_{3} visiting all the vertices of $G_{Q}^{1} \backslash C$. Choose Q such that, with respect to this property, $V\left(G_{Q}^{1}\right)$ is minimized. Note that $\left|V\left(G_{Q}^{1} \cap C\right)\right| \geq 3$, or else, since G is short-separationfree, we have $V\left(G_{Q}^{1}\right)=V(Q)$, and the path $x_{2} x_{3}$ contains all the vertices $G_{Q}^{1} \backslash C$, contradicting our assumption. Thus, let $G_{Q}^{1} \cap C=x_{1} v_{1} \cdots v_{\ell} x_{4}$ for some $\ell \geq 2$.

Suppose towards a contradiction that $N\left(x_{2}\right) \cap V\left(G_{Q}^{1} \cap C\right) \neq\left\{x_{1}\right\}$. Since C is an induced cycle of G, and $x_{1} x_{4} \notin$ $E(G)$, there exists a $j \in\{1, \cdots, \ell\}$ such that $x_{2} v_{j} \in E\left(G_{Q}^{1}\right)$. Let $Q^{*}:=v_{j} x_{2} x_{3} x_{4}$. By the minimality of Q, there exists a path $P^{*} \subseteq G_{Q^{*}}^{1}$ with endpoints x_{2}, x_{3}, such that $V\left(P^{*}\right)=V\left(G_{Q^{*}}^{1} \backslash C\right)$. By Lemma 3.1.1, we have $\left(V G_{x_{1} x_{2} v_{j}}^{1}\right) \backslash V(C)=\left\{v_{2}\right\}$, and thus $V\left(P^{*}\right)=V\left(G_{Q}^{1} \backslash C\right)$, contradicting our assumption.
Thus, we have $N\left(x_{2}\right) \cap V\left(G_{Q}^{1} \cap C\right)=\left\{x_{1}\right\}$, and an identical argument shows that $N\left(x_{3}\right) \cap V\left(G_{Q}^{1} \cap C\right)=\left\{x_{4}\right\}$. Since $V\left(G_{Q}^{1}\right) \neq V(Q)$, we get by 2) of Lemma 3.2.1 that there exists a $v^{*} \in V\left(G_{Q}^{1}\right) \backslash V(Q \cup C)$ such that v^{*} has at least three neighors on Q. If $V(Q) \subseteq N\left(v^{*}\right)$, then, since G is short-separation-free, we have $V\left(G_{Q}^{1}\right)=\left\{x_{2}, x_{3}\right\} \cup V\left(G_{x_{1} v^{*} x_{4}}^{1}\right)$.

By Lemma 3.1.1, we have $V\left(G_{x_{1} v^{*} x_{4}}^{1}\right) \backslash V(C)=\left\{v^{*}\right\}$, and thus $V\left(G_{Q}^{1}\right) \backslash V(C)=\left\{v^{*}, x_{2}, x_{3}\right\}$. Since G_{Q}^{1} contains the path $x_{2} x_{3} v^{*}$, this contradicts our assumption.

Thus, we have $N\left(v^{*}\right) \cap V(Q) \mid=3$. If $G\left[N\left(v^{*}\right) \cap V(Q)\right]$ is not a subpath of Q of length two, then, since G is short-separation-free, it follows from our triangulation conditions that G_{Q}^{1} contains one of the edges $x_{1} x_{3}, x_{2} x_{4}$, which is false. Thus, suppose without loss of generality that $V(Q) \cap N\left(v^{*}\right)=\left\{x_{1}, x_{2}, x_{3}\right\}$ and let $Q^{*}:=x_{1} v^{*} x_{3} x_{4}$.

By the minimality of Q, there is a path $P^{*} \subseteq G_{Q^{*}}^{1}$ with endpoints v^{*}, x_{3} such that $V\left(P^{*}\right)=V\left(G_{Q^{*}}^{1}\right) \backslash V(C)$. Since $x_{2} \in V\left(G_{Q^{*}}^{1} \backslash Q^{*}\right)$, we have $x_{2} \notin V\left(P^{*}\right)$. Since G is short-separation-free, we have $V\left(G_{Q}^{1}\right) \backslash V\left(G_{Q^{*}}^{1}\right)=\left\{x_{2}\right\}$, and thus the path $x_{2} v^{*} P^{*} x_{3}$ contains alal the vertices of $G_{Q}^{1} \backslash C$, contradicting our assumption. Thus, for any 3-chord Q of C satisfying the conditions of Proposition 3.2.4, Q admits a path P with endpoints x_{2}, x_{3} visiting all the vertices of $G_{Q}^{1} \backslash C$. By Lemma 3.2.1, we have $V(P) \subseteq B_{1}(C, G)$. We claim now that $|V(P)| \leq 3$. If $P=x_{2} x_{3}$, we are done, so now suppose that $P:=x_{2} v_{1} \cdots v_{s} x_{3}$ for some $s \geq 1$ and suppose toward a contradiction that $s>1$.

Note that no vertex of $\left\{v_{1}, \cdots, v_{s}\right\}$ is a \mathcal{C}-shortcut, since the deletion of Q separates each element of $\left\{v_{1}, \cdots, v_{s}\right\}$ from each $C^{\prime} \in \mathcal{C} \backslash\{C\}$ and from $V\left(\stackrel{\circ}{\mathbf{P}}_{\mathcal{T}}(C)\right)$. We now note that there does to exist a chord of P of the form $v_{i} v_{j}$ for some $1 \leq i<j-1 \leq s-1$, or else there exists a 3-chord Q^{*} of C with $Q^{*} \subseteq G_{Q}^{1}, v_{i} v_{j} \subseteq Q^{*}$, and $v_{i+1} \in V\left(G_{Q^{*}}^{1}\right) \backslash V\left(Q^{*}\right)$. Since no vertex of $\left\{v_{1}, \cdots, v_{s}\right\}$ is a \mathcal{C}-shortcut, this contradicts Lemma 3.2.1

Thus, $P-x_{2} x_{3}$ is a chordless path in G. By Lemma 3.2.1, there is a vertex v_{i} of $\left\{v_{1}, \cdots, v_{s}\right\}$ with at least three neighbors on Q. If v_{i} is adjacent to each vertex of Q, then, by Lemma 3.1.1, we have $V\left(G_{x_{1} v_{i} x_{4}}^{1}\right) \backslash V(C)=\left\{v_{i}\right\}$ and thus, by short-separation-freeness, we have $V\left(G_{Q}^{1}\right) \backslash V(C)=\left\{v_{i}, x_{2}, x_{3}\right\}$, contradicting our assumption that $s>1$. Thus, again applying our triangulation conditions, there is an $i \in\{1, \cdots, s\}$ such that $G\left[N\left(v_{i}\right) \cap V(Q)\right]$ is a subpath of Q of length precisely two, so suppose without loss of generality that $G\left[N\left(v_{i}\right) \cap V(Q)\right]=x_{1} x_{2} x_{3}$ and let $Q^{*}:=x_{1} v_{i} x_{3} x_{4}$. Then $G_{Q^{*}}^{1}$ contains each vertex of $\left\{v_{1}, \cdots, v_{s}\right\} \backslash\left\{v_{i}\right\}$. Since v_{i} is not a \mathcal{C}-shortcut, this contradicts Lemma 3.2.1. Thus, we have $s=1$, as desired. This proves 1).

Now we prove 2). Suppose there exists a 3-chord $Q:=x_{1} x_{2} x_{3} x_{4}$ of C with $Q \in \mathcal{K}(C, \mathcal{T})$, where x_{1} is an endpoint of $\mathbf{P}_{\mathcal{T}}(C)$ and $V\left(G_{Q}^{1} \backslash Q\right) \nsubseteq V(C)$. Among all such 3-chords of C, we choose Q so that $\left|V\left(G_{Q}^{1}\right)\right|$ is minimized. Since x_{4} is not an internal vertex of $\mathbf{P}_{\mathcal{T}}(C)$, we have $x_{4} \in V(C \backslash P)$, or else we we contradict 1) of Theorem 2.3.2. By 1), there is a lone vertex v^{*} such that $G_{Q}^{1} \backslash C$ is the triangle $x_{2} x_{3} v^{*}$. If $x_{3} x_{1} \in E\left(G_{Q}^{1}\right)$, then the cycle $x_{1} x_{3} x_{2}$ separates v^{*} from G_{Q}^{0}, which is false. The same argument shows that $x_{2} x_{4} \notin E\left(G_{Q}^{1}\right)$.

If x_{3} has a neighbor $u \in V\left(C \cap G_{Q}^{1}\right) \backslash\left\{x_{1}\right\}$, then we have $v^{*} \in V\left(G_{x_{1} x_{2} x_{3} u}^{1}\right)$, contradicting the minimality of Q. Thus, we have $N\left(x_{3}\right) \cap V\left(C \cap G_{Q}^{1}\right)=\left\{x_{4}\right\}$. Since $x_{2} x_{4} \notin E(G)$ and C is induced, we have $v^{*} x_{4} \in E(G)$ by our triangulation conditions. Since x_{1} is precolored, let $L\left(x_{1}\right)=\{c\}$. Furthermore, let $C \cap G_{Q}^{1}=x_{1} u_{1} \cdots u_{t}$ for some $t \geq 1$, where $u_{t}=x_{4}$. We have $t>1$, or else the cycle $x_{1} x_{2} x_{3} x_{4}$ separates v^{*} from G_{Q}^{0}, which is false. In particular, since $x_{1} x_{3}, x_{2} x_{4} \notin E\left(G_{Q}^{1}\right)$ and C is an induced subgraph of G, Q is an induced subgraph of G_{Q}^{1}. Let a, b be two colors in $L\left(u_{1}\right) \backslash\{c\}$. Now consider the following cases:

Case 1: $v^{*} x_{1} \in E(G)$
In this case, let $Q^{*}:=x_{1} v^{*} x_{4}$ and let L^{\prime} be a list-assignment for $G_{Q^{*}}^{1}$ where $L^{\prime}(v)=L(v)$ for all $v \in V\left(G_{Q^{*}}^{0}\right) \backslash\left\{v^{*}\right\}$ and $L^{\prime}\left(v^{*}\right)=L\left(v^{*}\right) \backslash\{a, b\}$. Let $C^{\prime}:=\left(C \cap G_{Q^{*}}^{0}\right)+Q^{*}$ and let $C^{* *}$ be the outer face of $G_{Q^{*}}^{0}$. Since v^{*} is not a C-shortcut, the tuple $\mathcal{T}^{\prime}:=\left(G_{Q^{*}}^{0},(\mathcal{C} \backslash\{C\}) \cup\left\{C^{\prime}\right\}, L^{\prime}, C^{* *}\right)$ is a mosaic, and since $\left|V\left(G_{Q^{*}}^{0}\right)\right|<|V(G)|, G_{Q^{*}}^{0}$ admits an L^{\prime}-coloring ϕ^{\prime}. Furthermore, $G_{Q^{*}}^{1}$ consists of a broken wheel with principal path $x_{4} v^{*} x_{1}$, and since $c \neq \phi^{\prime}\left(v^{*}\right)$, either $c \notin L\left(u_{1}\right)$ or $\phi^{\prime}\left(v^{*}\right) \notin L\left(u_{1}\right)$. In either case, ϕ^{\prime} extends to an L-coloring of G, contradicting the fact that \mathcal{T} is critical.

Case 2: $v^{*} x_{1} \notin E(G)$
In this case, by our triangulation conditions, together with Lemma 3.1.1, there is an $i \in\{1, \cdots, t-1\}$ such that $N\left(x_{2}\right) \cap\left(C \cap G_{Q}^{1}\right)=\left\{x_{1}, u_{1}, \cdots, u_{i}\right\}$ and $N\left(v^{*}\right) \cap V\left(C \cap G_{Q}^{1}\right)=\left\{u_{i}, \cdots, u_{t}\right\}$. Since $\operatorname{deg}\left(v^{*}\right)>4$ we have $i<t-1$. Let $Q^{\dagger}:=x_{4} v^{*} u_{i}$.

Claim 3.2.5. Let $S \subseteq L\left(v^{*}\right)$ with $|S|=3$ and let L^{\dagger} be a list-assignment for $G_{Q^{\dagger}}^{0}$, where $L^{\dagger}\left(v^{*}\right)=S$ and otherwise $L^{\dagger}=L$. Then $G_{Q^{\dagger}}^{0}$ is L^{\dagger}-colorable .

Proof: Let $C^{\dagger}:=\left(C \cap G_{Q^{\dagger}}^{0}\right)+Q^{\dagger}$ and let C_{*}^{\dagger} be the outer face of $G_{Q^{+}}^{0}$. Since v^{*} is not a C-shortcut, $\mathcal{T}^{\prime \prime}:=$ $\left(G_{Q^{\dagger}}^{0},(\mathcal{C} \backslash\{C\}) \cup\left\{C^{\dagger}\right\}, L^{\dagger}, C_{*}^{\dagger}\right)$ is a mosaic. Since $u_{i+1} \in V(G) \backslash V\left(G_{Q^{\dagger}}^{0}\right)$, we have $\left|V\left(G_{Q^{\dagger}}^{0}\right)\right|<|V(G)|$, so $G_{Q^{\dagger}}^{0}$ admits an L^{\dagger}-coloring by the minimality of \mathcal{T}.

Applying the above, since $\left|L\left(v^{*}\right)\right|=5$, let $\psi_{1}, \psi_{2}, \psi_{3}$ be L-colorings of $G_{Q^{\dagger}}^{0}$ using different colors on v^{*}. Let H_{1} be the broken wheel with principal path $x_{1} x_{2} u_{i}$, where $H_{1} \backslash\left\{x_{2}\right\}=x_{1} u_{1} \cdots u_{i}$, and let H_{2} be the broken wheel with principal path $u_{i} v^{*} u_{t}$, where $H_{2} \backslash\left\{v^{*}\right\}=u_{i} \cdots u_{t}$.

For each $j=1,2,3$, let $d_{j}:=\psi_{j}\left(v^{*}\right)$. Note that $L\left(u_{m}\right)=\left\{d_{1}, d_{2}, d_{3}\right\}$ for each $m=i+1, \cdots, t-1$, or else there exists a $j \in\{1,2,3\}$ such that ψ_{j} extends to an L-coloring of G, which is false. Likewise, we have $\left\{\psi_{1}\left(u_{i}\right), \psi_{2}\left(u_{i}\right), \psi_{3}\left(u_{i}\right)\right\} \subseteq L\left(u_{i+1}\right)$ and $\left\{\psi_{1}\left(u_{t}\right), \psi_{2}\left(u_{t}\right), \psi_{3}\left(u_{t}\right)\right\} \subseteq L\left(u_{t-1}\right)$, or else there exists a $j \in\{1,2,3\}$ such that ψ_{j} extends to H_{2} and thus to G, which is false. Let r, s be two colors in $L\left(v^{*}\right) \backslash\left\{d_{1}, d_{2}, d_{3}\right\}$. Note now that the colorings $\left\{\psi_{1}, \psi_{2}, \psi_{3}\right\}$ use at least two colors of $\left\{d_{1}, d_{2}, d_{3}\right\}$ on u_{i}, since $\left\{\psi_{i}\left(v^{*}\right), \psi_{2}\left(v^{*}\right), \psi_{3}\left(v^{*}\right)\right\}=\left\{d_{1}, d_{2}, d_{3}\right\}$. Likewise, the colorings $\left\{\psi_{1}, \psi_{2}, \psi_{3}\right\}$ use at least two colors of $\left\{d_{1}, d_{2}, d_{3}\right\}$ on u_{t}.

Claim 3.2.6. For each $j=1,2,3,\left\{\psi_{j}\left(x_{2}\right), \psi_{j}\left(x_{3}\right)\right\}=\{r, s\}$. Furthermore, each of r, s appears at least once among $\left\{\psi_{1}\left(x_{2}\right), \psi_{2}\left(x_{2}\right), \psi_{3}\left(x_{2}\right)\right\}$.

Proof: If there exists a $j \in\{1,2,3\}$ such that this does not hold, then, starting with ψ_{j} and uncoloring v^{*}, there is a color among $\{r, s\}$ left over for v^{*}, since $\psi\left(x_{4}\right) \in\left\{d_{1}, d_{2}, d_{3}\right\}$ and $\psi\left(u_{1}\right) \in\left\{d_{1}, d_{2}, d_{3}\right\}$. But then the resulting L-coloring extends to H_{2} and thus to G, which is false.

Now suppose that $\left\{\psi_{1}\left(x_{2}\right), \psi_{2}\left(x_{2}\right), \psi_{3}\left(x_{2}\right)\right\}=\{r\}$. Thus, for each $j \in\{1,2,3\}$, the coloring $\left(c r, \psi_{j}\left(u_{i}\right)\right.$,) of $x_{1} x_{2} u_{i}$ extends to an L-coloring of H_{1}, since ψ_{j} is an L-coloring of $G_{Q^{\dagger}}^{0}$. Thus, since $\mathcal{Z}_{H_{1}}(c, r, \bullet) \neq \varnothing$, there exists a $q \in \mathcal{Z}_{H_{1}}(c, r, \bullet)$ with $q \notin\left\{d_{1}, d_{2}, d_{3}\right\}$. Now we simply choose a $j \in\{1,2,3\}$ and restrict ψ_{j} to G_{Q}^{0}. Then we 2-color the path $u_{t} \cdots u_{i+1}$ with colors from $\left\{d_{1}, d_{2}, d_{3}\right\}$, starting with $\psi_{j}\left(u_{t}\right)$. Since $q \notin\left\{d_{1}, d_{2}, d_{3}\right\}$, there is a color left over for v^{*} after coloring u_{i} with q, and the resulting coloring extends to G, since $q \in \mathcal{Z}_{H_{1}}(c, r, \bullet)$. This contradicts the fact that \mathcal{T} is critical.

Now we are ready to finish the proof of 2) of Proposition 3.2.4. Since $\left\{\psi_{1}, \psi_{2}, \psi_{3}\right\}$ use at least two colors of d_{1}, d_{2}, d_{3} on u_{i}, at least one of r, s does not lie in u_{i}, so let $r \notin L\left(u_{i}\right)$. By Claim 3.2.6, there is a $j \in\{1,2,3\}$ with $\psi_{j}\left(x_{2}\right)=r$, so, without loss of generality, let $\psi_{1}\left(x_{2}\right)=r$. Since $r \notin L\left(u_{i}\right)$, we have $\left|\mathcal{Z}_{H_{1}}(c, r, \bullet)\right| \geq 2$. Furthermore, for each $d \in\left\{d_{1}, d_{2}, d_{3}\right\} \backslash\left\{\psi_{1}\left(u_{t}\right)\right\}$, we have $\mathcal{Z}_{H_{1}}(c, r, \bullet) \cap \mathcal{Z}_{H_{2}}\left(\bullet, d, \psi_{1}\left(u_{t}\right)\right)=\varnothing$, or else, uncoloring v^{*} and then coloring it with d, we produce an L-coloring of $V\left(G_{Q}^{0}\right) \cup\left\{v^{*}\right\}$ which extends to G, which is false. Without loss of generality, let $d_{2}=\psi_{1}\left(u_{t}\right)$. Thus, $\mathcal{Z}_{H_{2}}\left(\bullet, d_{1}, d_{2}\right) \cup \mathcal{Z}_{H_{2}}\left(\bullet, d_{3}, d_{2}\right)$ consists of a lone color, so we have $d_{1}, d_{3} \in L\left(u_{i}\right)$, and, letting $\left\{r^{\prime}\right\}=\mathcal{Z}_{H_{2}}\left(\bullet, d_{1}, d_{2}\right) \cup \mathcal{Z}_{H_{2}}\left(\bullet, d_{3}, d_{2}\right)$, we have $L\left(u_{i}\right)=\left\{r^{\prime}, d_{1}, d_{3}\right\}$ and $\mathcal{Z}_{H_{1}}(c, r, \bullet)=\left\{d_{1}, d_{3}\right\}$.

Since $\left\{\psi_{1}, \psi_{2}, \psi_{3}\right\}$ use at least two colors of d_{1}, d_{2}, d_{3} on u_{t}, there is a coloring among $\psi_{1}, \psi_{2}, \psi_{3}$ using one of d_{1}, d_{3} on u_{t}, so, without loss of generality, suppose that $\psi_{2}\left(u_{t}\right)=d_{3}$. If $\psi_{2}\left(x_{2}\right)=r$, then, since d_{1}, d_{3} lie in $L\left(u_{i}\right)$, we

2-color the path $u_{i} \cdots u_{t}$ with d_{1}, d_{3}, starting with the precoloring $\psi_{2}\left(u_{t}\right)$ of u_{t}. Since $z_{H_{1}}(c, r, \bullet)=\left\{d_{1}, d_{3}\right\}$, this coloring extends to $G \backslash\left\{v^{*}\right\}$, and the color d_{2} is left over for v^{*}, so we have an L-coloring of G, contradicting the fact that \mathcal{T} is critical. Thus, we have $\psi_{2}\left(x_{2}\right)=s$ and $\left\{d_{1}, d_{3}\right\} \nsubseteq \mathcal{Z}_{H_{1}}(c, s, \bullet)$. If H_{1} is a triangle, then we have $c \in\left\{d_{1}, d_{3}\right\}$, contradicting the fact that $\mathcal{Z}_{H_{1}}(c, r, \bullet)=\left\{d_{1}, d_{3}\right\}$. Thus, H_{1} is not a triangle, and $s \in L\left(u_{m}\right)$ for each $m=1, \cdots, i-1$. Furthermore, $r \in L\left(u_{m}\right)$ for each $m=1, \cdots, i-1$, or else $\left|z_{H_{1}}(c, r, \bullet)\right|=3$, contradicting the fact that $\mathcal{Z}_{H_{1}}(c, r, \bullet)=\left\{d_{1}, d_{3}\right\}$.

As above, $\mathcal{Z}_{H_{2}}\left(\bullet, d_{1}, d_{3}\right) \cup \mathcal{Z}_{H_{2}}\left(\bullet, d_{2}, d_{3}\right)$ is disjoint to $\mathcal{Z}_{H_{1}}(c, s, \bullet)$, or else $\left.\psi_{2}\right|_{G_{Q}^{0}}$ extends to an L-coloring of G. But since $d_{2} \notin L\left(u_{i}\right)$, we have $\left\{r^{\prime}, d_{3}\right\}=\mathcal{Z}_{H_{2}}\left(\bullet, d_{2}, d_{3}\right)$, and $\mathcal{Z}_{H_{1}}(c, s, \bullet)=\left\{d_{1}\right\}$. Thus, $s \in L\left(u_{i}\right)$ so $s^{\prime}=r$. d

Now, if $u_{1} \cdots u_{i}$ is a path of even length then, for each odd $m \in\{1, \cdots, i-1\}$, we color u_{i} with r and each of d_{1}, d_{3} is left over for u_{i}, so we have $d_{3} \in \mathcal{Z}_{H_{1}}\left(u_{i}, s, c\right)$, contradicting the fact that $\mathcal{Z}_{H_{1}}(c, s, \bullet)=\left\{d_{1}\right\}$. Thus, $u_{1} \cdots u_{i}$ is a path of odd length. But now, since $s \neq c$, we color u_{m} with s for each odd $m \in\{1, \cdots, i\}$ and color x_{2} with r, leaving a color left over for each of $\left\{u_{1}, u_{3}, \cdots, u_{i-1}\right\}$, so we get $s \in \mathcal{Z}_{H_{1}}(c, r, \bullet)$, contradicting the fact that $\mathcal{Z}_{H_{1}}(c, r, \bullet)=\left\{d_{1}, d_{3}\right\}$. This completes the proof of Proposition 3.2.4.

3.3 2-Chords Incident to an Internal Vertex of the Precolored Path

In this section, we analyze 2-chords Q of the open rings of a critical mosaic, where Q has precisely one endpoint which is an internal vertex of the precolored path of the ring. Recalling the notation of Definition 2.3.9, we have the following result, which is the main result of Section 3.3. We prove this result and them combine the work of Section 3.3 with the work of the previous two sections to prove Theorem 3.0.2.

Lemma 3.3.1. Let $\mathcal{T}=\left(G, \mathcal{C}, L, C_{*}\right)$ be a critical mosaic. Let C be an open ring, and let $\mathbf{P}=p_{1} \cdots p_{m}$. Let $Q:=v_{1} x v_{2}$ be a 2 -chord of C, where $v_{1} \in V(\stackrel{\circ}{\mathbf{P}})$ and $v_{2} \in V(C \backslash \stackrel{\circ}{\mathbf{P}})$. Then the following hold.

1) $v_{1} \in\left\{p_{2}, p_{m-1}\right\}$ and $\mathbf{P} \cap G_{v_{1} x v_{2}}^{\text {small }}$ is a path of length one; AND
2) $V\left(G_{Q}^{\text {small }}\right)=\left\{p_{2}, x, p_{m-1}\right\} \cup V\left(C \cap G_{Q}^{\text {small }}\right)$; AND
3) $G_{Q}^{\text {small }}$ is a broken wheel with principal path $v_{1} x v_{2}$.

Proof. We first note the following:
Claim 3.3.2. For any 2-chord $v_{1} x v_{2}$ of C with $v_{1} \in V(\stackrel{\circ}{\mathbf{P}})$ and $v_{2} \in V(C \backslash \stackrel{\circ}{\mathbf{P}})$, we have $v_{1} \in\left\{p_{2}, p_{m-1}\right\}$, and $\mathbf{P} \cap G_{v_{1} x v_{2}}^{\mathrm{small}}$ is a path of length one.

Proof: If $v_{1} \notin\left\{p_{2}, p_{m-1}\right\}$, then, since $|E(\mathbf{P})| \leq \frac{2 N_{\text {mo }}}{3}$, each of the two paths $\mathbf{P} \cap G^{\text {small }}$ and $\mathbf{P} \cap G^{\text {large }}$ has length at most $\frac{2 N_{\mathrm{mo}}}{3}$, contradicting 4) of Theorem 2.2.4. Thus, we have $v_{1} \in\left\{p_{2}, p_{m-1}\right\}$. Suppose without loss of generality that $v_{1}=p_{2}$. If $m>3$ and $G_{Q}^{\text {small }} \cap \mathbf{P}=p_{2} \cdots p_{m}$, then we again contradict 4) of Theorem 2.2.4, so we are done.
This proves 1) of Lemma 3.3.1. Now we prove 2). Given a 2-chord $v_{1} x v_{2}$ of C, where $v_{1} \in V(\stackrel{\circ}{\mathbf{P}})$ and $v_{2} \in V(C \backslash \stackrel{\circ}{\mathbf{P}})$, we say that $v_{1} x v_{2}$ is $b a d$ if $V\left(G_{v_{1} x v_{2}}^{\text {small }} \backslash C\right) \neq\{x\}$. We prove that there is no bad 2-chord of C with p_{2} as an endpoint. An identical argument then shows that there is no bad 2-chord of C with p_{m-1} as an endpoint. By Claim 3.3.2, this implies that there are no bad 2-chords of C.

Suppose toward a contradiction that there is a bad 2-chord Q of C with p_{2} as an endpoint, and, among all such bad 2-chords of C, we choose Q so that $\mid V\left(G_{Q}^{\text {small }}\right)$ is minimized. Let $Q:=p_{2} x v$ for some $v \in V(C \backslash \stackrel{\circ}{\mathbf{P}})$. Applying Claim 3.3.2, suppose without loss of generality that $\mathbf{P} \cap G_{Q}^{\text {small }}=p_{1} p_{2}$. Let $G_{Q}^{\text {small }} \cap C=p_{2} p_{1} v_{1} \cdots v_{t}$, where $v_{t}=v$.

Claim 3.3.3. $\left|V\left(G_{Q}^{\text {small }} \cap C\right)\right|>3$ and $v \notin V(\mathbf{P})$
Proof: If $\left|V\left(G_{Q}^{\text {small }} \cap C\right)\right| \leq 3$, then the cycle $\left(G_{Q}^{\text {small }} \cap C\right)+p_{2} x v$ has length at most four and separates an element of S from $G_{Q}^{\text {large }} \backslash Q$, contradicting short-separation-freeness. That is, we have $t>1$. Furthermore, if $v \in V(\mathbf{P})$, then, since $v \notin V(\stackrel{\circ}{\mathbf{P}})$, we have $v=p_{m}$, and $p_{2} x p_{m}$ is a short C-band, contradicting 1) of Theorem 2.3.2.

Now we have the following:

Claim 3.3.4. For each $z \in V\left(C \cap G_{Q}^{\text {small }}\right) \backslash\left\{p_{2}, v\right\}, x z \notin E(G)$.

Proof: Suppose toward a contradiction that $x p_{1} \in E(G)$. Then G contains the 2-chord $p_{1} x v_{2}$ of G, and, by Lemma 3.1.1, we have $V\left(G_{p_{1} x v_{2}}^{1} \backslash C\right)=\{x\}$. Since G is short-separation-free, we have $V\left(\backslash G^{1}\right)=\left\{p_{2}\right\}$, so $\left.V\left(G_{Q}^{\text {small }}\right) \backslash C\right)=$ $\{x\}$, contradicting our assumption that $p_{2} x v_{2}$ is a bad 2-chord of C. Thus, $x p_{1} \notin E(G)$.

Now suppose toward a contradiction that there is an $i \in\{1, \cdots, t-1\}$ such that $x v_{i} \in E(G)$. Then $\left|V\left(G_{p_{2} x v_{i}}^{\text {small }}\right)\right|<$ $\left|V\left(G_{Q}^{\text {small }}\right)\right|$. Thus, by assumption, we have $V\left(G_{p_{2} x v_{i}}^{\text {small }}\right) \backslash V(C)=\{x\}$. Furthermore, we have $v_{i} x v_{t} \in \mathcal{K}(C, \mathcal{T})$, and $G_{v_{i} x v_{t}}^{\text {small }}=G_{v_{i} x v_{t}}^{1}$. By Lemma 3.1.1, we have $V\left(G_{v_{i} x v_{t}}^{\mathrm{small}}\right) \backslash V(C)=\{x\}$, and thus $V\left(G_{p_{2} x v}^{\text {small }}\right) \backslash V(C)=\{x\}$, contradicting our assumption.

Now we have the following:
Claim 3.3.5. $V\left(G_{Q}^{\mathrm{large}}\right)$ is L-colorable.

Proof: Let C_{1} be the cycle $\left(C \cap G_{Q}^{\text {small }}\right)+Q$, and consider the following cases:
Case 1: p_{2}, v have a common neighbor in $V\left(G_{Q}^{\text {large }}\right) \backslash(V(C) \cup\{x\})$
In this case, let $C_{*}^{\text {large }}$ be the outer face of $G_{Q}^{\text {large }}$. We claim that the tessellation $\mathcal{T}^{\prime}:=\left(G_{Q}^{\text {small }},\left\{C_{1}\right\} \cup(\mathcal{C} \backslash\{C\}), L, C_{*}^{\text {large }}\right)$ is a mosaic. Let $\mathbf{P}^{\prime}:=\mathbf{P}_{\mathcal{T}}(C) \cap G_{Q}^{\text {large }}$. There is no chord of C_{1} with an endpoint in $V\left(\mathbf{P}^{\prime}\right)$, or else, since C is an induced cycle of G, there is a neighbor of x in $\left\{p_{3}, \cdots, p_{m-1}\right\}$, and thus, letting $p \in N(x) \cap\left\{p_{3}, \cdots, p_{m-1}\right\}$, the 2-chord $p x v$ of C contradicts Claim 3.3.2. Thus, \mathcal{T}^{\prime} satisfies M1) of Definition 2.1.6, and M0) and M2) are immediate. Let y be a common neighbor of p_{2}, v in $V\left(G_{Q}^{\text {large }}\right) \backslash(V(C) \cup\{x\})$. Note that $G_{p_{2} y v}^{\text {large }} \subseteq G_{Q}^{\text {large }}$, or else the 4-cycle $p_{2} x v y$ separates an element of $\mathcal{C} \backslash\{C\}$ from p_{m}, which is false. Suppose toward a contradiction that there is a $C^{\prime} \in \mathcal{C} \backslash\{C\}$ and a subgraph $H \subseteq C^{\prime}$ such that $d\left(H, C_{1} \backslash \stackrel{\circ}{\mathbf{P}}^{\prime}\right)<d(H, C \backslash \stackrel{\circ}{\mathbf{P}})$ and let R be a shortest $\left(H, C_{1} \backslash \mathbf{P}^{\prime}\right)$-path with $|E(R)|<d(H, C \backslash \stackrel{\circ}{\mathbf{P}})$. Since $\stackrel{\circ}{\mathbf{P}}^{\prime} \subseteq \stackrel{\circ}{\mathbf{P}}, R$ has x as an endpoint. But since $\left\{p_{2}, y, v\right\}$ separates x from H, and $p_{2}, v \in V\left(C_{1} \backslash \stackrel{\circ}{\mathbf{P}}^{\prime}\right), R \backslash\{x\}$ has y as an endpoint, and since $y v \in E(G), G$ contains an $(H, C \backslash \stackrel{\circ}{\mathbf{P}})$-path of length R, contradicting our assumption. Thus, no such H exists, so \mathcal{T}^{\prime} satisfies the distance conditions of Definition 2.1.6, and thus \mathcal{T}^{\prime} is indeed a mosaic. Since $\left|V\left(G_{Q}^{\text {large }}\right)\right|<|V(G)|, G_{Q}^{\text {large }}$ is L-colorable by the minimality of \mathcal{T}.

Case 2: p_{2}, v_{2} do not have a common neighbor in $V\left(G_{Q}^{\text {large }}\right) \backslash(V(C) \cup\{x\})$.
In this case, let G^{\dagger} be a graph obtained from G by first deleting the vertices of $G_{Q}^{\text {small }} \backslash\left\{p_{1}, p_{2}, x, v\right\}$ and replacing them with a lone vertex v^{*} adjacent to each of $\left\{p_{1}, p_{2}, x, v\right\}$. Let $C^{\dagger}:=\left(C \cap G_{Q}^{\text {arge }}\right)+p_{1} v^{*} v$. Then C^{\dagger} is a facial subgraph of $G^{\dagger}+p_{1} x$.

We claim now that $\mathcal{T}^{\dagger}:=\left(G^{\dagger}+p_{1} x,\left\{C^{\dagger}\right\} \cup(\mathcal{C} \backslash\{C\}), L, C_{*}^{\dagger}\right)$ is a mosaic. Firstly, we note that $G^{\dagger}+p_{1} x$ is short-separation-free, or else $G_{Q}^{\text {large }}$ contains a 2 -chord of C_{1} with endpoints p_{2}, v_{2}. Since C is an induced cycle, $p_{2} v_{2}$ is not a chord of C_{1}, so p_{2}, v_{2} have a common neighbor in $V\left(G_{Q}^{\text {large }}\right) \backslash(V(C) \cup\{x\})$, contradicting our assumption. Thus, \mathcal{T}^{\dagger} is a tessellation. We claim now that \mathcal{T}^{\dagger} is a mosaic. Since x is not adjacent to any vertex of $\left\{p_{3}, \cdots, p_{m}\right\}$, \mathcal{T}^{\dagger} also satisfies M1). M0) and M2) are immediate.

Now suppose toward a contradiction that there is a $C^{\prime} \in \mathcal{C} \backslash\{C\}$ and a subgraph H of C^{\prime} such that $d_{G^{\dagger}}\left(H, C^{\dagger} \backslash \stackrel{\circ}{\mathbf{P}}\right)<$ $d_{G}(H, C \backslash \stackrel{\circ}{\mathbf{P}})$. Then there is a shortest $\left(H, C^{\dagger} \backslash \stackrel{\circ}{\mathbf{P}}\right)$-path R with $|E(R)|<d_{G}(H, C \backslash \stackrel{\circ}{\mathbf{P}})$, so R has v^{*} as an endpoint. But then $R \backslash\left\{v^{*}\right\}$ has one of p_{2}, x as its endpoint, and, in G, each of these vertices had a neighbor in $C \backslash \stackrel{\circ}{\mathbf{P}}$, so we have a contradiction. Thus, \mathcal{T}^{\dagger} also satisfies the distance conditions of Definition 2.1.6, so \mathcal{T}^{\dagger} is a mosaic. Note that $\left|V\left(G^{\dagger}+p_{1} x\right)\right|<|V(G)|$, or else, since $\left|V\left(G^{\text {small }} \cap C\right)\right|>3$, we contradict the fact that $S \neq \varnothing$. Thus, by the minimality of $\mathcal{T}, G^{\dagger}+p_{1} x$ is L-colorable, so $G_{Q}^{\text {large }}$ is L-colorable.

Now we return to the proof of Lemma 3.3.1. Let $S:=V\left(G_{Q}^{\text {small }}\right) \backslash(V(C) \cup\{x\})$. By assumption, $S=\varnothing$. Applying Claim 3.3.5, let ϕ be an L-coloring of $G_{Q}^{\text {large }}$. Since C is an induced subgraph of G and $\left|V\left(C \cap G_{Q}^{\text {small }}\right)\right|>3, \phi$ is also a proper L-coloring of the subgraph of G induced by $V\left(G_{Q}^{\text {large }}\right)$. By Claim 3.3.4, we have $p_{1} x \notin E(G)$. Thus, since \mathbf{P} is L-colorable and $\left|L\left(p_{2}\right)\right|=1, \phi$ extends to an L-coloring ϕ^{\prime} of $V\left(G_{Q}^{\text {arge }}\right) \cup\left\{p_{1}\right\}$.

Claim 3.3.6. There is a lone vertex $v^{*} \in V\left(G_{Q}^{\text {small }} \backslash C\right) \backslash\{x\}$ such that $S=\left\{v^{*}\right\}$, and v^{*} is adjacent to each vertex of $G_{Q}^{\text {small }} \backslash\left\{v^{*}\right\}$.

Proof: We first note that there is a vertex $v^{*} \in S$ with at least three neighbors among $\left\{p_{1}, p_{2}, x, v\right\}$. To see this, suppose toward a contradiction that no such vertex exists. By Claim 3.3.4, x has no neighbors in $V\left(C \cap G_{Q}^{\text {small }}\right) \backslash\left\{p_{2}, v\right\}$. Thus, since C is an induced subgraph of G, it follows from 1) of Proposition 1.5.1 that ϕ^{\prime} extends to an L-coloring of G, contradicting the fact that \mathcal{T} is critical. Thus, S contains a vertex v^{*} with at least three neighbors among $\left\{p_{1}, p_{2}, x, v\right\}$. We claim now that v^{*} is adjacent to each of $\left\{p_{1}, p_{2}, x, v\right\}$. Suppose not. Then v^{*} has precisely three neighbors among $\left\{p_{1}, p_{2}, x, v\right\}$. Consider the following cases:

Case 1: $\left\{p_{1}, v\right\} \subseteq N\left(v^{*}\right)$
In this case, if v^{*} is also adjacent to x, then, since $x p_{1} \notin E(G)$ and G is short-separation-free, we have $p_{2} \in N\left(v^{*}\right)$ by our triangulation conditions, contradicting our assumption. On the other hand, if $p_{2} \in N\left(v^{*}\right)$, then, again since G is short-separation-free, $E(G)$ either contains $p_{2} v$ or $v^{*} x$ by our triangulation conditions. Since C is an induced subgraph of G, we have $x \in N\left(v^{*}\right)$, contradicting our assumption

Case 2: $\left\{p_{1}, v\right\} \nsubseteq N\left(v^{*}\right)$
In this case, we have either $N\left(v^{*}\right) \cap\left\{p_{1}, p_{2}, x, v\right\}=\left\{p_{1}, p_{2}, x\right\}$ or $N\left(v^{*}\right) \cap\left\{p_{1}, p_{2}, x, v\right\}=\left\{p_{2}, x, v\right\}$. Suppose that $N\left(v^{*}\right) \cap\left\{p_{1}, p_{2}, x, v\right\}=\left\{p_{2}, x, v\right\}$. In that case, by the minimality of Q, we have $V\left(G_{p_{2} v^{*} v}^{\text {smal }} \backslash V(C)=\left\{v^{*}\right\}\right.$, and thus, since C is an induced subgraph of G, it follows from our triangulation conditions that $v^{*} p_{1} \in E(G)$, contradicting our assumption.

The only possibility left to rule out is that $N\left(v^{*}\right) \cap\left\{p_{1}, p_{2}, x, v\right\}=\left\{p_{1}, p_{2}, x\right\}$. In this case, G contains the 3-chord $Q^{*}:=p_{1} v^{*} x v$ of C. Note that $Q^{*} \in \mathcal{K}(C, \mathcal{T})$. By Proposition 3.2.4, since $v^{*} v \notin E(G)$, there is a lone vertex $z \in V\left(G_{Q^{*}}^{1}\right)$ such that $G_{Q^{*}}^{1} \backslash C$ consists of the triangle $v^{*} z x$. Since $\operatorname{deg}_{G}\left(v^{*}\right) \geq 5$ and C is an induced subgraph of G, it follows from our triangulation conditions that there exists an $r \in\{1, \cdots, t-1\}$ such that $G\left[V(C) \cap N\left(v^{*}\right)\right]=$ $p_{2} p_{1} v_{1} \cdots v_{r}$ and $G[C \cap N(z)]=v_{r} v_{r+1} \cdots v_{t}$.

Let H_{1} be the broken wheel with principal path $p_{1} v^{*} v_{r}$, where $H_{1} \backslash\left\{v^{*}\right\}=p_{1} v_{1} \cdots p_{r}$. Let H_{2} be the broken wheel with principal path $v_{r} z v$, where $H_{2} \backslash\{z\}=v_{r} v_{r+1} \cdots v_{t}$. Let a, b be two colors in $L\left(v_{1}\right) \backslash\left\{\psi^{\prime}\left(p_{1}\right)\right\}$ and let q be a color in $L\left(v^{*}\right) \backslash\left\{a, b, \psi^{\prime}\left(p_{1}\right), \psi^{\prime}\left(p_{2}\right)\right\}$. Let Q^{\dagger} be the 3-chord $p_{2} v^{*} z v$ of C and let L^{\dagger} be a list-assignment for $G_{Q^{\dagger}}^{\text {small }}$ where $L^{\dagger}\left(v^{*}\right)=q$ and $L^{\dagger}(z)=L(z)$ otherwise. Let C^{\dagger} be the cycle $\left(C \cap G_{Q^{\dagger}}^{\text {large }}+p_{2} v^{*} z v\right.$ and let D be the outer face of $G_{Q^{\dagger}}^{\text {large }}$. Let $\mathcal{T}^{\dagger}:=\left(G_{Q^{\dagger}}^{\text {large }},\left\{C^{\dagger}\right\} \cup(\mathcal{C} \backslash\{C\}), L^{\dagger}, D\right)$ and let $\mathbf{P}^{\dagger}:=p_{m} \cdots p_{2} v^{*}$. Then \mathbf{P}^{\dagger} is a proper subpath of C^{\dagger}, since $z \notin V\left(\mathbf{P}^{\dagger}\right)$, and \mathbf{P}^{\dagger} is a chordless subpath of C^{\dagger}. Thus \mathbf{P}^{\dagger} is L^{\dagger}-colorable, and \mathcal{T}^{\dagger} is a tessellation in which C^{\dagger} is an open ring.

We claim now that \mathcal{T}^{\dagger} is a mosaic. Since $N(x) \cap\left\{p_{3}, \cdots, p_{m}\right\}=\varnothing$, each of v^{*}, z is adjacent to a subpath of \mathbf{P}^{\dagger} of length at most one, and there is no chord of C^{\dagger} with an endpoint in \mathbf{P}^{\dagger} (indeed, C^{\dagger} is an induced subgraph of $G_{Q^{\dagger}}^{\text {large }}$, so M1) is satisfied. Since $\left|E\left(\mathbf{P}^{\dagger}\right)\right|=|E(\mathbf{P})|$, we immediately have M0), and M2) is trivial. Now suppose toward a contradiction that there is a $C^{\prime} \in \mathcal{C} \backslash\{C\}$ and a subgraph H of C^{\prime} such that $d\left(H, C^{\dagger} \backslash \stackrel{\circ}{\mathbf{P}}^{\dagger}\right)<d(H, C \backslash \stackrel{\circ}{\mathbf{P}})$. Since $\stackrel{\circ}{\mathbf{P}}^{\dagger}=\stackrel{\circ}{\mathbf{P}}$, there is a shortest $\left(H, C^{\dagger} \backslash \stackrel{\circ}{\mathbf{P}}\right)$-path R with $|E(R)|<d(H, C \backslash \stackrel{\circ}{\mathbf{P}})$. Thus, R has one of $\{v, z\}$ as an endpoint. But since each of $\left\{p_{2}, x, v\right\}$ is of distance at most one from $C \backslash \stackrel{\circ}{\mathbf{P}}$, we have a contradiction. Thus, \mathcal{T}^{\dagger} also satisfies the distance conditions of Definition 2.1.6, so \mathcal{T}^{\dagger} is a mosaic.

Since $\left|V\left(G_{Q^{\dagger}}^{\text {large }}\right)\right|<|V(G)|, G_{Q^{\dagger}}^{\text {large }}$ is L^{\dagger}-colorable by the minimality of \mathcal{T}. Thus, let ψ be an L^{\dagger}-coloring of $G_{Q^{\dagger}}^{\text {large }}$. By definition of L^{\dagger}, we have $\left\{\psi\left(v^{*}\right)\right\} \neq L\left(p_{1}\right)$, so ψ extends to an L-coloring ψ^{\prime} of $G \backslash\left\{v_{1}, \cdots, v_{t-1}\right\}$.

Subclaim 3.3.7. H_{1} is a triangle.
Proof: Suppose that H_{1} is not a triangle, so $H_{1}-v^{*}=p_{1} v_{1} \cdots v_{r}$ for some $r>1$. Since the coloring $\left(\psi^{\prime}(z), \psi^{\prime}(v)\right)$ of the edge $z v$ extends to the broken wheel H_{2}, there is an extension of ψ^{\prime} to an L-coloring $\psi^{\prime \prime}$ of $G \backslash\left\{v_{1}, \cdots, v_{r-1}\right\}$. Since $\left|L\left(v_{1}\right)\right|=3$ and $\left|L\left(p_{1}\right)\right|=1$, we have by definition of L^{\dagger} that either $\psi^{\prime \prime}\left(p_{1}\right) \notin L\left(v_{1}\right)$ or $\psi^{\prime \prime}\left(v^{*}\right) \notin L\left(v_{1}\right)$. In either case, $\psi^{\prime \prime}$ extends to the path $v_{1} \cdots v_{r-1}$, contradicting the fact that \mathcal{T} is critical.

Since H_{1} is a triangle, we have $H_{2} \backslash\{z\}=v_{1} \cdots v_{t}$. By definition of L^{\dagger}, we have $\left|L_{\psi^{\prime}}\left(v_{1}\right)\right| \geq 2$. Since each internal vertex of $v_{1} \cdots v_{t}$ has an $L_{\psi^{\prime}}$-list of size at least two, ψ^{\prime} extends to an L-coloring of G, contradicting the fact that \mathcal{T} is critical. This completes Case 2. Thus, our assumption that $\left|N\left(v^{*}\right) \cap\left\{p_{1}, p_{2}, v, x\right\}\right|=3$ is false, so v^{*} is adjacent to each vertex of $\left\{p_{1}, p_{2}, x, v\right\}$, as desired. By Lemma 3.1.1, $G_{p_{1} v^{*} v}^{1}$ is a broken wheel with principal path $p_{1} v^{*} v$, and thus v^{*} is adjacent to each vertex of the cycle $p_{2} p_{1} v_{1} \cdots v_{t} x$. Thus, since G is short-separation-free, we have $V\left(G_{Q}^{\text {small }}\right)=\left\{v^{*}\right\} \cup\left\{p_{2}, p_{1}, v_{1}, \cdots, v_{t}, x\right\}$, so we are done. This completes the proof of Claim 3.3.6.

Applying Claim 3.3.6, let $S=\left\{v^{*}\right\}$. Since $\left|L\left(p_{1}\right)\right|=1$, let $L\left(p_{1}\right)=\{c\}$ for some color c. Since v^{*} has four neighbors in $\operatorname{dom}\left(\phi^{\prime}\right),\left|L_{\phi^{\prime}}\left(v^{*}\right)\right| \geq 1$, so ϕ^{\prime} extends to an L-coloring $\phi^{\prime \prime}$ of $G \backslash\left\{v_{1}, \cdots, v_{t-1}\right\}$. Note that $c \in L\left(v_{1}\right)$, or else, since $G_{p_{1} v^{*} v}^{1}$ is a broken wheel with principal path $p_{1} v^{*} v, \phi^{\prime \prime}$ extends to an L-coloring of G, contradicting the fact that \mathcal{T} is critical. Let $L\left(v_{1}\right)=\{a, b, c\}$ and let $L\left(p_{2}\right)=\{d\}$ (possibly $d \in\{a, b\}$). Since $\left|L\left(v^{*}\right)\right| \geq 5$, let q be a color in $L\left(v^{*}\right) \backslash\{a, b, c, d\}$, and let $L^{\prime \prime}$ be a list-assignment for $G_{p_{2} v^{*} v}^{\text {small }}$, where $L^{\prime \prime}\left(v^{*}\right)=\{q\}$ and $L^{\prime \prime}(z)=L(z)$. Let $C^{\prime \prime}$ be the cycle $\left(C \cap G_{p_{2} v^{*} v}^{\text {small }}\right)+p_{2} v^{*} v$, and let $C_{*}^{\prime \prime}$ be the outer face of $G_{p_{2} v^{*} v}^{\text {small }}$ (that is, either $C_{*}^{\prime \prime}=C_{*}$, or, if $C_{*}=C$, then $C_{*}^{\prime \prime}=C^{\prime \prime}$).

Let $\mathcal{T}^{\prime \prime}:=\left(G_{p_{2} v^{*} v}^{\text {small }},\left\{C^{\prime \prime}\right\} \cup(\mathcal{C} \backslash\{C\}), L^{\prime \prime}, C_{*}^{\prime \prime}\right)$ and let $\mathbf{P}^{\prime \prime}:=p_{m} p_{m-1} \cdots p_{2} v^{*}$. By Claim 3.3.4, $v \notin V(P)$, so $\mathbf{P}^{\prime \prime}$ is a proper subpath of $C^{\prime \prime}$. Thus the subgraph of $G_{p_{2} v^{*} v}^{\text {small }}$ induced by $P^{\prime \prime}$ is $L^{\prime \prime}$-colorable, and $\mathcal{T}^{\prime \prime}$ is a tessellation in which $C^{\prime \prime}$ is an open ring. We claim now that $\mathcal{T}^{\prime \prime}$ is a mosaic.

Firstly, since \mathbf{P} is a chordless subpath of $C, \mathbf{P}^{\prime \prime}$ is a chordless subpath of $C^{\prime \prime}$. Likewise, since $N\left(v^{*}\right) \cap V\left(C^{\prime \prime}\right)=$ $\left\{v, p_{2}\right\}$, there is no chord of $C^{\prime \prime}$ with an endpoint in $\mathbf{P}^{\circ \prime}$ (indeed, $C^{\prime \prime}$ is an induced subgraph of $G_{p_{2} v^{*} v}^{\text {small }}$. Finally, by Claim 3.3.2, x does not have a neighbor among $\left\{p_{3}, \cdots, p_{m}\right\}$ so $G\left[N(x) \cap V\left(\mathbf{P}^{\prime \prime}\right)\right]$ consists of the edge $v^{*} p_{2}$. Thus,
$\mathcal{T}^{\prime \prime}$ satisfies M1), and since $\left.\left|E\left(\mathbf{P}^{\prime \prime}\right)\right|=|E(\mathbf{P})|, \mathrm{M} 0\right)$ and M 2$)$ are immediate as well.
Now suppose toward a contradiction that there is a $C^{\prime} \in \mathcal{C} \backslash\{C\}$ and a subgraph $H \subseteq C^{\prime}$ such that $d\left(H, C^{\prime \prime} \backslash \stackrel{\circ}{\mathbf{P}}^{\prime \prime}\right)<$ $d(H, C \backslash \stackrel{\circ}{\mathbf{P}})$. Since $\stackrel{\circ}{\mathbf{P}}^{\prime \prime}=\stackrel{\circ}{\mathbf{P}}$, there is an $\left(H, C^{\prime \prime} \backslash \stackrel{\circ}{\mathbf{P}}\right)$-path R with $|E(R)|<d(H, C \backslash \stackrel{\circ}{\mathbf{P}})$. Thus, R has endpoint v^{*}, and $R \backslash\left\{v^{*}\right\}$ has one of p_{2}, x as its endpoint. Since each of p_{2}, x has a neighbor in $C \backslash \stackrel{\circ}{\mathbf{P}}$, this contradicts the fact that $|E(R)|<d(H, C \backslash \mathbf{P})$, so no such H exists. Thus, $\mathcal{T}^{\prime \prime}$ also satisfies the distance conditions of Definition 2.1.6

Thus, $\mathcal{T}^{\prime \prime}$ is a mosaic. Since $G \backslash G_{p_{2} v^{*} v}^{\text {small }}=p_{1} v_{1} \cdots v_{t-1},\left|V\left(G_{p_{2} v^{*} v}^{\text {small }}\right)\right|<|V(G)|$, so $G_{p_{2} v^{*} v}^{\text {small }}$ is $L^{\prime \prime}$-colorable by the minimality of \mathcal{T}. Let ψ be an $L^{\prime \prime}$-coloring of $G_{p_{2} v^{*} v}^{\text {small }}$. Note that ψ extends to an L-coloring ψ^{\prime} of $G \backslash\left\{v_{1}, \cdots, v_{t-1}\right\}$, since $\left\{\psi^{\prime \prime}\left(v^{*}\right)\right\} \neq L\left(p_{1}\right)$ and $p_{1} v \notin E(G)$. Since $\psi^{\prime \prime}\left(v^{*}\right) \notin L\left(v_{1}\right), \psi^{\prime}$ extends to an L-coloring of G, contradicting the fact that \mathcal{T} is critical. This completes the proof of Lemma 3.3.1.

We now combine the result above with the results of sections 4.1 and 4.2 to prove Theorem 3.0.2. Firstly, combining condition M1) with our triangulation conditions, there is a path $P^{\prime} \subseteq G$ such that $V\left(P^{\prime}\right)=D_{1}(\mathbf{P}, G) \backslash V(C)$, where, for each $w \in V\left(P^{\prime}\right), G[N(w) \cap V(\mathbf{P})]$ is a path of length at most one, as G is short-separation-free. Combining this with Lemma 3.1.1 and Lemma 3.3.1, there is a unique cycle C^{1} such that $V\left(C^{1}\right)=D_{1}(C)$, and such that, letting $G=G_{0} \cup G_{1}$ be the nautral C^{1}-partition of G, where $C \subseteq G_{0}$, the graph $G_{0}[(\{v\} \cup N(v)]$ is either an edge or broken wheel with principal vertex v. Thus, C^{1} satisfies 1) of Theorem 3.0.2.

To finish the proof of Theorem 3.0.2, we check that C^{1} also satisfies 2). Suppose toward a contradiction that C^{1} does not satisfy 2) of Theorem 3.0.2. In that case, there exists a chord $x x^{\prime}$ of C^{1}, where each of x, x^{\prime} has a neighbor in $C \backslash \stackrel{\circ}{\mathbf{P}}$, and the chord $x x^{\prime}$ violates at least one of i)-iii) of 2) of Theorem 3.0.2. Since each of x, x^{\prime} has a neighbor in $C \backslash \stackrel{\circ}{\mathbf{P}}$, there exists a 3-chord Q of C whose middle edge is $x x^{\prime}$, where $Q \in \mathcal{K}(C, \mathcal{T})$.

By 3) of Lemma 3.2.1, we have $V\left(G_{Q}^{1}\right)=V\left(G_{Q}^{1} \cap C\right) \cup V\left(G_{Q}^{1} \cap C^{1}\right)$. Since $x x^{\prime}$ is a chord of C^{1}, we have $V\left(G_{Q}^{1}\right) \neq V\left(C \cap G_{Q}^{1}\right) \cup\left\{x, x^{\prime}\right\}$. In particular, $G_{Q}^{1} \cap C^{1}$ is a path of length at least two. By 1) of Proposition 3.2.4, this path has length precisely two, so $x x^{\prime}$ satisfies i) of 2) of Theorem 3.0.2 and thus violates either ii) or iii) of 2) of Theorem 3.0.2.

Suppose that iii) is violated. In that case, at least one of x, x^{\prime} is not a \mathcal{C}-shortcut, contradicting 4) of Lemma 3.2.1. Thus, ii) of 2) is violated, and thus one of x, x^{\prime} has a neighbor in \mathbf{P}. Since $x x^{\prime}$ is a chord of C^{1}, we have $V\left(G_{Q}^{1} \backslash Q\right) \nsubseteq V(C)$, contradicting 2) of Proposition 3.2.4. This completes the proof of Theorem 3.0.2, and motivates the following natural terminology:

Definition 3.3.8. Let $\mathcal{T}=\left(G, \mathcal{C}, L, C_{*}\right)$ be a critical mosaic, let $C \in \mathcal{C}$ be an open ring, and let C^{1} be the unique cycle in G with $V\left(C^{1}\right)=B_{1}(C)$. We call C^{1} the 1-necklace of C.
It is also very natural to introduce some notation for two special subpath of the 1-necklace of an open ring, the first of which consists of all the vertices of the 1-necklace with a neighbor in the precolored path and the second of which consists of all the vertices of the 1-necklace without any neighbors outside of the precolored path. By 2) of Corollary 2.3.14, the precolored path of an open ring in a critical mosaic has length $\left\lfloor\frac{2 N_{\mathrm{mo}}}{3}\right\rfloor$, so, by M2), these two paths are distinct.

Definition 3.3.9. Let $\mathcal{T}=\left(G, \mathcal{C}, L, C_{*}\right)$ be a critical mosaic, let $C \in \mathcal{C}$ be an open ring, and let C^{1} be the 1-necklace of C. We then define two paths $\mathbf{P}_{\mathcal{T}}^{1}(C)$ and $\mathbf{P}_{\mathcal{T}}^{1+}(C)$ to be the unique subpaths of C^{1} such that the following hold.

1) $V\left(\mathbf{P}_{\mathcal{T}}^{1}(C)\right)=\left\{v \in V\left(C^{1}\right): N(v) \cap V(C) \subseteq V(\mathbf{P})\right\}$; AND
2) $V\left(\mathbf{P}_{\mathcal{T}}^{1+}(C)\right)=\left\{v \in V\left(C^{1}\right): N(v) \cap V(\mathbf{P}) \neq \varnothing\right\} ; A N D$
3) $\mathbf{P}_{\mathcal{T}}^{1}(C) \subsetneq \mathbf{P}_{\mathcal{T}}^{1+}(C)$.

As with the precolored subgraph of C, we usually just drop the \mathcal{T} and the C from the notation above and just write \mathbf{P}^{1}, if the underlying tessellation or ring, or both, are clear from the context. In Chapter 4, we perform a similar analysis to that of Chapter 3 on the vertices of distance two from an open ring in a critical mosaic, and we also analyze 3-chords of open rings with one endpoint outside the precolored path and one endpoint which is an internal vertex of the precolored path.

Chapter 4

Vertices of Distance Two From Open
 Rings

We begin by stating the main result which we prove in this chapter. The proof of this result consists of the entirety of Chapter 4. This result, together with Theorem 3.0.2, contains all the analysis of the structure of a critical mosaic near each open ring that we need in order to begin coloring and deleting a path between two rings in a critical mosaic.

Theorem 4.0.1. Let $\mathcal{T}=\left(G, \mathcal{C}, L, C_{*}\right)$ be a critical mosaic, let C be an open \mathcal{T}-ring. Then G contains a cycle C^{2} such that, letting $G=G^{\prime} \cup G^{\prime \prime}$ be the natural C^{2}-partition of G, where $C \subseteq G^{\prime}$, the following hold.

1) $C^{2} \cap C^{1}=\mathbf{P}^{1}$ and $V\left(G^{\prime}\right)=V\left(C \cup C^{1} \cup C^{2}\right)$; AND
2) $V\left(C^{2} \backslash \mathbf{P}^{1}\right)=D_{2}(C \backslash \mathbf{P}) \backslash V\left(C^{1}\right)$.

Furthermore, for any chord uv of C^{1}, where $u \in V\left(\mathbf{P}^{1}\right)$ and $v \in V\left(C^{1} \backslash \mathbf{P}^{1}\right)$, and any $w \in N(u) \cap V(\dot{\mathbf{P}})$ and $w^{\prime} \in N(v) \cap V(C)$, letting $R:=u w w^{\prime} v$ and $\mathbf{P}:=p_{1} \cdots p_{m}$, the following hold.

1) $\left|V\left(G_{R}^{\mathrm{small}}\right) \backslash V(C \cup R)\right|=1$, and w is of distance precisely one from an endpoint of \mathbf{P}; AND
2) $G_{R}^{\text {small }} \backslash\left\{p_{3}, p_{m-2}\right\}$ is a wheel whose central vertex is the lone vertex of $V\left(G_{R}^{\text {small }}\right) \backslash V(C \cup R)$.

To prove this, we first need to analyze graphs consisting of sequences of broken wheels.

4.1 Sequences of Broken Wheels

In this section, we prove a fact about about graphs consisting of broken wheels in sequence. We begin with the following definition.

Definition 4.1.1. A graph G is called a wheel sequence if G is a connected graph, and, for some integer $k \geq 1, G$ contains subgraphs H_{1}, \cdots, H_{k}, and 2-paths P_{1}, \cdots, P_{k}, where $P_{i}:=x^{i} y^{i} z^{i}$ for each $i=1, \cdots, k$, such that the following hold.

1) For each $i=1, \cdots, k, H_{i}$ is a broken wheel with principal path P_{i}; AND
2) For each $i=2, \cdots, k, H_{i-1} \cap H_{i}=\left\{x^{i}\right\}$; AND
3) $E(G)=E\left(H_{1}\right) \cup \cdots E\left(H_{k}\right) \cup\left\{y^{1} y_{2}, \cdots, y^{k-1} y^{k}\right\}$ as a disjoint union.

Given a wheel sequence G as above, we associate to G the following terminology and notation:

1) The path $y^{1} \cdots y^{k}$ is called the apex path of G and k is called the length of G.
2) The vertices x^{1}, z^{k} are called the wheel terminals of G.
3) $\mathcal{H}(G)$ denotes the k-tuple $\left(H_{1}, \cdots, H_{k}\right)$, and $\mathcal{P}(G)$ denotes the k-tuple $\left(P_{1}, \cdots, P_{k}\right)$.

In Section 4.2, when we analyze the structure of a critical mosaic in the ball of distance two from an open ring, we are particularly interested in graphs which consit of a wheel sequence together with a lone vertex adjacent to each vertex on the apex path of the wheel sequence. We introduce one more definition and then state our main result for Section 4.1.

Definition 4.1.2. A crown is a 4-tuple (G, w, P, L) such that the following hold.

1) G is a graph and w is a vertex of G such $N(w)=V(P)$ and $G-w$ is a wheel sequence with apex path P; AND
2) L is a list-assignment for $V(G)$ such that the following hold.
i) $|L(w)| \geq 2$, each endpoint of P has an L-list of size at least four, and each internal vertex of P ha an L-list of size at least five; $A N D$
ii) Each wheel terminal of $G-w$ is precolored; $A N D$
iii) All remaining vertices of G have L-lists of size three.

Our lone main result for Section 4.1 is the following.
Theorem 4.1.3. Let (G, w, P, L) be a crown and let $\mathcal{H}(G \backslash\{w\})=\left(H_{1}, \cdots, H_{k}\right)$ and $\mathcal{P}(G \backslash\{w\})=\left(P_{1}, P_{2}, \cdots, P_{k}\right)$, where $P_{i}=x^{i} y^{i} z^{i}$ for each $i=1, \cdots$, , Furthermore, let $L\left(x^{1}\right)=\{c\}$ and $L\left(z^{k}\right)=\left\{c^{\prime}\right\}$. Then the following hold.

1) If $|V(P)| \geq 3$, then G is L-colorable; AND
2) If $|V(P)|=2$, then, letting $X:=\bigcap_{u \in V\left(H_{1} \backslash P_{1}\right)} L(u)$ and $X^{\prime}:=\bigcap_{u \in V\left(H_{2} \backslash P_{2}\right)} L(u)$, one of the following three statements holds.
a) G is L-colorable; OR
b) There is a set of two colors such common to the lists of each vertex of $V(G) \backslash\left\{w, x^{1}, z^{2}, y^{1}, y^{2}\right\}$; OR
c) There is a set $S=\{a, b, r\}$ of three colors, where $L(w)=\{a, b\}$, such that $L\left(y^{1}\right) \backslash\{c\}=L\left(y^{2}\right) \backslash\left\{c^{\prime}\right\}=$ S, and furthermore, $\{b, r\} \subseteq X,\{a, r\} \subseteq X^{\prime}$, and $\left|L\left(z^{1}\right) \cap S\right| \geq 2$.

We begin by proving the first half of Theorem 4.1.3.
Proposition 4.1.4. Let (G, w, P, L) be a crown with $V(P) \mid \geq 3$. Then G is L-colorable.
Proof. Let $\mathcal{H}(G \backslash\{w\})=\left(H_{1}, \cdots, H_{k}\right)$ and $\mathcal{P}(G \backslash\{w\})=\left(P_{1}, \cdots, P_{k}\right)$, where $P_{i}=x^{i} y^{i} z^{i}$ for each $i=1, \cdots, k$. We prove the proposition by induction on the length of P. The base case is $|V(P)|=3$. Let $L\left(x^{1}\right)=\{c\}$ and $L\left(z^{3}\right)=\left\{c^{\prime}\right\}$. Let $a, b \in L(w)$. Possibly, one or both of c, c^{\prime} lies in $\{a, b\}$. Suppose towards a contradiction that G is not L-colorable. Now we have the following:

Claim 4.1.5. If there is a pair $\left(r, r^{\prime}\right) \in L\left(y^{1}\right) \times L\left(y^{2}\right)$ such that $\left|\mathcal{Z}_{H_{1}}(c, r, \bullet)\right| \geq 2$ and $\left|\mathcal{Z}_{H_{3}}\left(\bullet, r^{\prime}, c^{\prime}\right)\right| \geq 2$, then $\{a, b\} \cap\left\{r, r^{\prime}\right\} \neq \varnothing$.

Proof: Suppose there a pair $\left(r, r^{\prime}\right)$ with $\left|\mathcal{Z}_{H_{1}}(c, r, \bullet)\right| \geq 2$ and $\left|\mathcal{Z}_{H_{3}}\left(\bullet, r^{\prime}, c^{\prime}\right)\right| \geq 2$. Suppose that $\{a, b\} \cap\left\{r, r^{\prime}\right\}=\varnothing$. Now let L^{*} be a list-assignment for H_{2}, where we set $L^{*}\left(y^{2}\right):=L\left(y^{2}\right) \backslash\left\{r, r^{\prime}\right\}, L^{*}\left(z^{1}\right):=\mathcal{Z}_{H_{1}}(c, r, \bullet)$, and, likewise, $L^{*}\left(z^{2}\right):=\mathcal{Z}_{H_{3}}\left(\bullet, r^{\prime}, c^{\prime}\right)$. Finally, we set $L^{*}(u):=L(u)$ for all $u \in V\left(H_{2}\right) \backslash\left\{x^{2}, y^{2}, z^{2}\right\}$.

Note that H_{2} is L^{*}-colorable by Theorem 1.3.4, since every vertex in H_{2} has an L^{*}-list of size at least 3 , except possibly the vertices $\left\{x^{2}, z^{2}\right\}$, which have L^{*}-lists of size at least 2 . Thus, let ψ be an L^{*}-coloring of H_{2}. Now, ψ extends to an L-coloring ψ^{\prime} of $G \backslash\{w\}$ in which $\psi^{\prime}\left(y^{1}\right)=r$ and $\psi^{\prime}\left(y^{3}\right)=r^{\prime}$, since $\left.\psi\left(z^{1}\right) \in \mathcal{Z}_{H_{1}}(c, r, \bullet)\right)$ and $\psi\left(x^{3}\right) \in \mathcal{Z}_{H_{3}}\left(\bullet, r^{\prime}, c^{\prime}\right)$. Now, ψ^{\prime} leaves an color over for w, since $\left|L(w) \backslash\left\{r, r^{\prime}\right\}\right| \geq 2$. Thus, G is indeed L-colorable, contradicting our assumption.

By Proposition 1.4.5, the sets $\left\{r \in L\left(y^{1}\right):\left|\mathcal{Z}_{H_{1}}(c, r, \bullet)\right| \geq 2\right\}$ and $\left\{r^{\prime} \in L\left(y^{2}\right):\left|\mathcal{Z}_{H_{3}}\left(\bullet, r^{\prime}, c^{\prime}\right)\right| \geq 2\right\}$ are both nonempty. Thus, for the remainder of the proof, we may suppose that one of these two sets is a subset of $\{a, b\}$. So now suppose without loss of generality that $\left\{r \in L\left(y^{1}\right):\left|\mathcal{Z}_{H_{1}}(c, r, \bullet)\right| \geq 2\right\}$ is a nonempty subset of $\{a, b\}$, and that $a \in L\left(y^{1}\right) \backslash\{c\}$ with $\left|z_{H_{1}}(c, a, \bullet)\right| \geq 2$. Consider the following cases.

Case 1: H_{2} is a triangle.
We break this case into subcases:
Case 1.1 $a \in L\left(y^{3}\right) \backslash\left\{c^{\prime}\right\}$
In this case, let ψ be an L-coloring of H_{3} with $\psi\left(y^{1}\right)=a$. Such an L-coloring of H_{3} exists by Thomassen. Since $\left|L\left(y^{2}\right) \backslash\left\{a, b, \psi\left(x^{3}\right)\right\}\right| \geq 2$, and $\left|\mathcal{Z}_{H_{1}}(c, a, \bullet)\right| \geq 2$, there is a color $d \in L\left(y^{2}\right) \backslash\left\{a, b, \psi\left(x^{3}\right)\right\}$ such that $\mathcal{z}_{H_{1}}(c, a, \bullet) \neq\left\{d, \psi\left(x^{3}\right)\right\}$. Now we extend ψ to an L-coloring ψ^{\prime} of $V\left(H_{3}\right) \cup\left\{y^{1}, y^{2}\right\}$ by setting $\psi^{\prime}\left(y^{1}\right)=a$ and $\psi^{\prime}\left(y^{2}\right)=d$. Since there is a color left over in $\mathcal{Z}_{H_{1}}(c, a, \bullet), \psi^{\prime}$ extends to an L-coloring $\psi^{\prime \prime}$ of $G \backslash\{w\}$. Since $b \notin\left\{\psi^{\prime \prime}\left(y^{1}\right), \psi^{\prime \prime}\left(y^{2}\right), \psi^{\prime \prime}\left(y^{3}\right)\right\}$, there is a color left over in $L(w)$, so G is L-colorable, contradicting our assumption.

Case 1.2 $a \notin L\left(y^{3}\right) \backslash\left\{c^{\prime}\right\}$.
In this case, there are at least two colors $d_{0}, d_{1} \in L\left(y^{3}\right) \backslash\left\{a, b, c^{\prime}\right\}$. We claim that, for some $i \in\{0,1\}$, there is an L-coloring ψ of $G \backslash\{w\}$ with $\psi\left(y^{1}\right)=a$ and $\psi\left(y^{3}\right)=d_{i}$. For each $i \in\{0,1\}$, let ψ_{i} be an L-coloring of H_{3} with $\psi_{i}\left(y^{1}\right)=d_{i}$. Such an L-coloring of H_{3} exists for each $i \in\{0,1\}$ by Theorem 0.2.3. Consider the following subcases.

Case 1.2.1 For each $i \in\{0,1\},\left|L\left(y^{2}\right) \backslash\left\{a, b, d_{i}, \psi\left(z^{2}\right)\right\}\right|=1$
In this case, since $\left|L\left(y^{2}\right)\right| \geq 5$, we have $\left|L\left(y^{2}\right)\right|=5$ and $\left\{a, b, d_{0}, d_{1}\right\} \subseteq L\left(y^{2}\right)$. Let e be the lone color of $L\left(y^{2}\right) \backslash\left\{a, b, d_{0}, d_{1}\right\}$.

Claim 4.1.6. If there is an $i \in\{0,1\}$ such that $\psi_{i}\left(z^{2}\right) \neq e$ then $\mathcal{Z}_{H_{1}}(c, a, \bullet)=\left\{\psi_{i}\left(z^{2}\right), e\right\}$. On the other hand, if there is an $i \in\{0,1\}$ such that $\psi_{i}\left(z^{2}\right)=e$, then $\mathcal{Z}_{H_{1}}(c, a, \bullet)=\left\{d_{1-i}, e\right\}$.

Proof: Let $i \in\{0,1\}$ and suppose that $\psi_{i}\left(z^{2}\right) \neq e$. Suppose further that $z_{H_{1}}(c, a, \bullet) \neq\left\{\psi_{i}\left(z^{2}\right), e\right\}$. We claim that there is an extension of ψ_{i} to an L-coloring of G. We first extend ψ_{i} to an L-coloring ψ_{i}^{\prime} of $V\left(H_{3}\right) \cup\left\{y^{1}, y^{2}\right\}$ by setting $\psi_{i}^{\prime}\left(y^{2}\right)=e$ and $\psi_{i}^{\prime}\left(y^{1}\right)=a$. Since $\mathcal{Z}_{H_{1}}(c, a, \bullet) \neq\left\{\psi_{i}^{\prime}\left(z^{2}\right), \psi_{i}^{\prime}\left(y^{2}\right)\right\}$ and $\left|\mathcal{Z}_{H_{1}}(c, a, \bullet)\right| \geq 2$, there is a color left in $z_{H_{1}}(c, a, \bullet)$ for z^{1}, so ψ^{\prime} extends to an L-coloring of $G \backslash\{w\}$. Since $b \notin\left\{\psi^{\prime}\left(y^{1}\right), \psi^{\prime}\left(y^{2}\right), \psi^{\prime}\left(y^{3}\right)\right\}$, there is a color left over for w, so G is L-colorable, contradicting our assumption.

Now let $i \in\{0,1\}$ and suppose that $\psi_{i}\left(z^{2}\right)=e$. Suppose further that $\mathcal{Z}_{H_{1}}(c, a, \bullet) \neq\left\{d_{1-i}, e\right\}$. We claim that there is an extension of ψ_{1-i} to an L-coloring of G. We first extend ψ_{1-i} to an L-coloring ψ_{1-i}^{\prime} of $V\left(H_{3}\right) \cup\left\{y^{1}, y^{2}\right\}$ by setting $\psi_{1-i}^{\prime}\left(y^{2}\right)=d_{1-i}$ and $\psi_{1-i}^{\prime}\left(y^{1}\right)=a$. This is permissible as $d_{i} \neq a$ and $d_{1-i} \in L\left(y^{2}\right)$. Since $\mathcal{Z}_{H_{1}}(c, a, \bullet) \neq$ $\left\{\psi_{1-i}^{\prime}\left(y^{2}\right), \psi_{1-i}^{\prime}\left(z^{2}\right)\right\}$ and $\left|z_{H_{1}}(c, a, \bullet)\right| \geq 2$, there is a color of $z_{H_{1}}(c, a, \bullet)$ in $L\left(z^{1}\right) \backslash\left\{a, \psi_{1-i}^{\prime}\left(y^{2}\right), \psi_{1-i}^{\prime}\left(z^{2}\right)\right.$. Thus, ψ_{1-i}^{\prime} extends to an L-coloring of $G \backslash\{w\}$. Since $b \notin\left\{\psi_{1-i}^{\prime}\left(y^{1}\right), \psi_{1-i}^{\prime}\left(y^{2}\right), \psi_{1-i}^{\prime}\left(y^{3}\right)\right\}, \psi_{1-i}^{\prime}$ extends to an L-coloring of G, contradicting our assumption.

Now, suppose towards a contradiction that $\psi_{0}\left(z^{2}\right) \neq e$ and $\psi_{1}\left(z^{2}\right) \neq e$. In that case, by Claim 4.1.6, there is a color $f \in L\left(z^{1}\right)$ such that $f=\psi_{0}\left(z^{2}\right)=\psi_{1}\left(z^{1}\right)$ and $z_{H_{1}, L}(c, a, \bullet)=\{e, f\}$. Note that $f \notin\left\{d_{0}, d_{1}\right\}$, since $\psi_{0}\left(z^{2}\right) \neq d_{0}$ and $\psi_{1}\left(z^{2}\right) \neq d_{1}$. Now extend ψ_{0} to an L-coloring ψ_{0}^{\prime} of $V\left(H_{3}\right) \cup\left\{y^{1}, y^{2}\right\}$ by setting $\psi_{0}^{\prime}\left(y^{1}\right)=e$ and $\psi_{0}^{\prime}\left(y^{2}\right)=d_{1}$. Then ψ_{0}^{\prime} extends to an L-coloring of $G \backslash\{w\}$, since there is a color left over for z^{1} in $z_{H_{1}}(c, a, \bullet)$. The resulting coloring of $G-w$ extends to an L-coloring of G, since $b \notin\left\{\psi_{0}^{\prime}\left(y^{1}\right), \psi_{0}^{\prime}\left(y^{2}\right), \psi_{0}^{\prime}\left(y^{3}\right)\right\}$. This contradicts our assumption.

We conclude that $e \in\left\{\psi_{0}\left(z^{2}\right), \psi_{1}\left(z^{2}\right)\right\}$. If $e=\psi_{0}\left(z^{2}\right)=\psi_{1}\left(z^{2}\right)$, then there exists $i \in\{0,1\}$ such that $\mathcal{Z}_{H_{1}}(c, a, \bullet) \neq$ $\left\{e, d_{1-i}\right\}$, contradicting Claim 4.1.6. Thus, if either $e \notin\left\{\psi_{0}\left(z^{2}\right), \psi_{1}\left(z^{2}\right)\right\}$ or $e=\psi_{0}\left(z^{0}\right)=\psi_{1}\left(z^{2}\right)$, then G is L colorable, contradicting our assumption. So now suppose without loss of generality that $\psi_{0}\left(z^{2}\right)=e$ and $\psi_{1}\left(z^{2}\right) \neq e$. In that case, by Claim 4.1.6, we have $z_{H_{1}}(c, a, \bullet)=\left\{d_{1}, e\right\}=\left\{\psi_{1}\left(z^{2}\right), e\right\}$. Yet $d_{1} \neq \psi_{1}\left(z^{2}\right)$, since ψ_{1} is a proper L-coloring of H_{3} in which y^{3} is colored with d_{1}, so G is indeed L-colorable, contradicting our assumption. This completes Subcase 1.2.1.

Case 1.2.2 For some $i \in\{1,2\}, L\left(y^{2}\right) \backslash\left\{a, b, d_{i}, \psi_{i}\left(z^{2}\right)\right\} \mid \geq 2$.
In this case, let e_{1}, e_{2} be two colors in $L\left(y^{2}\right) \backslash\left\{a, b, d_{i}, \psi_{i}\left(z^{2}\right)\right\}$. Then there exists a $j \in\{1,2\}$ such that $\mathcal{Z}_{H_{1}}(c, a, \bullet) \neq$ $\left\{\psi_{i}\left(z^{2}\right), e_{j}\right\}$. Now extend ψ_{i} to an L-coloring ψ_{i}^{\prime} of $H_{3} \cup\left\{y_{1}, y_{2}\right\}$ by setting $\psi_{i}^{\prime}\left(y^{1}\right)=a$ and $\psi_{i}^{\prime}\left(y^{2}\right)=e_{j}$. Then ψ_{i}^{\prime} extends to an L-coloring ψ of $G \backslash\{w\}$, since there is a color left over for z^{1} in $\mathcal{Z}_{H_{1}}(c, a, \bullet)$. Since $b \notin\left\{\psi\left(y^{1}\right), \psi\left(y^{2}\right), \psi\left(y^{3}\right)\right\}$, this coloring ψ extends to an L-coloring of G, contradicting our assumption. This completes the case where H_{2} is a triangle.

Case 2: H_{2} is not a triangle.
In this case, let $H_{2} \backslash\left\{y^{2}\right\}:=x^{2} w_{1} \cdots w_{t} z^{2}$ for some $t \geq 1$. We break this into the following subcases:
Case 2.1: $L\left(y^{2}\right) \backslash\{a, b\}=L\left(w_{1}\right)$
In this case, since $\left|L\left(w_{1}\right)\right|=3$, we have $L\left(y^{2}\right)=L\left(w_{1}\right) \cup\{a, b\}$ as a disjoint union.
Claim 4.1.7. Let $r \in L\left(y^{1}\right) \backslash\{a, b, c\}$ and $r^{\prime} \in L\left(y^{3}\right) \backslash\left\{a, b, c^{\prime}\right\}$. Then $\left.\mid \mathcal{Z}_{H_{1}}(r, c, \bullet)\right)\left|=\left|\mathcal{Z}_{H_{3}}\left(\bullet, r^{\prime}, c^{\prime}\right)\right|=1\right.$ and $\{a, b\}=\mathcal{Z}_{H_{1}}(c, r, \bullet) \cup \mathcal{z}_{H_{3}}\left(\bullet, r^{\prime}, c^{\prime}\right)$.

Proof: Let $x \in \mathcal{Z}_{H_{1}}(c, r, \bullet)$ and $x^{\prime} \in \mathcal{Z}_{H_{3}}\left(\bullet, r^{\prime}, c^{\prime}\right)$. Suppose towards a contradiction that $\left\{x, x^{\prime}\right\} \neq\{a, b\}$. Let $s \in\{a, b\} \backslash\left\{x, x^{\prime}\right\}$. Since $\{a, b\} \subseteq L\left(y^{2}\right)$, we have $s \in L\left(y^{2}\right)$. Consider the L-coloring $\left(r, s, r^{\prime}\right)$ of $y^{1} y^{2} y^{3}$. We claim that this extends to an L-coloring of $G \backslash\{w\}$. It suffices to show that the coloring $\left(x, s, x^{\prime}\right)$ of $x^{2} y^{2} z^{2}$ extends to an L-coloring of H. Since $s \notin L\left(w^{1}\right)$, this coloring of the principal path of H_{2} does indeed extend to an L-coloring of H_{2}. Thus, the coloring $\left(r, s, r^{\prime}\right)$ of $y^{1} y^{2} y^{3}$ extends to an L-coloring ψ of $G-w$, and since there is a color of $\{a, b\}$ left over for w, ψ extends to an L-coloring of G, contradicting our assumption.

Now, as above, let $r \in L\left(y^{1}\right) \backslash\{c\}$ and $r^{\prime} \in L\left(y^{3}\right) \backslash\left\{c^{\prime}\right\}$. Applying Claim 4.1.7, we have $\mid \mathcal{Z}_{H_{1}}(c, r, \bullet)=$ $\left|\mathcal{Z}_{H_{3}}\left(\bullet, r^{\prime}, c^{\prime}\right)\right|=1$ and $\mathcal{Z}_{H_{1}}(c, r, \bullet) \cup \mathcal{Z}_{H_{3}}\left(\bullet, r^{\prime}, c^{\prime}\right)=\{a, b\}$. We now choose a color $t \in L\left(y^{2}\right) \backslash\left\{a, b, r, r^{\prime}\right\}$, and we claim that the coloring $\left(r, t, r^{\prime}\right)$ of $y^{1} y^{2} y^{3}$ extends to an L-coloring of $G \backslash\{w\}$. If we show this, then we are done, since $a, b \notin\left\{r, t, r^{\prime}\right\}$. Let $\mathcal{Z}_{H_{1}}(c, r, \bullet)=\{x\}$ and $\mathcal{Z}_{H_{3}}\left(\bullet, r^{\prime}, c^{\prime}\right)=\left\{x^{\prime}\right\}$, where $\left\{x, x^{\prime}\right\}=\{a, b\}$. It just suffices to show that the coloring $\left(x, t, x^{\prime}\right)$ of $x^{2} y^{2} z^{2}$ extends to an L-coloring of H_{2}. This holds since $x \notin L\left(w_{1}\right)$, so we are done. This completes Case 2.1.

Case 2.2 $L\left(y^{2}\right) \backslash\{a, b\} \neq L\left(w_{1}\right)$
In this case, since $\left|L\left(y^{2}\right)\right| \geq 5$, there is a color $e \in L\left(y^{2}\right) \backslash\{a, b\}$ with $e \notin L\left(w^{1}\right)$.

Claim 4.1.8. For each color $r^{\prime} \in L\left(y^{3}\right) \backslash\left\{b, c^{\prime}\right\}$, we have $\mathcal{Z}_{H_{3}}\left(\bullet, r^{\prime}, c^{\prime}\right)=\{e\}$.

Proof: Suppose there is an $r^{\prime} \in L\left(y^{3}\right) \backslash\left\{b, c^{\prime}\right\}$ with $\mathcal{Z}_{H_{3}}\left(\bullet, r^{\prime}, c^{\prime}\right) \neq\{e\}$. Since $\mathcal{Z}_{H_{3}}\left(\bullet, r^{\prime}, c^{\prime}\right) \neq \varnothing$ by Theorem 0.2.3, let $x^{\prime} \in \mathcal{Z}_{H_{3}}\left(\bullet, r^{\prime}, c^{\prime}\right)$ with $x^{\prime} \neq e$. Now we claim that the coloring $\left(a, e, r^{\prime}\right)$ of $y^{1} y^{2} y^{3}$ extends to an L-coloring of G. Since $\left|\mathcal{Z}_{H_{1}}(c, a, \bullet)\right| \geq 2$, there is a color $x \in \mathcal{Z}_{H_{1}}(c, r, \bullet) \backslash\{e\}$. The coloring $\left(x, e, x^{\prime}\right)$ of $x^{2} y^{2} z^{2}$ extends to an L-coloring of H_{2} since $e \notin L\left(w_{1}\right)$. Thus, since $x \in \mathcal{Z}_{H_{1}}(c, a, \bullet)$ and $x^{\prime} \in \mathcal{Z}_{H_{3}}\left(\bullet, r^{\prime}, c^{\prime}\right)$, the coloring $\left(a, e, r^{\prime}\right)$ of $y^{1} y^{2} y^{3}$ extends to an L-coloring ψ of $G \backslash\{w\}$. Finally, since $e, r^{\prime} \neq b$, there is a color left over in $L(w)$, so ψ extends to an L-coloring of G, contradicting our assumption.

Now, since $\left|L\left(y^{3}\right)\right| \geq 4$, we let $d_{0}, d_{1} \in L\left(y^{3}\right) \backslash\left\{b, c^{\prime}\right\}$. Applying Claim 4.1.8, we have $\mathcal{Z}_{H_{3}}\left(\bullet, d_{0}, c\right)=\mathcal{Z}_{H_{3}}\left(\bullet, d_{1}, c\right)=$ $\{e\}$. Now let $r \in L\left(y^{1}\right) \backslash\{a, b, c\}$ and let ψ be an L-coloring of H_{1} with $\psi\left(y^{1}\right)=r$. Such a ψ exists by Theorem 0.2 .3 . Now we have the following:

Claim 4.1.9. $L\left(w_{t}\right)=L\left(y^{2}\right) \backslash\left\{r, \psi\left(z^{1}\right)\right\}$ and $e \in L\left(w_{t}\right)$.
Proof: Suppose that $e \notin L\left(w_{t}\right)$. Since $d_{0}, d_{1} \notin\left\{b, c^{\prime}\right\}$, choose an $i \in\{0,1\}$ with $d_{i} \notin\left\{a, b, c^{\prime}\right\}$. Then choose a color $s \in L\left(y^{2}\right) \backslash\left\{a, b, d_{i}, e\right\}$, and consider the coloring $\left(a, s, d_{i}\right)$ of $y^{1} y^{2} y^{3}$. We claim that this extends to an L-coloring of G. Firstly, since $\left|\mathcal{Z}_{H_{1}}(c, a, \bullet)\right| \geq 2$, let $s^{\prime} \in \mathcal{Z}_{H_{1}}(c, a, \bullet) \backslash\{s\}$. Now consider the coloring $\left(s^{\prime}, s, e\right)$ of $x^{2} y^{2} z^{2}$. This extends to an L-coloring of H_{2}, since $e \notin L\left(w_{t}\right)$. Thus, since $s^{\prime} \in \mathcal{Z}_{H_{1}}(c, a, \bullet)$ and $e \in \mathcal{Z}_{H_{3}}\left(\bullet, d_{i}, c^{\prime}\right)$, the coloring $\left(a, s, d_{i}\right)$ of $y^{1} y^{2} y^{3}$ extends to an L-coloring ϕ of $G \backslash\{w\}$. Finally, since $s, d_{i} \notin\{a, b\}$, the color b is left over for w, so ϕ extends to an L-coloring of G, contradicting our assumption.

Thus, we conclude that $e \in L\left(w_{t}\right)$. Now suppose towards a contradiction that $L\left(y^{2}\right) \backslash\left\{r, \psi\left(z^{1}\right)\right\} \neq L\left(w_{t}\right)$. In that case, since $\left|L\left(w_{t}\right)\right|=3$ and $\left|L\left(y^{2}\right)\right| \geq 5$, there is a color $s \in L\left(y^{2}\right) \backslash\left\{r, \psi\left(z^{1}\right)\right\}$ with $s \notin L\left(w_{t}\right)$. Consider the following cases:

Case 1: $s \in\{a, b\}$.
In this case, we simply choose an $i \in\{0,1\}$ such that $d_{i} \neq a$. At least one such d_{i} exists. Since $d_{i} \notin\left\{b, c^{\prime}\right\}$, we then have $d_{i} \notin\left\{a, b, c^{\prime}\right\}$. Now we extend ψ to an L-coloring ψ^{\prime} of $V\left(H_{1}\right) \cup\left\{y^{2}, y^{3}\right\}$ by setting $\psi^{\prime}\left(y^{2}\right)=s$ and $\psi^{\prime}\left(y^{3}\right)=d_{i}$. This is a proper coloring of $V\left(H_{1}\right) \cup\left\{y^{2}, y^{3}\right\}$, since $s \in\{a, b\}$ and $r, d_{i} \notin\{a, b\}$, and $s \neq \psi\left(z^{1}\right)$. To see that ψ^{\prime} extends to an L-coloring of $G \backslash\{w\}$, we just note that the coloring ($\left.\psi\left(z^{1}\right), s, e\right)$ of $x^{2} y^{2} z^{2}$ extends to an L-coloring of H_{2}, since $s \notin L\left(w_{t}\right)$. Thus, since $e \in \mathcal{Z}_{H_{3}}\left(d_{i}\right), \psi$ extends to an L-coloring of $G \backslash\{w\}$. Finally, since $\psi^{\prime}\left(y_{1}\right), \psi^{\prime}\left(y^{3}\right) \notin\{a, b\}$, there is a color left over for w, so ψ extends to an L-coloring of G, contradicting our assumption.

Case 2: $s \notin\{a, b\}$.
As above, we choose $i \in\{0,1\}$ with $d_{i} \neq s$. At least one such i exists. Then we take the coloring $\left(a, s, d_{i}\right)$ of $y^{1} y^{2} y^{3}$. This is a proper coloring of $y^{1} y^{2} y^{3}$. Since $\mathcal{Z}_{H_{1}}(c, a, \bullet) \mid \geq 2$, let $s^{\prime} \in \mathcal{Z}_{H_{1}}(c, a, \bullet) \backslash\{s\}$. The coloring $\left(s^{\prime}, s, e\right)$ of $x^{2} y^{2} z^{2}$ extends to an L-coloring of H_{2}, since $s \notin L\left(w_{t}\right)$, and thus, since $s^{\prime} \in \mathcal{Z}_{H_{1}}(c, a, \bullet)$ and $e \in \mathcal{Z}_{H_{3}}\left(\bullet, d_{i}, c^{\prime}\right)$, the coloring $\left(a, s, d_{i}\right)$ of $y^{1} y^{2} y^{3}$ extends to an L-coloring ϕ of $G \backslash\{w\}$. Since $s \notin\{a, b\}$ and $a, d_{i} \neq b$, the color b is left over for w, so ϕ extends to an L-coloring of G, contradicting our assumption. Thus, we conclude that $e \in L\left(w_{t}\right)$ and $L\left(y^{2}\right) \backslash\left\{r, \psi\left(z^{1}\right)\right\}=L\left(w_{t}\right)$. This completes the proof of Claim 4.1.9.

Applying Claim 4.1.9, we have $L\left(w_{t}\right)=L\left(y^{2}\right) \backslash\left\{r, \psi\left(z^{1}\right)\right\}$ and $e \in L\left(w_{t}\right)$. Since $\left|L\left(y^{2}\right)\right| \geq 5$, we have $r \in L\left(y^{2}\right)$ and $r \neq e$. Now, there is at least one $i \in\{0,1\}$ such that $d_{i} \neq r$. Given this d_{i}, consider the coloring $\left(a, r, d_{i}\right)$ of $y^{1} y^{2} y^{3}$. We claim that this coloring of $y^{1} y^{2} y^{3}$ extends to an L-coloring of G. Let $x \in \mathcal{Z}\left(H_{1}, a\right)$. Then the coloring
(x, r, e) of $x^{2} y^{2} z^{2}$ extends to an L-coloring of H_{2}, since $r \notin L\left(w_{t}\right)$. Since $e \in \mathcal{Z}_{H_{3}, L}\left(\bullet, d_{i}, c^{\prime}\right)$ and $x \in \mathcal{Z}_{H_{1}}(c, r, \bullet)$, the coloring $\left(a, r, d_{i}\right)$ of $y^{1} y^{2} y^{3}$ extends to an L-coloring ψ of $G \backslash\{w\}$. Since $b \neq r, d_{i}$, there is a color in $L(w)$ left over, so ψ extends to an L-coloring of G, contradicting our assumption. This completes Case 2.2, and thus completes the base case of Proposition 4.1.4.

Now let $k \geq 3$, and suppose that, for any crown $\left(G^{\prime}, w^{\prime}, P^{\prime}, L^{\prime}\right)$ with $|V(P)|=k, G^{\prime}$ is L^{\prime}-colorable. Suppose now that the crown (G, w, P, L) satisfies $|V(P)|=k+1$. Let $a, b \in L(w)$, and let $L\left(x^{1}\right)=\{c\}$ and $L\left(z^{k+1}\right)=\left\{c^{\prime}\right\}$ for some colors c, c^{\prime} (possibly one or both of c, c^{\prime} lies in $\{a, b\}$).

Since $\left|L\left(y^{k+1}\right)\right| \geq 4$, let $d \in L\left(y^{k+1}\right) \backslash\left\{a, b, c^{\prime}\right\}$. By Thomassen, there is an L-coloring ψ of H_{k+1} such that $\psi\left(y^{k+1}\right)=d$. Now let L^{*} be a list-assignment for $G \backslash\left(H_{k+1} \backslash\left\{x^{k+1}\right\}\right)$ defined as follows: Set $L^{*}\left(x^{k+1}\right):=\psi\left(x^{k+1}\right)$ and $L^{*}\left(y^{k}\right)=L\left(y^{k}\right) \backslash\{d\}$. Then set $L^{*}(w):=\{a, b\}$, and, finally, $L^{*}(u):=L(u)$ for all $u \in V(G) \backslash\left(V\left(H_{k+1}\right) \cup\right.$ $\left.\left\{y^{k}, w\right\}\right)$.

Let $G^{*}:=G \backslash\left(H_{k+1} \backslash\left\{x^{k+1}\right\}\right)$. Then $G^{*}-w$ is a wheel sequence with $\mathcal{H}\left(G^{*}-w\right)=\left(H_{1}, \cdots, H_{k}\right)$ and $\mathcal{P}\left(G^{*}-w\right)=\left(P_{1}, \cdots, P_{k}\right)$. In particular, $\left(G^{*}, w, p_{1} P p_{k}, L^{*}\right)$ is a crown, and thus, since $\left|V\left(p_{1} P p_{k}\right)\right|=k, G^{*}$ is L^{*}-colorable.

Let ϕ be an L^{*}-coloring of G^{*}. Note that $\phi \cup \psi$ is well-defined, since ϕ, ψ agree on their common domain of $\left\{x^{k+1}\right\}$, so we just need to check that $\phi \cup \psi$ is a proper L-coloring of G. We have $\phi(w) \neq \psi\left(y^{k+1}\right)$, since $\psi\left(y^{k+1}\right) \notin\{a, b\}$, and we have $\phi\left(y^{k}\right) \neq \psi\left(y^{k+1}\right)$, since $\phi\left(y^{k}\right) \in L\left(y^{k}\right) \backslash\{d\}$. Thus, for any edge e of G with one endpoint in dom (ψ) and the other in $\operatorname{dom}(\phi)$, the endpoints of e are assigned different colors by $\phi \cup \psi$, so $\phi \cup \psi$ is indeed a proper L-coloring of G, as desired. This completes the proof of Proposition 4.1.4 and thus proves 1) of Theorem 4.1.3.

Now we prove the second half of Theorem 4.1.3, i.e we deal with the special case where the apex path has length one. We restate this with the proposition below.

Proposition 4.1.10. Let (G, w, P, L) be a crown with $|V(P)|=2$. Let $\mathcal{H}(G-w)=\left(H_{1}, H_{2}\right)$ and $\mathcal{P}(G-w)=$ $\left(P_{1}, P_{2}\right)$, where $P_{i}=x^{i} y^{i} z^{i}$ for each $i=1,2$. Let $L\left(x^{1}\right)=\{c\}$ and $L\left(z^{2}\right)=\left\{c^{\prime}\right\}$. Set $X:=\bigcap_{u \in V\left(H_{1} \backslash P_{1}\right)} L(u)$ and $X^{\prime}:=\bigcap_{u \in V\left(H_{2} \backslash P_{2}\right)} L(u)$ Then one of the following three statements holds.
a) G is L-colorable; $O R$
b) There is a set T of two colors such that $T \subseteq L(u)$ for each $u \in V(G) \backslash\left(\left\{w, x^{1}, z^{2}, y^{1}, y^{2}\right\}\right)$; OR
c) There is a set $S=\{a, b, r\}$ of three colors such that $L(w)=\{a, b\}, L\left(y^{1}\right) \backslash\{c\}=L\left(y^{2}\right) \backslash\left\{c^{\prime}\right\}=S$, and furthermore, $\{b, r\} \subseteq X \backslash\left\{z^{1}\right\},\{a, r\} \subseteq X^{\prime} \backslash\left\{z^{1}\right\}$, and $\left|L\left(z^{1}\right) \cap S\right| \geq 2$.

Proof. Let $a, b \in L(w)$ (possibly, one or both of c, c^{\prime} lies in $\{a, b\}$). Now we partition $L\left(y^{1}\right) \backslash\{c\}$ into two sets T_{1} and T_{2}, where $T_{1}:=\left\{r \in L\left(y^{1}\right) \backslash\{c\}:\left|\mathcal{Z}_{H_{1}}\left(c, r, z^{1}\right)\right|=1\right\}$ and $T_{2}:=\left\{r \in L\left(y^{1}\right) \backslash\{c\}:\left|\mathcal{Z}_{H_{1}}(c, r, \bullet)\right| \geq 2\right\}$. Note that $L\left(y^{1}\right) \backslash\{c\}=T_{1} \cup T_{2}$ as a disjoint union.

Likewise, we partition $L\left(y^{2}\right) \backslash\left\{c^{\prime}\right\}$ into two sets T_{1}^{\prime} and T_{2}^{\prime} where $T_{1}^{\prime}:=\left\{r \in L\left(y^{2}\right) \backslash\left\{c^{\prime}\right\}:\left|\mathcal{Z}_{H_{2}}\left(\bullet, r^{\prime}, c^{\prime}\right)\right|=1\right\}$ and $T_{2}^{\prime}:=\left\{r \in L\left(y^{2}\right) \backslash\left\{c^{\prime}\right\}:\left|\mathcal{Z}_{H_{2}}\left(z^{1}, r^{\prime}, c^{\prime}\right)\right| \geq 2\right\}$. As above, $L\left(y^{2}\right) \backslash\left\{c^{\prime}\right\}=T_{1}^{\prime} \cup T_{2}^{\prime}$ is a disjoint union. Note that $T_{1} \subseteq X$ and $T_{1}^{\prime} \subseteq X^{\prime}$ by Proposition 1.4.4. Suppose now for the remainder of the proof of Proposition 4.1.10 that G is not L-colorable. We now have the following fact:

Claim 4.1.11. If there are colors $r \neq r^{\prime}$, where $r \in$ and $r^{\prime} \in L\left(y^{1}\right)$ such that $\left\{r, r^{\prime}\right\} \neq\{a, b\}$ and $\mathcal{Z}_{H_{1}}(c, r, \bullet) \cap$ $\mathcal{Z}_{H_{2}}\left(\bullet, r^{\prime}, c^{\prime}\right) \neq \varnothing$, then the L-coloring $\left(r, r^{\prime}\right)$ of the edge $y^{1} y^{2}$ extends to an L-coloring of G.

Proof: Suppose there such a pair r, r^{\prime}. Since $\mathcal{Z}_{H_{1}}(c, r, \bullet) \cap \mathcal{Z}_{H_{2}}\left(\bullet, r^{\prime}, c^{\prime}\right) \neq \varnothing$, there is an L-coloring ϕ of $G \backslash\{w\}$ such that $\phi\left(y^{1}\right)=r$ and $\phi\left(y^{2}\right)=r^{\prime}$. Since $\left\{r, r^{\prime}\right\} \neq\{a, b\}$, there is a color left over in $L(w)$, so ϕ extends to an L-coloring of G.
Let $U_{G, L}\left(y^{1} y^{2}\right) \subseteq \Phi_{G, L}\left(y^{1} y^{2}\right)$ be the set of L-colorings $\left(s_{1}, s_{2}\right)$ of the edge $y^{1} y^{2}$ such that $\mathcal{Z}_{H_{1}}\left(c, s_{1}, \bullet\right) \cap \mathcal{Z}_{H_{2}}\left(\bullet, s_{2}, c^{\prime}\right) \neq$ \varnothing and $\left\{s_{1}, s_{2}\right\} \neq\{a, b\}$. Thus, by Claim 4.1.11, if $U_{G, L}\left(y^{1} y^{2}\right) \neq \varnothing$, then G is L-colorable. For any $s_{1} \in L\left(y^{1}\right) \backslash\{c\}$ and $s_{2} \in L\left(y^{2}\right) \backslash\left\{c^{\prime}\right\}$, we set $I\left(s_{1}, s_{2}\right):=\mathcal{Z}_{H_{1}}\left(c, s_{1}, \bullet\right) \cap \mathcal{Z}_{H_{2}}\left(\bullet, s_{2}, c^{\prime}\right)$.

Claim 4.1.12.

1) If $\{a, b\} \subseteq L\left(y^{1}\right) \backslash\{c\}$ and $z_{H_{1}}(c, a, \bullet) \cup z_{H_{1}}(c, b, \bullet)=L\left(z^{1}\right)$, then $U_{G, L}\left(y^{1} y^{2}\right) \neq \varnothing$. Likewise, if $\{a, b\} \subseteq$ $L\left(y^{2}\right)$ and $\mathcal{Z}_{H_{2}}\left(\bullet, a, c^{\prime}\right) \cup \mathcal{z}_{H_{2}}\left(\bullet, b, c^{\prime}\right)=L\left(z^{1}\right)$, then $U_{G, L}\left(y^{1} y^{2}\right) \neq \varnothing ;$ AND
2) If there is a color $r \in L\left(y^{1}\right) \backslash\{c\}$ such that $Z_{H_{1}}(c, r, \bullet) \mid=3$, then G is L-colorable. Likewise, if there is a color $r^{\prime} \in L\left(y^{2}\right) \backslash\{c\}$ such that $\left|\mathcal{Z}_{H_{2}}\left(\bullet, r^{\prime}, c^{\prime}\right)\right|=3$, then G is L-colorable.

Proof: Let $\{a, b\} \subseteq L\left(y^{1}\right)$ and $r^{\prime} \in L\left(y^{2}\right) \backslash\left\{a, b, c^{\prime}\right\}$. If $\mathcal{Z}_{H_{1}}(c, a, \bullet) \cup z_{H_{1}}(c, b, \bullet)=L\left(z^{1}\right)$ then $I\left(a, r^{\prime}\right) \cup I\left(b, r^{\prime}\right) \neq$ \varnothing and thus either $\left(a, r^{\prime}\right) \in U_{G, L}\left(y^{1} y^{2}\right)$ or $\left(b, r^{\prime}\right) \in U_{G, L}\left(y^{1} y^{2}\right)$. An identical argument shows the analogous statement for the case where $\{a, b\} \subseteq L\left(y^{2}\right)$. This proves Fact 1 .

Now let $r \in L\left(y^{1}\right) \backslash\{c\}$ and suppose that $\mathcal{Z}_{H_{1}}(c, r, \bullet) \mid=3$, so $\mathcal{Z}_{H_{1}}(c, r, \bullet)=L\left(z^{1}\right)$. Now, if $r \in\{a, b\}$, then we just choose an $r^{\prime} \in L\left(y^{2}\right) \backslash\left\{a, b, c^{\prime}\right\}$. We have $I\left(r, r^{\prime}\right) \neq \varnothing$ since $z_{H_{1}}(c, r, \bullet)=L\left(z^{1}\right)$, and $\left(r, r^{\prime}\right) \in U_{G, L}\left(y^{1} y^{2}\right)$, since $r \neq r^{\prime}$ and $r \notin\{a, b\}$. On the other hand, if $r \notin\{a, b\}$, then we simply let $r^{\prime} \in L\left(y^{2}\right) \backslash\left\{c^{\prime}, r\right\}$. Then $\left(r, r^{\prime}\right) \in U_{G, L}\left(y^{1} y^{2}\right)$, so G is L-colorable. An identical argument shows that, if there is a $r^{\prime} \in L\left(y^{2}\right) \backslash\{c\}$ such that $\left|\mathcal{Z}_{H_{2}}\left(\bullet, r^{\prime}, c^{\prime}\right)\right|=3$, then G is L-colorable. This completes the proof of Fact 2.

Now we have the following:
Claim 4.1.13. If either $\left|L\left(y^{1}\right) \backslash\{a, b, c\}\right| \geq 2$ or $\left|L\left(y^{2}\right) \backslash\left\{a, b, c^{\prime}\right\}\right| \geq 2$ then Proposition 4.1.10 is satisfied.
Proof: Suppose without loss of generality that $\left|L\left(y^{1}\right) \backslash\{a, b, c\}\right| \geq 2$. In that case, there are two colors $d_{1}, d_{2} \in$ $L\left(y^{1}\right) \backslash\{a, b, c\}$. Since G is not L-colorable, we have $U_{G, L}\left(y^{1} y^{2}\right)=\varnothing$. Now consider the following cases:

Case 1: $\left|\mathcal{Z}_{H_{1}}\left(c, d_{1}, \bullet\right) \cup \mathcal{Z}_{H_{1}}\left(c, d_{2}, \bullet\right)\right|=1$
In this case, there is a color $e \in L\left(z^{1}\right) \backslash\left\{d_{1}, d_{2}\right\}$ such that $\{e\}=\mathcal{Z}_{H_{1}}\left(c, d_{1}, \bullet\right)=\mathcal{Z}_{H_{1}}\left(c, d_{2}, \bullet\right)$. Furthermore, since $d_{1}, d_{2} \in T_{1}$, we have $d_{1}, d_{2} \in X$, and thus $L\left(z^{1}\right)=\left\{e, d_{1}, d_{2}\right\}$. We also have $\left\{d_{1}, d_{2}\right\} \subseteq X$ by Proposition 1.4.4. We also note that H_{1} is not a triangle, or else $d_{1} \in \mathcal{Z}_{H_{1}}\left(c, d_{2}, \bullet\right)$ and $d_{2} \in \mathcal{Z}_{H_{1}}\left(c, d_{2}, \bullet\right)$, contradicting the fact that $\{e\}=\mathcal{z}_{H_{1}}\left(c, d_{1}, \bullet\right)=\mathcal{Z}_{H_{1}}\left(c, d_{2}, \bullet\right)$. Since H_{1} is not a triangle let $H_{1} \backslash\left\{y^{1}\right\}$ be the path $x^{1} w_{1} \cdots w_{t} z^{1}$ for some $t \geq 1$.

Now, if there is a color $r^{\prime} \in L\left(y^{2}\right) \backslash\{c\}$ such that $e \in \mathcal{Z}_{H_{2}}\left(\bullet, r^{\prime}, c^{\prime}\right)$, then G is L-colorable. To see thus, let r^{\prime} be such a color in $L\left(y^{2}\right) \backslash\left\{c^{\prime}\right\}$ and let $i \in\{1,2\}$ be such that $d_{i} \neq r^{\prime}$. Then $e \in I\left(d_{i}, r^{\prime}\right)$ and thus $\left(d_{i}, r^{\prime}\right) \in U_{G, L}\left(y^{1} y^{2}\right)$, contradicting our assumption. Thus, we have $\mathcal{Z}_{H_{2}}\left(z^{1}, r^{\prime}, c^{\prime}\right) \subseteq\left\{d_{1}, d_{2}\right\}$ for each $r^{\prime} \in L\left(y^{2}\right) \backslash\left\{c^{\prime}\right\}$. Let r be a color of $L\left(y^{1}\right) \backslash\left\{d_{1}, d_{2}, c\right\}$ (possibly $r \in\{a, b\}$). Since $\left|\mathcal{Z}_{H_{1}}\left(c, d_{1}, \bullet\right)\right|=\left|\mathcal{Z}_{H_{1}}\left(c, d_{2}, \bullet\right)\right|=1$, we have $\left|\mathcal{Z}_{H_{1}}(c, r, \bullet)\right| \geq 2$ by Proposition 1.4.5. Now consider the following subcases.

Case $1.1\left|\left\{d_{1}, d_{2}\right\} \cap L\left(y^{2}\right) \backslash\left\{c^{\prime}\right\}\right| \geq 1$.

In this case, suppose without loss of generality that $d_{1} \in L\left(y^{2}\right)$. Thus, since $\mathcal{Z}_{H_{2}}\left(\bullet, d_{1}, c^{\prime}\right) \subseteq\left\{d_{1}, d_{2}\right\}$ we have $\mathcal{Z}_{H_{2}}\left(\bullet, d^{1}, c^{\prime}\right)=\left\{d_{2}\right\}$. If $\mathcal{Z}_{H_{1}}(c, r, \bullet) \cap \mathcal{Z}_{H_{2}}\left(\bullet, d_{1}, c^{\prime}\right) \neq \varnothing$, then $\left(r, d_{1}\right) \in U_{G, L}\left(y^{1} y^{2}\right)$, contradicting our assumption. Thus, we have $z_{H_{1}}\left(c, r, z^{1}\right)=\left\{d_{1}, e\right\}$. In that case, we have $r \neq e$ and thus $r \notin L\left(z^{1}\right)$, since $L\left(z^{1}\right)=\left\{d_{1}, d_{2}, e\right\}$. Note that $r \in \bigcap_{j=1}^{t} L\left(w_{j}\right)$, or else, if there is a $j \in\{1, \cdots, t\}$ such that $r \notin L\left(w_{j}\right)$, then $d_{2} \in \mathcal{Z}_{H_{1}}(c, r, \bullet)$, contradicting our assumption. Since $\left\{d_{1}, d_{2}\right\} \subseteq X$, we have $L\left(w_{j}\right)=\left\{d_{1}, d_{2}, r\right\}$ for each $j=1, \cdots, t$. But then $c \notin L\left(w_{1}\right)$, and thus $\mathcal{Z}_{H_{1}}(c, r, \bullet)=\left\{d_{1}, d_{2}, e\right\}$, contradicting our assumption. This completes Case 1.1.

Case 1.2 $\left\{d_{1}, d_{2}\right\} \cap\left(L\left(y^{2}\right) \backslash\left\{c^{\prime}\right\}\right)=\varnothing$
In this case, $L\left(y^{2}\right) \backslash\left\{c^{\prime}\right\}$ contains three colors $\ell_{1}, \ell_{2}, \ell_{3}$ such that $\left\{d_{1}, d_{2}\right\} \cap\left\{\ell_{1}, \ell_{2}, \ell_{3}\right\}=\varnothing$. Suppose without loss of generality that $\ell_{1} \neq e$. Now, if H_{2} is a triangle, then $e \in \mathcal{Z}_{H_{1}}\left(z^{1}, \ell_{1}, c^{\prime}\right)$, contradicting the fact that $z_{H_{1}}\left(\bullet, \ell_{1}, c^{\prime}\right) \subseteq$ $\left\{d_{1}, d_{2}\right\}$. Thus, H_{2} is not a triangle, so let $H_{2} \backslash\left\{y^{2}\right\}=z^{1} v_{1} \cdots v_{t^{\prime}} z^{2}$ for some $t^{\prime} \geq 1$. Now, since $L\left(z^{1}\right)=$ $\left\{d_{1}, d_{2}, e\right\}$, we suppose without loss of generality that $\ell_{1}, \ell_{2} \notin L\left(z^{1}\right)$. In that case, we have $\left\{\ell_{1}, \ell_{2}\right\} \subseteq L\left(v_{j}\right)$ for each $j=1, \cdots, t^{\prime}$, or else, for some $k \in\{1,2\}$, we have $z_{H_{2}}\left(z^{1}, \ell_{k}, c^{\prime}\right) \mid=3$, and thus G is L-colorable by Claim 4.1.12, contradicting our assumption.

Now, if $e \notin L\left(v_{1}\right)$, then we have $e \in \mathcal{Z}_{H_{2}}\left(\bullet, \ell_{k}, c^{\prime}\right)$ for each $k=1,2$, since $e \notin\left\{e l l_{1}, \ell_{2}\right\}$, contradicting the fact that $\mathcal{Z}_{H_{2}}\left(z_{1}, r^{\prime}, c^{\prime}\right) \subseteq\left\{d_{1}, d_{2}\right\}$ for each $r^{\prime} \in L\left(y^{2}\right) \backslash\left\{c^{\prime}\right\}$. Thus, we have $L\left(z^{1}\right)=\left\{\ell_{1}, \ell_{2}, e\right\}$. In particular, $d_{1}, d_{2} \notin L\left(v_{1}\right)$. Now, since $z_{H_{1}}(r) \geq 2$, there is a $k \in\{1,2\}$ such that $d_{k} \in \mathcal{z}_{H_{1}}(r)$. Suppose that $r \notin\{a, b\}$. In that case, we simply choose a color $\ell_{j} \in\left\{\ell_{1}, \ell_{2}, \ell_{3}\right\} \backslash\{r\}$. Then $d_{k} \in \mathcal{Z}_{H_{2}}\left(\bullet, \ell_{j}, c^{\prime}\right)$ since $d_{k} \notin L\left(v_{1}\right)$. But then $\left(r, \ell_{j}\right) \in U_{G, L}\left(y^{1} y^{2}\right)$ since $r \notin\{a, b\}$. This contradicts our assumption. Now suppose that $r \in\{a, b\}$, and let $j \in\{1,2,3\}$ such that $\ell_{j} \notin\{a, b\}$. Thus, $r \neq \ell_{j}$. But since $r \in T_{2}$, there is a $k \in\{1,2\}$ such that $d_{k} \in \mathcal{Z}_{H_{1}}(c, r, \bullet)$. Furthermore, we have $\ell_{j} \neq d_{k}$, and $d_{k} \notin L\left(v_{1}\right)$, so $d_{k} \in \mathcal{Z}_{H_{2}}\left(\bullet, \ell_{j}, c^{\prime}\right)$. But then, since $\ell_{j} \notin\{a, b\}$, we have $\left(r, \ell_{j}\right) \in U_{G, L}\left(y^{1} y^{2}\right)$, contradicting our assumption. This completes Case 1.

Case 2: $\left|\mathcal{Z}_{H_{1}}\left(c, d_{1}, \bullet\right) \cup \mathcal{Z}_{H_{1}}\left(c, d_{2}, \bullet\right)\right| \geq 2$
In this case, we note that $T_{2}^{\prime} \subseteq\left\{d_{1}, d_{2}\right\}$. To see this, suppose there is a color $r^{\prime} \in T_{2}^{\prime}$ with $r^{\prime} \notin\left\{d_{1}, d_{2}\right\}$. Since $\left|\mathcal{Z}_{H_{2}}\left(\bullet, r^{\prime}, c^{\prime}\right)\right| \geq 2$, we have $I\left(d_{1}, r^{\prime}\right) \cup I\left(d_{2}, r^{\prime}\right) \neq \varnothing$, so either $\left(d_{1}, r^{\prime}\right)$ or $\left(d_{2}, r^{\prime}\right)$ lies in $U_{G, L}\left(y^{1} y^{2}\right)$, contradicting our assumption. So we have $T_{2}^{\prime} \subseteq\left\{d_{1}, d_{2}\right\}$. Suppose without loss of generality that $d_{1} \in T_{2}^{\prime}$, and let $r \in L\left(y^{1}\right) \backslash$ $\left\{d_{1}, d_{2}, c\right\}$. We also note that $\left|\mathcal{Z}_{H_{1}}\left(c, d_{1}, z^{1}\right) \cup \mathcal{Z}_{H_{1}}\left(c, d_{2}, \bullet\right)\right|=2$, or else, if $\mathcal{Z}_{H_{1}}\left(c, d_{1}, z^{1}\right) \cup \mathcal{Z}_{H_{1}}\left(c, d_{2}, \bullet\right)=L\left(z^{1}\right)$, then, for any $r^{\prime} \in L\left(y^{2}\right) \backslash\left\{d_{1}, d_{2}, c^{\prime}\right\}$, either $\left(d_{1}, r^{\prime}\right)$ or $\left(d_{2}, r^{\prime}\right)$ lies in $U_{G, L}\left(y^{1} y^{2}\right)$, contradicting our assumption.

Case 2.1 $d_{1} \in L\left(z^{1}\right)$
If $d_{1} \in L\left(z^{1}\right)$, then we have $\mathcal{Z}_{H_{2}}\left(\bullet, d_{1}, c^{\prime}\right)=L\left(z^{1}\right) \backslash\left\{d_{1}\right\}$. If $I\left(r, d_{1}\right) \cup I\left(d_{2}, d_{1}\right) \neq \varnothing$, then $U_{G, L}\left(y^{1} y^{2}\right) \neq \varnothing$ since $d_{1} \notin\{a, b\}$. This contradicts our assumption. Thus, we have $\mathcal{Z}_{H_{1}}(c, r, \bullet)=\mathcal{Z}_{H_{1}}\left(c, d_{2}, \bullet\right)=\left\{d_{1}\right\}$. We thus have $d_{1} \in T_{1}^{\prime}$ by Proposition 1.4.5, so $\mathcal{Z}_{H_{1}}=L\left(z^{1}\right) \backslash\left\{d_{1}\right\}$.

Since $r, d_{2} \in T_{1}$, we have $\left\{r, d_{2}\right\} \subseteq L\left(z^{1}\right)$, so $L\left(z^{1}\right)=\left\{d_{1}, d_{2}, r\right\}$. Now, we note that $L\left(y^{2}\right) \backslash\left\{d_{1}, d_{2}, c^{\prime}\right\}=\{r\}$. To see this, suppose there is an $r^{\prime} \in L\left(y^{2}\right) \backslash\left\{d_{1}, d_{2}, c^{\prime}\right\}$ with $r^{\prime} \neq r$. Then $r^{\prime} \in T_{2}^{\prime}$, since $r^{\prime} \notin L\left(z^{1}\right)$, contradicting the fact that $T_{2}^{\prime} \subseteq\left\{d_{1}, d_{2}\right\}$. Thus, we have $L\left(y^{2}\right) \backslash\left\{d_{1}, d_{2}, c^{\prime}\right\}=\{r\}$, so $L\left(y^{2}\right)=\left\{d_{1}, d_{2}, c^{\prime}, r\right\}$.

Now, since $\mathcal{Z}_{H_{1}}\left(\bullet, d_{1}, c^{\prime}\right)=L\left(z^{1}\right) \backslash\left\{d_{1}\right\}$, we have $\mathcal{Z}_{H_{2}}\left(z^{1}, d_{2}, c^{\prime}\right)=\mathcal{Z}_{H_{2}}\left(\bullet, r, c^{\prime}\right)=\left\{d_{1}\right\}$, or else either $\left(d_{1}, r\right)$ or $\left(d_{1}, d_{2}\right)$ lies in $U_{G, L}\left(y^{1} y^{2}\right)$, contradicting our assumption. But then $d_{1} \in I\left(d_{2}, r\right)$, so $\left(d_{2}, r\right) \in U_{G, L}\left(y^{1} y^{2}\right)$, contradicting our assumption. This completes Case 2.1.

Case $2.2 d_{1} \notin L\left(z^{1}\right)$
In this case, we have $d_{1} \in T_{2} \cap T_{2}^{\prime}$. Let $L\left(z^{1}\right)=\left\{\ell_{1}, \ell_{2}, \ell_{3}\right\}$ and let $\ell_{1}, \ell_{2} \in \mathcal{Z}_{H_{2}}\left(\bullet, d_{1}, c^{\prime}\right)$. Thus, we have $\mathcal{Z}_{H_{1}}\left(d_{2}\right)=$
$\mathcal{Z}_{H_{1}}(r)=\left\{\ell_{3}\right\}$, or else $\left(d_{2}, d_{1}\right) \cup I\left(r, d_{1}\right) \neq \varnothing$, and thus either $\left(d_{2}, d_{1}\right)$ or $\left(r, d_{1}\right)$ lies in $U_{G, L}\left(y^{1} y^{2}\right)$, contradicting our assumption. So we have $r, d_{2} \in T_{1}$ and thus $r, d_{2} \in L\left(z^{1}\right)$. Thus, we have $\left\{r, d_{2}\right\}=\left\{\ell_{1}, \ell_{2}\right\}$, since $r, d_{2} \neq \ell_{3}$, and so $L\left(z^{1}\right)=\left\{r, d_{2}, \ell_{3}\right\}$. Since $d_{1} \in T_{2}^{\prime}$, we have $z_{H_{2}}\left(\bullet, d_{1}, c^{\prime}\right)=\left\{r, d_{2}\right\}$, or else $\ell_{3} \in I\left(d_{2}, d_{1}\right) \cup I\left(r, d_{1}\right)$, and thus either $\left(d_{2}, d_{1}\right)$ or $\left(r, d_{1}\right)$ lies in $U_{G, L}\left(y^{1} y^{2}\right)$, contradicting our assumption.

Now, if $L\left(y^{2}\right) \backslash\left\{r, d_{2} \ell_{3}, c^{\prime}\right\} \neq \varnothing$, then let $r^{\prime} \in L\left(y^{2}\right) \backslash\left\{r, d_{2}, \ell_{3}, c^{\prime}\right\}$. Since $r^{\prime} \notin L\left(z^{1}\right)$, we have $r^{\prime} \in T_{2}^{\prime}$, contradicting the fact that $T_{2}^{\prime} \subseteq\left\{d_{1}, d_{2}\right\}$. Thus, we have $L\left(y^{2}\right)=\left\{r, d_{2}, \ell_{3}, c^{\prime}\right\}$. But we also have $\ell_{3} \neq d_{1}$, since $d_{1} \notin L\left(z^{1}\right)$, so we get $d_{1} \notin L\left(y^{2}\right)$, contradicting the fact that $d_{1} \in T_{2}^{\prime}$. This completes Case 2.2 and thus completes the proof of Claim 4.1.13.

Thus, we may assume for the remainder of the proof of Proposition 4.1.10 that $\left|L\left(y^{1}\right) \backslash\{a, b, c\}\right|=1$ and $\mid L\left(y^{2}\right) \backslash$ $\left\{a, b, c^{\prime}\right\} \mid=1$. If $\{a, b\} \subseteq X \cap X^{\prime}$, then we are done. So now suppose that $\{a, b\} \nsubseteq X \cap X^{\prime}$, and suppose without loss of generality that $a \notin X$. Thus, $a \notin T_{1}$, since $T_{1} \subseteq X$. Since $a \in L\left(y^{1}\right) \backslash\{c\}$, we have $a \in T_{2}$. Suppose that G is not L-colorable. Thus, we have $U_{G, L}\left(y^{1} y^{2}\right)=\varnothing$. We show that either Statement b) or Statement c) of Proposition 4.1.10 is satisfied.

Claim 4.1.14. $|L(w)|=2$.
Proof: Let f be be the L-coloring of $\left\{x^{1}, z^{2}\right\}$ obtained by coloring x_{1} with c and z^{2} with c^{\prime}. Let u be the lone vertex of $N\left(x^{1}\right) \backslash\left\{y^{1}\right\}$ and let u^{\prime} be the lone vertex of $N\left(z^{2}\right) \backslash\left\{y^{2}\right\}$. If $|L(w)| \geq 3$, then $\left\{u, u^{\prime}\right\}$ either consists of a lone vertex with an L_{f}-list of size at least one, or two vertices with L_{f}-lists of size at least two. In the first case $G \backslash\left\{x^{1}, z^{2}\right\}$ is L_{f}-colorable by Theorem 0.2.3, and in the second case, $G \backslash\left\{x^{1}, z^{2}\right\}$ is L_{f}-colorable by Theorem 1.3.4. Thus, G is L-colorable, contradicting our assumption. So we have $|L(w)|=2$.

By Claim 4.1.11, if $T_{2}^{\prime} \nsubseteq\{a, b\}$, then G is L-colorable, contradicting our assumption. So we have $T_{2}^{\prime} \subseteq\{a, b\}$. Thus, we have $T_{2} \subseteq\{a, b\}$ as well, or else $U_{G, L}\left(y^{1} y^{2}\right) \neq \varnothing$, contradicting our assumption. Let $r \in L\left(y^{1}\right) \backslash\{a, b, c\}$ and $r^{\prime} \in L\left(y^{2}\right) \backslash\left\{a, b, c^{\prime}\right\}$.

Case 1: $\{a, b\} \subseteq L\left(z^{1}\right)$
In this case, since $a \notin X$, we have $z_{H_{1}}(c, a, \bullet)=L\left(z^{1}\right) \backslash\{a\}$. Now, let $r \in L\left(y^{1}\right) \backslash\left\{a, b, c^{\prime}\right\}$ and $r^{\prime} \in$ $L\left(y^{2}\right) \backslash\left\{a, b, c^{\prime}\right\}$. Thus, we have $\mathcal{z}_{H_{2}}\left(\bullet, r^{\prime}, c^{\prime}\right)=\{a\}$, or else the coloring $\left(a, r^{\prime}\right) \in U_{G, L}\left(y^{1} y^{2}\right)$, contradicting our assumption. Since $r^{\prime} \in T^{\prime}$, we have $r^{\prime} \in X^{\prime}$ and thus $L\left(z^{1}\right)=\left\{a, b, r^{\prime}\right\}$. Furthermore, since $r \in X$ we have $r \in L\left(z^{1}\right)$ and thus $r=r^{\prime}$.

Subcase 1.1 $z_{H_{2}}\left(z^{1}, b, c^{\prime}\right)=\{a\}$
In this case, by Proposition 1.4.5, we have $\mathcal{Z}_{H_{2}}\left(\bullet, a, c^{\prime}\right)=L\left(z^{1}\right) \backslash\{a\}=\left\{b, r^{\prime}\right\}$. Thus, we have $\mathcal{Z}_{H_{1}}(c, r, \bullet)=\{a\}$, or else the coloring $(r, a) \in U_{G, L}\left(y^{1} y^{2}\right)$, contradicting our assumption. But then, the coloring $(r, b) \in U_{G, L}\left(y^{1} y^{2}\right)$, which, again, contradicts our assumption. This completes Subcase 1.1.

Case 1.2: $\mathcal{Z}_{H_{2}}\left(\bullet, b, c^{\prime}\right) \neq\{a\}$
We break this into two subcases:
Case 1.2.1 $a \in \mathcal{Z}_{H_{2}}\left(\bullet, b, c^{\prime}\right)$
In this case, we have $\mathcal{z}_{H_{2}}\left(\bullet, b, c^{\prime}\right)=\{a, r\}$. Thus, we have $\mathcal{z}_{H_{1}}(c, r, \bullet)=\{b\}$, or else $(r, b) \in U_{G, L}\left(y^{1} y^{2}\right)$, contradicting our assumption. Furthermore, we have $\mathcal{Z}_{H_{2}}\left(\bullet, a, c^{\prime}\right)=\{r\}$, or else $(r, a) \in U_{G, L}\left(y^{1} y^{2}\right)$, contradicting our assumption. Putting these facts together, we have $b \in X$ and $a, r \in X^{\prime}$. Recall that $r \in X$ as well. Applying

Claim 4.1.14, we have $L\left(y^{1}\right) \backslash\{c\}=L\left(y^{2}\right) \backslash\left\{c^{\prime}\right\}=\{a, b, r\}$ and $L(w)=\{a, b\}$. Furthermore, $\{a, r\} \subseteq X^{\prime}$, and $\{b, r\} \subseteq X$. Thus, in Case 1.2.1, Statement c) of Proposition 4.1.10 is satisfied, so we are done. This completes Case 1.2.1.

Case 1.2.2 $a \notin \mathcal{Z}_{H_{2}}\left(\bullet, b, c^{\prime}\right)$
In that case, we have $\mathcal{Z}_{H_{2}}\left(\bullet, b, c^{\prime}\right)=\left\{r^{\prime}\right\}$. Since $\mathcal{Z}_{H_{2}}\left(\bullet, r^{\prime}, c^{\prime}\right)=\{a\}$, we then have $\mathcal{Z}_{H_{2}}\left(\bullet, a, c^{\prime}\right)=\left\{b, r^{\prime}\right\}$ by Proposition 1.4.5. Thus, we have $\mathcal{Z}_{H_{1}}(c, r, \bullet)=\{a\}$, or else $I(r, a) \cap\left\{b, r^{\prime}\right\} \neq \varnothing$ and thus $(r, a) \in U_{G, L}\left(y^{1} y^{2}\right)$, contradicting our assumption. Since $\mathcal{Z}_{H_{1}}(c, r, \bullet)=\{a\}$, we have $r=r^{\prime}$. To see this, note that if $r \neq r^{\prime}$, then $\left(r, r^{\prime}\right) \in U_{G, L}\left(y^{1} y^{2}\right)$, since $a \in I\left(r, r^{\prime}\right)$. This contradicts our assumption. So we have $r \in T_{1} \cap T_{1}^{\prime}$, and $b \in T_{1}^{\prime}$ as well. Now, if $b \in T_{1}$, then we have $\{b, r\} \subseteq X \cap X^{\prime}$, and then Statement 2 is satisfied, so we are done. So suppose now that $b \notin T_{1}$. Then $a \in I\left(b, r^{\prime}\right)$ and $\left(b, r^{\prime}\right) \in U_{G, L}\left(y^{1} y^{2}\right)$, contradicting our assumption. This completes Case 1 .

Case 2: $\{a, b\} \nsubseteq L\left(z^{1}\right)$.
In this case, suppose without loss of generality that $a \notin L\left(z^{1}\right)$. Thus, we have $a \in T_{2} \cap T_{2}^{\prime}$. Now, if both H_{1} and H_{2} are triangles, then Statement b) of Proposition 4.1.10 is trivially satisfied, so suppose without loss of generality that H_{1} is not a triangle, and let $H_{1} \backslash\left\{y^{1}\right\}=x^{1} w_{1} \cdots w_{t} z^{1}$ for some $t \geq 1$.

Now, if either $a \notin L\left(w_{1}\right)$ or $c \notin L\left(w_{1}\right)$, then $z_{H_{1}}(c, a, \bullet 1)=L\left(z^{1}\right)$, and thus $(a, r) \in U_{G, L}\left(y^{1} y^{2}\right)$, contradicting our assumption. If $r \notin L\left(w_{1}\right)$ then $r \in T_{2}$, contradicting our assumption. Thus, we have $L\left(w^{1}\right)=\{a, r, c\}$. Note then that $\mathcal{Z}_{H_{1}}(c, b, \bullet)=L\left(z^{1}\right) \backslash\{b\}$, since $b \notin L\left(w_{1}\right)$. This implies that $b \in L\left(z^{1}\right)$, or else, if $b \notin L\left(z^{1}\right)$, then $\mathcal{Z}_{H_{1}}\left(c, b, z^{1}\right)=L\left(z^{1}\right)$, since $b \notin L\left(w^{1}\right)$. But then $\left(b, r^{\prime}\right) \in U_{G, L}\left(y^{1} y^{2}\right)$, contradicting our assumption. Thus, we have $b \in L\left(z^{1}\right)$ and $\mathcal{Z}_{H_{1}}(c, b, \bullet)=L\left(z^{1}\right) \backslash\{b\}$. Furthermore, since $a \in T_{2}$, we have $z_{H_{1}}(c, a, \bullet)=L\left(z^{1}\right) \backslash\{b\}$ as well, or else $U_{G, L}\left(y^{1} y^{2}\right) \neq \varnothing$ by Claim 4.1.12, contradicting our assumption.

Case 2.1 $r \neq r^{\prime}$
In this case, since $r, r^{\prime} \in T_{1} \cap T_{1}^{\prime}$, we have $L\left(z^{1}\right)=\left\{r, r^{\prime}, b\right\}$. It follows that H_{2} is also not a triangle, or else, if H_{2} is a triangle, then we have $\mathcal{Z}_{H_{2}}\left(\bullet, a, c^{\prime}\right)=L\left(z^{1}\right)$, since $c^{\prime} \notin L\left(z^{1}\right)$. But then $(r, a) \in U_{G, L}\left(y^{1} y^{2}\right)$, contradicting our assumption. Thus, let $H_{2}-y^{2}=z^{1} v_{1} \cdots v_{t^{\prime}} z^{2}$, for some $t^{\prime} \geq 1$. Since $r^{\prime} \in T_{1}^{\prime}$, we have $r^{\prime}, c^{\prime} \in L\left(v_{t^{\prime}}\right)$. If $a \notin L\left(v_{t^{\prime}}\right)$, then $\mathcal{Z}_{H_{2}}\left(\bullet, a, c^{\prime}\right)=L\left(z^{1}\right)$, since $a \notin L\left(z^{1}\right)$. But then $(r, a) \in U_{G, L}\left(y^{1} y^{2}\right)$, contradicting our assumption. Thus, we have $L\left(v_{t^{\prime}}\right)=\left\{a, r^{\prime}, c^{\prime}\right\}$, so $b \notin L\left(v_{t^{\prime}}\right)$. Since $b \notin L\left(v_{t^{\prime}}\right)$, we have $z_{H_{2}}\left(\bullet, b, c^{\prime}\right)=\left\{r, r^{\prime}\right\}$. Furthermore, we have $\mathcal{Z}_{H_{2}}\left(\bullet, r^{\prime}, c^{\prime}\right)=\{b\}$, or else $r \in I\left(b, r^{\prime}\right)$ and thus $\left(b, r^{\prime}\right) \in U_{G, L}\left(y^{1} y^{2}\right)$, contradicting our assumption.

Now, since $\mathcal{Z}_{H_{2}}\left(\bullet, r^{\prime}, c^{\prime}\right)=\{b\}$, we have $\mathcal{Z}_{H_{1}}(c, r, \bullet)=\left\{r^{\prime}\right\}$, or else $b \in I\left(r, r^{\prime}\right)$ and thus $\left(r, r^{\prime}\right) \in U_{G, L}\left(y^{1} y^{2}\right)$, contradicting our assumption. But then $r^{\prime} \in I(r, b)$ and thus $(r, b) \in U_{G, L}\left(y^{1} y^{2}\right)$, contradicting our assumption. This Completes Case 2.1.

Case 2.2 $r=r^{\prime}$
In this case, we have $r \in X \cap X^{\prime}$, since $r \in T_{1} \cap T_{1}^{\prime}$. Furthermore, $L\left(z^{1}\right)=\{r, b, s\}$ for some $s \neq a$. Recall that $\mathcal{Z}_{H_{1}}(c, a, \bullet)=\mathcal{Z}_{H_{1}}(c, b, \bullet)=L\left(z^{1}\right) \backslash\{b\}=\{r, s\}$. Thus, we have $a \in L\left(w_{j}\right)$ for each $j=1, \cdots, t$, or else $\mathcal{Z}_{H_{1}}(a)=L\left(z^{1}\right)$. Thus, since $r \in X$, we have $\{a, r\} \subseteq L\left(w_{j}\right)$ for each $j=1, \cdots, t$.

Now, if $\{b, r\} \subseteq L(u)$ for each $u \in V\left(H_{2}\right) \backslash\left\{y^{2}\right\}$, then Statement c) of Proposition 4.1.10 is satisfied, with $S=$ $\{a, b, r\}$, so we are done in that case. So now suppose that $\{b, r\} \nsubseteq L(u)$ for each $u \in V\left(H_{2}\right) \backslash\left\{y^{2}\right\}$. In that case, since $\{b, r\} \subseteq L\left(z^{1}\right), H_{2}$ is not a triangle, and, letting $H_{2} \backslash\left\{y^{2}\right\}=z^{1} v_{1} \cdots v_{t^{\prime}} z^{2}$ for some $t^{\prime} \geq 1$, we have $\{b, r\} \nsubseteq L\left(v_{j}\right)$ for some $j=1, \cdots, t^{\prime}$. Since $r^{\prime} \in X^{\prime}$, we have $b \notin L\left(v_{j}\right)$ for some $j \in\left\{1, \cdots, t^{\prime}\right\}$. In that case, we have $\mathcal{Z}_{H_{2}}\left(\bullet, b, c^{\prime}\right)=\{r, s\}$.

We have $\{a, r\} \subseteq L\left(w_{t}\right)$, as indicated above. Furthermore, we have $b \in L\left(w_{t}\right)$ as well, or else $b \in \mathcal{Z}_{H_{1}}(c, a, \bullet)$, contradicting the fact that $\mathcal{Z}_{H_{1}}(c, a, \bullet)=L\left(z^{1}\right) \backslash\{b\}$. So we get $L\left(w_{t}\right)=\{a, b, r\}$, and thus $s \in \mathcal{Z}_{H_{1}}(c, r, \bullet)$, since $s \notin L\left(w_{t}\right)$. But then we have $s \in I(r, b)$, so $(r, b) \in U_{G, L}\left(y^{1} y^{2}\right)$, contradicting our assumption. This completes Case 2 and thus completes the proof of Proposition 4.1.10 and Theorem 4.1.3.

We now use the results above to analyze the vertices of distance two from an open ring in a critical mosaic.

4.2 4-Chords on One Side of the Precolored Path

The purpose of this section is to prove the following result.
Lemma 4.2.1. Let $\mathcal{T}=\left(G, \mathcal{C}, L, C_{*}\right)$ be a critical mosaic, let $C \in \mathcal{C}$ be an open ring, and let $Q:=x_{1} y_{1} w y_{2} x_{2}$ be a 4-chord of C, with $Q \in \mathcal{K}(C, \mathcal{T})$. Then $V\left(G_{Q}^{1}-w\right) \subseteq B_{1}(C)$.

Proof. We proceed analogously to the proof of Lemma 3.1.1. Given a $Q \in \mathcal{K}^{4}(C, \mathcal{T})$, with $Q=x_{1} y_{1} w y_{2} x_{2}$, we call Q a bad path if $V\left(G_{Q}^{1}-w\right) \nsubseteq B_{1}(C)$. Analogous to Section 3.1, our goal is to show that there does not exist a bad path in $\mathcal{K}^{4}(C, \mathcal{T})$. Let C^{1} be the 1-necklace of C. We first gather the following facts.

Claim 4.2.2. For any bad path Q, the following hold.

1) There is no chord of Q in G, except possibly $x_{1} x_{2}$; AND
2) The middle vertex of Q has no neighbors in $V\left(C \cap G_{Q}^{1}\right)$; AND
3) For any $v \in V\left(G_{Q}^{0} \backslash Q\right)$, if v has a neighbor in $V(Q)$, then $G[N(v) \cap V(Q)]$ is a subpath of Q of length at most two.

Proof: Let $Q:=x_{1} y_{1} w y_{2} x_{2}$ and let $S:=V\left(G_{Q}^{1}-w\right) \backslash B_{1}(C)$. Since Q is bad, $S \neq \varnothing$. Suppose toward a contradiction that G contains an edge $e \in\left\{x_{1} w, x_{2} w, y_{1} y_{2}, x_{1} y_{2}, x_{2} y_{1}\right\}$. Thus, for some $2 \leq k \leq 3$, there is a k-chord Q^{\prime} of C such that Q^{\prime} has endpoints x_{1}, x_{2} and $E\left(Q^{\prime}\right) \backslash E(Q)=\{e\}$. Note that $Q^{\prime} \in \mathcal{K}(C, \mathcal{T})$. Since Q^{\prime} is a 2-chord or a 3-chord of C, we have $S \cap V\left(G_{Q^{\prime}}^{1}\right)=\varnothing$, or else we contradict Theorem 3.0.2. If $e \in E\left(G_{Q}^{0}\right)$, then $G_{Q}^{1} \subseteq G_{Q^{\prime}}^{1}$, then $S \subseteq V\left(G_{Q^{\prime}}^{1}\right)$, which is false. Thus, we have $e \in E\left(G_{Q}^{1}\right) \backslash E(Q)$. Since $S \cap V\left(G_{Q^{\prime}}^{1}\right)=\varnothing$, there is a cycle of length at most four which separates S from $G_{Q}^{0} \backslash Q$, contradicting short-separation-freeness. This proves 1).

Now we prove 2). Suppose toward a contradiction that w has a neighbor u in $V\left(C \cap G_{Q}^{1}\right)$. By 1), $x_{1}, x_{2} \notin N(w)$, so G contains the two 3 -chords $Q^{\prime}:=x_{1} y_{1} w u$ and $Q^{\prime \prime}:=x_{2} y_{2} w u$ of C, and u is an internal vertex of $C \cap G_{Q}^{1}$. Furthermore, each of $Q^{\prime}, Q^{\prime \prime}$ lies in $\mathcal{K}(C, \mathcal{T})$, and we have either $S \subseteq V\left(G_{Q^{\prime}}^{1}\right)$ or $S \subseteq V\left(G_{Q^{\prime \prime}}^{1}\right)$. In either case, we contradict Theorem 3.0.2.

Now we prove 3). Let $v \in V\left(G_{Q}^{0} \backslash Q\right)$, where v has a neighbor in Q. The claim is trivial if $|N(v) \cap V(Q)|=1$, so suppose that $|N(v) \cap V(Q)| \geq 2$. If v has two neighbors which are of distance more than two apart on Q, then, for some $2 \leq k \leq 3$, there is a k-chord Q^{\prime} of C with $v \in V\left(Q^{\prime}\right)$, where Q^{\prime} has endpoints x_{1}, x_{2} and $G_{Q}^{1} \subseteq G_{Q^{\prime}}^{1}$. In that case, we have $S \subseteq V\left(G_{Q^{\prime}}^{1}\right)$. Since $Q^{\prime} \in \mathcal{K}(C, \mathcal{T})$, this again contradicts Theorem 3.0.2. Thus, any two neighbors of v on Q are either adjacent on Q or are of distance precisely two apart on Q. By 1), there is no chord of Q in G, except possibly $x_{1} x_{2}$. Thus, if v has two neighbors u, u^{\prime} which are of distance precisely two apart on Q, then, since G is short-separation-free, it follows from our triangulation conditions that v is also adjacent to the midpoint of the 2-path $u Q u^{\prime}$, so we are done.

We now have the following.
Claim 4.2.3. For any bad path $Q, V\left(G_{Q}^{0}\right)$ is L-colorable and $C \cap G_{Q}^{1}$ is a path of length at least two. In particular, Q is an induced subgraph of G.

Proof: We have to be somewhat careful because we need to deal with the possibility that we have a bad path Q such that $C \cap G_{Q}^{1}$ is just an edge. In that case, a proper L-coloring of G_{Q}^{0} is not necessarily a proper L-coloring of $V\left(G_{Q}^{0}\right)$. Suppose toward a contradiction that there exists a bad path Q^{m} such that $V\left(G_{Q^{m}}^{0}\right)$ is not L-colorable. Among all bad paths Q such that $V\left(G_{Q}^{0}\right)$ is not L-colorable, we choose Q^{m} so that $\left|V\left(G_{Q^{m}}^{0}\right)\right|$ is minimized.

Subclaim 4.2.4. For any $v \in V\left(G_{Q^{m}}^{0} \backslash Q^{m}\right)$ with a neighbor in Q^{m}, the graph $G\left[N(v) \cap V\left(Q^{m}\right)\right]$ is a subpath of Q^{m} of length at most one.

Proof: Suppose there is a v for which this does not hold. By 3) of Claim 4.2.3, $G\left[N(v) \cap V\left(Q^{m}\right)\right]$ is a subpath of Q^{m} of length precisely two. Let u be the midpoint of $G\left[N(v) \cap V\left(Q^{m}\right)\right]$ and let Q be the 4-chord of C obtained from Q^{m} by replacing u with v. Since G is short-separation-free, we have $V\left(G_{Q^{m}}^{0}\right)=V\left(G_{Q}^{0}\right) \cup\{u\}$ as a disjoint union. By the minimality of Q^{m}, we get that $V\left(G_{Q}^{0}\right)$ admits an L-coloring ψ. Since $\left|L_{\psi}(u)\right| \geq 2, \psi$ extends to an L-coloring of $V\left(G_{Q}^{0}\right) \cup\{u\}$, contradicting our assumption that $V\left(G_{Q^{m}}^{0}\right)$ is not L-colorable.

Let $S:=V\left(G_{Q^{m}}^{1} \backslash Q^{m}\right) \backslash B_{1}(C)$. Since Q^{m} is bad, S is nonempty. If $|S|=1$, then, since the lone vertex of S has degree at least five, we contradict the fact that $S \subseteq V(G) \backslash B_{1}(C)$. Thus, we have $|S|>1$.

Now we construct a smaller mosaic in the following way. Let G^{\dagger} be a graph obtained from G by deleting all the vertices of $V\left(G_{Q^{m}}^{1}\right) \backslash V\left(C \cup Q^{m}\right)$ and replacing them with a lone vertex w^{\dagger} adjacent to all the vertices in the cycle $\left(C \cap G_{Q^{m}}^{1}\right)+Q^{m}$. Let $\mathcal{T}^{\dagger}:=\left(G^{\dagger}, \mathcal{C}, L, C_{*}\right)$. We claim now that \mathcal{T} is a mosaic.

We first show that \mathcal{T} is short-separation-free. Possibly $x_{1} x_{2} \in E(G)$, but in that case, $x_{1} x_{2}$ is the lone edge of $C \cap G_{Q^{m}}^{1}$. By 1), G has no other chords of Q^{m}, so, since G is short-separation-free, it follows from Subclaim 4.2.4 that G^{\dagger} is also short-separation-free. Thus, \mathcal{T}^{\dagger} is a tessellation.

Since $Q^{m} \in \mathcal{K}(C, \mathcal{T})$ and every vertex of Q has distance at most two from $C \backslash \stackrel{\circ}{\mathbf{P}}$, it immediately follows that \mathcal{T}^{\dagger} satisfies the distance conditions of Definition 2.1.6, and M0)-M2) are trivially satisfied. Thus, \mathcal{T}^{\dagger} is a mosaic. Since $|S|>1$, we have $\left|V\left(G^{\dagger}\right)\right|<|V(G)|$. By the minimality of \mathcal{T}, it follows that G^{\dagger} admits an L-coloring, which restricts to an L-coloring of the subgraph of G induced by $V\left(G_{Q^{m}}^{0}\right)$, contradicting our assumption that $V\left(G_{Q^{m}}^{0}\right)$ is not L-colorable.

Now we prove the second part of Claim 4.2.3. Let $Q:=x_{1} y_{1} w y_{2} x_{2}$ be a bad path and suppose toward a contradiction that $C \cap G_{Q}^{1}$ has length less than two. Thus, $C^{1} \cap G_{Q}^{1}=x_{1} x_{2}$ and G_{Q}^{1} is bounded by the 5-cycle $x_{1} y_{1} w y_{2} x_{2}$. By 4), there is a proper L-coloring ψ of $V\left(G_{Q}^{0}\right)$. Since G is not L-colorable, ψ does not extend to an L-coloring of $V\left(G_{Q}^{1}\right)$, so it follows from Theorem 1.3.5 that $V\left(G_{Q}^{1}\right) \backslash V(Q)$ consists of a lone vertex adjacent to all five vertices of Q, so $V\left(G_{Q}^{1}-w\right) \backslash B_{1}(C)=\varnothing$, contradicting the fact that Q is bad. Thus, we have $C \cap G_{Q}^{1} \neq x_{1} x_{2}$. We also have $C \cap G_{Q}^{0} \neq x_{1} x_{2}$, or else we contradict 2) of Corollary 2.3.14. Since C is an induced subgraph of G, it follows that $x_{1} x_{2} \notin E(G)$, so Q is indeed an induced subgraph of G.

Now we return to the main proof of Lemma 4.2.1. Suppose toward a contradiction that there exists a bad path $Q \in$ $\mathcal{K}^{4}(C, \mathcal{T})$, and let Q be chosen so as to minimize $\left|V\left(G_{Q}^{1}\right)\right|$ over all bad paths. Let $Q:=x_{1} y_{1} w y_{2} x_{2}$, and let $S:=$ $V\left(G_{Q}^{1}-w\right) \backslash B_{1}(C)$. By 3) of Theorem 2.2.4, each vertex of $G_{Q}^{1} \backslash C$ has an L-list of size five. Now, $C \cap G_{Q}^{1}$ is a chordless path with endpoints x_{1}, x_{2}, and we denote this path by R^{0}. By 2) of Claim 4.2.3, $N(w) \cap V\left(R^{0}\right)=\varnothing$, so there is a subpath R^{1} of C^{1} with endpoints y_{1}, y_{2} such that $V\left(R^{1}\right)=V\left(G_{Q}^{1}\right) \cap D_{1}(C)$.

Claim 4.2.5. R^{1} is an induced subgraph of G.
Proof: We first note the following:
Subclaim 4.2.6. For each $z \in V\left(R^{1}\right) \backslash\left\{y_{1}, y_{2}\right\}$, z is not a \mathcal{C}-shortcut.
Proof: Suppose toward a contradiction that there is a $z \in V\left(R^{1}\right) \backslash\left\{y_{1}, y_{2}\right\}$ which is a \mathcal{C}-shortcut. Since Q separates each vertex of $V\left(R^{1}\right) \backslash\left\{y_{1}, y_{2}\right\}$ from each internal vertex of \mathbf{P}, there is a $C^{\prime} \in \mathcal{C} \backslash\{C\}$ and a subgraph $H \subseteq C^{\prime}$ such that $d(w, H)<d(C \backslash \stackrel{\circ}{\mathbf{P}}, H)$. Since $d\left(y_{j}, C^{\prime}\right) \leq d\left(C \backslash \stackrel{\circ}{\mathbf{P}}, C^{\prime}\right)$ for each $j=1,2$, we have $w z \in E(G)$, as the deletion of Q leaves C^{\prime} and z in different connected components. Since $z \in V\left(R^{1}\right) \backslash\left\{y_{1}, y_{2}\right\}$, there is a $q \in V\left(R^{0}\right) \cap N(z)$.

If q is an internal vertex of R^{0}, then at least one of the paths $x_{1} y_{1} w z q, x_{2} y_{2} w z q$ separates S from \mathbf{P} and is thus a bad path of $\mathcal{K}^{4}(C, \mathcal{T})$. This contradicts the minimality of Q. Thus, we have $q \in\left\{y_{1}, y_{2}\right\}$, so suppose without loss of generality that $q=y_{1}$. Let $Q^{*}:=x_{1} z w y_{2} x_{2}$. Since G is short-separation-free, we have $V\left(G_{Q^{*}}^{1}\right) \cup\left\{y_{1}\right\}=V\left(G_{Q}^{1}\right)$ as a disjoint union, and Q^{*} separates S from \mathbf{P}, contradicting the minimality of Q, so our assumption that z is a \mathcal{C}-shortcut is false.

Now, if R^{1} has a chord in G, then this chord has endpoints y_{1}, y_{2}, or else, since no vertex of $R^{1} \backslash\left\{y_{1}, y_{2}\right\}$ is a \mathcal{C} shortcut, we contradict Theorem 3.0.2. By Claim 4.2.3, $y_{1} y_{2} \notin E(G)$, so R^{1} is indeed an induced subgraph of G. This completes the proof of Claim 4.2.5.

Analogous to Section 3.1, we have the following facts.

Claim 4.2.7.

1) y_{1} has no neighbors in $R^{0}-x_{1}$. Likewise, y_{2} has no neighbors in $R^{0}-x_{2}$; AND
2) No internal vertex of R^{1} is adjacent to w.

Proof: The two parts of 1) are symmetric so we just prove that y_{1} has no neighbors in $R^{0}-x_{1}$. Suppose toward a contradiction that y_{1} has a neighbor $q \in V\left(R^{0}-x_{1}\right)$. By Claim 4.2.3, $q \neq y_{2}$, so q is an internal vertex of R^{0}. By Theorem 3.0.2, we have $S \cap V\left(G_{x_{1} y_{1} q}^{1}\right)=\varnothing$, so the 4-chord $Q^{\prime}:=q y_{1} w y_{2} x_{2}$ of C separates S from \mathbf{P}. Since $Q^{\prime} \in \mathcal{K}(C, \mathcal{T})$ and $\left|V\left(G_{Q^{\prime}}^{1}\right)\right|<\left|V\left(G_{Q}^{1}\right)\right|$, we contradict the minimality of Q. This proves 1).

Now we prove 2), Let y be an internal vertex of R^{1}. Thus, y has a neighbor $q \in V\left(R^{0}\right)$. If q is an internal vertex of R^{0}, then, letting $Q^{\prime}:=q y w y_{2} x_{2}$ and $Q^{\prime \prime}:=q y w y_{1} x_{1}$, each of $Q^{\prime}, Q^{\prime \prime}$ is an element of $\mathcal{K}(C, \mathcal{T})$, ando ne of $Q^{\prime}, Q^{\prime \prime}$ separates S from \mathbf{P}, contradicting the minimality of Q. Thus, we have $q \in\left\{x_{1}, x_{2}\right\}$. Suppose without loss of generality that $q=x_{1}$. Since G is short-separation-free, it follows that 4-chord $x_{1} y w y_{2} x_{2}$ separates S from both y_{1} and \mathbf{P}, contradicting the minimality of Q.

We let $R^{0}=q_{0} q_{1} \cdots q_{t+1}$ for some $t \geq 0$, where $q_{0}=x_{1}$ and $q_{t+1}=x_{2}$. Likewise, we let $R^{1}=p_{0} \cdots p_{s+1}$ for some integer $s \geq 0$, where $p_{0}=y_{1}$ and $p_{s+1}=y_{2}$. Finally, we set $R^{*}:=x_{1} y_{1} R^{1} y_{2} x_{2}$. Since $N\left(p_{0}\right) \cap V\left(R^{0}\right)=\left\{q_{0}\right\}$ by Fact 1 of Claim 4.2.7, and the two vertices p_{0}, p_{1} have a unique common neighbor on R^{0}, we have $p_{1} q_{0} \in E(G)$. Likewise, we have $p_{s} q_{t+1} \in E(G)$. Thus, we make the following definitions, which we retain for the remainder of the proof of Lemma 4.2.1. We set $R^{\dagger}:=q_{0} p_{1} R^{1} p_{s} q_{t+1}$ and $C^{\dagger}:=\left(C \cap G_{Q}^{1}\right) \cup R^{\dagger}$. Note that $R^{\dagger} \in \mathcal{K}(C, \mathcal{T})$. Now we have the following:

Claim 4.2.8. Let $\{a, b\}$ be a set of two colors, and let L^{*} be a list-assignment for $G_{R^{\dagger}}^{0}$ where $L^{*}\left(p_{i}\right)=L\left(p_{i}\right) \backslash\{a, b\}$ for all $1 \leq i \leq s$, and otherwise $L^{*}=L$. Then $G_{R^{\dagger}}^{0}$ is L^{*}-colorable.

Proof: Let C_{*}^{\dagger} be the outer face of $G_{R^{\dagger}}^{0}$. We first show that the tuple $\left.\left(G_{R^{\dagger}}^{0},(\mathcal{C} \backslash\{C\}) \cup\left\{C^{\dagger}\right\}\right), L^{*}, C_{*}^{\dagger}\right)$ is a mosaic. Since no internal vertex of R^{\dagger} is adjacent to an an internal vertex of \mathbf{P}, it just suffices to check that conditions M3) and M4) of Definition 2.1.6 hold. If these conditions do not hold, then there exists an index $i \in\{1, \cdots, s\}$, a $C^{\prime} \in \mathcal{C} \backslash\{C\}$ and a subgraph $H \subseteq C^{\prime}$ be such that $d\left(H, p_{i}\right)<d(H, C \backslash \dot{\mathbf{P}})$. Since Q separates $p_{1} \cdots, p_{s}$ from C^{\prime}, and each vertex of Q is of distance at least $d(H, C \backslash \stackrel{\circ}{\mathbf{P}})-2$ from H, there is a vertex of Q of distance $d(H, C \backslash \stackrel{\circ}{\mathbf{P}})-2$ from H which is adjacent to a vertex of p_{i}. But then p_{i} is adjacent to w, contradicting Fact 2. Thus, $\left.\left(G_{R^{\dagger}}^{0},(\mathcal{C} \backslash\{C\}) \cup\left\{C^{\dagger}\right\}\right), L^{*}\right)$ is indeed a mosaic Furthermore, $\left|V\left(G_{R^{\dagger}}^{0}\right)\right|<|V(G)|$, since $\left|V\left(R^{0}\right)\right| \geq 3$ and each internal vertex of R^{0} lies outside of $G_{R^{\dagger}}^{0}$. Thus, by the minimality of $\mathcal{T}, G_{R^{\dagger}}^{0}$ is L^{*}-colorable.

Also analogous to Section 3.1 is the fact that S consists of a lone vertex.

Claim 4.2.9. There exists a $v^{*} \in S$ adjacent to each of p_{0}, p_{s+1}, w.

Proof: Applying Claim 4.2.3, let ϕ be an L-coloring of $V\left(G_{Q}^{0}\right)$. By 1) of Proposition 1.5.1, there is a vertex $v^{*} \in$ $V\left(G_{Q}^{1} \backslash C\right)$ adjacent to at least three vertices of Q. By Claim 4.2.7, the neighborhood if this vertex on Q is p_{0}, p_{s+1}, w. Since v^{*} is adjacent to each of p_{0}, p_{s+1}, w, we have $v^{*} \in B_{2}(C) \backslash V(C)$. If $v^{*} \in V\left(R^{1}\right)$, then R^{1} has a chord in G, since $\left|V\left(R^{1}\right)\right| \geq 4$ and v^{*} is an internal vertex of R^{1} adjacent to both of p_{0}, p_{s+1}, contradicting the fact that R^{1} is a chordless path. Thus, $v^{*} \in\left(D_{2}(C) \cap V\left(G_{Q}^{1}-w\right)\right)$, so $v^{*} \in S$, as desired.

We can now apply the work of Section 4.1. Let $G^{*}:=G_{Q}^{1} \backslash\left\{w, p_{0}, p_{s+1}\right\}$. We retain this notation for the remainder of the proof of Lemma 4.2.1.

Claim 4.2.10.

1) $V\left(G_{Q}^{1}\right)=V(Q) \cup V\left(R^{0}\right) \cup V\left(R^{1}\right) \cup\left\{v^{*}\right\}$, and $N\left(v^{*}\right)=\{w\} \cup\left\{p_{0}, \cdots, p_{s+1}\right\}$; AND
2) $G^{*}-v^{*}$ is a wheel sequence with apex path $p_{1} \cdots p_{s}$.

Proof: Let $Q^{*}:=q_{0} p_{0} v^{*} p_{s+1} q_{t+1}$. Since $Q^{*} \subseteq G_{Q}^{1}$, we have $Q^{*} \in \mathcal{K}^{4}(C, \mathcal{T})$ and $G_{Q^{*}}^{1} \subseteq G_{Q}^{2}$. Since $w \notin V\left(G_{Q^{*}}^{1}\right)$, we have $\left|V\left(G_{Q^{*}}^{1}\right)\right|<\left|V\left(G_{Q}^{2}\right)\right|$. Since $v^{*} \in S$, we have $v^{*} \in D_{2}(C)$, and thus, by the minimality of Q, we have $V\left(G_{Q^{*}}^{1}\right) \backslash B_{1}(C)=\left\{v^{*}\right\}$. Since G is short-separation-free, we have $V\left(G_{Q^{*}}^{0}\right)=V\left(G_{Q}^{0}\right) \cup\left\{v^{*}\right\}$, and $V\left(G_{Q}^{1}\right)=$ $V\left(G_{Q^{*}}^{1}\right) \cup\{w\}$. Thus, we get $V\left(G_{Q}^{1}\right) \backslash B_{1}(C)=\left\{w, v^{*}\right\}$, so $V\left(G_{Q}^{1}\right)=V(Q) \cup V\left(R^{0}\right) \cup V\left(R^{1}\right) \cup\left\{v^{*}\right\}$.

Furthermore, since R^{1} is a chordless path, and every facial subgraph of G containing v^{*} is a triangle, every vertex of R^{1} is adjacent to v^{*}. Since $v^{*} \in V\left(G_{Q}^{1} \backslash Q\right)$, every neighbor of v^{*} in G lies in G_{Q}^{1}, so $N\left(v^{*}\right)=\left\{p_{0}, \cdots, p_{s+1}\right\} \cup\{w\}$. This proves Fact 1.

Now we show Fact 2. Since R^{1} is a chordless path and $G_{R^{1}}^{2}=V\left(R^{1}\right) \cup V\left(R^{0}\right)$, it suffices to show that every vertex in $R^{1} \backslash\left\{p_{0}, p_{s+1}\right\}$ has at least two neighbors on $q_{0} \cdots q_{t+1}$. Suppose there exists an $i \in\{1, \cdots, s\}$ such that $\left|N\left(p_{i}\right) \cap V\left(C \cap G_{Q}^{1}\right)\right|=1$. Thus, for some $j \in\{0, \cdots, t+1\}, q_{j}$ is the lone vertex of $N\left(p_{i}\right) \cap V(C)$. But then, since C is chordless, and every facial subgraph of q_{j}, except possibly C, is a triangle, q_{j} is adjacent to both p_{i-1} and p_{i+1}, so, by Fact 1 above, G has a $K_{2,3}$ with bipartition $\left\{v^{*}, q_{j}\right\},\left\{p_{i-1}, p_{i}, p_{i+1}\right\}$, contradicting the fact that \mathcal{T} is a tessellation. Thus, for each $i \in\{1, \cdots, s\}$, we have $\left|N\left(p_{i}\right) \cap V(C)\right| \geq 2$. Thus, G^{*} is a wheel sequence with apex path R^{1}, as desired. This proves Fact 2.

Now let $T:=\left\{q_{0}, q_{t+1}\right\}$. Then the following holds:

Claim 4.2.11. For any L-coloring ϕ of $G_{Q}^{0},\left(G^{*}, v^{*}, R^{1} \backslash\left\{p_{0}, p_{s+1}\right\}, L_{\phi}^{T}\right)$ is a crown. Furthermore, we have $s=2$, and $\left(G^{*}, v^{*}, R^{1} \backslash\left\{p_{0}, p_{s+1}\right\}, L_{\phi}^{T}\right)$ satisfies either Statement $2 b$) or Statement $2 c$) of Theorem 4.1.3.

Proof: By Claim 4.2.3, there is an L-coloring ϕ of $V\left(G_{Q}^{0}\right)$. We have $\left|L_{\phi}^{T}\left(v^{*}\right)\right| \geq 2$, since $|V(Q) \backslash T|=3$. Furthermore, applying Facts 1 and 2 of Claim 4.2.7, together with the fact that R^{1} is a chordless path, we have $N\left(p_{i}\right) \cap(V(Q) \backslash T)=$ \varnothing for each $1<i<s$. Furthermore, we have $\left.N\left(p_{1}\right) \cap V(Q) \backslash T\right)=\left\{p_{0}\right\}$, and likewise, $N\left(p_{s}\right) \cap(V(Q) \backslash T)=\left\{p_{s+1}\right\}$. Combining these, we obtain $\left|L_{\phi}^{T}\left(p_{1}\right)\right| \geq 4$ and $\left|L_{\phi}^{T}\left(p_{s}\right)\right| \geq 4$, and $\left|L_{\phi}^{T}\left(p_{i}\right)\right| \geq 5$ for each $1<i<s$. Thus, since $G^{*}-v^{*}$ is a wheel sequence with apex path $p_{1} \cdots p_{s}$, the tuple $\left(G^{*}, v^{*}, R^{1} \backslash\left\{p_{0}, p_{s+1}\right\}, L_{\phi}^{T}\right)$ is indeed a crown, as $s \geq 2$.

Now, note that $s \leq 2$, or else it follows from Theorem 4.1.3 that G^{*} is L_{ϕ}^{T}-colorable. But then ϕ extends to an L-coloring of G, contradicting the fact that \mathcal{T} is critical. Thus, we indeed have $s \leq 2$, so $s=2$. If the crown $\left(G^{*}, v^{*}, R^{1} \backslash\left\{p_{0}, p_{s+1}\right\}, L_{\phi}^{T}\right)$ satisfies neither Statement 2b) nor Statement 2c) of Theorem 4.1.3, then G^{*} is L_{ϕ}^{T} colorable so, again, we contradict the fact that \mathcal{T} is critical. This proves Claim 4.2.11.

Since $G^{*}-v^{*}$ is a wheel sequence of length 2 , we let $\mathcal{H}\left(G^{*}\right)=\left(H_{1}, H_{2}\right)$. Thus, there is an index $n \in\{1, \cdots, t\}$ such that H_{1} has principal path $q_{0} p_{1} q_{n}$ and H_{2} has principal path $q_{n} p_{s} q_{t+1}$. The following definition is useful for the remainder of the proof of Lemma 4.2.1.

Definition 4.2.12. A triple $\left[A_{1}, A_{2}, \psi\right]$ is called a pointer of G_{Q}^{1} if the following hold.

1) ψ is an L-coloring of G_{Q}^{1}, and, for each $i \in\{1,2\}, A_{i}$ is a nonempty set of colors with $A_{i} \subseteq L_{\psi}\left(p_{i}\right)$ for each $i \in\{1,2\} ; A N D$
2) $A_{1} \cap A_{2}=\varnothing$; AND
3) For some $i \in\{1,2\},\left|L_{\psi}\left(v^{*}\right) \backslash\{r\}\right| \geq 2$ for each $r \in A_{i}$; AND
4) There exists a pair $\left(r_{1}, r_{2}\right) \in A_{1} \times A_{2}$ such that $\mathcal{Z}_{H_{1}}\left(\psi\left(q_{0}\right), r_{1}, \bullet\right) \cap \mathcal{Z}_{H_{2}}\left(\bullet, r_{2}, \psi\left(q_{t+1}\right)\right) \neq \varnothing$.

If $\left[A_{1}, A_{2}, \psi\right]$ is a pointer of G_{Q}^{1} and $A_{1}=\{a\}$ for some $a \in L_{\psi}\left(p_{1}\right)$, then we write this as $\left[a, A_{2}, \psi\right]$. Likewise if A_{2} is a singleton. We use the following fact repeatedly.

Claim 4.2.13. There does not exist a pointer of G_{Q}^{1}.

Proof: Suppose toward a contradiction that there exists a pointer $\left[A_{1}, A_{2}, \psi\right]$ of G_{Q}^{1}, and let $\left(r_{1}, r_{2}\right) \in A_{1} \times A_{2}$ such that $\mathcal{Z}_{H_{1}}\left(\psi\left(q_{0}\right), r_{1}, q_{n}\right) \cap \mathcal{Z}_{H_{2}}\left(q_{n}, r_{2}, \psi\left(q_{t+1}\right)\right) \neq \varnothing$. Suppose without loss of generality that $\left|L_{\psi}\left(v^{*}\right) \backslash\{r\}\right| \geq 2$ for each $r \in A_{1}$. Since $L_{\psi}\left(v^{*}\right) \backslash\left\{r_{1}\right\} \mid \geq 2$, there is an extension ψ^{\prime} of ψ to an L-coloring of $G_{R^{+}}^{1}$, in which $\psi^{\prime}\left(p_{1}\right)=r_{1}$ and $\psi^{\prime}\left(p_{2}\right)=r_{2}$. Since $\mathcal{Z}_{H_{1}, L}\left(\psi\left(q_{0}\right), r_{1}, q_{n}\right) \cap \mathcal{Z}_{H_{2}, L}\left(q_{n}, r_{2}, \psi\left(q_{t+1}\right)\right) \neq \varnothing, \psi^{\prime}$ extends to an L-coloring of G, contradicting the fact that \mathcal{T} is critical.

We now rule out the possibility that $n=1=t$.

Claim 4.2.14. At least one of H_{1}, H_{2} is not a triangle.

Proof: Suppose toward a contradiction that $n=1=t$. In that case, we have $H_{1}=q_{0} p_{1} q_{1}$ and $H_{2}=q_{1} p_{2} q_{2}$. Let $L\left(q_{1}\right)=\{a, b, c\}$.

Subclaim 4.2.15. For any L-coloring ϕ of G_{Q}^{0}, the following hold:

1) $\left|\left\{\phi\left(q_{0}\right), \phi\left(q_{2}\right)\right\} \cap\{a, b, c\}\right|=2$; AND
2) $\phi\left(p_{3}\right)=\phi\left(q_{0}\right)$ and $\phi\left(p_{0}\right)=\phi\left(q_{2}\right)$; AND
3) There is a pair of colors x, y such that $L\left(p_{1}\right)=L\left(p_{2}\right)=\{a, b, c, x, y\}$ and $L\left(v^{*}\right)=\left\{\phi\left(p_{0}\right), \phi(w), \phi\left(p_{3}\right), x, y\right\}$; AND
4) $\left\{\phi\left(q_{0}\right), \phi\left(q_{2}\right), \phi(w)\right\}=\{a, b, c\}$.

Proof: Let ϕ be an L-coloring of G_{Q}^{0}. Firstly, we have $\left|\left\{\phi\left(q_{0}\right), \phi\left(q_{2}\right)\right\} \cap\{a, b, c\}\right|=2$, or else ϕ extends to an L-coloring of G, contradicting the fact that \mathcal{T} is critical. To see this, suppose toward a contradiction that $\left|\left\{\phi\left(q_{0}\right), \phi\left(q_{2}\right)\right\} \cap\{a, b, c\}\right| \leq 1$. Now, $G_{R^{\dagger}}^{0} \backslash G_{Q}^{0}$ is the triangle $p_{1} p_{2} v^{*}$, where $L_{\phi}\left(p_{i}\right) \mid \geq 3$ for each $i \in\{1,2\}$ and $\left|L_{\phi}\left(v^{*}\right)\right| \geq 2$. Thus, ϕ extends to an L-coloring of $G_{R^{\dagger}}^{0}$.

If $\left\{\phi\left(q_{0}\right), \phi\left(q_{2}\right)\right\} \cap\{a, b, c\}=\varnothing$, then any extension of ϕ to an L-coloring of $G_{R^{1}}^{0}$ then extends to G, since there is a color left over for q_{1}. This contradicts the fact that \mathcal{T} is critical. Thus, suppose without loss of generality that $\phi\left(q_{0}\right)=a$ and $\phi\left(q_{2}\right) \notin\{b, c\}$. Since $\left|L_{\phi}\left(p_{1}\right)\right| \geq 3$ and $\phi\left(p_{0}\right)=a$, there is a color $x \in L_{\phi}\left(p_{1}\right) \backslash\{a, b, c\}$, and there exists an extension ϕ^{\prime} of ϕ in which $\phi^{\prime}\left(p_{1}\right)=x$. But then there is at least one color left over for q_{1}, so ϕ^{\prime} extends to an L-coloring of G, contradicting the fact that \mathcal{T} is critical.

This proves Fact 1. Thus, suppose without loss of generality that $\phi\left(q_{0}\right)=a$ and $\phi\left(q_{2}\right)=b$, and let ϕ^{\prime} be an extension of ϕ to $G_{Q}^{0} \cup\left(q_{0} q_{1} q_{2}\right)$ in which $\phi^{\prime}\left(q_{1}\right)=c$. Now, the triangle $v^{*} p_{1} p_{2}$ is not $L_{\phi^{\prime}}$-colorable, or else ϕ^{\prime} extends to an L-coloring of G, contradicting the fact that \mathcal{T} is critical.

Thus, we have $\left|L_{\phi^{\prime}}\left(p_{1}\right)\right|=\left|L_{\phi^{\prime}}\left(p_{2}\right)\right|=\left|L_{\phi^{\prime}}\left(v^{*}\right)\right|=2$, and $L_{\phi^{\prime}}\left(p_{1}\right)=L_{\phi^{\prime}}\left(p_{2}\right)=L_{\phi^{\prime}}\left(v^{*}\right)$. It follows then that $\phi\left(p_{0}\right)=b, \phi\left(p_{3}\right)=a$, and there is a pair of colors x, y such that both of the following hold.

1. $L\left(p_{1}\right)=L\left(p_{2}\right)=\{a, b, c, x, y\} ; A N D$
2. $L\left(v^{*}\right)=\{a, b, \phi(w), x, y\}$.

The above argument shows that, for any L-coloring ϕ of G_{Q}^{0}, Facts 1), 2), and 3) of Subclaim 4.2 .15 hold. To finish, it suffices to show, for our given coloring ϕ, that $\phi(w)=c$. Suppose towards a contradiction that $\phi(w) \neq c$. In that case, we have $c \notin L\left(v^{*}\right)$. Now let L^{*} be a list-assignment for $G_{R^{\dagger}}^{0}$ where $L^{*}\left(p_{i}\right)=L\left(p_{i}\right) \backslash\{a, c\}$, and $L^{*}(u)=L(u)$ for all $u \in V\left(G_{R^{\dagger}}^{0}\right) \backslash\left\{p_{1}, p_{2}\right\}$. By Claim 4.2.8, $G_{R^{\dagger}}^{0}$ admits an L^{*}-coloring ψ.
Now, $V\left(G_{R^{\dagger}}^{1}\right) \backslash V\left(R^{\dagger}\right)=\left\{q_{1}\right\}$, and thus ψ uses the color b on one of p_{1}, p_{2}, or else ψ uses a color of $\{a, b, c\}$ on at most two vertices of $N\left(q_{1}\right)$, in which case, ψ extends to an L-coloring of G, contradicting the fact that \mathcal{T} is critical. Let ψ^{\prime} be the restriction of ψ to G_{Q}^{0}. Applying Facts 1 and 2 to ψ^{\prime}, we have $\left\{\psi^{\prime}\left(q_{0}\right), \psi^{\prime}\left(p_{0}\right)\right\}=$ $\left\{\psi^{\prime}\left(p_{3}\right), \psi^{\prime}\left(q_{2}\right)\right\}=\{a, c\}$, and $\psi^{\prime}\left(q_{0}\right) \neq \psi^{\prime}\left(q_{2}\right)$.

Thus, we may suppose without loss of generality that $\psi^{\prime}\left(q_{0}\right)=a$ and $\psi^{\prime}\left(q_{2}\right)=c$. Thus, we have $\psi^{\prime}\left(p_{3}\right)=a$ and $\psi^{\prime}\left(p_{0}\right)=c$. Now let $\psi^{\prime \prime}$ be an extension of ψ^{\prime} to $V\left(G_{Q}^{0}\right) \cup\left\{p_{1}, p_{2}\right\}$ obtained by coloring the edge $p_{1} p_{2}$ with (x, y). Then there is a color left over for q_{1}, since at most two neighbors of q_{1} are colored with colors among $\{a, b, c\}$. Furthermore, since $\psi^{\prime \prime}\left(p_{0}\right)=c$, and $c \notin L\left(v^{*}\right)$, there is also a color left over for v^{*}, as v^{*} has degree 5. Thus, $\psi^{\prime \prime}$ extends to an L-coloring of G, contradicting the fact that \mathcal{T} is critical. So we have $\phi(w)=c$, as desired.

Now we have enough to finish. Combining the facts above, there exists a pair of colors x, y such that $L\left(p_{1}\right)=$ $L\left(p_{2}\right)=L\left(v^{*}\right)=\{a, b, c, x, y\}$, and, furthermore, for any L-coloring ϕ of G_{Q}^{0}, we have $\left\{\phi\left(q_{0}\right), \phi\left(p_{0}\right), \phi(w)\right\}=$ $\left\{\phi(w), \phi\left(p_{3}\right), \phi\left(q_{2}\right)\right\}=\{a, b, c\}$.

Now, let L^{*} be a list-assignment for $G_{R^{\dagger}}^{0}$ where $L^{*}\left(p_{i}\right)=L\left(p_{i}\right) \backslash\{x, y\}$ for each $i \in\{1,2\}$ and $L^{*}(u)=L(u)$ for each $u \in V\left(G_{R^{\dagger}}^{0}\right) \backslash\left\{p_{1}, p_{2}\right\}$. By Claim 4.2.8, there is an L^{*}-coloring ψ of $G_{R^{\dagger}}^{0}$. Since $L\left(p_{1}\right) \backslash\{x, y\}=L\left(p_{2}\right) \backslash\{x, y\}=$ $\{a, b, c\}$, suppose without loss of generality that $\psi\left(p_{1}\right)=a$ and $\psi\left(p_{2}\right)=b$. Thus, we have $c \in\left\{\psi\left(q_{0}\right), \psi\left(q_{2}\right)\right\}$, or else c is left over for q_{1}, and then ϕ extends to an L-coloring of G, contradicting the fact that \mathcal{T} is critical. Thus, suppose without loss of generality that $\psi\left(q_{0}\right)=c$. Since the restriction of ψ to G_{Q}^{0} is an L-coloring of G_{Q}^{0}, we have $\psi\left(p_{3}\right)=\psi\left(q_{0}\right)=c$ and $\psi\left(q_{2}\right) \in\{a, b\}$ by Subclaim 4.2.15. Since $\psi\left(p_{2}\right)=b$, we have $\psi\left(q_{2}\right)=a$. By Fact 2 , we have $\psi\left(p_{0}\right)=a$. Yet $\psi\left(p_{1}\right)=a$, so we contradict the fact that ψ is a proper L^{*}-coloring of $G_{R^{\dagger}}^{0}$. This completes the proof of Claim 4.2.14.

By Claim 4.2.14, we suppose without loss of generality that H_{1} is not a triangle. Thus, $H_{1} \backslash\left\{p_{1}\right\}=q_{0} \cdots q_{n}$, where $n>1$. Now fix an L-coloring ϕ of G_{Q}^{0}. By Claim 4.2.11, $\left(G^{*}, v^{*}, p_{1} p_{2}, L^{T}[\phi]\right)$ is a crown which satisfies either Statement 2b) or Statement 2c) of Theorem 4.1.3. Thus we have the following two subcases.

Subcase 2.1: There is a set $\{a, b\}$ of two colors such that $\{a, b\} \subseteq L^{T}[\phi]\left(q_{j}\right)$ for each $j=1, \cdots, t$
In this case, let L^{*} be a list-assignment for $G_{R^{\dagger}}^{0}$, where $L^{*}\left(p_{i}\right)=L\left(p_{i}\right) \backslash\{a, b\}$ for each $i=1,2$, and $L^{*}(u)=L(u)$ for all $u \in V\left(G_{R^{\dagger}}^{0}\right) \backslash\left\{p_{1}, p_{2}\right\}$. By Claim 4.2.8, there is an L^{*}-coloring ψ of $G_{R^{\dagger}}^{1}$.

Note that $\left\{\psi\left(q_{0}\right), \psi\left(q_{t+1}\right)\right\} \subseteq\{a, b\}$, or else we extend ψ to an L-coloring of G by coloring the path $q_{1} \cdots q_{t}$ with the colors of $\{a, b\}$, contradicting the fact that \mathcal{T} is critical. Now, let $\psi^{\prime}=\left.\psi\right|_{G_{Q}^{0}}$. We show that ψ^{\prime} extends to an L-coloring of G. Since $\psi^{\prime}\left(q_{0}\right) \in\{a, b\}$, we have $\left|L_{\psi^{\prime}}\left(p_{1}\right) \backslash\{a, b\}\right| \geq 2$. Thus, there is a $d \in L_{\psi^{\prime}}\left(p_{1}\right) \backslash\{a, b\}$ and a $j \in\{1, \cdots, n-1\}$ such that $d \notin L\left(q_{j}\right)$.

Note now that $d \in L\left(q_{n}\right)$. To see this, suppose toward a contradiction that $d \notin L\left(q_{n}\right)$. In that case, since $d \notin L\left(q_{j}\right)$, we have $\mathcal{Z}_{H_{1}}\left(\psi^{\prime}\left(q_{0}\right), d, \bullet\right)=L\left(q_{n}\right)$. Since $\mid L_{\psi^{\prime}}\left(p_{2}\right) \geq 3$ and $\left|L_{\psi^{\prime}}\left(v^{*}\right)\right| \geq 2$, let $d^{*} \in L_{\psi^{\prime}}\left(p_{2}\right)$ with $\mid L_{\psi^{\prime}}\left(v^{*}\right) \backslash\left\{d^{*}\right\}$. But then $\left[d, d^{*}, \psi^{\prime}\right]$ is a pointer for G_{Q}^{1}, contradicting Claim 4.2.13. Thus, we indeed have $d \in L\left(q_{n}\right)$, so $L\left(q_{n}\right)=\{a, b, d\}$.

Now, since $\psi\left(q_{t+1}\right) \in\{a, b\}$, we have $\left|L_{\phi}\left(p_{2}\right) \backslash\{a, b, d\}\right| \geq 1$. Thus, for each $x \in L_{\psi^{\prime}}\left(p_{2}\right) \backslash\{a, b, d\}$, we get $L_{\phi}\left(v^{*}\right)=\{d, x\}$, or else $[d, x, \phi]$ is a pointer for G_{Q}^{1}, contradicting Claim 4.2.13. Suppose without loss of generality that $\psi\left(q_{t+1}\right)=a$. In particular, we then have $L_{\phi}\left(p_{2}\right)=\{b, d, x\}$, since $L_{\psi^{\prime}}\left(p_{2}\right) \backslash\{a, b, d\}=\{x\}$. We then have $\mathcal{Z}_{H_{2}}\left(q_{n}, b, \psi\left(q_{t+1}\right)\right)=\{d\}$, or else $\left[d, b, \psi^{\prime}\left(q_{t+1}\right)\right]$ is a pointer for G_{Q}^{1}, contradicting Claim 4.2.13.

As above, we have $\left|L_{\psi^{\prime}}\left(p_{1}\right) \backslash\{a, b, d\}\right| \geq 1$, since $\psi^{\prime}\left(q_{0}\right) \in\{a, b\}$. Let $x^{\prime} \in L_{\psi^{\prime}}\left(p_{1}\right) \backslash\{a, b, d\}$. Then $\mathcal{Z}_{H_{1}}\left(\psi\left(q_{0}\right), x^{\prime}, \bullet\right) \mid \geq$ 2 since $x^{\prime} \notin L\left(q_{n}\right)$. Thus $\mathcal{Z}_{H_{1}}\left(\psi\left(q_{0}\right), x^{\prime}, \bullet\right)=\{a, b\}$, or else $\left[x^{\prime}, b, \psi^{\prime}\right]$ is a pointer for G_{Q}^{1}, contradicting Claim 4.2.13. Since H_{1} is not a triangle, we have $x^{\prime} \in \bigcap_{i=1}^{n-1} L\left(q_{i}\right)$, or else $\mathcal{Z}_{H_{1}}\left(\psi\left(q_{0}\right), x^{\prime}, \bullet\right)=L\left(q_{n}\right)$. Thus, we get $L\left(q_{n-1}\right)=\left\{a, b, x^{\prime}\right\}$. But then $d \in \mathcal{Z}_{H_{1}}\left(\psi\left(q_{0}\right), x^{\prime}, \bullet\right)$, contradicting the fact that $\mathcal{Z}_{H_{1}}\left(\psi\left(q_{0}\right), x^{\prime}, \bullet\right)=\{a, b\}$.

This completes Subcase 2.1, so we have ruled out the possibility that Statement 2b) of Theorem 4.1.3 holds when applied to the crown $\left(G^{*} . v^{*}, p_{1} p_{2}, L_{\phi}^{T}\right)$. The only case left to consider is the possibility that Statement 2 c) of Theorem 4.1.3 holds:

Subcase 2.2: There is a set $S=\{a, b, r\}$ of three colors such that $L_{\phi}^{T}\left(v^{*}\right)=\{a, b\}, L\left(p_{1}\right) \backslash\left\{\phi\left(q_{0}\right)\right\}=L\left(p_{2}\right) \backslash$ $\left\{\phi\left(q_{t+1}\right)\right\}=S$, and $\left|L\left(q_{n}\right) \cap S\right| \geq 2$. Furthermore, we have $\{b, r\} \subseteq \bigcap_{i=1}^{n-1} L\left(q_{i}\right)$ and $\{a, r\} \subseteq \bigcap_{i=n+1}^{t} L\left(q_{i}\right)$.
In this case, let S^{\prime} be a set of two colors in $L\left(q_{n}\right) \cap S$, and let L^{*} be a list-assignment for $G_{R^{1}}^{0}$ where $L^{*}\left(p_{1}\right)=$ $L\left(p_{1}\right) \backslash S^{\prime}, L^{*}\left(p_{2}\right)=L\left(p_{2}\right) \backslash S^{\prime}$, and $L^{*}(u)=L(u)$ for all $u \in V\left(G_{R^{1}}^{1}\right) \backslash\left\{p_{1}, p_{2}\right\}$. Applying Claim 4.2.8, let ψ be an L^{*}-coloring of $G_{R_{1}}^{0}$ and let $\psi^{\prime}=\left.\psi\right|_{G_{Q}^{1}}$. Furthermore, since $\left|L\left(q_{n}\right)\right|=3$, let d^{\prime} be a color such that $L\left(q_{n}\right)=S^{\prime} \cup\left\{d^{\prime}\right\}$.
By Claim 4.2.11, $\left(G^{*}, v^{*}, p_{1} p_{2}, L_{\psi^{\prime}}^{T}\right)$ is a crown which satisfies either Statement 2b) or Statement 2c) of Theorem 4.1.3. If $\left(G^{*}, v^{*}, p_{1} p_{2}, L_{\psi^{\prime}}^{T}\right)$ satisfies Statement 2 b) of Theorem 4.1.3, then we are back to Subcase 2.1 with the roles
of ψ and ϕ interchanged, so we are done in that case. So suppose toward a contradiction that $\left(G^{*}, v^{*}, p_{1} p_{2}, L_{\psi^{\prime}}^{T}\right)$ satisfies Statement 2c) of Theorem 4.1.3. In that case, we have $L_{\psi^{\prime}}\left(p_{1}\right)=L_{\psi^{\prime}}\left(p_{2}\right)$, and $\left|L_{\psi^{\prime}}\left(p_{1}\right)\right|=\left|L_{\psi^{\prime}}\left(p_{1}\right)\right|=3$. Since $\psi\left(p_{1}\right) \in L_{\psi^{\prime}}\left(p_{1}\right)$ and $\psi\left(p_{2}\right) \in L_{\psi^{\prime}}\left(p_{2}\right)$, there is a color d such that $L_{\psi^{\prime}}\left(p_{1}\right)=L_{\psi^{\prime}}\left(p_{2}\right)=\left\{\psi\left(p_{1}\right), \psi\left(p_{2}\right), d\right\}$.

Now, there is an $i \in\{1,2\}$ such that $\psi\left(p_{i}\right) \notin L\left(q_{n}\right)$. If no such i exists, then we have $\left\{\psi\left(p_{1}\right), \psi\left(p_{2}\right)\right\} \subseteq L\left(q_{n}\right)$ and $S^{\prime} \subseteq L\left(q_{n}\right)$. Yet $\left\{\psi\left(p_{1}\right), \psi\left(p_{2}\right)\right\}$ and S^{\prime} are disjoint and $\left|L\left(q_{n}\right)\right|=3$. So suppose without loss of generality that $\psi\left(p_{2}\right) \notin L\left(q_{n}\right)$. Now we gather the following facts:

Claim 4.2.16.

1) $d^{\prime}=\psi\left(p_{1}\right)$; AND
2) $d \in S^{\prime} ; A N D$
3) $\psi\left(p_{1}\right) \in L\left(q_{j}\right)$ for each $j=1, \cdots, n$; AND
4) For some $j \in\{1, \cdots, t\} \backslash\{n\}$, we have $d \notin L\left(q_{j}\right)$.

Proof: Firstly, we have $d^{\prime} \in\left\{\psi\left(p_{1}\right), \psi\left(p_{2}\right)\right\}$, or else $\left|L\left(q_{n}\right) \cap L_{\psi^{\prime}}\left(p_{i}\right)\right| \leq 1$ for each $i \in\{1,2\}$, contradicting the fact that $\left(G^{*}, v^{*}, p_{1} p_{2}, L_{\psi^{\prime}}^{T}\right)$ satisfies Statement 2c) of Theorem 4.1.3. Likewise, we have $d \in S^{\prime}$, or else, again, $\left|L\left(q_{n}\right) \cap L_{\psi^{\prime}}\left(p_{i}\right)\right| \leq 1$. Since $\psi\left(p_{2}\right) \notin L\left(q_{n}\right)$ and $d^{\prime} \in L\left(q_{n}\right)$, we have $d^{\prime}=\psi\left(p_{1}\right)$. This proves Facts 1 and 2 .

Now, suppose toward a contradiction that there exists a $j \in\{1, \cdots, n\} \backslash\{t\}$ such that $\psi\left(p_{1}\right) \notin L\left(q_{j}\right)$. Now, if $j \in\{1, \cdots, n-1\}$, then $\mathcal{Z}_{H_{1}}\left(\psi\left(q_{0}\right), \psi\left(p_{1}\right), \bullet\right) \mid \geq 2$, since $\psi\left(p_{1}\right) \notin L\left(q_{j}\right)$, and we have $z_{H_{2}}\left(\bullet, \psi\left(p_{2}\right), \psi\left(q_{t+1}\right)\right) \mid \geq 2$ as well, since $\psi\left(q_{2}\right) \notin L\left(q_{n}\right)$. But then $\left[\psi\left(p_{1}\right), \psi\left(p_{2}\right), \psi^{\prime}\right]$ is a pointer for G_{Q}^{1}, contradicting Claim 4.2.13. So now suppose instead that $j \in\{n+1, \cdots, t\}$. But then, since $L_{\psi^{\prime}}\left(p_{1}\right)=L_{\psi^{\prime}}\left(p_{2}\right)$, we simply interchange the colors on p_{1} and p_{2}, and we obtain the pointer $\left[\psi\left(p_{2}\right), \psi\left(p_{1}\right), \psi^{\prime}\right]$, again contradicting Claim 4.2.13. Thus, our assumption that there exists a $j \in\{1, \cdots, t\} \backslash\{n\}$ such that $\psi\left(p_{1}\right) \notin L\left(q_{j}\right)$ is false. This proves Fact 3 .

Now, since $d \neq d^{\prime}$ and $\left\{d, \psi\left(p_{1}\right)\right\} \subseteq L\left(q_{n}\right)$, there exists a $j \in\{1, \cdots, t\} \backslash\{n\}$ such that $\left\{d, \psi\left(p_{1}\right)\right\} \nsubseteq L\left(q_{j}\right)$. If no such j exists, then $\left\{d, \psi\left(p_{1}\right)\right\} \subseteq L\left(q_{j}\right)$ for each $j=1, \cdots, t$, and then we are back to Case 2.1 with the roles of ϕ and ψ interchanged, and this case has already been ruled out. Thus, there is a $j \in\{1, \cdots, t\} \backslash\{n\}$ with $\left\{d, \psi\left(p_{1}\right)\right\} \nsubseteq L\left(q_{j}\right)$. Since $\psi\left(p_{1}\right) \in L\left(q_{j}\right)$ by Fact 3 , we have $d \notin L\left(q_{j}\right)$. This proves Fact 4, and completes the proof of Claim 4.2.16.

Applying Facts 1 and 2, there is a color $\ell \neq \psi\left(p_{2}\right)$ such that $L\left(q_{n}\right)=\left\{\psi\left(p_{1}\right), d, \ell\right\}$. By Fact 4, there is a $j \in$ $\{1, \cdots, t\} \backslash\{n\}$ with $d \notin L\left(q_{j}\right)$. We may suppose without loss of generality that $j \in\{1, \cdots, n-1\}$, since, for any extension of ψ^{\prime} to an L-coloring of $G_{R^{\dagger}}^{0}$, we may interchange the colors in p_{1}, p_{2} to produce a new extension of ψ^{\prime} to a proper L-coloring of $G_{R^{1}}^{0}$, as $L_{\psi^{\prime}}\left(p_{1}\right)=L_{\psi^{\prime}}\left(p_{2}\right)$. Now let $\ell \in S^{\prime}$ be the lone color of $L\left(q_{n}\right) \backslash\left\{\psi\left(p_{1}\right), d\right\}$, where $\ell \notin L_{\psi^{\prime}}\left(p_{i}\right)$ for each $i \in\{1,2\}$. Since $\left(G^{*}, v^{*}, p_{1} p_{2}, L_{\psi^{\prime}}^{T}\right)$ satisfies Statement 2c) of Theorem 4.1.3, there is a pair of colors in $\left\{\psi\left(p_{1}\right), \psi\left(p_{2}\right), d\right\}$ lying in $\bigcap_{i=1}^{n-1} L\left(q_{i}\right)$. Since $d \notin L\left(q_{j}\right)$, we have $\left\{\psi\left(p_{1}\right), \psi\left(p_{2}\right)\right\} \subseteq L\left(q_{i}\right)$ for each $i=1, \cdots, n-1$.

Claim 4.2.17.

1) $L_{\psi^{\prime}}\left(v^{*}\right)=\left\{\psi\left(p_{2}\right), d\right\}$; AND
2) ${\underset{z}{H_{1}}}\left(\psi\left(q_{0}\right), \psi\left(p_{2}\right), \bullet\right)=z_{H_{1}}\left(\psi\left(q_{0}\right), d, \bullet\right)=S^{\prime}$; $A N D$
3) $\left\{\psi\left(p_{1}\right), \psi\left(p_{2}\right), d\right\}=L\left(q_{n-1}\right)$; $A N D$
4) H_{2} is not a triangle; AND
5) $\mathcal{Z}_{H_{1}}\left(\psi\left(q_{0}\right), \psi\left(p_{1}\right), \bullet\right)=\{d\}$.

Proof: Since $d \notin L\left(q_{j}\right)$, we have $\left|\mathcal{Z}_{H_{1}}\left(\psi\left(q_{0}\right), d, \bullet\right)\right| \geq 2$. Likewise, since $\psi\left(p_{2}\right) \notin L\left(q_{n}\right)$, we have $\left|\mathcal{Z}_{H_{1}}\left(\psi\left(q_{0}\right), \psi\left(p_{2}\right), \bullet\right)\right| \geq$ 2 and $\left|\mathcal{Z}_{H_{2}}\left(\bullet, \psi\left(p_{2}\right), \psi\left(q_{t+1}\right)\right)\right| \geq 2$.

Since the crown $\left(G^{*}, v^{*}, p_{1} p_{2}, L_{\psi^{\prime}}^{T}\right)$ satisfies Statement 2c) of Theorem 4.1.3, we have $\left|L_{\psi^{\prime}}\left(v^{*}\right)\right|=2$ and $L_{\psi^{\prime}}\left(v^{*}\right) \subseteq$ $\left\{\psi\left(p_{1}\right), \psi\left(p_{2}\right), d\right\}$. Note that $L_{\psi^{\prime}}\left(v^{*}\right) \neq\left\{\psi\left(p_{1}\right), \psi\left(p_{2}\right)\right\}$, since ψ is a proper L-coloring of $G_{R^{1}}^{1}$. Thus, we have $d \in L_{\psi^{\prime}}\left(v^{*}\right)$. Now, suppose toward a contradiction that $\psi\left(p_{2}\right) \notin L_{\psi^{\prime}}\left(v^{*}\right)$. Now, since $\left|\mathcal{Z}_{H_{1}}\left(\psi\left(p_{0}\right), d, \bullet\right)\right| \geq 2$ and $\left|\mathcal{Z}_{H_{2}}\left(\bullet, \psi\left(p_{2}\right), \psi\left(q_{t+1}\right)\right)\right| \geq 2$, we get that $\left[d, \psi\left(p_{2}\right), \psi^{\prime}\right]$ is a pointer for G_{Q}^{1}, contradicting Claim 4.2.13. This proves Fact 1.

Now, we have $\mathcal{z}_{H_{1}}\left(\psi\left(q_{0}\right), d, \bullet\right)=L\left(q_{n}\right) \backslash\{d\}=S^{\prime}$. Suppose toward a contradiction that $d \in \mathcal{Z}_{H_{1}}\left(\psi\left(q_{0}\right), \psi\left(p_{2}\right), \bullet\right)$. Then $\mathcal{Z}_{H_{1}}\left(\psi\left(q_{0}\right), d, \bullet\right) \cup \mathcal{Z}_{H_{1}}\left(\psi\left(q_{0}\right), \psi\left(p_{2}\right), \bullet\right)=L\left(q_{n}\right)$. But then $\left[\left\{d, \psi\left(p_{2}\right)\right\}, \psi\left(p_{1}\right), \psi^{\prime}\right]$ is a pointer for G_{Q}^{1}, contradicting Claim 4.2.13. Thus, $d \notin \mathcal{Z}_{H_{1}}\left(\psi\left(q_{0}\right), \psi\left(p_{2}\right), \bullet\right)$ so we have $z_{H_{1}}\left(\psi\left(q_{0}\right), \psi\left(p_{2}\right), \bullet\right)=L\left(q_{n}\right) \backslash\{d\}=S^{\prime}$. This proves Fact 2.

Now we prove Fact 3. Since $\left\{\psi\left(p_{1}\right), \psi\left(p_{2}\right)\right\} \subseteq L\left(q_{n-1}\right)$, it just remains to show that $d \in L\left(q_{n-1}\right)$. Suppose toward a contradiction that $d \notin L\left(q_{n-1}\right)$. In that case, the L-coloring $\left(\psi\left(q_{0}\right), \psi\left(p_{2}\right), d\right)$ of $q_{0} p_{1} q_{n}$ extends to an L-coloring of H_{1}, and so $d \in \mathcal{Z}_{H_{1}}\left(\psi\left(q_{0}\right), \psi\left(p_{2}\right), \bullet\right)$ contradicting Fact 2. Thus, we have $L\left(q_{n-1}\right)=\left\{\psi\left(p_{1}\right), \psi\left(p_{2}\right), d\right\}$, as desired. This completes the proof of Fact 3.

Now we prove Fact 4. Suppose toward a contradiction that H_{2} is a triangle. Then we have $n=t$. Now we again consider the coloring ϕ of G_{Q}^{1} with $L_{\phi}\left(p_{1}\right)=L_{\phi}\left(p_{2}\right)=\{a, b, r\}$ and $L_{\phi}\left(v^{*}\right)=\{a, b\}$. Recall that S^{\prime} is a set of two colors in $\{a, b, r\}$. Furthermore, note that $\{b, r\} \nsubseteq L\left(q_{n}\right)$, or else, since $\{b, r\} \subseteq \bigcap_{i=1}^{n-1} L\left(q_{i}\right)$ by assumption, we are back to Case 2.1, which we have already ruled out. Thus, $S^{\prime} \neq\{b, r\}$, so we have either $S^{\prime}=\{a, b\}$ or $S^{\prime}=\{a, r\}$. Thus, consider the following cases:

Case 1: $S^{\prime}=\{a, b\}$
In this case, since $\left\{\psi\left(p_{1}\right), \psi\left(p_{2}\right)\right\} \subseteq L\left(q_{n-1}\right)$, at least one of a, b does not lie in $L\left(q_{n-1}\right)$. Thus, we have $\mid \mathcal{Z}_{H_{1}}\left(\phi\left(q_{0}\right), a, \bullet\right) \cup$ $\mathcal{Z}_{H_{1}}\left(\phi\left(q_{0}\right), b, \bullet\right) \mid \geq 2$. Furthermore, since $\{b, r\} \nsubseteq L\left(q_{n}\right)$, we have $r \notin L\left(q_{n}\right)$ and so $\left|Z_{H_{2}}\left(\bullet, r, \phi\left(q_{n+1}\right)\right)\right| \geq 2$. Thus, since $L_{\phi}\left(v^{*}\right)=\{a, b\}$, we get that $[\{a, b\}, r, \phi]$ is a pointer for G_{Q}^{1}, contradicting Observation ??, so we have ruled out the possibility that $S^{\prime}=\{a, b\}$.

Case 2: $S^{\prime}=\{a, r\}$.
In this case, since $\{b, r\} \nsubseteq L\left(q_{n}\right)$, we have $b \notin L\left(q_{n}\right)$ and thus $\left|\mathcal{Z}_{H_{1}}\left(\phi\left(q_{0}\right), b, \bullet\right)\right| \geq 2$ and $\left|\mathcal{Z}_{H_{2}}\left(\bullet, b, \phi\left(q_{n+1}\right)\right)\right| \geq$ 2. Furthermore, since H_{2} is a triangle and $\phi\left(q_{n+1}\right) \notin\{a, b, r\}$, we have $\{a, r\} \subseteq \mathcal{Z}_{H_{2}}\left(\bullet, b, \phi\left(q_{n+1}\right)\right)$. Thus, we get $\mathcal{Z}_{H_{1}}(r)=\left\{\psi\left(p_{1}\right)\right\}$, or else $[r, b, \phi]$ is a pointer for G_{Q}^{1}, contradicting Claim 4.2.13. Since $\mathcal{Z}_{H_{1}}\left(\phi\left(q_{0}\right), r, \bullet\right)=$ $\left\{\psi\left(p_{1}\right)\right\}$, we have $r \in L\left(q_{n-1}\right)$ and thus $L\left(q_{n-1}\right)=\left\{\psi\left(p_{1}\right), \psi\left(p_{2}\right), r\right\}$ by Fact 3. Thus, we have $d=r$, since $\left\{\psi\left(p_{1}\right), \psi\left(p_{2}\right)\right\} \cap S^{\prime}=\varnothing$. But then, by Fact 4 of Claim 4.2.16, we have $r \notin L\left(q_{j}\right)$, and thus $\mathcal{Z}_{H_{1}}\left(\phi\left(q_{0}\right), r, \bullet\right) \mid \geq 2$, contradicting the fact that $\mathcal{Z}_{H_{1}}\left(\phi\left(q_{0}\right), r, \bullet\right)=\left\{\psi\left(p_{1}\right)\right\}$. So we have ruled out the possibility that $S^{\prime}=\{a, r\}$, completing the proof of Fact 4.

Now we prove Fact 5. Firstly, we have $\left|\mathcal{Z}_{H_{1}}\left(\psi\left(q_{0}\right), \psi\left(p_{1}\right), \bullet\right)\right|=1$, or else $z_{H_{1}}\left(\psi\left(q_{0}\right), \psi\left(p_{1}\right), \bullet\right) \cap \mathcal{Z}_{H_{2}}\left(\bullet, \psi\left(p_{2}\right), q_{0}\right) \neq$ \varnothing, and then $\left[\psi\left(p_{1}\right), \psi\left(p_{2}\right), \psi^{\prime}\right]$ is a pointer for G_{Q}^{1}, contradiction Claim 4.2.13. Now suppose toward a contradiction that $\mathcal{Z}_{H_{1}}\left(\psi\left(q_{0}\right), \psi\left(p_{1}\right), \bullet\right) \neq\{d\}$. Thus, since $\left|\mathcal{Z}_{H_{1}}\left(\psi\left(q_{0}\right), \psi\left(p_{1}\right), \bullet\right)\right|=1$, we have $\mathcal{Z}_{H_{1}}\left(\psi\left(q_{0}\right), \psi\left(p_{1}\right), \bullet\right)=$
$\{\ell\}$. Furthermore, we have $\mathcal{Z}_{H_{2}}\left(\bullet, \psi\left(p_{2}\right), \psi\left(q_{t+1}\right)=\left\{\psi\left(p_{1}\right), d\right\}\right.$, or else, again, we have $\mathcal{Z}_{H_{1}}\left(\psi\left(q_{0}\right), \psi\left(p_{1}\right), \bullet\right) \cap$ $\mathcal{Z}_{H_{2}}\left(\bullet, \psi\left(p_{2}\right), \psi\left(q_{t+1}\right)\right) \neq \varnothing$, and thus $\left[\psi\left(p_{1}\right), \psi\left(p_{2}\right), \psi^{\prime}\right]$ is a pointer for G_{Q}^{1}, contradicting Claim 4.2.13.

Since $\psi\left(p_{1}\right) \notin L_{\psi}\left(v^{*}\right)$, we have $\ell \notin \mathcal{Z}_{H_{2}}\left(\bullet, \psi\left(p_{2}\right), \psi\left(q_{t+1}\right)\right) \cup \mathcal{Z}_{H_{2}}\left(\bullet, d, \psi\left(q_{t+1}\right)\right)$, or else $\left[\psi\left(p_{1}\right),\left\{\psi\left(p_{2}\right), d\right\}, \psi^{\prime}\right]$ is a pointer for G_{Q}^{1}, contradicting Claim 4.2.13. Thus, we have $\mathcal{Z}_{H_{2}}\left(\bullet, \psi\left(p_{2}\right), \psi\left(q_{t+1}\right)\right)=\left\{d, \psi_{1}\left(p_{1}\right)\right\}$ and $\mathcal{Z}_{H_{2}}\left(\bullet, d, \psi\left(q_{t+1}\right)\right)=$ $\left\{\psi\left(p_{1}\right)\right\}$. Now, since H_{2} is not a triangle, q_{n+1} is an internal vertex of $H_{2} \backslash\left\{p_{2}\right\}$, and since $\left|\mathcal{Z}_{H_{2}}\left(\bullet, d, \psi\left(q_{t+1}\right)\right)\right|=1$, we have $d \in L\left(q_{n+1}\right)$. Furthermore, we have $\ell \in L\left(q_{n+1}\right)$, or else $\ell \in \mathcal{Z}_{H_{2}}\left(\bullet, \psi\left(p_{2}\right), \psi\left(q_{t+1}\right)\right)$, contradicting the fact that $z_{H_{2}}\left(\bullet, \psi\left(p_{2}\right), \psi\left(q_{t+1}\right)\right)=\left\{\psi\left(p_{1}\right), d\right\}$. Thus, $L\left(q_{n+1}\right)=\left\{\ell, d, \psi\left(p_{1}\right)\right\}$ and $z_{H_{2}}\left(\bullet, \psi\left(p_{2}\right), \psi\left(q_{t+1}\right)\right)=L\left(q_{n}\right)$, again contradicting the fact that $\ell \notin \mathcal{Z}_{H_{2}}\left(\bullet, \psi\left(p_{2}\right), \psi\left(q_{t+1}\right)\right)$. This proves Fact 5 .

By Fact 5 of Claim 4.2.17, we have $\ell \notin \mathcal{Z}_{H_{1}}\left(\psi\left(q_{0}\right), \psi\left(p_{1}\right), \bullet\right)$. Since $L\left(q_{n-1}\right)=\left\{\psi\left(p_{1}\right), \psi\left(p_{2}\right), d\right\}$ by Fact 3 of Claim 4.2.17, we have $\ell \notin L\left(q_{n-1}\right)$. But then, the L-coloring $\left(\psi\left(q_{0}\right), \psi\left(p_{1}\right), \ell\right)$ of $q_{0} p_{1} q_{n}$ extends to an L-coloring of H_{1}, contradicting the fact that $\ell \notin \mathcal{Z}_{H_{1}}\left(\psi\left(q_{0}\right), \psi\left(p_{1}\right), \bullet\right)$. This rules out Subcase 2.2. Thus, having ruled out each subcase of Case 2, we conclude that our assumption that ($G^{*}, v^{*}, p_{1} p_{2}, L_{\psi^{\prime}}^{T}$) satisfies Statement 2c) of Theorem 4.1.3 is false. Thus, our original assumption that there exists a bad path in $\mathcal{K}^{4}(C, \mathcal{T})$ is false. This completes the proof of Lemma 4.2.1.

4.3 3-Chords Incident to an Internal Vertex of the Precolored Path

In this section and the next one we complete the proof of Theorem 4 by analyzing 3-chords of an open ring of a critical mosaic in which precisely one endpoint is an internal vertex of the precolored path. In Chapter 3 we showed that, given an open ring C in a critical mosaic, with precolored path \mathbf{P}, there is no 3-chord of C with both endpoints in $C \backslash \stackrel{\circ}{\mathbf{P}}$. We now deal with the case where one endpoint of the 3-chord lies in $\stackrel{\circ}{\mathbf{P}}$. We begin with the following simple observation:

Observation 4.3.1. Let $\mathcal{T}=\left(G, \mathcal{C}, L, C_{*}\right)$ be a critical mosaic, let $C \in \mathcal{C}$ be an open \mathcal{T}-ring. Let $\mathbf{P}:=p_{1} \cdots p_{m}$, and let $Q:=x_{1} x_{2} x_{3} x_{4}$ be a 3-chord of C with precisely one endpoint in $V(\stackrel{\circ}{\mathbf{~}})$. Then the following hold.

1) $x_{1} \in\left\{p_{2}, p_{3}, p_{m-1}, p_{m}\right\} ; A N D$
2) If x_{1}, x_{4} have no common neighbor in G_{Q}^{small}, and Q is an induced subgraph of $G_{Q}^{\text {small }}$, then, for any $v \in$ $\left.V\left(G_{Q}^{\text {small }}\right) \backslash Q\right), G[N(v) \cap V(Q)]$ is a subpath of Q of length at most one. An analogous statement holds for $G_{Q}^{\text {small }}$.

Proof. 1) is just an immediate consequence of 4) of Theorem 2.2.4. Now let v^{*} be a vertex of $V\left(G_{Q}^{\text {small }} \backslash Q\right)$ with three neighbors in Q. If $G\left[N\left(v^{*}\right) \cap V(Q)\right]$ is not a subpath of Q, then, without loss of generality, we have $N\left(v^{*}\right) \cap V(Q)=$ $\left\{x_{1}, x_{2}, x_{4}\right\}$. But since G is short-separation-free and Q is an induced subgraph of $G_{Q}^{\text {small }}$, we have $x_{3} \in N\left(v^{*}\right)$ by our triangulation conditions, contradicting our assumption. Thus, $G\left[N\left(v^{*}\right) \cap V(Q)\right]$ is a subpath of Q. On the other hand, if v^{*} has less than three neighbors on Q and $G\left[N\left(v^{*}\right) \cap V(Q)\right]$ is not a subpath of Q, then, without loss of generaity, we let $N\left(v^{*}\right) \cap V(Q)=\left\{x_{1}, x_{3}\right\}$, since $N\left(x_{1}\right) \cap N\left(x_{4}\right) \cap V\left(G_{Q}^{\text {small }}\right)=\varnothing$. Since Q is an induced subgraph of $G_{Q}^{\text {small }}$ and G is short-separation-free, we have $x_{2} \in N\left(v^{*}\right)$ as well by our triangulation conditions, contradicting our assumption. An identical argument holds for $G_{Q}^{\text {large }}$.

The remaindmer of Section 4.3 consists of two facts, which are Proposition 4.3.2 and Proposition 4.3.4.

Proposition 4.3.2. Let $\mathcal{T}=\left(G, \mathcal{C}, L, C_{*}\right)$ be a critical mosaic, let $C \in \mathcal{C}$ be an open \mathcal{T}-ring, and let $\mathbf{P}:=\mathbf{P}_{\mathcal{T}}(C)$. Let $\mathbf{P}:=p_{1} \cdots p_{m}$, and let $Q:=x_{1} x_{2} x_{3} x_{4}$ be a 3-chord of C with $x_{1} \in V(\stackrel{\circ}{\mathbf{P}})$ and $x_{4} \in V(C \backslash \stackrel{\circ}{\mathbf{P}})\left(\right.$ possibly x_{4} is an endpoint of P). If the following conditions hold, then $V\left(G_{Q}^{\text {large }} \cup P\right)$ is L-colorable.

1) $\left|V\left(G_{Q}^{\text {small }}\right) \backslash V(C \cup Q)\right|>4$; AND
2) x_{1}, x_{2}, x_{3} do not have a common neighbor in $G_{Q}^{\text {large }} \backslash Q$; AND
3) Q is an induced subpath of G; AND
4) $N\left(x_{3}\right) \cap V\left(\mathbf{P}-x_{4}\right)=\varnothing$ and neither endpoint of P lies in $N\left(x_{2}\right)$.

Proof. Applying Observation 4.3.1, without loss of generality, let $x_{1} \in\left\{p_{2}, p_{3}\right\}$. We construct a tessellation with fewer vertices than G which contains $G_{Q}^{\text {large }}$ as a subgraph. We have to be somewhat careful to avoid violating our distance conditions and to avoid creating a vertex with three or more neighbors on the precolored path. The main technical obstacle to creating a smaller tessellation is the possibility that the edge $p_{1} x_{4}$ is present in G. Consider the following cases:

Case 1: $p_{2} \in N\left(x_{2}\right)$
In this case, we have $x_{1} \in\left\{p_{2}, p_{3}\right\}$. Let $Q^{*}:=p_{2} x_{2} x_{3} x_{4}$. Since $x_{1} \in\left\{p_{2}, p_{3}\right\}$ we have $G_{Q^{*}}^{\text {small }} \subseteq G_{Q}^{\text {small }}$ (possibly $Q^{*}=Q$). Furthermore, since $G_{Q}^{\text {small }} \backslash G_{Q^{*}}^{\text {small }} \subseteq\left\{p_{2}\right\}$, we have $\left|V\left(G_{Q^{*}}^{\text {small }}\right) \backslash V\left(C \cup Q^{*}\right)\right|>4$, so let $s \in V\left(G_{Q^{*}}^{\text {small }}\right) \backslash$ $V\left(C \cup Q^{*}\right)$. Note that $x_{4} \neq p_{1}$, or else the 4-cycle $p_{1} p_{2} x_{2} x_{3}$ separates s from $G_{Q}^{\text {large }}$. Since Q is an induced subgraph of G and C is an induced cycle of G, Q^{*} is also an induced subgraph of G. W now break Case 1 into two subcases.

Subcase $1.1 x_{2}, x_{3}, x_{4}$ do not have a common neighbor in $G_{Q^{*}}^{\text {large }} \backslash Q^{*}$
In this case, by Observation 4.3.1, for each $v \in V\left(G_{Q^{*}}^{\text {large }} \backslash Q^{*}\right), G[N(v) \cap V(Q *)]$ is a subpath of Q^{*} of length at most one. Let G^{\dagger} be a graph obtained from $G_{Q^{*}}^{\text {arge }}+p_{2} p_{1}$ by first adding to $G_{Q^{*}}^{\text {arge }}+p_{2} p_{1}$ the edge $p_{1} x_{4}$, and then adding a lone vertex v^{*} adjacent to each vertex in the 5-cycle $p_{2} x_{2} x_{3} x_{4} p_{1}$. Let $C^{\dagger}:=\left(C \cap G_{Q}^{\text {large }}\right)+p_{2} p_{1} x_{4}$ and let C_{*}^{\dagger} be the outer face of G^{\dagger}. Let L^{\dagger} be a list-assignment for G^{\dagger} where $L^{\dagger}\left(v^{*}\right)$ is an arbitrary 5-list and otherwise $L^{\dagger}=L$.

Since Q^{*} is an induced subgraph of G, and $G[N(v) \cap V(Q *)]$ is a subpath of Q^{*} of length at most one for each $v \in V\left(G_{Q^{*}}^{\text {large }}\right)$, it follows that G^{\dagger} is short-separation-free. Thus, Thus, $\mathcal{T}^{\dagger}:=\left(G^{\dagger},(\mathcal{C} \backslash\{C\}) \cup\left\{C^{\dagger}\right\}, L^{\dagger}, C_{*}^{\dagger}\right)$ is a tessellation, where C^{\dagger} is an open ring which also has precolored path \mathbf{P}, so \mathcal{T}^{\dagger} clearly satisfies M0) of Definition 2.1.6. Since C^{\dagger} is an induced cycle of G^{\dagger}, and $N\left(v^{*}\right) \cap V(\mathbf{P})=\left\{p_{1}, p_{2}\right\}, \mathcal{T}^{\dagger}$ also satisfies M1), and M2) is immediate.

If \mathcal{T}^{\dagger} does not satisfy the distance conditions of Definition 2.1.6 then there exists a $C^{\prime} \in \mathcal{C} \backslash\{C\}$ and an $H \subseteq C^{\prime}$ such that $d_{G^{\dagger}}\left(H, v^{*}\right)<d_{G}(H, C \backslash \stackrel{\circ}{\mathbf{P}})$. Let R be a shortest $\left(H, v^{*}\right)$-path in G^{\dagger}. Then there is an $\left(H,\left\{p_{2}, x_{4}\right\}\right)$-path in G of length $|E(R)|-1$, so there is a is an $(H, C \backslash \stackrel{\circ}{\mathbf{P}})$-path of length at most $|E(R)|$, contradicting the distance conditions on \mathcal{T}. Thus, $\left(G^{\dagger}(\mathcal{C} \backslash\{C\}) \cup\left\{C^{\dagger}\right\}, L^{\dagger}, C_{*}^{\dagger}\right)$ satisfies the distance conditions of Definition 2.1.6 and is thus a mosaic. As indicated above, we have $\left|V\left(G_{Q^{*}}^{\text {small }}\right) \backslash V\left(C \cup Q^{*}\right)\right|>1$, so we get $\left|V\left(G^{\dagger}\right)\right|<|V(G)|$. Thus, G^{\dagger} is L-colorable by the minimality of \mathcal{T}, so let ϕ be an L^{\dagger}-coloring of G^{\dagger} and let ϕ^{\prime} be the restriction of ϕ to $G_{Q^{*}}^{\text {large }}$. If $p_{1} x_{4} \notin E(G)$, then, since C is an induced subgraph of G, it follows that ϕ^{\prime} extends to a proper L-coloring of $V\left(G_{Q^{*}}^{\text {large }}\right) \cup\left\{p_{1}\right\}$, since $N\left(x_{3}\right) \cap V\left(\mathbf{P} \backslash\left\{x_{4}\right\}\right)=\varnothing$. Likewise, if $p_{1} x_{4} \in E(G)$, then, by construction of G^{\dagger}, we have $\phi\left(p_{1}\right) \neq \phi\left(x_{4}\right)$, and thus, again, ϕ^{\prime} extends to a proper L-coloring of $V\left(G_{Q^{*}}^{\text {large }}\right) \cup\left\{p_{1}\right\}$. Thus, ϕ^{\prime} extends to a proper L-coloring of $V\left(G_{Q}^{\text {large }}\right) \cup\left\{p_{1}, p_{2}\right\}$, so we are done in this case.
Subcase 1.2 x_{2}, x_{3}, x_{4} have a common neighbor in $G_{Q^{*}}^{\text {large }} \backslash Q^{*}$
In this case, we let w be the common neighbor of x_{2}, x_{3}, x_{4} in $G_{Q^{*}}^{\text {large }} \backslash Q^{*}$.

Claim 4.3.3. $N(w) \cap V(\mathbf{P})=\varnothing$
Proof: Suppose there is a $p \in N(w) \cap V(\mathbf{P})$. By our conditions on Q, we have $x_{1} \notin N(w)$, and Q separates w from $V\left(p_{1} \mathbf{P} x_{1}\right) \backslash\left\{x_{1}\right\}$, so $p \in\left(x_{1} \mathbf{P} p_{m}\right) \backslash\left\{x_{1}\right\}$. By Corollary 2.3.14, we have $|E(\mathbf{P})|=\left\lfloor\frac{2 N_{\mathrm{mo}}}{3}\right\rfloor$ and $p_{m}, p_{m-1} \notin N(w)$. Thus, by 4) of Theorem 2.2.4, we get $N(w) \cap V(\mathbf{P}) \subseteq\left\{p_{1}, p_{2}\right\}$, contradicting the fact that $p \in V\left(x_{1} \mathbf{P} p_{m}\right) \backslash\left\{x_{1}\right\}$.

Now we break Subcase 1.2 into two subcases.
Subcase 1.2.1 $p_{3} \in N\left(x_{2}\right)$
In this case, let $Q^{\dagger}:=p_{3} x_{2} w x_{4}$. Since $p_{3} \notin N(w), Q^{\dagger}$ is induced in G. Furthermore, $\left|V\left(G_{Q^{\dagger}}^{\text {small }}\right) \backslash V\left(C \cup Q^{\dagger}\right)\right|>$ $\left|V\left(G_{Q}^{\text {small }}\right) \backslash V(C \cup Q)\right|>4$, and $N(w) \cap V(\mathbf{P})=\varnothing$.
Thus, if the three vertices p_{3}, x_{2}, w do not have a common neighbor in $G_{Q^{\dagger}}^{\text {large }}$, then, Q^{\dagger} satisfies all the conditions of Proposition 4.3.2. In that case, we apply Subcase 1.1 with the role of Q replaced by Q^{\dagger}, since x_{2}, w, x_{4} do not have a common neighbor in $G_{Q^{\dagger}}^{\text {large }} \backslash Q^{\dagger}$, or else G contains a copy of $K_{2,3}$. Thus, $V\left(G_{Q^{\dagger}}^{\text {large }}\right) \cup\left\{p_{1}, p_{2}\right\}$ admits an L-coloring ϕ, and ϕ extends to L-color x_{3} as well, since x_{3} only has three neighbors in dom (ϕ). Thus, in that case, $V\left(G_{Q}^{\text {large }}\right) \cup\left\{p_{1}, p_{2}\right\}$ is L-colorable, as desired.
Now suppose that the three vertices p_{2}, x_{2}, w have a common neighbor w^{\prime} in $V\left(G_{Q^{\dagger}}^{\text {large }} \backslash Q^{\dagger}\right)$. Then G contains the 3-chord $Q^{\dagger \dagger}:=p_{3} w^{\prime} w x_{4}$ of C. Now we let $G^{\dagger}:=G_{p_{3} x_{2} x_{3} x_{4}}^{\text {large }}$ and we let L^{\dagger} be a list-assignment for G^{\dagger} where $L^{\dagger}\left(x_{2}\right)=L\left(p_{2}\right)$ and $L^{\dagger}\left(x_{3}\right)=L\left(p_{1}\right)$. That is, since $p_{4} \neq x_{1}$, our new precolored path is $\mathbf{P}^{\prime \prime}:=p_{m} \cdots p_{3} x_{2} x_{3}$. Let $C^{\dagger}:=\left(G^{\dagger} \cap C\right)+p_{3} x_{2} x_{3} x_{4}$ and let C_{*}^{\dagger} be the outer face of G^{\dagger}. Note that $\mathbf{P}^{\prime \prime}$ is an induced subgraph of C^{\dagger}, so $\mathbf{P}^{\prime \prime}$ is L^{\dagger}-colorable, since \mathbf{P} is L-colorable. Thus, $\mathcal{T}^{\dagger}:=\left(G^{\dagger},(\mathcal{C} \backslash\{C\}) \cup\left\{C^{\dagger}\right\}, L^{\dagger}, C_{*}^{\dagger}\right)$ is a tessellation.

We claim now that \mathcal{T}^{\dagger} is a mosaic. Firstly, if \mathcal{T}^{\dagger} does not satisfy the distance conditions of Definition 2.1.6, then there is a $C^{\prime} \in \mathcal{C} \backslash\{C\}$ and a subgraph H of C^{\prime} such that $d\left(H, x_{3}\right)<d(H, C \backslash \stackrel{\circ}{\mathbf{P}})$. Since the 3-chord $p_{3} w^{\prime} w x_{4}$ of C separates H from x_{3}, the vertex x_{2} is an endpoint of $R \backslash\left\{x_{3}\right\}$, since the only other possible endpoint is w, which is adjacent to $x_{4} \in V(C \backslash \stackrel{\circ}{\mathbf{P}})$. Thus, the endpoint of $R \backslash\left\{x_{2}, x_{3}\right\}$ adjacent to x_{2} is among $p_{3}, w^{\prime}, w, x_{4}$, but each of these vertices of distance at most two from $C \backslash \stackrel{\circ}{\mathbf{P}}$, contradicting the fact that $d\left(H, x_{3}\right)<d(H, C \backslash \stackrel{\circ}{\mathbf{P}})$. Thus, \mathcal{T}^{\dagger} does indeed satisfy the distance conditions of Definition 2.1.6. Furthermore, since $x_{4} \neq p_{1}$, we have $N(w) \cap V\left(\mathbf{P}^{\prime \prime}\right)=\left\{x_{2}, x_{3}\right\}$, and thus \mathcal{T}^{\dagger} also satisfies M1). M2) is immediate, and M0) is satisfied since $\left|E\left(\mathbf{P}^{\prime \prime}\right)\right|=|E(\mathbf{P})|$. Thus, \mathcal{T}^{\dagger} admits an L-coloring ϕ. By construction of L^{\dagger}, we have $\phi\left(x_{4}\right) \neq L\left(p_{1}\right)$, since $L\left(p_{1}\right)=\left\{\phi\left(x_{3}\right)\right\}$. Thus, since Q^{*} is an induced subgraph of G and neither of x_{2}, x_{3} is adjacent to p_{1}, ϕ extends to a proper L-coloring of $V\left(G_{Q^{*}}^{\text {large }} \cup P\right)$, so $\left.V\left(G_{Q}^{\text {large }}\right)\right) \cup\left\{p_{1}\right\}$ is L-colorable, as desired.

Subcase 1.2.2 $p_{3} \notin N\left(x_{2}\right)$
In this case, we have $Q=Q^{*}$. If x_{1}, x_{2}, w do not have a common neighbor in $G_{x_{1} x_{2} w x_{4}}^{\mathrm{large}} \backslash\left\{x_{1}, x_{2}, w, x_{4}\right\}$, then, as above, the 3-chord $x_{1} x_{w} x_{4}$ satisfies all the conditions of Proposition 4.3.2, and since x_{2}, w, x_{4} do not have a common neighbor in $G_{p_{2} x_{2} w x_{4}}^{\text {large }}$, we apply Subcase 1.1 with Q replaced by $x_{1} x_{2} w x_{4}$. Thus, the subgraph of G induced by $V\left(G_{x_{1} x_{2} w x_{4}}^{\text {large }} \cup\left\{p_{1}\right\}\right.$ admits an L-coloring ϕ, and ϕ extends to L-color x_{3} as well, since x_{3} only has three neighbors in $\operatorname{dom}(\phi)$. Thus, $V\left(G_{Q}^{\text {large }}\right) \cup\left\{p_{1}\right\}$ is L-colorable, as desired.
So now suppose that x_{1}, x_{2}, w have a common neighbor in $G_{x_{1} x_{2} w x_{4}}^{\text {large }} \backslash\left\{x_{1}, x_{2}, w, x_{4}\right\}$. Let w^{\prime} be the unique common neighbor of x_{1}, x_{2}, w in $G_{x_{1} x_{2} w x_{4}}^{\text {large }} \backslash\left\{x_{1}, x_{2}, w, x_{4}\right\}$. Then G contains the 3-chord $R:=x_{1} w^{\prime} w x_{4}$ of C, and, since G is short-separation-free, we have $V\left(G_{R}^{\text {small }} \backslash\left\{w, w^{\prime}\right\}\right)=V\left(G_{Q}^{\text {small }}\right)$. Let G^{\prime} be the graph obtained from $G_{R}^{\text {large }}$ by adding to $G_{R}^{\text {large }}$ the edges $x_{1} p_{1}$ and $p_{1} x_{4}$. Then G^{\prime} contains the 5-cycle cycle $D:=x_{1} p_{1} x_{4} w w^{\prime}$, and D is a cyclic facial subgraph of G^{\prime}. Let U be the unique connected open region of \mathbb{R}^{2} such that $\partial(U)=D$ and $U \cap V\left(G^{\prime}\right)=\varnothing$.

Let G^{\dagger} be a graph obtained from G^{\prime} by adding to U a 5-cycle $u_{1} u_{2} u_{3} u_{4} u_{5}$, where each vertex of $\left\{u_{1}, u_{2}, u_{3}, u_{4}, u_{5}\right\}$ is adjacent to an edge of D, and then adding a lone vertex u^{*} in U adjacent to all five vertices of $\left\{u_{1}, u_{2}, u_{3}, u_{4}, u_{5}\right\}$. Then G^{\dagger} is still short-separation-free. Let $C^{\dagger} ;=\left(C \cap G_{Q}^{\text {arge }}+x_{1} p_{1} x_{4}\right.$ and let C_{*}^{\dagger} be the outer face of G^{\dagger}. Finally, let L^{\dagger} be a list-assignment for $V\left(G^{\dagger}\right)$ where each vertex of $\left\{u_{1}, u_{2}, u_{3}, u_{4}, u_{5}, u^{*}\right\}$ is assigned an arbitrary 5-list, and otherwise $L^{\dagger}=L$. Then $\mathcal{T}^{\dagger}:=\left(G^{\dagger},(\mathcal{C} \backslash\{C\}) \cup\left\{C^{\dagger}\right\}, L^{\dagger}, C_{*}^{\dagger}\right)$ is a tessellation.
We claim that \mathcal{T}^{\dagger} is a mosaic. Firstly, since $x_{1}=p_{2}$, we get that $d_{G^{\dagger}}\left(w^{\prime}, p_{1}\right)=2$ by our construction of G^{\dagger}. Furthermore, R separates each element of $\mathcal{C} \backslash\{C\}$ from p_{1}. Thus, since G contains a 2-path from w^{\prime} to x_{4}, and w is adjacent to x_{4}, it follows that \mathcal{T}^{\dagger} satisfies the distance conditions of Definition 2.1.6. M0) and M2) are immediate, and, by constriction of G^{\dagger}, C^{\dagger} is an induced cycle of G^{\dagger}, and, for each $1 \leq i \leq 5, G^{\dagger}\left[N\left(u_{i}\right) \cap V(\mathbf{P})\right]$ is a path of length at most one. Thus, \mathcal{T}^{\dagger} is indeed a mosaic. By assumption, we have $\mid V\left(G_{Q}^{\text {small }} \backslash V(C \cup Q) \mid>4\right.$. Thus, since $x_{2}, x_{3} \in V\left(G_{R}^{\text {large }}\right) \backslash V(C \cup R)$ and $x_{2}, x_{3} \in V(Q)$, we have $\left|V\left(G^{\dagger}\right)\right|<|V(G)|$, since G contains at least seven vertices outside of $V\left(G_{R}^{\text {large }}\right) \cup V(C)$. Thus, by the minimality of \mathcal{T}, G^{\dagger} admits an L-coloring ϕ. Let ϕ^{\prime} be the restriction of ϕ to $V\left(G_{R}^{\text {large }}\right) \cup\left\{p_{1}\right\}$. Then ϕ extends to color x_{2}, x_{3} as well, since each of x_{2}, x_{3} has only at most three neighbors in $\operatorname{dom}\left(\phi^{\prime}\right)$ by our conditions on Q. Thus, we obtain a proper L-coloring of $V\left(G_{Q}^{\text {large }} \cup \mathbf{P}\right)$, as desired. This completes Case 1 of Proposition 4.3.2.

Case 2: $p_{2} \notin N\left(x_{2}\right)$
In this case, we have $x_{1}=p_{3}$ and $N\left(x_{2}\right) \cap V(\mathbf{P})=\left\{p_{3}\right\}$. We break this into two subcases.
Subcase $2.1 p_{1} \neq x_{4}$
In this case, Let G^{\dagger} be a graph obtained from $G_{Q}^{\text {large }}$ by adding to $G_{Q}^{\text {large }}$ a vertex v^{*} adjacent to each of x_{1}, x_{2}, x_{3} and a vertex $v^{* *}$ adjacent to each of v^{*}, x_{3}, x_{4}. Let $C^{\dagger}:=\left(C \cap G_{Q}^{\text {large }}\right)+x_{1} v^{*} v^{* *} x_{4}$ and let $\mathbf{P}^{\prime}:=p_{m} \cdots p_{3} v^{*} v^{* *}$. Let L^{\dagger} be a list-assignment for $V\left(G^{\dagger}\right)$, where $L^{\dagger}\left(v^{*}\right)=L\left(p_{2}\right)$ and $L^{\dagger}\left(v^{* *}\right)=L\left(p_{1}\right)$. Since $x_{1}=p_{3}$, we have $\left|E\left(\mathbf{P}^{\prime}\right)\right|=|E(\mathbf{P})|$. Let C_{*}^{\dagger} be the outer face of G^{\dagger} and let $\mathcal{T}^{\dagger}:=\left(G^{\dagger},(\mathcal{C} \backslash\{C\}) \cup\left\{C^{\dagger}\right), L^{\dagger}, C_{*}^{\dagger}\right)$.

Since Q is an induced subpath of G and x_{1}, x_{2}, x_{3} do not have a common neighbor in G, G^{\dagger} is short-separation-free, so \mathcal{T}^{\dagger} is a tessellation. Furthermore, C^{\dagger} is an open \mathcal{T}^{\dagger}-ring with precolored path \mathbf{P}^{\prime}, and \mathbf{P}^{\prime} is L^{\dagger}-colorable, since \mathbf{P} is L-colorable.

By assumption, $p_{3} \notin N\left(x_{3}\right)$, and thus, by Observation 4.3.1, $G^{\dagger}\left[N\left(x_{2}\right) \cap V\left(\mathbf{P}^{\prime}\right)\right]$ consists of $p_{3} v^{*}$ and $G^{\dagger}\left[N\left(x_{3}\right) \cap\right.$ $\left.V\left(P^{\prime}\right)\right]=v^{*} v^{* *}$, so M0)-M2) are satisfied. Finally, we have $d_{G^{\dagger}}\left(x_{2}, v^{* *}\right)=2$ and $d_{G^{\dagger}}\left(x_{3}, v^{* *}\right)=1$. On the other hand, in G, x_{3} has a neighbor in $C \backslash \stackrel{\circ}{\mathbf{P}}$ and $x_{2} x_{3} x_{4}$ is a 2-path from x_{2} to $C \backslash \stackrel{\circ}{\mathbf{P}}$, so, since \mathcal{T} satisfies the distance conditions of Definition 2.1.6, \mathcal{T}^{\dagger} does as well. Thus, \mathcal{T}^{\dagger} is a mosaic, and, since $\left|V\left(G_{Q}^{\text {small }}\right) \backslash V(C \cup Q)\right|>1$ by assumption, we have $\left|V\left(G^{\dagger}\right)\right|<|V(G)|$, so G^{\dagger} is L^{\dagger}-colorable by the minimality of \mathcal{T}. Thus, G^{\dagger} is L^{\dagger}-colorable, so let ϕ be an L^{\dagger}-coloring of G^{\dagger} and let ϕ^{\prime} be the restriction of ϕ to $G_{Q}^{\text {large }}$.
Since Q is an induced subgraph of G, ϕ^{\prime} is a proper L-coloring of $V\left(G_{Q}^{\text {arge }}\right)$. If $p_{1} x_{4} \notin E(G)$, then, since C is an induced subgraph of G, it follows from condition 3) that ϕ^{\prime} extends to a proper L-coloring of $V\left(G_{Q}^{\text {large }}\right) \cup\left\{p_{1}, p_{2}\right\}$. On the other hand, if $p_{1} x_{4} \in E(G)$, then, by construction of L^{\dagger}, we have $L\left(p_{1}\right) \neq\left\{\phi\left(x_{4}\right)\right\}$, since $\phi\left(x_{4}\right) \neq \phi\left(v^{* *}\right)$. Thus, again, ϕ^{\prime} extends to a proper L-coloring of $V\left(G_{Q}^{\text {large }}\right) \cup\left\{p_{1}, p_{2}\right\}$.

Subcase 2.2 $x_{4}=p_{1}$
In this case, the 5-cycle $D:=p_{3} p_{2} p_{1} x_{3} x_{2}$ is a cyclic facial subgraph of $G_{Q}^{\text {small }}$. We break this into two subcases.
Subcase 2.2.1 x_{2}, x_{3}, x_{4} do not have a common neighbor in $G_{Q}^{\text {large }} \backslash Q$

In this subcase, we let G^{\dagger} be a graph obtained from G by deleting all the vertices of $G_{Q}^{\text {small }} \backslash D$ and replacing them with the edges $x_{2} p_{2}, x_{3} p_{2}$. Note that in this subcase, $G[N(v) \cap V(Q)]$ is a subpath of Q of length at most one for each $v \in V\left(G_{Q}^{\text {large }} \backslash Q\right)$, so G^{\dagger} is short-separation-free, since Q is an induced subpath of G. Thus, $\mathcal{T}^{\dagger}=\left(G^{\dagger}, \mathcal{C}, L^{\dagger}, C_{*}\right)$ is a tessellation. In G^{\dagger}, we have $N\left(x_{2}\right) \cap V(\mathbf{P})=\left\{p_{3}, p_{2}\right\}$ and $N\left(x_{3}\right) \cap V(P)=\left\{p_{1}, p_{2}\right\}$, so \mathcal{T}^{\dagger} satisfies M1) of Definition 2.1.6. Since G contains the edge $x_{3} p_{1}$ and the 2-path $x_{2} x_{3} p_{1}, \mathcal{T}^{\dagger}$ also satisfies the distance conditions of Definition 2.1.6, and M0), M2) are immediate, so \mathcal{T}^{\dagger} is a mosaic. Since $\left|V\left(G^{\dagger}\right)\right|<|V(G)|, G^{\dagger}$ admits an L-coloring, so $V\left(G_{Q}^{\text {large }} \cup \mathbf{P}\right)$ admits an L-coloring.
Subcase 2.2.2 x_{2}, x_{3}, x_{4} have a common neighbor in $G_{Q}^{\text {large }} \backslash Q$
In this case, let w be the unique common neighbor of x_{2}, x_{3}, x_{4} in $G_{Q}^{\text {large }} \backslash Q$. Note that, since Q separates w from p_{2}, we have $N(w) \cap V\left(\mathbf{P} \backslash\left\{p_{1}\right\}\right)=\varnothing$. We now break Subcase 2.2.2 into two subcases.

Subcase 2.2.2.1 x_{1}, x_{2}, w do not have a common neighbor in $G_{Q}^{\text {large }} \backslash Q$
In this case, we simply let $G^{\dagger}=G_{Q}^{\text {arge }}+p_{3} x_{3}$ and we let $C^{\dagger}:=\left(C \cap G_{Q}^{\text {large }}\right)+p_{3} x_{3} p_{1}$. We claim that G^{\dagger} is short-separation-free. To see this, note that, since Q is an induced subgraph of G, if G^{\dagger} is not-short-separation-free, then there is a 2-path in $G_{Q}^{\text {large }} \backslash\left\{x_{2}\right\}$ with endpoints w, p_{3}. By assumption on Q, we have $p_{3} \notin N(w)$, and thus, since G is short-separation-free, it follows from our triangulation conditions that the midpoint if this path is adjacent to x_{2}, contradicting the assumption of this subcase. Thus, G^{\dagger} is indeed short-separation-free.

Let C_{*}^{\dagger} be the outer face of G^{\dagger} and let L^{\dagger} be a list-assignment for $V\left(G^{\dagger}\right)$ where $L^{\dagger}\left(x_{3}\right)=L\left(p_{2}\right)$, and otherwise $L^{\dagger}=$ L. Let $\mathbf{P}^{\prime}:=p_{m} \mathbf{P} p_{3} x_{3} p_{1}$. Since \mathbf{P} is L-colorable, \mathbf{P}^{\prime} is L^{\dagger}-colorable. Thus, $\mathcal{T}^{\dagger}:=\left(G^{\dagger},(\mathcal{C} \backslash\{C\}) \cup\left\{C^{\dagger}\right\}, L^{\dagger}, C_{*}^{\dagger}\right)$ is a tessellation. We claim now that \mathcal{T}^{\dagger} is a mosaic. In G^{\dagger}, we have $N\left(x_{2}\right) \cap V\left(\mathbf{P}^{\prime}\right)=\left\{x_{3}, p_{1}\right\}$. Thus, since C^{\dagger} is an induced subgraph of $G^{\dagger}, \mathcal{T}^{\dagger}$ satisfies M1), and M2) is immediate. Since $\left|E\left(\mathbf{P}^{\prime}\right)\right|=|E(\mathbf{P})|$, we have M1) as well, so \mathcal{T}^{\dagger} is indeed a mosaic. Since $\left|V\left(G^{\dagger}\right)\right|<|V(G)|, G^{\dagger}$ admits an L^{\dagger}-coloring ϕ by the minimality of \mathcal{T}. Let ϕ^{\prime} be the restriction of ϕ to $G_{p_{3} x_{2} w p_{1}}^{\text {large }}$. Then ϕ^{\prime} extends to an L-coloring $\phi^{\prime \prime}$ of $V\left(G_{Q}^{\text {large }}\right)$, since x_{3} has precisely four neighbors among $\operatorname{dom}\left(\phi^{\prime}\right)$. Since $\phi\left(p_{1}\right) \neq \phi\left(x_{3}\right)$ by constriction of $L^{\dagger}, \phi^{\prime \prime}$ is a proper L-coloring of its domain, and since, in G, p_{2} has no neighbors in $\left\{x_{2}, x_{3}\right\}, \phi^{\prime \prime}$ extends to a proper L-coloring of $V\left(G_{Q}^{\text {large }} \cup \mathbf{P}\right)$.
Subcase 2.2.2.2 x_{1}, x_{2}, w have a common neighbor in $G_{Q}^{\text {large }} \backslash Q$
In this case, let w^{\prime} be the unique common neighbor of $x_{1}, x_{2}, w \operatorname{in} G_{Q}^{\text {large }} \backslash Q$. Then G contains the 3-chord $R:=$ $x_{1} w^{\prime} w x_{4}$ of C, and, since G is short-separation-free, we have $V\left(G_{R}^{\text {small }} \backslash\left\{w, w^{\prime}\right\}\right)=V\left(G_{Q}^{\text {small }}\right)$. Let G^{\prime} be the graph obtained from $G_{R}^{\text {large }}$ by adding to $G_{R}^{\text {large }}$ the edges $x_{1} p_{2}$ and $p_{2} x_{4}$. Then G^{\prime} contains the 5-cycle cycle $D:=$ $x_{1} p_{2} x_{4} w w^{\prime}$, and D is a cyclic facial subgraph of G^{\prime}. Let U be the unique connected open region of \mathbb{R}^{2} such that $\partial(U)=D$ and $U \cap V\left(G^{\prime}\right)=\varnothing$.

Let G^{\dagger} be a graph obtained from G^{\prime} by adding to U a 5-cycle $u_{1} u_{2} u_{3} u_{4} u_{5}$, where each vertex of $\left\{u_{1}, u_{2}, u_{3}, u_{4}, u_{5}\right\}$ is adjacent to an edge of D, and then adding a lone vertex u^{*} in U adjacent to all five vertices of $\left\{u_{1}, u_{2}, u_{3}, u_{4}, u_{5}\right\}$. Then G^{\dagger} is still short-separation-free. Let $C^{\dagger} ;=\left(C \cap G_{Q}^{\text {large }}+x_{1} p_{1} x_{4}\right.$ and let C_{*}^{\dagger} be the outer face of G^{\dagger}. Finally, let L^{\dagger} be a list-assignment for $V\left(G^{\dagger}\right)$ where each vertex of $\left\{u_{1}, u_{2}, u_{3}, u_{4}, u_{5}, u^{*}\right\}$ is assigned an arbitrary 5-list, and otherwise $L^{\dagger}=L$. Then $\mathcal{T}^{\dagger}:=\left(G^{\dagger},(\mathcal{C} \backslash\{C\}) \cup\left\{C^{\dagger}\right\}, L^{\dagger}, C_{*}^{\dagger}\right)$ is a tessellation.

We claim that \mathcal{T}^{\dagger} is a mosaic. Firstly, we have $d_{G^{\dagger}}\left(w^{\prime}, p_{1}\right)=2$ by our construction of G^{\dagger}. Thus, since G contains a 2-path from w^{\prime} to x_{4}, and w is adjacent to x_{4}, it follows that \mathcal{T}^{\dagger} satisfies the distance conditions of Definition 2.1.6. M0) and M2) are immediate, and, by constriction of G^{\dagger}, C^{\dagger} is an induced cycle of G^{\dagger}, and, for each $1 \leq$ $i \leq 5, G^{\dagger}\left[N\left(u_{i}\right) \cap V(P)\right]$ is a path of length at most one. Thus, \mathcal{T}^{\dagger} is indeed a mosaic. By assumption, we have $\mid V\left(G_{Q}^{\text {small }} \backslash V(C \cup Q) \mid>4\right.$. Thus, since $x_{2}, x_{3} \in V\left(G_{R}^{\text {large }}\right) \backslash V(C \cup R)$ and $x_{2}, x_{3} \in V(Q)$, we have $\left|V\left(G^{\dagger}\right)\right|<|V(G)|$,
since G contains at least seven vertices outside of $V\left(G_{R}^{\text {large }}\right) \cup V(C)$. Thus, by the minimality of \mathcal{T}, G^{\dagger} admits an L-coloring ϕ. Let ϕ^{\prime} be the restriction of ϕ to $V\left(G_{R}^{\text {large }}\right) \cup\left\{p_{1}, p_{2}\right\}$. Then ϕ extends to color x_{2}, x_{3} as well, since each of x_{2}, x_{3} has only at most three neighbors in $\operatorname{dom}\left(\phi^{\prime}\right)$ by our conditions on Q. Thus, we obtain a proper L-coloring of $V\left(G_{Q}^{\text {large }} \cup \mathbf{P}\right)$, as desired. This completes the proof of Proposition 4.3.2.

We now prove the following, which is the second of two facts which make up Section 4.3.
Proposition 4.3.4. Let $\mathcal{T}=\left(G, \mathcal{C}, L, C_{*}\right)$ be a critical mosaic, let $C \in \mathcal{C}$ be an open \mathcal{T}-ring, and let $\mathbf{P}:=\mathbf{P}_{\mathcal{T}}(C)$. Let $\mathbf{P}:=p_{1} \cdots p_{m}$, and let $Q:=x_{1} x_{2} x_{3} x_{4}$ be a 3 -chord of C with $x_{1} \in V(\stackrel{\circ}{\mathbf{P}})$ and $x_{4} \in V(C \backslash \stackrel{\circ}{\mathbf{P}})$. Suppose that $V\left(G_{Q}^{\text {small }} \backslash C\right) \neq\left\{x_{2}, x_{3}\right\}$ and $V\left(G_{Q}^{\text {small }}\right) \subseteq B_{1}(C)$. Letting $x_{1} \in\left\{p_{2}, p_{3}\right\}$, we have $x_{2} \in N(w)$ and $V\left(G_{Q}^{\text {small }}\right) \backslash$ $V(C \cup Q)$ consists of a lone vertex adjacent to all vertices in the cycle $\left.C \cap G_{p_{2} x_{2} x_{3} x_{4}}^{\mathrm{large}}\right)+p_{2} x_{2} x_{3} x_{4}$. An analogous statement holds in the case where $x_{1} \in\left\{p_{m-1}, p_{m-2}\right\}$.

Proof. Let C^{1} be the 1-necklace of G. Given a 3-chord $Q:=x_{1} x_{2} x_{3} x_{4}$ of C, we say that Q is defective if the following hold.

1) Precisely one endpoint of Q lies in $\stackrel{\circ}{\mathbf{P}} ; A N D$
2) $V\left(G_{Q}^{\text {small }}\right) \subseteq B_{1}(C)$; AND
3) $\left|V\left(G_{Q}^{\text {small }} \backslash C\right)\right|>3$.

We claim now that there is no defective 3-chord of C. Suppose toward a contradiction that there is a defective 3-chord Q of C, and, among all defective 3-chords of C, we choose Q so that $\left|V\left(G_{Q}^{\mathrm{small}}\right)\right|$ is minimized. Let $Q:=x_{1} x_{2} x_{3} x_{4}$.
By Observation 4.3.1, suppose without loss of generality that $x_{1} \in\left\{p_{2}, p_{3}\right\}$ and $G_{Q}^{\text {small }} \cap \mathbf{P}=p_{1} \mathbf{P} x_{1}$. Then we have $V\left(G_{Q}^{\text {small }}\right)=V\left(G_{Q}^{\text {small }} \cap C\right) \cup V\left(G_{Q}^{\text {small }} \cap C^{1}\right)$. Since Q is defective, the graph $G_{Q}^{\text {small }} \cap C^{1}$ is a path of length at least three with endpoints x_{2}, x_{3}, so let $G_{Q}^{\text {small }} \cap C^{1}=w_{0} w_{1} \cdots w_{s} w_{s+1}$ for some $s \geq 2$, where $w_{0}=x_{2}$ and $w_{s+1}=x_{3}$. Then $G_{Q}^{\text {small }}$ contains the cycle $D:=w_{0} w_{1} \cdots w_{s+1}$.

Claim 4.3.5. $x_{2} p_{1} \notin E(G)$ and $x_{3} p_{1} \notin E(G)$

Proof: Suppose that $x_{2} p_{1} \in E(G)$. By M2), we have $x_{1}=p_{3}$, and the 3-chord $Q^{*}:=p_{1} x_{2} x_{3} x_{4}$ of C separates a vertex of $\left\{w_{1}, \cdots, w_{s}\right\}$ from $G_{Q^{*}}^{\text {large }} \backslash V\left(Q^{*}\right)$. Since $Q^{*} \in \mathcal{K}(C, \mathcal{T})$ and Q^{*} has an endpoint in $\left\{p_{1}, p_{m}\right\}$, this contradicts Theorem 3.0.2. Thus, $x_{2} p_{1} \notin E(G)$. Now suppose toward a contradiction that $x_{3} p_{1} \in E(G)$ and let $Q^{* *}:=x_{1} x_{2} x_{3} p_{1}$. Then each vertex of $\left\{w_{1}, \cdots w_{s}\right\}$ lies in $G_{Q^{* *}}^{\text {small }}$. Again, since $Q^{* *} \in \mathcal{K}(C, \mathcal{T})$ and one endpoint of $Q^{* *}$ lies in $\left\{p_{1}, p_{m}\right\}$, this contradicts Theorem 3.0.2.

Thus, we have $x_{2} p_{1} \notin E(G)$. Since $x_{1} \in\left\{p_{2}, p_{3}\right\}$. Since C^{1} contains the unique common neighbor of p_{1}, p_{2}, there is a $j \in\{1, \cdots, s\}$ such that w_{j} is the unique common neighbor of p_{1}, p_{2} in G. Since $p_{3} \notin N\left(w_{j}\right)$ by M2), p_{2} is an endpoint of the path $G\left[V(C) \cap N\left(w_{j}\right)\right]$, so we have $w_{j-1} \in N\left(p_{2}\right)$ by our triangulation conditions.

We note now that $N\left(w_{j}\right) \cap V(D)=\left\{w_{j-1}, w_{j}\right\}$. If this does not hold, then there is a chord of C^{1} with w_{j} as an endpoint, so let $k \in\{0, \cdots, s+1\} \backslash\{j-1, j, j+1\}$ be such that w_{k} is the other endpoint of this chord. Suppose that w_{k} does not have a neighbor among $C \backslash \stackrel{\circ}{\mathbf{P}}$. In that case, we have $0 \leq k<j$, since each vertex of $w_{j} w_{j+1} \cdots w_{s+1}$ has a neighbor on $C \backslash \stackrel{\circ}{\mathbf{P}}$.

If $p_{2} \in N\left(w_{k}\right)$, then the 3 -cycle $w_{j} p_{2} w_{k}$ separates w_{j-1} from $G_{Q}^{\text {large }}$, contradicting short-separation-freeness. Likewise, if $p_{3} \in N\left(w_{k}\right)$, then the 4-cycle $w_{j} p_{2} p_{3} w_{k}$ separates w_{j-1} from $G_{Q}^{\text {large }}$, contradicting short-separation-freeness. Thus, w_{k} has a neighbor in $C \backslash \stackrel{\circ}{\mathbf{P}}$, and since w_{1} is adjacent to p_{1}, we contradict Theorem 3.0.2. Thus, we get
$N\left(w_{j}\right) \cap V(D)=\left\{w_{j-1}, w_{j}\right\}$, as desired. Let $C \cap G_{Q}^{\text {large }}=x_{1} \mathbf{P} p_{1} u_{1} \cdots u_{t}$ for some $t \geq 0$ (possibly $t=0$ and $p_{1}=x_{4}$). We now have the following:

Claim 4.3.6. $x_{4} \neq p_{1}$, and, for each $m \in\{j+1, \cdots, s+1\}$, we have $N\left(w_{m}\right) \cap V(\mathbf{P})=\varnothing$

Proof: We first show that $N\left(x_{j+1}\right) \cap V(\mathbf{P})=\varnothing$. We first note that $p_{2} \notin N\left(w_{j+1}\right)$, or else G contains a copy of K_{4} on the vertices $\left\{p_{2}, w_{j-1}, w_{j}, w_{j+1}\right\}$. We claim now that we also have $p_{3} \notin N\left(w_{j+1}\right)$. Furthermore, $p_{1} \notin N\left(w_{j+1}\right)$, or else G contains a $K_{2,3}$ with bipartition $\left\{p_{1}, w_{j-1}\right\},\left\{p_{2}, w_{j}, w_{j+1}\right\}$. Now suppose toward a contradiction that $p_{3} \notin N\left(w_{j+1}\right)$. Then G contains the 4 -cycle $p_{3} p_{2} w_{j-1} w_{j+1}$, and since $p_{2} \notin N\left(w_{j+1}\right)$, we have $p_{3} \in N\left(w_{j-1}\right)$ by our triangulation conditions, so G contains a $K_{2,3}$ with bipartition $\left\{p_{2}, w_{j+1}\right\},\left\{w_{j-1}, w_{j}, p_{3}\right\}$, contradicting short-separation-freeness. Thus, we have $N\left(v_{j+1}\right) \cap V(\mathbf{P})=\varnothing$. Since $N\left(w_{j+1}\right) \cap V(\mathbf{P})=\varnothing$, there exists an $r \in$ $\{1, \cdots, t\}$ such that the graph $G\left[V(C) \cap N\left(w_{j}\right)\right]$ is a path $p_{2} p_{1} u_{1} \cdots u_{r}$ by Theorem 3.0.2. In particular, since $t \geq 1$, we have $x_{1} \neq p_{4}$.

Since $x_{3} \in N\left(u_{t}\right)$, the cycle $w_{0} \cdots w_{j+1} u_{r} \cdots u_{t} w_{s+1}$ separates each vertex of $\left\{w_{j+2}, \cdots, w_{s}\right\}$ from \mathbf{P}, so we have $N\left(w_{m}\right) \cap V(P)=\varnothing$ for each $m \in\{j+1, \cdots, s\}$. Since $w_{s+1}=x_{3}$, we just need to check that $N\left(x_{3}\right) \cap V(P)=\varnothing$. Suppose that $x_{3} x_{1} \in E(G)$. By Theorem 3.0.2, we have $V\left(G_{x_{1} x_{3} x_{4}}^{\text {small }}\right) \subseteq V(C) \cup\left\{x_{3}\right\}$, so $x_{1} x_{3} \notin E\left(G_{Q}^{\text {large }}\right)$. Thus, $x_{1} x_{3} \in E\left(G_{Q}^{\text {small }}\right)$, and the triangle $x_{1} x_{2} x_{3}$ separates a vertex of $\left\{w_{1}, \cdots, w_{s}\right\}$ from $\left.G_{Q}^{\text {large }}\right)$, which is false. Thus, $x_{1} \notin$ $N\left(x_{3}\right)$. Now suppose that $p_{2} \in N\left(x_{3}\right)$. Then $x_{1}=p_{3}$, and, by Theorem 3.0.2, we have $V\left(G_{p_{2} x_{3} x_{4}}^{\text {small }}\right) \subseteq V(C) \cup\left\{x_{3}\right\}$, so the 4 -cycle $x_{1} p_{2} x_{3} x_{2}$ separates a vertex of $\left\{w_{1}, \cdots, w_{s}\right\}$ from $G_{Q}^{\text {arge }}$, which is false. We just need to make sure that $p_{1} \notin N\left(x_{3}\right)$. Then the cycle D lies in $G_{x_{1} x_{2} x_{3} p_{1}}^{\mathrm{sman}}$, so $x_{1} x_{2} x_{3} p_{1}$ is also a defective 3-chord of C. Since $x_{4} \neq p_{1}$, this contradicts the minimality of Q.

By Claim 4.3.6, since each vertex of $\left\{w_{0}, \cdots, w_{s+1}\right\}$ is in $B_{1}(C, G)$, each vertex of $\left\{w_{j+1}, \cdots, w_{s+1}\right\}$ has a neighbor among $\left\{u_{1}, \cdots, u_{t}\right\}$.

Claim 4.3.7. $N\left(w_{0}\right) \cap\left\{w_{j+2}, \cdots, w_{s}\right\}=\varnothing$ and, for each $a \in\{1, \cdots, j-1\}$, we have $N\left(w_{a}\right) \cap\left\{w_{j+2}, \cdots, w_{s+1}\right\}=$ \varnothing.

Proof: Suppose toward a contradiction that there is an $m \in\{j+2, \cdots, s\}$ with $x_{2} \in N\left(w_{m}\right)$. Since w_{m} has a neighbor among $\left\{u_{1}, \cdots, u_{t}\right\}$, let $u \in\left\{u_{1}, \cdots, u_{t}\right\} \cap N\left(w_{m}\right)$ and let $Q^{\dagger}:=x_{1} x_{2} w_{m} u$. Since $x_{2} w_{m}$ is a chord of D, we have $\left|V\left(G_{Q^{\dagger}}^{\text {small }}\right)\right|<\left|V\left(G_{Q}^{\text {small }}\right)\right|$, and since $w_{j}, w_{j+1} \in V\left(G_{Q^{\dagger}}^{\text {small }}\right) \backslash V\left(Q^{\dagger}\right), Q^{\dagger}$ is also defective, so this contradicts the minimality of Q.

Now suppose toward a contradiction that there is an $a \in\{1, \cdots, j-1\}$ and an $m \in\{j+2, \cdots, s+1\}$ with $w_{m} \in N\left(w_{j-1}\right)$. Since w_{m} has a neighbor among $\left\{u_{1}, \cdots, u_{t}\right\}$ and w_{a} has a neighbor among $\left\{p_{2}, p_{3}\right\}$, let $u \in$ $\left\{u_{1}, \cdots, u_{t}\right\} \cap N\left(w_{m}\right)$ and let $p \in\left\{p_{2}, p_{3}\right\} \cap N\left(w_{a}\right)$. Let $Q^{\dagger}:=p w_{a} w_{m} u$. Since $w_{a} w_{m} \neq x_{2} x_{3}, w_{a} w_{m}$ is a chord of D, and we have $\left|V\left(G_{Q^{\dagger}}^{\text {small }}\right)\right|<\left|V\left(G_{Q}^{\text {small }}\right)\right|$. Since $w_{j}, w_{j+1} \in V\left(G_{Q^{\dagger}}^{\text {small }}\right) \backslash V\left(Q^{\dagger}\right), Q^{\dagger}$ is also defective, so this contradicts the minimality of Q.

Now we have the following:

Claim 4.3.8. There is no chord of D with both endpoints in $w_{j+1} \cdots w_{s+1}$.

Proof: Suppose toward a contradiction that there is a pair of indices $k, \ell \in\{j+1, \cdots, s+1\}$, where $\ell>k+1$ and $w_{k} w_{\ell} \in E(G)$. Since each of w_{k}, w_{ℓ} has a neighbor on $\left\{u_{1}, \cdots, u_{t}\right\}$, we let $u \in N\left(w_{k}\right) \cap\left\{u_{1}, \cdots, u_{t}\right\}$ and
$u^{\prime} \in N\left(w_{\ell}\right) \cap\left\{u_{1}, \cdots, u_{t}\right\}$. Note that $u \neq u^{\prime}$, or else G contains a triangle which separates w_{k+1} from $G_{Q}^{\text {large }}$. Now let $Q^{\dagger}:=u w_{K} w_{\ell} u^{\prime}$. Then $Q^{\dagger} \in \mathcal{K}(C, \mathcal{T})$ and $w_{k+1} \in V\left(G_{Q^{\dagger}}^{\text {small }} \backslash Q^{\dagger}\right)$. By Theorem 3.0.2, w_{k} is not a \mathcal{C}-shortcut, and since $w_{k} \neq w_{s+1}, w_{0}, Q$ separates w_{k} from each element of $\mathcal{C} \backslash\{C\}$. By Claim 4.3.6, w_{k} has no neighbors in $V(\mathbf{P})$, and thus, since w_{k} is not a \mathcal{C}-shortcut, w_{k} is adjacent to x_{2}, contradicting Claim 4.3.7.

Combining Claim 4.3.8 with Claim 4.3.7, we have $w_{j+1}=w_{s+1}=x_{3}$, or else, since D is triangulated by chords in $G_{Q}^{\text {small }}$, there is either a chord of D with both endpoint in $w_{j+1} \cdots w_{s+1}$, or a chord of D with one endpoint in $\left\{w_{j+1}, \cdots, w_{s+1}\right\}$ and one endpoint in $\left\{w_{0}, \cdots, w_{j-1}\right\}$.

We claim now that $j=2$. Firstly, we have $j>1$, or else $x_{2}=w_{j-1}$ and $V\left(G_{Q}^{\text {small }} \backslash C\right)=\left\{x_{2}, x_{3}, w_{1}\right\}$, contradicting the fact that Q is defective. Now suppose toward a contradiction that $j>2$. Then $w_{0} \cdots w_{j-1}$ is a path of length at least two, and since D is triangulated by chords in $G_{Q}^{\text {small }}$, it follows from Claim 4.3.7 that $G_{Q}^{\text {small }}$ has a chord of D with both endpoints in $\left\{w_{0}, \cdots, w_{j-1}\right\}$. Let $0 \leq k<\ell \leq j-1$, where $w_{k} w_{\ell} \in E(G) \backslash E(D)$ and $\ell>k+1$. Since each of w_{k}, w_{ℓ} have a neighbor among p_{2}, p_{3}, there is a cycle of length at most four which separates w_{k+1} from $G_{Q}^{\text {large }}$, contradicting short-separation-freeness.

We conclude that $j=2$ and $V\left(G_{Q}^{\text {small }} \backslash C\right)=\left\{x_{2}, x_{3}, w_{1}, w_{2}\right\}$. Furthermore, we have $x_{1}=p_{3}$ and $w_{1} \in N\left(x_{1}\right)$, or else G contains a $K_{2,3}$ with bipartition $\left\{x_{2}, w_{1}, w_{2}\right\},\left\{p_{2}, x_{3}\right\}$. Note that Q is induced in G and $N\left(x_{1}\right) \cap N\left(x_{4}\right)=\varnothing$, or else there is a 2-chord of C with endpoints p_{3}, x_{4}, contradicting Theorem 3.0.2. Now we have the following:

Claim 4.3.9. $N\left(x_{3}\right) \cap V\left(C \cap G_{Q}^{\text {small }}\right)=\left\{x_{4}\right\}$.
Proof: By Claim 4.3.6, x_{3} has no neighbors in \mathbf{P}, so if this does hold, then there is an $r \in\{1, \cdots, t-1\}$ with $u_{r} \in N\left(x_{3}\right)$. Then $V\left(G_{x_{1} x_{2} x_{3} u_{r}}^{\text {smal }}\right)\left|<\left|V\left(G_{Q}^{\text {small }}\right)\right|\right.$, and since $\left.w_{1}, w_{2} \in V\left(G_{x_{1} x_{2} x_{3} u_{r}}^{\text {small }}\right)\right), x_{1} x_{2} x_{3} u_{r}$ is defective, contradicting the minimality of Q.

Since $N\left(x_{3}\right) \cap V\left(C \cap G_{Q}^{\text {small }}\right)=\left\{x_{4}\right\}$, it follows from our triangulation conditions that w_{2} is adjacent to each vertex of $\left\{p_{1}, u_{1}, \cdots, u_{t}\right\}$. Furthermore, G contains the 3 -chord $Q^{\dagger}:=x_{1} w_{1} w_{2} x_{4}$ of C. For each $i=1,2,3$, let $\left\{q_{i}\right\}=L\left(p_{i}\right)$.

Claim 4.3.10. Let L^{\dagger} be a list-assignment for $G_{Q^{\dagger}}^{\text {small }}$ such that the following hold.

1) $\left|L^{\dagger}\left(w_{1}\right)\right|=\left|L^{\dagger}\left(w_{2}\right)\right|=1$; AND
2) $L^{\dagger}\left(w_{1}\right) \neq L^{\dagger}\left(w_{2}\right)$ and $L^{\dagger}\left(w_{1}\right) \neq q_{3}$; AND
3) $L^{\dagger}(v)=L(v)$ for all $v \in V\left(G_{Q^{\dagger}}^{\text {small }}\right) \backslash\left\{w_{1}, w_{2}\right\}$.

Then $G_{Q^{\dagger}}^{\text {large }}$ is L^{\dagger}-colorable. In particular, there exists an L-coloring ϕ of $G_{Q}^{\text {large }}$ such that $\phi\left(x_{1}\right) \neq q_{4}$.
Proof: Let $C^{\dagger}:=\left(C \cap G_{Q^{\dagger}}^{\text {large }}\right)+x_{1} w_{1} w_{2} x_{4}$ and let C_{*}^{\dagger} be the outer face of $G_{Q^{\dagger}}^{\text {large }}$. Let $\mathbf{P}^{\prime}:=p_{m} \cdots p_{3} w_{1} w_{2}$ and let $\mathcal{T}^{\dagger}:=\left(G_{Q^{\dagger}}^{\text {large }},(\mathcal{C} \backslash\{C\}) \cup\left\{C^{\dagger}\right\}, L^{\dagger}, C_{*}^{\dagger}\right)$. By conditions 1) and 2$), \mathbf{P}^{\prime}$ is L^{\dagger}-colorable, and \mathcal{T}^{\dagger} is a tessellation, where C^{\dagger} is an open \mathcal{T}^{\dagger}-ring with precolored path \mathbf{P}^{\prime}. We claim that \mathcal{T}^{\dagger} is a tessellation. Since $N\left(x_{4}\right) \cap V(\mathbf{P})=\varnothing$ and $w_{1} x_{4} \notin E(G)$, there is no chord of C^{\dagger} with an endpoint in \mathbf{P}^{\prime}. Furthermore, we have $N\left(x_{2}\right) \cap V\left(\mathbf{P}^{\prime}\right)=\left\{p_{3}, w_{1}\right\}$ and $N\left(x_{3}\right) \cap V\left(\mathbf{P}^{\prime}\right)=\left\{x_{1}, w_{2}\right\}$, so \mathcal{T}^{\dagger} satisfies M1), and M0) holds since $\left|E\left(\mathbf{P}^{\prime}\right)\right|=|E(\mathbf{P})|$. M2) is immediate, so we just need to check that our distance conditions hold. If not, then there is a $C^{\prime} \in \mathcal{C} \backslash\{C\}$ and a $H \subseteq C^{\prime}$ such that $d\left(H, w_{2}\right)<d(H, C \backslash \stackrel{\circ}{\mathbf{P}})$. Let R be a shortest $\left(H, w_{2}\right)$-path. Then $V(R \cap Q)$ does not contain either of x_{3}, x_{4}, since each of these are of distance at most one from $C \backslash \stackrel{\circ}{\mathbf{P}}$, so $V(R \cap Q)$ contains a vertex of x_{1}, x_{2}, since Q separates H from w_{2}. But each of x_{1}, x_{2} have distance two from w_{2}, and distance two from $C \backslash \stackrel{\circ}{\mathbf{P}}$, so we have a contradiction. Thus, \mathcal{T}^{\dagger} is a mosaic, and since $p_{1}, p_{2} \notin V\left(G_{Q^{\dagger}}^{\text {large }}\right), G_{Q^{\dagger}}^{\text {large }}$ admits an L^{\dagger}-coloring by the minimality of \mathcal{T}.

As a consequence of the above, we have the following:
Claim 4.3.11. $G_{Q}^{\text {small }} \cap C=p_{3} p_{2} p_{1} x_{4}$.
Proof: Suppose not. Then u_{1} is an internal vertex of the path $p_{1} u_{1} \cdots u_{t}$. Let $a, b \in L\left(u_{1}\right) \backslash\left\{q_{1}\right\}$ and let d be a color of $L\left(w_{2}\right) \backslash\left\{q_{1}, q_{2}, a, b\right\}$ and let $f \in L\left(w_{1}\right) \backslash\left\{q_{2}, q_{3}, d\right\}$. By Claim 4.3.10, there is an L-coloring ϕ of $G_{Q^{\dagger}}^{\text {large }}$ with $\phi\left(w_{1}\right)=f$ and since $p_{1} x_{4} \notin E(G), \phi$ is a proper L-coloring of the subgraph of G induced by $V\left(G_{Q^{\dagger}}^{\text {large }}\right)$. By our choice of d, f, ϕ extends to an L-coloring ϕ^{\prime} of $V\left(G_{Q^{\dagger}}^{\text {large }}\right) \cup\left\{p_{1}, p_{2}\right\}$. Since at least one of q_{1}, d lies outside of $L\left(u_{1}\right)$, ϕ^{\prime} extends to the broken wheel $G_{p_{1} w_{2} x_{4}}^{\text {small }}$, and thus G is L-colorable, which is false.

Now we have the following:

Claim 4.3.12. For any L-coloring ϕ of G_{Q}^{large}, if $\phi\left(x_{4}\right) \neq q_{1}$, then $\phi\left(x_{4}\right)=\phi\left(x_{2}\right)$.
Proof: Let $a, b \in L\left(w_{1}\right) \backslash\left\{q_{1}, q_{2}, q_{3}\right\}$. Let L^{\dagger} be a list-assignment for $G_{Q^{\dagger}}^{\text {large }}$ with $L^{\dagger}\left(w_{1}\right)=a, L^{\dagger}\left(w_{2}\right)=q_{1}$, and otherwise $L^{\dagger}=L$. By Claim 4.3.10, $G_{Q^{\dagger}}^{\text {large }}$ admits an L^{\dagger}-coloring ϕ. Let ϕ^{\prime} be the restriction of ϕ to $G_{Q}^{\text {large }}$. Note that $\phi\left(x_{4}\right) \neq q_{1}$ so ϕ^{\prime} extends to a proper L-coloring $\phi^{\prime \prime}$ of the subgraph of G induced by $\left.V\left(G_{Q}^{\text {large }}\right)\right) \cup\left\{p_{1}, p_{2}\right\}$. Since G is not L-colorable, $\phi^{\prime \prime}$ does not extend to L-color the edge $w_{1} w_{2}$. Since each of w_{1}, w_{2} has precisely four neighbors in $\operatorname{dom}\left(\phi^{\prime \prime}\right)$ and $a \in L_{\phi^{\prime \prime}}\left(w_{1}\right)$, we have $L_{\phi^{\prime \prime}}\left(w_{1}\right)=L_{\phi^{\prime \prime}}\left(w_{2}\right)=\{a\}$. The same argument shows that there is an L-coloring $\psi^{\prime \prime}$ of $V\left(G_{Q}^{\text {large }}\right) \cup\left\{p_{1}, p_{2}\right\}$ such that $L_{\psi^{\prime \prime}}\left(w_{1}\right)=L_{\psi^{\prime \prime}}\left(w_{2}\right)=\{b\}$, so $a, b \in L\left(w_{2}\right) \backslash\left\{q_{1}, q_{2}, q_{3}\right\}$.

Now let ζ be an arbitrary L-coloring of $G_{Q}^{\text {large }}$, where $\zeta\left(x_{4}\right) \neq q_{1}$. Since $\zeta\left(x_{4}\right) \neq q_{1}, \zeta$ extends to a proper L-coloring ζ^{\prime} of $V\left(G_{Q}^{\text {large }}\right) \cup\left\{p_{1}, p_{2}\right\}$. Suppose toward a contradiction that $\zeta\left(x_{2}\right) \neq \zeta\left(x_{4}\right)$.

Since ζ^{\prime} does not extend to an L-coloring of G, we have $\left|L_{\zeta^{\prime}}\left(w_{1}\right)\right|=\left|L_{\zeta^{\prime}}\left(w_{2}\right)\right|=1$ and $L_{\zeta^{\prime}}\left(w_{1}\right)=L_{\zeta^{\prime}}\left(w_{2}\right)$. Let $L_{\zeta^{\prime}}\left(w_{1}\right)=L_{\zeta^{\prime}}\left(w_{2}\right)=\{c\}$. If $c \notin\{a, b\}$, then we have $\{a, b\}=\left\{\zeta\left(x_{2}\right), \zeta\left(x_{3}\right)\right\}$ and $\{a, b\}=\left\{\zeta\left(x_{3}\right), \zeta\left(x_{4}\right)\right\}$, so $\zeta\left(x_{2}\right)=\zeta\left(x_{4}\right)$, contradicting our assumption. Thus, we have $c \in\{a, b\}$ so suppose without loss of generality that $c=a$. Then b appears among $\left\{\zeta\left(x_{2}\right), \zeta\left(x_{3}\right)\right\}$ and among $\left\{\zeta\left(x_{3}\right), \zeta\left(x_{4}\right)\right\}$, so, since $\zeta\left(x_{2}\right) \neq \zeta\left(x_{4}\right)$, we have $\zeta\left(x_{3}\right)=b$, and there exist colors d_{1}, d_{2} with $d_{1} \neq d_{2}$, where $d_{1} \in L\left(w_{1}\right) \backslash\left\{a, b, q_{2}, q_{3}\right\}$ and $d_{2} \in L\left(w_{1}\right) \backslash\left\{a, b, q_{1}, q_{2}\right\}$. Since $d_{1} \neq q_{1}$, let L^{\dagger} be a list-assignment for $G_{Q^{\dagger}}^{\text {large }}$ where $L^{\dagger}\left(w_{1}\right)=\left\{d_{1}\right\}$ and $L^{\dagger}\left(w_{2}\right)=\left\{q_{1}\right\}$ and otherwise $L^{\dagger}=L$. By Claim 4.3.10, $G_{Q^{\dagger}}^{\text {large }}$ admits an L^{\dagger}-coloring Φ, so let Φ^{\prime} be the restriction of Φ to $G_{Q}^{\text {large }}$. Since $\Phi\left(x_{4}\right) \neq q_{1}, \Phi^{\prime}$ extends to a proper L-coloring $\Phi^{\prime \prime}$ of $V\left(G_{Q}^{\text {large }}\right) \cup\left\{p_{1}, p_{2}\right\}$, and this coloring leaves over d_{1} for w_{1}, but since $d_{1} \notin\left\{a, b, d_{2}\right\}$ and at least one of the colors a, b, d_{2} is not used among $\Phi\left(x_{3}\right), \Phi\left(x_{4}\right)$, there is a color left over in $L\left(w_{2}\right)$, so $\Phi^{\prime \prime}$ extends to an L-coloring of G, which is false.

Now we have the following:

Claim 4.3.13. Let $G^{\prime}:=G_{Q}^{\text {large }}+x_{2} x_{4}$ and $G^{\prime \prime}:=G_{Q}^{\text {large }}+x_{1} x_{3}$. Then neither G^{\prime} nor $G^{\prime \prime}$ is short-separation-free.
Proof: Suppose toward a contradiction that G^{\prime} is short-separation-free. Let $d_{1} \in L\left(x_{4}\right) \backslash\left\{q_{1}\right\}$ and let $d_{2} \in L\left(x_{2}\right) \backslash$ $\left\{q_{3}, d_{1}\right\}$. Let L^{\prime} be a list-assignment for $V\left(G^{\prime}\right)$ where $L^{\prime}\left(x_{2}\right)=\left\{d_{2}\right\}, L^{\prime}\left(x_{4}\right)=\left\{d_{1}\right\}$, and otherwise $L^{\prime}=L$. Let $C^{\prime}:=\left(C \cap G_{Q}^{\text {large }}\right)+x_{1} x_{2} x_{4}$ and let C_{*}^{\prime} be the outer face of G^{\prime}. Let $\mathcal{T}^{\prime}:=\left(G^{\prime},(\mathcal{C} \backslash\{C\}) \cup\left\{C^{\prime}\right\}, L^{\prime}, C_{*}^{\prime}\right)$ and let $\mathbf{P}^{\prime}:=p_{m} \cdots p_{3} x_{2} x_{4}$. Note that, by Theorem 2.3.2, we have $V(C \backslash \mathbf{P}) \neq\left\{x_{4}\right\}$, and thus, since G^{\prime} is short-separationfree, \mathcal{T}^{\prime} is a tessellation where C^{\prime} is an open \mathcal{T}^{\prime}-ring with precolored path \mathbf{P}^{\prime} (in particular, since C is induced in G and $V(C \backslash \mathbf{P}) \neq\left\{x_{4}\right\}, G^{\prime}\left[V\left(\mathbf{P}^{\prime}\right)\right]$ is L^{\prime}-colorable).

Since Q is induced in G and $N\left(x_{1}\right) \cap N\left(x_{4}\right)=\varnothing$, we have $N\left(x_{3}\right) \cap V\left(\mathbf{P}^{\prime}\right)=\left\{x_{1}, x_{4}\right\}$, and C^{\prime} is induced in G^{\prime}, so \mathcal{T}^{\prime} satisfies condition M1) of Definition 2.1.6. Since $V\left(C^{\prime} \backslash \mathbf{P}^{\prime}\right) \subseteq V(C \backslash \stackrel{\circ}{\mathbf{P}})$, we get that \mathcal{T}^{\prime} satisfies the distance conditions Definition 2.1.6. To see this, just note that if either of M3)-M4) is violated, then there is a path in G^{\prime} from x_{1} to $C^{\prime} \backslash \mathbf{P}^{\prime}$ of length less than two using the edge $x_{2} x_{4}$, which is false. Furthermore, we have $\left|E\left(\mathbf{P}^{\prime}\right)\right|=|E(\mathbf{P})|$, so M0) is satisfied as well. M2) is immediate, so \mathcal{T}^{\prime} is a mosaic.

Thus, since $\left|V\left(G^{\prime}\right)\right|<|V(G)|, G^{\prime}$ admits an L^{\prime}-coloring, so $G^{\text {large }}$ admits an L-coloring ϕ in which $\phi\left(x_{4}\right) \neq q_{1}$ and $\phi\left(x_{2}\right) \neq \phi\left(x_{4}\right)$, contradicting Claim 4.3.12. Now we show that $G^{\prime \prime}$ is not short-separation-free. Suppose toward a contradiction that $G^{\prime \prime}$ is short-separation-free. Since $\left|L\left(x_{2}\right) \backslash\left\{q_{3}\right\}\right| \geq 4$ and $\left|L\left(w_{1}\right) \backslash\left\{q_{2}, q_{3}\right\}\right| \geq 3$, we fix a color $d \in L\left(x_{2}\right) \backslash\left\{q_{3}\right\}$ such that $\left|L\left(w_{1}\right) \backslash\left\{q_{2}, q_{3}, d\right\}\right| \geq 3$, and we fix a color $d_{2} \in L\left(x_{4}\right) \backslash\left\{q_{1}, d\right\}$. Let $L^{\prime \prime}$ be a listassignment for $V\left(G^{\prime \prime}\right)$ where $L^{\prime \prime}\left(x_{3}\right)=\{d\}, L^{\prime \prime}\left(x_{4}\right)=\left\{d_{2}\right\}$, and otherwise $L^{\prime \prime}=L$. Let $\mathbf{P}^{\prime \prime}:=p_{m} \cdots x_{1} x_{3} x_{4}$. Let $C^{\prime \prime}:=\left(C \cap G_{Q}^{\text {large }}\right)+x_{1} x_{2} x_{4}$ and let $C_{*}^{\prime \prime}$ be the outer face of $G^{\prime \prime}$. Let $\mathcal{T}^{\prime \prime}:=\left(G^{\prime \prime},(\mathcal{C} \backslash\{C\}) \cup\left\{C^{\prime \prime}\right\}, L^{\prime \prime}, C_{*}^{\prime \prime}\right)$. As above, we have $V\left(C^{\prime \prime}\right) \neq V\left(\mathbf{P}^{\prime \prime}\right)$ by Theorem 2.3.2, and since $G^{\prime \prime}$ is short-separation-free, $\mathcal{T}^{\prime \prime}$ is a tessellation, where $C^{\prime \prime}$ is an open $\mathcal{T}^{\prime \prime}$-ring with precolored path $\mathbf{P}^{\prime \prime}$.

Crucially, since $N\left(x_{2}\right) \cap V(\mathbf{P})=\left\{x_{1}\right\}$, we have $N\left(x_{2}\right) \cap V\left(P^{\prime \prime}\right)=\left\{x_{1}, x_{4}\right\}$. Thus, since Q is induced in G, $N\left(x_{1}\right) \cap N\left(x_{4}\right)=\varnothing$, and $C^{\prime \prime}$ is induced in $G^{\prime \prime}, \mathcal{T}^{\prime \prime}$ satisfies M1), and the other conditions are immediate as in the case of \mathcal{T}^{\prime}. In particular, the distance conditions hold since $V\left(C^{\prime \prime} \backslash \mathbf{P}^{\circ \prime \prime}\right) \subseteq V(C \backslash \stackrel{\circ}{\mathbf{P}})$ and there is no path of length less than two in $G^{\prime \prime}$ from x_{1} to x_{4} using the edge $x_{1} x_{3}$. Thus, since $\left|V\left(G^{\prime \prime}\right)\right|<|V(G)|, G^{\prime \prime}$ admits an $L^{\prime \prime}$-coloring ϕ, and ϕ extends to an L-coloring ϕ^{\prime} of $V\left(G_{Q}^{\text {large }}\right) \cup\left\{p_{1}, p_{2}\right\}$. We have $\left|L_{\phi^{\prime}}\left(w_{2}\right)\right| \geq 1$, and, by our choice of d, we have $\left|L_{\phi^{\prime}}\left(w_{1}\right)\right| \geq 2$, so ϕ^{\prime} extends to L-color the edge $w_{1} w_{2}$, contradicting the fact that G is not L-colorable.

Since Q is an induced subgraph of $G, N\left(x_{1}\right) \cap N\left(x_{4}\right)=\varnothing$, it follows from Claim 4.3.13 that $G_{Q}^{\text {large }} \backslash Q$ contains path R of of length either two or three, where R has endpoints x_{2}, x_{4} and R is otherwise disjoint from Q.

Claim 4.3.14. x_{2}, x_{3}, x_{4} do not have a common neighbor in $G_{Q}^{\text {large }} \backslash Q$.
Proof: Suppose there is a common neighbor z of x_{2}, x_{3}, x_{4} in $G_{Q}^{\text {large }} \backslash Q$. Let d be a color in $L\left(w_{1}\right) \backslash\left\{q_{1}, q_{2}, q_{3}\right\}$, and let L^{\dagger} be a list-assignment for $G_{Q^{\dagger}}^{\text {large }}$, where $L^{\dagger}\left(w_{1}\right)=d, L^{\dagger}\left(w_{2}\right)=\left\{q_{1}\right\}$, and otherwise $L^{\dagger}=L$. By Claim 4.3.10, $G_{Q^{\dagger}}^{\text {large }}$ admits an L^{\dagger}-coloring ϕ. Let ϕ^{\prime} be the restriction of ϕ to $G_{Q}^{\text {large }} \backslash\left\{x_{3}\right\}$. Then ϕ^{\prime} is an L-coloring of its domain, and, since $\phi^{\prime}\left(x_{4}\right) \neq q_{1}, \phi^{\prime}$ extends to a proper L-coloring ϕ^{*} of $\operatorname{dom}\left(\phi^{\prime}\right) \cup\left\{p_{1}, p_{2}\right\}$.
Now, ϕ^{*} does not extend to the triangle $w_{1} w_{2} x_{3}$, and since $N\left(x_{3}\right) \cap \operatorname{dom}\left(\phi^{*}\right)=\left\{x_{2}, z, x_{4}\right\}$, each of x_{3}, w_{1}, w_{2} has an $L_{\phi^{*}}$-list of size precisely two. Thus ϕ uses two different colors on x_{2}, x_{4}. Since $\left|L_{\phi^{*}}\left(x_{3}\right)\right|=2$, there is an L-coloring of $G_{Q}^{\text {large }}$ using two different colors on x_{4}, p_{1} and two different colors on x_{2}, x_{4}, contradicting Claim 4.3.12.
Since x_{2}, x_{3}, x_{4} do not have a common neighbor in $G_{Q}^{\text {large }} \backslash\left\{x_{3}\right\}$, and $G_{Q}^{\text {large }}+x_{2} x_{4}$ is not short-separation-free, there is a path in $G_{Q}^{\text {large }} \backslash\left\{x_{3}\right\}$ with endpoints x_{2}, x_{4} and length precisely three. Note that any such path is disjoint to Q except for its endpoints, since $N\left(x_{1}\right) \cap N\left(x_{4}\right)=\varnothing$.

Claim 4.3.15. For any path $R:=x_{2} z z^{\prime} x_{4}$ in $G_{Q}^{\text {large }} \backslash\left\{x_{3}\right\}$ of length precisely three, each of z, z^{\prime} is adjacent to x_{3}.
Proof: Let G^{\prime} be a graph obtained from $G_{Q}^{\text {large }}$ by adding to $G_{Q}^{\text {large }}$ a lone vertex w^{*} adjacent to each of $x_{1}, x_{2}, x_{3}, x_{4}$. Let $d \in L\left(x_{4}\right) \backslash\left\{q_{1}\right\}$ and let L^{\prime} be a list-assignment for $V\left(G^{\prime}\right)$, where $L^{\prime}\left(x_{4}\right)=\{d\}, L^{\prime}\left(w^{*}\right)$ is a lone color distinct from q_{3}, d, and otherwise $L^{\prime}=L$. Let $\mathbf{P}^{\prime}:=p_{m} \cdots p_{3} w^{*} x_{4}$ and let $C^{\prime}:=\left(C \cap G_{Q}^{\text {large }}\right)+x_{1} w^{*} x_{4}$. Let C_{*}^{\prime} be the outer face of G^{\prime} and let $\mathcal{T}^{\prime}:=\left(G^{\prime},(\mathcal{C} \backslash\{C\}) \cup\left\{C^{\prime}\right\} L^{\prime}, C_{*}^{\prime}\right)$. Note that G^{\prime} is short-separation-free, or else, since Q is induced in G and x_{1}, x_{4} have no common neighbor in $G_{Q}^{\text {large }}$, the vertices x_{2}, x_{4} have a common neighbor z in $G_{Q}^{\text {large }}$.

But then, since G is short-separation-free and Q is induced in G, it follows from our triangulation conditions that $x_{3} \in N(z)$, contradicting our assumption. Thus, G^{\prime} is indeed short-separation-free, and \mathcal{T}^{\prime} is a tessellation, where C^{\prime} is an open \mathcal{T}^{\prime}-ring with precolored path \mathbf{P}^{\prime}, since $V(C \backslash \mathbf{P}) \neq\left\{x_{4}\right\}$ by Theorem 2.3.2. Since $V\left(C^{\prime} \backslash \stackrel{\circ}{\mathbf{P}}^{\prime}\right) \subseteq V(C \backslash \stackrel{\circ}{\mathbf{P}})$, it is immediate that \mathcal{T}^{\prime} satisfies the distance conditions of Definition 2.1.6, and $\left|E\left(\mathbf{P}^{\prime}\right)\right|=|E(\mathbf{P})|$, so \mathcal{T}^{\prime} satisfies M0) as well. Since $N\left(x_{2}\right) \cap V\left(\mathbf{P}^{\prime}\right)=\left\{p_{3}, w^{*}\right\}$ and $N\left(x_{3}\right) \cap V\left(\mathbf{P}^{\prime}\right)=\left\{w^{*}, p_{4}\right\}$, a nd C^{\prime} is induced in $G^{\prime}, \mathcal{T}^{\prime}$ satisfies M1) as well, and M2) is immediate, so \mathcal{T}^{\prime} is a tessellation. Since $\left|V\left(G^{\prime}\right)\right|<|V(G)|, G^{\prime}$ admits an L^{\prime}-coloring ϕ, and, by Claim 4.3.12, we have $\phi\left(x_{2}\right)=\phi\left(x_{4}\right)$.

Now, G contains the 4 -chord $R^{*}:=x_{1} x_{2} z z^{\prime} x_{4}$ of C, so let ϕ^{\prime} be the restriction of ϕ to $G_{R^{*}}^{\text {large }}$. Note that ϕ^{\prime} extends to an L-coloring $\phi^{\prime \prime}$ of $G_{R^{*}}^{\text {large }} \cup\left\{p_{1}, p_{2}\right\}$

Suppose toward a contradiction that at least one of z, z^{\prime} is not adjacent to x_{3}. Then x_{3} has an $L_{\phi^{\prime \prime}}$ list of size three, since $\operatorname{dom}\left(\phi^{\prime \prime}\right) \cap N\left(x_{3}\right)$ has at most three vertices and $\phi^{\prime \prime}$ uses the same color on x_{2}, x_{4}. Thus, $\phi^{\prime \prime}$ extends to L-color the triangle $x_{3} w_{1} w_{2}$, since each of w_{1}, w_{2} has an $L_{\phi^{\prime \prime}}$-list of size at least two, so let ϕ^{*} be the resulting extension of $\phi^{\prime \prime}$ to $\operatorname{dom}\left(\phi^{\prime \prime}\right) \cup\left\{w_{1}, w_{2}, x_{3}\right\}$. The cycle $F:=x_{2} x_{3} x_{4} z^{\prime} z^{\prime}$ is a cyclic facial subgraph of $H:=G_{R^{*}}^{\text {small }} \backslash\left(G_{Q}^{\text {small }} \backslash Q\right)$, where each vertex of F is precolored by ϕ^{*}. Since x_{2}, x_{3}, x_{4} do not have a common neighbor in $G_{Q}^{\text {large }} \backslash Q$, there is no vertex of $H \backslash F$ adjacent to all five vertices of F, so ϕ^{*} extends to an L-coloring of H, and thus L-colors all of G, contradicting the fact that \mathcal{T} is critical.
Now we have enough to finish showing that there is no defective 3-chord of C. Since there is a path in $G_{Q}^{\text {large }} \backslash V(Q)$ with endpoints x_{2}, x_{4} and length precisely three, let $R:=x_{2} z z^{\prime} x_{4}$ be such a path. By Claim 4.3.15, R is the unique 3-chord of Q in $G_{Q}^{\text {large }}$ with endpoints x_{2}, x_{4}, and each of z, z^{\prime} is adjacent to x_{3}. Furthermore, by Claim 4.3.13, since $G_{Q}^{\text {large }}+x_{1} x_{3}$ is not short-separation-free, and Q is induced in G, there is a path in $G_{Q}^{\text {large }} \backslash\left\{x_{2}\right\}$ with endpoints x_{1}, x_{3} and length either two or three. This path does not have length two, or else G has a copy of $K_{2,3}$, since w_{1} is adjacent to each of x_{1}, x_{2}, x_{3}. Thus, this path has length three, so let $x_{1} u u^{\prime} x_{3}$ be such a path. Then $u^{\prime} \in\left\{z, z^{\prime}\right\}$. By Claim 4.3.10, we fix an L-coloring ϕ of $G_{Q}^{\text {large }}$ with $\phi\left(x_{4}\right) \neq q_{1}$. Now consider the following cases:

Case 1: $u^{\prime}=z$
In this case let $R^{\dagger}:=x_{1} u z z^{\prime} x_{4}$. Since G is short-separation-free and $G_{R^{\dagger}}^{\text {small }}$ contains the 4-cycle $x_{1} u z x_{2}$, we have $G_{R^{\dagger}}^{\text {small }} \backslash G_{Q}^{\text {small }}=u z z^{\prime}$. Let ϕ^{\prime} be the restriction of ϕ to $V\left(G_{R^{\dagger}}^{\text {small }}\right)$. Since $N\left(x_{2}\right) \cap \operatorname{dom}\left(\phi^{\prime}\right) \subseteq\left\{x_{1}, u, z\right\}$, there is a color in $c \in L_{\phi^{\prime}}\left(x_{2}\right)$ distinct from $\phi\left(x_{4}\right)$, and since $\operatorname{dom}\left(\phi^{\prime}\right) \cap N\left(x_{3}\right)=\left\{z, z^{\prime}, x_{4}\right\}$, there is a color left over for x_{3} in $L_{\phi^{\prime}}\left(x_{3}\right) \backslash\{c\}$, so ϕ^{\prime} extends to an L-coloring of $G_{Q}^{\text {large }}$ which uses two different colors on p_{1}, x_{4} and two different colors on x_{2}, x_{4}, contradicting Claim 4.3.12.

Case 2: $u^{\prime}=z^{\prime}$
In this case let $R^{\dagger}:=x_{1} u z^{\prime} x_{4}$. Let ϕ^{\prime} be the restriction of ϕ to $V\left(G_{R^{\dagger}}^{\text {small }}\right.$. If $z^{\prime} \in n\left(x_{2}\right)$ then G contains a K_{4} with vertices $\left\{x_{2}, x_{3}, z^{\prime}, z\right\}$, which is false, and if $u \in N\left(x_{2}\right)$, then G contains a $K_{2,3}$ with bipartition $\left\{u, z, x_{3}\right\},\left\{x_{2}, z^{\prime}\right\}$, which is false. Thus, since Q is induced in G, we have $N\left(x_{2}\right) \cap \operatorname{dom}\left(\phi^{\prime}\right)=\left\{x_{1}\right\}$, so we simply choose a color $d \in L\left(x_{2}\right) \backslash\left\{q_{3}\right\}$ with $d \neq \phi\left(x_{4}\right)$. Since $N\left(x_{3}\right) \cap \operatorname{dom}\left(\phi^{\prime}\right)=\left\{x_{4}\right\}$, there is an extension of ϕ^{\prime} to $\operatorname{dom}\left(\phi^{\prime}\right) \cup\left\{x_{2}, x_{3}\right\}$ in which x_{2} is colored with d. Finally, the resulting L-coloring ϕ^{*} of $\operatorname{dom}\left(\phi^{\prime}\right) \cup\left\{x_{2}, x_{3}\right\}$ extends to $G_{R^{\dagger}}^{\text {small }} \backslash G_{Q}^{\text {small }}$, since the 5-cycle $F:=x_{1} u z^{\prime} z x_{2}$ is properly colored by ϕ^{*}, and there is no vertex of $G_{R^{\dagger}}^{\text {small }} \backslash G_{Q}^{\text {small }}$ adjacent all five vertices of F, or else, since x_{3} is adjacent to x_{2}, z, z^{\prime}, G contains a copy of $K_{2,3}$. Thus ϕ^{*} extends to L-coloring the rest of $G_{Q}^{\text {large }}$, so we have constructed an L-coloring of $G_{Q}^{\text {large }}$ which uses two different colors on p_{1}, x_{4} and two different colors on x_{2}, x_{4}, contradicting Claim 4.3.12.
We conclude that there is no defective 3-chord of C. Now let $Q:=x_{1} x_{2} x_{3} x_{4}$ be any 3 -chord of C, where $x_{1} \in V(\stackrel{\circ}{\mathbf{P}})$
and $x_{4} \in V(C \backslash \stackrel{\circ}{\mathbf{P}})$. Without loss of generality, let $x_{1} \in\left\{p_{2}, p_{3}\right\}$ and suppose that $V\left(G_{Q}^{\text {small }} \backslash C\right) \neq\left\{x_{2}, x_{3}\right\}$ and $V\left(G_{C}^{\text {small }}\right) \subseteq B_{1}(C)$. Since Q is not defective and $V\left(G_{Q}^{\text {small }} \backslash C\right)$ is contained in $V\left(C^{1}\right)$, there is a lone vertex $w \in D_{1}(C)$ such that $G_{Q}^{\text {small }} \backslash C$ consists of the triangle $x_{2} x_{3} w$. Now, we have $p_{1} \notin N\left(x_{2}\right)$, or else, since G is short-separation-free, the 3-chord $p_{1} x_{2} x_{3} x_{4}$ separates w from $G_{Q}^{\text {large }}$. Since one end of this 3-chord is an endpont of P, and the other does not lie in $\stackrel{\circ}{\mathbf{P}}$ this contradicts Theorem 3.0.2.

Claim 4.3.16. Q is an induced subgraph of G

Proof: If not, then since $|V(C)|>3$ and C is induced in G, G contains one of the edges $x_{1} x_{3}$ or $x_{2} x_{4}$. If either of these edges lies in $E\left(G_{Q}^{\mathrm{small}}\right) \backslash E(Q)$, then G contains a triangle separating w from $G_{Q}^{\text {large }} \backslash Q$, which is false. Thus, one of these edges lies in $E\left(G_{Q}^{\text {large }} \backslash E(Q)\right.$, so there is a 2-chord of C separating w from $G_{Q}^{\text {large }} \backslash Q$, contradicting Theorem 3.0.2.

We claim now that $p_{1} \notin N\left(x_{3}\right)$. Suppose that $p_{1} \in N\left(x_{3}\right)$ (possibly $x_{4}=p_{1}$). Then we have $x_{1}=p_{3}$, or else the cycle $x_{1} p_{1} x_{3} x_{2}$ separates w from $G_{Q}^{\text {large }} \backslash Q$, contradicting short-separation-freeness. Furthermore, since w is the lone vertex of $G_{Q}^{\text {small }} \backslash(Q \cup C)$, we get that w is the lone vertex of $G_{x_{1} x_{2} x_{3} p_{1}}^{\text {small }} \backslash V(Q \cup C)$. Since Q and C are both induced in G and $p_{1} \notin N\left(x_{2}\right)$, it follows from our triangulation conditions that w is adjacent to all five vertices of the cycle $x_{1} p_{2} p_{1} x_{3} x_{2}$, so w is adjacent to p_{1}, p_{2}, p_{3}, contradicting M1). Thus, $x_{2}, x_{3} \notin N\left(p_{1}\right)$. Furthermore, by our triangulation conditions, since C and Q are induced in G, we have $w \in N\left(x_{4}\right)$ and $w \in N\left(x_{1}\right)$. If $x_{1}=p_{2}$, then $G_{Q}^{\text {small }}+Q$ is a cycle where w is adjacent to each vertex of $G_{Q}^{\text {small }}+Q$, so we are done in that case. If $x_{1}=p_{3}$, then, since C is induced in G and $N\left(x_{2}\right) \subseteq\left\{p_{2}, p_{3}\right\}$, we have $p_{2} \in N(w)$ by our triangulation conditions and $N\left(x_{2}\right) \cap V(\mathbf{P})=\left\{p_{2}, p_{3}\right\}$. Thus $G_{p_{2} x_{2} x_{3} x_{4}}^{\text {small }}$ is a wheel with central vertex w. This completes the proof of Proposition 4.3.4.

4.4 Completing the Proof of Theorem 4.0.1

With Proposition 4.3.4 in hand, we prove the following, which is enough to complete the proof of Theorem 4.0.1 and thus complete Chapter 4. The result below is the lone result of Section 4.4.

Theorem 4.4.1. Let $\mathcal{T}=\left(G, \mathcal{C}, L, C_{*}\right)$ be a critical mosaic, let $C \in \mathcal{C}$ be an open \mathcal{T}-ring, and let $\mathbf{P}:=\mathbf{P}_{\mathcal{T}}(C)$. Let $\mathbf{P}:=p_{1} \cdots p_{m}$, and let $Q:=x_{1} x_{2} x_{3} x_{4}$ be a 3 -chord of C with precisely one endpoint in $V(\stackrel{\circ}{\mathbf{P}})$. Then $V\left(G_{Q}^{\text {small }}\right) \subseteq$ $B_{1}(C)$.

Proof. Given a 3-chord $Q:=x_{1} x_{2} x_{3} x_{4}$ of C, where $x_{1} \in V(\stackrel{\circ}{\mathbf{P}})$ and $x_{4} \in V(C \backslash \stackrel{\circ}{\mathbf{P}})$, we say that Q is bad if $V\left(G_{Q}^{\text {small }}\right) \nsubseteq B_{1}(C)$.

Claim 4.4.2. For any bad 3-chord Q^{\prime} of C, the following hold.

1) Q^{\prime} is an induced subgraph of G; AND
2) x_{1}, x_{4} do not have a common neighbor in $G_{Q^{\prime}}^{\text {large }} ; A N D$
3) x_{2} is not adjacent to either endpoint of \mathbf{P}, and x_{3} is not adjacent to any vertex of \mathbf{P}, except possibly the lone vertex of $\left\{p_{1}, p_{m}\right\} \cap V\left(G_{Q}^{\text {small }}\right) ; A N D$
4) $V\left(G_{Q^{\prime}}^{\text {small }}\right) \backslash V\left(C \cup Q^{\prime}\right) \mid>4$

Proof: Let $S^{\prime}:=V\left(G_{Q^{\prime}}^{\text {small }}\right) \backslash B_{1}(C, G)$. Since Q^{\prime} is bad, we have $S^{\prime} \neq \varnothing$. By Observation 4.3.1, suppose without loss of generality that $x_{1} \in\left\{p_{2}, p_{3}\right\}$. Now suppose that Q^{\prime} is not an induced subgraph of G. Then, since C is an induced subgraph of G, and neither of p_{2}, p_{3} is an endpoint of \mathbf{P} by Corollary 2.3.14, G contains one of the edges $x_{2} x_{4}, x_{1} x_{3}$. Thus, G contains a 2 -chord of C with endpoints x_{1}, x_{4}. Thus, since x_{1} is an internal vertex of C, we have $x_{1}=p_{2}$ by 4) of Theorem 2.2.4. Consider the following cases:

Case 1: $x_{2} x_{4} \in E(G)$
In this case, G contains the 2 -chord $x_{1} x_{2} x_{4}$ of C. By Theorem 3.0.2, we have $V\left(G_{x_{1} x_{2} x_{4}}^{\text {small }}\right) \backslash V(C)=\left\{x_{2}\right\}$. If $x_{2} x_{4} \in E\left(G_{Q^{\prime}}^{\text {large }}\right)$, then $G_{Q^{\prime}}^{\text {small }} \subseteq G_{x_{1} x_{2} x_{4}}^{\text {small }}$, and thus, $x_{3} \in V\left(G_{x_{1} x_{2} x_{4}}^{\text {small }}\right) \backslash V(C)$, which is false. On the other hand, if $x_{2} x_{4} \in E\left(G_{Q^{\prime}}^{\text {small }}\right)$, then, since G is short-separation-free, we have $V\left(G_{Q}^{\text {small }} \backslash G_{x_{1} x_{2} x_{4}}^{\text {small }}\right)=\left\{x_{3}\right\}$, and thus $V(G) \backslash V(C)=\left\{x_{2}, x_{3}\right\}$, contradicting the fact that $S^{\prime} \neq \varnothing$.

Case 2: $x_{1} x_{3} \in E(G)$
In this case, G contains the 2 -chord $x_{1} x_{3} x_{4}$ of C. By Theorem 3.0.2, we have $V\left(G_{x_{1} x_{3} x_{4}}^{\text {small }}\right) \backslash V(C)=\left\{x_{3}\right\}$. If $x_{1} x_{3} \in E\left(G_{Q^{\prime}}^{\text {large }}\right)$, then $G_{Q}^{\text {small }} \subseteq G_{x_{1} x_{3} x_{4}}^{\text {small }}$, and thus, $x_{2} \in V\left(G_{x_{1} x_{3} x_{4}}^{\text {small }}\right) \backslash V(C)$, which is false. On the other hand, if $x_{1} x_{3} \in E\left(G_{Q}^{\text {small }}\right)$, then, since G is short-separation-free, we have $V\left(G_{Q^{\prime}}^{\text {small }} \backslash G_{x_{1} x_{3} x_{4}}^{\text {small }}\right)=\left\{x_{3}\right\}$, and thus $V(G) \backslash V(C)=\left\{x_{2}, x_{3}\right\}$, contradicting the fact that $S^{\prime} \neq \varnothing$. We conclude that Q^{\prime} is an induced subgraph of G, as desired.

Now suppose that x_{1}, x_{4} have a common neighbor v^{*} in $G_{Q^{\prime}}^{\text {large }}$. Since Q^{\prime} is induced in G, we have $v^{*} \notin V\left(Q^{\prime}\right)$. Since $v^{*} \in V\left(G_{Q^{\prime}}^{\text {large }}\right)$, we have $S^{\prime} \subseteq V\left(G_{x_{1} v^{*} x_{4}}^{\text {small }}\right)$, contradicting Theorem 3.0.2. This proves 2$)$. Now suppose toward a contradiction that x_{2} has a neighbor among $\left\{p_{1}, p_{m}\right\}$. By M1), we have $p_{1} \in N\left(x_{2}\right)$, since $|E(\mathbf{P})|>3$ by Corollary 2.3.14. Likewise by M1), we have $x_{1}=p_{2}$.

By Theorem 3.0.2, we have $S^{\prime} \cap V\left(G_{p_{1} x_{2} x_{3} x_{4}}^{1}\right)=\varnothing$, and thus the triangle $p_{1} x_{2} x_{1} \mathbf{P} p_{1}$ separates S from $G_{Q^{\prime}}^{\text {large }}$ contradicting short-separation-freeness. Now suppose there is a vertex p of \mathbf{P} adjacent to x_{3}. By Corollary 2.3.14, we have $E(\mathbf{P}) \left\lvert\,=\left\lfloor\frac{2 N_{\text {mo }}}{3}\right\rfloor\right.$ and $x_{3} \notin N\left(p_{m}\right)$. Thus, if $p \in V\left(G_{Q}^{\text {large }}\right) \backslash V(Q)$, then p is an internal vertex of P and we have $S \subseteq G_{p x_{3} x_{4}}^{\mathrm{small}}$, contradicting Theorem 3.0.2. Thus, we have $p \in V\left(C_{Q^{\prime}}^{\mathrm{small}} \cap \mathbf{P}\right)$. Suppose toward a contradiction that $p \neq p_{1}$. Then, since Q^{\prime} is an induced subgraph of G, we have $x_{1}=p_{3}$ and $p^{\prime}=p_{2}$. Since $S \cap V\left(G_{p x_{3} x_{4}}^{\text {small }}\right.$, the cycle $x_{1} x_{2} x_{3} p$ separates S from $G_{Q}^{\text {large }}$, contradicting short-separation-freeness.
Now we prove 4). Let $T:=V\left(G_{Q^{\prime}}^{\text {small }} \backslash V(C \cup Q)\right.$ and suppose toward a contradiction that $|T| \leq 4$. Note that $S^{\prime} \subseteq T$.
Since $S^{\prime} \neq \varnothing$, let $s \in S^{\prime}$ Since each vertex of T has degree at least five, and s has no neighbors among $V(C)$, it follows that $|T|=4$ and s is adjacent to x_{2}, x_{3} and each vertex of $T \backslash\{s\}$, so let $T=\left\{s, s_{1}, s_{2}, s_{3}\right\}$. Note that $G_{Q}^{\text {small }}$ contains a 5 -cycle with vertices $\left\{x_{2}, x_{3}, s_{1}, s_{2}, s_{3}\right\}$, or else, by our triangulation conditions, s ha a neighbor among $V\left(G_{Q}^{\text {small }}\right) \backslash\left(T \cup\left\{x_{2}, x_{3}\right\}\right.$, contradicting the fact that $s \notin B_{1}(C, G)$. Thus, suppose without loss of generality that $G_{Q}^{\text {small }}$ contains the 5-cycle $x_{2} s_{1} s_{2} s_{3} x_{3} x_{2}$. This is an induced cycle of C, or else, since s is adjacent to each vertex of $x_{2} s_{1} s_{2} s_{3} x_{3} x_{2}, G$ contains a copy of K_{4}. Thus, since s_{2}, s_{3} are not adjacent to x_{2}, and $T=\left\{s_{1}, s_{2}, s_{3}, s\right\}$, we then get from our triangulation conditions that s_{1} is the unique common neighbor of x_{1}, x_{2} in $G_{Q}^{\text {small }}$, and likewise, s_{3} is the

If $s_{2} x_{1} \in E(G)$ then G contains a $K_{2,3}$ with bipartition $\left\{x_{2}, s_{1}, s_{2}\right\},\left\{s, x_{1}\right\}$. Thus, we have $s_{2} x_{1} \notin E(G)$, and the same argument shows that $s_{2} x_{4} \notin E(G)$. Furthermore, we have $s_{1} x_{4} \notin E(G)$, or else. G contains a $K_{2,3}$ with bipartition $\left\{s_{1}, s_{3}, x_{3}\right\},\left\{s, x_{4}\right\}$, The same argument shows that $s_{3} x_{1} \notin E(G)$.

Thus, Q^{*} is an induced path in G, and, by assumption $G_{Q^{*}}^{\text {small }} \backslash\left\{s_{1}, s_{2}, s_{3}\right\}$ consists of the path $C \cap G_{Q}^{\text {small. Thus, since }}$
C is an induced subgraph of G, it follows from our triangulation conditions that the three vertices s_{1}, s_{2}, s_{3} have a common neighbor on $C \cap G_{Q}^{\text {small }}$, and thus G contains a copy of $K_{2,3}$, which is false. This completes the proof of Claim 4.4.2.

Suppose toward a contradiction that a bad 3-chord Q of C exists, and, among all such 3-chords of C, we choose Q so that $\left|V\left(G_{Q}^{\text {small }}\right)\right|$ is minimized. By Observation 4.4.1, we have $x_{1} \in\left\{p_{2}, p_{3}, p_{m-2}, p_{m-3}\right\}$, so suppose without loss of generality that $x_{1} \in\left\{p_{2}, p_{3}\right\}$ and $G_{Q}^{\text {small }} \cap \mathbf{P}=p_{1} \mathbf{P} x_{1}$. Let $G_{Q}^{\text {small }} \cap C=x_{1} \mathbf{P} p_{1} u_{1} \cdots u_{t}$, where $u_{t}=x_{4}$ (possibly, $t=0$ and $\left.x_{4}=p_{1}\right)$. Let $S:=V\left(G_{Q}^{\text {small }}\right) \backslash B_{1}(C, G)$. We now have the following:

Claim 4.4.3. $N\left(x_{3}\right) \cap\left\{u_{1}, \cdots, u_{t}\right\}=\varnothing$, and furthermore, if $x_{4} \neq p_{1}$ then $N\left(x_{3}\right) \cap V(\mathbf{P})=\varnothing$, and if $x_{4}=p_{1}$ then $N\left(x_{3}\right) \cap V(\mathbf{P})=\left\{x_{4}\right\}$.

Proof: Suppose toward a contradiction that $N\left(x_{3}\right) \cap V(\mathbf{P}) \neq \varnothing$. Then x_{3} has a neighbor $p \in V\left(p_{1} \mathbf{P} x_{1}\right)$. By Claim 4.4.2, we have $p=p_{1}$. Since $S \cap V\left(G_{x_{4} x_{3} p_{1}}^{1}\right)$ by Theorem 3.0.2, we have $S \subseteq G_{x_{1} x_{2} x_{3} p_{1}}^{\text {small }}$. But then, since $\left|V\left(G_{x_{1} x_{2} x_{3} p_{1}}^{\mathrm{smal}}\right)\right|<\left|V\left(G_{Q}^{\mathrm{small}}\right)\right|$, the 3 -chord $x_{1} x_{3} x_{3} p_{1}$ of C contradicts the minimality of Q.

Now suppose there is an $i \in\{1, \cdots, t\}$ with $u_{i} \in N\left(x_{3}\right)$. Then G contains the 2 -chord $Q^{\prime}:=x_{4} x_{3} u_{i}$ of C and the 3chord $Q^{\prime \prime}:=u_{i} x_{3} x_{2} x_{1}$ of C. By Lemma 3.1.1, we have $S \cap V\left(G_{Q^{\prime}}^{\text {small }}\right)=\varnothing$, so $S \subseteq V\left(G_{Q^{\prime \prime}}^{\text {small }}\right)$. Since $x_{4} \notin V\left(G_{Q^{\prime \prime}}^{\text {small }}\right)$ and $u_{i} \notin V(\stackrel{\circ}{\mathbf{P}})$, this contradicts the minimality of Q.

We have a similar claim for x_{2} :
Claim 4.4.4. $N\left(x_{2}\right) \cap V\left(p_{1} \mathbf{P} x_{1}\right)=\left\{x_{1}\right\}$ and $N\left(x_{2}\right) \cap\left\{u_{1}, \cdots, u_{t}\right\}=\varnothing$

Proof: Suppose toward a contradiction that there is a $p \in V\left(p_{1} \mathbf{P} x_{1}\right) \backslash\left\{x_{1}\right\}$ with $p \in N\left(x_{2}\right)$. By Claim 4.4.2, we have $p \neq p_{1}$. Thus, we have $x_{1}=p_{3}$ and $p=p_{2}$. We have $S \subseteq G_{p_{2} x_{2} x_{3} x_{4}}^{\text {small }}$), or else the triangle $p_{2} x_{2} p_{3}$ separates S from $G_{Q}^{\text {large }}$, contradicting short-separation-freeness. Since $\left.S \subseteq G_{p_{2} x_{2} x_{3} x_{3}}^{\text {small }}\right)$ and $V\left(G_{p_{2} x_{2} x_{3} x_{3}}^{\text {small }}\right)=V\left(G_{Q}^{\text {small }}\right) \backslash\left\{p_{3}\right\}$, we contradict the minimality of Q. Thus, we have $N\left(x_{2}\right) \cap V\left(p_{1} \mathbf{P} x_{1}\right)=\left\{x_{1}\right\}$, as desired. Now suppose there is an $i \in\{1, \cdots, t\}$ with $u_{i} \in N\left(x_{2}\right)$. Then G contains the 2 -chord $u_{i} x_{2} x_{1}$ of C, and since $x_{1} \in\left\{p_{2}, p_{3}\right\}$, we have $x_{1}=p_{2}$, or else we contradict Theorem 3.0.2. Thus, G contains the 2 -chord $p_{2} x_{2} u_{i}$ of C, and, by Theorem 3.0.2, we have $S \cap V\left(G_{p_{2} x_{2} u_{i}}^{\text {small }}\right)=\varnothing$ and $x_{2} p_{1} \in E(G)$, contradicting the fact that $N\left(x_{2}\right) \cap V\left(p_{1} \mathbf{P} x_{1}\right)=\left\{x_{1}\right\}$.

Now let $D:=u_{1} \cdots u_{t} x_{3} x_{2} x_{1} \mathbf{P} p_{1}$. By Claim 4.4.2, Q is induced in G. Combining this with Claim 4.4.3 and Claim 4.4.4, together with the fact that C is induced in G, we get that D is an induced cycle of $G_{Q}^{\text {small }}$. We also have the following:

Claim 4.4.5. $V\left(G_{Q}^{\text {large }} \cup \mathbf{P}\right)$ is L-colorable.

Proof: By Claim 4.4.2, we have $\left|V\left(G_{Q}^{\text {small }}\right) \backslash V(Q \cup C)\right|>4$, so Q satisfies the first condition of Proposition 4.3.2. Since Q is induced in G, Q also satisfies condition 3) of Proposition 4.3.2. Finally, by Claim 4.4.3 and Claim 4.4.4, Q also satisfies condition 4) of Proposition 4.3.2. If there does not exist a common neighbor of x_{1}, x_{2}, x_{3} in $G_{Q}^{\text {large }} \backslash Q$, then Q satisfies all the conditions of Proposition 4.3.2, so $V\left(G_{Q}^{\text {large }} \cup \mathbf{P}\right)$ is L-colorable, as desired. So we are done in that case.

Now suppose there is a $w \in V\left(G_{Q}^{\text {large }} \backslash Q\right)$ adjacent to x_{1}, x_{2}, x_{3}. Note that $w \notin V(C)$, or else since C is an induced subgraph of G, w is the unique neighbor of x_{1} on the path $C \cap G_{Q}^{\text {arge }}$, and thus we have $x_{1}=p_{1}$ and $w=p_{2}$, which is false as $x_{1} \in\left\{p_{2}, p_{3}\right\}$.

Thus, $w \notin V(C)$, so $Q^{*}:=x_{1} w x_{3} x_{4}$ is a 3-chord of C with the same endpoints as Q. Since G is short-separationfree, we have $G_{Q}^{\text {small }}=G_{Q^{*}}^{\text {small }} \backslash\left\{x_{2}\right\}$. We claim that $V\left(G_{Q^{*}}^{\text {large }} \cup \mathbf{P}\right)$ is L-colorable. We just need to check that Q^{*} satisfies all four conditions of Proposition 4.3.2. Firstly, x_{1}, w, x_{3} do not have a common neighbor in $G_{Q^{*}}^{\text {large }} \backslash Q^{*}$, or else G contains a copy of $K_{2,3}$, so condition 2) of Proposition 4.3.2 is satisfied. Since $S \subseteq G_{Q}^{\text {small }} \subseteq G_{Q^{*}}^{\text {small }}, Q^{*}$ is also a bad 3-chord of C, and thus, by Claim 4.4.2, Q^{*} is an induced subgraph of G. By Claim 4.4.2 we have $\left|V\left(G_{Q^{*}}^{\text {small }}\right)\right|>4$. As shown above, we have $N\left(x_{3}\right) \cap V\left(\mathbf{P} \backslash\left\{x_{4}\right\}\right)=\varnothing$, and since Q separates w from p_{1}, we have $p_{1} \notin N(w)$. By Claim 4.4.2, $p_{m} \notin N(w)$, so Q^{*} satisfies all four conditions of of Proposition 4.3.2. Thus, $V\left(G_{Q^{*}}^{\text {large }} \cup \mathbf{P}\right)$ admits an L-coloring ϕ, and since x_{2} has precisely three neighbors in $V\left(G_{Q^{*}}^{\text {large }} \cup \mathbf{P}\right), \phi$ extends to an L-coloring of $V\left(G_{Q}^{\text {large }} \cup \mathbf{P}\right)$, as desired.

Applying Claim 4.4.5, we fix an L-coloring ϕ of $V\left(G_{Q}^{\text {large }} \cup \mathbf{P}\right)$ for the remainder of the proof of Theorem 4.4.1.
Claim 4.4.6. $V\left(G_{Q}^{\text {small }} \cap C\right) \backslash V(\mathbf{P}) \mid>1$
Proof: We first rule out the possibility that $x_{4}=p_{1}$. Suppose toward a contradiction that $x_{4}=p_{1}$. Then $D=$ $x_{1} \mathbf{P} p_{1} x_{3} x_{2}$, and $|V(D)| \leq 5$. Thus, $|V(D)|=5$, or else there is a 4-cycle separating S from $G_{Q}^{\text {large }} \backslash Q$.
Since \mathcal{T} is critical, ϕ does not extend to $G_{Q}^{\text {small }} \backslash D$, so $G_{Q}^{\text {small }} \backslash D$. Thus, since G is short-separation-free, $G_{Q}^{\text {small }}$ consists of a lone vertex adjacent to all five vertices of D, contradicting 4) of Claim 4.4.2. Now suppose toward a contradiction that $x_{4}=u_{1}$. Then $D=x_{1} \mathbf{P} p_{1} x_{4} x_{3} x_{2}$ and $|V(D)| \leq 6$. Thus, $5 \leq|V(D)| \leq 6$, or else there is a 4-cycle separating S from $G_{Q}^{\text {large }} \backslash Q$. But then, since ϕ does not extend to an L-coloring of $G_{Q}^{\text {small }} \backslash D$, we get that $G_{Q}^{\text {small }} \backslash D$ either consists of a lone vertex adjacent to all the vertices of D, or two vertices, each with at least four neighbors on D. In either case, we contradict 4) of Claim 4.4.2.

Now we have the following:

Claim 4.4.7. $N\left(p_{2}\right) \cap N\left(x_{4}\right)=\varnothing$, and in particular, $N\left(x_{1}\right) \cap N\left(x_{4}\right)=\varnothing$. Furthermore, there is no vertex of $G_{Q}^{\text {small }} \backslash D$ adjacent to both x_{4} and $p_{1} \mathbf{P} x_{1}$.

Proof: Suppose toward a contradiction that there is a $v^{*} \in N\left(p_{2}\right) \cap N\left(x_{4}\right)$. Since C is an induced subgraph of G and $|V(C)|>3$, we have $v^{*} \in V(G \backslash C)$. By Claim 4.4.2, we have $v^{*} \notin V(Q)$ and if $v^{*} \in V\left(G_{Q}^{\text {large }} \backslash Q\right)$, then we have $p_{2}=x_{1}$ and we contradict 2) of Claim 4.4.2. Thus, we have $v^{*} \in V\left(G_{Q}^{\text {small }} \backslash Q\right)$. By Theorem 3.0.2, $G_{p_{2} v^{*} x_{4}}^{\text {small }}$ consists of a broken wheel with principal path $p_{2} v^{*} x_{4}$. By Claim 4.4.6, we have $t>1$. Now let a, b be two colors in $L\left(u_{1}\right) \backslash L\left(p_{1}\right)$ and, since $\left|L\left(v^{*}\right)\right|=5$, let d be a color of $L\left(v^{*}\right) \backslash\left(\{a, b\} \cup L\left(p_{1}\right) \cup L\left(p_{2}\right)\right)$. Let $G^{\prime}:=G_{p_{2} v^{*} x_{4}}^{\text {large }}$.

Let $\mathbf{P}^{\prime}:=p_{m} \cdots p_{2} v^{*}$ and let L^{\prime} be a list-assignment for $V\left(G^{\prime}\right)$ where $L^{\prime}\left(v^{*}\right)=\{d\}$ and otherwise $L^{\prime}=L$. Let $C^{\prime}:=\left(C \cap G^{\prime}\right)$ and let C_{*}^{\prime} be the outer face of $G_{p_{2} v^{*} x_{4}}^{\text {large }}$. Since $N\left(v^{*}\right) \cap V(\mathbf{P}) \subseteq\left\{p_{1}, p_{2}\right\}, \mathbf{P}^{\prime}$ is an induced subgraph of G^{\prime}. Thus, \mathbf{P}^{\prime} is L^{\prime}-colorable, and $\mathcal{T}^{\prime}:=\left(G^{\prime},(\mathcal{C} \backslash\{C\}) \cup\left\{C^{\prime}\right\}, L^{\prime}, C_{*}^{\prime}\right)$ is a tessellation, where C^{\prime} is an open \mathcal{T}^{\prime}-ring with precolored path \mathbf{P}^{\prime}.

If \mathcal{T}^{\prime} is a mosaic, then G^{\prime} admits an L-coloring ψ by the minimality of \mathcal{T}. Since $d \neq L\left(p_{1}\right), \phi$ extends to an L-coloring ψ^{\prime} of $V\left(G^{\prime}\right) \cup\left\{p_{1}\right\}$. By construction of L^{\prime}, at least one of $\psi^{\prime}\left(p_{1}\right), d$ lies outside of $L\left(u_{1}\right)$, so, since $t>1, \psi^{\prime}$ extends to color the broken wheel $G_{p_{2} v^{*} x_{4}}^{\text {small }}$, and thus G is L-colorable, contradicting the fact that \mathcal{T} is critical.
Thus, \mathcal{T}^{\prime} is not a tessellation. Note that, since $p_{3} \notin N\left(v^{*}\right)$ and Q separates v^{*} from each element of $\mathcal{C} \backslash\{C\}, \mathcal{T}^{\prime}$ satisfies the distance conditions of Definition 2.1.6. Since $\left|E\left(\mathbf{P}^{\prime}\right)\right|=|E(\mathbf{P})|$, the only condition that \mathcal{T}^{\prime} violates is M1), and, in particular, Since C^{\prime} is induced in G^{\prime}, there is a lone vertex $w \in V\left(G^{\prime} \backslash C^{\prime}\right)$ adjacent to each of p_{2}, p_{3}, v^{*}, and so $x_{1}=p_{3}$. Note that $v^{*} \notin\left\{x_{2}, x_{3}\right\}$ by Claim 4.4.4 and Claim 4.4.3. Thus, $w \in V\left(G_{Q}^{\text {small }} \backslash D\right)$, and G contains the

3-chord $Q^{\prime \prime}:=x_{1} w v^{*} x_{4}$ of C. Let $f \in L(w) \backslash\left(\{d\} \cup L\left(p_{2}\right) \cup L\left(p_{3}\right)\right)$ and let $L^{\prime \prime}$ be a list-assignment for $G_{Q^{\prime \prime}}^{\text {large }}$, where $L^{\prime \prime}\left(v^{*}\right)=\{d\}, L^{\prime \prime}(w)=\{f\}$, and otherwise $L^{\prime \prime}=L$. Let $\mathbf{P}^{\prime \prime}:=p_{m} \cdots p_{3} w v^{*}$. Let $C^{\prime \prime}:=\left(C \cap G_{Q}^{\text {large }}+x_{1} w v^{*} x_{4}\right.$ and let $C_{*}^{\prime \prime}$ be the outer face of $G_{Q^{\prime \prime}}^{\text {large }}$. Finally, let $\mathcal{T}^{\prime \prime}:=\left(G_{Q^{\prime \prime}}^{\text {arge }},(\mathcal{C} \backslash\{C\}) \cup\left\{C^{\prime \prime}\right\}, L^{\prime \prime}, C_{*}^{\prime \prime}\right)$. Then $C^{\prime \prime}$ is an open $\mathcal{T}^{\prime \prime}$-ring with precolored path $\mathbf{P}^{\prime \prime}$, and since $P^{\prime \prime}$ is induced in $G_{Q^{\prime \prime}}^{\text {arge }}$, we get that $\mathbf{P}^{\prime \prime}$ is $L^{\prime \prime}$-colorable by our construction of $L^{\prime \prime}$. Thus, $\mathcal{T}^{\prime \prime}$ is a tessellation. We claim now that $\mathcal{T}^{\prime \prime}$ is a mosaic. As above with \mathcal{T}^{\prime}, if $\mathcal{T}^{\prime \prime}$ is not a mosaic, then condition M1) is violated, and, in particular, there is a vertex z of $G_{Q^{\prime \prime}}^{\text {arge }} \backslash C^{\prime \prime}$ adjacent to both x_{1} and v^{*}. But then G contains a $K_{2,3}$ with bipartition $\left\{z, p_{2}, w\right\},\left\{x_{1}, v^{*}\right\}$, contradicting short-separation-freeness.

Thus, $\mathcal{T}^{\prime \prime}$ is indeed a tessellation, and $\left.\mid V G_{Q^{\prime \prime}}^{\text {large }}\right)\left|<|V(G)|\right.$, so $G_{Q^{\prime \prime}}^{\text {large }}$ admits an $L^{\prime \prime}$-coloring $\psi^{\prime \prime}$. By Claim 4.4.6, we have $x_{4} p_{1} \notin E(G)$, so $\psi^{\prime \prime}$ is a proper L-coloring of the subgraph of G induced by $G_{Q^{\prime \prime}}^{\text {large }}$, and, by our choice of lists for $v^{*}, w, \psi^{\prime \prime}$ extends to an L-coloring ψ^{\dagger} of $V\left(G_{Q^{\prime \prime}}^{\text {large }}\right) \cup\left\{p_{1}, p_{2}\right\}$. Since $\psi^{\prime \prime}\left(v^{*}\right)=d$ and $t>1, \psi^{\dagger}$ also extends to the broken wheel $G_{p_{2} v^{*} x_{4}}^{\text {small }}$. Thus, since ψ^{\dagger} does not extend to an L-coloring of G, the precoloring of the 6-cycle $D^{*}:=x_{1} x_{2} x_{3} x_{4} v^{*} w$ with ψ^{\dagger} does not extend to $G_{Q}^{\text {small }} \backslash\left(V(D) \cup\left\{v^{*}, w\right\}\right)$.

Let $W \subseteq \mathbb{R}^{2}$ be the unique open set such that $\partial(W)=D^{*}$ and $W \cap V(C)=\varnothing$. Since D^{*} is a 6-cycle and ψ^{\dagger} does not extend to L-coloring $W \cap V(G)$, the graph $G \cap W$ is either a lone vertex, an edge, or a triangle by Theorem 1.3.5. In each case, each vertex of $V(G) \cap W$ is adjacent to a subpath of D^{*} of length at least two, so each vertex in $V(G) \cap W$ has a neighbor in $\left\{x_{1}, p_{2}, x_{4}\right\}$, contradicting the fact that $S \subseteq V(G) \cap W$. We conclude that $N\left(x_{4}\right) \cap N\left(p_{2}\right)=\varnothing$, as desired.

Note that since $N\left(p_{2}\right) \cap N\left(x_{4}\right)=\varnothing$, we have $N\left(x_{1}\right) \cap N\left(x_{4}\right)=\varnothing$, or else we have $x_{1}=p_{3}$. Yet since C is induced and $|V(C)| \geq 3$, we get that p_{3}, x_{4} have a common neighbor in $G \backslash C$, contradicting 4) of Theorem 2.2.4. Finally, suppose toward a contradiction that there is a $v^{*} \in V\left(G_{Q}^{\text {small }} \backslash D\right)$ adjacent to both x_{4} and $p_{1} \mathbf{P} x_{1}$. Since $N\left(p_{2}\right) \cap N\left(x_{4}\right)=\varnothing$, and $N\left(x_{1}\right) \cap N\left(x_{4}\right)=\varnothing$, we have $p_{1} \in N\left(v^{*}\right)$ and $G_{Q}^{\text {small }}$ contains the 3-chord $p_{1} v^{*} x_{4}$ of C, where $p_{1} v^{*} x_{4} \in \mathcal{K}(C, \mathcal{T})$. By Theorem 3.0.2, $G_{p_{1} v^{*} x_{4}}^{\text {small }} \backslash\left\{v^{*}\right\}$ is the path $p_{1} u_{1} \cdots u_{t}$, and $t>1$ by Claim 4.4.6. Let a, b be two colors in $L\left(u_{1}\right) \backslash L\left(p_{1}\right)$, and let $G^{\dagger}:=G_{p_{1} v^{*} x_{4}}^{\text {large }}$ and let L^{\dagger} be a list-assignment for G^{\dagger}, where $L^{\dagger}\left(v^{*}\right)=L(v) \backslash\{a, b\}$, and otherwise $L^{\dagger}=L$. Let $C^{\dagger}:=\left(G \cap G_{Q}^{\text {large }}\right)+x_{1} \mathbf{P} p_{1} v^{*} x_{4}$, and let C_{*}^{\dagger} be the outer face of G^{\dagger}. Let $\mathcal{T}^{\dagger}:=\left(G^{\dagger},(\mathcal{C} \backslash\{C\}) \cup\left\{C^{\dagger}\right\}, L^{\dagger}, C_{*}^{\dagger}\right)$. Then \mathcal{T}^{\dagger} is a tessellation, where C^{\dagger} is an open \mathcal{T}^{\dagger}-ring which also has precolored path \mathbf{P}. We claim now that \mathcal{T}^{\dagger} is a mosaic.

Firstly, since $N\left(p_{2}\right) \cap N\left(x_{4}\right)=\varnothing$ and $N\left(x_{1}\right) \cap N\left(x_{4}\right)=\varnothing$, we have $p_{2}, p_{3} \notin N\left(v^{*}\right)$, so C^{\dagger} is an induced cycle of G^{\dagger}. Thus, since C^{\dagger} has the same precolored path as C, \mathcal{T}^{\dagger} satisfies M0) and M1), and M2) is immediate. Furthermore, since v^{*} has a neighbor in $C \backslash \stackrel{\circ}{\mathbf{P}}$ and Q separates v^{*} from each element of $\mathcal{C} \backslash\{C\}, \mathcal{T}^{\dagger}$ satisfies the distance conditions of Definition 2.1.6

Thus, \mathcal{T}^{\dagger} is a mosaic, and since $\left|V\left(G^{\dagger}\right)\right|<|V(G)|, G^{\dagger}$ admits an L^{\dagger}-coloring ψ by the minimality of \mathcal{T}. By our choice of L^{\dagger}, either $\psi\left(p_{1}\right) \notin L\left(u_{1}\right)$ or $\psi\left(v^{*}\right) \notin L\left(u_{1}\right)$. In either case, the coloring ψ of the principal path $p_{1} v^{*} x_{4}$ of $G_{p_{1} v^{*} x_{4}}^{\text {small }}$ extends an L-coloring of the entire broken wheel, so ψ extends to an L-coloring of G, contradicting the fact that \mathcal{T} is critical.

As a consequence of the above, we have the following:

Claim 4.4.8. x_{3}, p_{1} have no common neighbor in G.

Proof: Suppose toward a contradiction that x_{3}, p_{1} have a common neighbor z. Since $x_{4} \neq p_{1}$ and Q is induced in G, it follows from Claim 4.4.3 that $N\left(x_{3}\right) \cap V(D)=\left\{x_{4}\right\}$, so $z \notin V(C)$. Now, G contains the 3-chord $p_{1} z x_{3} x_{4}$ of C,
and, by Theorem 3.0.2, we have $G_{p_{1} z x_{3} x_{4}}^{\text {small }} \backslash\left\{z, x_{3}\right\}=p_{1} u_{1} \cdots u_{t}$. Since $N\left(x_{3}\right) \cap V(D)=\left\{x_{4}\right\}$, it follows from our triangulation conditions that $z \in N\left(x_{4}\right)$, contradicting Claim 4.4.7.

We also have the following:
Claim 4.4.9. For any $v^{*} \in V\left(G_{Q}^{\text {small }} \backslash Q\right), G\left[N\left(v^{*}\right) \cap V(Q)\right]$ is a subpath of Q of length at most one. Furthermore, for any $v^{*} \in V\left(G_{Q}^{\text {small }} \backslash D\right)$, if $x_{2} \in N\left(v^{*}\right)$, then v^{*} has no neighbors on the path $p_{1} u_{1} \cdots u_{t}$.

Proof: By Claim 4.4.7, we have $N\left(x_{1}\right) \cap N\left(x_{4}\right)=\varnothing$. Thus, if there is a $v^{*} \in V\left(G_{Q}^{\text {small }} \backslash Q\right)$ such that $G\left[N\left(v^{*}\right) \cap V(Q)\right]$ is a subpath of Q of length at most one, then, since Q is an induced subgraph of G and it follows from Observation 4.3.1 that $G\left[N\left(v^{*}\right) \cap V(Q)\right]$ is a subpath of Q of length precisely two. Consider the following cases.

Case 1: $N\left(v^{*}\right) \cap V(Q)=\left\{x_{1}, x_{2}, x_{3}\right\}$
In this case, let $Q^{\prime}:=x_{1} v^{*} x_{3} x_{4}$. Since G is short-separation-free, we have $V\left(G_{Q^{\prime}}^{\text {small }} \backslash G_{Q}^{\text {small }}\right)=\left\{x_{2}\right\}$. Since v^{*} has a neighbor in C, we have $v^{*} \notin S$, and since G is short-separation-free, we have $S \subseteq G_{Q^{\prime}}^{\text {small }}$, contradicting the minimality of Q.

Case 2: $N\left(v^{*}\right) \cap V(Q)=\left\{x_{2}, x_{3}, x_{4}\right\}$
In this case, let $Q^{\prime \prime}:=x_{1} x_{2} v^{*} x_{4}$. Since G is short-separation-free, we have $V\left(G_{Q^{\prime \prime}}^{\text {small }} \backslash G_{Q}^{\text {small }}\right)=\left\{x_{3}\right\}$. Again, since v^{*} has a neighbor in C, we have $v^{*} \notin S$, and since G is short-separation-free, we have $S \subseteq G_{Q^{\prime}}^{\text {small }}$, contradicting the minimality of Q.

Now suppose toward a contradiction there is a $v^{*} \in V\left(G_{Q}^{\text {small }} \backslash D\right)$ and a $u \in\left\{p_{1}, u_{1}, \cdots, u_{t}\right\}$ such that v^{*} is adjacent to both x_{2} and u. Then G contains the 3 -chord $Q^{\prime}:=x_{1} x_{2} v^{*} u$ of C and the 4 -chord $Q^{\prime \prime}:=u v^{*} x_{2} x_{3} x_{4}$ of C. Note that $Q^{\prime \prime}$ lies in $\mathcal{K}(C, \mathcal{T})$, and that $u \neq u_{t}$, or else we contradicting the fact that $G\left[N\left(v^{*}\right) \cap V(Q)\right]$ is a subpath of Q of length at most one. Furthermore, since $u \in V(C \backslash \stackrel{\circ}{\mathbf{P}})$, we have $S \cap V\left(G_{Q^{\prime}}^{\text {small }}\right)=\varnothing$, or else we contradict the minimality of Q. But then, since $G_{Q^{\prime \prime}}^{\text {small }}=G_{Q^{\prime \prime}}^{1}$, we have $S \subseteq V\left(G_{Q^{\prime \prime}}^{1}\right)$. Since $v^{*} u \in E(G)$, we have $v^{*} \notin S$, so $S \subseteq V\left(G_{Q^{\prime \prime}}^{1}\right) \backslash V\left(Q^{\prime \prime}\right)$, contradicting Lemma 4.2.1.

The above claims have the following simple consequence, which we use repeatedly:
Claim 4.4.10. Let Q^{\dagger} be a proper generalized chord of C with endpoints p_{1}, x_{4}, where $Q^{\dagger} \subseteq G_{Q}^{\text {small }}$, and suppose that $x_{2}, x_{3} \notin V\left(Q^{\dagger}\right)$. Then ϕ extends to an L-coloring of $G_{Q^{\dagger}}^{\text {small }}$.

Proof: Let $G_{Q^{\dagger}}^{\text {small }} \backslash\left\{p_{1}, x_{4}\right\}$ and let F be the unique facial subgraph of G^{*} containing the path $u_{1} \cdots u_{t-1}$ Since $t>1$ by Claim 4.4.6, this is well defined. Suppose there is a vertex $u \in V(F) \backslash\left\{u_{1}, \cdots, u_{t-1}\right\}$ with at least three neighbors in $\operatorname{dom}(\phi)$. Then $u \in V\left(Q^{\dagger} \backslash\left\{p_{1} x_{4}\right\}\right)$. If u is adjacent to p_{1}, then $p_{3} \notin N(u)$ by M1), and $x_{2} \notin N(u)$ by Claim 4.4.9. Furthermore, $x_{4} \notin N(u)$ by Claim 4.4.7. Since u has at least three neighbors on dom (ϕ), we have $N(u) \cap \operatorname{dom}(\phi)=$ $\left\{x_{3}, p_{1}, p_{2}\right\}$. But then G contains the 3 -chord $p_{1} z x_{3} x_{4}$ of C, and since $N\left(x_{3}\right) \cap\left\{p_{1}, u_{1}, \cdots, u_{t}\right\}=\left\{u_{t}\right\}$, it follows from Theorem 3.0.2 and our triangulation conditions that $x_{4} \in N(z)$, which is false.

Thus, every vertex of $F \backslash\left\{u_{1}, \cdots, u_{t-1}\right\}$ has an L_{ϕ}-list of size at least three. Furthermore, for each $u \in V\left(G^{*} \backslash F\right)$, we have $\left|L_{\phi}(u)\right| \geq 5$. If $t=2$, then $\left|L_{\phi}\left(u_{1}\right)\right| \geq 1$, and $\left|L_{\phi}(u)\right| \geq 3$ for all $u \in V(F) \backslash\left\{u_{1}\right\}$, so G^{*} is L_{ϕ}-colorable by Theorem 0.2.3. If $t>2$, then $\left|L_{\phi}\left(u_{1}\right)\right| \geq 2,\left|L_{\phi}\left(u_{t-1}\right)\right| \geq 2$, and $\left|L_{\phi}(u)\right| \geq 3$ for all $u \in V(F) \backslash\left\{u_{1}, u_{t-1}\right\}$. Thus, by Theorem 1.3.4, G^{*} is L_{ϕ}-colorable. In either case, we are done.

Let U be the set of vertices in $V\left(G_{Q}^{\text {small }} \backslash D\right)$ with at least three neighbors among $V\left(Q \cup x_{1} \mathbf{P} p_{1}\right)$, and let $p^{\prime} \in\left\{p_{1}, p_{2}\right\}$ be the lone neighbor of x_{1} in $x_{1} \mathbf{P} p_{1}$. Now we have the following:

Claim 4.4.11. There exist $a v \in V\left(G_{Q}^{\text {small }} \backslash D\right)$ such that $\{v\}=U$ and $N(v) \cap V(D)=\left\{x_{1}, x_{2}, p^{\prime}\right\}$.
Proof: Suppose toward a contradiction that $U=\varnothing$, and let F be the lone facial subgraph of $G_{Q}^{\text {small }} \backslash\left(V(Q) \cup V\left(x_{1} \mathbf{P} p_{1}\right)\right)$ containing all vertices of $G_{Q}^{\text {small }} \backslash\left(V(Q) \cup V\left(x_{1} \mathbf{P} p_{1}\right)\right)$ with $L_{\phi^{\prime}}$ lists of size less than 3 . Since C is an induced cycle of G and $\left(N\left(x_{2}\right) \cup N\left(x_{3}\right)\right) \cap\left\{u_{1}, \cdots, u_{t-1}\right\}=\varnothing$, we have the following: If $t=1$, then $\left|L_{\phi^{\prime}}\left(u_{1}\right)\right| \geq 1$ and $\left|L_{\phi^{\prime}}(z)\right| \geq 3$ for all $z \in V(F) \backslash\left\{u_{1}\right\}$. On the other hand, if $t>1$, then $\left|L_{\phi^{\prime}}\left(u_{1}\right)\right| \geq 2$ and $\left|L_{\phi^{\prime}}\left(u_{t-1}\right)\right| \geq 2$, and $\left|L_{\phi^{\prime}}(z)\right| \geq 3$ for all $z \in V(F) \backslash\left\{u_{1}, u_{t-1}\right\}$. In either case, ϕ^{\prime} extends to an L-coloring of G, contradicting the fact that \mathcal{T} is critical. Thus, $U \neq \varnothing$ so let $v \in U$. By M2), we have $G\left[N(v) \cap V\left(x_{1} \mathbf{P} p_{1}\right)\right]$ is a subpath of P of length at most one, and by Claim 4.4.9, we get that $G[N(v) \cap V(Q)]$ is a subpath of Q of length at most one, so it just suffices to check that $x_{1} \in N(v)$. Then v is the unique vertex of $G_{Q}^{\text {small }}$ adjacent to each of x_{1}, x_{2}, p^{\prime}. Suppose toward a contradiction that $x_{1} \notin N(v)$. By Claim 4.4.7, we have $x_{4} \notin N(v)$. Consider the following cases:

Case 1: $x_{2} \in N(v)$
In this case, since $x_{1} \notin N(v)$ by assumption and $N(v)$ has nonempty intersection with $v\left(p_{1} \mathbf{P} x_{1}\right)$, it follows from Claim 4.4.9 that $x_{1}=p_{3}$ and $N(v) \cap V\left(p_{1} \mathbf{P} x_{1}\right)=\left\{p_{2}\right\}$, so G contains the 4-cycle $x_{1} p_{2} v^{*} x_{2}$. But then, since $x_{2} p_{2} \notin E(G)$ by Claim 4.4.4 and G is short-separation-free, we have $v^{*} x_{1} \in E(G)$ by our triangulation conditions. contradicting our assumption.

Case 2: $x_{2} \notin N(v)$
In this case, $N(v) \cap V(Q)=\left\{x_{3}\right\}$, and thus, since v has three neighbors on $V\left(Q \cup x_{1} \mathbf{P} p_{1}\right)$, we have $x_{1}=p_{3}$ and $N(v) \cap V\left(Q \cup x_{1} \mathbf{P} p_{1}\right)=\left\{x_{3}, p_{2}, p_{1}\right\}$, contradicting Claim 4.4.8. This completes the proof of Claim 4.4.11.

This also implies the following:

Claim 4.4.12. $x_{1}=p_{3}$.
Proof: Suppose not. Then we have $x_{1}=p_{2}$, and, applying Claim 4.4.11, there is a $v^{*} \in V\left(G_{Q}^{\text {small }} \backslash D\right)$ adjacent to p_{1}, p_{2}, x_{2}, so G contains the 4 -chord $Q^{\dagger}:=p_{1} v^{*} x_{3} x_{3} x_{4}$ of C, and $Q^{\dagger} \in \mathcal{K}(C, \mathcal{T})$. Since G is short-separation-free, we have $V\left(G_{Q}^{\text {small }}\right) \backslash V\left(G_{Q^{\dagger}}^{\text {small }}\right)=\left\{p_{2}\right\}$, so $S \subseteq V\left(G_{Q^{\dagger}}^{\text {small }}\right)$. Since $v^{*} \notin S$, this contradicts Lemma 4.2.1.

Let $U=\left\{v^{*}\right\}$ and let $Q^{\dagger}:=p_{2} v^{*} x_{2} x_{3} x_{4}$. For any extension of ϕ to an L-coloring ϕ^{\prime} of $\operatorname{dom}(\phi) \cup A$, we let $T\left(A, \phi^{\prime}\right)$ be the set $\left\{z \in V\left(G_{Q}^{\mathrm{small}}\right) \backslash \operatorname{dom}\left(\phi^{\prime}\right):\left|L_{\phi^{\prime}}(z)\right|<3\right\}$.

Claim 4.4.13. Let $A \subseteq V\left(G_{Q}^{\mathrm{small}}\right) \backslash\left(V(Q) \cup\left\{p_{1}, p_{2}\right\}\right)$ and suppose that each vertex of A either lies in D or has a neighbor in $V(Q) \cup\left\{p_{1}, p_{2}\right\}$. Let $B \subseteq A$ and let ϕ^{\prime} be an extension of ϕ to $\operatorname{dom}(\phi) \cup B$. Suppose that B and ϕ^{\prime} satisfy the following additional conditions.

1) each vertex of $A \backslash B$ is $L_{\phi^{\prime}}$-inert; $A N D$
2) For each $j \in\left\{u_{1}, \cdots, u_{t-1}\right\}$, if $u_{j} \in A$, then A either contains the path $p_{1} u_{1} \cdots u_{j}$, or the path $u_{j} \cdots u_{t}$ (possibly both); AND
3) For each $u \in\left\{u_{1}, \cdots, u_{t-1}\right\} \backslash A, N(u) \cap B \subseteq V(D)$.

Then $T\left(B, \phi^{\prime}\right) \backslash A \neq \varnothing$.

Proof: Let A, B, ϕ^{\prime} be as above and suppose toward a contradiction that $T\left(B, \phi^{\prime}\right) \subseteq A$. Since each vertex of A either lies in D or has a neighbor in $V(Q) \cup\left\{p_{1}, p_{2}\right\}$, the graph $G^{*}:=G_{Q}^{\text {small }} \backslash\left(A \cup V(Q) \cup\left\{p_{1}, p_{2}\right\}\right)$ has a unique facial subgraph F containing all the neighbors of $\operatorname{dom}\left(\phi^{\prime}\right)$. Thus, every vertex of $G^{*} \backslash F$ has an $L_{\phi^{\prime}}$ list of size five. Since $T\left(B, \phi^{\prime}\right) \subseteq A$, each vertex of $F \backslash\left\{u_{1}, \cdots, u_{t-1}\right\}$ has an $L_{\phi^{\prime}}$-list of size at least three. Furthermore, by our conditions on A, there exist indices $1 \leq i \leq j \leq t-1$ such that $u_{1} \cdots u_{t-1} \backslash A$ consists of the path $u_{i} \cdots u_{j}$. By our conditions on A, each internal vertex of $u_{i} \cdots u_{j}$ has no neighbors in B and thus an $L_{\phi^{\prime}}$-list of size at least three. Again by our conditions on A, if $j>i$, then each of u_{i}, u_{j} has an $L_{\phi^{\prime}}$-list of size at least two, and if $j=i$, then u_{i} has an $L_{\phi^{\prime}}$-list of size at least one. In either case, G^{*} is $L_{\phi^{\prime}}$-colorable, and since $A \backslash B$ is $L_{\phi^{\prime}}$-inert, ϕ^{\prime} extends to an L-coloring of all of $G_{Q}^{\text {small }}$, so G is L-colorable, which is false.

Now we have the following:

Claim 4.4.14. Let ϕ^{\prime} be any extension of ϕ to $\operatorname{dom}(\phi) \cup\left\{v^{*}\right\}$. Then $1 \leq\left|T\left(v^{*}, \phi^{\prime}\right)\right| \leq 2$, and, for each $w \in T\left(v^{*}, \phi^{\prime}\right)$, either $N(w) \cap\left(V(Q) \cup\left\{p_{1}, p_{2}, v^{*}\right\}\right)=\left\{p_{1}, p_{2}, v^{*}\right\}$ or $N(w) \cap\left(V(Q) \cup\left\{p_{1}, p_{2}, v^{*}\right\}\right)=\left\{x_{2}, x_{3} v^{*}\right\}$. Furthermore, if $N(w) \cap\left(V(Q) \cup\left\{p_{1}, p_{2}, v^{*}\right\}\right)=\left\{x_{2}, x_{3} v^{*}\right\}$, then $N(w) \cap V(D)=\left\{x_{2}, x_{3}\right\}$.

Proof: Let ϕ^{\prime} be as above. By Claim 4.4.11, v^{*} has no neighbors in $V(D) \backslash \operatorname{dom}(\phi)$. Thus, letting $A=B=\left\{v^{*}\right\}$, this choice of A, B, ϕ^{\prime} satisfies the conditions of Claim 4.4.13. so we have $T\left(v^{*}, \phi^{\prime}\right) \neq \varnothing$. Thus, let $w \in T\left(\phi^{\prime}, A\right)$. By Claim 4.4.11, $w \notin T(\phi, \varnothing)$. Thus, since $N\left(p_{3}\right) \cap V\left(G_{Q}^{\text {small }}\right)=\left\{p_{2}, v^{*}, x_{2}\right\}, w$ is adjacent to v^{*} and has precisely two neighbors among $\left\{p_{1}, p_{2}, x_{2}, x_{3}, x_{4}\right\}$. Consider the following cases:

Case 1: $p_{1} \in N(w)$
In this case, G contains the 4 -cycle $p_{1} w v^{*} p_{2}$, and thus, since $p_{1} \notin N\left(v^{*}\right)$, we have $p_{2} \in N(w)$. Since w has precisely two neighbors in $\left\{p_{1}, p_{2}, x_{2}, x_{3}, x_{4}\right\}$, we have $N(w) \cap\left(V(Q) \cup\left\{p_{1}, p_{2}, v^{*}\right\}\right)=\left\{p_{1}, p_{2}, v^{*}\right\}$.

Case 2: $p_{1} \notin N(w)$
In this case, we first claim that $p_{2} \notin N(w)$. Suppose that $p_{2} \in N(w)$. By Claim 4.4.7, we have $x_{4} \notin N(w)$, so w has a neighbor among x_{2}, x_{3}. If $x_{2} \in N(w)$, then G contains a $K_{2,3}$ with bipartition $\left\{p_{3}, v^{*}, w\right\},\left\{p_{2}, x_{2}\right\}$, which is false. Thus, we have $N(w) \cap\left\{x_{2}, x_{3}\right\}=\left\{x_{3}\right\}$, and G contains the 4 -cycle $v^{*} w x_{3} x_{2}$. Since $x_{3} \notin N\left(v^{*}\right)$, we have $x_{2} \in N(w)$ by our triangulation conditions, contradicting the fact that $N(w) \cap\left\{x_{2}, x_{3}\right\}=\left\{x_{3}\right\}$.

Thus, $p_{2} \notin N(w)$ as well, so w has precisely two neighbors among $\left\{x_{2}, x_{3}, x_{4}\right\}$. Thus, if $N(w) \cap\left\{x_{2}, x_{3}, x_{4}\right\} \neq$ $\left\{x_{2}, x_{3}\right\}$, then, by Claim 4.4.9, we have $N(w) \cap\left\{x_{2}, x_{3}, x_{4}\right\}=\left\{x_{3}, x_{4}\right\}$, so G contains the 4-cycle $x_{2} v^{*} w x_{3}$. Since $x_{3} \notin N(v)$ we have $x_{2} \in N(w)$ by our triangulation conditions, contradicting the fact that $N(w) \cap\left\{x_{2}, x_{3}, x_{4}\right\}=$ $\left\{x_{3}, x_{4}\right\}$. Thus, we get $N(w) \cap V(\mathbf{P} \cup Q)=\left\{x_{2}, x_{3}\right\}$, as desired. Furthermore, since w is adjacent to x_{2}, we have $N(w) \cap V(D)=\left\{x_{2}, x_{3}\right\}$ by Claim 4.4.9. Finally, since G is short-separation-free, we have $1 \leq\left|T\left(v^{*}, \phi^{\prime}\right)\right| \leq 2$. This completes the proof of Claim 4.4.14.

Now we have the following critical claim:

Claim 4.4.15. Suppose there is a vertex $z \in V\left(G_{Q}^{\text {small }} \backslash D\right)$ adjacent to p_{1}, p_{2}, v^{*}. Let u be the non- p_{2} endpoint of $G[N(z) \cap V(C)]$. Then the following hold.

1) $u=p_{1}$. In particular, u, v^{*} have no common neighbor in G except for z; AND
2) z, x_{4} have no common neighbor in G.

Proof: Let $H:=G\left[\{z\} \cup(N(z) \cap V(C)]\right.$. Then H is a broken wheel with principal path $p_{2} z u$. Suppose toward a contradiction that $u \neq p_{1}$. Let $L\left(p_{i}\right)=\left\{q_{i}\right\}$ for each $i=1,2$. Let $H^{\prime}:=H \backslash\left\{p_{2}\right\}$. Since $u \neq p_{1}, H^{\prime}$ is a broken wheel with principal path $p_{1} z u$.

Applying Corollary 1.4.6, there exist two colors $c_{1}, c_{2} \in L(u)$ such that $z_{H^{\prime}}\left(q_{1}, \bullet, c_{1}\right) \cap z_{H^{\prime}}\left(\phi\left(p_{1}\right), \bullet, c_{2}\right) \neq \varnothing$, so let $d \in \mathcal{Z}_{H^{\prime}}\left(q_{1}, \bullet, c_{1}\right) \cap \mathcal{Z}_{H^{\prime}}\left(q_{1}, \bullet, c_{2}\right)$. Let $d_{1} \in L\left(v^{*}\right) \backslash\left(L\left(p_{3}\right) \cup L\left(p_{2}\right) \cup\{d\}\right)$. Let $G^{\dagger}:=G \backslash(H \backslash\{u, z\})$ and let L^{\dagger} be a list-assignment for $V\left(G^{\dagger}\right)$, where $L^{\dagger}(u):=\left\{c_{1}, c_{2}, d\right\}, L^{\dagger}(z):=\{d\}$ and $L^{\dagger}\left(v^{*}\right):=\left\{d_{1}\right\}$, and finally, $L^{\dagger}(a):=L(a)$ for all $a \in V\left(G^{\dagger}\right) \backslash\left\{v^{*}, z, u\right\}$.

Let $\mathbf{P}^{\dagger}:=p_{m} \mathbf{P} p_{3} v^{*} z$ and let $C^{\dagger}:=\left(C \cap G_{Q}^{\text {arge }}\right)+x_{1} v^{*} z u \cdots u_{t}$. Let C_{*}^{\dagger} be the outer face of G^{\dagger} and let $\mathcal{T}^{\dagger}:=$ $\left(G^{\dagger},(\mathcal{C} \backslash\{C\}) \cup\left\{C^{\dagger}, C_{*}^{\dagger}, L^{\dagger}\right)\right.$. Then \mathcal{T}^{\dagger} is a tessellation, where C^{\dagger} is an open \mathcal{T}^{\dagger}-ring with precolored path \mathbf{P}^{\dagger}. We claim now that \mathcal{T} is a mosaic. Since $\left|E\left(\mathbf{P}^{\dagger}\right)\right|=|E(\mathbf{P})|$, M0) is satisfied. By Claim 4.4.4, v^{*} has no neighbors in C^{\dagger} except for x_{1}, z, and furthermore, $x_{2} z \notin E(G)$, or else G. Thus, C^{\dagger} is induced in G^{\dagger}, and furthermore, since $N\left(x_{2}\right) \cap V(\mathbf{P})=\left\{p_{3}\right\}$, we have $N\left(x_{2}\right) \cap V\left(\mathbf{P}^{\dagger}\right)=\left\{p_{3}, v^{*}\right\}$, and any other vertex of $G_{Q}^{\text {small }} \backslash D$ is adjacent to at most $\left\{v^{*}, z\right\}$ among the vertices of \mathbf{P}^{\dagger}, so \mathcal{T}^{\dagger} satisfies M1), and M2) is immediate.

To see that the distance conditions of Definition 2.1.6 hold, just note that, in G, each vertex of Q is of distance at most two from $C \backslash \stackrel{\circ}{\mathbf{P}}$, and z is of distance at least two from each vertex of Q. Thus, since $G^{\dagger} \subseteq G$ and $C^{\dagger} \backslash(V(\stackrel{\circ}{\mathbf{P}}) \cup$ $\left.\left\{v^{*}, z\right\}\right) \subseteq C \backslash \stackrel{\circ}{\mathbf{P}}, \mathcal{T}^{\dagger}$ satisfies the distance conditions of Definition 2.1.6 as well. Thus, \mathcal{T}^{\dagger} is a mosaic, and since $\left|V\left(G^{\dagger}\right)\right|<|V(G)|, G^{\dagger}$ admits an L^{\dagger}-coloring ψ by the minimality of \mathcal{T}. Since $\psi(z)=d$, we have $\psi(u) \in\left\{c_{1}, c_{2}\right\}$, so ψ is an L-coloring of $V\left(G^{\dagger}\right)$. Furthermore, by our choice of c_{1}, c_{2}, d, ψ extends to an L-coloring of G, contradicting the fact that \mathcal{T} is critical.

Thus, we have $N(z) \cap V(C)=\left\{p_{1}, p_{2}\right\}$, as desired. In particular, since $u=p_{1}$, we get that u, v^{*} have no common neighbor in G except for v^{*}, or else G contains a copy of $K_{2,3}$. This proves 1) of Claim 4.4.15.

Now we prove 2). Suppose toward a contradiction that z, x_{4} have a common neighbor z^{\prime}. We have $z^{\prime} \notin V(\mathbf{P})$ by Claim 4.4.7, and since z has no neighbors in u_{1}, \cdots, u_{t} by 1), we have $z^{\prime} \in V\left(G_{Q}^{\text {small }} \backslash C\right)$. But then G contains the 3-chord $p_{1} z z^{\prime} x_{4}$ of C, and, by Theorem 3.0.2, we have $V\left(G_{p_{1} z z^{\prime} x_{4}}^{\text {small }}\right) \backslash\left\{z, z^{\prime}\right\}=\left\{p_{1}, u_{1}, \cdots, u_{t}\right\}$. Since z has no neighbors in u_{1}, \cdots, u_{t}, it follows from our triangulation conditions that $p_{1} \in N\left(z^{\prime}\right)$, which is false. This proves 2) of Claim 4.4.15.

With the above in hand, we prove the following:

Claim 4.4.16. There exists a vertex $w \in N\left(v^{*}\right) \cap V\left(G_{Q}^{\text {small }} \backslash D\right)$ such that $N(w) \cap V(D)=\left\{x_{2}, x_{3}\right\}$.
Proof: Suppose toward a contradiction that there is no vertex $w \in N\left(v^{*}\right) \cap V\left(G_{Q}^{\text {small }} \backslash D\right)$ satisfying the claim. By Claim 4.4.14, there is a vertex $z \in N\left(v^{*}\right) \cap V\left(G_{Q}^{\text {small }} \backslash D\right)$ such that $N(z) \cap\left(V(Q) \cup\left\{p_{1}, p_{2}\right\}\right)=\left\{p_{1}, p_{2}\right\}$.

Now set $A^{*}=B^{*}=\left\{z, v^{*}\right\}$ and let $\psi \in \Phi\left(\phi, A^{*}\right)$. Applying 1) of Claim 4.4.15, since z has no neighbors in $\left\{u_{1}, \cdots, u_{t}\right\}$, this choice of A^{*}, B^{*}, ψ satisfies the conditions of Claim 4.4.13, so there is a vertex $y \in V\left(G_{Q}^{\text {small }}\right) \backslash$ $(V(D) \cup A)$ with at least three neighbors in $\operatorname{dom}(\psi)$. Since the path $x_{2} v^{*} z p_{1}$ separates y from $\left\{x_{1}, p_{2}\right\}, y$ has at least three neighbors among $\left\{x_{2}, x_{3}, x_{4}, v^{*}, z, p_{1}\right\}$.

Subclaim 4.4.17. $p_{1}, z \notin N(y)$
Proof: Suppose that $p_{1} \in N(y)$. In that case, by Claim 4.4.9, we have $x_{2} \notin N(y)$ by Claim 4.4.9. Furthermore, we have $x_{3} \notin N(y)$ by Claim 4.4.8, and $x_{4} \notin N(y)$ by Claim 4.4.7, so $\operatorname{dom}(\psi) \cap N(y)=\left\{v^{*}, z, p_{1}\right\}$, contradicting 1) of Claim 4.4.15.

Thus, we have $p_{1} \notin N(y)$. Now suppose toward a contradiction that $z \in N(y)$. In that case, by 2) of Claim 4.4.15, we have $x_{4} \notin N(y)$, so $N(y) \cap \operatorname{dom}(\psi)$ consists of at least three vertices of $\left\{z, v^{*}, x_{2}, x_{3}\right\}$. By our triangulation conditions, since $z v^{*} x_{2} x_{3}$ is an induced subpath of $G, G[N(y) \cap \operatorname{dom}(\psi)]$ is a subpath of $z v^{*} x_{2} x_{3}$ of length either two or three. If this subpath of $z v^{*} x_{2} x_{3}$ has x_{3} as an endpoint, then $\left\{v^{*}, x_{2}, x_{3}\right\} \subseteq N(y)$, and, by Claim 4.4.9, we have $N(y) \cap V(D)=\left\{x_{2}, x_{3}\right\}$, contradicting our assumption. The only remaining possibility is that $N(y) \cap \operatorname{dom}(\psi)=\left\{z, v^{*}, x_{2}\right\}$. Since $\left|L_{\phi}\left(v^{*}\right)\right|=2$ and $\left|L_{\phi}(z)\right| \geq 3$, let $c \in L_{\phi}(z) \backslash L_{\phi}\left(v^{*}\right)$ and let ψ be an extension of ϕ to $\operatorname{dom}(\phi) \cup\{z\}$ obtained by coloring z with c. Let $A:=\left\{v^{*}, z\right\}$ and $B:=\{z\}$. Note that v^{*} is L_{ψ}-inert by our choice of c.

Since z has no neighbors in u_{1}, \cdots, u_{t}, this choice of A, B, ψ satisfies the conditions of Claim 4.4.13, so there is a $z^{\prime} \in V\left(G_{Q}^{\text {small }} \backslash D\right) \backslash\left\{v^{*}, z\right\}$ with at least three neighbors in $V(Q) \cup\left\{p_{1}, p_{2}, z\right\}$. Since $x_{3} \notin N(y)$, we have $\left|L_{\psi}(y)\right| \geq 3$, so $z^{\prime} \neq y$.
Now, the path $p_{1} z y x_{2} x_{3} x_{4}$ separates z^{\prime} from each vertex of $\operatorname{dom}(\psi) \backslash\left\{p_{1}, z, x_{2}, x_{3}, x_{4}\right\}$, so z^{\prime} has at least three neighbors among $\left\{z, x_{2}, x_{3}, x_{4}\right\}$. Suppose that $x_{4} \in N\left(z^{\prime}\right)$. Then, by 2) of Claim 4.4.15, we have $z \notin N\left(z^{\prime}\right)$, and, by Claim 4.4.7, we have $p_{1} \notin N\left(z^{\prime}\right)$, so z^{\prime} is adjacent to all of x_{2}, x_{3}, x_{4}, contradicting Claim 4.4.9.

Thus, $x_{4} \notin N\left(z^{\prime}\right)$, so z^{\prime} is adjacent to each vertex of $\left\{z, x_{2}, x_{3}\right\}$.But then G contains a $K_{2,3}$ with bipartition $\left\{v^{*}, y, z^{\prime}\right\},\left\{x_{2}, z\right\}$, which is false.

Since $p_{1}, z \notin N(y)$, we get that $N(y) \cap \operatorname{dom}(\psi)$ consists of at least three vertices of $\left\{x_{2}, x_{3}, x_{4}, v^{*}\right\}$. By our triangulation conditions, the graph $G\left[N(y) \cap\left\{x_{2}, x_{3}, x_{4}, v^{*}\right\}\right.$ is a subpath of $v^{*} x_{2} x_{3} x_{4}$, and since, by Claim 4.4.9, x_{2}, x_{4} are not both adjacent to v^{*}, we get that $N(y) \cap \operatorname{dom}(\psi)=\left\{v^{*}, x_{2}, x_{3}\right\}$. But then, by Claim 4.4.9, we have $N(y) \cap V(D)=\left\{x_{2}, x_{3}\right\}$, contradicting our assumption. This completes the proof of Claim 4.4.16.

We fix a vertex $w \in V\left(G_{Q}^{\text {small }} \backslash D\right)$ satisfying Claim 4.4.16. Now we have the following:
Claim 4.4.18. There is $a w^{*} \in N(w)$ such that $N(w) \cap\left(V(Q) \cup\left\{p_{1}, p_{2}\right\}\right)=\left\{x_{3}, x_{4}\right\}$.
Proof: Suppose toward a contradiction that no vertex satisfying the Claim 4.4.18 exists. Consider the following cases:
Case 1 of Claim 4.4.18: There exists a vertex of $G_{Q}^{\text {small }} \backslash D$ adjacent to each of p_{1}, p_{2}, v^{*}
In this case, let z be the unique vertex of $G_{Q}^{\text {small }} \backslash D$ adjacent to each of p_{1}, p_{2}, v^{*}. We fix a color $c \in L_{\phi}(z) \backslash L_{\phi}\left(v^{*}\right)$ and we let ψ be an extension of ϕ to $\left\{z, v^{*}, w\right\}$. Let $A=B=\left\{z, v^{*}, w\right\}$. Then this choice of A, B, ψ satisfies the conditions of Claim 4.4.13, since z has no neighbor in u_{1}, \cdots, u_{t} by 1) of Claim 4.4.15. Thus, there exists a vertex $z^{\prime} \in V\left(G_{Q}^{\text {small }} \backslash D\right) \backslash A$ with at least three neighbors in $\operatorname{dom}(\psi)$, so z^{\prime} has at least three neighbors among $\left\{p_{1}, z, v^{*}, w, x_{3}, x_{4}\right\}$.

Subclaim 4.4.19. $x_{3} \notin N\left(z^{\prime}\right)$.
Proof: Suppose that $x_{3} \in N\left(z^{\prime}\right)$. Then $v^{*} \notin N\left(z^{\prime}\right)$, or else G contains a copy of $K_{2,3}$ with bipartition $\left\{x_{2}, w, z^{\prime}\right\}$, $\left\{x_{3}, v^{*}\right\}$. If $w \in N\left(z^{\prime}\right)$ as well, then $x_{4} \notin N\left(z^{\prime}\right)$ by assumption, so $\left\{x_{3}, w, z\right\} \subseteq N\left(z^{\prime}\right)$. But then G contains the 4-cycle $v^{*} z z^{\prime} w$, and since $v^{*} \notin N\left(z^{\prime}\right)$, we have $w z \in E(G)$ by our triangulation conditions, which is false. Thus, $w \notin N\left(z^{\prime}\right)$, so z^{\prime} has adjacent to x_{3} and at least two of $\left\{x_{4}, p_{1}, z\right\}$. By Claim 4.4.7, we have $\left\{x_{4}, p_{1}\right\} \nsubseteq N\left(z^{\prime}\right)$. By 2) of Claim 4.4.15, we have $\left\{x_{4}, z^{\prime}\right\} \nsubseteq N(z)$. The only possibility left is that z^{\prime} is adjacent to each of x_{3}, z, p_{1}, and thus G contains the 3 -chord $p_{1} z^{\prime} x_{3} x_{4}$ of C. By Theorem 3.0.2, since $N\left(x_{3}\right) \cap\left\{p_{1}, u_{1}, \cdots, u_{t}\right\}=\left\{u_{t}\right\}$, we get that $x_{4} \in N\left(z^{\prime}\right)$, which is false.
Applying Subclaim 4.4.19, $x_{3} \notin N\left(z^{\prime}\right)$, and z^{\prime} has at least three neighbors among $\left\{p_{1}, z, w, v^{*}, x_{4}\right\}$.

Subclaim 4.4.20. $x_{4} \notin N\left(z^{\prime}\right)$.
Proof: Suppose toward a contradiction that $x_{4} \in N\left(z^{\prime}\right)$. Then $w \notin N\left(z^{\prime}\right)$, or else G contains the 4 -cycle $x_{3} x_{4} z^{\prime} w$, and thus $x_{3} z^{\prime} \in E(G)$ by our triangulation conditions, which is false. Furthermore, $p_{1} \notin N\left(x_{4}\right)$ by Claim 4.4.7, so z^{\prime} is adjacent to each of v^{*}, z, x_{4}, contradicting 2) of Claim 4.4.15.

Since $x_{3}, x_{4} \notin N\left(z^{\prime}\right)$ by the two subclaims above, z^{\prime} has at least three neighbors among $\left\{p_{1}, z, v^{*}, w\right\}$. Suppose that $p_{1} \in N\left(z^{\prime}\right)$. Then $v^{*} \notin N\left(z^{\prime}\right)$, or else we contradict 1) of Claim 4.4.15, so $N\left(z^{\prime}\right) \cap \operatorname{dom}(\psi)=\left\{w, z, p_{1}\right\}$. But then G contains the 4-cycle $w v^{*} z z^{\prime}$, and $v^{*} \in N\left(z^{\prime}\right)$ by our triangulation conditions, which is false.

Thus, $p_{1} \notin N\left(z^{\prime}\right)$, so $N\left(z^{\prime}\right) \cap \operatorname{dom}(\psi)=\left\{z, v^{*}, w\right\}$. Thus, since G is $K_{2,3}$-free, we conclude that, for any $\psi \in$ $\Phi(\phi, A)$, we have $T(A, \psi)=\left\{z^{\prime}\right\}$ and $N\left(z^{\prime}\right) \cap \operatorname{dom}(\psi)=\left\{z, v^{*}, w\right\}$. Now, if $L_{\phi}(w) \cap L_{\psi}(z) \neq \varnothing$, then we choose a color $d \in L_{\phi}(w) \cap L_{\phi}(z)$, and since $\left|L_{\phi}\left(v^{*}\right) \backslash\{d\}\right| \geq 1$, there is an extension of ϕ to an L-coloring ψ of $\operatorname{dom}(\phi) \cup\left\{w, v^{*}\right\}$ in which $\psi(w)=\psi(z)=d$. But then $\left|L_{\psi}(z)\right| \geq 3$, so $z^{\prime} \notin T(A, \psi)$, a contradiction.

Thus, we have $L_{\psi}(w) \cap L_{\psi}(z)=\varnothing$, so $\left|L_{\phi}(w) \cup L_{\phi}(z)\right| \geq 6$. Since $|L(y)|=5$ and $\left|L_{\psi}\left(v^{*}\right)\right| \geq 2$, there is an extension of ϕ to an L-coloring ψ of $\operatorname{dom}(\phi) \cup\left\{w, v^{*}\right\}$ in which $\left|L_{\psi^{\prime}}(z)\right| \geq 3$, contradicting the fact that $T(A, \psi)=\left\{z^{\prime}\right\}$. This completes Case 1 of Claim 4.4.18.

Case 2 of Claim 4.4.18: There does not exist a vertex of $G_{Q}^{\text {small }} \backslash D$ adjacent to each of p_{1}, p_{2}, v^{*}
In this case, we first note the following:
Subclaim 4.4.21. w and p_{2} have no common neighbor in $G_{Q}^{\text {small }} \backslash D$ other than v^{*}.
Proof: Suppose toward a contradiction that there is a $z \in V\left(G_{Q}^{\text {small }} \backslash D\right)$ other than v^{*} which is adjacent to each of p_{2}, w. Then $G_{Q}^{\text {small }}$ contains the 5 -cycle $K:=x_{1} p_{2} z w x_{2}$, and v^{*} is adjacent to each of p_{2}, x_{1}, x_{2}, w. Since G is short-separation-free, we get from our triangulation conditions that v^{*} is also adjacent to w^{*}, i.e $G\left[V(K) \cup\left\{v^{*}\right\}\right]$ is a wheel with central vertex v^{*}. Now set $A:=\left\{v^{*}, w\right\}$ and $B:=\{w\}$. Since $\left|L_{\phi}(w)\right| \geq 3$ and $L_{\phi}\left(v^{*}\right) \mid=\{a, b\}$, let $c \in L_{\phi}(w) \backslash\{a, b\}$ and let ϕ^{\prime} be an extension of ϕ to $\operatorname{dom}(\phi) \cup\{w\}$ with $\phi^{\prime}(w)=c$. Then z is $L_{\phi^{\prime}}$-inert, and since w has no neighbors on the path $p_{1} u_{1} \cdots u_{t}$, this choice of A, B, ϕ^{\prime} satisfies the conditions of Claim 4.4.13, so there is a vertex $w^{*} \in V\left(G_{Q}^{\text {small }} \backslash\left(V(D) \cup\left\{v^{*}, w\right\}\right)\right.$ with at least three neighbors in $\operatorname{dom}\left(\phi^{\prime}\right)$. Since the path $p_{2} z w x_{3}$ separates w^{*} from each of x_{1}, x_{2}, w^{*} has at least three neighbors among $\left\{p_{1}, p_{2}, w, x_{3}, x_{4}\right\}$. Since $w^{*} \neq v^{*}$, we have by Claim 4.4.11 that $w^{*} w \in E(G)$ and w^{*} has precisely two neighbors among $\left\{p_{1}, p_{2}, x_{3}, x_{4}\right\}$.

If $x_{4} \in N\left(w^{*}\right)$, then, by Claim 4.4.7, we have $p_{1}, p_{2} \notin N\left(w^{*}\right)$ so $N\left(w^{*}\right) \cap\left(V(Q) \cup\left\{p_{1}, p_{2}\right\}\right)=\left\{x_{3}, x_{4}\right\}$, contradicting our assumption. Thus, $x_{4} \notin N\left(w^{*}\right)$. If $p_{2} \in N\left(x_{3}\right)$, then G contains a $K_{2,3}$ with bipartition $\left\{v^{*}, z, w^{*}\right\},\left\{w, p_{2}\right\}$, so we get that $N\left(w^{*}\right) \cap\left\{p_{1}, p_{2}, x_{3}, x_{4}\right\}=\left\{p_{1}, x_{3}\right\}$, and G contains the 3-chord $Q^{\dagger}:=$ $p_{1} w^{*} x_{3} x_{4}$ of C. By Theorem 3.0.2, we have $V\left(G_{Q^{\dagger}}^{\text {small }}\right)=\left\{p_{1}, u_{1}, \cdots, u_{t}\right\} \cup\left\{x_{3}, w^{*}\right\}$. Since x_{3} has no neighbors on p_{1}, \cdots, u_{t-1} by Claim 4.4.3, we have $x_{4} \in N\left(w^{*}\right)$ by our triangulation conditions, which is false.

Now we return to Case 2 of Claim 4.4.18. Let $\phi^{\prime \prime} \in \Phi\left(\phi,\left\{v^{*}, w\right\}\right)$. Setting $A=B=\left\{v^{*}, w\right\}$, the choice of $A, B \phi^{\prime \prime}$ satisfies the conditions of Clam 4.4.13, so there is a vertex $w^{*} \in V\left(G_{Q}^{\text {small }}\right) \backslash(V(D) \cup A)$ with at least three neighbors in $\operatorname{dom}\left(\phi^{\prime \prime}\right)$. We claim now that $N\left(w^{*}\right) \cap\left(V(Q) \cup\left\{p_{1}, p_{2}, v^{*}\right\}\right)=\left\{x_{3}, x_{4}\right\}$.
Note that w^{*} has at most two neighbors among $\operatorname{dom}(\phi) \cup\left\{v^{*}\right\}$, or else we contradict Claim 4.4.14. Thus, w^{*} is adjacent to w and has precisely two neighbors among $V(Q) \cup\left\{p_{1}, p_{2}, v^{*}\right\}$. Furthermore, by Subclaim 4.4.21, we have $p_{2} \notin N\left(w^{*}\right)$. Since $p_{2} v^{*} w x_{3}$ separates p_{2}, p_{3} from w^{*}, w^{*} has precisely two neighbors among $\left\{p_{1}, v^{*}, x_{3}, x_{4}\right\}$.

Suppose toward a contradiction that $v^{*} \in N\left(w^{*}\right)$. In that case, we have $p_{1} \notin N\left(w^{*}\right)$, or else G contains the 4-cycle $p_{1} w^{*} v^{*} p_{2}$, and since $p_{1} \notin N\left(v^{*}\right)$, we have $p_{2} \in N\left(w^{*}\right)$ by our triangulation conditions, which is false. Furthermore, if $x_{3} \in N\left(w^{*}\right)$, then G contains a $K_{2,3}$ with bipartition $\left\{x_{2}, w, w^{*}\right\},\left\{v^{*}, x_{3}\right\}$, contradicting short-separation-freeness. Thus, we have $N\left(W^{*}\right) \cap\left\{p_{1}, v^{*}, x_{3}, x_{4}\right\}=\left\{v^{*}, x_{4}\right\}$, so G contains the 4-cycle $w x_{3} x_{4} w^{*}$. Since $x_{4} \notin N(w)$, we have $x_{3} \in N\left(w^{*}\right)$ by our triangulation conditions, so we have a contradiction.

Thus, our assumption that $v^{*} \in N\left(w^{*}\right)$ is false, so $N\left(w^{*}\right) \cap\left(\left\{p_{1}, p_{2}\right\} \cup V(Q)\right)$ consists of precisely two vertices of $\left\{p_{1}, x_{3}, x_{4}\right\}$. By Claim 4.4.7, this set of two vertices is either $\left\{p_{1}, x_{3}\right\}$ or $\left\{x_{3}, x_{4}\right\}$. Suppose that $N\left(w^{*}\right) \cap\left(\left\{p_{1}, p_{2}\right\} \cup\right.$ $V(Q))=\left\{p_{1}, x_{3}\right\}$. Then G contains the 3-chord $Q^{\prime}:=p_{1} w^{*} x_{3} x_{4}$ of C. By Theorem 3.0.2, we have $G_{Q^{\prime}}^{\text {small }}=$ $\left\{p_{1}, u_{1}, \cdots, u_{t}\right\} \cup\left\{x_{3}, w^{*}\right\}$. Since $u_{t-1} \notin N\left(x_{3}\right)$ by Claim 4.4.3, and $x_{4} \notin N(w)$, we have $x_{4} \in N\left(w^{*}\right)$ by our triangulation conditions, contradicting our assumption that $N\left(w^{*}\right) \cap\left(\left\{p_{1}, p_{2}\right\} \cup V(Q)\right)=\left\{p_{1}, x_{3}\right\}$. We conclude that $N\left(w^{*}\right) \cap\left(\left\{p_{1}, p_{2}, v^{*}\right\} \cup V(Q)\right)=\left\{x_{3}, x_{4}\right\}$, as desired. This completes the proof of Claim 4.4.18.

Now let w^{*} be as in Claim 4.4.18 above. Then G contains the 4-chord $p_{2} v^{*} w w^{*} x_{4}$ of C, which separates each vertex of p_{3}, x_{2}, x_{3} from $G_{Q}^{\text {small }} \backslash\left(V(Q) \cup\left\{v *, w, w^{*}\right\}\right)$. Let H^{\dagger} be the subgraph of G induced by $\left\{w^{*}\right\} \cup\left(N\left(w^{*}\right) \cap V(C)\right)$. Since $N\left(w^{*}\right) \cap V(P)=\varnothing$, there exists a $u^{\dagger} \in\left\{u_{1}, \cdots, u_{t-1}, u_{t}\right\}$ such that either $u^{\dagger}=u_{t}$ and H^{\dagger} is the edge $w^{*} u^{\dagger}$, or $u^{\dagger} \in\left\{u_{1}, \cdots, u_{t-1}\right\}$ and H^{\dagger} is a broken wheel with principal path $u_{t} w^{*} u^{\dagger}$.

Claim 4.4.22.

1) w^{*} has no common neighbor with either of p_{1}, p_{2} in $G_{Q}^{\text {small }} \backslash D$; AND
2) $u^{\dagger} \neq u_{1}$, AND
3) u^{\dagger}, p_{2} have no common neighbor in $G_{Q}^{\text {small }} \backslash D$; AND
4) w and u^{\dagger} have no common neighbor in $G_{Q}^{\text {small }} \backslash D$.

Proof: Suppose toward a contradiction that there is a $z \in V\left(G_{Q}^{\text {small }} \backslash D\right)$ adjacent to each of p_{2}, w^{*}. Since $v^{*} \notin$ $N\left(w^{*}\right)$, we have $z \neq v^{*}$, and G contains the 3 -chord $R:=p_{2} z w^{*} x_{4}$ of C. Note that ϕ extends to an L-coloring of $\operatorname{dom}(\phi) \cup V\left(G_{R}^{\text {small }}\right)$ by Claim 4.4.10.

Thus, let ψ be an extension of ϕ to an L-coloring of $\operatorname{dom}(\phi) \cup V\left(G_{R}^{\text {small }}\right)$. Let $K:=p_{2} v^{*} w w^{*} z p_{2}$. Since $p_{2} v^{*} w w^{*}$ is a chordless path, ψ extends to color w, v^{*}, so let $\psi^{\prime} \in \Phi\left(\psi,\left\{w, v^{*}\right\}\right)$. Let $W \subseteq \mathbb{R}^{2}$ be the unique open region such that $\partial(W)=K$ and $W \cap V(C)=\varnothing$. Since ψL-colors $G \backslash W$ and ψ does not extend to an L-coloring of G, it follows from Theorem 1.3.5 that $W \cap V(G)$ consists of a lone vertex z^{\prime} adjacent to all five vertices of K, and G contains the 3-chord $R^{\dagger}:=x_{4} w^{*} z^{\prime} p_{2}$ with $R \subseteq G_{R^{\dagger}}^{\text {small }}$.

By the minimality of Q, we have $V\left(G_{R^{\dagger}}^{\mathrm{small}}\right) \subseteq B_{1}(C)$, and since $z \in V\left(G_{R^{\dagger}}^{\mathrm{small}}\right) \backslash V\left(C \cup R^{\dagger}\right)$, it follows from Proposition 4.3.4 that $G_{R^{\dagger}}^{\text {small }} \backslash C$ consists of the triangle $w^{*} z z^{\prime}$, and $G_{R}^{\text {small }} \backslash\left\{w^{*}, z\right\}=p_{2} u_{1} \cdots u_{t}$. Since C is an induced cycle in G, it follows from Claim 4.4.7 that $u^{\dagger} \neq u_{t}$ and $N(z) \cap V(C)=\left\{p_{2}, p_{1}, u_{1}, \cdots, u^{\dagger}\right\}$, contradicting Claim 4.4.7.

Thus, our assumption that w^{*} and p_{2} have a neighbor in $G_{Q}^{\text {small }} \backslash D$, is false. Now suppose toward a contradiction that w^{*}, p_{1} have a common neighbor z in $V\left(G_{Q}^{\text {small }} \backslash D\right)$. Since $v^{*} \notin N\left(w^{*}\right)$, we have $z \neq v^{*}$, and G contains the 3-chord $R:=p_{1} z w^{*} x_{4}$ of C. Note that ϕ extends to an L-coloring of $\operatorname{dom}(\phi) \cup V\left(G_{R}^{\text {small }}\right)$ by Claim 4.4.10.

Thus, let ψ be an extension of ϕ to an L-coloring of $\operatorname{dom}(\phi) \cup V\left(G_{R}^{\text {small }}\right)$. Let $K:=p_{2} v^{*} w w^{*} z p_{1} p_{2}$. Since $p_{2} v^{*} w w^{*}$ is a chordless path, ψ extends to color w, v^{*}, so let $\psi^{\prime} \in \Phi\left(\psi,\left\{w, v^{*}\right\}\right)$. Let $W \subseteq \mathbb{R}^{2}$ be the unique open region such that $\partial(W)=K$ and $W \cap V(C)=\varnothing$. Since ψL-colors $G \backslash W$ and ψ does not extend to an L-coloring of G, it follows
from Theorem 1.3.5 that $|V(G) \cap W| \leq 3$, and each vertex of $V(G) \cap W$ is adjacent to a subpath of K of length at least two. Note that no vertex of W is adjacent to each of p_{1}, w^{*}, or else, if such a $y \in W \cap V(G)$ exists, then the 3-chord $p_{1} y w^{*} x_{4}$ of C separates z from $G_{Q}^{\text {large }} \backslash Q$, contradicting Theorem 3.0.2. Thus, we have $|V(G) \cap W|>1$, so consider the following cases:

Case 1: $|V(G) \cap W|=2$
In this case, $G \cap W$ consists of an edge $y y^{\prime}$ in which each endpoint is adjacent to a subpath of K of length precisely three. Furthermore, as shown above, p_{2}, w^{*} have no common neighbor in $G_{Q}^{\text {small }} \backslash D$. Thus, we have $N(y) \cap V(K)=$ $\left\{v^{*}, p_{2}, p_{1}, z\right\}$ and $N\left(y^{\prime}\right) \cap V(K)=\left\{z, w^{*}, w, v^{*}\right\}$. In that case, $G \backslash \operatorname{dom}(\psi)$ consists of the graph in Figure 4.4.1, with lower bounds on the sizes of the L_{ψ}-lists labelled in red.

Figure 4.4.1: Case 1 of Fact 1

Thus, ψ extends to an L-coloring of G, contradicting the fact that G is not L-colorable.
Case 2: $|V(G) \cap W|=3$
In this case, again applyin the fact that p_{1}, w^{*} have no common neighbor in W, the graph $G \cap W$ consists of a triangle $y_{1} y_{2} y_{3}$ such that $G\left[N\left(y_{1}\right) \cap V(K)\right]=\left\{p_{2}, p_{1}, z\right\}, G\left[N\left(y_{2}\right) \cap V(K)\right]=\left\{z, v^{*}, w\right\}$, and $G\left[N\left(y_{3}\right) \cap V(K)\right]=$ $\left\{w, v^{*}, p_{2}\right\}$. Then $G \backslash \operatorname{dom}(\psi)$ consists of the graph in Figure 4.4.2, with lower bounds on the L_{ψ}-lists labelled in red.

Figure 4.4.2: Case 2 of Fact 1

Thus, ψ extends to an L-coloring of G, contradicting the fact that G is not L-colorable. Thus, our assumption that w^{*} and p_{1} have a neighbor in $G_{Q}^{\text {small }} \backslash D$, is false. This proves 1) of Claim 4.4.22.

Now we prove 2). Suppose that $u^{\dagger}=u_{1}$. Then G contains the 6 -cycle $K:=p_{1} u_{1} w^{*} w v^{*} p_{2}$. Let $W \subseteq \mathbb{R}^{2}$ be the unique open set such that $\partial(W)=K$ and $W \cap V(C)=\varnothing$. Let ψ be an extension of $p h i$ to $\operatorname{dom}(\phi) \cup V\left(H^{\dagger}\right) \cup$ $\left\{w, v^{*}\right\}$. To see that such a ψ exists, just note that, by Proposition 1.4.5, there are at least two colors c_{1}, c_{2} in $z_{H^{\dagger}}\left(\psi\left(x_{4}\right), \bullet, c_{i}\right) \neq \varnothing$ for each $i=1,2$, so we choose $c_{i} \neq \phi\left(p_{1}\right)$ and let $d \in z_{H^{\dagger}}\left(\phi\left(x_{4}\right), \bullet, c_{i}\right)$. The resulting extension of ϕ to $V\left(H^{\dagger}\right)$ extends to the edge $w v^{*}$, so such a ψ does indeed exist, and ψ is an L-coloring of $G \backslash W$.

Since ψ does not extend to L-color G, it follows from Theorem 1.3.5 that $|V(G) \cap W| \leq 3$. By 1), p_{2}, w^{*} have no common neighbor in W, so $|V(G) \cap W|>1$. Consider the following cases:

Case 1: $|V(G) \cap W|=2$
In this case, since p_{2}, w^{*} have no common neighbor in W, and p_{1}, w^{*} have no common neighbor in W, we get that $G \cap W$ consists of an edge $y y^{\prime}$, where $G[N(y) \cap V(K)]=\left\{v^{*}, w, w^{*}, u_{1}\right\}$ and $G\left[N\left(y^{\prime}\right) \cap V(K)\right]=\left\{u_{1}, p_{1}, p_{2}, v^{*}\right\}$. But then the vertex y^{\prime} contradicts 1) of Claim 4.4.15.

Case 2: $|V(G) \cap W|=3$
In this case, again since p_{1}, w^{*} have no common neighbor in $W, G \cap W$ consists of a triangle $y_{1} y_{2} y_{3}$, where $G\left[N\left(y_{1}\right) \cap\right.$ $V(K)]=\left\{p_{2}, p_{1}, u_{1}\right\}, G\left[N\left(y_{2}\right) \cap V(K)\right]=\left\{u_{1}, w^{*}, w\right\}$, and $G\left[N\left(y_{3}\right) \cap V(K)\right]=\left\{w, v^{*}, p_{2}\right\}$. Now let ψ^{*} be the restriction of ψ to $\operatorname{dom}(\psi) \backslash\left\{w, v^{*}\right\}$. Then $G \backslash \operatorname{dom}\left(\psi^{*}\right)$ consists of the graph in Figure 4.4.3, where the lower bounds on the sizes of the $L_{\psi^{*}}$-lists are labelled in red.

Figure 4.4.3: Case 2 of Fact 2

Thus, ψ^{*} extends to an L-coloring of G, contradicting the fact that \mathcal{T} is critical. This completes the proof of 2) of Claim 4.4.22.

Now we prove 3). Suppose toward a contradiction that u^{\dagger} and p_{2} have a common neighbor z in $G_{Q}^{\text {small }} \backslash D$. By Claim 4.4.7, we have $u^{\dagger} \neq x_{4}$. Furthermore, G contains the 3 -chord $p_{2} z u^{\dagger}$ of G. By Theorem 3.0.2, we have $V\left(G_{p_{2} z u^{\dagger}}^{\text {small }}\right)=\{z\} \cup\left\{p_{2}, p_{1}, u_{1}, \cdots, u^{\dagger}\right\}$, and z is adjacent to each of $p_{2}, p_{1}, u_{1}, \cdots, u^{\dagger}$. Since $u^{\dagger} \neq p_{1}$, this contradicts 1) of Claim 4.4.15. This proves 3).

Now we prove 4) of Claim 4.4.22. Suppose toward a contradiction that w, u^{\dagger} have a common neighbor y in $G_{Q}^{\text {small }} \backslash D$. In that case, we have $u^{\dagger} \neq u_{t}$, or else G contains a $K_{2,3}$ with bipartition $\left\{x_{3}, w^{*}, y\right\},\left\{u_{t}, w\right\}$, so $u^{\dagger} \in\left\{u_{1}, \cdots, u_{t-1}\right\}$ and H^{\dagger} is a broken wheel. Furthermore, since G contains the 4-cycle $w y u^{\dagger} w^{*}$ and $u^{\dagger} \notin N(w)$, we have $w^{*} \in N(y)$ as well. By 1), no vertex of $\left\{p_{1}, p_{2}\right\}$ lies in $N(y)$.

By Corollary 1.4.6, there is a color $d \in L_{\phi}\left(u^{\dagger}\right)$ such that, for some pair of colors $c_{1}, c_{2} \in L_{\phi}\left(w^{*}\right)$, we have $d \in$ $\mathcal{Z}_{H^{\dagger}}\left(\phi\left(x_{4}\right), c_{1}, \bullet\right) \cap \mathcal{Z}_{H}\left(\phi\left(x_{4}\right), c_{2}, \bullet\right)$. This is permissible since, by 2), we have $u^{\dagger} \neq u_{1}$, so $\left|L_{\phi}\left(u^{\dagger}\right)\right|=3$. We now extend ϕ to an L-coloring ϕ^{\prime} of $\operatorname{dom}(\phi) \cup\left\{u^{\dagger}, w, v^{*}\right\}$ by first coloring u^{\dagger} with d and coloring w with a color in $L_{\phi}(w) \backslash\left\{c_{1}, c_{2}\right\}$, which is permissible as $\left|L_{\phi}(w)\right| \geq 3$. Finally, there is a color left over for v^{*} since $\left|L_{\phi}\left(v^{*}\right)\right| \geq 2$ and $u \notin N\left(v^{*}\right)$.

We now set $A=V\left(H^{\dagger}\right) \cup\left\{w, v^{*}\right\}$ and $B=\left\{v^{*}, w, u^{\dagger}\right\}$. We note that the choice A, B, ϕ^{\prime} satisfies the conditions of Claim 4.4.13. To see this, just note that $V\left(H^{\dagger}\right) \backslash\left\{x_{4}, u^{\dagger}\right\}$ is $L_{\phi^{\prime}}$-inert, since, after coloring y, there is at least one color of c_{1}, c_{2} left over for w^{*}. Since the choice A, B, ϕ^{\prime} satisfies the conditions of Claim 4.4.13, there exists a vertex z^{\prime} with at least three neighbors in $\operatorname{dom}\left(\phi^{\prime}\right)$.

Subclaim 4.4.23. $N(y) \cap \operatorname{dom}\left(\phi^{\prime}\right)=\left\{w, u^{\dagger}\right\}$. In particular, $z^{\prime} \neq y$.
Proof: Firstly, by 1), we have $p_{1}, p_{2} \notin N(y)$. Since the path $p_{1} p_{2} v^{*} w w^{*} u^{\dagger}$ separates y from dom $\left(\phi^{\prime}\right) \backslash$ $\left\{p_{1}, p_{2}, v^{*}, w, w^{*}, u^{\dagger}\right\}$, we have $N(y) \cap \operatorname{dom}(\phi) \subseteq\left\{w, u^{\dagger}, v^{*}\right\}$. Suppose toward a contradiction that $v^{*} \in N(y)$. Then G contains the 3 -chord $Q^{\dagger}:=p_{2} v^{*} y u^{\dagger}$ of C. By the minimality of Q, we have $V\left(G_{Q^{\dagger}}^{\text {small }}\right) \subseteq B_{1}(C)$. If $V\left(G_{Q^{\dagger}}^{\text {small }}\right) \backslash\left\{v^{*}, y\right\}=\left\{p_{2}, p_{1}, u_{1}, \cdots, u^{\dagger}\right\}$, then, since $p_{1} \notin N\left(v^{*}\right)$, we have $p_{1} \in N(y)$, which is false. Thus, by Proposition 4.3.4, there is a lone vertex q adjacent to every vertex in the cycle $p_{1} p_{1} u_{1} \cdots u^{\dagger} y v^{*}$. Since $u^{\dagger} \neq p_{1}$, the vertex q contradicts 1) of Claim 4.4.15. Thus, $v^{*} \notin N(y)$, so we are done.

Since $z^{\prime} \neq y, z^{\prime}$ has at most one neighbor among w, u^{\dagger}, or else G contains a copy of $K_{2,3}$. If $u^{\dagger} \in N\left(z^{\prime}\right)$, then, by 3), we have $p_{2} \notin N\left(z^{\prime}\right)$, so $N\left(z^{\prime}\right) \cap\left\{p_{1}, p_{2}, v^{*}, w, u\right\}=\left\{p_{1}, v^{*}, u^{\dagger}\right\}$. In that case, G contains the 4 -cycle $p_{1} p_{2} v^{*} z^{\prime}$. Thus, by our triangulation conditions, since $p_{1} \notin N\left(v^{*}\right)$, we have $p_{2} \in N\left(z^{\prime}\right)$, which is false. Thus, $u^{\dagger} \notin N\left(z^{\prime}\right)$, so $N\left(z^{\prime}\right) \cap \operatorname{dom}\left(\phi^{\prime}\right)$ consists of at least three vertices of $\left\{p_{1}, p_{2}, v^{*}, w\right\}$. Since $p_{1} p_{2} v^{*} w$ is a chordless subpath of G, it follows from our triangulation conditions that $G\left[N\left(z^{\prime}\right) \cap \operatorname{dom}\left(\phi^{\prime}\right)\right]$ is a subpath of $p_{1} p_{2} v^{*} w$ of length either two or three, and, in particular, since G is $K_{2,3}$-free, z^{\prime} is the unique vertex of $T\left(B, \phi^{\prime}\right) \backslash A$. Consider the following cases:

Case 1: $\left\{p_{1}, p_{2}, v^{*}\right\} \subseteq N\left(z^{\prime}\right)$
In this case, we let $A^{*}:=V\left(H^{\dagger} \backslash\left\{x_{4}\right\}\right) \cup\left\{w, v^{*}, z\right\}$ and $B^{*}:=\left\{u^{\dagger}, w, v^{*}, z\right\}$. By 1) of 1) of Claim 4.4.15, z^{\prime} has no neighbors in $u_{1}, u_{2}, \cdots, u_{t}$, so, for any $\psi \in \Phi\left(\phi^{\prime}, z^{\prime}\right)$, the choice A^{*}, B^{*}, ψ satisfies the conditions of Claim 4.4.13.

Subclaim 4.4.24. There exists a vertex $q \in V\left(G_{Q}^{\text {small }} \backslash D\right) \backslash A^{*}$ such that the following hold:

1) For any extension of ϕ^{\prime} to an L-coloring $\psi \in \Phi\left(\phi^{\prime}, z^{\prime}\right)$, we have $T\left(B^{*}, \psi\right) \backslash A^{*}=\{q\}$; AND
2) $N(q) \cap B^{*}=\left\{z^{\prime}, v^{*}, w\right\}$; AND
3) q has no neighbors among u_{1}, \cdots, u_{t}.

Proof: Let $\psi \in \Phi\left(\phi^{\prime}, z^{\prime}\right)$. By Claim 4.4.13, we have $T\left(B^{*}, \psi\right) \backslash A^{*} \neq \varnothing$, so let $q \in T\left(B^{*}, \psi\right) \backslash A^{*}$. Since the path $p_{1} z^{\prime} v^{*} w y u^{\dagger}$ separates q from $\operatorname{dom}(\psi) \backslash\left\{p_{1}, z^{\prime}, v^{*}, w, u^{\dagger}\right\}$, we have $N(q) \cap \operatorname{dom}(\psi) \subseteq\left\{p_{1}, z^{\prime}, v^{*}, w, u^{\dagger}\right\}$. Since z^{\prime} is the unique vertex of $T\left(B, \phi^{\prime}\right) \backslash A, q^{\prime}$ is adjacent to z^{\prime} and q has precisely two neighbors among $\left\{p_{1}, v^{*}, w, u^{\dagger}\right\}$. We claim now that $u^{\dagger} \notin N(q)$.

Suppose toward a contradiction that $u^{\dagger} \in N(q)$. In that case, G contains the 3 -chord $p_{1} z^{\prime} q u^{\dagger}$ of C, and, by Theorem 3.0.2, we have $G_{p_{1} z^{\prime} q u^{\dagger}}^{\text {small }} \backslash\left\{z^{\prime}, q\right\}=p_{1} u_{1} \cdots u^{\dagger}$. Since z^{\prime} has no neighbors among $u_{1}, \cdots, u^{\dagger}$, we have $p_{1} \in N(q)$ by our triangulation conditions as well, and $N(q) \cap V(C)=\left\{p_{1}, u_{1}, \cdots, u^{\dagger}\right\}$. Thus, G contains the broken wheel $H^{\text {mid }}$ which has principal path $p_{1} q u^{\dagger}$, where $H^{\text {mid }} \backslash\{q\}=p_{1} u_{1} \cdots u^{\dagger}$. Now, G contains the 6 -cycle $K:=w w^{*} u^{\dagger} q z^{\prime} v^{*}$. Let $W \subseteq \mathbb{R}^{2}$ be the unique open region such that $\partial(W)=K$ and $W \cap V(C)=\varnothing$. Note that $y \in W$. Now let Ψ be an extension of ϕ to an L-coloring of $G \backslash W$. Consider the following cases.

Case 1 of Subclaim 4.4.24: $y q \in E(G)$
In this case, G contains the 5-cycle $K^{\prime}:=v^{*} z^{\prime} q y w$. Let $W^{\prime} \subseteq \mathbb{R}^{2}$ be the unique open region such that $\partial\left(W^{\prime}\right)=$ K^{\prime} and $W^{\prime} \subseteq W$. Extending Ψ to y, we have an L-coloring of $G \backslash W^{\prime}$. Since G is not L-colorable, it follows from Theorem 1.3.5 that there is a lone vertex q^{\prime} adjacent to all five vertices of K^{\prime}. Now we uncolor w, v^{*}, z^{\prime} (that is, restrict Ψ to an L-coloring Ψ^{\prime} of $\left.\operatorname{dom}(\Psi) \backslash\left\{v^{*}, w, z^{\prime}\right\}\right)$. Then $G \backslash \operatorname{dom}\left(\Psi^{\prime}\right)$ consists of the graph showin in Figure 4.4.4, with lower bounds on the $L_{\Psi^{\prime}}$-lists shown in red.

Figure 4.4.4: Case 1 of Subclaim 4.4.24
Thus, Ψ^{\prime} extends to L-color G, contradicting the fact that \mathcal{T} is critical.
Case 2 of Subclaim 4.4.24: $y q \notin E(G)$
In this case, we let $K^{\prime}:=v^{*} z^{\prime} q u^{\dagger} u w$. Then $K^{\prime} \subseteq \mathrm{Cl}(W)$ and K^{\prime} is a chordless cycle. Let $W^{\prime} \subseteq \mathbb{R}^{2}$ be the unique open region such that $\partial\left(W^{\prime}\right)=K^{\prime}$ and $W^{\prime} \subseteq W$. Note that w, y, u^{\dagger} have no common neighbor in W^{\prime}, since they are adjacent to w^{*} and G is $K_{2,3}$-free. Extending Ψ to y, we have an L-coloring of $G \backslash W^{\prime}$. Thus, since $|V(G) \cap W| \leq 3$, we have $\left|V(G) \cap W^{\prime}\right| \leq 2$, and each vertex of $V(G) \cap W^{\prime}$ is adjacent to a subpath of K of length at least three. But then, since w, y, u^{\dagger} have no common neighbor in W^{\prime}, there is a vertex $q^{\prime} \in V(G) \cap W^{\prime}$ adjacent to each of $u^{\dagger}, q, z^{\prime}$, and thus G contains $K_{2,3}$ with bipartition $\left\{u^{\dagger}, q, z^{\prime}\right\},\left\{q^{\prime}, p_{1}\right\}$, contradicting short-separation-freeness.

Thus, $u^{\dagger} \notin N(q)$, as desired, so q^{\prime} has precisely two neighbors among $\left\{p_{1}, v^{*}, w\right\}$. Since $z^{\prime} \in N(q)$ and $p_{1} z^{\prime} v^{*} w$ is a chordless subpath of G, it follows from our triangulation conditions that $G\left[N(q) \cap B^{*}\right]$ is a subpath of $p_{1} z^{\prime} v^{*} w$ of length precisely two and which contains z^{\prime}. If $p_{1} \in N\left(z^{\prime}\right)$, then we contradict 1) of Claim 4.4.15, so $G\left[N(q) \cap B^{*}\right]=\left\{z^{\prime}, v^{*}, w\right\}$.

Thus, since G is $K_{2,3}$-free, q is the unique vertex of G such that $\left.T\left(B^{*}, \psi\right) \backslash A^{*}\right)=\{q\}$ for each $\psi \in \Phi\left(\phi^{\prime}, z^{\prime}\right)$. Now suppose toward a contradiction that q has a neighbor in $\left\{u_{1}, \cdots, u_{t}\right\}$ and let $i \in\{1, \cdots, t\}$ be the minimal index such that $u_{i} \in N(q)$. Then G contains the 3 -chord $p_{1} z^{\prime} q u_{i}$ of C, and since $q p_{1} \notin E(G), q$ has no neighbors in $\left\{p_{1}, u_{1}, \cdots, u_{i-1}\right\}$. By Theorem 3.0.2, we have $G_{p_{1} z^{\prime} q u_{i}}^{\text {small }} \backslash\left\{q, z^{\prime}\right\}=p_{1} u_{1} \cdots u_{i}$, so $u_{i} \in N\left(z^{\prime}\right)$ by our triangulation conditions, which is false.

Let q be as in Subclaim 4.4.24. Note that $w \notin N\left(z^{\prime}\right)$, or else G contains a K_{4} on the vertices $\left\{v^{*}, w, z^{\prime}, q\right\}$. We also have the following:

Subclaim 4.4.25. $L_{\phi}\left(v^{*}\right) \subseteq L_{\phi}(w)$
Proof: Suppose there is a color $d \in L_{\phi}\left(v^{*}\right) \backslash L_{\phi}(w)$. Let $\phi^{*} \in \Phi\left(\phi,\left\{v^{*}, z^{\prime}\right\}\right)$ be the extension of ϕ obtained by coloring v^{*} with d any choosing any remaining color for z^{\prime}. Let $A^{\prime \prime}=B^{\prime \prime}=\left\{v^{*}, z^{\prime}\right\}$. Since this choice of $A^{\prime \prime}, B^{\prime \prime}, \phi^{*}$ satisfies the conditions of Claim 4.4.13, we have $T\left(B^{\prime \prime}, \phi^{*}\right) \backslash A^{\prime \prime} \neq \varnothing$, so there is a vertex $q^{*} \in V\left(G_{Q}^{\text {small }} \backslash D\right) \backslash A^{\prime \prime}$ with at least three neighbors in $\operatorname{dom}\left(\phi^{*}\right)$.
Thus, by our choice of d, since $w \notin N\left(z^{\prime}\right)$, we have $w \notin T\left(B^{\prime \prime}, \phi^{*}\right)$. Likewise, since each of q, y, u^{\dagger} has at most two neighbors in $\operatorname{dom}\left(\phi^{*}\right)$, we have $q^{*} \notin\left\{q, w, y, u^{\dagger}\right\}$. Yet then the path $p_{1} z^{\prime} q w y u^{\dagger}$ separates q^{*} from $\operatorname{dom}\left(\phi^{*}\right) \backslash\left\{p_{1}, z^{\prime}\right\}$, so $\left|N\left(q^{*}\right) \cap \operatorname{dom}\left(\phi^{*}\right)\right| \leq 2$, a contradiction.

Now we return to the main proof of Case 1 of 4) of Claim 4.4.22. Let $L_{\phi}\left(v^{*}\right)=\{a, b\}$ and let $c \in L_{\phi}\left(z^{\prime}\right) \backslash\{a, b\}$. Since q has no neighbors in $V(Q) \cup\left\{p_{1}, p_{2}\right\}$, we have $\left|L_{\phi}(q)\right|=5$, so, applying Subclaim 4.4.25, there is a color $f \in L_{\phi}(q) \backslash\{a, b, c\}$ such that $\left|L_{\phi}(w) \backslash\{f\}\right| \geq 3$. Let $\psi \in \Phi\left(\phi,\left\{z^{\prime}, q\right\}\right)$ be obtained by L-coloring the edge $z^{\prime} q$
with (c, f). Let $A^{\dagger}:=\left\{v^{*}, z^{\prime}, q\right\}$ and $B^{\dagger}:=\left\{z^{\prime}, q\right\}$. By Subclaim 4.4.24, q has no neighbors among u_{1}, \cdots, u_{t}, so this choice of $A^{\dagger}, B^{\dagger}, \psi$ satisfies the conditions of Claim 4.4.13, so there exists a $q^{\prime} \in V(G) \backslash A^{\dagger}$ with three neighbors among $\operatorname{dom}(\psi)$. Since the path separates $p_{z}^{\prime} q w y u^{\dagger}$ separates q^{\prime} from $\operatorname{dom}(\psi) \backslash\left\{p_{1}, z^{\prime}, q\right\}, q^{\prime}$ is adjacent to all of p_{1}, z, q. Since G is $K_{2,3}$-free, we have $T\left(B^{\dagger}, \psi\right) \backslash A^{\dagger}=\left\{q^{\prime}\right\}$.

Now we simply uncolor z^{\prime}. That is, we let ψ^{\prime} be the restriction of ψ to $\operatorname{dom}(\phi) \cup\{q\}$. Then $\left|L_{\psi^{\prime}}\left(q^{\prime}\right)\right| \geq 3$, so $T\left(\{q\}, \psi^{\prime}\right) \backslash\left\{v^{*}, z, q\right\}=\varnothing$. Yet, by our choice of $\psi^{\prime}(q)$, the set $\left\{v^{*}, z\right\}$ is $L_{\psi^{\prime}}$-inert, since G contains the 6-cycle $x_{1} p_{2} p_{1} q^{\prime} q v^{*}$, so we contradict Claim 4.4.13. This completes Case 1 of 4) of Claim 4.4.22.

Case 2: $\left\{p_{1} p_{2}, v^{*}\right\} \nsubseteq N\left(z^{\prime}\right)$
In this case, $G\left[N\left(z^{\prime}\right) \cap B\right]$ is the path $p_{2} v^{*} w$, and G contains a 6 -wheel with central vertex v^{*}, where $N\left(v^{*}\right)=$ $\left\{x_{1}, x_{2}, w, z^{\prime}, p_{2}\right\}$. As in the previous case, we have the following:

Subclaim 4.4.26. $L_{\phi}\left(v^{*}\right) \subseteq L_{\phi}(w)$.
Proof: Suppose there is a color $d \in L_{\phi}\left(v^{*}\right) \backslash L_{\phi}(w)$. Let $\phi^{*} \in \Phi\left(\phi, z^{\prime}\right)$ be the extension of ϕ obtained by coloring v^{*} with d. Let $A^{\prime \prime}=B^{\prime \prime}=\left\{v^{*}\right\}$. Since this choice of $A^{\prime \prime}, B^{\prime \prime}, \phi^{*}$ satisfies the conditions of Claim 4.4.13, we have $T\left(B^{\prime \prime}, \phi^{*}\right) \backslash A^{\prime \prime} \neq \varnothing$, so there is a vertex $q \in V\left(G_{Q}^{\text {small }} \backslash D\right) \backslash A^{\prime \prime}$ with at least three neighbors in dom $\left(\phi^{*}\right)$. By our choice of d, we have $q \neq w$, and since $\left|L_{\phi^{*}}\left(z^{\prime}\right)\right| \geq 3$, we have $q \neq z^{\prime}$. Yet then the path $p_{2} z^{\prime} w y u^{\dagger}$ separates q from every vertex of $\operatorname{dom}\left(\phi^{*}\right) \backslash\left\{p_{1}, p_{2}\right\}$, contradicting the fact that $\left|L_{\phi^{*}}(q)\right|<3$.

Since $p_{1} \notin N\left(z^{\prime}\right)$, we have $\left|L_{\phi}\left(z^{\prime}\right)\right| \geq 4$, so, applying Subclaim 4.4.26, there is a color $f \in L_{\phi}\left(z^{\prime}\right)$ such that $\left|L_{\phi}\left(v^{*}\right) \backslash\{f\}\right| \geq 2$ and $\left|L_{\phi}(w) \backslash\{f\}\right| \geq 3$. Now set $A^{\dagger}:=\left\{v^{*}, z^{\prime}\right\}$ and $B^{\dagger}:=\left\{z^{\prime}\right\}$. Let ϕ^{\dagger} be the extension of ϕ to z^{\prime} obtained by coloring z^{\prime} with f. We claim now that this choice of $A^{\dagger}, B^{\dagger}, \phi^{\dagger}$ satisfies the conditions of Claim 4.4.13. If z^{\prime} has a neighbor $u \in\left\{u_{1}, \cdots, u_{t}\right\}$, then G contains the 2-chord $p_{2} z^{\prime} u$ of C, and thus, by Theorem 3.0.2, we have $p_{1} \in N\left(z^{\prime}\right)$, which is false. Furthermore, by our choice of f, v^{*} is $L_{\phi^{\dagger}-\text { inert, so our choice of } A^{\dagger}, B^{\dagger}, \phi^{\dagger}}$ does indeed satisfy the conditions of Claim 4.4.13. Thus, there is a vertex $q \in T\left(B^{\dagger}, \phi^{\dagger}\right) \backslash A^{\dagger}$. Since the path $p_{2} z^{\prime} w y u^{\dagger}$ separates q from every vertex of $\operatorname{dom}\left(\psi^{\dagger}\right) \backslash\left\{p_{1}, p_{2}, z^{\prime}\right\}$, and G is $K_{2,3}$-free, this vertex q is unique, and $N(q) \cap \operatorname{dom}\left(\psi^{\dagger}\right)=\left\{p_{1}, p_{2}, z^{\prime}\right\}$.

Now we repeat the process by adding q^{\prime} to A^{\dagger} and extending ϕ^{\dagger} to a L-coloring $\phi^{\dagger \dagger}$ of $\operatorname{dom}(\phi) \cup B^{\dagger} \cup\{q\}$. By 1) of Claim 4.4.15, q has no neighbors in u_{1}, \cdots, u_{t}, so this choice of $A^{\dagger} \cup\{q\}, B^{\dagger}, \phi^{\dagger}$ again satisfies the conditions ofClaim 4.4.15. Thus, there is a vertex $q^{\prime} \in V\left(G_{Q}^{\text {small }} \backslash D\right) \backslash\left(A^{\dagger} \cup\{q\}\right)$ with at least three neighbors in dom $\left(\psi^{\dagger \dagger}\right)$.

Subclaim 4.4.27. $q^{\prime} \notin\left\{w, u^{\dagger}\right\}$.
Proof: Suppose that $q^{\prime}=w$. In that case, by our choice of $\phi^{\dagger}\left(z^{\prime}\right)$, we have $q \in N(w)$, or else $\left|L_{\phi^{\dagger \dagger}}(w)\right| \geq 3$. But then G contains a $K_{2,3}$ with bipartition $\left\{p_{2}, z^{\prime}, w\right\},\left\{v^{*}, q\right\}$, contradicting short-separation-freeness. Thus, $q^{\prime} \neq w$. If $q^{\prime}=u^{\dagger}$, then, by 3), we have $z^{\prime}, q \notin N\left(q^{\prime}\right)$, and thus $N\left(q^{\prime}\right) \cap \operatorname{dom}\left(\psi^{\dagger \dagger}\right) \subseteq\left\{p_{1}\right\}$. In that case, since $\left|L_{\psi^{\dagger \dagger}}\left(q^{\prime}\right)\right|<3$, we have $p_{1} \in N\left(u^{\dagger}\right)$, and since C is induced in G, this contradicts 2).

Since $q^{\prime} \notin\left\{w, u^{\dagger}\right\}$, the path $p_{1} q z^{\prime} w w^{*} u^{\dagger}$ separates q^{\prime} from $\operatorname{dom}\left(\psi^{\dagger \dagger}\right) \backslash\left\{p_{1}, q, z^{\prime}\right\}$. But then q^{\prime} is adjacent to all three of p_{1}, q, z^{\prime}, so G contains a $K_{2,3}$ with bipartition $\left\{p_{2}, q, q^{\prime}\right\},\left\{z^{\prime}, p_{1}\right\}$. This completes the proof of Claim 4.4.22.

Claim 4.4.28. There is a $z \in V\left(G_{Q}^{\text {small }} \backslash D\right)$ adjacent to each of v^{*}, p_{2}, p_{1}
Proof: Suppose that no such vertex exists. Let $A=B=V\left(H^{\dagger} \backslash\left\{x_{4}\right\}\right) \cup\left\{v^{*}, w\right\}$ and let ψ be an extension of ϕ to $\operatorname{dom}(\phi) \cup A$. Then this choice of A, B, ϕ^{\prime} satisfies the conditions of Claim 4.4.13, so there is a vertex $z \in V\left(G_{Q}^{\text {small }} \backslash D\right) \backslash A$ with at least three neighbors in $\operatorname{dom}(\psi)$. Since the path $p_{2} v^{*} w w^{*} u^{\dagger}$ separates z from each vertex in $A \backslash\left\{u^{\dagger}, w^{*}, w, v^{*}, p_{2}, p_{1}\right\}, z$ has at least three neighbors among $\left\{u^{\dagger}, w^{*}, w, v^{*}, p_{2}, p_{1}\right\}$.

Subclaim 4.4.29. $u^{\dagger} \notin N(z)$.
Proof: Suppose that $u^{\dagger} \in N(z)$. By 3) of Claim 4.4.22, we have $p_{2} \notin N(z)$. Furthermore, by 4) of Claim 4.4.22, we have $w \notin N(z)$, so z has at least two neighbors among $\left\{w^{*}, v^{*}, p_{1}\right\}$. If z is adjacent to each of v^{*}, p_{1}, then $p_{2} \in N(z)$ by our triangulation conditions, which is false. If z is adjacent to each of v^{*}, w^{*}, then $w \in N(z)$ by our triangulation conditions, which is false. The only remaining possibility is that $N(z) \cap\left\{w^{*}, v^{*}, p_{1}\right\}=\left\{w^{*}, p_{1}\right\}$, contradicting 1) of Claim 4.4.22.

Thus, we have $u^{\dagger} \notin N(z)$. Thus, z has at least three neighbors among $\left\{w^{*}, w, v^{*}, p_{2}, p_{1}\right\}$. If $p_{1} \in N(z)$, then $w^{*} \notin N(z)$ by 1) of Claim 4.4.22, and $v^{*} \notin N(z)$ or else $p_{2} \in N(z)$ by our triangulation conditions, contradicting our assumption. Thus, in that case, z is adjacent to each of p_{1}, p_{2}, w, so G contains the 4 -cycle $p_{2} z w v^{*}$. Again by our triangulation conditions, $z \in N\left(v^{*}\right)$, contradicting our assumption. We conclude that $p_{1} \notin N(z)$, so z has at least three neighbors among $\left\{w^{*}, w, v^{*}, p_{2}\right\}$. By 1) of Claim 4.4.22, $N(z) \cap\left\{w^{*}, w, v^{*}, p_{2}\right\}$ is either $\left\{p_{2}, v^{*}, w\right\}$ or $\left\{v^{*}, w, w^{*}\right\}$. In either case, since G is $K_{2,3}$-free, z is the unique vertex such that $T(A, \psi)=\{z\}$ for any $\psi \in \Phi(\phi, A)$.

Case 1: $w^{*} \in N(z)$
In this case, $N(z) \cap\left\{w^{*}, w, v^{*}, p_{2}\right\}=\left\{v^{*}, w, w^{*}\right\}$, and G contains a 6-wheel with central vertex w, where w is adjacent to each vertex of $v^{*} z w^{*} x_{3} x_{2}$. Now we set $B^{\prime}:=A \backslash\{w\}$. Since $\left|L_{\phi}\left(w^{*}\right)\right| \geq 3, L_{\phi}(w) \mid \geq 3$, and $\left|L_{\phi}\left(v^{*}\right)\right| \geq 2$, we let $c_{1} \in L \phi\left(* v^{*}\right)$ and $c_{2} \in L_{\phi}\left(w^{*}\right)$, where $L_{\phi}(w) \backslash\left\{c_{1}, c_{2}\right\} \mid \geq 2$. Since $u^{\dagger} \neq u_{1}$ and $v^{*} \notin N\left(u^{\dagger}\right)$, there is a $\psi \in \operatorname{dom}\left(\phi, B^{\prime}\right)$, where $\psi\left(v^{*}\right)=c_{1}$ and $\psi\left(w^{*}\right)=c_{2}$. Since $B^{\prime} \subseteq A$ and $\left|L_{\psi}(z)\right| \geq 3$, we have $T\left(B^{\prime}, \psi\right) \backslash A=\varnothing$. Since w is L_{ψ}-inert, this contradicts Claim 4.4.13.

Case 2: $w^{*} \notin N(z)$
In this case, $N(z) \cap\left\{w^{*}, w, v^{*}, p_{2}\right\}=\left\{v^{*}, w, w^{*}\right\}$, and G contains a 6 -wheel with central vertex v^{*}, where w is adjacent to each vertex of $x_{1} p_{2} z w x_{2}$. Let $B^{\prime}:=A \backslash\left\{v^{*}\right\}$. Since $\left|L_{\phi}(w)\right| \geq 3$ and $\left|L_{\phi}\left(v^{*}\right)\right|=2$, let $c \in$ $L_{\phi}(w) \backslash L_{\phi}\left(v^{*}\right)$. As above, since $u^{\dagger} \neq u_{1}$, there is a $\psi \in \operatorname{dom}\left(\phi, B^{\prime}\right)$, where $\psi(w)=c$. We have $\left|L_{\psi}(z)\right| \geq 3$, or else $p_{1} \in N(z)$, which is false. Thus, since $B^{\prime} \subseteq A$, we have $T\left(B^{\prime}, \psi\right) \backslash A=\varnothing$. Since v^{*} is L_{ψ}-inert by our choice of c, this contradicts Claim 4.4.13.

Now we are ready to finish the proof of Theorem 4.4.1. Let z be as in Claim 4.4.28. Let $R:=p_{1} z v^{*} w w^{*} u^{\dagger}$ and let $A:=V\left(R \backslash\left\{p_{1}\right\}\right) \cup V\left(H^{\dagger} \backslash\left\{x_{4}\right\}\right)$. For any $\psi \in \Phi(\phi, A)$, we have $T(A, \psi) \neq \varnothing$ by Claim 4.4.13, and, for each $y \in T(A, \psi)$, we have $N(y) \cap \operatorname{dom}(\psi) \subseteq V(R)$, since the path R separates y from $\operatorname{dom}(\psi) \backslash R$. Let $R^{\prime}:=z v^{*} w w^{*}$. We break the remainder of Theorem 4.4.1 into two cases:
Case 1 of Theorem 4.4.1: There is no $y \in V\left(G_{Q}^{\text {small }} \backslash D\right)$ with $|N(y) \cap V(R)| \geq 3$ adjacent to each of p_{1}, u^{\dagger}
In this case, we first note the following:
Claim 4.4.30. For any $\psi \in \Phi\left(\phi, z v^{*} w w^{*}\right), \psi$ extends to L-color $\operatorname{dom}(\psi) \cup V\left(H^{\dagger}\right)$.
Proof: This is trivial if H^{\dagger} is just an edge, since $\operatorname{dom}(\psi) \cup V\left(H^{\dagger}\right)$. is already colored. If H^{\dagger} is a broken wheel, then we simply choose a color $d \in \mathcal{Z}_{H^{\dagger}}\left(\phi\left(x_{4}\right), \psi\left(w^{*}\right), \bullet\right)$. Possibly $d=\phi\left(p_{1}\right)$. This is permissible as $u^{\dagger} \neq u_{1}$ by 2) of Claim 4.4.22. In either case, ψ extends to L-color $\operatorname{dom}(\psi) \cup V\left(H^{\dagger}\right)$.

Since ϕ extends to an L-coloring ψ of $\operatorname{dom}(\phi) \cup A$, and $T(A, \psi) \neq \varnothing$ by Claim 4.4.13, there is a $y \in V\left(G_{Q}^{\text {small }} \backslash D\right) \backslash A$ with three neighbors in R. We claim now that y is the unique vertex of $y \in V\left(G_{Q}^{\text {small }} \backslash D\right) \backslash A$ with three neighbors in
R, and that y is not adjacent to either of p_{1}, u^{\dagger}.
Suppose that y is adjacent to p_{1}. By 1) of Claim 4.4.15, y is not adjacent to v^{*}, and, by our assumption, y is not adjacent to u^{\dagger}. If y is adjacent to w^{*}, then G contains the 3 -chord $u^{\dagger} w^{*} y p_{1}$ of C. But then, by Theorem 3.0.2, $G_{p_{1} y w^{*} u^{\dagger}}^{\text {small }} \backslash\left\{y, w^{*}\right\}=p_{1} u_{1} \cdots u^{\dagger}$, and since w^{*} has no neighbors among $\left\{p_{1}, u_{1}, \cdots, u^{\dagger}\right\} \backslash\left\{u^{\dagger}\right\}$, it follows from our triangulation conditions y is adjacent to u^{\dagger} as well, contradicting our assumption. Thus, y is not adjacent to w^{*} either, so $N(y) \cap V(R)=\{u, z, w\}$. But then G contains the 4-cycle $w v^{*} z y$, and $v^{*} \in N(y)$ by our triangulation conditions, which is false. We conclude that $y \notin N\left(p_{1}\right)$, as desired.

Now suppose that y is adjacent to u^{\dagger}. A similar argument to the one above rules out the possibility. By 4) of Claim 4.4.22, y is not adjacent to w, and, by our assumption, y is not adjacent to p_{1}. If y is adjacent to z, then G contains the 3 -chord $u^{\dagger} y z p_{1}$ of C. Since this 3-chord of C lies in $\mathcal{K}(C, \mathcal{T})$ and has one endpoint in P, it follows from Theorem 3.0.2 that $G_{u^{\dagger} y z p_{1}}^{\text {small }} \backslash\{y, z\}=p_{1} u_{1} \cdots u^{\dagger}$, and y is adjacent to u^{\dagger}, which is false. Thus, y is not adjacent to z either, so $N(y) \cap V(R)=\left\{u^{\dagger}, w^{*}, v^{*}\right\}$. But then G contains the 4 -cycle $v^{*} w w^{*} y$, and $w \in N(y)$ by our triangulation conditions, which is false. Thus, $y \notin N\left(u^{\dagger}\right)$. We conclude that y is not adjacent to either of p_{1}, u^{\dagger}. By our triangulation conditions, $G[N(y) \cap V(R)]$ is a subpath of ${ }^{\prime} R$ of length either two or three, and, in particular, y is the unique vertex of G such that, for any $\psi \in \Phi(\phi, A)$, we have $T(A, \psi)=\{y\}$.

Claim 4.4.31. There exists a partial L_{ϕ}-coloring ψ of R^{\prime} such that $L_{\psi}(y) \mid \geq 3$ and $V\left(R^{\prime}\right) \backslash \operatorname{dom}(\phi \cup \psi)$ is $L_{\phi \cup \psi}$-inert.

Proof: It is easy to check that this holds in the case where $G[N(y) \cap V(R)]$ is a subpath of R^{\prime} of length two, since $\left|L_{\phi}\left(v^{*}\right)\right| \geq 2$ and each vertex of $R^{\prime} \backslash\left\{v^{*}\right\}$ has an L_{ϕ}-list of size at least three. Now suppose that y is adjacent to all four vertices of R^{\prime}, and suppose that no partial L_{ϕ}-coloring of R^{\prime} satisfying the claim exists. We fix a $c \in L_{\phi}(z) \backslash L_{\phi}\left(v^{*}\right)$, since $\left|L_{\phi}\left(v^{*}\right)\right|=2$. Furthermore, G contains the 7 -cycle $K:=x_{1} x_{2} x_{3} v^{*} y z p_{2}$, and, letting $W \subseteq \mathbb{R}^{2}$ be the unique open set such that $\partial(W)=K$ and $W \cap V(C)=\varnothing$, we get that $G \cap W$ consists of the edge $w v^{*}$.

We claim now that $L_{\phi}(w)=L_{\phi}\left(w^{*}\right)$ and $L_{\phi}\left(v^{*}\right) \subseteq L_{\phi}(w)$. Let $d \in L_{\phi}\left(w^{*}\right)$ and let ψ be the L_{ϕ}-coloring of $\left\{z, w^{*}\right\}$ where $\psi(z)=c$ and $\psi\left(w^{*}\right)=d$. We have $\left|L_{\psi}(y)\right| \geq 3$, and since ψ does not satisfy Claim 4.4.31, there is an extension of $\phi \cup \psi$ to an L-coloring f of $G \backslash(V(G) \cap W)$, such that f does not extend to L-color the edge $v^{*} w$. By our choice of c, we have $\left|L_{f}\left(v^{*}\right)\right|=\left|L_{f}(w)\right|=1$ and $L_{f}\left(v^{*}\right)=L_{f}(w)$. We conclude that $d \in L_{\phi}(w)$ and $\left|L_{\phi}(w)\right|=3$, and $L_{\phi}(w) \backslash\{d\}=L_{\phi}\left(v^{*}\right)$. Since this holds for each $d \in L_{\phi}\left(w^{*}\right)$, we have $L_{\phi}(w)=L_{\phi}\left(w^{*}\right)$ and $L_{\phi}\left(v^{*}\right) \subseteq L_{\phi}(w)$.

Now, we simply let ψ be an L_{ϕ}-coloring of $\left\{v^{*}, w^{*}, z\right\}$ in which the same color is used on v^{*}, w^{*}. Then $\left|L_{\psi}(y)\right| \geq 3$,
 conditions of Claim 4.4.31, contradicting our assumption.

Combining Claim 4.4.31 with Claim 4.4.30, there is an extension of ϕ to a partial L-coloring ϕ^{*} of $\operatorname{dom}(\phi) \cup A$ such that $\left|L_{\phi^{*}}(y)\right| \geq 3$ and each vertex of $A \backslash \operatorname{dom}\left(\phi^{*}\right)$ is $L_{\phi^{*}}$-inert. Let $B:=\operatorname{dom}\left(\phi^{*}\right)$, and, as above, let ψ be an extension of ϕ^{*} to all of $\operatorname{dom}(\phi) \cup A$. Since $T\left(B, \phi^{*}\right) \backslash A \subseteq T\left(A, \phi^{* *}\right)=\{y\}$, we have $T\left(B, \phi^{*}\right) \backslash A=\varnothing$, contradicting Claim 4.4.13.

Case 2 of Theorem 4.4.1: There exists a $y \in V\left(G_{Q}^{\text {small }} \backslash D\right) \backslash R$ with $|N(y) \cap V(R)| \geq 3$, where y is adjacent to each of p_{1}, u^{\dagger}

In this case, $v^{*} \notin N(y)$ by 1) of Claim 4.4.15, and $w^{*} \notin N(y)$ by 1) of Claim 4.4.22. Furthermore, y is not adjacent to w, or else G contains the 4-cycle $w v^{*} z y$, and so $v^{*} \in N(y)$ by our triangulation conditions, which is false. Thus, $N(y) \cap A=\left\{p_{1}, u^{\dagger}, z\right\}$, and G contains a broken wheel $H^{\text {mid }}$ with principal path $u^{\dagger} y p_{1}$, where
$H^{\text {mid }} \backslash\{y\}=p_{1} u_{1} \cdots u^{\dagger}$. Now, G contains the 6-cycle $K^{\prime \prime}:=w v^{*} z y u^{*} w^{*}$. Let $W^{\prime \prime} \subseteq \mathbb{R}^{2}$ be the unique open set such that $\partial\left(W^{\prime \prime}\right)=K^{\prime \prime}$ and $V(C) \cap W^{\prime \prime}=\varnothing$. Let $c \in L_{\phi}(z) \backslash L_{\phi}\left(v^{*}\right)$.

By Proposition 1.4.5, there is a $d^{\prime} \in L(y) \backslash\left\{c, \phi\left(p_{1}\right)\right\}$ such that $\left|\mathcal{Z}_{H^{\text {mid }}}\left(\phi\left(p_{1}\right), d^{\prime}, \bullet\right)\right| \geq 2$. Likewise, there is a $d^{*} \in z_{H^{\dagger}}\left(\phi\left(x_{4}\right), d^{*}, \bullet\right) \geq 2$. Since $\left|L\left(u^{\dagger}\right)\right|=3$, there is an extension of ϕ to an L-coloring ψ of $G \backslash W^{\prime \prime}$ in which $\psi(z)=c, \psi(y)=d^{\prime}$, and $\psi\left(w^{*}\right)=d^{*}$. Possibly $d^{\prime}=d^{*}$. This is permissible as $w^{*} y \notin E(G)$. Note that there is no vertex of $V(G) \cap W^{\prime \prime}$ adjacent to all three of w, w^{*}, u^{\dagger} by 4) of Claim 4.4.22. Furthermore there is no vertex $y^{\prime} \in V(G) \cap W^{\prime}$ adjacent to all three of z, y, u^{\dagger}, or else G contains the 3-chord $p_{1} z y^{\prime} u^{\dagger}$ of C which separates y from $G_{Q}^{\text {arge }}$. Since this 3-chord of C lies in $\mathcal{K}(C, \mathcal{T})$ and has p_{1} as an endpoint, this contradicts Theorem 3.0.2. Thus, it follows from 1.3.5 that $G \cap W^{\prime \prime}$ consists of a triangle $y_{1} y_{2} y_{3}$, where $N\left(y_{1}\right) \cap V\left(K^{\prime \prime}\right)=\left\{y, u^{\dagger}, w^{*}\right\}$, and $N\left(y_{2}\right) \cap V\left(K^{\prime \prime}\right)=\left\{y, z, v^{*}\right\}$, and $N\left(y_{3}\right) \cap V\left(K^{\prime \prime}\right)=\left\{v^{*}, w, w^{*}\right\}$. Thus, $G \backslash \operatorname{dom}(\psi)$ consists of diagram in Figure 4.4.5, with the lower bounds on the sizes of the L_{ψ}-lists labelled in red.

Figure 4.4.5: Main Case 2
We have $\left|L_{\psi}\left(v^{*}\right)\right| \geq 2$ by our choice of c, and the above graph is L_{ψ}-colorable. Note that this is not necessarily true if $\left|L_{\psi}\left(v^{*}\right)\right|=1$, since in that case, the diagram above possibly reduces to a triangle in which all three vertices have the same 2-list. Since the graph above is L_{ψ}-colorable, ϕ extends to an L-coloring of G, which is false. This completes the proof of Theorem 4.4.1.

With Theorem 4.4.1 in hand, we can finally finish the proof of the main theorem of Chapter 4, i.e Theorem 4.0.1. Let $\mathcal{T}=\left(G, \mathcal{C}, L, C_{*}\right)$ be a critical mosaic and let $C \in \mathcal{C}$ be an open ring. Let $\mathbf{P}=p_{1} \cdots p_{m}$, and let $u v$ be a chord of C^{1} where u has a neighbor in $V(\stackrel{\circ}{\mathbf{P}})$ and v has a neighbor in $V(C \backslash \stackrel{\circ}{\mathbf{P}})$. Let $w \in N(u) \cap V(\stackrel{\circ}{\mathbf{P}})$ and $w^{\prime} \in N(v) \cap V(C \backslash \stackrel{\circ}{\mathbf{P}})$. By Observation 4.3.1, we suppose without loss of generality that $w \in\left\{p_{2}, p_{3}\right\}$. Let $R:=w u v w^{\prime}$.

Combining Theorem 4.4.1 and Proposition 4.3.4, we get that $\left|V\left(G_{R}^{\text {small }}\right) \backslash V(C \cup R)\right|=1$, and if $w=p_{2}$, then $G_{R}^{\text {small }}$ is a wheel whose central vertex is the lone vertex of $V\left(G_{R}^{\text {small }}\right) \backslash V(C \cup Q)$. If $w=p_{3}$, then $G_{R}^{\text {small }} \backslash\left\{p_{3}\right\}$ is a wheel whose central vertex is the lone vertex of $V\left(G_{R}^{\text {small }}\right) \backslash V(C \cup R)$. In either case, the lone central vertex of this wheel is the lone vertex of $D_{1}(C)$ adjacent to p_{1}, p_{2}, and $N(w) \cap V(\mathbf{P})$ is either $\left\{p_{2}\right\}$ or $\left\{p_{2}, p_{3}\right\}$.

Combining this Theorem 3.0.2, we get that, for any 3-chord R^{\prime} of C with at least one endpoint in $C \backslash \dot{\mathbf{P}}^{\mathbf{P}}, R^{\prime}$ does not separate two vertices of $V\left(C \cup C^{1}\right)$. Thus, by Lemma 4.2.1, together with our triangulation conditions, G contains a cycle C^{2} such that, letting $G=G^{\prime} \cup G^{\prime \prime}$ be the natural C^{2}-partition of G, where $C \subseteq G^{\prime}$, we have $C^{2} \cap C^{1}=\mathbf{P}^{1}$ and $V\left(G^{\prime}\right)=V\left(C \cup C^{1} \cup C^{2}\right)$, and furthermore, $V\left(C^{2} \backslash \mathbf{P}^{1}\right)=D_{2}(C \backslash \mathbf{P}) \backslash V\left(C^{1}\right)$. This completes the proof of Theorem 4.0.1. In Chapter 5 and Chapter 6 we apply the results of Chapters 3 and 4 describing the structure of a critical mosaic near each open ring to delete vertices on and near the open rings.

Chapter 5

Deleting Vertices of Distance One from Open Rings of Critical Mosaics

In this chapter we apply our boundary analysis results for open rings from Chapters 3 and 4 to color and delete a strip of the 1-necklace of an open ring near the precolored path. The main result of this chapter is somewhat technical because it requires very careful coloring and deleting of vertices of this open ring and the 1-neckalce of this open ring to avoid creating any lists of size two on the remaining vertices of the open ring.

5.1 Preliminaries

Applying the structural results from Chapters 3 and 4, we first have the following.
Observation 5.1.1. Let \mathcal{T} be a critical mosaic and let C be an open \mathcal{T}-ring. Let p be an endpoint of $\mathbf{P}_{\mathcal{T}}(C)$, and let $\mathbf{P}:=p_{1} \cdots p_{m}$, and $p=p_{1}$. Let $C:=p_{m} \cdots p_{1} u_{1} \cdots u_{n}$ for some $n \geq 1$. Let $C^{1}:=x_{1} \cdots x_{r}$ be the 1-necklace of C, where x_{1} is the unique common neighbor of p_{1} in C^{1}. Then there exist indices m_{2}, m_{3} with $1<m_{2}<m_{3}<r$ and indices t_{1}, t_{2}, t_{3} with $1 \leq t_{1}<t_{2}<t_{3} \leq n$ such that the following hold.

1) $N\left(x_{1}\right) \cap V(C \backslash \mathbf{P})=\left\{u_{1}, \cdots, u_{t_{1}}\right\}$; AND
2) $N\left(x_{m_{2}}\right) \cap V(C)=\left\{u_{t_{1}}, u_{t_{1}+1}, \cdots, u_{t_{2}}\right\}$; AND
3) For each internal vertex x of the path $x_{1} x_{2} \cdots x_{m_{2}}, N(x) \cap V(C)=\left\{u_{t_{1}}\right\}$; AND
4) $N\left(x_{m_{3}}\right) \cap V(C)=\left\{u_{t_{2}}, u_{t_{2}+1}, \cdots, u_{t_{3}}\right\}$; AND
5) For each internal vertex x of the path $x_{m_{2}} x_{m_{2}+1} \cdots x_{m_{3}}, N(x) \cap V(C)=\left\{u_{t_{2}}\right\}$.

Proof. Since x_{1} has at least two neighbors on $C, G\left[N\left(x_{1}\right) \cap C\right]$ is a broken wheel with principal vertex x_{1}. Since $G[N(x) \cap V(\mathbf{P})]$ is either p_{1} or p_{2}, and C is an induced subgraph of G, there is a $t_{1} \in\{1, \cdots, n\}$ such that $G[N(x) \cap V(C \backslash \mathbf{P})]=u_{1} \cdots u_{t_{1}}$. Note that $t_{1}<n$, or else we contradict 1) of Theorem 2.3.2. Thus, let $m_{2} \in$ $\{2, \cdots, r\}$, where $x_{m_{2}}$ is the unique common neighbor of $u_{t_{1}}, u_{t_{1}+1}$ in C^{1}, and, for each index $1<j<m_{2}$, $N\left(x_{j}\right) \cap V(C)=\left\{u_{t_{1}}\right\}$. Note that $N\left(x_{m_{2}}\right) \cap V(\mathbf{P})=\varnothing$, or else, letting $p \in V(\mathbf{P}) \cap N\left(x_{m_{2}}\right)$, the path $p_{1} x_{1} u_{t_{1}} x_{m_{2}} p$ is a C-band, contradicting 1) of Theorem 2.3.2.

Thus, $G\left[N\left(x_{m_{2}}\right) \cap V(C)\right]=u_{t_{1}} u_{t_{1}+1} \cdots u_{t_{2}}$ for some $t_{2} \in\left\{t_{1}+1, \cdots, n\right\}$. Furthermore, $t_{2}<n$, or else the path $p_{1} x_{1} u_{t_{1}} x_{m_{2}} u_{n} p_{m}$ is a C-band, contradicting 1) of Theorem 2.3.2. Thus, there is an $m_{3} \in\left\{m_{2}+1, \cdots, r\right\}$ such that $x_{m_{3}}$ is the unique common neighbor of $u_{t_{2}}, u_{t_{2}+1}$ in C^{1}, and, for each $m_{2}<j<m_{3}$, we have $N\left(x_{j}\right) \cap V(C)=$
$\left\{u_{t_{2}}\right\}$. Finally, we have $N\left(x_{m_{3}}\right) \cap V(\mathbf{P})=\varnothing$, or else, letting $p \in N\left(x_{m_{3}}\right) \cap V(\mathbf{P})$, the path $p_{1} x_{1} u_{t_{1}} x_{m_{2}} u_{t_{2}} x_{m_{3}} p$ is a short C-band. Since $\frac{N_{\text {mo }}}{4}>7$, this contradicts 1) of Theorem 2.3.2. Thus, there is a $t_{3} \in\left\{t_{2}+1, \cdots, n\right\}$ such that $G\left[N\left(x_{m_{3}}\right) \cap V(C)\right]=u_{t_{2}} \cdots u_{t_{3}}$, so we are done.

In this chapter, we show how partially color the path $x_{1} \cdots x_{m_{3}}$ in such a way that the path $u_{1} \cdots u_{t_{3}-1}$ can be removed. Given Observation 5.1.1, it is natural to introduce the following definition:

Definition 5.1.2. Let \mathcal{T} be a critical mosaic and let C be an open \mathcal{T}-ring. Let p be an endpoint of \mathbf{P}, where $\mathbf{P}:=$ $p_{1} \cdots p_{m}$ and $p=p_{1}$. Let $C:=p_{m} \cdots p_{1} u_{1} \cdots u_{n}$ for some $n \geq 1$. Let $C^{1}:=x_{1} \cdots x_{r}$ be the 1-necklace of C, where x_{1} is the unique common neighbor of p_{1} in C^{1}. Let $m_{2}, m_{3} \in\{1, \cdots, r\}$ and $t_{1}, t_{2}, t_{3} \in\{1, \cdots, n\}$ be as in Observation 5.1.1. Then we let Π_{p}^{0} denote the path $u_{1} \cdots u_{t_{3}-1}$ and we let Π_{p}^{1} denote the path $x_{1} \cdots x_{m_{3}}$. The vertex $x_{m_{2}}$ is called the overlap point of Π_{p}^{1}.
Observation 5.1.3. Let \mathcal{T} be a critical mosaic and let C be an open \mathcal{T}-ring. Let p be an endpoint of $\mathbf{P}_{\mathcal{T}}(C)$, and let C^{1} be the 1-necklace of C. Let $\Pi_{p}^{1}=x_{1} \cdots x_{m_{2}} \cdots x_{m_{3}}$, where $x_{m_{2}}$ is the overlap point of Π_{p}^{1}. Then either Π_{p}^{1} is an induced subgraph of G or Π_{p}^{1} has precisely one chord, which is $x_{m_{2}-1} x_{m_{2}+1}$. Furthermore, $G \backslash B_{1}(C)$ contains a path $z_{1} \cdots z_{\ell}$ such that the following hold.

1) $\left\{z_{1}, \cdots, z_{\ell}\right\} \cap B_{1}(C)=V\left(\Pi_{p}^{1}\right)$; AND
2) For each $i \in\{1, \cdots, \ell\} G\left[N(z) \cap V\left(\Pi_{p}^{1}\right)\right]$ is a subpath of Π_{p}^{1} of length at most two, and furthermore, if $G\left[N(z) \cap V\left(\Pi_{p}^{1}\right)\right]$ is a subpath of Π_{p}^{1} of length precisely two, then $G\left[N(z) \cap V\left(\Pi_{p}^{1}\right)\right]=x_{m_{2}-1} x_{m_{2}} x_{m_{2}+1}$, and Π_{p}^{1} is an induced subgraph of G.

Proof. Firstly, since G is short-separation-free, there is no chord of Π_{p}^{1} with both endpoints in $x_{1} \cdots x_{m_{2}}$, since each vertex of $\left\{x_{1}, \cdots, x_{m_{2}}\right\}$ is adjacent to $u_{t_{1}}$. Likewise, there is no chord of Π_{p}^{1} with both endpoints in $x_{m_{2}} \cdots x_{m_{3}}$, since each vertex of $\left\{x_{m 2}, \cdots, x_{m_{3}}\right\}$ is adjacent to u_{2}. Thus, by Theorem 3.0.2, either Π_{p}^{1} is an induced subpath of G, or there is precisely one chord of Π_{p}^{1}, which is $x_{m_{2}-1} x_{m_{2}+1}$. Now let $z \in V(G) \backslash B_{1}(C)$, where z has at least two neighbors in Π_{p}^{1}. Let x_{i}, x_{j} be the endpoints of $\Pi_{p}^{1} \cap G[N(z)]$, where $1 \leq i<j \leq m_{3}$. We claim now that if $j \neq i+1$, then $i=m_{2}-1$ and $j=m_{2}+1$. Suppose that $j \neq i+1$.

If each of x_{i}, x_{j} lie in $\left\{x_{1}, \cdots, x_{m_{2}}\right\}$, then, since $j>i+1, u_{t_{1}} x_{i} z x_{j}$ is a separating cycle in G, contradicting the fact that G is short-separation-free. Likewise, at most one of x_{i}, x_{j} lies in $\left\{x_{m_{2}}, \cdots, x_{m_{3}}\right\}$, so $x_{i} \in\left\{x_{1}, \cdots, x_{m_{2}-1}\right\}$ and $x_{j} \in\left\{x_{m_{2}-1}, \cdots, x_{m_{2}+1}\right\}$, so G contains the 4 -chord $u_{t_{1}} x_{i} z x_{j} u_{t_{2}}$ of C, and $u_{t_{1}} x_{i} z x_{j} u_{t_{2}} \in \mathcal{K}(C, \mathcal{T})$. Thus, by Theorem 4.0.1, since Π_{p}^{1} is an induced subgraph of G, except possibly for the chord $x_{m_{2}-1} x_{m_{2}+1}, z$ is adjacent to each vertex of $\left\{x_{i}, x_{i+1}, \cdots, x_{j}\right\} \backslash\left\{x_{m_{2}}\right\}$, so we have $i=m_{2}-1$ and $j=m_{2}+1$, as desired.

Given Observation 5.1.3, it is natural to introduce the following definition:
Definition 5.1.4. Let \mathcal{T} be a critical mosaic and let C be an open \mathcal{T}-ring. Let p be an endpoint of $\mathbf{P}_{\mathcal{T}}(C)$. We denote the path $z_{1} \cdots z_{\ell}$ from Observation 5.1.3 as Π_{p}^{2}.
We use the notation Π_{p}^{0}, Π_{p}^{1}, and Π_{p}^{2} for our analysis of a critical mosaic near each open ring throughout Chapters 5 and 6. This notation is always used in a context in which we have fixed a critical mosaic and an open ring of the critical mosaic, and the letter Π is not used in any other context. The diagram at the end of this section shows the three paths $\Pi_{p}^{0}, \Pi_{p}^{1}, \Pi_{p}^{2}$ and is a useful reference point. To state the main result of Chapter 5, we first introduce the following definitions, which makes precise the idea of puncturing an open ring near the precolored path.

Definition 5.1.5. Let $\mathcal{T}=\left(G, \mathcal{C}, L, C_{*}\right)$ be a critical mosaic, let C be an open \mathcal{T}-ring. Let p, p^{*} be the endpoints of \mathbf{P} and let ϕ be the unique L-coloring of $V(\mathbf{P})$. A C-wedge is a pair (H, ψ), where H is a subgraph of $V\left(\Pi_{p}^{0} \cup \Pi_{p^{*}}^{0}\right) \cup$ $V\left(\Pi_{p}^{1} \cup \Pi_{p^{*}}^{1}\right)$ and ψ is a partial $L_{\phi^{-}}$-coloring of $V(H)$, such that the following hold.

1) For each $q \in\left\{p, p^{*}\right\}$, the following hold.
a) $H \cap \Pi_{q}^{0}$ is a terminal subpath of Π_{q}^{0} containing the lone endpoint of Π_{q}^{0} adjacent to q; AND
b) $H \cap \Pi_{q}^{1}$ is a terminal subpath of Π_{q}^{1} containing the lone endpoint of Π_{q}^{1} adjacent to q, and this path either consists of a lone vertex, or ends in the overlap point of Π_{q}^{1}, or consists of all of Π_{q}^{1}.
2) $V(H)$ is $(L, \phi \cup \psi)$-inert; $A N D$
3) Each vertex of $D_{1}(H \cup \mathbf{P}) \backslash \mathbf{P}^{1}$ has an $L_{\phi \cup \psi}$-list of size at least three; AND
4) Each vertex of $\mathbf{P}^{1} \backslash H$ has an $L_{\phi \cup \psi}$-list of size at least two.

Our main result for Chapter 5 is the following.
Theorem 5.1.6. Let $\mathcal{T}=\left(G, \mathcal{C}, L, C_{*}\right)$ be a critical mosaic and let C be an open \mathcal{T}-ring. Then there exists $a C$-wedge.
To prove this, we first introduce the following notation and terminology and then prove a simple lemma about broken wheels. The purpose of the lemma below is to allow us to to delete vertices in the ball of distance one from an open ring without leaving nearby vertices on the ring with lists of size less than three.

Definition 5.1.7. Let H be a broken wheel with principal path $P:=p_{1} p_{2} p_{3}$ and let L be a list-assignment for H.

1) We denote by $\mathcal{N}_{L}^{P}\left(H, p_{1} p_{2}\right)$ the set of L-colorings ϕ of the edge $p_{1} p_{2}$ satisfying the following conditions.
a) $\left|L_{\phi}\left(p_{3}\right)\right| \geq 3$; AND
b) For any $c \in L_{\phi}\left(p_{3}\right)$, the L-coloring $\left(\phi\left(p_{1}\right), \phi\left(p_{2}\right), c\right)$ of $p_{1} p_{2} p_{3}$ extends to an L-coloring of H.
2) We say that the edge $p_{1} p_{2}$ is an L-shield for H if there exist two distinct elements ψ_{1}, ψ_{2} of $\mathcal{M}_{L}^{P}\left(H, p_{1} p_{2}\right)$ which satisfy one of the following.
a) ψ_{1}, ψ_{2} use the same color on the principal vertex $p_{2} ; O R$
b) There exist $a, b \in L\left(p_{1}\right) \cap L\left(p_{2}\right)$ such that $a=\psi_{1}\left(p_{1}\right)=\psi_{2}\left(p_{2}\right)$ and $b=\psi_{1}\left(p_{2}\right)=\psi_{2}\left(p_{1}\right)$, i.e ψ_{1}, ψ_{2} are obtained from each other by interchanging colors on $p_{1} p_{2}$.

If the principal path P is clear from the context then we drop the superscript P from the notation $\mathcal{M}_{L}^{P}\left(H, p_{1} p_{2}\right)$.
Lemma 5.1.8. Let H be a broken wheel with principal path $P:=p_{1} p_{2} p_{3}$, and let L be a list-assignment for H such that $\left|L\left(p_{2}\right)\right| \geq 5$ and $|L(x)|=3$ for all $x \in V(H) \backslash\left\{p_{2}\right\}$. Then the following hold.

1) If H is not a triangle, then each edge of P is an L-shield for H; AND
2) If H is a triangle and $p_{1} p_{2}$ is not an L-shield for H, then $\left|L\left(p_{1}\right) \cap L\left(p_{3}\right)\right| \geq 2$.

Proof. For the proof of this lemma, given a $d \in L\left(p_{1}\right)$ and $d^{\prime} \in L\left(p_{2}\right)$, the ordered pair $\left(d, d^{\prime}\right)$ denotes an L-coloring of $p_{1} p_{2}$ using d, d^{\prime} on the respective vertices p_{1}, p_{2}. We first prove 1). The two sides are symmetric so it suffices to show that $p_{1} p_{2}$ is an L-shield for H. Since H is not a triangle, let $H-p_{2}=p_{1} v_{1} \cdots v_{\ell} p_{3}$ for some $\ell \geq 1$. Since $L\left(p_{2}\right) \mid \geq 5$ and $\left|L\left(p_{3}\right)\right|=3$, we fix two colors $a, b \in L\left(p_{2}\right) \backslash L\left(p_{3}\right)$. Suppose toward a contradiction that $p_{1} p_{2}$ is not an L-shield for H.

Claim 5.1.9. $\{a, b\} \subseteq L\left(v_{j}\right)$ for each $j=1, \cdots, \ell$.

Proof: Suppose not, and suppose without loss of generality that there is a $j \in\{1, \cdots, \ell\}$ with $a \notin L\left(v_{j}\right)$. Since $\left|L\left(p_{1}\right)\right|=3$, there exist $c, c^{\prime} \in L\left(p_{1}\right) \backslash\{a\}$. By Proposition 1.4.4, each of (c, a) and $\left(c^{\prime}, a\right)$ lies in $\mathcal{M}_{L}\left(H, p_{1} p_{2}\right)$, contradicting our assumption.

Claim 5.1.10. ℓ is even.

Proof: Suppose ℓ is odd. Since $\left|L\left(p_{1}\right) \backslash\{a\}\right| \geq 3$ and $p_{1} p_{2}$ is not an L-shield for H, there is a $c \in L\left(p_{1}\right) \backslash\{a\}$ with $(c, a) \notin \mathcal{M}_{L}\left(H, p_{1} p_{2}\right)$. Thus, there is an L-coloring $\sigma_{c a}$ of $p_{1} p_{2} p_{3}$, where $\sigma_{c a}$ uses c, a on p_{1}, p_{2} respectively and does not extend to an L-coloring of H. By Claim 5.1.9, we have $b \in L\left(v_{i}\right)$ for each $i=1, \cdots, \ell$. Since $\sigma_{c a}\left(p_{3}\right) \notin\{a, b\}$ and ℓ is odd, we extend $\sigma_{c a}$ to an L-coloring of H by coloring each of $v_{1}, v_{3}, \cdots, v_{\ell}$ with b, which leaves a color for each of $v_{2}, v_{4}, \cdots, v_{\ell-1}$, contradicting our assumption that $\sigma_{c a}$ does not extend to an L-coloring of H.

Claim 5.1.11. $\{a, b\} \subseteq L\left(p_{1}\right)$.

Proof: Suppose not, and suppose without loss of generality that $a \notin L\left(p_{1}\right)$. Since $\left|L\left(p_{1}\right) \backslash\{a\}\right| \geq 3$, it follows from our assumption on H that there are two distinct colors $c, c^{\prime} \in L\left(p_{1}\right) \backslash\{a\}$ such that neither (c, a) nor $\left(c^{\prime}, a\right)$ lies in $\mathcal{M}_{L}\left(H, p_{1} p_{2}\right)$. Thus, there exsit two L-colorings σ, σ^{\prime} of $p_{1} p_{2} p_{3}$, neither of which extends to an L-coloring of H, such that σ uses c, a on the respective vertices p_{1}, p_{2}, and σ^{\prime} uses c^{\prime}, a on the respective vertices p_{1}, p_{2}. By Proposition 1.4.4, $\sigma\left(p_{3}\right) \in L\left(v_{\ell}\right)$ and $\sigma^{\prime}\left(p_{3}\right) \in L\left(v_{\ell}\right)$. By Claim 5.1.9, we have $\left|L\left(v_{\ell}\right) \backslash\{a, b\}\right|=1$. Since $a, b \notin L\left(p_{3}\right)$, we have $\sigma\left(p_{3}\right)=\sigma^{\prime}\left(p_{3}\right)=r$ for some color $r \in L\left(p_{3}\right) \backslash\{a, b\}$. By Observation 1.4.2, the L-coloring (a, r) of $p_{2} p_{3}$ extends to an L-coloring of H using of of c, c^{\prime} on p_{1}, so we have a contradiction.

By assumption, at most one of $(a, b),(b, a)$ lies in $\mathcal{M}_{L}\left(H, p_{1} p_{2}\right)$,. Suppose without loss of generality that $(a, b) \notin$ $\mathcal{M}_{L}\left(H, p_{1} p_{2}\right)$. Thus, there is an L-coloring $\sigma_{a b}$ of $p_{1} p_{2} p_{3}$, using a, b on the respective vertices p_{1}, p_{2}, where $\sigma_{a b}$ does not extend to an L-coloring of H. Since ℓ is even and $a \notin L\left(p_{3}\right)$, we now color each of $v_{2}, v_{4}, \cdots, v_{\ell}$ with a, which leaves a color for each of $v_{1}, v_{3}, \cdots, v_{\ell-1}$, so $\sigma_{a b}$ extends to an L-coloring of H, which is false. This proves 1).

Now suppose that H is a triangle and that $p_{1} p_{2}$ is not an L-shield for H. Suppose toward a contradiction that $\mid L\left(p_{1}\right) \cap$ $L\left(p_{3}\right) \mid \leq 1$ and let $a, b \in L\left(p_{1}\right) \backslash L\left(p_{3}\right)$. If $a, b \in L\left(p_{2}\right)$, then $(a, b),(b, a) \in \mathcal{M}_{L}\left(H, p_{1} p_{2}\right)$, so $p_{1} p_{2}$ is al L-shield for H, contradicting our assumption. Thus, there exists an $f \in L\left(p_{2}\right) \backslash\left(L\left(p_{3}\right) \cup\{a, b\}\right)$, so $(a, f),(b, f) \in \mathcal{M}_{L}\left(H, p_{1} p_{2}\right)$, contradicting our assumption.

For the remainder of Chapter 5, in order to avoid repetition, we fix a critical mosaic $\mathcal{T}=\left(G, \mathcal{C}, L, C_{*}\right)$ and an open \mathcal{T}-ring C. As above, let $\mathbf{P}:=\mathbf{P}_{\mathcal{T}}(C)$ and $\mathbf{P}^{1}:=\mathbf{P}_{\mathcal{T}}^{1}(C)$, and let ϕ be the unique L-coloring of \mathbf{P}. To prove Theorem 5.1.6, we first note that it is sufficient to restrict ourselves to one side of the precolored path. To do this, we first introduce the following terminology.

Definition 5.1.12. Let p, p^{*} be the endpoints of \mathbf{P}. Given a $q \in\left\{p, p^{*}\right\}$, a subgraph H_{q} of $G\left[V\left(\Pi_{q}^{0} \cup \Pi_{q}^{1}\right)\right]$, and an extension of ϕ to a partial L-coloring ψ_{q} of $V\left(\mathbf{P} \cup V\left(H_{q}\right)\right.$, we call the pair $\left(H_{q}, \psi_{a}\right)$ a (C, q)-wedge if H_{q} is a subgraph of $G\left[V\left(\Pi_{q}^{0} \cup \Pi_{q}^{1}\right)\right], \psi_{q}$ is partial L_{ϕ}-coloring of $V\left(H_{q}\right)$, and the following hold.

1a) $H \cap \Pi_{q}^{0}$ is a terminal subpath of Π_{q}^{0} containing the lone endpoint of Π_{q}^{0} adjacent to q; AND
1b) $H \cap \Pi_{q}^{1}$ is a terminal subpath of Π_{q}^{1} containing the lone endpoint of Π_{q}^{1} adjacent to q, and this path either consists of a lone vertex, or ends in the overlap point of R_{q}^{1}, or consists of all of Π_{q}^{1}; AND
2) $V\left(H_{q}\right)$ is $\left(L, \phi \cup \psi_{q}\right)$-inert in G; AND
3) Each vertex of $D_{1}\left(H_{q}\right) \backslash \mathbf{P}^{1}$ has an $L_{\phi \cup \psi_{q}}$-list of size at least three; AND
4) Each vertex of $\mathbf{P}^{1} \backslash H_{p^{\prime}}$ has an $L_{\phi \cup \psi_{q}}$-list of size at least two.

With the terminology above in hand, we now have the following simple observation.
Claim 5.1.13. Let p, p^{*} be the endpoints of \mathbf{P}. If there exists a (C, p)-wedge $\left(H_{p}, \psi_{p}\right)$ and a p^{*}-wedge $\psi_{p^{*}}$, then $\left(H_{p} \cup H_{p^{*}}, \psi_{p} \cup \psi_{p^{*}}\right)$ is a wedge.

Proof: Firstly, each vertex of $\Pi_{p}^{0} \cup \Pi_{p}^{1}$ is of distance at most six from p. Likewise, each vertex of $\Pi_{p^{\prime}}^{0} \cup \Pi_{p^{\prime}}^{1}$ is of distance at most from p^{\prime} six. Since $\frac{N_{\text {mo }}}{4}>6+6+2$, it follows from 1) of Theorem 2.3.2 that G contains no path of length at most two with one endpoint in $V\left(\Pi_{p}^{0} \cup \Pi_{p}^{1}\right)$ and one endpoint in $V\left(\Pi_{p^{\prime}}^{0} \cup \Pi_{p^{\prime}}^{1}\right)$. It immediately follows that $\left(H_{p} \cup H_{p^{*}}, \psi_{p} \cup \psi_{p^{*}}\right)$ is a C-wedge.

Thus, we now fix an endpoint p of \mathbf{P}. The remainder Chapter 5 consists of the proof of the following result, which is sufficient to prove Theorem 5.1.6.

Theorem 5.1.14. There exists $a(C, p)$-wedge.
In Figure 5.1.1, we have a diagram in which the indices $m_{2}, m_{3}, t_{1}, t_{2}, t_{3}$ corresponding to Observation 5.1.1, where this diagram shows the paths $\Pi_{p}^{0}+\left\{p u_{1}, u_{t_{3}-1} u_{t_{3}}\right\}, \Pi_{p}^{1}, \Pi_{p}^{2}$ and the edges between the these three paths. The three paths are on the respective levels $0,1,2$ of the drawing, as indicated on the right. The graph below is not necessarily an induced subgraph of G, since, possibly, there are edges of $G \backslash E\left(\Pi_{p}^{2}\right)$ with both endpoints in Π_{p}^{2}, but the diagram does show all the edges of the subgraph of G induced by the paths $p u_{1} \cdots u_{t_{3}}$ and $x_{1} \cdots x_{m_{2}} \cdots x_{m_{3}}$. It is not necessarily the case that $x_{m_{2}-1}, x_{m_{2}}, x_{m_{2}+1}$ have a common neighbor, as shown in the diagram, but this vertex of Π_{p}^{2}, if it exists, is the only vertex of Π_{p}^{2} whose neighborhood on Π_{p}^{1} is not a subpath of Π_{p}^{1} of length at most one. Note that Figure 5.1.1 also shows a neighbor of x_{1} in Π_{p}^{2}, but there is also the possibility that this vertex does not have any neighbors outside of $V\left(C \cup C^{1}\right)$, since, by Theorem 4.0.1, there is possibly a 3-chord of C with one endpoint in x_{2}, where the other endpoint is the lone vertex of \mathbf{P} adjacent to p.

Figure 5.1.1: Vertices and Edges Near the Precolored Path
Let H_{1} be the broken wheel with principal path $p x_{1} u_{t_{1}}$, where $H_{1}-x_{1}=p u_{1} \cdots u_{t_{1}}$. Likewise, let H_{2} be the broken wheel with principal path $u_{t_{1}} x_{m_{2}} u_{t_{2}}$, where $H_{2}=x_{m_{2}}=u_{t_{1}} \cdots u_{t_{2}}$. Finally, let H_{3} be the broken wheel with principal path $u_{t_{3}} x_{m_{3}} u_{t_{3}}$, where $H_{3}-x_{m_{3}}=u_{t_{2}} \cdots u_{t_{3}}$. The three principal paths of the respective broken wheels are indicated by the thick edges of the diagram. Note that p is not necessarily the only neighbor of x_{1} on \mathbf{P}, since,
possibly x_{1} is adjacent to a subpath of \mathbf{P} of length one. In any case, we have $\left|L_{\phi}\left(x_{1}\right)\right| \geq 3$ by M1).
Let $Q_{\text {left }}:=x_{1} \cdots x_{m_{2}}$ and let $Q_{\text {right }}:=x_{m_{2}} \cdots x_{m_{3}}$. Each of $Q_{\text {left }}$ and $Q_{\text {right }}$ is an induced subpath of G, each vertex of which, except for x_{1}, has an L_{ϕ}-list of size at least five. Furthermore, there is no chord of Π_{p}^{1} except possibly $x_{m_{2}-1} x_{m_{2}+1}$. Thus, we immediately have the following simple observation.

Proposition 5.1.15. For any $T \subseteq L\left(u_{t_{1}}\right)$ of size at most two and $T^{\prime} \subseteq L\left(u_{t_{2}}\right)$ of size at most two, the following holds: Any L_{ϕ}-coloring of $\left\{x_{1}, x_{m_{2}}\right\}$ extends to an L-coloring of $V\left(Q_{\text {left }}\right)$ in which each internal vertex of $Q_{\text {left }}$ is colored by a color not in T. Likewise, any L_{ϕ}-coloring of $\left\{x_{m_{2}}, x_{m_{3}}\right\}$ extends to an L-coloring of $V\left(Q_{\text {right }}\right)$ in which each internal vertex of $Q_{\text {right }}$ is colored by a color not in T^{\prime}.

Next, we have the following simple fact.
Proposition 5.1.16. If H_{1} is not a triangle and there does not exist a (C, p)-wedge, then there does not exist an $s \in L_{\phi}\left(x_{1}\right)$ such that $z_{H_{1}, L_{\phi}^{p}}(\phi(p), s, \bullet)=L\left(u_{t_{1}}\right)$.

Proof. Suppose toward a contradiction that there is such an s. Let σ be the L_{ϕ}-coloring of $\left\{x_{1}\right\}$ where $\sigma\left(x_{1}\right)=s$. Since H_{1} is not a triangle, we have $H_{1} \backslash\left\{p, u_{t_{1}}\right\} \neq \varnothing$, and the pair $\left(H_{1} \backslash\left\{p, u_{t_{1}}\right\}, \sigma\right)$ is a (C, p)-wedge, contradicting our assumption.

We break the remainder of the proof of Theorem 5.1.14 into two parts, which are the remainder of Chapter 5.

5.2 Dealing with 3-Chords of C Near the Precolored Path

This section consists of the following lone result.
Lemma 5.2.1. If there is a 3-chord of C which separates p from an element of $\mathcal{C} \backslash\{C\}$, then there exists $a(C, p)$-wedge.

Proof. Let $p p_{2} p_{3}$ be the unique terminal subpath of \mathbf{P} of length two which has p as an endpoint, and let x^{*} be the lone neighbor of x_{1} on the path $C^{1}-x_{2}$. Suppose there is a 3-chord of C separating p from each element of $\mathcal{C} \backslash\{C\}$. By Theorem 4.0.1, this 3-chord is unique, and its lone internal edge is $x^{*} x_{2}$. Furthermore, $x^{*} \in N\left(p_{2}\right), x_{1}$ is the central vertex of a wheel, and $N\left(x_{1}\right)$ consists of all the vertices in the cycle $x^{*} p_{2} p_{1} u_{1} \cdots u_{t_{1}} x_{2}$. Furthermore, since G is short-separation-free, H_{1} is not a triangle. Suppose toward a contradiction that there does not exist a (C, p)-wedge.

Definition 5.2.2. Let $\operatorname{Skip}\left(H_{1}\right)$ be the set of partial L_{ϕ}-colorings ψ of the triangle $x_{1} x_{2} u_{t_{1}}$ such that $x_{2}, u_{t_{1}} \in \operatorname{dom}(\psi)$ and one of the following holds.

1) $x_{1} \notin \operatorname{dom}(\psi)$ and $\left|z_{H_{1}, L_{\phi}^{p}}\left(\phi(p), \bullet, \psi\left(u_{t_{1}}\right)\right) \backslash\left\{\psi\left(x_{2}\right)\right\}\right| \geq 2$; OR
2) $x_{1} \in \operatorname{dom}(\psi), \psi\left(x_{1}\right) \in z_{L_{\phi}^{p}}\left(\phi(p), \bullet, \psi\left(u_{t_{1}}\right)\right)$, and $L_{\phi \cup \psi}\left(x^{*}\right) \mid \geq 2$.

Claim 5.2.3. For each L_{ϕ}-coloring ψ of $x_{1} u_{t_{1}}$ with $\psi\left(u_{t_{1}}\right) \in z_{H_{1}, L_{\phi}^{p}}\left(\phi(p), \psi\left(x_{1}\right), \bullet\right)$, there is an extension of ψ to an L_{ϕ}-coloring ψ^{*} of $x_{1} u_{t_{1}} x_{2}$ with $\psi^{*} \in \operatorname{Skip}\left(H_{1}\right)$.

Proof: This is just an immediate consequence of the fact that $\left|L_{\phi \cup \psi}\left(x^{*}\right)\right| \geq 2$ and $\left|L_{\phi \cup \psi}\left(x_{2}\right)\right| \geq 3$.
With the above in hand, it is natural to introduce the following definition.

Definition 5.2.4. Given a $k \geq 1$, a k-bouquet is a set of k elements of $\operatorname{Skip}\left(H_{1}\right)$ which all use the same color on $u_{t_{1}}$ and k distinct colors on x_{2}. The color used on $u_{t_{1}}$ is called the stem of the k-bouquet.

For any $\psi \in \operatorname{Skip}\left(H_{1}\right), V\left(H_{1}\right)$ is $(L, \psi \cup \phi)$-inert in G, because the only uncolored vertex of $N\left(x_{1}\right) \backslash V\left(H_{1}\right)$ is x^{*}.
Claim 5.2.5. There is an $r^{\downarrow} \in L\left(u_{t_{1}}\right)$ with $\left|\mathcal{Z}_{H_{1}, L_{\phi}^{p}}\left(\phi(p), \bullet, r^{\downarrow}\right)\right| \geq 2$ and a 2 -bouquet $\left\{\psi_{0}, \psi_{1}\right\}$ using r^{\downarrow} on $u_{t_{1}}$ such that one of the following holds:

Bq1) There exists $\psi_{2}, \psi_{3} \in \operatorname{Skip}\left(H_{1}\right)$ such that $\left\{\psi_{0}, \psi_{1}, \psi_{2}, \psi_{3}\right\}$ is a 4-bouquet; OR
Bq2) For some $q^{\downarrow} \in L\left(u_{t_{1}}\right) \backslash\left\{r^{\downarrow}\right\}$, there exist $\psi_{2}, \psi_{3} \in \operatorname{Skip}\left(H_{1}\right)$ such that $\left\{\psi_{2}, \psi_{3}\right\}$ is a 2-bouquet using q^{\downarrow} on $u_{t_{1}}$, and $\left|\left\{\psi_{0}\left(x_{2}\right), \psi_{1}\left(x_{2}\right)\right\} \cap\left\{\psi_{2}\left(x_{2}\right), \psi_{3}\left(x_{2}\right)\right\}\right| \leq 1 ;$ OR

Bq3) There exist $s_{0}, s_{1} \notin\left\{r^{\downarrow}, \psi_{0}\left(x_{2}\right), \psi_{1}\left(x_{2}\right)\right\}$ such that $\left\{s_{0}, s_{1}, r^{\downarrow}\right\} \subseteq L_{\phi}\left(x_{1}\right) \cap L_{\phi}\left(x^{*}\right) \cap$ Lu $\left.u_{t_{1}}\right)$ and furthermore, $\left\{s_{0}, s_{1}\right\}=\mathcal{Z}_{H_{1}, L_{\phi}^{p}}\left(\phi(p), r^{\downarrow}, \bullet\right)$ and $\left.r^{\downarrow} \in \mathcal{Z}_{H_{1}, L_{\phi}^{p}}\left(\phi(p), s_{j}, \bullet\right)\right)$ for each $j=0,1$.

Proof: By Corollary 1.4.6, there is an $r^{\downarrow} \in L_{\phi}\left(u_{t_{1}}\right)$ and a pair of colors $s_{0}, s_{1} \in L_{\phi}\left(x_{1}\right)$ such that $s_{0}, s_{1} \in$ $z_{H_{1}, L_{\phi}^{p}}\left(\phi(p), \bullet, r^{\downarrow}\right)$. Since $\left|L_{\phi}\left(x_{2}\right)\right| \geq 5$, there is a pair of L_{ϕ}-colorings ψ_{0}, ψ_{1} of $u_{t_{1}} x_{2}$, each of which uses r^{\downarrow} on $u_{t_{1}}$ and a color of $L_{\phi}\left(x_{2}\right) \backslash\left\{r^{\downarrow}, s_{0}, s_{1}\right\}$ on x_{2}. For each $j=0,1, V\left(H_{1}\right)$ is $\left(L, \phi \cup \psi_{j}\right)$-inert in G, and since x_{1} is uncolored, we have $\psi_{0}, \psi_{1} \in \operatorname{Skip}\left(H_{1}\right)$. Thus, $\left\{\psi_{0}, \psi_{1}\right\}$ is a 2-bouquet.

For the remainder of the proof of Claim 5.2.5, an ordered triple always denotes an L_{ϕ}-coloring of the triangle $x_{1} u_{t_{1}} x_{2}$, where the first, second, and third coordinates are the colors used on the respective vertices $x_{1}, u_{t_{1}}, x_{2}$. Since H_{1} is not a triangle, we have $L_{\phi}\left(u_{t_{1}}\right)=L\left(u_{t_{1}}\right)$. Now consider the following cases.

Case 1: Either $\left\{s_{0}, s_{1}\right\} \nsubseteq L_{\phi}\left(x^{*}\right)$ or $\left|L_{\phi}\left(x^{*}\right)\right|>3$
In this case, there is a $j \in\{0,1\}$ such that $\left|L_{\phi}\left(x^{*}\right) \backslash\left\{s_{j}\right\}\right| \geq 3$, say $j=0$ without loss of generality.
Subcase 1.1 $s_{0} \in L_{\phi}\left(x_{2}\right)$
In this case, since $\left|L_{\phi}\left(x_{2}\right)\right| \geq 5$, let $f \in L_{\phi}\left(x_{2}\right) \backslash\left\{s_{0}, r^{\downarrow}, \psi_{0}\left(x_{2}\right), \psi_{1}\left(x_{2}\right)\right\}$. Letting $\psi_{2}:=\left(s_{0}, r^{\downarrow}, f\right)$ and $\psi_{3}:=$ $\left(s_{1}, r^{\downarrow}, s_{0}\right)$, each of ψ_{2}, ψ_{3} lies in $\operatorname{Skip}\left(H_{1}\right)$, and $\left\{\psi_{0}, \psi_{1}, \psi_{2}, \psi_{3}\right\}$ is a 4-bouquet, so our choice of r^{\downarrow} satisfies Bq1).

Subcase $1.2 s_{0} \notin L_{\phi}\left(x_{2}\right)$
In this case, there exist distinct $f, f^{\prime} \in L_{\phi}\left(x_{2}\right) \backslash\left\{s_{0}, r^{\downarrow}, \psi_{0}\left(x_{2}\right), \psi_{1}\left(x_{2}\right)\right\}$. Letting $\psi_{2}:=\left(s_{0}, r^{\downarrow}, f\right)$ and $\psi_{3}:=$ $\left(s_{0}, r^{\downarrow}, f^{\prime}\right)$, each of ψ_{2}, ψ_{3} lies in $\operatorname{Skip}\left(H_{1}\right)$, and $\left\{\psi_{0}, \psi_{1}, \psi_{2}, \psi_{3}\right\}$ is a 4-bouquet, so our choice of r^{\downarrow} satisfies Bq1).

Case 2: $\left\{s_{0}, s_{1}\right\} \subseteq L_{\phi}\left(x^{*}\right)$ and $\left|L_{\phi}\left(x^{*}\right)\right|=3$
In this case, since $\left|L_{\phi}\left(x_{1}\right)\right| \geq 3$, let $s_{2} \in L_{\phi}\left(x_{1}\right) \backslash\left\{s_{0}, s_{1}\right\}$ and consider the following subcases.
Subcase 2.1. There is a $q^{\downarrow} \in L\left(u_{t_{1}}\right) \backslash\left\{r^{\downarrow}\right\}$ and a $j \in\{0,1\}$ such that $q^{\downarrow} \in \mathcal{Z}_{H_{1}, L_{\phi}^{p}}\left(\phi(p), s_{j}, \bullet\right) \cap \mathcal{Z}_{H_{1}, L_{\phi}^{p}}\left(\phi(p), s_{2}, \bullet\right)$ In this case, since $\left|L\left(x_{2}\right) \backslash\left\{\psi_{0}, \psi_{1}, q^{\downarrow}, s_{2}\right\}\right| \geq 1$ and at most one of $\left\{\psi_{0}\left(x_{2}\right), \psi_{1}\left(x_{2}\right)\right\}$ is equal to s_{2}, there is a pair of L_{ϕ}-colorings ψ_{2}, ψ_{3} of $u_{t_{1}} x_{2}$, each of which uses q^{\downarrow} on $u_{t_{1}}$, such that $\left|\left\{\psi_{0}\left(x_{2}\right), \psi_{1}\left(x_{2}\right)\right\} \cap\left\{\psi_{2}\left(x_{2}\right), \psi_{3}\left(x_{2}\right)\right\}\right| \leq 1$ and $s_{2}, s_{j} \notin\left\{\psi_{2}\left(x_{2}\right), \psi_{3}\left(x_{2}\right)\right\}$. Thus, we have $\psi_{2}, \psi_{3} \in \operatorname{Skip}\left(H_{1}\right)$, so $\left\{\psi_{2}, \psi_{3}\right\}$ is a 2-bouquet, and Bq2) is satisfied.

Subcase 2.2 For all $q^{\downarrow} \in L\left(u_{t_{1}}\right) \backslash\left\{r^{\downarrow}\right\}$ and $j \in\{0,1\}$, we have $q^{\downarrow} \notin \mathcal{Z}_{H_{1}, L_{\phi}^{p}}\left(\phi(p), s_{j}, \bullet\right) \cap \mathcal{Z}_{H_{1}, L_{\phi}^{p}}\left(\phi(p), s_{2}, \bullet\right)$
In this case, consider the following subcases:
Subcase 2.2.1 For each $j=0,1, \mathcal{Z}_{H_{1}, L_{\phi}^{p}}\left(\phi(p), s_{j}, \bullet\right)=\left\{r^{\downarrow}\right\}$

Since $\left|\mathcal{Z}_{H_{1}, L_{\phi}^{p}}\left(\phi(p), s_{j}, \bullet\right)\right|=1$ for each $j=0,1$, we have $s_{0}, s_{1} \in L\left(u_{t_{1}}\right)$ by Proposition 1.4.4, so $L\left(u_{t_{1}}\right) \backslash\left\{r^{\downarrow}\right\}=$ $\left\{s_{0}, s_{1}\right\}$, and, by Proposition 1.4.5, $\left\{s_{0}, s_{1}\right\} \subseteq \mathcal{Z}_{H_{1}, L_{\phi}^{p}}\left(\phi(p), s_{2}, \bullet\right)$. Since H_{1} is not a triangle, we have $\phi(p), s_{0}, s_{1} \in$ $L\left(u_{1}\right)$, so $s_{2} \notin L\left(u_{1}\right)$. If $r^{\downarrow} \neq s_{2}$, then $\mathcal{Z}_{H_{1}, L_{\phi}^{p}}\left(\phi(p), s_{2}, \bullet\right)=L\left(u_{t_{1}}\right)$, contradicting Proposition 5.1.16, so we have $r^{\downarrow}=s_{2}$ and $L\left(u_{t_{1}}\right)=\left\{s_{0}, s_{1}, s_{2}\right\}$. If $s_{2} \in L_{\phi}\left(x^{*}\right)$, then Bq3) is satisfied, so we are done in that case.

Now suppose that $s_{2} \notin L_{\phi}\left(x^{*}\right)$. In that case, let $f, f^{\prime} \in L\left(x_{2}\right) \backslash\left\{\psi_{0}\left(x_{2}\right), s_{0}, s_{2}\right\}$ and set $\psi_{2}:=\left(s_{2}, s_{0}, f\right)$ and $\psi_{3}:=\left(s_{2}, s_{0}, f^{\prime}\right)$. We then have $\psi_{2}, \psi_{3} \in \operatorname{Skip}\left(H_{1}\right)$ and $\mid\left\{\psi_{0}\left(x_{2}, \psi_{1}\left(x_{2}\right) \cap\left\{\psi_{2}\left(x_{2}\right), \psi_{3}\left(x_{2}\right)\right\} \mid \leq 1\right.\right.$. Since $\left\{\psi_{2}, \psi_{3}\right\}$ is a 2-bouquet using s_{0} on $u_{t_{1}}$, Bq2) is satisfied.

Case 2.2.2 For some $j \in\{0,1\}, \mathcal{Z}_{H_{1}, L_{\phi}^{p}}\left(\phi(p), s_{j}, \bullet\right) \neq\left\{r^{\downarrow}\right\}$
In this case, let $L\left(u_{t_{1}}\right)=\left\{r^{\downarrow}, q_{0}, q_{1}\right\}$ and suppose without loss of generality that $q_{1} \in \mathcal{Z}_{H_{1}, L_{\phi}^{p}}\left(\phi(p), s_{0}, \bullet\right)$. Since $r^{\downarrow} \in \mathcal{Z}_{H_{1}, L_{\phi}^{p}}\left(\phi(p), s_{0}, \bullet\right)$ as well, it follows from the assumption of Subcase 2.2 that $\mathcal{Z}_{H_{1}, L_{\phi}^{p}}\left(\phi(p), s_{2}, \bullet\right)=\left\{q_{0}\right\}$.
Suppose first that $q_{1} \in \mathcal{Z}_{H_{1}, L_{\phi}^{p}}\left(\phi(p), s_{0}, \bullet\right) \cap \mathcal{Z}_{H_{1}, L_{\phi}^{p}}\left(\phi(p), s_{1}, \bullet\right)$. In that case, since $q_{1} \neq r^{\downarrow}$ and $\left|L_{\phi}\left(x_{2}\right)\right| \geq 5$, there exists a pair of colors $f, f^{\prime} \in L\left(x_{2}\right) \backslash\left\{s_{0}, s_{1}, q_{1}\right\}$ such that $\left\{f, f^{\prime}\right\} \neq\left\{\psi_{0}\left(x_{2}\right), \psi_{1}\left(x_{2}\right)\right\}$. Thus, each of the L_{ϕ}-colorings $\left(q_{1}, f\right)$ and $\left(q_{1}, f^{\prime}\right)$ of $u_{t_{1}} x_{m_{2}}$ lies in $\operatorname{Skip}\left(H_{1}\right)$, and Bq2) is satisfied
Now suppose $q_{1} \notin \mathcal{Z}_{H_{1}, L_{\phi}^{p}}\left(\phi(p), s_{0}, \bullet\right) \cap \mathcal{Z}_{H_{1}, L_{\phi}^{p}}\left(\phi(p), s_{1}, \bullet\right)$. Thus, we have $\mathcal{Z}_{H_{1}, L_{\phi}^{p}}\left(\phi(p), s_{1}, \bullet\right)=\left\{r^{\downarrow}\right\}$. Since H_{1} is not a triangle, we have $L\left(u_{1}\right)=\left\{\phi(p), s_{1}, s_{2}\right\}$ by Proposition 1.4.4, and $s_{0} \notin L\left(u_{1}\right)$. Thus, we have $q_{0}=s_{0}$. But now, by 1) of Proposition 1.4.7, we have $q_{0}=s_{0}=s_{1}$, which is false. This completes the proof of Claim 5.2.5.

The claim above has the following useful consequence.

Claim 5.2.6. Either there is a 4-bouquet or there are two 2-bouquets using different colors on $u_{t_{1}}$.
Proof: Let $r^{\downarrow}, \psi_{0}, \psi_{1}$ be as in the statement of Claim 5.2.5. If either of Bq1) orf Bq2) hold, then we are done. If not, then Bq3) holds, so let $L\left(u_{t_{1}}\right)=\left\{r^{\downarrow}, s_{0}, s_{1}\right\}$. Then, for each $i, j \in\{0,1\}$, the L_{ϕ}-coloring $\left(s_{j}, \psi_{i}\left(x_{2}\right)\right)$ of $u_{t_{1}} x_{2}$ lies in $\operatorname{Skip}(H)$, since $L_{\phi}\left(x^{*}\right) \backslash\left\{\psi_{i}\left(x_{2}\right)\right\} \mid \geq 3$ and $s_{j} \neq \psi_{i}\left(x_{2}\right)$, so we are done.

Definition 5.2.7. Let $\operatorname{Skip}{ }^{\text {aug }}\left(H_{1}\right)$ be the set of partial L_{ϕ}-colorings ψ^{\prime} of $V\left(Q_{\text {left }}\right) \cup\left\{u_{t_{1}}\right\}$ such that $V\left(Q_{\text {left }}-x_{1}\right) \cup$ $\left\{u_{t_{1}}\right\} \subseteq \operatorname{dom}\left(\psi^{\prime}\right)$ and ψ^{\prime} restricts to an element of $\operatorname{Skip}\left(H_{1}\right)$. Given an integer k, an augmented k-bouquet is a set of elements of $\operatorname{Skip}^{\text {aug }}\left(H_{1}\right)$ all using the same color on $u_{t_{1}}$.

Note that if $m_{2}=2$, then $\operatorname{Skip}^{\text {aug }}\left(H_{1}\right)=\operatorname{Skip}\left(H_{1}\right)$ and an augmented k-bouquet is just a k-bouqet. By Claim 5.2.5, there exists at least one 2-bouquet, and, since $Q_{\text {left }}$ is an induced subpath of G, we immediately have the following:

Claim 5.2.8. If $m_{2}>2$, then there exists an augmented 4-bouquet. In particular, given a 2 -bouquet $\left\{\psi_{0}, \psi_{1}\right\}$, there exists an augmented 2-bouquet whose elements restrict to $\left\{\psi_{0}, \psi_{1}\right\}$, and, if $m_{2}>2$, then there exists an augmented 4 -bouquet whose elements restrict to $\left\{\psi_{0}, \psi_{1}\right\}$.

Now we have the following simple observation.

Claim 5.2.9. For any $\psi \in \operatorname{Skip}\left(H_{1}\right)$ and any $c \in L_{\phi \cup \psi}\left(x_{m_{2}}\right)$, we have $\mathcal{Z}_{H_{2}, L}\left(\psi\left(u_{t_{1}}\right), c, \bullet\right) \neq L\left(u_{t_{2}}\right)$.
Proof: Suppose there is a $c \in L_{\phi \cup \psi}\left(x_{m_{2}}\right)$ such that $z_{H_{2}, L}\left(\psi\left(u_{t_{1}}\right), c, \bullet\right)=L\left(u_{t_{2}}\right)$. By Proposition 5.1.15, there is an extension of ψ to to an L_{ϕ}-coloring σ of $\operatorname{dom}(\psi) \cup\left\{x_{3}, \cdots, x_{m_{2}}\right\}$ using c on $x_{m_{2}}$. Let J be the subgraph of G
induced by $V\left(H_{1} \cup H_{2} \cup Q_{\text {left }}\right) \backslash\left\{p, u_{t_{2}}\right\}$. Since $\mathcal{Z}_{H_{2}, L}\left(\psi\left(u_{t_{1}}\right), c, \bullet\right)=L\left(u_{t_{2}}\right)$ and no vertex of Π_{p}^{2} has more than two neighbors in $Q_{\text {right }},(J, \sigma)$ is a (C, p)-wedge, contradicting our assumption.

Now we have the following:

Claim 5.2.10. Either $x_{m_{2}-1} x_{m_{2}+1} \in E(G)$ or there is a $z \in V\left(\Pi_{p}^{2}\right)$ adjacent to each of $x_{m_{2}-1}, x_{m_{2}}, x_{m_{2}+1}$.

Proof: Suppose that neither of these hold. Thus, Π_{p}^{1} is an induced subgraphof G and each vertex of Π_{p}^{2} has at most two neighbors in Π_{p}^{1}. Let $r^{\downarrow} \in L_{\phi}\left(x_{1}\right)$ and let $\psi_{0}, \psi_{1} \in \operatorname{Skip}\left(H_{1}\right)$, where $r^{\downarrow}, \psi_{0}, \psi_{1}$ are as in the statement of Claim 5.2.5. Now we have the following.

Subclaim 5.2.11. $u_{t_{2}} x_{m_{3}}$ is an L-shield for H_{3}.
Proof: Suppose that $u_{t_{2}} x_{m_{3}}$ is not an L-shield for H_{3}. By Lemma 5.1.8, H_{3} is a triangle and $\left|L\left(u_{t_{2}}\right) \cap L\left(u_{t_{3}}\right)\right| \geq$ 2. We first show that, for each $\psi \in \operatorname{Skip}^{\text {aug }}\left(H_{1}\right)$, we have $\mathcal{Z}_{H_{2}, L}\left(\psi\left(u_{t_{1}}, \psi\left(x_{m_{2}}\right), \bullet\right) \subseteq L\left(u_{t_{3}}\right)\right.$. Suppose towards a contradiction that there is a $\psi \in \operatorname{Skip}^{\text {aug }}\left(H_{1}\right)$ for which this does not hold, and let $d \in \mathcal{Z}_{H_{2}, L}\left(\psi\left(u_{t_{1}}\right), \psi\left(x_{m_{2}}\right), \bullet\right)$ with $d \notin L\left(u_{t_{3}}\right)$. Let τ be the extension of ψ obtained by coloring $u_{t_{2}}$ with d. Since $\left|L_{\phi \cup \tau}\left(u_{t_{3}}\right)\right|=3$ and $\left|L_{\phi \cup \tau}\left(x^{*}\right)\right| \geq 2$, the pair $\left(G\left[V\left(\Pi_{p}^{0} \cup \Pi_{p}^{1}\right)\right], \tau\right)$ is a (C, p)-wedge, contradicting our assumption. Now consider the following cases:

Case 1: There exists a $\psi \in \operatorname{Skip}^{\text {aug }}\left(H_{1}\right)$ such that $\psi\left(x_{2}\right) \notin L\left(u_{t_{2}}\right)$
Since $\left|L_{\phi \cup \psi}\left(x_{m_{3}}\right)\right| \geq 4$, we fix an $r^{*} \in L_{\phi \cup \psi}\left(x_{m_{3}}\right) \backslash L\left(u_{t_{3}}\right)$. As shown above, since $r^{*} \notin L\left(u_{t_{3}}\right)$, we have $r^{*} \notin z_{H_{2}, L}\left(\psi\left(u_{t_{1}}\right), \psi\left(x_{2}\right), \bullet\right)$. Since Π_{p}^{1} is an induced subgraph of G, there is an extension of ψ to an L_{ϕ}-coloring ψ^{\prime} of $\operatorname{dom}(\psi) \cup V\left(\Pi_{p}^{1}\right)$ such that $\psi^{\prime}\left(x_{m_{3}}\right)=r^{*}$. Since $r^{*} \neq \psi(x)$, this is true even if $Q_{\text {right }}$ is an edge. By assumption $\left(G\left[V\left(\Pi_{p}^{0} \cup \Pi_{p}^{1}\right)\right], \psi^{\prime}\right)$ is not a (C, p)-wedge, so the inertness condition is violated. That is, ψ^{\prime} extends to an L-coloring τ of $\operatorname{dom}\left(\phi \cup \psi^{\prime}\right) \cup\left\{u_{t_{3}}\right\}$ such that τ does not extend to L-color the path $u_{t_{1}+1} \cdots u_{t_{3}-1}$. Since H_{3} is a triangle and $r^{*} \notin \mathcal{Z}_{H_{2}, L}\left(\psi\left(u_{t_{1}}\right), \psi\left(x_{m_{2}}\right), \bullet\right)$, we have $z_{H_{2}, L}\left(\psi\left(u_{t_{1}}\right), \psi\left(x_{m_{2}}\right), \bullet\right)=\left\{\tau\left(u_{t_{3}}\right)\right\}$. By Proposition 1.4.4, since $\psi\left(x_{m_{2}}\right) \notin L\left(u_{t_{2}}\right)$, we have $\left|\mathcal{Z}_{H_{2}, L}\left(\psi\left(u_{t_{1}}\right), \psi\left(x_{m_{2}}\right), \bullet\right)\right|>1$, a contradiction.

Case 2: For all $\psi \in \operatorname{Skip}^{\text {aug }}\left(H_{1}\right)$, we have $\psi\left(x_{2}\right) \in L\left(u_{t_{2}}\right)$
In this case, since $\left|L\left(u_{t_{2}}\right)\right|=3$, there does not exist an augment 4-bouquet. Since $\left\{\psi_{0}, \psi_{1}\right\}$ is a 2-bouquet, it follows from Claim 5.2.8 that $m_{2}=2$ and $\operatorname{Skip}^{\text {aug }}\left(H_{1}\right)=\operatorname{Skip}\left(H_{1}\right)$. Now we apply Claim 5.2.6. There exists a 2-bouquet $\left\{\psi_{2}, \psi_{3}\right\}$ and a $q^{\downarrow} \in L_{\phi}\left(u_{t_{1}}\right) \backslash\left\{r^{\downarrow}\right\}$ such that ψ_{2}, ψ_{3} use q^{\downarrow} on $u_{t_{1}}$. We now fix an $r^{*} \in$ $L\left(x_{m_{3}}\right) \backslash\left(L\left(u_{t_{2}}\right) \cup L\left(u_{t_{3}}\right)\right.$. By the assumption of Case 2 , we have $r^{*} \neq \psi\left(x_{2}\right)$ for each $\psi \in \operatorname{Skip}\left(H_{1}\right)$. Thus, for each $j=0,1,2,3$, there is an extension of ψ_{j} to an L_{ϕ}-coloring ψ_{j}^{\prime} of of $\operatorname{dom}\left(\psi_{j}\right) \cup V\left(\Pi_{p}^{1}\right)$ such that $\psi_{j}^{\prime}\left(x_{m_{3}}\right)=r^{*}$. Since $r^{*} \neq \psi_{j}\left(x_{2}\right)$, this is true even if $Q_{\text {right }}$ is an edge.

For each $j=0,1,2,3$, since $\left(G\left[V\left(\Pi_{p}^{0} \cup \Pi_{p}^{1}\right)\right], \psi_{j}^{\prime}\right)$ is not a (C, p)-wedge, the inertness condition is violated, so there is an extension of $\phi \cup \psi_{j}^{\prime}$ to an L-coloring τ_{j} of $\operatorname{dom}\left(\phi \cup \psi_{j}\right) \cup\left\{u_{t_{3}}\right\}$ such that τ_{j} does not extend to L-color the path $u_{t_{1}+1} \cdots u_{t_{3}-1}$. For each $j=0,1,2$, since H_{3} is a triangle and $r^{*} \notin \mathcal{Z}_{H_{2}, L}\left(\psi_{j}\left(u_{t_{1}}\right), \psi_{j}\left(x_{2}\right)\right.$, \bullet, we have $\left.z_{H_{2}, L_{p}^{\phi}}\right)=\left\{\tau_{j}\left(u_{t_{3}}\right)\right\}$.

Now, since $\left\{\psi_{0}\left(x_{2}\right), \psi_{1}\left(x_{2}\right)\right\} \cup\left\{\psi_{2}\left(x_{2}\right), \psi_{3}\left(x_{2}\right)\right\} \subseteq L\left(u_{t_{2}}\right)$, we suppose without loss of generality that $\psi_{2}\left(x_{2}\right)=$ $\psi_{0}\left(x_{2}\right)=c$ for some color $c \in L\left(x_{2}\right)$. Let $c^{\prime} \in L\left(u_{t_{3}}\right) \backslash\left\{\tau_{0}\left(u_{t_{3}}\right), \tau_{2}\left(u_{t_{3}}\right)\right\}$. By Observation 1.4.2, the L-coloring $\left(c, c^{\prime}\right)$ of $x_{2} u_{t_{2}}$ extends to L-coloring H_{2} using one of $r^{\downarrow}, q^{\downarrow}$ on $u_{t_{1}}$, contradicting the fact that $z_{H_{j} 2, L}\left(\psi_{j}\left(u_{t_{1}}\right), c, \bullet\right)=\left\{\tau_{j}\left(u_{t_{3}}\right)\right\}$ for each $j=0,2$.

Since $u_{t_{2}} x_{m_{3}}$ is an L-shield for H_{3}, there exist two elements σ_{0}, σ_{1} of $\mathcal{M}_{L}\left(H_{3}, u_{t_{2}} x_{m_{3}}\right)$ such that either $\left\{\sigma_{0}\left(u_{t_{2}}\right), \sigma_{0}\left(x_{m_{3}}\right)\right\}=$ $\left\{\sigma_{1}\left(u_{t_{2}}\right), \sigma_{1}\left(x_{m_{3}}\right)\right\}$ or σ_{0}, σ_{1} use the same color on $x_{m_{3}}$. Now we have the following simple observation.

Subclaim 5.2.12. For each $i \in\{0,1\}$ and $\psi \in \operatorname{Skip}^{\operatorname{aug}}\left(H_{1}\right)$, at least one of the following holds.

1) $\sigma_{i}\left(u_{t_{2}}\right) \notin \mathcal{Z}_{H_{2}, L}\left(\psi\left(u_{t_{1}}\right), \psi\left(x_{m_{2}}\right), \bullet\right)$; $O R$
2) $Q_{\text {right }}$ is an edge and $\psi\left(x_{m_{2}}\right)=\sigma_{i}\left(x_{m_{3}}\right)$.

Proof: If there exist an $i \in\{0,1\}$ and a $\psi \in \operatorname{Skip}^{\text {aug }}\left(H_{1}\right)$ for which this does not hold, then the union $\psi \cup \sigma_{i}$ is a proper L_{ϕ}-coloring of its domain which extends to an L_{ϕ}-coloring ψ^{*} of $\operatorname{dom}\left(\psi \cup \sigma_{i}\right) \cup V\left(H_{2} \cup Q_{\text {right }}\right)$, and $\left(G\left[V\left(\Pi_{p}^{0} \cup \Pi_{p}^{1}\right)\right], \psi^{*}\right)$ is a (C, p)-wedge, contradicting our assumption.

Let $S_{\text {right }}:=\left\{\sigma_{0}\left(u_{t_{2}}\right), \sigma_{1}\left(u_{t_{2}}\right)\right\}$. We now have the following.
Subclaim 5.2.13. σ_{0}, σ_{1} use the same color on $x_{m_{3}}$
Proof: Since σ_{0}, σ_{1} do not use the same color on $x_{m_{3}}$, there is a pair of colors $a, b \in L\left(u_{t_{2}}\right) \cap L\left(x_{m_{3}}\right)$ such that $\left\{\sigma_{i}\left(u_{t_{2}}\right), \sigma_{i}\left(x_{m_{3}}\right)\right\}=\{a, b\}$ for each $i=0,1$, so suppose that $\sigma_{0}\left(u_{t_{2}}\right)=a$ and $\sigma_{1}\left(u_{t_{2}}\right)=a$.

If there is a $\psi \in \operatorname{Skip}^{\text {aug }}\left(H_{1}\right)$ such that either $Q_{\text {right }}$ is not an edge or $\psi\left(x_{m_{2}}\right) \notin\{a, b\}$, then, by Observation 1.4.2, we have $\{a, b\} \cap \mathcal{Z}_{H_{2}, L}\left(\psi\left(u_{t_{1}}\right), \psi\left(x_{m_{2}}\right), \bullet\right) \neq \varnothing$, contradicting Subclaim 5.2.12. Thus, $Q_{\text {right }}$ is an edge, and $\psi\left(x_{m_{2}}\right) \in\{a, b\}$ for each $\psi \in \operatorname{Skip}^{\text {aug }}\left(H_{1}\right)$. In particular, there does not exist an augmented 4-bouquet, and, by Claim 5.2.8, $m_{2}=2$ and $\operatorname{Skip}^{\text {aug }}\left(H_{1}\right)=\operatorname{Skip}\left(H_{1}\right)$.

Now we apply Claim 5.2.5. Since $\psi\left(x_{2}\right) \in\{a, b\}$ for each $\psi \in \operatorname{Skip}\left(H_{1}\right)$, neither $\left.\operatorname{Bq} 1\right)$ nor $\left.\operatorname{Bq} 2\right)$ is satisfied, so $r^{\downarrow}, \psi_{0}, \psi_{1}$ satisfy Bq3). Let $s_{0}, s_{1} \in L\left(x_{1}\right)$ be as in Bq3) of Claim 5.2.5. Since $L\left(x_{2}\right) \mid \geq 5$, there are distinct colors $f_{0}, f_{1} \in L\left(x_{2}\right)$ such that, for each $i=0,1, f_{i} \notin L\left(x_{2}\right) \backslash\left\{a, b, s_{i}, r^{\downarrow}\right\}$. Possibly $f_{i}=s_{1-i}$ for each $i=0,1$. We now note the following simple observation

$$
\text { There exists an } i \in\{0,1\} \text { such that } s_{i}, r^{\downarrow} \in \mathcal{Z}_{H_{2}, L}\left(\bullet, f_{i}, \sigma_{i}\left(u_{t_{2}}\right)\right) \text {. }
$$

Suppose that (\star) does not hold. Since $\{a, b\}=\left\{\psi_{0}\left(x_{2}\right), \psi_{1}\left(x_{2}\right)\right\}$, we have $\{a, b\} \cap\left\{r^{\downarrow}, s_{0}, s_{1}\right\}=\varnothing$. Since $\left|\left\{s_{i}, r^{\downarrow}\right\} \cap z_{H_{2}, L}\left(\bullet, f_{i}, \sigma_{i}\left(u_{t_{2}}\right)\right)\right| \leq 1$ for each $i=0,1, H_{2}$ is not a triangle, and, by Proposition 1.4.4, we have $\{a, b\} \cup\left\{f_{0}, f_{1}\right\} \subseteq L\left(u_{t_{2}-1}\right)$, contradicting the fact that $\left|L\left(u_{t_{2}-1}\right)\right|=3$. Thus, (\star) holds, so suppose without loss of generality that $s_{0}, r^{\downarrow} \in \mathcal{z}_{H_{2}, L}\left(\bullet, f_{0}, a\right)$ and let σ_{0}^{*} by an extension of σ_{0} to an L_{ϕ}-coloring of $\left\{u_{t_{2}}, x_{m_{3}}, x_{2}\right\}$ obtained by coloring x_{2} with f_{0}.
By assumption, the pair $\left(G\left[V\left(\Pi_{p}^{0} \cup \Pi_{p}^{1}\right)\right], \sigma_{0}^{*}\right)$ is not a (C, p)-wedge, so the inertness condition is violated. Thus, there is an extension of $\phi \cup \sigma_{0}^{*}$ to an L-coloring τ of $\operatorname{dom}\left(\phi \cup \sigma_{0}^{*}\right) \cup\left\{x^{*}, u_{t_{3}}\right\}$ which does not extend to L-color $V\left(H_{1} \cup \Pi_{p}^{0}\right)$. Only four neighbors of x_{1} are colored, so $\left|L_{\tau}\left(x_{1}\right)\right| \geq 1$. Since σ_{0}^{*} restricts to an element of $\mathcal{M}_{L}\left(H_{3}, u_{t_{2}} x_{m_{3}}\right)$, it follows that, for each $q \in L_{\tau}\left(x_{1}\right)$, we have $\mathcal{Z}_{H_{1}, L_{\phi}^{p}}(\phi(p), q, \bullet) \cap\left\{s_{0}, r^{\downarrow}\right\}=\varnothing$. Thus, for each $q \in L_{\tau}\left(x_{1}\right)$, we have $\mathcal{Z}_{H_{1}, L_{\phi}^{p}}(\phi(p), q, \bullet)=\left\{s_{1}\right\}$, and, by Observation 1.4.2, $q \in\left\{s_{0}, r^{\downarrow}\right\}$, yet, since Bq3) is satisfied, we have $r^{\downarrow} \in \mathcal{Z}_{H_{1}, L_{\phi}^{p}}\left(\phi(p), s_{0}, \bullet\right)$ and $s_{0} \in \mathcal{Z}_{H_{1}, L_{\phi}^{p}}\left(\phi(p), r^{\downarrow}, \bullet\right)$, a contradiction.

Applying Subclaim 5.2.13, there is a color $q \in L\left(x_{m_{3}}\right)$ such that $\sigma_{i}\left(x_{m_{3}}\right)=q$ for each $i=0,1$.
Subclaim 5.2.14. $m_{2}=2$ and $\operatorname{Skip}^{\text {aug }}\left(H_{1}\right)=\operatorname{Skip}\left(H_{1}\right)$. Furthermore, for any $\psi \in \operatorname{Skip}\left(H_{1}\right)$, we have $\psi\left(x_{2}\right) \in S_{\text {right }} \cup\{q\}$.

Proof: Let $\psi \in \operatorname{Skip}^{\text {aug }}(H)$. If either $Q_{\text {right }}$ is not an edge or $\psi\left(x_{m_{2}}\right) \neq q$, then, by Subclaim 5.2.12, we have $\mathcal{Z}_{H_{2}, L}\left(\psi\left(u_{t_{1}}\right), \psi\left(x_{m_{2}}\right), \bullet\right) \cap S_{\text {right }}=\varnothing$ and thus, by Observation 1.4.2, $\psi\left(x_{m_{2}}\right) \in S_{\text {right }}$. Thus, we have
$\psi\left(x_{m_{2}}\right) \in S_{\text {right }} \cup\{q\}$ for each $\psi \in$ Skip, and there is no augmented 4-bouquet. Thus, by Claim 5.2.8, we have $m_{2}=2$.

Applying Subclaim 5.2.14, there does not exist a 4-bouquet. By Claim 5.2.6, there is a 2-bouquet $\left\{\psi_{2}, \psi_{3}\right\}$ using a color other than r^{\downarrow} on $u_{t_{1}}$. At least one of $\psi_{0}\left(x_{2}\right), \psi_{1}\left(x_{2}\right)$ is distinct from q. Likewise, at least one of $\psi_{2}\left(x_{2}\right), \psi_{3}\left(x_{2}\right)$ is distinct from q. Suppose without loss of generality that $\psi_{0}\left(x_{2}\right), \psi_{2}\left(x_{2}\right) \neq q$. For each $i=0,2$, we then have $\mathcal{z}_{H_{2}, L}\left(\psi_{j}\left(u_{t_{1}}\right), \psi_{j}\left(x_{2}\right), \bullet\right) \cap S_{\text {right }}=\varnothing$ by Subclaim 5.2.12. Thus, there is a lone color $c \in L\left(u_{t_{2}}\right) \backslash S_{\text {right }}$ such that $z_{H_{2}, L}=\left(\psi_{j}\left(u_{t_{1}}\right), \psi_{j}\left(x_{2}\right), \bullet\right)=\{c\}$ for each $j=0,2$. Since $\psi_{0}\left(u_{t_{1}}\right) \neq \psi_{2}\left(u_{t_{1}}\right)$, it follows from 2) of Proposition 1.4.7 that $\psi_{0}\left(x_{2}\right)=\psi_{2}\left(u_{t_{1}}\right)$ and $\psi_{2}\left(x_{2}\right)=\psi_{0}\left(u_{t_{1}}\right)$. Thus, $\left\{\psi_{0}\left(x_{2}\right), \psi_{2}\left(x_{2}\right)\right\}=S_{\text {right }}$, and $S_{\text {right }} \subseteq L\left(u_{t_{1}}\right)$.

Since $z_{H_{2}, L}\left(\psi_{j}\left(u_{t_{1}}\right), \psi_{j}\left(x_{2}\right), \bullet\right)=\{c\}$ for each $j=0,2, H_{2}$ is not a triangle, and, by Proposition 1.4.4, $S_{\text {right }} \subseteq$ $L\left(u_{t_{1}}\right) \cap L\left(u_{t_{2}-1}\right)$.

The trick now is to leave x_{1} uncolored. Since $\left|L\left(x_{2}\right)\right| \geq 5$, we let ζ_{0}, ζ_{1} be two L-coloring of $\left\{x_{2}\right\}$ with $\zeta_{0}\left(x_{2}\right), \zeta_{1}\left(x_{2}\right) \notin$ $L\left(u_{t_{2}}\right)$. Let J be the subgraph of G induced by $V\left(H_{1} \cup H_{2} \cup Q_{\text {left }}\right) \backslash\left\{p, u_{t_{2}}\right\}$. For each $k=0,1,\left(J, \zeta_{k}\right)$ is not a (C, p)-wedge, and since x_{1} is uncolored and $\zeta_{k}\left(x_{2}\right) \notin L\left(u_{t_{2}}\right)$, we have $\left|L_{\phi \cup \zeta_{k}}\left(x^{*}\right)\right| \geq 2$ and $\left|L_{\phi \cup \zeta_{k}}\left(u_{t_{2}}\right)\right|=2$, so the inertness condition is violated. That is, there is an extension of $\phi \cup \zeta_{k}$ to an L-coloring τ_{k} of $\operatorname{dom}\left(\phi \cup \zeta_{k}\right) \cup\left\{x^{*}, u_{t_{2}}\right\}$ such that τ_{k} does not extend to L-color the pair of broken wheels $H_{1} \cup H_{2}$. For each $k=0,1$, since x_{1} has four colored neighbors, we have $\left|L_{\tau_{k}}\left(x_{1}\right)\right| \geq 1$, so we immediately get the following.

Subclaim 5.2.15. $k \in\{0,1\}$ and $d \in L_{\tau_{k}}\left(x_{1}\right)$, we have $\mathcal{Z}_{H_{1}, L_{\phi}^{p}}(\phi(p), d, \bullet) \cap \mathcal{Z}_{H_{2}, L}\left(\bullet, \zeta_{k}\left(x_{2}\right), \tau_{k}\left(u_{t_{2}}\right)\right)=\varnothing$.
Since $S_{\text {right }} \subseteq L\left(u_{t_{1}}\right) \cap L\left(u_{t_{2}}\right)$, there is a $k \in\{0,1\}$ such that $\zeta_{k}\left(x_{2}\right) \notin L\left(u_{t_{1}}\right)$, say $k=0$ without loss of generality. If $\zeta_{0}\left(x_{2}\right) \notin L\left(u_{t_{1}+1}\right) \cap L\left(u_{t_{2}-1}\right)$, then, by Proposition 1.4.4, $z_{H_{2}, L}\left(\bullet, \zeta_{0}\left(x_{2}\right), \tau_{0}\left(x_{2}\right)\right)=L\left(u_{t_{1}}\right)$, contradicting Subclaim 5.2.15. Thus, $L\left(u_{t_{1}+1}\right)=L\left(u_{t_{2}-1}\right)=S_{\text {right }} \cup\left\{\zeta_{0}\left(x_{2}\right)\right\}$ and $\zeta_{1}\left(x_{2}\right) \in L\left(u_{t_{1}}\right)$, so $L\left(u_{t_{1}}\right)=S_{\text {right }} \cup\left\{\zeta_{1}\left(x_{2}\right)\right\}$.

Let $f \in L\left(x_{2}\right) \backslash\left(S_{\text {right }} \cup\left\{q, \zeta_{1}\left(x_{2}\right)\right\}\right)$. Since Π_{p}^{1} is an induced subgraph of G, we let ψ^{*} be an L_{ϕ}-coloring of $\Pi_{p}^{1}-x_{1}$ in which $\psi^{*}\left(x_{2}\right)=f$ and $\psi^{*}\left(x_{m_{3}}\right)=q$, and furthermore, each internal vertex of $\Pi_{p}^{1}-x_{1}$ use a color not lying in $S_{\text {right }}$. Since $f \neq q$, such a ψ^{*} exists even if $Q_{\text {right }}$ is an edge.

Consider the pair $\left(G\left[V\left(\Pi_{p}^{0} \cup \Pi_{p}^{1}\right)\right], \psi^{*}\right)$. Since q is used by an element of $\mathcal{M}_{L}\left(H_{3}, u_{t_{2}} x_{m_{3}}\right)$, on $x_{m_{3}}$, we have $q \notin L\left(u_{t_{3}}\right)$, and since x_{1} is uncolored, we have $\left|L_{\phi \cup \psi^{*}}\left(x^{*}\right)\right| \geq 2$ and $\left|L_{\phi \cup \psi^{*}}\left(u_{t_{3}}\right)\right| \geq 3$. By assumption, $\left(G\left[V\left(\Pi_{p}^{0} \cup\right.\right.\right.$ $\left.\left.\left.\Pi_{p}^{1}\right)\right], \psi^{*}\right)$ is not a (C, p)-wedge, so the inertness condition is violated. That is, $\phi \cup \psi^{*}$ extends to an L-coloring ψ^{\dagger} of $\operatorname{dom}\left(\phi \cup \psi^{*}\right) \cup\left\{x^{*}, u_{t_{3}}\right\}$ which does not extend to L-color $V\left(H_{1} \cup \Pi_{p}^{0}\right)$. Since $\left|L_{\psi^{\dagger}}\left(x_{1}\right)\right| \geq 1$, let $d \in L_{\psi^{\dagger}}\left(x_{1}\right)$. Since $L\left(u_{t_{1}}\right)=S_{\text {right }} \cup\left\{\zeta_{1}\left(x_{2}\right)\right\}$, we have $f \notin L\left(u_{t_{1}}\right)$, so ψ^{\dagger} extends to an L-coloring $\psi^{\dagger \dagger}$ of $\operatorname{dom}\left(\psi^{\dagger}\right) \cup V\left(H_{1}\right)$ using d on x_{1}. Now, since $f \notin S_{\text {right }}$, we have $Z\left(\psi^{\dagger \dagger}\left(u_{t_{1}}\right), \psi^{\dagger \dagger}\left(x_{2}\right), \bullet\right) \cap S_{\text {right }} \neq \varnothing$ by Observation 1.4.2. Since each coloring of $u_{t_{2}} x_{m_{3}}$ using q on $x_{m_{3}}$ and a color of $S_{\text {right }}$ on $u_{t_{2}}$ lies in $\mathcal{M}_{L}\left(H_{3}, u_{t_{2}} x_{m_{3}}\right)$, it follows that $\psi^{\dagger \dagger}$ extends to L-color $V\left(H_{2} \cup H_{3}\right)$, so ψ^{\dagger} extends to L-color $V\left(H_{1} \cup \Pi_{p}^{0}\right)$, a contradiction. This completes the proof of Claim 5.2.10.

Since $N\left(x_{1}\right) \backslash V(C)=\left\{x_{2}, x^{*}\right\}$, it follows from Claim 5.2.10 that $m_{2}>2$. We now have the following useful fact.

Claim 5.2.16. If there exist two distinct colors of $L\left(u_{t_{1}}\right)$ which are the ties of 2-bouquets, then $u_{t_{1}} x_{m_{2}}$ is not an L-shield for H_{2}.

Proof: Suppose that $u_{t_{1}} x_{m_{2}}$ is an L-shield for H_{2} and suppose toward a contradiction that there are two colors $r^{\downarrow}, q^{\downarrow}$ of $L\left(u_{t_{1}}\right)$ which are the both the ties of 2-bouquet. Thus, there is a pair of elements $\mathcal{M}_{L}\left(H_{2}, u_{t_{1}} x_{m_{2}}\right)$ using different colors on $u_{t_{1}}$, and since $\left|L\left(u_{t_{1}}\right)\right|=3$, there is an element of $\mathcal{M}_{L}\left(H_{2}, u_{t_{1}} x_{m_{2}}\right)$ using one of $r^{\downarrow}, q^{\downarrow}$ on $u_{t_{1}}$. Since each of $r^{\downarrow}, q^{\downarrow}$ is the stem of a 2-bouquet, it follows that there is a $\psi \in \operatorname{Skip}\left(H_{1}\right)$ and a $\zeta \in \mathcal{M}_{L}\left(H_{2}, u_{t_{1}} x_{m_{2}}\right)$ such that $\psi \cup \zeta$
is a proper L_{ϕ}-coloring of its domain, and thus $\psi \cup \zeta$ extends to an L_{ϕ}-coloring ζ^{*} of $\operatorname{dom}(\psi \cup \zeta) \cup\left\{x_{3}, \cdots, x_{m_{2}-1}\right\}$. By definition, $\mathcal{Z}_{H_{2}, L}\left(\zeta^{*}\left(u_{t_{1}}\right), \zeta^{*}\left(x_{m_{2}}\right), \bullet\right)=L\left(u_{t_{2}}\right)$ contradicting Claim 5.2.9.

We now deal with the case where there is a chord of Π_{p}^{1}.
Claim 5.2.17. Π_{p}^{1} is an induced subgraph of G.

Proof: Suppose not. We then have $x_{m_{2}-1} x_{m_{2}+1} \in E(G)$. Then $N\left(x_{m_{2}}\right)=\left\{x_{m_{2}-1}, x_{m_{2}+1}\right\} \cup V\left(H_{2}-x_{m_{2}}\right)$. Since G is short-separation-free, H_{2} is not a triangle. Let $r^{\downarrow}, \psi_{0}, \psi_{1}$ be as in Claim 5.2.5, where $r^{\downarrow} \in L\left(u_{t_{1}}\right)$ and $\left\{\psi_{0}, \psi_{1}\right\}$ is a 2-bouquet using r^{\downarrow} on $u_{t_{1}}$.

Subclaim 5.2.18. $u_{t_{2}} x_{m_{3}}$ is an L-shield for H_{3}.
Proof: Suppose not. By Lemma 5.1.8, H_{3} is a triangle and $L\left(u_{t_{2}}\right) \cap L\left(u_{t_{3}}\right) \mid \geq 2$, so let $q \in L\left(x_{m_{3}}\right) \backslash\left(L\left(u_{t_{1}}\right) \cup\right.$ $\left.L\left(u_{t_{2}}\right)\right)$. By Proposition 1.4.5, there is an $s \in L\left(x_{2}\right) \backslash\left\{q, r^{\downarrow}\right\}$ such that $\left|\mathcal{Z}_{H_{2}, L}\left(r^{\downarrow}, s, \bullet\right)\right| \geq 2$. Let $S_{\text {right }}$ be a set of two colors in $z_{H_{2}, L}\left(r^{\downarrow}, s, \bullet\right)$. Consider the following cases.

Case 1: Either $\left\{x_{m_{2}}, x_{m_{3}}\right\} \neq\left\{x_{3}, x_{4}\right\}$ or $\left\{\psi_{0}\left(x_{2}\right), \psi_{1}\left(x_{2}\right)\right\} \neq\{s, q\}$
In this case, there is an $i \in\{0,1\}$ and an extension of ψ_{i} to an L_{ϕ}-coloring σ of $\operatorname{dom}\left(\phi_{i}\right) \cup V\left(\Pi_{p}^{1}-x_{1}\right)$ such that σ uses s, q on the respective vertices $x_{m_{2}}, x_{m_{3}}$ and does not use a color of $S_{\text {right }}$ on any internal vertex of $Q_{\text {right }}$. By assumption, $\left(G\left[V\left(\Pi_{p}^{0} \cup \Pi_{p}^{1}\right)\right], \sigma\right)$ is not a (C, p)-wedge, and since no vertex of Π_{p}^{2} is adjacent to more than two vertices of Π_{p}^{1}, the inertness conditions is violated. Since H_{3} is a triangle and σ restricts to an element of $\operatorname{Skip}\left(H_{1}\right)$, it follows that $\phi \cup \sigma$ extends to an L-coloring τ of $\operatorname{dom}(\phi \cup \sigma) \cup V\left(H_{1}\right) \cup\left\{u_{t_{3}}\right\}$ such that τ does not extend to L-color H_{2}. Thus, we have $L_{\tau}\left(u_{t_{2}}\right) \cap S_{\text {right }}=\varnothing$. But since $\left|L\left(u_{t_{2}}\right)\right|=3$ and $q \notin L\left(u_{t_{2}}\right)$, we have $S_{\text {right }} \cap L_{\tau}\left(u_{t_{2}}\right) \neq \varnothing$, a contradiction.

Case 2: $\left\{x_{m_{2}}, x_{m_{3}}\right\}=\left\{x_{3}, x_{4}\right\}$ and $\left\{\psi_{0}\left(x_{2}\right), \psi_{1}\left(x_{2}\right)=\{s, q\}\right.$
In this case, $\Pi_{p}^{0}=x_{1} x_{2} x_{3} x_{4}, m_{2}=3, m_{3}=4$, and the lone chord of Π_{p}^{1} is $x_{2} x_{4}$. If $q \notin L\left(x_{2}\right)$, then $\left|L\left(x_{m_{2}}\right) \backslash\left\{s, q, r^{\downarrow}\right\}\right| \geq 3$ and, by Proposition 1.4.5, there is an $s^{\prime} \in L\left(x_{m_{2}}\right) \backslash\left\{s, q, r^{\downarrow}\right\}$ with $\left|Z_{H_{2}, L}\left(r^{\downarrow}, s^{\prime}, \bullet\right)\right| \geq$ 2 , so we are back to Case 1 with s replaced by s^{\prime}.

Now suppose that $q \in L\left(x_{m_{2}}\right)$. Since $\{s, q\}=\left\{\psi_{0}\left(x_{2}\right), \psi_{1}\left(x_{2}\right)\right\}$, we have $q \neq r^{\downarrow}$ and there iss precisely one $i \in\{0,1\}$ such that $q \in L_{\phi \cup \psi_{i}}\left(x_{m_{2}}\right)$. By Claim 5.2.9, we have $\mathcal{Z}_{H_{2}, L}\left(r^{\dagger}, q, \bullet\right) \neq L\left(u_{t_{2}}\right)$. Since $q \notin$ $L\left(u_{t_{2}}\right)$ and H_{1} is not a triangle, it follows from Proposition 1.4.4 that $r^{\dagger}, q \in L\left(u_{t_{1}+1}\right)$. Thus, there is an $s^{\prime} \in L\left(x_{2}\right) \backslash\left\{r^{\downarrow}, q, s\right\}$ with $s^{\prime} \notin L\left(u_{t_{1}+1}\right)$, so, again applying Proposition 1.4.4, we have $\left|Z_{H_{2}, L}\left(r^{\downarrow}, s^{\prime}, \bullet\right)\right| \geq 2$, and since $s^{\prime} \notin\left\{\psi_{0}\left(x_{2}\right), \psi_{1}\left(x_{2}\right)\right\}$, we are back to Case 1 with s replaced by s^{\prime}.

Now we have the following:
Subclaim 5.2.19. Let $\psi \in \operatorname{Skip}\left(H_{1}\right)$ and $\sigma \in \mathcal{M}_{L}\left(H_{3}, u_{t_{2}} x_{m_{3}}\right)$ and suppose there is an $s \in \mathcal{Z}_{H_{2}, L}\left(\psi\left(u_{t_{1}}\right), \bullet, \sigma\left(u_{t_{2}}\right) \cap\right.$ $\left.L_{\phi \cup \psi}\left(x_{m_{2}}\right) \cap L_{\phi \cup \sigma}\left(x_{m_{2}}\right)\right)$. Then $\left\{x_{m_{2}}, x_{m_{3}}\right\}=\left\{x_{3}, x_{4}\right\}$ and $\psi\left(x_{m_{2}-1}\right)=\sigma\left(x_{m_{2}+1}\right)$.

Proof: Suppose that at least one one of these does not hold. Then $\psi \cup \sigma$ is a proper L_{ϕ}-coloring its domain which extends to an L_{ϕ}-coloring σ^{*} of $\operatorname{dom}(\psi \cup \sigma) \cup V\left(\Pi_{p}^{1}-x_{1}\right)$ such that $\sigma^{*}\left(x_{2}\right)=s$. Since σ^{*} restricts to an element of $\operatorname{Skip}\left(H_{1}\right)$ and to an element of $\mathcal{M}_{L}\left(H_{3}, u_{t_{2}} x_{m_{3}}\right)$, the inertness condition of Definition 5.1.12 are satisfied, and $\left(G\left[V\left(\Pi_{p}^{0} \cup \Pi_{p}^{1}\right)\right], \sigma^{*}\right)$ is a (C, p)-wedge, contradicting our assumption.

Since $u_{t_{2}} x_{m_{3}}$ is an L-shield for H_{3}, let σ_{0}, σ_{1} be a pair of elements of $\mathcal{M}_{L}\left(H_{3}, u_{t_{2}} x_{m_{3}}\right)$ such that either σ_{0}, σ_{1} use the same color on $x_{m_{3}}$ or $\left\{\sigma_{0}\left(u_{t_{2}}\right), \sigma_{0}\left(x_{m_{3}}\right)\right\}=\left\{\sigma_{1}\left(u_{t_{2}}\right), \sigma_{1}\left(x_{m_{3}}\right)\right\}$.

Subclaim 5.2.20. σ_{0}, σ_{1} use the same color on $x_{m_{3}}$
Proof: Suppose not. Then there is a pair of colors $\{a, b\}$ such that $\left\{\sigma_{i}\left(x_{m_{2}}\right), \sigma_{i}\left(u_{t_{2}}\right)\right\}=\{a, b\}$ for each $i=0,1$. Consider the following cases:

Case 1: $\left\{\psi_{0}\left(x_{2}\right), \psi_{1}\left(x_{2}\right)\right\} \neq\{a, b\}$
In this case, suppose without loss of generality that $\psi_{0}\left(x_{2}\right) \notin\{a, b\}$. Since $\left|L_{\phi}\left(x_{2}\right)\right| \geq 5$, there is an $s \in$ $L_{\phi}\left(x_{2}\right) \backslash\left\{r^{\downarrow}, \psi_{0}\left(x_{2}\right), a, b\right\}$. By Observation 1.4.2, $\mathcal{Z}_{H_{2}, L}\left(r^{\downarrow}, s, \bullet\right) \cap\{a, b\} \neq \varnothing$ so there is an $i \in\{0,1\}$ such that $s \in \mathcal{Z}_{H_{2}, L}\left(r^{\downarrow}, \bullet, \sigma_{i}\left(u_{t_{2}}\right)\right.$ and such that $s \in L_{\phi \cup \sigma_{i}}\left(x_{m_{2}}\right)$. But since $s \in L_{\phi \cup \psi_{0}}\left(x_{m_{2}}\right)$ as well, we contradict Subclaim 5.2.19.

Case 2: $\left\{\psi_{0}\left(x_{2}\right), \psi_{1}\left(x_{2}\right)\right\}=\{a, b\}$
In this case, we just choose an $s \in L_{\phi}\left(x_{2}\right) \backslash\left\{r^{\downarrow}, a, b\right\}$. As above, since $\mathcal{Z}_{H_{2}, L}\left(r^{\downarrow}, s, \bullet\right) \cap\{a, b\} \neq \varnothing$ there is an $i \in\{0,1\}$ such that $s \in \mathcal{Z}_{H_{2}, L}\left(r^{\downarrow}, \bullet, \sigma_{i}\left(u_{t_{2}}\right)\right.$ and such that $s \in L_{\phi \cup \sigma_{i}}\left(x_{m_{2}}\right)$. There is precisely one $j \in\{0,1\}$ such that $\psi_{j}\left(x_{2}\right) \neq \sigma_{i}\left(x_{m_{3}}\right)$. But since $s \notin\left\{r^{\downarrow}, \psi_{0}\left(x_{2}\right), \psi_{1}\left(x_{2}\right)\right\}$, we have $s \in L_{\phi \cup \psi_{j}}\left(x_{m_{2}}\right)$, contradicting Subclaim 5.2.19.

Applying Subclaim 5.2.20, let $q \in L\left(x_{m_{3}}\right)$, where each of σ_{0}, σ_{1} uses q on $x_{m_{3}}$. Let $\left\{\sigma_{0}\left(u_{t_{2}}\right), \sigma_{1}\left(u_{t_{2}}\right)\right\}=\{a, b\}$ and let c be the lone color of $L\left(u_{t_{2}}\right) \backslash\{a, b\}$.

Subclaim 5.2.21. For any $\psi \in \operatorname{Skip}\left(H_{1}\right)$ with $\psi\left(x_{2}\right) \neq q$, we have $L\left(x_{m_{2}}\right)=\left\{\psi\left(u_{t_{1}}\right), \psi\left(x_{2}\right), q, a, b\right\}$, and furthermore, $\mathcal{Z}_{H_{2}, L}\left(\psi\left(u_{t_{1}}\right), a, \bullet\right)=\mathcal{Z}_{H_{2}, L}\left(\psi\left(u_{t_{1}}\right), b, \bullet\right)=\{c\}$.

Proof: If there is an $s \in L\left(x_{2}\right) \backslash\left\{\psi\left(u_{t_{1}}\right), \psi\left(x_{2}\right), q, a, b\right\}$, then, by Observation 1.4.2, $\mathcal{Z}_{H_{2}, L}\left(\psi\left(u_{t_{1}}\right), s, \bullet\right) \cap$ $\{a, b\} \neq \varnothing$, so there exists a $j \in\{0,1\}$ with $s \in \mathcal{Z}_{H_{2}, L}\left(\psi\left(u_{t_{1}}\right), \bullet, \sigma_{j}\left(u_{t_{2}}\right)\right)$. Furthermore, $s \in L_{\phi \cup \psi}\left(x_{m_{2}}\right)$ and, since $s \notin\{q, a, b\}$, we have $s \in L_{\phi \cup \sigma_{j}}\left(x_{m_{2}}\right)$, so we contradict Subclaim 5.2.19. We conclude that $L\left(x_{2}\right)=$ $\left\{\psi\left(u_{t_{1}}\right), \psi\left(x_{m_{2}}\right), q, a, b\right\}$, and, again applying Subclaim 5.2.19, $z_{H_{2}, L}\left(\psi\left(u_{t_{1}}\right), a, \bullet\right)=z_{H_{2}, L}\left(\psi\left(u_{t_{1}}\right), b, \bullet\right)=$ $\{c\}$.

Subclaim 5.2.21 immediately implies that $L\left(x_{m_{2}}\right) \backslash\{q, a, b\} \mid=2$ and that, for any $\psi \in \operatorname{Skip}\left(H_{1}\right)$, either $\psi\left(x_{2}\right)=q$ or $\psi\left(x_{2}\right) \in L\left(x_{m_{2}}\right) \backslash\{q, a, b\}$. Thus, there does not exist a 4-bouquet.

Now, applying Claim 5.2.6, there is a 2-bouquet $\left\{\psi_{0}^{\prime}, \psi_{1}^{\prime}\right\}$ using a color $q^{\downarrow} \in L\left(u_{t_{1}}\right) \backslash\left\{r^{\downarrow}\right\}$ on $u_{t_{1}}$. At least one of $\left\{\psi_{0}\left(x_{2}\right), \psi_{1}\left(x_{2}\right)\right\}$ is distinct from q, and likewise for $\left\{\psi_{0}^{\prime}, \psi_{1}^{\prime}\right\}$, so suppose without loss of generality that $q \neq \psi_{0}\left(x_{m_{2}}\right), \psi_{0}^{\prime}\left(x_{m_{2}}\right)$. By Subclaim 5.2.21, we have $\{a, b\} \cap\left\{r^{\downarrow}, q^{\downarrow}\right\}=\varnothing$, and furthermore, $\mathcal{Z}_{H_{2}, L}\left(r^{\downarrow}, a, \bullet\right)=$ $\mathcal{Z}_{H_{2}, L}\left(q^{\downarrow}, a, \bullet\right)=\{c\}$. By Observation 1.4.2, the L-coloring (a, b) of $x_{m_{2}} u_{t_{2}}$ extends to an L-coloring of H_{2} using one of $r^{\downarrow}, q^{\downarrow}$ on $u_{t_{1}}$, so we have a contradiction. This completes the proof of Claim 5.2.17.

Applying Claim 5.2.10 and Claim 5.2.17, there is a vertex $z \in V\left(\Pi_{p}^{2}\right)$ adjacent to each of $x_{m_{2}-1}, x_{m_{2}}, x_{m_{2}+1}$. We now have the following simple observation.

Claim 5.2.22. Let r be the stem of a 2-bouquet. If H_{2} is not a triangle, then there is at most one color $c \in L\left(x_{2}\right) \backslash\{r\}$ such that ${\underset{Z}{H_{2}, L}}(r, c, \bullet) \mid=1$.

Proof: Suppose toward a contradiction that there exist two colors $c_{0}, c_{1} \in L\left(x_{m_{2}}\right) \backslash\{r\}$ such that $\left|\mathcal{Z}_{H_{2}, L}\left(r, c_{i}, \bullet\right)\right|=1$ for each $i=0,1$ Since H_{2} is not a triangle, it follows from Proposition 1.4.4 that $c_{0}, c_{1} \in L\left(u_{t_{1}+1}\right) \cap L\left(u_{t_{2}}\right)$ and that $r \in L\left(u_{t_{1}}\right)$. Since $L\left(u_{t_{1}}\right) \cap L\left(u_{t_{2}}\right) \mid \geq 2$, there is an $r^{*} \in L\left(x_{m_{2}}\right) \backslash\left(L\left(u_{t_{1}+1}\right) \cup L\left(u_{t_{2}}\right)\right)$. Since $r \in L\left(u_{t_{1}+1}\right)$, we
have $r^{*} \neq r$. Since there is a 2-bouquet using r on $u_{t_{1}}$, there is an element of $\operatorname{Skip}^{\text {aug }}\left(H_{1}\right)$ using r, r^{*} on the respective vertices $u_{t_{1}}, x_{m_{2}}$. Since $r^{*} \notin L\left(u_{t_{1}+1}\right)$, we have $Z\left(r, r^{*}, \bullet\right)=L\left(u_{t_{2}}\right)$, contradicting Claim 5.2.9.

As above, we first deal with the case where $u_{t_{2}} x_{m_{3}}$ is not an L-shield for H_{3}.

Claim 5.2.23. $u_{t_{2}} x_{m_{3}}$ is an L-shield for H_{3}.

Proof: Suppose not. By Lemma 5.1.8, H_{3} is a triangle and $\left|L\left(u_{t_{2}}\right) \cap L\left(u_{t_{3}}\right)\right| \geq 2$. Thus, we fix a color $r^{*} \in$ $L\left(x_{m_{3}}\right) \backslash\left(L\left(u_{t_{2}}\right) \cup L\left(u_{t_{3}}\right)\right)$. Since each vertex of $Q_{\text {right }}$ has an L_{ϕ}-list of size at least five, there is an L_{ϕ}-coloring σ of $Q_{\text {right }}-x_{m_{2}}$ such that $\sigma\left(x_{m_{3}}\right)=r^{*}$ and σ does not use a color of $L\left(u_{t_{2}}\right)$ on any vertex of $Q_{\text {right }}-x_{m_{2}}$. Possibly $Q_{\text {right }}$ is an edge and this is just a coloring of a lone vertex.

Subclaim 5.2.24. Let $\psi \in \operatorname{Skip}\left(H_{1}\right)$ and let ψ^{\prime} be an extension of ψ to an L_{ϕ}-coloring of $\operatorname{dom}(\psi) \cup\left\{x_{2}, \cdots, x_{m_{2}-1}\right\}$. Then the following holds:

1. There is at most one $c \in L\left(x_{m_{2}}\right) \backslash\left\{\sigma\left(x_{m_{2}+1}\right), \psi^{\prime}\left(u_{t_{1}}\right), \psi^{\prime}\left(x_{m_{2}-1}\right)\right\}$ such that $\left|\mathcal{Z}_{H_{2}, L}\left(\psi^{\prime}\left(u_{t_{1}}\right), c, \bullet\right)\right| \geq 2$.
2. $\psi^{\prime}\left(u_{t_{1}}\right) \in L\left(u_{t_{1}+1}\right)$ and $\left|L_{\psi^{\prime} \cup \sigma}\left(x_{m_{2}}\right) \cap L\left(u_{t_{1}+1}\right)\right| \geq 1$

Proof: We first prove 1). Suppose toward a contradiction there are two colors $c_{0}, c_{1} \in L\left(x_{m_{2}}\right) \backslash\left\{\sigma\left(x_{m_{2}+1}\right), \psi^{\prime}\left(u_{t_{1}}\right), \psi^{\prime}\left(x_{m_{2}-1}\right)\right\}$ such that this holds. Since Π_{p}^{1} is an induced subgraph of $G, \psi^{\prime} \cup \sigma$ is a proper L_{ϕ}-coloring of its domain. By assumption, $\left(G\left[V\left(\Pi_{p}^{0} \cup \Pi_{p}^{1}\right)\right], \psi^{\prime} \cup \sigma\right)$ is not a (C, p)-wedge. Since $x_{m_{2}}$ is uncolored and $r^{*} \notin L\left(u_{t_{3}}\right)$, the inertness condition is violated. Since H_{3} is a triangle and ψ^{\prime} restricts to an element of $\operatorname{Skip}\left(H_{1}\right)$, there is an extension of $\phi \cup \psi^{\prime} \cup \sigma$ to an L-coloring τ of $\operatorname{dom}\left(\phi \cup \psi^{\prime} \cup \sigma\right) \cup\left\{z, u_{t_{3}}\right\}$ such that τ does not extend to L color H_{2}. At least one of c_{0}, c_{1} is distinct from $\tau(z)$, so suppose without loss of generality that $c_{0} \in L_{\tau}\left(x_{m_{2}}\right)$. Since $\left|\mathcal{Z}_{H_{2}, L}\left(\psi^{\prime}\left(u_{t_{1}}\right), c_{0}, \bullet\right)\right| \geq 2$, we have $\mid \mathcal{Z}_{H_{2}, L}\left(\psi^{\prime}\left(u_{t_{1}}\right), c_{0}, \bullet \backslash\left\{\left(u_{t_{3}}\right)\right\} \mid \geq 1\right.$, so τ extends to L-color H_{2}, a contradiction.

Since $\left|L_{\psi^{\prime} \cup \sigma}\left(x_{m_{2}}\right)\right| \geq 2$, it follows from 1) that there is a $c \in L_{\psi \cup \sigma}\left(x_{m_{2}}\right)$ with $\left|\mathcal{Z}_{H_{2}, L}\left(\psi^{\prime}\left(u_{t_{2}}\right), c, \bullet\right)\right|<2$. Thus, by 2) of Proposition 1.4.4, $\psi^{\prime}\left(u_{t_{1}}\right), c \in L\left(u_{t_{1}+1}\right)$. This proves 2).

Now let $r^{\downarrow}, \psi_{0}, \psi_{1}$ be as in Claim 5.2.5.
Subclaim 5.2.25. $m_{2}=3$ and r^{\downarrow} is not the stem of a 4-bouquet.
Proof: If at least one of these does not hold, then, since $L\left(x_{m_{2}}\right) \backslash\left\{r^{\downarrow}, \sigma\left(x_{m_{2}+1}\right)\right\} \mid \geq 3$, there is a $\psi \in \operatorname{Skip}\left(H_{1}\right)$ using r^{\downarrow} on $u_{t_{1}}$ and a $\psi^{\prime} \in \Phi_{L_{\phi}}\left(\psi,\left\{x_{2}, \cdots, x_{m_{2}-1}\right\}\right)$ such that $\left|L_{\psi^{\prime} \cup \sigma}\left(x_{m_{2}}\right)\right| \geq 3$. Thus, by Claim 5.2.22, there are two colors c_{0}, c_{1} such that $\left|\mathcal{Z}_{H_{2}, L}\left(r^{\downarrow}, c_{i}, \bullet\right)\right|>1$ for each $i=0,1$, contradicting 1) of Subclaim 5.2.24.

Since r^{\downarrow} is not the stem of a 4-bouquet, It follows from Claim 5.2.6 that there is a $q^{\downarrow} \in L\left(u_{t_{1}}\right) \backslash\left\{r^{\downarrow}\right\}$ which is also the stem of a 2-bouquet. By Claim 5.2.16, $u_{t_{1}} x_{m_{2}}$ is not an L-shield for H_{2}. Recalling that $m_{2}=3$, we now we have the following.

Subclaim 5.2.26. For each $\psi \in \operatorname{Skip}\left(H_{1}\right)$, we have $\left|L_{\psi \cup \sigma}\left(x_{3}\right)\right|=2$.
 the pair $\left(G\left[V\left(\Pi_{p}^{0} \cup \Pi_{p}^{1}\right)\right], \psi \cup \sigma\right)$ is not a (C, p)-wedge, so the inertness condition is violated. Since $\psi \cup \sigma$ restricts to an element of $\operatorname{Skip}\left(H_{1}\right)$, there is an extension of $\phi \cup \psi \cup \sigma$ to an L-coloring τ of $\operatorname{dom}(\phi \cup \psi \cup \sigma) \cup V\left(H_{1}\right) \cup\left\{z, u_{t_{3}}\right\}$ such that τ does not extend to L-color the triangle H_{2}. Since σ does not use any color in $L\left(u_{t_{2}}\right)$, we have
$\left|L_{\tau}\left(u_{t_{2}}\right)\right| \geq 1$, so τ extends to L-color $u_{t_{2}}$ as well, and, since $\left|L_{\tau}\left(x_{m_{2}}\right)\right| \geq 2$ there is a color left over for $x_{m_{2}}$, contradicting our assumption.

Since $\left|L\left(x_{2}\right)\right| \geq 5$ and $\left|L_{\sigma}\left(x_{3}\right)\right| \geq 4$, we now fix a $c \in L\left(x_{2}\right)$ with $\left|L_{\sigma}\left(x_{3}\right) \backslash\{c\}\right| \geq 4$. Since $u_{t_{1}} x_{m_{2}}$ is not an L-shield for H_{2}, it follows from Lemma 5.1.8 that H_{2} is a triangle.

By Subclaim 5.2.26, we have $\left\{r^{\downarrow}, q^{\downarrow}\right\} \subseteq L_{\sigma}\left(x_{3}\right)$, so $c \notin\left\{r^{\downarrow}, q^{\downarrow}\right\}$. Again by Subclaim 5.2.26, no element of Skip $\left(H_{1}\right)$ uses c on x_{2}. The trick now is to leave $u_{t_{1}}$ uncolored. Let σ^{*} be an extension of σ to $V\left(Q_{\text {right }}-x_{3}\right) \cup\left\{x_{2}\right\}$ obtained by coloring x_{2} with c.

Since x_{3} is uncolored, we have $\left|L_{\phi \cup \sigma^{*}}(z)\right| \geq 3$, and since x_{1} is uncolored, we have $\left|L_{\phi \cup \sigma^{*}}\left(x^{*}\right)\right| \geq 2$. By assumption, $\left(G\left[V\left(\Pi_{p}^{0} \cup \Pi_{p}^{1}\right)\right], \phi \cup \sigma^{*}\right)$ is not a (C, p)-wedge, so the inertness condition is violated. That is, there is an extension of $\phi \cup \sigma^{*}$ to an L-coloring τ of $\operatorname{dom}\left(\phi \cup \sigma^{*}\right) \cup\left\{x^{*}, z, u_{t_{3}}\right\}$ such that τ does not extend to L-color $H_{1} \cup H_{2}$.

If τ extends to an L-coloring τ^{*} of $\operatorname{dom}(\tau) \cup V\left(H_{1}\right)$, then, by our choice of c, we have $\left|L_{\tau^{*}}\left(x_{m_{2}}\right)\right| \geq 2$. Since H_{2} is a triangle and σ uses no color of $L\left(u_{t_{2}}\right)$, we have $\left|L_{\tau^{*}}\left(u_{t_{2}}\right)\right| \geq 1$ and thus τ^{*} extends to the edge $x_{m_{2}} u_{t_{2}}$, contradicting our assumption. We conclude that τ does not extend to an L-coloring of $\operatorname{dom}(\tau) \cup V\left(H_{1}\right)$. Since $\left|L_{\tau}\left(x_{1}\right)\right| \geq 1$, it follows from Theorem 0.2.3 that $c \in L\left(u_{t_{1}}\right)$ and there is a $d \in L_{\tau}\left(x_{1}\right)$ such that $z_{L_{\phi}^{p}}(\phi(p), d, \bullet)=\{c\}$. By Claim 5.2.3, there is an element of $\operatorname{Skip}\left(H_{1}\right)$ using c, d on the respective vertices $u_{t_{1}}, x_{1}$, and since $\left|L\left(x_{3}\right) \backslash\left\{c, \sigma\left(x_{4}\right)\right\}\right| \geq 4$, this contradicts Subclaim 5.2.26. This completes the proof of Claim 5.2.23.

Now we have the following.

Claim 5.2.27. There does not exist a pair of elements of $\mathcal{M}_{L}\left(H_{3}, u_{t_{2}} x_{m_{3}}\right)$ using the same color on $x_{m_{3}}$.

Proof: Suppose toward a contradiction that there is a $q \in L\left(x_{m_{3}}\right)$ and a pair of elements $\sigma_{0}, \sigma_{1} \in \mathcal{M}_{L}\left(H_{3}, u_{t_{2}} x_{m_{3}}\right)$ such that $\sigma_{0}\left(x_{m_{3}}\right)=\sigma_{1}\left(x_{m_{3}}\right)=q$. Let $S_{\text {right }}:=\left\{\sigma_{0}\left(u_{t_{2}}\right), \sigma_{1}\left(u_{t_{2}}\right)\right\}$. Since each vertex of $Q_{\text {right }}$ has an L_{ϕ}-list of size at least five, we fix an L_{ϕ}-coloring σ of $Q_{\text {right }}-x_{m_{2}}$ such that $\sigma\left(x_{m_{3}}\right)=q$ and σ uses no color of $S_{\text {right }}$. Possibly $m_{3}=m_{2}+1$ and σ is just a coloring of a lone vertex.

We also fix a $c \in L\left(x_{m_{2}-1}\right)$ such that $L\left(x_{m_{2}}\right) \backslash\left\{c, \sigma\left(x_{m_{2}+1}\right)\right\} \mid \geq 4$. Since Π_{p}^{1} is an induced subgraph of G, there is an extension of σ to an L_{ϕ}-coloring σ^{*} of $V\left(\Pi_{p}^{1}\right) \backslash\left\{x_{1}, x_{m_{2}}\right\}$ such that $\sigma^{*}\left(x_{m_{2}-1}\right)=c$ and no vertex of $\left\{x_{2}, \cdots, x_{m_{2}-2}\right\}$ is colored by a color of $L\left(u_{t_{1}}\right)$. Possibly $c \in L\left(u_{t_{1}}\right)$. Let f be the lone color of $L\left(u_{t_{2}}\right) \backslash S_{\text {right }}$,

Subclaim 5.2.28. H_{2} is not a triangle and $S_{\text {right }} \subseteq L\left(u_{t_{1}+1}\right)$.
Proof: Consider the following cases:
Case 1: There does not exist a exist a $d \in L_{\phi \cup \sigma^{*}}\left(x_{1}\right)$ such that ${\underset{z}{H_{1}, L^{p}}}(\phi(p), d, \bullet)=\{c\}$
By assumption, the pair $\left(G\left[V\left(\Pi_{p}^{0} \cup \Pi_{p}^{1}\right), \sigma^{*}\right)\right.$ is not a (C, p)-wedge. Since $x_{1}, x_{m_{2}}$ are uncolored, $\left|L_{\phi \cup \sigma^{*}}\left(x^{*}\right)\right| \geq$ 2 and $\left|L_{\phi \cup \sigma^{*}}(z)\right| \geq 3$, so the inertness condition is violated. Thus, there is an extension of $\phi \cup \sigma^{*}$ to an L coloring τ of $\operatorname{dom}\left(\phi \cup \sigma^{*}\right) \cup\left\{x^{*}, z, u_{t_{3}}\right\}$ such that τ does not extend to L-coloring $\left(V H_{1} \cup H_{2} \cup H_{3}\right)$. Since $\left|L_{\tau}\left(x_{1}\right)\right| \geq 1$, there is a $d \in L_{\tau}\left(x_{1}\right)$, and, by assumption, $\mathcal{Z}_{H_{1}, L_{\phi}^{p}}(\phi(p), d, \bullet) \neq\{c\}$, so τ extends to an L coloring τ^{\prime} of $\operatorname{dom}(\tau) \cup V\left(H_{1}\right)$, since c is the only color used by τ on a vertex of $Q_{\text {left }}$ which possibly lies in $u_{t_{1}}$.

By our choice of c, we have $\left|L_{\tau^{\prime}}\left(x_{m_{2}}\right)\right| \geq 2$. Since τ^{\prime} does not extend to L-color $H_{2} \cup H_{3}$, it follows that, for each $d \in L_{\tau^{\prime}}\left(x_{m_{2}}\right)$, we have $\mathcal{Z}\left(\tau^{\prime}, d, \bullet\right) \cap S_{\text {right }}=\varnothing$. By Observation 1.4.2, we thus have $L_{\tau^{\prime}}\left(x_{m_{2}}\right)=S_{\text {right }}$.

Recalling that f is the lone color of $L\left(u_{t_{2}}\right) \backslash S_{\text {right }}$, we have $\mathcal{Z}_{H_{2}, L}\left(\tau^{\prime}\left(u_{t_{1}}\right), s, \bullet\right)=\{f\}$ for each $s \in S_{\text {right }}$, so H_{2} is not a triangle, and, by Proposition 1.4.4, $S_{\text {right }} \subseteq L\left(u_{t_{1}+1}\right)$, as desired.

Case 2: There exists a $d \in L_{\phi \cup \sigma^{*}}\left(x_{1}\right)$ such that ${\underset{H}{H_{1}, L_{\phi}^{p}}}(\phi(p), d, \bullet)=\{c\}$
By Claim 5.2.3, there is $\psi \in \operatorname{Skip}\left(H_{1}\right)$ which colors $x_{1}, u_{t_{1}}$ with with the respective colors d, c, and, since Π_{p}^{1} is an induced subgraph of $G, \sigma \cup \psi$ is a proper L_{ϕ}-coloring of its domain which extends to an L_{ϕ}-coloring σ^{\dagger} of $\operatorname{dom}(\phi \cup \sigma) \cup V\left(Q_{\text {left }} \backslash\left\{x_{1}, x_{m_{2}}\right\}\right)$.

By assumption, the pair $\left(G\left[V\left(\Pi_{p}^{0} \cup \Pi_{p}^{1}\right], \sigma^{\dagger}\right)\right.$ is not a (C, p)-wedge, and since $\left|L_{\phi \cup \sigma^{\dagger}}\left(x^{*}\right)\right| \geq 2$ and $x_{m_{2}}$ is uncolored, the inertness condition is violated, so there is an extension of $\phi \cup \sigma^{\dagger}$ to an L-coloring τ^{\dagger} of $\operatorname{dom}(\phi \cup$ $\left.\sigma^{\dagger}\right) \cup\left\{z, u_{t_{3}}\right\}$ such that τ^{\dagger} does not extend to L-color $H_{2} \cup H_{3}$. Since $u_{t_{1}}$ is colored with c, we have $\left|L_{\tau^{\dagger}}\left(x_{m_{2}}\right)\right| \geq$ 2. Since τ^{\dagger} does not extend to L-color $H_{2} \cup H_{3}$, we have $z_{H_{2}, L}\left(c, c^{\prime}, \bullet\right) \cap S_{\text {right }}=\varnothing$ for each $c^{\prime} \in L_{\tau^{\dagger}}\left(x_{m_{2}}\right)$, and thus, as above, it follows from Observation 1.4.4 that $L_{\tau^{\dagger}}\left(x_{m_{2}}\right)=S_{\text {right }}$, and, for each $s \in S_{\text {right }}, \mathcal{Z}_{H_{2}, L}(c, s, \bullet)=$ $\{f\}$. Thus, H_{2} is not a triangle, and, by Proposition 1.4.4, $S_{\text {right }} \subseteq L\left(u_{t_{1}+1}\right)$, as desired.

By Claim 5.2.8, there is an augmented 4-bouquet, since $m_{2}>2$. Thus, there is a $\psi^{*} \in \operatorname{Skip}{ }^{\text {aug }}\left(H_{1}\right)$ with $\psi^{*}\left(x_{m_{2}}\right) \notin$ $L\left(u_{t_{2}}\right)$. By Subclaim 5.2.28, H_{2} is not a triangle. Since $S_{\text {right }} \subseteq L\left(u_{t_{1}+1}\right)$, at least one of $\psi^{*}\left(x_{m_{2}}\right), \psi^{*}\left(u_{t_{1}}\right)$ does not lie in $L\left(u_{t_{1}+1}\right)$. Since $\psi^{*}\left(x_{m_{2}}\right) \notin L\left(u_{t_{2}}\right)$ and H_{2} is not a triangle, it follows from Proposition 1.4.4 that $z_{H_{2}, L}\left(\psi^{*}\left(u_{t_{1}}\right), \psi^{*}\left(x_{m_{2}}\right), \bullet\right)=L\left(u_{t_{2}}\right)$, contradicting Claim 5.2.9. This completes the proof of Claim 5.2.27.

By Claim 5.2.23, $u_{t_{2}} x_{m_{3}}$ is an L-shield for H_{2}, and, by Claim 5.2.27, there exists a pair of elements $\sigma_{0}, \sigma_{1} \in$ $\mathcal{M}_{L}\left(H_{3}, u_{t_{2}} x_{m_{3}}\right)$ and a pair of colors $a, b \in L\left(x_{m_{3}}\right)$ such that $\left\{\sigma_{0}\left(u_{t_{2}}\right), \sigma_{0}\left(x_{m_{3}}\right)\right\}=\left\{\sigma_{1}\left(u_{t_{2}}\right), \sigma_{1}\left(x_{m_{3}}\right)\right\}=\{a, b\}$. $\sigma_{0}\left(u_{t_{2}}\right)=a$ and $\sigma_{1}\left(u_{t_{2}}\right)=b$.

Claim 5.2.29. $Q_{\text {right }}$ is an edge.

Proof: Suppose not. Thus, we have $m_{3}>m_{2}+1$. By Claim 5.2.5, $\operatorname{Skip}\left(H_{1}\right) \neq \varnothing$ so we fix a $\psi \in \operatorname{Skip}\left(H_{1}\right)$ and an extension of ψ to an L_{ϕ}-coloring ψ^{\prime} of $\operatorname{dom}(\psi) \cup\left\{x_{2}, \cdots, x_{m_{2}-1}\right\}$. Let d_{0}, d_{1}, d_{2} be three colors of $L\left(x_{m_{2}-1}\right) \backslash\{a, b\}$. For each $i=0,1$ and $j=0,1,2$, there is an extension of σ_{i} to an L-coloring $\sigma_{i j}$ of $\left\{u_{t_{2}}\right\} \cup V\left(Q_{\text {right }}-x_{m_{2}}\right)$ using d_{j} on $x_{m_{2}+1}$. Consider the following cases:

Case 1: Either $\psi^{\prime}\left(u_{t_{1}}\right) \notin\{a, b\}$ or H_{2} is not a triangle
In this case, for each $i=0,1$ and $j=0,1,2$, the union $\psi^{\prime} \cup \sigma_{i j}$ is a proper L_{ϕ}-coloring of its domain. By assumption, for each such i, j, the pair $\left(G\left[V\left(\Pi_{p}^{0} \cup \Pi_{p}^{1}\right), \psi^{\prime} \cup \sigma_{i j}\right)\right.$ is not a (C, p)-wedge, so the inertness condition is violated and, since $\psi^{\prime} \in \operatorname{Skip}\left(H_{1}\right)$, there is an extension of $\phi \cup \psi^{\prime} \cup \sigma_{i j}$ to an L-coloring $\tau_{i j}$ of $\operatorname{dom}\left(\phi \cup \psi^{\prime} \cup \sigma_{i j}\right) \cup V\left(H_{1}\right) \cup\left\{z, u_{t_{3}}\right\}$ such that $\tau_{i j}$ does not extend to L-color $V\left(H_{2} \cup H_{3}\right)$. Thus, for each $i=0,1$ and $j=0,1,2$, we have $L_{\tau_{i j}}\left(x_{m_{2}}\right) \cap$ $z\left(\psi^{\prime}\left(u_{t_{1}}\right), \bullet, \sigma_{i}\left(u_{t_{2}}\right)\right)=\varnothing$.

Subclaim 5.2.30. For each $j=0,1,2, L_{\tau_{0 j}}\left(x_{m_{2}}\right) \cap L_{\tau_{1 j}}\left(x_{m_{2}}\right)=\varnothing$.
Proof: Let $j \in\{0,1,2\}$ and suppose there is a $d \in L_{\tau_{0 j}}\left(x_{m_{2}}\right) \cap L_{\tau_{1 j}}\left(x_{m_{2}}\right)$. Then $d \notin\{a, b\}$, and, by Observation 1.4.2, d either lies in $z_{H_{2}, L}\left(\psi^{\prime}\left(u_{t_{1}}, \bullet, a\right)\right.$ or $z_{H_{2}, L}\left(\psi^{\prime}\left(u_{t_{1}}\right), \bullet, b\right)$, which is false.

Now we not the following:
Subclaim 5.2.31. $\left\{d_{0}, d_{1}, d_{2}\right\} \nsubseteq L\left(x_{m_{2}}\right) \backslash\left\{\psi^{\prime}\left(u_{t_{1}}\right), \psi^{\prime}\left(x_{m_{2}}\right)\right\}$.
Proof: Suppose toward a contradiction that $\left\{d_{0}, d_{1}, d_{2}\right\} \nsubseteq L\left(x_{m_{2}}\right) \backslash\left\{\psi^{\prime}\left(u_{t_{1}}\right), \psi^{\prime}\left(x_{m_{2}}\right)\right\}$. Since $d_{0}, d_{1}, d_{2} \notin$ $\{a, b\}$, it follows that for each $i \in\{0,1\}$ and $j \in\{0,1,2\}$, we have $L_{\tau_{i j}}(x) \cap\left(\left\{d_{0}, d_{1}, d_{2}\right\} \backslash\left\{d_{j}\right\}\right) \mid \geq 1$.

Thus, suppose without loss of generality that $d_{1} \in L_{\tau_{00}}\left(x_{m_{2}}\right)$. By Subclaim 5.2.30, we have $d_{1} \notin L_{\tau_{10}}\left(x_{m_{2}}\right)$, so $d_{2} \in L_{\tau_{10}}\left(x_{m_{2}}\right)$. We then have $a \notin \mathcal{Z}_{H_{2}, L}\left(\psi^{\prime}\left(u_{t_{1}}\right), d_{1}, \bullet\right)$ and $b \notin z_{H_{2}, L}\left(\psi^{\prime}\left(u_{t_{1}}\right), d_{2}, \bullet\right)$. By assumption, $\psi^{\prime}\left(u_{t_{1}}\right) \neq a, b$, so H_{2} is not a triangle, and, by Proposition 1.4.4, we have $\{a, b\} \cup\left\{d_{1}, d_{2}\right\} \subseteq L\left(u_{t_{2}-1}\right)$, contradicting the fact that $\left|L\left(u_{t_{2}-1}\right)\right|=3$.

Applying Subclaim 5.2.31, suppose without loss of generality that $d_{0} \notin L\left(x_{m_{2}}\right) \backslash\left\{\psi^{\prime}\left(u_{t_{1}}\right), \psi^{\prime}\left(x_{m_{2}-1}\right)\right\}$. Since $d_{0} \notin\{a, b\}$ it follows that, for each $i=0,1$, we have $L_{\tau_{i 0}}\left(x_{m_{2}}\right) \neq \varnothing$. By Subclaim 5.2.30, there exist distinct colors c_{0}, c_{1} such that, for each $i=0,1, c_{i} \in L_{\tau_{i 0}}\left(x_{m_{2}}\right)$ and $\sigma_{i}\left(u_{t_{2}}\right) \notin Z\left(\psi^{\prime}\left(u_{t_{1}}\right), c_{i}, \bullet\right)$. Since $c_{0} \neq a$ and $c_{1} \neq b$, H_{2} is not a triangle, and, by Proposition 1.4.4, $\left\{c_{0}, c_{1}\right\} \cup\{a, b\} \subseteq L\left(u_{t_{2}-1}\right)$. Since $\left|L\left(u_{t_{2}-1}\right)\right|=3$, we have either $c_{0}=b$ or $c_{1}=a$, so suppose without loss of generality that $c_{0}=b$. Thus, we have $L_{\tau_{00}}\left(x_{m_{2}}\right)=\{b\}$ and $L\left(x_{m_{2}}\right)=\left\{\tau_{00}(z), \psi^{\prime}\left(u_{t_{1}}\right), \psi^{\prime}\left(x_{m_{2}}\right), b, d_{0}\right\}$, contradicting the fact that $d_{0} \notin L\left(x_{m_{2}}\right) \backslash\left\{\psi^{\prime}\left(u_{t_{1}}\right), \psi^{\prime}\left(x_{m_{2}-1}\right)\right\}$.

Case 2: H_{2} is a triangle and $\psi^{\prime}\left(u_{t_{1}}\right) \in\{a, b\}$
In this case, suppose without loss of generality that $\psi^{\prime}\left(u_{t_{1}}\right)=a$. Then, for each $j=0,1,2, \psi^{\prime} \cup \sigma_{1 j}$ is a proper L_{ϕ}-coloring of its domain. Since $\left|L\left(x_{m_{2}}\right) \backslash\left\{a, b, \psi^{\prime}\left(x_{m_{2}-1}\right)\right\}\right| \geq 2$, there is a $j \in\{0,1,2\}$ with $\mid L\left(x_{m_{2}}\right) \backslash$ $\left\{a, b, \psi^{\prime}\left(x_{m_{2}-1}\right), d_{j}\right\} \mid \geq 2$, say $j=0$. Since H_{2} is a triangle, $\left(G\left[V\left(\Pi_{p}^{0} \cup \Pi_{p}^{1}\right)\right], \psi^{\prime} \cup \sigma_{10}\right)$ satisfies the inertness condition and is thus a (C, p)-wedge, contradicting our assumption. This completes the proof of Claim 5.2.29.

Claim 5.2.32. For any $\psi \in \operatorname{Skip}\left(H_{1}\right)$ and any extension of ψ to an L_{ϕ}-coloring ψ^{\prime} of $\operatorname{dom}(\psi) \cup\left\{x_{2}, \cdots, x_{m_{2}-1}\right\}$, we have $\psi^{\prime}\left(u_{t_{1}}\right), \psi^{\prime}\left(x_{m_{2}-1}\right) \in L\left(x_{m_{2}}\right) \backslash\{a, b\}$. For each $i=0$, 1 , we have $\left|L_{\psi^{\prime} \cup \sigma_{i}^{\prime}}\left(x_{m_{2}+1}\right)\right| \geq 3$,

Proof: Suppose there is a $\psi \in \operatorname{Skip}\left(H_{1}\right)$ for which this does not hold and let ψ^{\prime} be an extension of ψ to an L_{ϕ}-coloring ψ^{\prime} of $\operatorname{dom}(\psi) \cup\left\{x_{2}, \cdots, x_{m_{2}-1}\right\}$ with $\left\{\psi^{\prime}\left(u_{t_{1}}\right), \psi^{\prime}\left(x_{m_{2}-1}\right)\right\} \nsubseteq L\left(x_{m_{2}}\right) \backslash\{a, b\}$. Consider the following cases:

Case 1: Either $\psi^{\prime}\left(u_{t_{1}}\right) \notin\{a, b\}$ or H_{2} is not a triangle
In this case, for each $i=0,1$, the union $\psi^{\prime} \cup \sigma_{i}$ is a proper L_{ϕ}-coloring of its domain. For each $i=0,1$, since $\left(G\left[V\left(\Pi_{p}^{0} \cup \Pi_{p}^{1}\right)\right], \psi^{\prime} \cup \sigma_{i}\right)$ is not a (C, p)-wedge, and $x_{m_{2}}$ is uncolored, the inertness condition is violated, and since $\psi^{\prime} \cup \sigma_{i}$ restricts to an element of $\operatorname{Skip}\left(H_{1}\right)$, there is an extension of $\phi \cup \psi^{\prime} \cup \sigma$ to an L-coloring τ_{i} of $\operatorname{dom}\left(\phi \cup \psi^{\prime} \cup\right.$ $\left.\sigma_{i}\right) \cup V\left(H_{1}\right) \cup\left\{z, u_{t_{3}}\right\}$ such that τ_{i} does not extend to L-color $V\left(H_{2} \cup H_{3}\right)$.

For each $i=0,1$, since $\left\{\psi^{\prime}\left(u_{t_{1}}\right), \psi^{\prime}\left(x_{m_{2}}\right)\right\} \nsubseteq L\left(x_{m_{2}}\right) \backslash\{a, b\}$, we have $\left|L_{\tau_{i}}\left(x_{m_{2}}\right)\right| \geq 1$. Since $\sigma_{i} \in \mathcal{M}_{L}\left(H_{3}, u_{t_{2}} x_{m_{3}}\right)$, it follows that, for each $d \in L_{\tau_{i}}\left(x_{m_{2}}\right)$, we have $\sigma_{i}\left(u_{t_{2}}\right) \notin \mathcal{z}_{H_{2}, L}\left(\psi^{\prime}\left(u_{t_{1}}, d, \bullet\right)\right.$. Since $a, b \notin L_{\tau_{0}}\left(x_{m_{2}}\right) \cup L_{\tau_{1}}\left(x_{m_{2}}\right)$, we have $L_{\tau_{0}}\left(x_{m_{2}}\right) \cap L_{\tau_{1}}\left(x_{m_{2}}\right)=\varnothing$. To see this, suppose there is a $d \in L_{\tau_{0}}\left(x_{m_{2}}\right) \cap L_{\tau_{1}}\left(x_{m_{2}}\right)$. By Observation 1.4.2, one of a, b lies in $\mathcal{Z}_{H_{2}, L}\left(\psi^{\prime}\left(u_{t_{1}}\right), d, \bullet\right)$, which is false. Thus, let c_{0}, c_{1} be distinct colors of $L\left(x_{m_{2}}\right) \backslash\{a, b\}$ with $c_{i} \in L_{\tau_{i}}\left(x_{m_{2}}\right)$ for each $i=0,1$. If H_{2} is a triangle, then, by assumption, we have $\psi^{\prime}\left(u_{t_{1}}\right) \notin\{a, b\}$, and, for each $i=0,1$, we have $\{a, b\} \subseteq \mathcal{Z}_{H_{2}, L}\left(\psi^{\prime}\left(u_{t_{1}}\right), c_{i}, \bullet\right)$, which is false. Thus, H_{2} is not a triangle. But then, by Proposition 1.4.4, we have $\{a, b\} \cup\left\{c_{0}, c_{1}\right\} \subseteq L\left(u_{t_{2}-1}\right)$, contradicting the fact that $\left|L\left(u_{t_{2}-1}\right)\right|=3$.

Case 2: $\psi^{\prime}\left(u_{t_{1}}\right) \in\{a, b\}$ and H_{2} is a triangle
In this case, suppose without loss of generality that $\psi^{\prime}\left(u_{t_{1}}\right)=a$. Then $\psi^{\prime} \cup \sigma_{1}$ is a proper L_{ϕ}-coloring of its domain. Since $\left(G\left[V\left(\Pi_{p}^{0} \cup \Pi_{p}^{1}\right)\right], \psi^{\prime} \cup \sigma_{1}\right)$ is not a (C, p)-wedge, there is an extension of $\phi \cup \psi^{\prime} \cup \sigma_{1}$ to an L-coloring τ of $\operatorname{dom}\left(\phi \cup \psi^{\prime} \cup \sigma_{1}\right) \cup V\left(H_{1}\right) \cup\left\{z, u_{t_{3}}\right\}$ which does not extend to L-color H_{2}. As H_{2} is a triangle, we have $L_{\tau}\left(x_{m_{2}}\right)=\varnothing$. Since $Q_{\text {right }}$ is an edge and $x_{m_{3}}, u_{t_{1}}$ are colored with the same color, we have $\left|L_{\tau}\left(x_{m_{2}}\right)\right| \geq 1$, a contradiction.

Now we let $r^{\downarrow}, \psi_{0}, \psi_{1}$ be as in Claim 5.2.5. It immediately follows from Claim 5.2.32 that $\left|L\left(x_{m_{2}}\right) \backslash\{a, b\}\right|=3$ and $r^{\downarrow} \in L\left(x_{m_{2}}\right) \backslash\{a, b\}$.

Claim 5.2.33. $m_{2}=3$ and r^{\downarrow} is not the stem of a 4-bouquet.
Proof: If either r^{\downarrow} is the stem of a 4-bouquet or $m_{2}>3$, then, since $\left|L\left(x_{m_{2}}\right) \backslash\left\{a, b, r^{\downarrow}\right\}\right|=2$, there is a $\psi \in \operatorname{Skip}\left(H_{1}\right)$ and a $\psi^{\prime} \in \Phi_{L_{\phi}}\left(\psi,\left\{x_{2}, \cdots, x_{m_{2}-1}\right)\right.$ such that $\psi^{\prime}\left(x_{m_{2}-1}\right) \notin L\left(x_{m_{2}}\right) \backslash\{a, b\}$, contradicting Claim 5.2.32.
Since r^{\downarrow} is not the stem of a 4-bouquet, it follows from Claim 5.2.6 that there is $q^{\downarrow} \in L\left(u_{t_{1}}\right) \backslash\left\{r^{\downarrow}\right\}$ which is the stem of a 2-bouquet. By Claim 5.2.16, $u_{t_{1}} x_{m_{2}}$ is not an L-shield and thus, By Lemma 5.1.8 H_{2} is a triangle and $\left|L\left(u_{t_{1}}\right) \cap L\left(u_{t_{2}}\right)\right| \geq 2$. By Claim 5.2.32, we have $r^{\downarrow}, q^{\downarrow} \notin\{a, b\}$, so there is a $d \in\left\{r^{\downarrow}, q^{\downarrow}\right\}$ with $d \notin L\left(u_{t_{2}}\right)$, and, by Claim 5.2.8, since $m_{2}>2$, there is an augmented 4-bouquet using d on $u_{t_{1}}$. Thus, there is a $\psi^{*} \in \operatorname{Skip}{ }^{\text {aug }}\left(H_{1}\right)$ such that $\psi, \psi \notin L\left(u_{t_{2}}\right)$, and since H_{2} is a triangle we have $z_{H_{2}, L}\left(\psi^{*}\left(u_{t_{1}}\right), \psi^{*}\left(x_{m_{2}}\right), \bullet\right)=L\left(u_{t_{2}}\right)$, contradicting Claim 5.2.9. This completes the proof of Lemma 5.2.1.

5.3 Completing the Proof of Theorem 5.1.6

With Lemma 5.2.1 in hand, in order to finish the proof of Theorem 5.1.6, we deal with the case where there is no 3-chord of C which separates p from each ring of $\mathcal{C} \backslash\{C\}$. Note that, if no such 3-chord of C exists, then condition 4) of Definition 5.1.12 is automatically satisfied, so any pair which fails to satisfy the conditions of Definition 5.1.12 violates one of 1)-3). Section 5.3 consists of the following lone result.

Lemma 5.3.1. If there does not exist a 3-chord of C which separates p from an element of $\mathcal{C} \backslash\{C\}$, then there exists a (C, p)-wedge.

Proof. Suppose toward a contradiction that there does not exist a (C, p)-wedge. We now have the following.
Claim 5.3.2. If $Q_{\text {left }}$ is an edge then at most one of H_{1}, H_{2} is a triangle.

Proof: Suppose toward a contradiction that each of H_{1}, H_{2} is a triangle. Thus, we have $t_{1}=1$ and $t_{2}=2$. Since $Q_{\text {left }}$ is an edge, we have $m_{2}=2$. Furthermore, since H_{2} is a triangle and G is short-separation-free, we have $x_{1} x_{3} \notin E(G)$, so Π_{p}^{1} is an induced subgraph of G. Let $S_{\text {left }}$ be a set of two colors in $L\left(u_{1}\right) \backslash\left\{\phi\left(p_{1}\right)\right\}$. Since $\left|L_{\phi}\left(x_{1}\right)\right| \geq 3$, we also fix a $c^{*} \in L_{\phi}\left(x_{1}\right) \backslash S_{\text {left }}$.

Subclaim 5.3.3. If $\mathcal{M}_{L}\left(H_{3}, u_{2} x_{m_{3}}\right) \neq \varnothing$, then $Q_{\text {right }}$ is an edge and there exists a $z \in V\left(\Pi_{p}^{2}\right)$ adjacent to all three of x_{1}, x_{2}, x_{3}.

Proof: Let $\sigma \in \mathcal{M}_{L}\left(H_{3}, u_{2} x_{m_{3}}\right)$ and suppose toward a contradiction that here does not exist a $z \in V\left(\Pi_{p}^{2}\right)$ adjacent to all three of x_{1}, x_{2}, x_{3}. Now we simply choose a color $s \in S_{\text {left }} \backslash\left\{\sigma\left(u_{2}\right)\right\}$. Since $\left|L_{\phi}\left(x_{2}\right)\right| \geq 5$, there is a color left in $L_{\phi}\left(x_{2}\right) \backslash\left\{s, c^{*}, \sigma\left(u_{2}\right), \sigma\left(x_{m_{3}}\right)\right.$. Thus, since Π_{P}^{1} is an induced subgraph of G, there is an extension of σ to an L_{ϕ}-coloring τ of $V\left(\Pi_{p}^{0}\right) \cup\left\{u_{1}, u_{2}\right\}$. Since there is no $z \in V\left(\Pi_{p}^{2}\right)$ adjacent to all three of x_{1}, x_{2}, x_{3}, the pair $\left(G\left[V\left(\Pi_{p}^{0} \cup \Pi_{p}^{1}\right)\right], \tau\right)$ is a (C, p)-wedge, contradicting our assumption.
Now suppose toward a contradiction that $Q_{\text {right }}$ is not an edge. Thus, $m_{2}<m_{3}-1$ and $\left|L_{\phi \cup \sigma}\left(x_{m_{2}+1}\right)\right| \geq 3$ (possibly $m_{2}=m_{3}-2$). Since $\left|L_{\phi}(x)\right| \geq 3$ and Π_{p}^{1} is an induced subgraph of G, there is an extension of σ to an L_{ϕ}-coloring σ^{*} of $V\left(Q_{\text {right }}-x_{2}\right) \cup\left\{u_{1}, u_{2}\right\}$ such that $\left|L_{\phi \cup \sigma^{*}}\left(x_{2}\right)\right| \geq 2$, so $\left\{x_{2}\right\}$ is $\left(L, \phi \cup \sigma^{*}\right)$-inert in G. Since $N\left(x_{2}\right)=\left\{x_{1}, x_{3}, u_{1}, u_{2}, z\right\}$, the pair $\left(G\left[V\left(\Pi_{p}^{0} \cup \Pi_{p}^{1}\right)\right], \sigma^{*}\right)$ is a (C, p)-wedge, contradicting our assumption.

Now we have the following.

Subclaim 5.3.4. $u_{2} x_{m_{3}}$ is not an L-shield for H_{3}.
Proof: Suppose toward a contradiction that $u_{2} x_{m_{3}}$ is an L-shield for H_{3}. By Subclaim 5.3.3, $Q_{\text {right }}$ is an edge and there exists a $z \in V\left(\Pi_{p}^{2}\right)$ adjacent to all three of x_{1}, x_{2}, x_{3}, so $N\left(x_{2}\right)=\left\{x_{1}, x_{3}, u_{1}, u_{2}, z\right\}$. Since each of $Q_{\text {left }}$ and $Q_{\text {right }}$ is an edge $x_{m_{3}}=x_{3}$ and $\Pi_{p}^{1}=x_{1} x_{2} x_{3}$. Consider the following cases:

Case 1: There exists a $\sigma \in \mathcal{M}_{L}\left(H_{3}, u_{2} x_{3}\right)$ such that either $\sigma\left(u_{2}\right) \notin S_{\text {left }}$ or $\left\{\sigma\left(u_{2}\right), \sigma\left(x_{3}\right)\right\} \cap L_{\phi}\left(x_{1}\right) \neq \varnothing$
In this case, there is a $\sigma \in \mathcal{M}_{L}\left(H_{3}, u_{2} x_{3}\right)$ and a $c \in L_{\phi}\left(x_{1}\right)$ such that either $\sigma\left(u_{2}\right) \notin S_{\text {left }}$ or $c \in\left\{\sigma\left(u_{2}\right), \sigma\left(x_{3}\right)\right\}$. Since each vertex of $Q_{\text {right }}$ has an L_{ϕ}-list of size at least five, there is an extension of σ to an L_{ϕ}-coloring τ of $V\left(Q_{\text {right }}-x_{2}\right) \cup\left\{x_{1}, u_{2}\right\}$ such that $\tau\left(x_{1}\right)=c$. By our choice of σ, the set $\left\{u_{1}, x_{2}\right\}$ is $(L, \phi \cup \tau)$-inert in G, so the pair $\left(G\left[V\left(\Pi_{p}^{0} \cup \Pi_{p}^{1}\right)\right], \tau\right)$ is a (C, p)-wedge, contradicting our assumption.

Case 2: For each $\sigma \in \mathcal{M}_{L}\left(H_{3}, u_{2} x_{3}\right), \sigma\left(u_{2}\right) \in S_{\text {left }}$ and $\left\{\sigma\left(u_{2}\right), \sigma\left(x_{3}\right)\right\} \cap L_{\phi}\left(x_{1}\right)=\varnothing$
In this case, since $u_{2} x_{3}$ is an L-shield for H_{3}, there are distinct $\psi_{1}, \psi_{2} \in \mathcal{M}_{L}\left(H_{3}, u_{2} x_{3}\right)$ such that $S_{\text {left }}=$ $\left\{\psi_{1}\left(u_{2}\right), \psi_{2}\left(u_{2}\right)\right\}$ and $S_{\text {left }} \cap L_{\phi}\left(x_{1}\right)=\varnothing$. As $\left|L_{\phi}\left(x_{1}\right)\right| \geq 3$, there is a $c \in L_{\phi}\left(x_{1}\right) \backslash\left\{\psi_{2}\left(u_{2}\right)\right\}$ such that $\mid L_{\phi}\left(x_{2}\right) \backslash$ $\left\{\psi_{1}\left(x_{3}\right), \psi_{1}\left(u_{2}\right), \psi_{2}\left(u_{2}\right), c\right\} \mid \geq 2$. Thus, there is an extension of ψ_{1} to an L_{ϕ}-coloring ψ_{1}^{*} of $\left\{x_{1}, x_{3}, u_{1}, u_{2}\right\}$ with $L_{\phi \cup \psi_{1}^{*}}\left(x_{2}\right) \mid \geq 2$, so $\left(G\left[V\left(\Pi_{p}^{0} \cup \Pi_{p}^{1}\right)\right], \psi_{1}^{*}\right)$ is a (C, p)-wedge, contradicting our assumption.

Since $u_{2} x_{m_{3}}$ is not an L-shield for H_{3}, it follows from Lemma 5.1.8 that H_{3} is a triangle and $\left|L\left(u_{2}\right) \cap L\left(u_{3}\right)\right| \geq 2$, so all three of H_{1}, H_{2}, H_{3} are triangles and $\Pi_{p}^{0}=u_{1} u_{2}$. Since $\left|L\left(u_{2}\right) \cap L\left(u_{3}\right)\right| \geq 2$, there is an $r \in L\left(x_{m_{3}}\right) \backslash\left(L\left(u_{2}\right) \cup\right.$ $L\left(u_{3}\right)$). Since each vertex of $Q_{\text {right }}$ has an L-list of size at least five, there is an L-coloring $\sigma_{\text {right }}$ of $Q_{\text {right }}$ (which is also an L_{ϕ}-coloring of $Q_{\text {right }}$) in which $\sigma_{\text {right }}\left(x_{m_{3}}\right)=r$ and every vertex of $Q_{\text {right }}$ is colored with a color not in $L\left(u_{3}\right)$.

Subclaim 5.3.5. There exists a $z \in V\left(\Pi_{p}^{2}\right)$ adjacent to all three of x_{1}, x_{2}, x_{3}
Proof: Suppose not. Since Π_{p}^{1} is an induced subpath of G, we have $\left|L_{\phi \cup \sigma_{\text {right }}}\left(x_{1}\right)\right| \geq 2$ and $\left|L_{\phi \cup \sigma_{\text {right }}}\left(u_{1}\right)\right| \geq 1$, so $\sigma_{\text {right }}$ extends to an L_{ϕ}-coloring τ of $V\left(\Pi_{p}^{0}\right) \cup\left\{u_{1}\right\}$. By our choice of r, we have $\left|L_{\phi \cup \tau}\left(u_{3}\right)\right|=3$, and by our construction of τ, we have $\left|L_{\phi \cup \tau}\left(u_{2}\right)\right| \geq 2$, so $\left\{u_{2}\right\}$ is $(L, \phi \cup \tau)$-inert in G. Since no vertex of Π_{p}^{2} is adjacent to x_{1}, x_{2}, x_{3}, the pair $\left(G\left[V\left(\Pi_{p}^{0} \cup \Pi_{p}^{1}\right)\right], \tau\right)$ is a (C, p)-wedge, contradicting our assumption.

Now we have enough to finish the proof of Claim 5.3.2. Let $\sigma_{\text {right }}^{\prime}$ be the restriction of $\sigma_{\text {right }}$ to $x_{3} \cdots x_{m_{3}}$ and let z be the lone vertex of Π_{p}^{2} adjacent to x_{1}, x_{2}, x_{3}. As above, since Π_{p}^{1} is an induced subgraph of G, $\sigma_{\text {right }}^{\prime}$ extends to an L_{ϕ}-coloring τ of $V\left(Q_{\text {right }}-x_{3}\right) \cup\left\{x_{1}, u_{1}\right\}$. By our construction of τ, we have $\left|L_{\phi \cup \tau}\left(u_{2}\right)\right| \geq 2$. Since $N\left(x_{2}\right)=\left\{x_{1}, x_{3}, u_{1}, u_{2}, z\right\}$, the set $\left\{x_{2}, u_{2}\right\}$ is $(L, \phi \cup \tau)$-inert in G, so the pair $\left(G\left[V\left(\Pi_{p}^{0} \cup \Pi_{p}^{1}\right)\right], \tau\right)$ is a (C, p) wedge, contradicting our assumption. This completes the proof of Claim 5.3.2.

Claim 5.3.6. $u_{t_{1}} x_{m_{2}}$ is an L-shield for H_{2}.
Proof: Suppose toward a contradiction that $u_{t_{1}} x_{m_{2}}$ is an L-shield for H_{2}. By Lemma 5.1.8, H_{2} is a triangle, so $t_{2}=t_{1}+1$. Let J be the subgraph of G induced by $V\left(H_{1} \cup H_{2} \cup Q_{\text {left }}\right) \backslash\left\{p, u_{t_{2}}\right\}$.

Subclaim 5.3.7. $L\left(u_{t_{1}}\right) \neq L\left(u_{t_{2}}\right)$.
Proof: Suppose that $L\left(u_{t_{1}}\right)=L\left(u_{t_{2}}\right)$. Since each of $u_{t_{1}}, u_{t_{2}}$ has an L-list of size three, there are two colors $r, s \in L\left(x_{m_{2}}\right) \backslash\left(L\left(u_{t_{1}}\right) \cup L\left(u_{t_{2}}\right)\right)$. By Proposition 1.4.5, there is a $c \in L_{\phi}\left(x_{1}\right)$ such that $z_{H_{1}, L_{\phi}^{p}}(\phi(p), c, \bullet) \mid \geq 2$. Let $S_{\text {left }}$ be a set of two colors in $Z_{H_{1}, L_{\phi}^{p}}(\phi(p), c, \bullet)$. Since each vertex of $x_{2} \cdots x_{m_{2}}$ has an L_{ϕ}-list of size at least five and $Q_{\text {left }}$ is an induced subpath of G, there is an L_{ϕ}-coloring $\sigma_{\text {left }}$ of $x_{1} \cdots x_{m_{2}}$ such that $\sigma_{\text {left }}\left(x_{1}\right)=c$, $\sigma_{\text {right }}\left(x_{m_{2}}\right) \in\{r, s\}$, and no internal vertex of $x_{1} \cdots x_{m_{2}}$ is colored with a color of $S_{\text {left }}$. Since at least one of r, s
is distinct from c, this is true even if $Q_{\text {left }}$ is an edge. Now consider the pair $\left(J, \sigma_{\text {left }}\right)$. By assumption, this is not a (C, p)-wedge. By our choice of $\sigma_{\text {left }}\left(x_{m_{2}}\right)$, we have $\left|L_{\phi \cup \sigma_{\text {left }}}\left(u_{t_{2}}\right)\right|=3$, so the inertness condition is violated. That is, there is an extension of $\phi \cup \sigma_{\text {left }}$ of an L-coloring τ of $\operatorname{dom}\left(\phi \cup \sigma_{\text {left }}\right) \cup\left\{u_{t_{2}}\right\}$ such that τ does not extend to L-color the path $u_{1} \cdots u_{t_{1}}$. Yet since $c \notin S_{\text {left }}$ and $\sigma_{\text {left }}\left(x_{m_{2}}\right) \notin L\left(u_{t_{1}}\right)$, it follows that $L_{\tau}\left(u_{t_{1}}\right)$ contains a color of $S_{\text {left }}$, so τ extends to L-color the path $u_{1} \cdots u_{t_{1}}$, a contradiction.

Since $L\left(u_{t_{1}}\right) \neq L\left(u_{t_{2}}\right)$, we have $\left|L\left(u_{t_{1}}\right) \cap L\left(u_{t_{2}}\right)\right|=2$ by 2) of Lemma 5.1.8. Thus, there is an $r \in L\left(x_{m_{2}}\right) \backslash$ $\left(L\left(u_{t_{1}}\right) \cup L\left(u_{t_{2}}\right)\right.$.

Subclaim 5.3.8. All three of the following hold.

1) $Q_{\text {left }}$ is an edge; $A N D$
2) $r \in L_{\phi}\left(x_{1}\right)$; AND
3) For each $s \in L_{\phi}\left(x_{1}\right) \backslash\{r\},\left|\mathcal{Z}_{H_{1}, L_{\phi}^{p}}(\phi(p), s, \bullet)\right|=1$.

Proof: Suppose at least one of these does not hold. Since $\left|L_{\phi}\left(x_{1}\right)\right| \geq 3$, it follows from Proposition 1.4.5 that there is a $c \in L_{\phi}$ such that $\left|\mathcal{Z}_{H_{1}, L_{\phi}^{p}}(\phi(p), c, \bullet)\right| \geq 2$ and such that either $c \neq r$ or $x_{1} x_{m_{2}} \notin E(G)$. Let $S_{\text {left }}$ be a set of two colors in $z_{H_{1}, L_{\phi}^{p}}(\phi(p), c, \bullet)$. By Claim 5.1.15, there is an L_{ϕ}-coloring $\sigma_{\text {left }}$ of $Q_{\text {left }}$ using c, r on the respective vertices $x_{1}, x_{m_{2}}$, where each internal vertex of $Q_{\text {left }}$ is colored by a color not in $S_{\text {left. }}$. By assumption, $\left(J, \sigma_{\text {left }}\right)$ is not a (C, p)-wedge. Since $\left|L_{\phi \cup \sigma_{\text {left }}}\left(u_{t_{2}}\right)\right|=3$, the inertness condition is violated, so there is an extension of $\phi \cup \sigma_{\text {left }}$ to an L-coloring τ of $\operatorname{dom}\left(\phi \cup \sigma_{\text {left }}\right) \cup\left\{u_{t_{2}}\right\}$ which does not extend to L-color $u_{1} \cdots u_{t_{1}}$. Since $r \notin L\left(u_{t_{1}}\right)$, we have $S_{\text {left }} \cap L_{\tau}\left(u_{t_{1}}\right) \neq \varnothing$, so τ extends to L-color $u_{1} \cdots u_{t_{1}}$, a contradiction.

Since $\mid L\left(u_{t_{1}}\right) \cap L\left(u_{t_{2}} \mid=2\right.$, let d be the lone color of $L\left(u_{t_{1}}\right) \backslash L\left(u_{t_{2}}\right)$.
Subclaim 5.3.9. For each $s \in L_{\phi}\left(x_{1}\right) \backslash\{r\}, d \notin \mathcal{Z}_{H_{1}, L_{\phi}^{p}}(\phi(p), s, \bullet)$.
Proof: Suppose there is an $s \in L_{\phi}\left(x_{1}\right) \backslash\{r\}$ such that $d \in \mathcal{Z}_{H_{1}, L_{\phi}^{p}}(\phi(p), s, \bullet)$ and let ψ be the L_{ϕ}-coloring of $x_{1} x_{2}$ where $\psi\left(x_{1}\right)=s$ and $\psi\left(x_{2}\right)=r$. Then $\left|L_{\phi \cup \psi}\left(u_{t_{2}}\right)\right|=3$, and since $d \notin\{r, s\}$ and $d \notin L\left(u_{t_{2}}\right)$, the pair (J, ψ) is a (C, p)-wedge, contradicting our assumption.

Now let $s_{1}, s_{2} \in L_{\phi}\left(x_{1}\right) \backslash\{r\}$. By Subclaim 5.3.9, we have $d \notin z_{H_{1}, L_{\phi}^{p}}\left(\phi(p), s_{j}, \bullet\right)$ for each $j=1,2$. By Claim 5.3.2, H_{1} is not a triangle, as $Q_{\text {left }}$ is an edge and H_{2} is a triangle. Thus, by Proposition 1.4.4, we have $L\left(u_{t_{1}-1}\right)=$ $\left\{s_{1}, s_{2}, d\right\}$, so $r \notin L\left(u_{t_{1}-1}\right)$. Since $r \notin L\left(u_{t_{1}}\right)$, it also follows from Proposition 1.4.4 that $z_{H_{1}, L_{\phi}^{p}}(\phi(p), r, \bullet)=$ $L\left(u_{t_{1}}\right)$. Since $\left|L\left(x_{2}\right)\right| \geq 5$ and $m_{2}=2$, let $r^{*} \in L\left(x_{2}\right) \backslash\left(L\left(u_{t_{2}}\right) \cup\left\{r^{*}\right\}\right)$ and let ψ^{*} be the L_{ϕ}-coloring of the edge $x_{1} x_{2}$ using r, r^{*} on the respective vertices x_{1}, x_{2}. Since $z_{H_{1}, L_{\phi}^{p}}(\phi(p), r, \bullet)=L\left(u_{t_{1}}\right)$, the pair $\left(J, \psi^{*}\right)$ is a (C, p)-wedge, contradicting our assumption. This completes the proof of Claim 5.3.6.

Claim 5.3.10. Both of the following hold.

1) H_{1} is not a triangle, and $Q_{\text {left }}$ is an edge (i.e $m_{2}=2$);
2) There exist two elements ψ_{1}, ψ_{2} of $\mathcal{M}_{L}\left(H_{2}, u_{t_{1}} x_{m_{2}}\right)$ and a color $r \in L\left(x_{m_{2}}\right)$ such that the following hold:
a) $\psi_{1}\left(x_{m_{2}}\right)=\psi_{2}\left(x_{m_{2}}\right)=r$ and $L\left(u_{t_{1}}\right)=L_{\phi}\left(x_{1}\right)=\left\{r, \psi_{1}\left(u_{t_{1}}\right), \psi_{2}\left(u_{t_{1}}\right)\right\}$; AND
b) $\mathcal{Z}_{H_{1}, L_{\phi}^{p}}\left(\phi\left(p_{1}\right), \psi_{1}\left(u_{t_{1}}, \bullet\right)=\mathcal{Z}\left(\phi\left(p_{1}\right), \psi_{2}\left(u_{t_{1}}, \bullet\right)=\{r\}\right.\right.$ and $\left\{\psi_{1}\left(u_{t_{1}}\right), \psi_{2}\left(u_{t_{1}}\right)\right\} \subseteq Z_{H_{1}, L_{\phi}^{p}}(\phi(p), r, \bullet)$.

Proof: We first set J to be the subgraph of G induced by $V\left(H_{1} \cup H_{2} \cup Q_{\text {left }}\right) \backslash\left\{p, u_{t_{2}}\right\}$. By Claim 5.3.6, $u_{t_{1}} x_{m_{2}}$ is an L-shield for H_{2}. Thus, there exist two elements of $\mathcal{M}_{L}\left(H_{2}, u_{t_{1}} x_{m_{2}}\right)$ which use different colors on $u_{t_{1}}$. Suppose
toward a contradiction that H_{1} is a triangle and let $\psi \in \mathcal{M}_{L}\left(H_{2}, u_{t_{1}} x_{m_{2}}\right)$ with $\psi\left(u_{t_{1}}\right) \neq \phi\left(p_{1}\right)$. By Theorem 0.2.3, ψ extends to an L_{ϕ}-coloring ψ^{*} of $V\left(Q_{\text {left }}\right) \cup\left\{u_{t_{1}}\right)$, and, by our choice of ψ, the pair $\left(J, \psi^{*}\right)$ is a (C, p)-wedge, contradicting our assumption. Thus, H_{1} is not a triangle.

Now we show that there are two elements of $\mathcal{M}_{L}\left(H_{2}, u_{t_{1}} x_{m_{2}}\right)$ using the same color on $x_{m_{2}}$. Suppose not. Since $u_{t_{1}} x_{m_{2}}$ is an L-shield for H_{2}, there exist two elements ψ_{1}, ψ_{2} of $\mathcal{M}_{L}\left(H_{2}, u_{t_{1}} x_{m_{2}}\right)$ and two colors $a, b \in L\left(u_{t_{1}}\right) \cap$ $L\left(x_{m_{2}}\right)$, where $\psi_{1}\left(u_{t_{1}}\right)=\psi_{2}\left(x_{m_{2}}\right)=a$ and $\psi_{1}\left(x_{m_{2}}\right)=\psi_{2}\left(u_{t_{2}}\right)=b$. AS $\left|L_{\phi}(x)\right| \geq 3$, there is an $s \in L_{\phi}(x) \backslash\{a, b\}$. By Observation 1.4.2, at least one of a, b lies in $\mathcal{Z}_{H_{1}, L_{\phi}^{p}}(\phi(p), s, \bullet)$, so suppose without loss of generality that $a \in$ $z_{H_{1}, L_{\phi}^{p}}(\phi(p), s, \bullet)$. Since $s \notin\{a, b\}$, there is an extension of ψ_{1} to an L_{ϕ}-coloring ψ^{*} of $\left\{x_{1}, x_{m_{2}}, u_{t_{1}}\right\}$ using s on x_{1}. Since $s \notin\{a, b\}$, this is true even if $Q_{\text {left }}$ is an edge, so $\left(J, \psi^{*}\right)$ is a (C, p)-wedge, contradicting our assumption.

Thus, there exist two elements ψ_{1}, ψ_{2} of $\mathcal{M}_{L}\left(H_{1},\right)$ and an $r \in L_{\phi}\left(x_{m_{2}}\right)$ with $\psi_{1}\left(x_{m_{2}}\right)=\psi_{2}\left(x_{m_{2}}\right)=r$ and $\psi_{1}\left(u_{t_{1}}\right) \neq \psi_{2}\left(x_{m_{2}}\right)$. If there exists an $i \in\{1,2\}$ such that either $\mathcal{Z}_{H_{1}, L_{\phi}^{p}}\left(\phi(p), \bullet, \psi_{i}\left(u_{t_{1}}\right)\right) \nsubseteq\{r\}$ or $Q_{\text {left }}$ has length greater than one, then there is an extension of ψ_{i} to an L_{ϕ}-coloring ψ_{i}^{*} of $V\left(Q_{\text {left }}\right) \cup\left\{u_{t_{1}}\right\}$ such that $\psi_{i}^{*}\left(x_{1}\right) \in$ $\mathcal{Z}_{H_{1}, L_{\phi}^{p}}\left(\phi(p), \bullet, \psi_{i}\left(u_{t_{1}}\right)\right)$. But then the pair $\left(J, \psi_{i}^{*}\right)$ is a (C, p)-wedge, contradicting our assumption. Thus, $m_{2}=2$ and, for each $j=1,2$, we have $\mathcal{Z}_{H_{1}, L_{\phi}^{p}}\left(\phi(p), \bullet, \psi_{j}\left(u_{t_{1}}\right)\right) \subseteq\{r\}$.

For each $s \in L_{\phi}(x) \backslash\{r\}$, since $\mathcal{Z}_{H_{1}, L_{\phi}^{p}}(\phi(p), s, \bullet) \neq \varnothing$ by Theorem 0.2.3, we have $\psi_{1}\left(u_{t_{1}}\right), \psi_{2}\left(u_{t_{1}}\right) \notin \mathcal{Z}_{H_{1}, L_{\phi}^{p}}(\phi(p), s, \bullet)$. Thus, there is a lone color $c \in L\left(u_{t_{1}}\right)$ such that $L\left(u_{t_{1}}\right)=\left\{c, \psi_{1}\left(u_{t_{1}}\right), \psi_{2}\left(u_{t_{1}}\right)\right\}$ and, for each $s \in L_{\phi}\left(x_{1}\right) \backslash\{r\}$, we have $\mathcal{Z}_{H_{1}, L_{\phi}^{p}}(\phi(p), s, \bullet)=\{c\}$. By Proposition 1.4.5, we have $\left|L_{\phi}\left(x_{1}\right) \backslash\{r\}\right|=2$ and $L_{\phi}\left(x_{1}\right) \backslash\{r\}=$ $\left\{\psi_{1}\left(u_{t_{1}}\right), \psi_{2}\left(u_{t_{1}}\right)\right\}$. Thus, $r \in L_{\phi}\left(x_{1}\right)$, and, again by Proposition 1.4.5, we have $\left\{\psi_{1}\left(u_{t_{1}}\right), \psi_{2}\left(u_{t_{1}}\right)\right\} \subseteq \mathcal{Z}_{H_{1}, L_{\phi}^{p}}(\phi(p), r, \bullet)$.

To finish, we just need to show that $r=c$. Suppose toward a contradiction that $r \neq c$. By Proposition 5.1.16, we have $\mathcal{Z}_{H_{1}, L_{\phi}^{p}}(\phi(p), r, \bullet) \neq L\left(u_{t_{1}}\right)$. Since $\left\{\psi_{1}\left(u_{t_{1}}\right), \psi_{2}\left(u_{t_{1}}\right)\right\} \subseteq \mathcal{Z}_{H_{1}, L_{\phi}^{p}}(\phi(p), r, \bullet)$, we have $c \notin \mathcal{Z}_{H_{1}, L_{\phi}^{p}}(\phi(p), r, \bullet)$. Since H_{1} is not a triangle and $\mathcal{Z}_{H_{1}, L_{\phi}^{p}}(\phi(p), s, \bullet)=\{c\}$ for each $s \in\left\{\psi_{1}\left(u_{t_{1}}\right), \psi_{2}\left(u_{t_{1}}\right)\right\}$, it follows from Proposition 1.4.4 that $\left.\psi_{1}\left(u_{t_{1}}\right), \psi_{2}\left(u_{t_{1}}\right)\right\} \subseteq L\left(u_{t_{1}-1}\right)$. Since $c \notin \mathcal{Z}_{H_{1}, L_{\phi}^{p}}(\phi(p), r, \bullet)$ and $c \neq r$, we have $c \in L\left(u_{t_{1}-1}\right)$. Since $\left|L\left(u_{t-1}\right)\right|=3$, we have $L\left(u_{t-1}\right)=\left\{c, \psi_{1}\left(u_{t_{1}}\right), \psi_{2}\left(u_{t_{1}}\right)\right\}$, so $r \notin L\left(u_{t_{1}-1}\right)$. Thus, by Proposition 1.4.4, we have $c \in \mathcal{Z}_{H_{1}, L_{\phi}^{p}}(\phi(p), r, \bullet)$, a contradiction. This completes the proof of Claim 5.3.10.

Claim 5.3.11. If $u_{t_{2}} x_{m_{3}}$ is an L-shield for H_{3}, then there exists an $r^{*} \in L\left(x_{m_{3}}\right)$ and two distinct elements ψ_{1}, ψ_{2} of $\mathcal{M}_{L}\left(H_{3}, u_{t_{2}} x_{m_{2}}\right)$ using r^{*} on $x_{m_{3}}$.

Proof: Suppose toward a contradiction that there is no such color in $L\left(x_{m_{3}}\right)$. By definition, there exist $a, b \in L\left(u_{t_{2}}\right) \cap$ $L\left(x_{m_{3}}\right)$ and two distinct elements of $\mathcal{M}_{L}\left(H_{3}, u_{t_{2}} x_{m_{3}}\right)$ such that $\psi_{1}\left(u_{t_{2}}\right)=\psi_{2}\left(x_{m_{3}}\right)=a$ and $\psi_{1}\left(x_{m_{3}}\right)=\psi_{2}\left(u_{t_{2}}\right)=$ b. Applying Claim 5.3.10, we have $m_{2}=2$, and we fix a color $r \in L\left(x_{2}\right) \cap L_{\phi}\left(x_{1}\right) \cap L\left(u_{t_{1}}\right)$ such that there are two distinct elements of $\mathcal{M}_{L}\left(H_{2}, u_{t_{1}} x_{2}\right)$ using r on x_{2}. Since $\{a, b\} \subseteq L\left(u_{t_{2}}\right)$, we have $r \notin\{a, b\}$ by definition of $\mathcal{M}_{L}\left(H_{2}, u_{t_{1}} x_{2}\right)$. Again by Claim 5.3.10, there are $s_{0}, s_{1} \in L_{\phi}\left(x_{1}\right) \cap L\left(u_{t_{1}}\right)$ such that $\mathcal{Z}_{H_{1}, L}\left(\phi(p), s_{j}, \bullet\right)=\{r\}$ for each $j=0,1$. Since $\left|L\left(x_{2}\right)\right| \geq 5$, we fix two colors $f_{0}, f_{1} \in L\left(x_{2}\right) \backslash\{r, a, b\}$. By Observation 1.4.2, we have $z_{H_{2}, L}\left(r, f_{j}, \bullet\right) \cap\{a, b\} \neq \varnothing$ for each $j=0,1$.

Subclaim 5.3.12. There is an L_{ϕ}-coloring σ^{\dagger} of $V\left(\Pi_{p}^{1} \cup H_{1} \cup H_{2}\right)$ such that the restriction of σ^{\dagger} to $u_{t_{2}} x_{m_{3}}$ is one of ψ_{1}, ψ_{2}.

Proof: It suffices to show that there is an L_{ϕ}-coloring of $\left\{x_{1}, x_{2}, u_{t_{2}}, x_{m_{3}}\right\}$ using $\{a, b\}$ on $\left\{u_{t_{2}}, x_{m_{3}}\right\}$ and using one of $\left\{s_{0}, s_{1}\right\}$ on x_{1} and one of $\left\{f_{0}, f_{1}\right\}$ on x_{2}. Since $r, f_{0}, f_{1} \notin\{a, b\}$, the only nontrivial case is the case where $m_{3}=3$ and Π_{p}^{1} is not an induced subgraph of G. In that case, we have $x_{1} x_{3} \in E(G)$. Possibly $\left\{s_{0}, s_{1}\right\}=\{a, b\}$, but such a σ^{\dagger} exists in any case, since $\left\{f_{0}, f_{1}\right\} \cap\{a, b\}=\varnothing$ and $u_{t_{3}} \notin N\left(x_{1}\right)$.

Now we return to the proof of Claim 5.3.11. We note that there is a vertex of Π_{p}^{2} adjacent to x_{1}, x_{2}, x_{3}. To see this, suppose not. Let σ^{\dagger} be an L_{ϕ}-coloring of $V\left(\Pi_{p}^{1} \cup H_{1} \cup H_{2}\right)$ as in Subclaim 5.3.12. As no vertex of Π_{p}^{2} has more than two neighbors on Π_{p}^{1}, the pair $\left(G\left[V\left(\Pi_{p}^{0} \cup \Pi_{p}^{1}\right)\right], \sigma^{\dagger}\right)$ is a (C, p)-wedge, contradicting our assumption. Thus, let z be the lone vertex of Π_{p}^{2} adjacent to each of x_{1}, x_{2}, x_{3}. Since G is short-separation-free, we have $x_{1} x_{3} \notin E(G)$, so Π_{p}^{1} is an induced subgraph of G. The trick now is to leave $u_{t_{1}}, x_{2}$ uncolored. Let ψ_{a}^{\star} be an L_{ϕ}-coloring of $V\left(\Pi_{p}^{1}-x_{2}\right) \cup V\left(H_{1}\right) \cup\left\{u_{t_{2}}\right\}$, where $\psi^{\star}\left(x_{1}\right)=r, \psi^{\star}\left(u_{t_{2}}\right)=a, \psi^{\star}\left(x_{m_{3}}\right)=b$, and $\psi^{\star}\left(x_{3}\right) \notin\left\{f_{0}, f_{1}\right\}$. We define an L_{ϕ}-coloring ψ_{b}^{\star} of $V\left(\Pi_{p}^{1}-x_{2}\right) \cup V\left(H_{1}\right) \cup\left\{u_{t_{2}}\right\}$ analogously, with the roles of a, b interchanged.

By assumption, the pair $\left(G\left[V\left(\Pi_{p}^{0} \cup \Pi_{p}^{1}\right)\right], \psi_{a}^{\star}\right)$ is not a (C, p)-wedge, and since x_{2} is uncolored, the inertness conditions is violated. Since the restriction of ψ_{a}^{\star} to the edge $u_{t_{2}} x_{m_{3}}$ is an element of $\mathcal{M}_{L}\left(H_{3}, u_{t_{2}} x_{m_{3}}\right)$, it follows that there is an extension of $\phi \cup \psi_{a}^{\star}$ to an L-coloring τ_{a} of $\operatorname{dom}\left(\phi \cup \psi_{a}^{\star}\right) \cup V\left(H_{3}\right) \cup\{z\}$ which does not extend to L-color $H_{2} \backslash\left\{u_{t_{1}}, u_{t_{2}}\right\}$. Likewise, there is an extension of $\phi \cup \psi_{b}^{\star}$ to an L-coloring τ_{b} of $\operatorname{dom}\left(\phi \cup \psi_{a}^{\star}\right) \cup V\left(H_{3}\right) \cup\{z\}$ such that τ_{b} does not extend to L-color $H_{2} \backslash\left\{u_{t_{1}}, u_{t_{2}}\right\}$.

Subclaim 5.3.13. $L_{\tau_{a}}(z) \subseteq\left\{s_{0}, s_{1}\right\}$, and $L_{\tau_{b}}(z) \subseteq\left\{s_{0}, s_{1}\right\}$.
Proof: Suppose not, and suppose without loss of generality that there is a $c \in L_{\tau}(z) \backslash\left\{s_{0}, s_{1}\right\}$. By Observation 1.4.2, we have $\mathcal{Z}_{H_{2}, L}(\bullet, c, a) \cap\left\{s_{0}, s_{1}\right\} \neq \varnothing$, and since $\left\{s_{0}, s_{1}\right\}=\mathcal{Z}_{H_{1}, L_{\phi}^{p}}(\phi(p), r, \bullet), \tau_{a}$ extends to L-color H_{2}, contradicting our assumption.

Since $u_{t_{1}}$ is not colored by τ_{a}, we have $\left|L_{\tau_{a}}(z)\right| \geq 1$, so, by Subclaim 5.3.13, suppose without loss of generality that $s_{0} \in L_{\tau_{a}}(z)$. Since $\left\{s_{0}, s_{1}\right\}=z_{H_{1}, L_{\phi}^{p}}(\phi(p), r, \bullet)$ and τ_{a} does not extend to L-color H_{2}, we have $\mathcal{z}_{H_{2}, L}\left(\bullet, s_{0}, a\right)=$ $\{r\}$. By Observation 1.4.2, since $s_{1} \notin \mathcal{Z}_{H_{2}, L}\left(\bullet, s_{0}, a\right)$, we have $b \in \mathcal{Z}\left(s_{1}, s_{0}, \bullet\right)$. As τ_{b} does not extend to L-color H, we have $s_{0} \notin L_{\tau_{b}}(z)$. Since $\left|L_{\tau_{b}}(z)\right| \geq 1$, it follows from Subclaim 5.3.13 that $s_{1} \in L_{\tau_{b}}(z)$, so $\mathcal{Z}_{H_{2}, L}\left(\bullet, s_{0}, a\right)=$ $\mathcal{z}_{H_{2}, L}\left(\bullet, s_{1}, b\right)=\{r\}$, contradicting 2) of Proposition 1.4.7. This completes the proof of Claim 5.3.11.

Claim 5.3.14. If $u_{t_{2}} x_{m_{3}}$ is an L-shield for H_{3}, then there exists $a z \in V\left(\Pi_{p}^{2}\right)$ adjacent to each of $x_{m_{2}-1}, x_{m_{2}}, x_{m_{2}+1}$.
Proof: Suppose toward a contradiction that no such $z \in V\left(\Pi_{p}^{2}\right)$ exists. Applying Claim 5.3.10, we first fix a color $c \in L_{\phi}\left(x_{1}\right)$ such that $\left|Z_{H_{1}, L_{\phi}^{p}}(\phi(p), c, \bullet)\right| \geq 2$. Let $S_{\text {left }}$ be a set of two colors in $z_{H_{1}, L_{\phi}^{p}}(\phi(p), c, \bullet)$. Since $u_{t_{2}} x_{m_{3}}$ is an L-shield for H_{3}, it follows from Claim 5.3.11 that exist an $r \in L\left(x_{m_{3}}\right) \backslash L\left(u_{t_{3}}\right)$ and two distinct elements of ψ_{1}, ψ_{2} of $\mathcal{M}_{L}\left(H_{3}, u_{t_{2}} x_{m_{2}}\right)$ which use r on $x_{m_{3}}$ and different colors on $u_{t_{2}}$. and let $S_{\text {right }}:=\left\{\psi_{1}\left(u_{t_{2}}\right), \psi_{2}\left(u_{t_{1}}\right)\right\}$.

Subclaim 5.3.15. All of the following hold.

1) $x_{m_{2}-1} x_{m_{2}+1} \in E(G)$; AND
2) $m_{2}=2=m_{3}-1$ (i.e Π_{p}^{1} has length two); AND
3) $c=r$.

Proof: Suppose that at least one of these does not hold. Since $\left|L\left(x_{m_{2}}\right)\right| \geq 5$, we fix an $f \in L\left(x_{m_{2}}\right) \backslash\left(\{c, r\} \cup S_{\text {left }}\right)$. Suppose now that at at least one of conditions 1)-3) above does not hold. Since Π_{p}^{1} has no chords in G, except possibly $x_{m_{2}-1} x_{m_{2}+1}$, and each internal vertex of Π_{p}^{1} has an L_{ϕ}-list of size at least five, there is an L_{ϕ}-coloring σ of $V\left(\Pi_{p}^{1}\right)$ in which $x_{1}, x_{m_{2}}, x_{m_{3}}$ are colored with respective colors c, f, r, and furthermore, each internal vertex of $Q_{\text {left }}$ is colored with a color not in $S_{\text {left }}$, and each internal vertex of $Q_{\text {right }}$ is colored with a color not in $S_{\text {right }}$.

Consider the pair $\left(G\left[V\left(\Pi_{p}^{0} \cup \Pi_{p}^{1}\right)\right], \sigma\right)$. By assumption, this pair is not a (C, p)-wedge. By the assumption of the subclaim, there is no vertex of Π_{p}^{2} adjacent to more than two vertices of Π_{p}^{1}, so the only condition which is violated is the inertness condition. It follows that there is an extension of $\phi \cup \sigma$ to an L-coloring τ of the path
$p_{1} x_{1} \Pi_{p}^{1} x_{m_{3}} u_{t_{3}}$ such that τ does not extend to $u_{1} \cdots u_{t_{3}-1}$. Since $\left|S_{\text {right }} \backslash\{f\}\right| \geq 1$, it follows from the definition of $S_{\text {right }}$ that τ extends to an L-coloring τ^{*} of $\operatorname{dom}(\tau) \cup V\left(H_{3}\right)$ using a color of $S_{\text {right }}$ on $u_{t_{2}}$. Since $f \notin S_{\text {left }}$, it follows from Observation 1.4.2 that the L-coloring $\left(f, \tau^{*}\left(u_{t_{2}}\right)\right)$ of $x_{m_{2}} u_{t_{2}}$ extends to an L-coloring of H_{2} using a color of $S_{\text {left }}$ on $u_{t_{1}}$, and thus τ^{*} extends to L-color $u_{1} \cdots u_{t_{3}-1}$, contradicting our choice of τ. We conclude that conditions 1)-3) above all hold, as desired.

Since $x_{m_{2}-1} x_{m_{2}+1} \in E(G)$ and G is short-separation-free, H_{2} is not a triangle. By Lemma 5.1.8, $u_{t_{2}} x_{m_{2}}$ is also an L-shield for H_{2}. Since $\left|L\left(u_{t_{2}}\right)\right|=3$, there is a $\sigma \in \mathcal{M}_{L}\left(H_{2}, u_{t_{2}} x_{m_{2}}\right)$ such that $\sigma\left(u_{t_{2}}\right) \in S_{\text {left. }}$. By Subclaim 5.3.15, we have $r \in L_{\phi}\left(x_{1}\right)$, since $c=r$, so it follows from Claim 5.3.10 that $r \in L\left(u_{t_{1}}\right)$. Since $\sigma \in \mathcal{M}_{L}\left(H_{2}, u_{t_{2}} x_{m_{2}}\right)$, we thus have $\sigma\left(x_{m_{2}}\right) \neq r$. Since $\left|L_{\phi}\left(x_{1}\right)\right| \geq 3$, let τ be an L_{ϕ}-coloring of $V\left(\Pi_{p}^{1}\right)$ in which x_{2} is colored with $\sigma\left(x_{2}\right), x_{3}$ is colored with r, and x_{1} is colored with a color of $L_{\phi}\left(x_{1}\right) \backslash\left\{r, \sigma\left(x_{2}\right)\right\}$. Since $\sigma\left(x_{m_{2}}\right) \neq r, \tau$ is a proper L_{ϕ}-coloring of its domain. Since $\sigma\left(u_{t_{2}}\right) \in S_{\text {left }}$, any extension of $\tau \cup \phi$ to an L-coloring of $\operatorname{dom}(\tau \cup \phi) \cup\left\{u_{t_{3}}\right\}$ also extends to L-color the path $u_{t_{1}} \cdots u_{t_{3}-1}$, so the pair $\left(G\left[V\left(\Pi_{p}^{0} \cup \Pi_{p}^{1}\right)\right], \tau\right)$ is a (C, p)-wedge, contradicting our assumption.

Claim 5.3.16. $u_{t_{3}} x_{m_{2}}$ is not an L-shield for H_{3}. In particular, H_{3} is a triangle and $\left|L\left(u_{t_{2}}\right) \cap L\left(u_{t_{3}}\right)\right| \geq 2$.

Proof: Suppose that $u_{t_{3}} x_{m_{2}}$ is an L-shield for H_{3}. By Claim 5.3.14, there is a $z \in V\left(\Pi_{p}^{2}\right)$ adjacent to each of $x_{m_{2}-1}, x_{m_{2}}, x_{m_{2}+1}$, so $N\left(x_{m_{2}}\right)=\left\{z, x_{m_{2}-1}, x_{m_{2}+1}\right\} \cup\left\{u_{t_{1}}, \cdots, u_{t_{2}}\right\}$ and Π_{p}^{1} is an induced subgraph of G. By Claim 5.3.11, there exists an $r \in L\left(x_{m_{3}}\right)$ and two distinct elements ψ_{1}, ψ_{2} of $\mathcal{M}_{L}\left(H_{3}, u_{t_{2}} x_{m_{2}}\right)$ using r on $x_{m_{3}}$. Let $T_{\text {right }}:=\left\{\psi_{1}\left(u_{t_{2}}\right), \psi_{2}\left(u_{t_{2}}\right)\right\}$. By Claim 5.1.15, since $r \notin T_{\text {right }}$, there is an L-coloring $\sigma_{\text {right }}$ of $x_{m_{2}+1} \cdots x_{m_{3}}$ such that $\sigma_{\text {right }}\left(x_{m_{3}}\right)=r$ and each vertex of $x_{m_{2}+1} \cdots x_{m_{3}}$ is colored by a color not lying in $T_{\text {right }}$. Let $r^{\prime}:=\sigma_{\text {right }}\left(x_{m_{2}+1}\right)$. Possibly $m_{2}+1=m_{3}$ and $r^{\prime}=r$. Since $\left|L_{\sigma_{\text {right }}}\left(x_{m_{2}}\right)\right| \geq 4$, there is an $S \subseteq L_{\sigma_{\text {right }}}\left(x_{m_{2}}\right) \backslash T_{\text {right }}$ with $|S|=2$.

By Claim 5.3.10, there exist distinct $c_{1}, c_{2} \in L_{\phi}\left(x_{1}\right)$ and an $r^{*} \in L\left(u_{t_{1}}\right)$ such that $\mathcal{Z}_{H_{1}, L_{\phi}^{p}}\left(\phi(p), c_{j}, \bullet\right)=\left\{r^{*}\right\}$ for each $j=1,2$. Thus, it immediately follows from Proposition 1.4.5 that there is a $c \in L_{\phi}\left(x_{1}\right)$ such that $\mathcal{Z}_{H_{1}, L_{\phi}^{p}}(\phi(p), c, \bullet) \nsubseteq S$.

Subclaim 5.3.17. $m_{2}=2$.
Proof: Suppose that $m_{2}>2$. As indicated above, there is a $c \in L_{\phi}\left(x_{1}\right)$ with $\mathcal{Z}_{H_{1}, L_{\phi}^{p}}(\phi(p), c, \bullet) \nsubseteq S$. Let $c^{*} \in$ $z_{H_{1}, L_{\phi}^{p}}(\phi(p), c, \bullet) \backslash S$. Since $m_{2}>2$, we have $L_{\phi}\left(x_{m_{2}-1}\right)=L\left(x_{m_{2}-1}\right)$, and since each vertex of $x_{2} \cdots x_{m_{2}-1}$ has an L_{ϕ}-list of size at least five, there is an L_{ϕ}-coloring $\sigma_{\text {left }}$ of $\left\{u_{t_{1}}\right\} \cup V\left(Q_{\text {left }}-x_{m_{2}}\right)$ such that $\sigma_{\text {left }}\left(x_{1}\right)=c$, $\sigma\left(u_{t_{1}}\right)=c^{*}$, and each vertex of $x_{2} \cdots x_{m_{2}-1}$ is colored with a color not lying in S. Since Π_{p}^{0} is an induced subgraph of G, $\sigma_{\text {left }} \cup \sigma_{\text {right }}$ is an induced subgraph of G. By assumption, $\left(G\left[V\left(\Pi_{p}^{0} \cup \Pi_{p}^{1}\right)\right], \sigma_{\text {left }} \cup \sigma_{\text {right }}\right)$ is not a (C, p)-wedge, so there exists an extension of $\phi \cup \sigma_{\text {left }} \cup \sigma_{\text {right }}$ to an L-coloring τ of $\operatorname{dom}\left(\phi \cup \sigma_{\text {left }} \cup \sigma_{\text {right }}\right) \cup\left\{z, u_{t_{3}}\right\}$ such that τ does not extend to L-color $\left\{x_{m_{2}}\right\} \cup\left\{u_{t_{1}+1} \cdots u_{t_{3}-1}\right\}$. Yet by our construction of $\sigma_{\text {left }}$, we have $L_{\tau}\left(x_{m_{2}}\right) \backslash S \neq \varnothing$, so it follows from Observation 1.4.2 that τ extends to an L-coloring of H_{2} using a color of $T_{\text {right }}$ on $u_{t_{2}}$. Thus, τ extends to L-color $\left\{x_{m_{2}}\right\} \cup\left\{u_{t_{1}+1} \cdots u_{t_{3}-1}\right\}$, contradicting our assumption.

For each $c \in L_{\phi}\left(x_{1}\right)$, let σ^{c} be the extension of $\sigma_{\text {right }}$ to an L_{ϕ}-coloring of $\left\{x_{1}\right\} \cup\left\{x_{m_{2}+1}, \cdots, x_{m_{3}}\right\}$ obtained by coloring x_{1} with c. Since Π_{p}^{1} is an induced subgraph of G, each of these is a proper L_{ϕ}-coloring of its domain. By assumption, for each $c \in L_{\phi}\left(x_{1}\right)$, the pair $\left(G\left[V\left(\Pi_{p}^{0} \cup \Pi_{p}^{1}\right)\right], \sigma^{c}\right)$ is not a (C, p)-wedge, so there is an extension of $\phi \cup \sigma^{c}$ to an L-coloring τ^{c} of $\operatorname{dom}\left(\phi \cup \sigma^{c}\right) \cup\left\{z, u_{t_{3}}\right\}$ which does not extend to L-color $\left\{x_{m_{2}}\right\} \cup V\left(\Pi_{p}^{0}\right)$.

Subclaim 5.3.18. For each $c \in L_{\phi}\left(x_{1}\right), L_{\tau^{c}}\left(x_{2}\right)=T_{\text {right }}$.
Proof: Suppose there is a contradiction that there is a $c \in L_{\phi}\left(x_{1}\right)$ with $L_{\tau^{c}}\left(x_{2}\right) \neq T_{\text {right }}$. Since $\left|L_{\tau^{c}}\left(x_{2}\right)\right| \geq 2$, there is a $d \in L_{t a u^{c}}\left(x_{2}\right) \backslash T_{\text {right }}$. By Theorem $0.2 .3, \mathcal{Z}_{L_{\phi}^{p}, H_{1}}\left(\phi\left(p_{1}\right), c, \bullet\right) \neq \varnothing$, so it follows from Observation
1.4.2 that τ^{c} extends to an L-coloring of $\operatorname{dom}\left(\tau^{c}\right) \cup V\left(H_{1} \cup H_{2}\right)$ using d on x_{2} a color of $T_{\text {right }}$ on $u_{t_{2}}$. By definition of $T_{\text {right }}$, it follows that τ^{c} extends to an L-coloring of Π_{p}^{0}, contradicting our assumption.

It follows from Subclaim 5.3.18 that $\left|L\left(x_{2}\right)\right|=5$ and $L_{\phi}\left(x_{1}\right) \cup\{r\}$ is a subset of $L_{\phi}\left(x_{2}\right) \backslash T_{\text {right }}$ of size four, but it also follows from Subclaim 5.3.18 that $\left|L_{\phi}\left(x_{2}\right) \backslash T_{\text {right }}\right|=3$, a contradiction.

Applying Claim 5.3.16, we fix a color $r^{*} \in L\left(x_{m_{3}}\right) \backslash\left(L\left(u_{t_{2}}\right) \cup L\left(u_{t_{3}}\right)\right)$. By Claim 5.3.10, $Q_{\text {left }}$ is an edge. Since $Q_{\text {right }}$ is an induced subpath of G and each vertex of $Q_{\text {right }}$ has an L_{ϕ}-list of size at least five, there is an L-coloring σ of $Q_{\text {right }}-x_{2}$ such that $\sigma\left(x_{m_{3}}\right)=r^{*}$ and each vertex of of $x_{3} \cdots x_{m_{3}}$ is colored with a color outside of $L\left(u_{t_{2}}\right)$. Applying Claim 5.3.10, we fix a color $r \in L_{\phi}\left(x_{1}\right) \cap L\left(x_{2}\right)$ such that the following hold.

1) There are two elements of $\mathcal{M}_{L}\left(H_{2}, u_{t_{1}} x_{m_{2}}\right)$ using r on $x_{m_{2}} ;$ AND
2) $\mathcal{Z}_{H_{1}, L_{\phi}^{p}}(\phi(p), r, \bullet)=L\left(u_{t_{1}}\right) \backslash\{r\}=L_{\phi}\left(x_{1}\right) \backslash\{r\}$.

Let $T_{\text {left }}:=\mathcal{Z}_{H_{1}, L_{\phi}^{p}}(\phi(p), r, \bullet)$. We now have the following:
Claim 5.3.19. There is a $z \in V\left(\Pi_{p}^{2}\right)$ adjacent to all three of $x_{m_{2}-1}, x_{m_{2}}, x_{m_{2}+1}$.

Proof: Suppose not. Consider the following cases:
Case 1: Either Π_{p}^{1} is induced or $\sigma\left(x_{3}\right) \neq r$.
In this case, since $L_{\phi}\left(x_{2}\right) \backslash\left(T_{\text {left }} \cup\left\{r, \sigma\left(x_{3}\right)\right\}\right) \mid \geq 1$, there is an extension of σ to an L_{ϕ}-coloring σ^{\prime} of $V\left(\Pi_{p}^{1}\right)$ with $\sigma^{\prime}\left(x_{1}\right)=r$ and $\sigma^{\prime}\left(x_{2}\right) \notin T_{\text {left }}$. By construction of σ^{\prime}, we have $\left|L_{\phi \cup \sigma^{\prime}}\left(u_{t_{3}}\right)\right|=3$. By assumption, the pair $\left(G\left[V\left(\Pi_{p}^{0} \cup \Pi_{p}^{1}\right)\right], \sigma^{\prime}\right)$ is not a (C, p)-wedge, so the inertness condition is violated, i.e there is an extension of $\phi \cup \sigma^{\prime}$ to an L-coloring τ of $\operatorname{dom}\left(\phi \cup \sigma^{\prime}\right) \cup\left\{u_{t_{3}}\right\}$ which τ does not extend to L-color the path Π_{p}^{0}. Since H_{3} is a triangle and $\left|L_{\phi \cup \sigma^{\prime}}\left(u_{t_{2}}\right)\right| \geq 2$, there is a color left in $L_{\tau}\left(u_{t_{2}}\right)$. Since $\sigma^{\prime}\left(x_{2}\right) \notin T_{\text {left }}$, it follows from Observation 1.4.2 that τ extends to L-color $u_{t_{1}} \cdots u_{t_{3}}$ using a color of $T_{\text {left }}$ on $u_{t_{1}}$, so τ extends to L-color the path Π_{p}^{0}, a contradiction.

Case 2: Π_{p}^{1} is not induced and $\sigma\left(x_{3}\right)=r$
In this case, $x_{1} x_{3}$ is the lone chord of of Π_{p}^{1} and $N\left(x_{2}\right)=\left\{x_{1}, x_{3}\right\} \cup\left\{u_{t_{1}}, \cdots, u_{t_{2}}\right\}$. Since $T_{\text {left }} \subseteq L_{\phi}\left(x_{1}\right) \backslash\{r\}$ and each vertex of $Q_{\text {right }}$ has an L_{ϕ}-list of size at least five, there is an extension of σ to an L_{ϕ}-coloring σ^{\prime} of $V\left(Q_{\text {right }}-\right.$ $\left.x_{2}\right) \cup V\left(H_{1}\right)$ which colors x_{1} with a color of $T_{\text {left }}$ and colors $u_{t_{1}}$ with r. By assumption, the pair $\left(G\left[V\left(\Pi_{p}^{0} \cup \Pi_{p}^{1}\right)\right], \sigma^{\prime}\right)$ is not a (C, p)-wedge, so the inertness condition is violated. That is, there exists an extension of σ^{\prime} to an L-coloring τ of $\operatorname{dom}\left(\phi \cup \sigma^{\prime}\right) \cup\left\{u_{t_{3}}\right\}$ such that τ does not extend to L-color $\left\{x_{2}\right\} \cup\left\{u_{t_{1}+1}, \cdots, u_{t_{3}-1}\right\}$. Now, since each of $u_{t_{1}}, x_{3}$ is colored with r, we have $\left|L_{\tau}\left(x_{m_{2}}\right)\right| \geq 3$. By our construction of σ^{\prime}, we have $\left|L_{\phi \cup \sigma^{\prime}}\left(u_{t_{2}}\right)\right|=3$, so $L_{\tau}\left(u_{t_{2}}\right) \mid \geq 2$, and there is a $d \in L_{\tau}\left(x_{m_{2}}\right)$ such that $\left|L_{\tau}\left(u_{t_{2}}\right) \backslash\{d\}\right| \geq 2$. Thus, applying Observation 1.4.2 to the edge $u_{t_{1}} x_{m_{2}}$, together with the fact that H_{3} is a triangle, τ extends to L-color $\left\{x_{2}\right\} \cup\left\{u_{t_{1}+1}, \cdots, u_{t_{3}-1}\right\}$, a contradiction.

Applying Claim 5.3.19, since $m_{2}=2$, let z be the lone vertex of Π_{p}^{2} adjacent to each of x_{1}, x_{2}, x_{3}. Since G is short-separation-free, we have $x_{1} x_{3} \notin E(G)$, so Π_{p}^{1} is an induced subgraph of G. Let $T_{\text {left }}=\left\{s_{0}, s_{1}\right\}$.

Claim 5.3.20. The following hold.

1) $T_{\text {left }} \subseteq L\left(x_{2}\right) ;$ AND
2) $\sigma\left(x_{3}\right) \in L\left(x_{m_{2}}\right) \backslash\left(\{r\} \cup T_{\text {left }}\right)$; AND
3) There exists a $d \in L\left(u_{t_{2}}\right)$ such that $L\left(u_{t_{2}}\right)=T_{\text {left }} \cup\{d\}$ and, for each $j=0,1, \mathcal{Z}_{H_{2}, L}\left(s_{j}, s_{1-j}, \bullet\right)=\{d\}$.

Proof: As Π_{p}^{1} is an induced subgraph of G, σ extends to an L_{ϕ}-coloring σ^{\dagger} of $V\left(\Pi_{p}^{1}-x_{2}\right)$ with $\sigma^{\dagger}\left(x_{1}\right)=r$. By assumption, $\left(G\left[V\left(\Pi_{p}^{0} \cup P i_{p}^{1}\right)\right], \sigma^{\dagger}\right)$ is not a (C, p)-wedge. Since x_{2} is uncolored, the inertness condition is violated and there is an extension of $\phi \cup \sigma^{\dagger}$ to an L-coloring τ of $\operatorname{dom}\left(\phi \cup \sigma^{\dagger}\right) \cup\left\{z, u_{t_{3}}\right\}$ which does not extend to L-color $\left\{x_{2}\right\} \cup V\left(\Pi_{p}^{0}\right) . \operatorname{Sin} T_{\text {left }}=\mathcal{Z}_{L_{\phi}^{p}, H_{1}}(\phi(p), r, \bullet)$, there is no L_{τ}-coloring of H_{2} using one of $\left\{s_{0}, s_{1}\right\}$ on $u_{t_{1}}$. By our construction of σ, we have $\left|L_{\tau}\left(u_{t_{2}}\right)\right| \geq 2$. Since $\left|L_{\tau}\left(x_{2}\right)\right| \geq 2$, and there is no L_{τ}-coloring of H_{2} using a color of $T_{\text {left }}$ on $u_{t_{1}}$, it follows from Observation 1.4.2 that $L_{\tau}\left(x_{2}\right)=L_{\tau}\left(u_{t_{2}}\right)=T_{\text {left }}$. Furthermore, for each $j=0,1$, the lone color of $z_{H_{2}, L}\left(s_{j}, s_{1-j}, \bullet\right)$ is $\tau\left(u_{t_{3}}\right)$, so each of 1)-3) hold.

Applying Claim 5.3.20, let $L\left(u_{t_{2}}\right)=\left\{s_{0}, s_{1}, d\right\}$ for some color d. Recall that r has been chosen so that there is an element of $\mathcal{M}_{L}\left(H_{2}, u_{t_{1}} x_{2}\right)$ using r on x_{2}, so, by definition, $r \notin L\left(u_{t_{2}}\right)$ and $r \neq d$. Ssince $\mathcal{Z}_{H_{2}, L}\left(s_{j}, s_{1-j}, \bullet\right)=\{d\}$ for each $j=0,1$, it follows from Proposition 1.4.4 that $\left\{s_{0}, s_{1}\right\} \subseteq L\left(u_{k}\right)$ for each $k=t_{1}+1, \cdots, t_{2}-1$.

Claim 5.3.21. For each $j=0,1,\left|\mathcal{Z}_{H_{2}, L}\left(r, s_{j}, \bullet\right)\right|=1$.
Proof: Suppose there is a $j \in\{0,1\}$ for which this does not hold, say $j=1$ without loss of generality. Recall that $\mathcal{Z}_{H_{1}, L_{\phi}^{p}}\left(\phi(p), s_{0}, \bullet\right)=\{r\}$. Since Π_{p}^{1} is an induced subgraph of G, σ extends to an L_{ϕ}-coloring σ^{\star} of $V\left(H_{1}\right) \cup$ $V\left(Q_{\text {right }}-x_{2}\right)$ using s_{0}, r on the respective vertices $x_{1}, u_{t_{1}}$. By assumption, $\left(G\left[V\left(\Pi_{p}^{0} \cup \Pi_{p}^{1}\right), \sigma^{\star}\right)\right.$ is not a (C, p)-wedge. Since x_{2} is uncolored and $\left|L_{\phi \cup \sigma^{\star}}\left(u_{t_{3}}\right)\right|=3$, the inertness condition is violated, so there is an extension of $\phi \cup \sigma^{\star}$ to an L-coloring τ of $\operatorname{dom}\left(\phi \cup \sigma^{\star}\right) \cup\left\{z, u_{t_{3}}\right\}$ which does not extend to L-color $V\left(H_{2} \backslash\left\{u_{t_{1}}\right\}\right)$. Since $\left|L_{\tau}\left(x_{2}\right)\right| \geq 1$, let $f \in L_{\tau}\left(x_{2}\right)$. We then have $\mathcal{Z}_{H_{2}, L}(r, f, \bullet) \cap L_{\tau}\left(u_{t_{2}}\right)=\varnothing$. By our construction of $\sigma,\left|L_{\phi \cup \sigma^{\star}}\left(u_{t_{2}}\right)\right|=3$, so $\left|L_{\tau}\left(u_{t_{2}}\right)\right| \geq 2$. By assumption, $\mathcal{Z}_{H_{2}, L}\left(r, s_{1}, \bullet\right) \mid>1$, so $z_{H_{2}, L}\left(r, s_{1}, \bullet\right) \cap L_{\tau}\left(u_{t_{2}}\right) \neq \varnothing$ and $f \neq s_{1}$. Since $\sigma^{\star}\left(x_{1}\right)=$ s_{0}, we have $f \in L\left(x_{m_{2}}\right) \backslash\left\{s_{0}, s_{1}, r\right\}$. Since $\left|\mathcal{Z}_{H_{2}, L}(r, f, \bullet)\right|=1$, we have $f=d$ by Proposition 1.4.4. If H_{2} is a triangle, then $s_{0}, s_{1} \in \mathcal{Z}_{H_{2}, L}(r, f, \bullet)$, which is false, so H_{2} is not a triangle. But then, again by Proposition 1.4.4, we have $r, d \in L\left(u_{t_{1}+1}\right)$. Since $\left|L\left(u_{t_{1}+1}\right)\right|=3$ and $\left\{s_{0}, s_{1}\right\} \subseteq L\left(u_{t_{1}+1}\right)$, we have a contradiction.
For each $k=u_{t_{1}}, \cdots, u_{t_{2}-1}$, let H_{2}^{k} be the broken wheel with principal path $u_{k} x_{2} u_{t_{2}}$, where $H_{2}^{k}-x_{2}=u_{k} \cdots u_{t_{2}}$.

Claim 5.3.22. For each $k=t_{1}, \cdots, t_{2}-1$, the following hold.

1) $L\left(u_{k}\right)=\left\{r, s_{0}, s_{1}\right\}$; AND
2) For each $j=0,1$ and $f \in L\left(u_{k}\right) \backslash\left\{s_{1-j}\right\}$, we have $\left|z_{H_{2}^{k}, L}\left(f, s_{1-j}, \bullet\right)\right|=1$.

Proof: We show this by induction on k. If $k=u_{t_{1}}$ then $H_{2}^{k}=H_{2}$. We have $L\left(u_{t_{1}}\right)=\left\{r, s_{0}, s_{1}\right\}$ and, by Claim 5.3.21, we have $\left|z_{H_{2}, L}\left(r, s_{1-j}, \bullet\right)\right|=1$ for each $j=0,1$. By Claim 5.3.20, we have $z_{H_{2}, L}\left(s_{j}, s_{1-j}, \bullet\right)=\{d\}$ for each $j=0,1$. This completes the base case. If H_{2} is a triangle, then we are done, so suppose now that H_{2} is not a triangle, let $k \in\left\{u_{t_{1}+1}, \cdots, u_{t_{2}-1}\right\}$, and suppose that 1) and 2) above hold for $k-1$. For each $j=0,1$ and $f \in L\left(u_{k-1}\right)$, we have $\left|Z_{H_{2}^{k-1}, L}\left(f, s_{1-j}, \bullet\right)\right|=1$. Since H_{2}^{k-1} is not a triangle, it follows from Proposition 1.4.4 that $r \in L\left(u_{k}\right)$, so $L\left(u_{k}\right)=\left\{r, s_{0}, s_{1}\right\}$ and k satisfies 1). Suppose there is a $j \in\{0,1\}$ and an $f \in\left\{r, s_{j}\right\}$ such that $\left|\mathcal{Z}_{H_{2}^{k}, L}\left(f, s_{1-j}, \bullet\right)\right| \geq 2$. Letting $f^{*} \in L\left(u_{k-1}\right) \backslash\left\{f, s_{1-j}\right\}$, we then have $\mathcal{Z}_{H_{2}^{k-1}, L}\left(f^{*}, s_{1-j}, \bullet\right) \mid \geq 2$, contradicting our induction hypothesis.

Let $k=u_{t_{2}}-1$. By Claim 5.3.22, we have $r \in L\left(u_{k}\right)$ and $\left|\mathcal{Z}_{H_{2}^{k}, L}\left(r, s_{j}, \bullet\right)\right|=1$ for each $j=0,1$, so $r \in L\left(u_{t_{2}}\right)$, which is false. This completes the proof of Lemma 5.3.1 and Theorem 5.1.14 and thus completes the proof of Theorem 5.1.6.

Chapter 6

Deleting Vertices Near the Open Rings of Critical Mosaics

In this chapter, we build on the work of Chapter 5 to carefully cut away part of an open ring in a critical mosaic near the precolored path. We begin with the following natural definition analogous to Definition 3.3.8..

Definition 6.0.1. Let $\mathcal{T}=\left(G, \mathcal{C}, L, C_{*}\right)$ be a critical mosaic and let C be an open \mathcal{T}-ring. Let C^{2} be the unique cycle of G specified in Theorem 4.0.1. We call C^{2} the 2-necklace of C.
When we cut away part of an open ring in a critical mosaic it is easier to analyze proper k-chords of the 2-necklace of an open ring, rather than proper k-chords of the specified open ring, for small values of k. We first introduce the following natural definition.

Definition 6.0.2. Let $\mathcal{T}=\left(G, \mathcal{C}, L, C_{*}\right)$ be a critical mosaic and let C be an open \mathcal{T}-ring. Let C^{2} be the 2-necklace of C. We define a subgraph \hat{G} of G which we call the large side of C^{2} as follows. We set \hat{G} to be $\operatorname{Int}\left(C^{2}\right)$ if C is the outer face of G, and otherwise set \hat{G} to be $\operatorname{Ext}\left(C^{2}\right)$. We call the graph $G \backslash\left(\hat{G} \backslash C^{2}\right)$ the small side of C^{2}.

We now have the following simple observation.
Observation 6.0.3. Let $\mathcal{T}=\left(G, \mathcal{C}, L, C_{*}\right)$ be a critical mosaic and let C be an open \mathcal{T}-ring. Let C^{2} be the 2-necklace of C and let \hat{G} be the large side of C^{2}. Let $k<\frac{N_{\mathrm{mo}}}{4}-4$ and let Q be a k-chord of C^{2} in \hat{G}. Let $\hat{G}=G_{0} \cup G_{1}$ be the natural Q-partition of \hat{G}. Then there exists an $i \in\{0,1\}$ such that $C^{\prime} \subseteq G_{i}$ for all $C^{\prime} \in \mathcal{C} \backslash\{C\}$.

Proof. Let u, u^{\prime} be the endpoints of Q. If there is a k-chord Q^{\prime} of C such that Q is a subpath of Q^{\prime}, then the desired result follows from Corollary 2.3.8. Now suppose that no such k-chord of C exists, and suppose toward a contradiction that there exist $C^{0}, C^{1} \in \mathcal{C} \backslash\{C\}$ such that $C_{i} \subseteq G_{i}$ for each $i=0,1$. Thus, it follows that either Q is a cycle (i.e not a proper generalized chord) or Q is a proper generalized chord whose endpoints have a common neighbor in C^{1}. In either case, there is a cycle D which separates C^{0} from C^{1}, where $Q \subseteq D$ and $|V(D) \backslash V(Q)| \leq 1$. Since $\operatorname{Rk}(C)=2 N$ and $|V(D)| \leq \frac{N_{\mathrm{mo}}}{4}$, it follows from Corollary 2.1.30 that $d\left(D, V(C \backslash \stackrel{\circ}{\mathbf{P}})>2 N_{\mathrm{mo}}-\frac{3 N_{\mathrm{mo}}}{8}\right.$. Yet each vertex of Q is of distance at most 2 from $V(C)$ and thus, since $|E(\mathbf{P})| \leq \frac{2 N_{\mathrm{mo}}}{3}$, each endpoint of Q is of distance at most $\frac{N_{\mathrm{mo}}}{3}+2$ from $C \backslash \stackrel{\circ}{\mathbf{P}}$, a contradiction.

Given the observation above, it is natural to introduce the following notation.
Definition 6.0.4. Let $\mathcal{T}=\left(G, \mathcal{C}, L, C_{*}\right)$ be a critical mosaic and let C be an open \mathcal{T}-ring. Let C^{2} be the 2-necklace of C Let \hat{G} be the large side of C^{2}. Let $k<\frac{N_{\mathrm{mo}}}{4}-4$ and let Q be a k-chord of C^{2} (not necessarily proper). We let $\hat{G}=\hat{G}_{Q}^{\text {small }} \cup \hat{G}_{Q}^{\text {large }}$ be the natural Q-partition of \hat{G}, where, for each $C^{\prime} \in \mathcal{C} \backslash\{C\}$, we have $C^{\prime} \subseteq \hat{G}_{Q}^{\text {large }}$.

It is clear that the partition defined above respects the orientation defined by the subpath of the 2-necklace consisting of the neighbors of the precolored path, which is made precise by the following observation.

Observation 6.0.5. Let $\mathcal{T}=\left(G, \mathcal{C}, L, C_{*}\right)$ be a critical mosaic and let C be an open \mathcal{T}-ring. Let C^{2} be the 2-necklace of C and let \hat{G} be the large side of C^{2}. Let $k<\frac{N_{m o}}{4}-4$ and let Q be a k-chord of C^{2} in \hat{G}, where neither endpoint of Q lies in $\stackrel{\circ}{\mathbf{P}}^{1}$. Then $\mathbf{P}^{1} \subseteq \hat{G}_{Q}^{\text {large }}$.

Proof. If this does not hold, then either there is a cycle D of length at most $k+2$ with $d(C, D) \leq 2$, where D separates C from an element of $\mathcal{C} \backslash\{C\}$, or there is a $Q^{\prime} \in \mathcal{K}(C, \mathcal{T})$ of length at most $k+4$ such that Q^{\prime} separates \mathbf{P} from an element of $\mathcal{C} \backslash\{C\}$. In the first case, we contradict Corollary 2.1.30, and in the second case, we contradict 3) of Theorem 2.2.4.

We require some more setup before we state our main result for Chapter 6. Given an open ring C in a critical mosaic, we introduce the following very natural way to associate to a vertex z which is close to the 2-necklace of C a "span" of z which is determined by the neighbors of z and the vertices of C^{2} of distance two from z.

Definition 6.0.6. Let $\mathcal{T}=\left(G, \mathcal{C}, L, C_{*}\right)$ be a critical mosaic and let C be an open \mathcal{T}-ring. Let C^{1} be the 1-necklace of C and let C^{2} be the 2-necklace of C. Let \hat{G} be the large side of C^{2}. Given a $z \in D_{2}\left(C^{2}, \hat{G}\right)$, we associate to z a subgraph $\operatorname{Span}(z)$ of \hat{G} in the following way.

1) If there exists a proper 4-chord P of C^{2} in \hat{G} whose midpoint in C, then we set $\operatorname{Span}(z)$ to be the unique proper 4-chord P of C^{2} which minimizes the quantity $\left|V\left(\hat{G}_{P}^{\text {small }}\right)\right|$.
2) If no such proper 4 -chord of C^{1} exists, then we define $\operatorname{Span}(z)$ in the following way.
a) If $N(z) \cap D_{1}\left(C^{2}\right)$ consists of a lone vertex v, and $\left|N(v) \cap V\left(C^{2}\right)\right|=1$, then we set $\operatorname{Span}(z)$ to be the unique 2-path with z as an endpoint and the other endpoint in C^{2}.
b) If $N(z) \cap D_{2}(C)$ consists of a lone vertex v, and $\left|N(v) \cap V\left(C^{2}\right)\right|>1$, then we set $\operatorname{Span}(z)$ to be the claw on the vertices $\left\{v, z, x, x^{\prime}\right\}$, where $\operatorname{Span}(z)$ has central vertex z and $x v x^{\prime}$ is the unique 2-chord of C^{1} with central vertex v which maximizes the quantity $\left|V\left(\hat{G}_{x v x^{\prime}}^{\text {small }}\right)\right|$.
c) If $\left|N(z) \cap D_{2}(C)\right|>1$, then, since G is $K_{2,3}$-free, there exist vertices v, v^{\prime}, x such that $N(z) \cap D_{1}\left(C^{2}\right)=$ $\left\{v, v^{\prime}\right\}$ and $N(v) \cap V\left(C^{2}\right)=N\left(v^{\prime}\right) \cap V\left(C^{2}\right)=\{x\}$, and set $\operatorname{Span}(z)$ to be the 4-cycle $z v x v^{\prime}$.

Thus, for each $z \in D_{2}\left(C^{2}, \hat{G}\right), \operatorname{Span}(z)$ is either a 4-path, a 4-cycle, a claw, or a 2-path. There is a natural way to associate to each such z a subpath of C^{2} in the following way.

Definition 6.0.7. Let $\mathcal{T}=\left(G, \mathcal{C}, L, C_{*}\right)$ be a critical mosaic and let C be an open \mathcal{T}-ring. Let C^{2} be the 2-necklace of C and let \hat{G} be the large side of C^{2}. Given a $z \in D_{2}\left(C^{2}, \hat{G}\right)$, we let $\operatorname{Pin}(z)$ be the unique subpath of C^{2} such that the following hold.

1) If $\operatorname{Span}(z)$ is either a 2-path or a 4-cycle, then $\operatorname{Pin}(z)$ is just the singleton path $\operatorname{Span}(z) \cap C^{2} ; A N D$
2) The endpoints of $\operatorname{Pin}(z)$ are the vertices of $\operatorname{Span}(z) \cap C^{2}$ and, in $\hat{G}, \operatorname{Span}(z)$ separates the edges of $\operatorname{Pin}(z)$ from all the elements of $\mathcal{C} \backslash\{C\}$.

We require one more definition and then we state our main result for Chapter 6.
Definition 6.0.8. Let $\mathcal{T}:=\left(G, \mathcal{C}, L, C_{*}\right)$ be a critical mosaic, let $C \in \mathcal{C}$ be an open \mathcal{T}-ring, let C^{2} be the 2-necklace of C, and let \hat{G} be the large side of C^{2}. Let ϕ be the unique L-coloring of $V(\mathbf{P})$. Given a $z \in D_{2}\left(C^{2}, \hat{G}\right)$, a (C, z) -
opener is a pair $[K, \psi]$, where K is a connected subgraph of G which we call the underlying graph of $[K, \psi]$, and ψ is an extension of ϕ to an partial L-coloring of $V(K)$ such that the following hold.

1) $\mathbf{P} \subseteq K$ and, for each $v \in V(K) \cap B_{1}(C)$, we have $d(v, \mathbf{P}) \leq 6$; AND
2) $V(K \backslash \operatorname{dom}(\psi))$ is L_{ψ}-inert and, for each $u \in D_{1}(K),\left|L_{\psi}(u)\right| \geq 3$; AND
3) There is at most one vertex of $\left(\operatorname{dom}(\psi) \cap D_{1}\left(C^{2}, \hat{G}\right)\right) \backslash \operatorname{Sh}_{4}\left(C^{2}, \hat{G}\right)$ which does not lie in Span (z); AND
4) For any $v \in V(H) \cap \operatorname{Sh}_{4}\left(C^{2}, \hat{G}\right)$, either $v \in \operatorname{Sh}_{3}\left(C^{2}, \hat{G}\right)$, or $\operatorname{Span}(z)$ is a 4-chord of C^{2} which, in \hat{G} separates v from every element of $\mathcal{C} \backslash\{C\}$; AND
5) $K \cap C^{2}$ is a subpath P of C^{2} such that the following hold.
a) Each of \mathbf{P}^{1} and $\operatorname{Pin}(z)$ is a subpath of P, and $V(K) \subseteq \operatorname{Sh}_{4}\left(P, C^{2}, \hat{G}\right) \cup V(C) \cup B_{1}\left(C^{2}\right) \cup\{z\}$. We call the unique $\left(\operatorname{Pin}(z), \mathbf{P}^{1}\right)$-subpath of P the head of $[K, \psi]$; AND
b) If $\operatorname{Pin}(z)$ is not a terminal subpath of P, then each vertex of P has distance at most 8 from \mathbf{P}; AND
c) If $\operatorname{Pin}(z) \cap \mathbf{P}^{1}=\varnothing$, then every vertex of P outside of the head of $[K, \psi]$ has distance at most 8 from \mathbf{P}; AND
d) If $\operatorname{Pin}(z) \cap \mathbf{P}^{1} \neq \varnothing$, then every vertex of $P \backslash \operatorname{Sh}_{4}\left(P, C^{2}, \hat{G}\right)$ has distance at most 14 from \mathbf{P}; AND
e) For all $v \in V(K) \cap V\left(C^{1} \backslash \mathbf{P}^{1}\right)$, all of the neighbors of v on C^{2} lie in P.

When we construct a smaller counterexample from a critical mosaic by deleting a path between the outer face and another ring, we need to be careful in the case where the outer face is an open ring, because two internal rings are possibly both close to the outer face but still far from each other. This is not the case if the outer face is a closed ring, since closed rings in a mosaic are of bounded length, but if the outer face is an open ring, then we want to ensure that, in a small ball around the outer face, we have some control over how far our deletion set is from the precolored path of the outer face, otherwise the new tessellation possibly has an internal ring which is too close to the new outer face to satisfy the distance conditions of Definition 2.1.6. This is the reason for the somewhat technical conditions in 5) of Definition 6.0.8. Our main theorem for Chapter 6 is the following theorem. In order to deal with the case where the outer face is an open ring, we need to specify a direction along which we cut open the graph on the 2-necklace of the ouer face. This is the reason we need to prove 2) of the theorem below.

Theorem 6.0.9. Let $\mathcal{T}:=\left(G, \mathcal{C}, L, C_{*}\right)$ be a critical mosaic, let $C \in \mathcal{C}$ be an open \mathcal{T}-ring, and let C^{2} be the 2necklace of C. Let \hat{G} be the large side of C^{2} and let p, p^{\prime} be distinct endpoints of \mathbf{P}^{1}. Then, for any $z \in D_{2}\left(C^{2}, \hat{G}\right) \backslash$ $\mathrm{Sh}_{4}\left(C^{2}, \hat{G}\right)$, the following hold.

1) There exists a $(C z)$-opener; AND
2) If $\operatorname{Pin}(z) \cap \mathbf{P}^{1}=\varnothing$ and there is no $(\operatorname{Pin}(z), p)$-path of length at most 16 on the small side of C^{2}, then there exists a (C, z)-opener whose head has p^{\prime} as an endpoint.

6.1 Deleting a C-Wedge

For the remainder of this chapter, in order to avoid repetition, we fix the following data.

1) We let $\mathcal{T}:=\left(G, \mathcal{C}, L, C_{*}\right)$ be a critical mosaic, ww let $C \in \mathcal{C}$ be an open ring, and we let C^{1} be the 1-necklace of C and C^{2} be the 2-necklace of $C ; A N D$
2) We let $\mathbf{P}:=\mathbf{P}_{\mathcal{T}}(C)$ and $\mathbf{P}^{1}:=\mathbf{P}_{\mathcal{T}}^{1}(C) ; A N D$
3) We let ϕ be the unique L-coloring of $V(C)$; AND
4) We set \hat{G} to be the large side of C^{2} and, applying Theorem 5.1.6, we fix a C-wedge (H, ψ) and let $\varphi:=\phi \cup \psi$

All of this fixed information is in the background of the remainder of Chapter 6 so that the statements of the intermediate results and definitions that we need for the proof of Theorem 6.0.9 do not become too long and unwieldy.

In order to prove Theorem 6.0.9 we perform a partial coloring and deletion similar to that of Section 1.7. An overview of this idea is as follows. It follows from Theorem 4.0.1 that C^{2} is a facial subgraph of \hat{G} in which most of the vertices have L_{φ}-lists of size five, except for the vertices of C^{2} on a short subpath of C^{2} which contains \mathbf{P}^{1}. We want an analogue to Theorem 1.7.5 for a subpath of C^{2}. One complication is that C^{2} is a facial subgraph of \hat{G} but not a facial subgraph of $G \backslash H$. However, most of the vertices of $C^{1} \backslash\left(\mathbf{P}^{1} \cup H\right)$ also have L_{φ}-lists of size five, and, in any case, we no longer need to deal with the remaining vertices of C, because we have cut away all the vertices of C with neighbors in C^{2}. The two propositions below make this precise by describing the graph obtained from G by deleting H.

Proposition 6.1.1. $C^{1} \backslash\left(H \cup \mathbf{P}^{1}\right)$ is a path and furthermore, there is a unique subpath Ω^{1} of the subgraph of G induced by $C^{1} \backslash\left(H \cup \mathbf{P}^{1}\right)$ such that Ω^{1} satisfies all of the following.

1) Every vertex of Ω^{1} has an L_{φ}-list of size at least five, except for the endpoints of Ω^{1}, and each endpoint of Ω^{1} has an L_{φ}-list of size at least three; AND
2) Ω^{1} is an induced subgraph of G and every vertex of $C^{1} \backslash\left(H \cup \mathbf{P}^{1}\right)$ with a neighbor in $G \backslash B_{1}(C)$ lies in $V\left(\Omega^{1}\right)$; AND
3) For every $v \in V\left(C^{2} \backslash \mathbf{P}^{1}\right)$, if v has a neighbor in $V(G \backslash \hat{G}) \backslash V(H)$, then the subgraph of G induced by $N(v) \cap(V(G \backslash \hat{G}) \backslash V(H))$ is a subpath of $\Omega^{1} ; A N D$
4) $\left|E\left(\Omega^{1}\right)\right| \geq 13$.

Proof. Recalling Theorem 3.0.2, every chord of the path $C^{1} \backslash \mathbf{P}^{1}$ has endpoints which are also the endpoints of a subpath of $C^{1} \backslash \mathbf{P}^{1}$ of length precisely two. Since G is short-separation-free, there is a unique subpath Ω of $G\left[V\left(C^{1} \backslash \mathbf{P}^{1}\right)\right.$ such that, for every $v \in V(G) \backslash B_{1}(C)$, if v has a neighbor in $C^{1} \backslash \mathbf{P}$, then $N(v) \cap B_{1}(C) \subseteq V(\Omega)$, i.e Ω is the unique path obtained from C^{1} by replacing all the 2-paths in C^{1} whose endpoints are also the endpoints of a chord of C^{1} with the corresponding chord of C^{1}. It follows from 1) of Theorem 2.3.2 the endpoints of Ω are not adjacent.

Note that the endpoints of $C^{1} \backslash \mathbf{P}^{1}$ are also the endpoint of Ω, and, since endpoints of Ω are not adjacent in G, Ω is an induced subgraph of G. Let p, p^{\prime} be the endpoints of \mathbf{P}. Recalling Definitions 5.1.2 and 5.1.5, $C^{1} \backslash(\mathbf{P} \cup H)$ is a path, since $H \cap C^{1}$ consists of two disjoint connected components, where one of these components is a terminal subpath of Π_{p}^{1} and the other component is a terminal subpath of $\Pi_{p^{\prime}}^{1}$. Let $\Omega^{1}:=\Omega \backslash H$. Note that Ω^{1} is a subpath of Ω, and the only vertices of Ω^{1} with neighbors in H are the endpoints of Ω^{1}. By Definition of $\left.H, \psi\right)$, each endpoint of Ω^{1} has an L_{φ}-list of size at least three, each each other vertex of Ω^{1} has no neighbors in \mathbf{P} and no neighbors in H, and thus has an L_{φ}-list of size at least five. Finally, it follows from Theorem 4.0.1 that, for every $v \in V\left(C^{2} \backslash \mathbf{P}^{1}\right)$, if v has a neighbor in $V(G \backslash \hat{G}) \backslash V(H)$, then the subgraph of G induced by $N(v) \cap(V(G \backslash \hat{G}) \backslash V(H))$ is a subpath of Ω^{1}.

Let q, q^{\prime} be the endpoints of Ω^{1} and let p, p^{\prime} be the endpoints of \mathbf{P}. Without loss of generality, let q have a neighbor $v \in V\left(H \cap \Pi_{p}^{1}\right)$ and let q^{\prime} have a neighbor $v^{\prime} \in V\left(H \cap \Pi_{p^{\prime}}^{1}\right)$. Now, $G\left[V(H) \cap V\left(\Pi_{p}^{0} \cup \Pi_{p}^{1}\right)\right]$ contains a (v, \mathbf{P})-path which has p as an endpoint and has length at most five, and likewise, $G\left[V(H) \cap V\left(\Pi_{p^{\prime}}^{0} \cup \Pi_{p^{\prime}}^{1}\right)\right]$ contains a $\left(v^{\prime}, \mathbf{P}\right)$-path
which has p^{\prime} as an endpoint and has length at most five, where these two paths are disjoint. Thus, if $\left|E\left(\Omega^{1}\right)\right|<13$, then, recalling Definition 2.3.1, there exists a C-band of length at most $6+6+12$. Since $N_{\text {mo }} \geq 96$, this contradicts 1) of Theorem 2.3.2.

The second of our two propositions describes the lists of C^{2} that result after we color and delete dom (φ) from $V(G)$.

Proposition 6.1.2. $C^{2} \cap H=\varnothing$ and there is a unique path $\Gamma^{2} \subseteq C^{2}$ such that all of the following hold.

1) $E\left(C^{2} \backslash \stackrel{\circ}{\Gamma}^{2}\right) \geq 13$; $A N D$
2) $\mathbf{P}^{1} \subseteq \Gamma^{2}$ and every vertex of Γ^{2} is of distance at most 6 from $V(\mathbf{P})$ in G; AND
3) Every vertex of $C^{2} \backslash \Gamma^{2}$ has an L_{φ}-list of size at least five; AND
4) Each endpoint of \mathbf{P}^{1} is an internal vertex of Γ^{2}, and every vertex of Γ^{2} has an L_{φ}-list of size at least three, except possible the endpoints of \mathbf{P}^{1}, which have L_{φ}-lists of size at least two; AND
5) The only vertices of Γ^{2} with a neighbor in Ω^{1} are the endpoints of Γ^{2}. Conversely, every vertex of $C^{2} \backslash \Gamma^{2}$ has a neighbor in Ω^{1}.

Proof. Firstly, we have $C^{2} \cap H=\varnothing$ since $C^{2} \cap\left(C \cup C^{1}\right)=\mathbf{P}^{1}$ and $H \cap \mathbf{P}^{1}=\varnothing$. Let p, p^{\prime} be the endpoints of \mathbf{P}. Recalling the notation of Definition 5.1.4, each of Π_{p}^{2} and $\Pi_{p^{\prime}}^{2}$ is a terminal subpath of $C^{2} \backslash \mathbf{P}^{1}$ and every vertex of $C^{2} \backslash \mathbf{P}^{1}$ with a neighbor in H lies in $\Pi^{2} \cup \Pi_{p^{\prime}}^{2}$. By Definition 5.1.5, the set of vertices of Π_{p}^{2} with a neighbor in H form a subpath of π_{p}^{2} of Π_{p}^{2} which is a nonempty terminal subpath of $C^{2} \backslash \mathbf{P}^{1}$. Likewise, set of vertices of Π_{p}^{2} with a neighbor in H form a subpath of π_{p}^{2} of Π_{p}^{2}, where $\pi_{p^{\prime}}^{2}$ is a terminal subpath of $C^{2} \backslash \mathbf{P}^{1}$ containing the other terminal vertex of $C^{2} \backslash \mathbf{P}^{1}$.

We now set Γ^{2} to be the subpath of of C^{2} consisting of all the vertices of $V\left(\mathbf{P}^{1} \cup \pi_{p}^{2} \cup \pi_{p^{\prime}}^{2}\right)$. Since each vertex of Π_{p}^{2} has distance at most 6 from p and each vertex of $\Pi_{p^{\prime}}^{2}$ has distance at most 6 from p^{\prime}, Condition 2) is satisfied. If $\mid E\left(C^{2} \backslash \stackrel{\circ}{\Gamma}^{2} \mid<13\right.$, then, as in the proof of Proposition 6.1.1, there exists a C-band of length at most $12+6+6$, contradicting 1) of Theorem 2.3.2, so Condition 3) is satisfied.

By Definition 5.1.5, each of $\pi_{p}^{2}, \pi_{p^{\prime}}^{2}$ is nonempty, so each endpoint of \mathbf{P}^{1} is an internal vertex of Γ^{2}. Let q, q^{\prime} be the endpoints of \mathbf{P}^{1}. By Definition 5.1.5, there is no chord of C^{1} with one endpoint in H and one endpoint in $\mathbf{P}^{1} \backslash\left\{q, q^{\prime}\right\}$, so each vertex of $\mathbf{P}^{1} \backslash\left\{q, q^{\prime}\right\}$ has an L_{φ}-list of size at least three, and, again by Definition 5.1.5, each of q, q^{\prime} has an L_{φ}-list of size at least two. Thus, Condition 4) is satisfied. By our choice of paths $\pi_{p}^{2}, \pi_{p^{\prime}}^{2}$, the only vertices of Γ^{2} with a neighbor in Ω^{1} are the respective endpoints of $\pi_{p}^{2}, \pi_{p^{\prime}}^{2}$ which are also endpoints of Γ^{2}. Conversely, each vertex of $C^{2} \backslash \Gamma^{2}$ is one endpoint of a 2-path whose other endpoint lies in $C^{1} \backslash \mathbf{P}$ and whose midpoint lies in Ω^{1}.

We also have the following simple osbervation, which states that, for sufficiently small values of k, if we have a k chord of C^{2} in \hat{G} where neither endpoint is an internal vertex of \mathbf{P}^{1}, then the "small" side of a k-chord of C^{2} in \hat{G} (as specified in Definition 6.0.4) does not separate the elements of $\mathcal{C} \backslash\{C\}$ from \mathbf{P}^{1}.

Proposition 6.1.3. For any integer $1 \leq k \leq \frac{N_{\mathrm{mo}}}{4}-4$, any subpath Q of $C^{2} \backslash \stackrel{\circ}{\mathbf{P}}^{1}$, and any k-chord R of C^{2} with both endpoints in Q, we have $Q \subseteq \hat{G}_{R}^{\text {small }}$. In particular, Q is $\left(k, L_{\varphi}\right)$-short in $\left(C^{2}, \hat{G}\right)$.

Proof. Let $\hat{G}=\hat{G}_{0} \cup \hat{G}_{1}$ be the natural R-partition of \hat{G}. If R is not a proper k-chord of \hat{G} (i.e R is a cycle) then we are immediately done by Corollary 2.1.30. Now suppose that R is a proper k-chord of \hat{G} and suppose without loss of generality that $\hat{G}_{0} \cap Q$ has one connected component, and $\hat{G}_{1} \cap Q$ has two connected components. In the notation of

Definition 6.0.4, we just need to check that $\hat{G}_{0}=\hat{G}_{R}^{\text {small }}$. Firstly, since $\hat{G}_{0} \cap Q$ is a subpath of Q, and both endpoints of R lie in Q, we have $\hat{G}_{0} \cap C^{2}=\hat{G} \cap Q$, so $\hat{G}_{0} \cap C^{2} \subseteq Q$ and $\mathbf{P}^{1} \subseteq \hat{G}_{1}$. Suppose toward a contradiction that $\hat{G}_{0} \neq \hat{G}_{R}^{\text {small }}$. Thus, we have $\hat{G}_{0}=\hat{G}_{R}^{\text {large }}$.

Claim 6.1.4. There is a a proper $k+4$-chord R^{\prime} of C such that $R \subseteq R^{\prime}$ and both endpoints of R^{\prime} lie in $C \backslash \stackrel{\circ}{\mathbf{P}}$.
Proof: Note that each vertex of $C^{2} \backslash \mathbf{P}^{1}$ has a neighbor in $C^{1} \backslash \mathbf{P}^{1}$, and each vertex of $C^{1} \backslash \mathbf{P}^{1}$ has a neighbor in $C \backslash \stackrel{\circ}{\mathbf{P}}$. Thus, if no such proper $k+4$-chord of C exists, then G contains a cycle D with $R \subseteq D$ and $|V(D)| \leq k+4$, where, in G, D separates \hat{G}_{0} from \mathbf{P}, and since D intersects with C on at most a lone vertex, D separates each element of $\mathcal{C} \backslash\{C\}$ from C. But since C is an open \mathcal{T}-ring, we have $\operatorname{Rk}(\mathcal{T} \mid C)=2 N_{\mathrm{mo}}$, and since $d(D, C) \leq 1$ and $\mid V(D) \leq$, we contradict Corollary 2.1.30.

Let R^{\prime} be as in Claim 6.1.4. As neither endpoint of R^{\prime} is an internal vertex of \mathbf{P}, we have $R^{\prime} \in \mathcal{K}(C, \mathcal{T})$. Now, by 3) of Theorem 2.2.4, $\mathbf{P} \subseteq G_{R^{\prime}}^{\text {large }}$ and thus $\mathbf{P}^{1} \subseteq \hat{G}_{R}^{\text {large }}$. Since $\mathbf{P}^{1} \subseteq \hat{G}_{1}$, we have $\hat{G}_{0}=\hat{G}_{R}^{\text {small }}$, contradicting our assumption.

In certain cases, we also deal with the special case of a 2-chord of a subpath of C^{2} whose midpoint also lies in C^{2}. An identical argument to the one above shows the following simple observation.

Proposition 6.1.5. Let Q be a subpath of C^{2} of length at least one and let q, q^{\prime} be the endpoints of Q. Let $v \in$ $V\left(C^{2} \backslash Q\right)$ and suppose that \hat{G} contains each of $v q$ and $v^{\prime} q$ as chords of C^{2}. Let D be the cycle $Q+v q v^{\prime}$ and let K be the subgraph of G consisting of all the edges and vertices in the unique closed region bounded by D which contains no edges of $E\left(C^{2}\right) \backslash E(Q)$. Then K contains no elements of $\mathcal{C} \backslash\{C\}$.

In view of the above, it is natural to introduce the following definition.
Definition 6.1.6. Let Q be a subpath of C^{2}. A Q-fulcrum is a vertex $v \in V(Q)$ which is both a Q-hinge and satisfies the additional property that, if v is an internal vetex of Q, then there is no $w \in V\left(C^{2}\right)$ such that \hat{G} contains no pair of chords which both have w as an endpoint and whose non- w-endpoints lie in different connected components of $Q-v$.

6.2 Extending $\operatorname{Span}(z)$ for Vertices of Distance Two from C^{2}

Our approach to the proof of Theorem 6.0.9 is as follows. Given a $z \in V(\hat{G}) \cap D_{2}\left(C^{2}\right)$, we color and delete a subpath of C^{2} which contains $\operatorname{Span}(z) \cap V\left(C^{2}\right)$ and which contains all the vertices of C^{2} with L_{φ}-lists of size less than five, where this subpath satisfies Condition 5) of Definition 6.0.8. We want the path we construct to contain every chord of C^{2} in \hat{G} with one endpoint in Γ^{2} and the other endpoint in $C^{2} \backslash \Gamma^{2}$, so we make the following definition.

Definition 6.2.1. The chord-closure of Γ^{2} is the unique minimal subpath $\Gamma^{2 c}$ of C^{2} such that $\Gamma^{2} \subseteq \Gamma^{2 c}$ and there is no chord of C^{2} in \hat{G} with one endpoint in $\Gamma^{2} \backslash \stackrel{\circ}{\mathbf{P}}^{1}$ and the other endpoint in $C^{2} \backslash \Gamma^{2 c}$.

We check that this indeed a well-defined subpath of C^{2}.
Proposition 6.2.2. $\Gamma^{2 c}$ is a proper subpath of C^{2} and, in particular, $\left|E\left(C^{2} \backslash \stackrel{\circ}{\Gamma}^{2}\right)\right| \geq 10$.
Proof. Suppose that either $\Gamma^{2 c}$ is not a proper subpath of C^{2} or it is a proper subpath of C^{2} such that $\left|E\left(C^{2} \backslash \grave{\Gamma}^{2}\right)\right|<9$. For each $v \in V\left(\Gamma^{2}\right)$, there is precisely one endpoint p of \mathbf{P} such that the small side of G contains a (v, \mathbf{P})-path of length at most six whose \mathbf{P}-endpoint is p. Since each vertex of $C^{2} \backslash \mathbf{P}^{1}$ has distance two from $C \backslash \mathbf{P}$, it follows from our assumption that one of the following holds.

1) There exists a C-band of length at most $9+7+7$; $O R$
2) There is a chord of C^{2} with one endpoint in $\Gamma^{2} \backslash \stackrel{\circ}{\mathbf{P}}^{1}$ and one endpoint in $C^{2} \backslash \Gamma^{2}$ such that, in \hat{G}, this chord separates \mathbf{P}^{1} from an element of $\mathcal{C} \backslash\{C\}$.

In the first case, we contradict 1) of Theorem 6.0.8. In the second case, we contradict Observation 6.0.5.

Analogous to Proposition 6.1.3, we have the following
Proposition 6.2.3. For any $1 \leq k \leq \frac{N_{\mathrm{mo}}}{4}-8$, any subpath Q of C^{2} with both endpoints in $\Gamma^{2 c}$, and any k-chord R of

Proof. Let $\hat{G}=\hat{G}_{0} \cup \hat{G}_{1}$ be the natural R-partition of \hat{G}. If R is not a proper k-chord of \hat{G} (i.e R is a cycle) then we are immediately done by Corollary 2.1.30. Now suppose that R is a proper k-chord of \hat{G} and suppose without loss of generality that $\hat{G}_{0} \cap Q$ has one connected component, and $\hat{G}_{1} \cap Q$ has two connected components. As above, we just need to check that $\hat{G}_{0}=\hat{G}_{R}^{\text {small }}$. Firstly, since $\hat{G}_{0} \cap Q$ is a subpath of Q, and both endpoints of R lie in Q, we have $\hat{G}_{0} \cap C^{2}=\hat{G} \cap Q$, so $\hat{G}_{0} \cap C^{2} \subseteq Q$. Suppose toward a contradiction that $\hat{G}_{0} \neq \hat{G}_{R}^{\text {small }}$. Thus, we have $\hat{G}_{0}=\hat{G}_{R}^{\text {large }}$. At least one endpoint of R lies in \mathbf{P}^{1}, or else we contradict Proposition 6.1.3. By Observation 6.0 .5 , there is no chord of C^{2} which separates an element of $\mathcal{C} \backslash\{C\}$ from \mathbf{P}^{1}, and since at least one endpoint of R lies in $\stackrel{\circ}{P}^{1}$, it follows that at least one of the following holds.

1) There is a C-band of length at most $k+1+7$; $O R$
2) Both endpoints of R lie in $\stackrel{\circ}{\mathbf{P}}^{1}$, the endpoints of R have a common neighbor in C, and there is a a cycle of length at most $k+2$ which separates C from an element of $\mathcal{C} \backslash\{C\}$.

In the first case, we contradict 1) of Theorem 2.3.2, and in the second case, we contradict Corollary 2.1.30.

Combining Propositions 6.1.3 and 6.2.3, we immediately have the following.
Proposition 6.2.4. Let $z \in D_{2}\left(C^{2}, \hat{G}\right)$. Then the following hold.

1) If $\operatorname{Span}(z) \cap C^{2} \subseteq \Gamma^{2 c}$, then $\operatorname{Pin}(z)$ is a subpath of $\Gamma^{2 c}$; AND
2) If $\operatorname{Span}(z) \cap \Gamma^{2 c}=\varnothing$, then $\operatorname{Pin}(z)$ is a subpath of $C^{2} \backslash \Gamma^{2 c}$.

Given a $z \in D_{2}\left(C^{2}, \hat{G}\right) \backslash \operatorname{Sh}_{4}\left(C^{2}, \hat{G}\right)$, when we delete a subpath of C^{2} which contains $\operatorname{Span}(z) \cap C^{2}$ and contains $\Gamma^{2 c}$, we need to make sure that our path does not wind sufficiently far around C^{2} that we create unwanted interactions between its endpoints, so we introduce the following definition.

Definition 6.2.5. Let $\left.z \in D_{2}\left(C^{2}, \hat{G}\right)\right) \backslash \operatorname{Sh}_{4}\left(C^{2}, \hat{G}\right)$ with $\operatorname{Span}(z) \cap \Gamma^{2 c}=\varnothing$. Let p, p^{\prime} be the two endpoints of $\Gamma^{2 c}$ and let P be the unique subpath of C^{2} such that $\operatorname{Pin}(z)$ is a terminal subpath of $P, \Gamma^{2 c} \subseteq P$, and p^{\prime} is the non- $\operatorname{Pin}(z)$ endpoint of P. We say that p is a good z-direction if the following hold.

1) There is no $\left(p^{\prime}, \operatorname{Span}(z) \cap C^{2}\right)$ path on the small side of C^{2} which has length less than three; AND
2) For any $1 \leq k \leq 3$ and any proper k-chord R of C^{2} in \hat{G}, if both endpoints of R lie in P, then $\hat{G}_{R}^{\text {small } \cap C^{2} \text { is a }}$ subpath of P.

Given a $z \in D_{2}\left(C^{2}, \hat{G}\right) \backslash \operatorname{Sh}_{4}\left(C^{2}, \hat{G}\right)$ with $\operatorname{Span}(z) \cap \Gamma^{2 c}=\varnothing$, it is possible that both endpoints of $\Gamma^{2 c}$ are good z-directions, but in any case, there is at least one choice of good z-direction.

Proposition 6.2.6. Let $z \in D_{2}\left(C^{2}, \hat{G}\right) \backslash \operatorname{Sh}_{4}\left(C^{2}, \hat{G}\right)$ with $\operatorname{Span}(z) \cap \Gamma^{2 c}=\varnothing$. Then at least one endpoint of $\Gamma^{2 c}$ is a good z-direction.

Proof. Let p_{0}, p_{1} be the endpoints of $\Gamma^{2 c}$. For each $i=0,1$, there is a uniquely specified endpoint q_{i} of \mathbf{P} such that $q_{0} \neq q_{1}$ and such that, for each $i=0,1, G \backslash\left(\hat{G} \backslash C^{2}\right)$ contains a $\left(p_{i}, \mathbf{P}\right)$-path of length at most six which has q_{i} as an endpoint. For each $i=0,1$, let P_{i} be the unique subpath of C^{2} such that $\Gamma^{2 c} \subseteq P_{i}$ and such that $\operatorname{Pin}(z)$ is a terminal subpath of P_{i}, where p_{1-i} is the other terminal vertex of P_{i}. Furthermore, let v_{0}, v_{1} be the vertices of $C^{2} \cap \operatorname{Span}(z)$ (possibly is a 2-path or a 4-cycle and $v_{0}=v_{1}$), where v_{i} is the unique non- $\Gamma^{2 c}$-endpoint of P_{i} for each $i=0,1$. Note that $p_{0}, v_{1}, v_{0}, p_{1}$ is the ordering of these vertices on the path $C^{2} \backslash{ }_{\Gamma}{ }^{2 c}$.

Suppose now that, for each $i=0,1$, there is a $\left(p_{i},\left\{v_{0}, v_{1}\right\}\right)$-path Q_{i} on the small side of C^{2} which has length at most two. Note that each of Q_{0}, Q_{1} is disjoint to $V(C)$. For each $i=0,1$, there is a $\left(p_{i}, q_{i}\right)$-path on the small side of C^{2} which has length at most seven and is disjoint to \mathbf{P} except for its \mathbf{P}-endpoint. Note that since $z \notin \mathrm{Sh}_{4}\left(C^{2}, \hat{G}\right)$, there is no chord of C^{2} with both endpoints in $\Gamma^{2 c}$ which, in \hat{G}, separates z from an element of $\mathcal{C} \backslash\{C\}$. Thus, since $\operatorname{Span}(z)$ contains $\left(v_{0}, v_{1}\right)$-path of length at most four, there exists a C-band with endpoints q_{0}, q_{1}, where this C-band has length at most $7+7+2+2+4$. Since $22<\frac{N_{\mathrm{mo}}}{4}$, this contradicts 1) of Theorem 2.3.2.

Thus, suppose without loss of generality that there is no $\left(p_{1},\left\{v_{0}, v_{1}\right\}\right)$-path of length less than three on the small side of C^{2}. If p_{0} also satisfies Condition 2) of Definition 6.2.5, then we are done, so suppose now that there exists a
 subpath of P_{0} and $z \in D_{2}\left(C^{2}, \hat{G}\right) \backslash \operatorname{Sh}_{4}\left(C^{2}, \hat{G}\right)$, it follows that v_{0} is an endpoint of R and $\hat{G}^{\text {large }} \cap P_{0}$ is a terminal subpath of P_{0} with v_{0} as en endpoint.

Now we switch to the other side. We claim that p_{1} is a good z-direction. We first check that p_{1} satisfies Condition 1) of Definition 6.2.5. Suppose toward a contradiction that there is a $\left(p_{0},\left\{v_{0}, v_{1}\right\}\right)$-path of length at most two on the small side of C^{2}. As indicated above, Since $\operatorname{Span}(z)$ contains a $\left(v_{0}, v_{1}\right)$-path of length at most four and v_{0} is an endpoint of R_{0}, it follows from Proposition 6.2.4 that one of the following holds.

1) There is a C-band of length at most $2+4+3+7+7$; $O R$
2) There is a separating cycle D, where $d(D, C) \leq 1,|E(D)| \leq 2+4+3+7+7$, and D separates C from an element of $\mathcal{C} \backslash\{C\}$.

In the first case, since $\frac{96}{4}=24$, this contradicts 1) of Theorem 2.3.2. In this second case, we contradict Corollary 2.1.30, so now we just need to check that p_{1} also satisfies Condition 2). Suppose not. Then there is a proper generalized chord R_{1} of C^{2} in \hat{G} which has length at most three, where $\hat{G}_{R_{1}}^{\text {small }} \cap P_{1}$ is not a subpath of P_{1}. Since $\operatorname{Pin}(z)$ is a terminal subpath of P_{1} and $z \in D_{2}\left(C^{2}, \hat{G}\right) \backslash \operatorname{Sh}_{4}\left(C^{2}, \hat{G}\right)$, it follows that v_{1} is an endpoint of R_{1} and $\hat{G}^{\text {large }} \cap P_{1}$ is a terminal subpath of P_{1} with v_{1} as en endpoint. Thus, one of the following holds:

1. $R_{0} \cap R_{1}=\varnothing$ and there is a C-band of length at most $3+4+3+7+7$; $O R$
2. There is a separating cycle D, where $d(D, C) \leq 1,|E(D)| \leq 3+4+3+7+7$, and D separates C from an element of $\mathcal{C} \backslash\{C\}$.

In the first case, since $\frac{96}{4}=24$, this contradicts 1) of Theorem 2.3.2. In this second case, we contradict Corollary 2.1.30.

We now describe the subpath of C^{2} which we delete when we construct a (C, z)-opener for a $z \in D_{2}\left(C^{2}, \hat{G}\right) \backslash$ $\mathrm{Sh}_{4}\left(C^{2}, \hat{G}\right)$.

Definition 6.2.7. Given a $z \in D_{2}\left(C^{2}, \hat{G}\right) \backslash \operatorname{Sh}_{4}\left(C^{2}, \hat{G}\right)$ and a subpath P of C^{2} with $\Gamma^{2 c} \subseteq P$, we say that P is a z-bend if $\operatorname{Pin}(z)$ is also a subpath of P and P is specified in the following way.

1) If $\operatorname{Span}(z) \cap C^{2} \subseteq \Gamma^{2 c}$, then $P:=\Gamma^{2 c}$.
2) If $\operatorname{Span}(z) \cap \Gamma^{2 c}=\varnothing$, then $\operatorname{Span}(z) \cap C^{2}$ is a terminal subpath of P, and the other endpoint of P is the unique endpoint of $\Gamma^{2 c}$ which does not lie in $\operatorname{Span}(z)$, and furthermore, this endpoint of Γ is a good z-direction.
3) If $\operatorname{Span}(z) \cap C^{2} \nsubseteq \Gamma^{2 c}$ and $\operatorname{Span}(z) \cap \Gamma^{2 c l} \neq \varnothing$, then P is the unique subpath of C^{2} which has $\operatorname{Pin}(z)$ as a terminal subpath and whose unique non- $\operatorname{Pin}(z)$-endpoint is the lone endpoint of $\Gamma^{2 c}$ which does not lie in $\operatorname{Pin}(z)$.

In Cases 1) or 3) above, P is uniquely specified, and, in Case 2), there are possibly two z-bends. By Proposition 6.2.6, there is at least one z-bend in Case 2) above, so in any case, for any $z \in D_{2}\left(C^{2}, \hat{G}\right) \backslash \operatorname{Sh}_{4}\left(C^{2}, \hat{G}\right)$, there exists a z-bend. The purpose of introducing Definition 6.2 .7 is that, given a $z \in D_{2}\left(C^{2}, \hat{G}\right) \backslash \operatorname{Sh}_{4}\left(C^{2}, \hat{G}\right)$, when we construct a (C, z)-opener, the subpath of C^{2} which we delete is a z-bend. We now have the following simple result, which takes up the remainder of this section.

Proposition 6.2.8. Let $z \in D_{2}\left(C^{2}, \hat{G}\right) \backslash \operatorname{Sh}_{4}\left(C^{2}, \hat{G}\right)$ and let P be a z-bend. Then the following hold.
A) P is a proper subpath of C^{2} and $\left|E\left(C^{2} \backslash \stackrel{\circ}{P}\right)\right| \geq 2$; AND
B) For any $v \in D_{1}\left(C^{2}\right)$ on the small side of C^{2}, the graph $G[N(v)] \cap P$ is a subpath of P; AND
C) For any integer $1 \leq k \leq 3$, and any k-chord R of C^{2} with both endpoints in P, the graph $C^{2} \cap \hat{G}_{R}^{\text {small }}$ has one connected component and the gaph $C^{2} \cap \hat{G}_{R}^{\text {large }}$ has two connected components.

Proof. We break this into three cases.
Case 1: $\operatorname{Span}(z) \subseteq \Gamma^{2 c}$
In this case, it follows from Proposition 6.2.2 that A) is satisfied and it follows from Proposition 6.2.3 that C) is satisfied. Suppose that there is a $v \in D_{1}\left(C^{2}\right)$ on the small side of C^{2} which violates condition B). Now, $G\left[N(v) \cap C^{2}\right.$ is a subpath of C^{2} so the endpoints of $\Gamma^{2 c}$ have a common neighbor on the small side of C^{2}, and thus G contains a C-band of length at most $7+7+2$, contradicting 1) of Theorem 2.3.2.

Case 2: $\operatorname{Span}(z) \cap \Gamma^{2 c}=\varnothing$
In this case, it follows from Proposition 6.1.3 that Condition C) is satisfied and it follows from Definition 6.2.5 that A) is satisfied. Suppose there is vertex v on the small side a violating condition B). Now, $G\left[N(v) \cap C^{2}\right.$ is a subpath of C^{2}, and thus v is adjacent to each endpoint of P, contradicting the fact that the unique endpoint of $\Gamma^{2 c}$ which is also an endpoint of P is a good z-direction.

Case 3: $\operatorname{Span}(z) \cap \Gamma^{2 c} \neq \varnothing$ and $\operatorname{Span}(z) \nsubseteq \Gamma^{2 c}$
In this case, $\operatorname{Pin}(z)$ is a subpath of C^{2} with one endpoint in $C^{2} \backslash \Gamma^{2 c}$ and one endpoint in $\Gamma^{2 c}$. We first check conditions A) and B). For any $v \in D_{1}\left(C^{2}\right)$ on the small side of G, the graph is a subpath of C^{2}, so if one of A), B) does not hold, then there is a path on the small side of C^{2} which has length at most two and whose endpoints are the endpoints of P. Now, the lone endpoint of $\operatorname{Pin}(z)$ which is not an endpoint of P lies in Γ^{2}, and since $\operatorname{Span}(z)$ contains a path of length at most four between the endpoints of $\operatorname{Pin}(z)$, it follows that G contains a C-band of length at most $7+7+2+4$, contradicting 1) of Theorem 2.3.2.

Now we check C). Let R be a proper generalized chord of C^{2} of length at most three, where R has both endpoints in P. Since $z \notin \operatorname{Sh}_{4}\left(C^{2}, \hat{G}\right)$, it follows that R intersects with $\operatorname{Pin}(z)$ on at most one vertex, and if this vertex exists, then it is the unique $\Gamma^{2 c}$-endpoint of $\operatorname{Pin}(z)$. Thus, both endpoints of R lie in $\Gamma^{2 c}$, so it follows from Proposition 6.2.3 that Condition C) is indeed satisfied.

6.3 Channel Colorings

In this section, we prove an analogue of Theorem 1.7.5 for a subpath of C^{2}. This requires a slightly different approach because, in the context of Theorem 1.7.5, we are analyzing a subpath of a facial cycle in a planar graph, but the vertices of $C^{2} \backslash\left(H \cup \mathbf{P}^{1}\right)$ have some neighbors in $\hat{G} \backslash C^{2}$ and neighbors in $C^{1} \backslash H$.

Definition 6.3.1. Given a subpath Q of C^{2}, we introduce the following notation.

1) A partial L_{φ}-coloring σ of $V(Q)$ is called a channel of Q if the following hold.
a) The endpoints of Q lie in $\operatorname{dom}(\sigma)$; AND
b) For any $1 \leq k \leq 2$ and any 2 -chord R of C^{2} in \hat{G}, if the endpoints of R lie in $V(Q)$, then $V\left(\hat{G}_{R}^{\text {small }}\right) \backslash V(R)$ is $(L, \varphi \cup \sigma)$-inert in G; AND
c) Every vertex of Ω^{1} has an $L_{\varphi \cup \sigma}$-list of size at least three; AND
d) Every vertex of $D_{1}\left(C^{2}, \hat{G}\right) \backslash \operatorname{Sh}_{2}\left(Q, C^{2}, \hat{G}\right)$ has an $L_{\varphi \cup \sigma}$-list of size at least three; AND
e) For every $x \in V\left(C^{2} \backslash Q\right)$, if $v \notin V\left(\Gamma^{2}\right)$, then $\left|L_{\varphi \cup \sigma}(x)\right| \geq 3$, and, if $x \in V\left(\Gamma^{2}\right)$, then $\left|L_{\varphi \cup \sigma}(x)\right| \geq$ $\left|L_{\varphi}(x)\right|-2$.
2) For any vertex $v \in V\left(\Omega^{1}\right)$, subset $S \subseteq L_{\varphi}(v)$, and channel σ of Q, we say that σ is (v, S)-avoiding if $S \subseteq L_{\varphi \cup \sigma}(v)$.

Our main result for this section is the following.
Theorem 6.3.2. Let $z \in D_{2}\left(C^{2}, \hat{G}\right)$ and let P_{z} be a z-bend of C^{2}. For any subpath Q of P_{z}, there is a channel of Q. We break the proof of Theorem 6.3.2 into several lemmas. We first introduce the following definitions.

Definition 6.3.3. Let A be a proper generalized chord of C^{2} in \hat{G} with $1 \leq|E(A)| \leq 2$ and let D be the cycle $\left(\hat{G}_{A}^{\text {small }} \cap C^{2}\right)+A$.

1) We say that A is an atom if D is an induced subgraph of G and $\hat{G}_{A}^{\text {small }} \cap C^{2}$ is a path of length at least two
2) We say that an atom is irreducible if, for any 2 -chord A^{\prime} of D in $\hat{G}_{A}^{\text {small }}$ with both endpoints in C^{2}, letting w be the midpoint of A^{\prime}, the graph $G\left[N(w) \cap V\left(C^{2}\right)\right]$ is a subpath of Q.

Anaalogous to the above, we have the following.
Definition 6.3.4. Let Q be a supath of C^{2} with $|E(Q)| \geq 1$ and let q, q^{\prime} be the endpoints of Q.

1) A vertex $v \in V\left(C^{2} \backslash Q\right)$ is called a Q-prism if \hat{G} contains both of $v q, v q^{\prime}$ as chords of C^{2}; AND
2) We say that Q is a rainbow if $|E(Q)| \geq 2$ and there is a Q-prism v such that $Q+q v q^{\prime}$ is an induced cycle; AND
3) We say that Q is an irreducible rainbow if Q is a rainbow and, for any $w \in V\left(\hat{G} \backslash C^{2}\right)$ with a neighbor in Q, the graph $G\left[N(w) \cap V\left(C^{2}\right)\right]$ is a subpath of Q.

Our first lemma in the proof of Theorem 6.3.2 is the following somewhat technical result.
Lemma 6.3.5. Let Q be a subpath of C^{2} satisfying one of the following two conditions.

1) Q is an irreducible rainbow; $O R$
2) There exists an irreducible atom A such that $Q=C^{2} \cap \hat{G}_{A}^{\text {small }}$.

Let q, q^{\prime} be the endpoints of Q and suppose that $V(Q \backslash\{q\}) \subseteq V\left(C^{2} \backslash \Gamma^{2}\right)$. Let v be the unique vertex of Ω^{1} which is adjacent to both endpoints of the terminal edge of Q with q as an endpoint. Let $c \in L_{\varphi}(q)$ and let $\left\{d_{0}, d_{1}\right\}$ be a set of two colors of $L_{\varphi}\left(q^{\prime}\right)$ (possibly $c \in\left\{d_{0}, d_{1}\right\}$). Let $S \subseteq L_{\varphi}(v) \backslash\{c\}$ with $|S|=3$. Then, for some $i \in\{0,1\}$, there is a (v, S)-avoiding channel σ of Q such that σ uses c, d_{i} on the respective vertices q, q^{\prime}.

Proof. We prove that this holds if there exists an irreducible atom A such that $Q=C^{2} \cap \hat{G}_{A}^{\text {small }}$. An identical argument works for the case where Q is an irreducible rainbow.

Firstly, by 5) of Proposition 6.1.2, every vertex of $C^{2} \backslash \stackrel{\circ}{\Gamma}^{2}$ has a neighbor in Ω^{1}, so the endpoints of the terminal edge of Q containing q do indeed have a unique common nieghbor in Ω^{1}. Given a partial L_{φ}-coloring σ of $V(Q)$, if we want to check that σ is a channel of Q, then we just ned to check conditions 1a)-c) of Definition 6.3.1, i.e, since $Q=C^{2} \cap \hat{G}_{A}^{\text {small }}$, it follows that σ automatically satisfies 1d-e).

Suppose toward a contradiction that there is no (v, S)-avoiding channel of Q which uses c on q and uses one of d_{0}, d_{1} on q^{\prime}. Let $K:=\hat{G}_{A}^{\text {small }}$ and let D be the cycle $A+\left(C^{2} \cap K\right)$. Note that D is a cyclic facial subgraph of K. By definition of an atom, D is an induced subgraph of G and P has length at least two. Thus, it follows from our triangulation conditions that $V(K \backslash D) \neq \varnothing$. If P has length precisely two, then D is a separating cycle of length at most four, contradicting the fact that \mathcal{T} is a tessellation. Thus, P has length at least three. Furthermore, since $V(Q \backslash\{q\}) \subseteq V\left(C^{2} \backslash \Gamma^{2}\right)$, every vertex of $Q \backslash\{q\}$ has an L_{φ}-list of size at least five and every neighbor of Q in Ω^{1}, except possibly v, has an L_{φ}-list of size at least five. Let $Q:=q_{1} \cdots q_{r}$, where $q_{1}=q$ and $q_{r}=q^{\prime}$. We now let $P \subseteq Q$ be the path $Q \cap G\left[N(v) \cap V\left(C^{2}\right)\right]$. Note that P is a terminal subpath of Q and $q_{1} q_{2} \in E(P)$. Let $P:=q_{1} \cdots q_{\ell}$. Since G is short-separation-free and $V(K \backslash D) \neq \varnothing$, we have $\ell<r$, or else G contains a cycle of length at most four which separates $K \backslash D$ from all the elements of $\mathcal{C} \backslash\{C\}$. Since v is adjacent to q_{1}, q_{2}, we have $2 \leq \ell<r$.

Claim 6.3.6. There is an L_{φ}-coloring σ of P such that the following hold.

1) $\sigma\left(q_{1}\right)=c$ and $S \subseteq L_{\varphi \cup \sigma}(v)$; AND
2) For each $z \in V\left(\Omega^{1}\right) \cup V(K \backslash D),\left|L_{\varphi \cup \sigma}(z)\right| \geq 3$.

Proof: Since P is an induced path in G and each vertex of $q_{2} \cdots q_{\ell}$ has an L_{φ}-list of size at least five, there is an L_{φ}-coloring σ of $V(P)$ such that $\sigma\left(q_{1}\right)=c$ and no vertex of P is colored with a color of S. Since every vertex of P is adjacent to v and G is short-separation-free, there is no other vertex of G with more than two neighbors on P, so, for each $z \in V\left(\Omega^{1}\right) \cup V(K \backslash D)$, we have $\left|L_{\varphi \cup \sigma}(z)\right| \geq 3$.

We now fix an L_{φ}-coloring σ of $V(P)$ satisfying Claim 6.3.6.

Claim 6.3.7. $q_{1} q_{r} \notin E(G)$.

Proof: Suppose toward a contradiction that $q_{1} q_{r} \in E(G)$. By definition of an atom, we then have $A=q_{1} q_{r}$. At least one of d_{0}, d_{1} is distinct from c so suppose without loss of generality that $d_{0} \neq c$. Since D is an induced subgraph of G and each vertex of $q_{2} \cdots q_{r-1}$ has an L_{φ}-list of size at least five, it follows from Proposition 1.2.3 that σ extends to
an L_{φ}-coloring σ^{\prime} of $q_{1} \cdots q_{r-2}$ such that every vertex of $V\left(\Omega^{1}\right) \cup V(K \backslash D)$ has an $L_{\varphi \cup \sigma^{\prime}}$-list of size at least three. Note that $v \notin N\left(q_{r-1}\right)$ or else $q_{1} v q_{r-1} q_{r}$ is a 4-cycle which separates each vertex of $K \backslash D$ from each element of $\mathcal{C} \backslash\{C\}$, contradicting the fact that \mathcal{T} is a tessellation.

Subclaim 6.3.8. There is a vertex z of $N\left(q_{r-1}\right) \cap V\left(\Omega^{1}\right)$ such that $|N(z) \cap V(Q)|>2$.
Proof: Since D is an induced cycle in G, σ^{\prime} extends to an L_{φ}-coloring τ of $V(D)$ such that $\tau\left(q_{r}\right)=d_{0}$. Let $B_{0}:=\left\{q_{r-1}, q_{r}\right\}$. By our choice of σ^{\prime}, every vertex of $K \backslash D$ has an $L_{\varphi \cup \tau}^{B_{0}}$-list of size at least three, so, retaining the precolored edge $q_{r-1} q_{r}$, it follows from Theorem 0.2 .3 that $\varphi \cup \tau$ extends to L-color K. Since $q_{r-1}, q_{r} \notin N(v)$ we have $S \subseteq L_{\varphi \cup \tau}(v)$. Thus, by assumption, τ is not a channel of Q, so there is a vertex of Ω^{1} with an $\left|L_{\varphi \cup \tau}(z)\right|<3$, and we have $|N(z) \cap V(Q)|>2$. By our choice of σ^{\prime}, this vertex z has a neighbor in B. Since $G[N(z) \cap V(Q)]$ is a subpath of Q of length at least two, it follows that, if $q_{r} \in N(z)$, then $q_{r-1} \in N(z)$ as well, so $q_{r-1} \in N(z)$ in any case.
Appyling Subclaim 6.3.8, let z be a vertex of $N\left(q_{r-1}\right) \cap V\left(\Omega^{1}\right)$ such that $G[N(z) \cap V(Q)]$ is a subpath of Q of length at least two. Since $q_{r-1} q_{r}$ is a terminal edge of Q, z is the only vertex of $V\left(\Omega^{1}\right) \cap N\left(q_{r-1}\right)$ which is adjacent to a subpath of Q of length at least two. Since $q_{r-1} \notin N(v)$, we have $z \neq v$. Now consider the following cases:

Case 1: q_{r-1} is an internal vertex of $G[N(z) \cap V(Q)]$
In this case, $G[N(q) \cap V(Q)]$ contains $q_{r-2} q_{r-1} q_{r}$ as a subpath. Let $m \in\{1,2, \cdots, r-2\}$ be the unique index such that $G[N(z) \cap V(Q)]=q_{m} \cdots q_{r}$. Let τ be an L_{φ}-coloring of $V\left(q_{1} Q q_{m}\right) \cup\left\{q_{r}\right\}$ obtained from σ^{\prime} by first restricting σ^{\prime} to $\left\{q_{1}, \cdots, q_{m}\right\}$ and then coloring q_{r} with d_{0}. Now, we have $\left|L_{\varphi \cup \tau}(z)\right| \geq 3$, since $N(z) \cap \operatorname{dom}(\tau)=\left\{q_{m}, q_{r}\right\}$. Furthermore, since $z \neq v$, we have $P \subseteq q_{1} \cdots q_{m}$, so $S \subseteq L_{\varphi \cup \tau}(v)$. By assumption, τ is not a (v, S)-avoiding channel of Q, so the inertness condition is violated. Thus, there is an extension of $\varphi \cup \tau$ to an L-coloring ζ of $\operatorname{dom}(\varphi \cup \tau) \cup\{z\}$ such that ζ does not extend to L-color K. Now we simply leave the edge $q_{r} z$ precolored. Let $B_{1}:=\left\{q_{r}, z\right\}$. By our choice of σ^{\prime}, each vertex of $K \backslash D$ has an $L_{\zeta}^{B_{1}}$-list of size at least three, and since $q_{m} \cdots q_{r-1}$ is an induced subgraph of G, each vertex of $q_{m+1} \cdots q_{r-1}$ has an $L_{\zeta}^{B_{1}}$-list of size at least three. Thus, by Theorem $0.2 .3, \zeta$ extends to L-color K, contradicting our assumption.
Case 2: q_{r-1} is not internal vertex of $G[N(z) \cap V(Q)]$
In this case, $G[N(z) \cap V(Q)]$ is a path containing $q_{r-3} q_{r-2} q_{r-1}$ as a terminal subpath. As above, let $m \in\{1,2, \cdots, r-$ $3\}$ be the unique index such that $G[N(z) \cap V(Q)]=q_{m} \cdots q_{r-1}$. Let τ be an L_{φ}-coloring of $V\left(q_{1} Q q_{m}\right) \cup\left\{q_{r-1}, q_{r}\right\}$ obtained from σ^{\prime} by first restricting σ^{\prime} to $\left\{q_{1}, \cdots, q_{m}\right\}$ and then coloring the edge $q_{r-1} q_{r}$, where q_{r} is colored with d_{0}. As above, we have $\left|L_{\varphi \cup \tau}(z)\right| \geq 3$, since $N(z) \cap \operatorname{dom}(\tau)=\left\{q_{m}, q_{r-1}\right\}$. Furthermore, since $z \neq v$, we have $P \subseteq q_{1} \cdots q_{m}$, so $S \subseteq L_{\varphi \cup \tau}(v)$. assumption, τ is not a (v, S)-avoiding channel of Q, so the inertness condition is violated. Thus, there is an extension of $p h i \cup \psi \cup \tau$ to an L-coloring ζ of $\operatorname{dom}(\varphi \cup \tau) \cup\{z\}$ such that ζ does not extend to L-color K. This time, we retain the edge $q_{r-1} q_{r}$. Let $B_{2}:=\left\{q_{r-1}, q_{r}\right\}$. By our choice of σ^{\prime}, each vertex of $K \backslash D$ has an $L_{\zeta}^{B_{2}}$-list of size at least three, and since $q_{m} \cdots q_{r-1}$ is an induced subgraph of G, each vertex of $q_{m+1} \cdots q_{r-2}$ has an $L_{\zeta}^{B_{2}}$-list of size at least three. By Theorem $0.2 .3, \zeta$ extends to L-color K, contradicting our assumption.

Since $q_{1} q_{r} \notin E(G), A$ is a 2-chord of C^{2}, so let w be the midpoint of A.
Claim 6.3.9. There is an L_{φ}-coloring τ of $V(Q)$ such that the following hold.

1) $\tau\left(q_{1}\right)=c$ and $\tau\left(q_{r}\right) \in\left\{d_{0}, d_{1}\right\}$; AND
2) $S \subseteq L_{\varphi \cup \tau}(v)$; AND
3) For any $z \in V(K \backslash D) \cup V\left(\Omega^{1}\right)$, if $\left|L_{\varphi \cup \tau}(z)\right|<3$, then $z \in N\left(q_{r}\right)$ and $\left|L_{\varphi \cup \tau}(z) \cup\left\{\tau\left(q_{r}\right)\right\}\right|=3$.
4) $V(K \backslash D)$ is $(L, \varphi \cup \tau)$-inert in G.

Proof: Since each vertex of $q_{2} \cdots q_{r-1}$ has an L_{φ}-list of size at least five, it now follows from Proposition 1.2.3 that σ extends to an L_{φ}-coloring σ^{*} of $q_{1} \cdots q_{r-1}$ such that every vertex of $V\left(\Omega^{1}\right) \cup V(K \backslash D)$ has an $L_{\varphi \cup \sigma^{*}}$-list of size at least three. By Claim 6.3.7, $q_{1} q_{r} \notin E(G)$, so $L_{\varphi \cup \sigma^{*}}\left(q_{r}\right) \cap\left\{d_{0}, d_{1}\right\} \neq \varnothing$. Thus, σ^{*} extends to an $L_{\varphi^{-}}$ coloring τ of $V(Q)$. Since $q_{r} \notin V(P)$, we have $S \subseteq L_{\varphi \cup \tau}(v)$, and, by our choice of σ^{*}, it follows that, for any $z \in V(K \backslash D) \cup V\left(\Omega^{1}\right)$, if $\left|L_{\varphi \cup \tau}(z)\right|<3$, then $z \in N\left(q_{r}\right)$ and $\left|L_{\varphi \cup \tau}(z) \cup\left\{\tau\left(q_{r}\right)\right\}\right|=3$.

To finish, we just need to check that $V(K \backslash D)$ is $(L, \varphi \cup \tau)$-inert in G. Let τ^{*} be an extension of τ to an L-coloring of $\operatorname{dom}(\tau) \cup\{w\}$. Let $B_{3}:=\left\{w, q_{r}\right\}$. It follows from 3) that every vertex of $K \backslash D$ has an $L_{\tau^{*}}^{B_{3}}$-list of size at least three, so, retaining the precolored edge $w q_{r}$, it follows from Theorem 0.2 .3 that τ^{*} extends to L-color K. Thus, $V(K \backslash D)$ is indeed $(L, \varphi \cup \tau)$-inert in G.

Let τ be as in Claim 6.3.9. By assumption, τ is not a (v, S)-avoiding channel of Q, so there is is a $z \in V\left(\Omega^{1}\right) \backslash\{v\}$ with $\left|L_{\varphi \cup \tau}(z)\right|<3$. By 3) of Claim 6.3.9, we have $z \in N\left(q_{r}\right)$ and $G[N(z) \cap V(Q)]$ is a terminal subpath of Q of length at least two, and z ius unique. Let $m \in\{1, \cdots, r-2\}$ be the unique index such that $G[N(z) \cap V(Q)]=q_{m} \cdots q_{r}$. Let τ^{*} be the restriction of τ to $\operatorname{dom}(\tau) \backslash\left\{q_{m+1}, \cdots, q_{r-1}\right\}$. Now, τ^{*} is also not a (v, S)-avoiding Q-channel, and since $N(z) \cap \operatorname{dom}\left(\tau^{*}\right)=\left\{q_{m}, q_{r}\right\}$, the inertness condition is violated. Thus, there is an extension of $\varphi \cup \tau^{*}$ to an L-coloring ζ of $\operatorname{dom}\left(\varphi \cup \tau^{*}\right) \cup\{z\}$ such that ζ does not extend to L-color K. As above, we retain the edge $w q_{r}$. Let $B:=\left\{w, q_{r}\right\}$. It follows from 3) of Claim 6.3.9 that each vertex of $K \backslash D$ has an L_{ζ}^{B}-list of size at least three. Since Q is an induced path in G, each vertex of $\left\{q_{m+1}, \cdots, q_{r-1}\right.$ has an L_{ζ}^{B}-list of size at least three. Thus, by Theorem 0.2.3, K is L_{ζ}^{B}-colorable, so ζ extends to L-color K, which is false. This completes the proof of Lemma 6.3.5.

We now have the following by a straightforward induction argument. The lemma below, in combination with the work of Section 1.7, is sufficient to prove Theorem 6.3.2.

Lemma 6.3.10. Let Q be a subpath of C^{2} of length at least one, let q, q^{\prime} be the endpoints of Q and suppose that $V(Q \backslash\{q\}) \subseteq V\left(C^{2} \backslash \Gamma^{2}\right)$. Let e be the unique terminal edge of Q containing q, and let v be the unique vertex of Ω^{1} adjacent to both endpoints of e. Let $c \in L_{\varphi}(q)$ and let let $S \subseteq L_{\varphi}(v) \backslash\{c\}$ with $|S|=3$. Then the following hold.

1) There is a (v, S)-avoiding channel of Q which uses c on q; AND
2) If there is an atom whose endpoints are q, q^{\prime} then, for any $T \subseteq L_{\varphi}\left(q^{\prime}\right)$ of size two, there is a (v, S)-avoiding channel of Q which uses c on q and uses a color of T on q^{\prime}.
a) There is an atom whose endpoints are $q, q^{\prime} ; O R$
b) Q is a rainbow.

We briefly describe how to apply the result of Theorem 6.3.2 to prove Theorem 6.0.9. Given a $z \in D_{2}\left(C^{2}\right)$, it follows from the work of Section 6.2 that a z-bend satisfies the distance conditions specified in Definition 6.0.8, and given a channel coloring σ of a z-bend P_{z}, we extend σ to L-coloring $\operatorname{dom}(\sigma) \cup V\left(\tilde{G}_{\operatorname{Span}(z)}^{\text {small }}\right)$ and combine this with the work of Section 1.6 to produce a (C, z)-opener.

Chapter 7

An Internal 2-List Lemma

In this short chapter, we prove a general result which strengthens Theorem 1.7.5 before returning to the context of critical mosaics in Chapter 8. The idea is that, given a short-separation-free planar graph G and a cyclic facial subgraph C of G with a list-assignment L, we can obtain an analogue to Theorem 1.7.5 for a subpath P of C which has has an internal vertex with a list of size two, as long as some additional properties are satisfied by any 2-chord of C which separates this lone 2 -list from the "large" side of the graph, where the meaning of large is made precise below. Our main result for this chapter is the following.

Theorem 7.0.1. Let G be a short-separation-free graph and let C be an induced cyclic facial subgraph of G, Let P be a subpath of C of length at least two, let $u_{\star} \in V(P)$, and let P_{\star} be a subpath of P. Let p, p^{\prime} be the endpoints of P and let q, q^{\prime} be the endpoints of P_{\star}, where the (not necessarily distinct) vertices of $\left\{p, p^{\prime}, q, q^{\prime}\right\}$ have the order $p^{\prime}, q^{\prime}, q, p$ on the path P. Suppose that that following conditions hold.

1) $L\left(u_{\star}\right) \mid \geq 2$ and $u_{\star} \in V\left(P_{\star}\right)$; AND
2) P is $(2, L)$-short and every vertex of $P-u_{\star}$ has an L-list of size at least three; AND
3) if $\left|V\left(P_{\star}\right)\right|>1$, then $u_{\star} \notin\left\{q, q^{\prime}\right\}$ and there is a vertex $w \in D_{1}(C)$ such that $G[N(w) \cap V(P)]=P_{\star}$ and such that any 2-chord of C with both endpoints in P which separates u^{\star} from an edge of $E(C) \backslash E(P)$ has midpoint w and endpoints in P_{\star}.

Then both of the following hold.
A) $\operatorname{Link}_{L}(P) \neq \varnothing$; AND
B) If there is a $v \in V(p P q) \backslash\left\{u_{\star}\right\}$ such that $|L(v)| \geq 4$ and v is a P-hinge of C, then there exist two elements ψ_{1}, ψ_{2} of $\operatorname{Link}_{L}(P)$ which use different colors on p and both restrict to the same partial L-coloring of $q^{\prime} P p^{\prime}$.

The reason we need this result is that, when we delete vertices on the 1-necklace of a closd ring in a critical mosaic, we use the results of Sections 1.4, 1.6, and 1.7, but we have the added complication that, after we delete the vertices of a closed ring C in a critical mosaic, there is possibly a lone 2-list left in the 1-necklace of C. This is due to Definition 2.1.3.

7.1 Broken Wheels with 2-Lists

This section consists of the following intermediate result, which we need in order to prove Theorem 7.0.1.
Theorem 7.1.1. Let H be a broken wheel with principal path $P:=p_{1} p_{2} p_{3}$, and let $u_{\star} \in V(H \backslash P)$. Let L be a list-assignment for H such that $\left|L\left(u_{\star}\right)\right| \geq 2$, and, for each $v \in V(H) \backslash\left\{u_{\star}, p_{2}\right\},|L(v)| \geq 3$. Then the following hold.

1) There exists a pair of colors $(c, d) \in L\left(p_{1}\right) \times L\left(p_{3}\right)$ such that, for any L-coloring ϕ of $V(P)$ using c, d on p_{1}, p_{3} respectively, ϕ extends to an L-coloring of H; AND
2) If $\left|L\left(p_{3}\right)\right| \geq 4$, then there exists a a color $c \in L\left(p_{1}\right)$ and two distinct colors $d_{0}, d_{1} \in L\left(p_{3}\right)$ such that, for each $i=0,1$ and any L-coloring ϕ of $V(P)$ using c, d_{i} on p_{1}, p_{3} respectively, ϕ extends to an L-coloring of H.

This is a variant of Theorem 1.5.5 in the case where one of the vertices of the outer face not lying in the specified 2-path has a 2-list, but the vertices of the specified 2-path are not precolored. Unlike Theorem 1.5.5, we need to restrict ourselves to broken wheels in this case. The counterexample in Figure 7.1.1 illustrates why we restrict the structure of the graph in this way, as the analogue to Theorem 1.5.5 in the general case is false. In the graph in Figure 7.1.1, it is not possible to color only the endpoints of $p_{1} p_{2} p_{3}$ in such a way as to prevent the existence of a proper coloring of $p_{1} p_{2} p_{3}$ which uses the color a on p_{2}.

Figure 7.1.1: Theorem 1.5.5 does not hold if an internal 2-list is permitted
We now prove 1) of Theorem 7.1.1.

Proof. Let H be a vertex-minimal counterexample to 1) of Theorem 7.1.1, and let P, u, L be as in the statement of the theorem, where $P:=p_{1} p_{2} p_{3}$. Let $H \backslash\left\{p_{2}\right\}=p_{1} u_{1} \cdots u_{t} p_{3}$ for some $t \geq 1$. Let $n \in\{1, \cdots, t\}$, where $u=u_{n}$. Note that $\left|L\left(u_{n}\right)\right|=2$, or else we contradict Theorem 1.5.5. Since H is a counterexample and $p_{1} p_{3} \notin E(H)$, it follows that, for each pair $(c, d) \in L\left(p_{1}\right) \times L\left(p_{3}\right)$, there is an L-coloring $\sigma^{c d}$ of P which uses c, d on p_{1}, p_{3} respectively and which does not extend to an L-coloring of H. For each $q \in L\left(p_{2}\right)$, let $S_{q}:=\left\{(c, d) \in L\left(p_{1}\right) \times L\left(p_{3}\right): \sigma^{c d}\left(p_{2}\right)=q\right\}$.

For each $i=1, \cdots, t$, let $H_{i}^{\text {left }}$ be the subgraph of H induced by $\left\{p_{1}, p_{2}\right\} \cup\left\{u_{1}, \cdots, u_{i}\right\}$ and let $P_{i}^{\text {left }}:=p_{1} p_{2} u_{i}$ be the principal path of $H_{i}^{\text {left }}$. Likewise, let $H_{i}^{\text {right }}$ be the subgraph of H induced by $\left\{p_{2}, p_{3}\right\} \cup\left\{u_{i}, \cdots, u_{t}\right\}$ and let $P_{i}^{\text {right }}:=u_{i} p_{2} p_{3}$ be the principal path of $H_{i}^{\text {left }}$.

Claim 7.1.2. For each color $r \in L\left(u_{n}\right), r \in L\left(p_{2}\right)$ and $S_{r} \neq \varnothing$.

Proof: Let $r \in L\left(u_{n}\right)$ and suppose that this does not hold. Let $P^{\prime}:=p_{1} p_{2} u_{n}$ and $P^{\prime \prime}:=u_{n} p_{2} p_{3}$. Let H^{\prime} be the subgraph of H induced by $V\left(P^{\prime}\right) \cup\left\{u_{2}, \cdots, u_{n-1}\right\}$, and let $H^{\prime \prime}$ be the subgraph of H induced by $V\left(P^{\prime \prime}\right) \cup$ $\left\{u_{n+1}, \cdots, u_{t}\right\}$. By Theorem 1.5.5, there exists a $c \in L\left(p_{1}\right)$ such that any L-coloring of $P_{n}^{\text {left }}$ using c, r on p_{1}, u_{n} respectively extends to an L-coloring of $H_{n}^{\text {left }}$, and $c \neq r$ if $u_{1}=u_{n}$. Likewise, there exists a $d \in L\left(p_{3}\right)$ such that any L-coloring of $P_{n}^{\text {right }}$ using r, d on $u_{n} p_{2}$ respectively extends to an L-coloring of $H_{n}^{\text {right }}$ and $d \neq r$ if $u_{n}=u_{t}$. Since $\sigma^{c d}\left(p_{2}\right) \neq r$, it follows that $\left(c, \sigma^{c d}\left(p_{2}\right), r\right)$ is a proper L-coloring of $V\left(P_{n}^{\text {left }}\right)$ and $\left(r, \sigma^{c d}\left(p_{2}\right), d\right)$ is a proper L-coloring of $V\left(P_{n}^{\text {right }}\right)$, so $\sigma^{c d}$ extends to an L-coloring of H, which is false.

We now fix two colors r, s such that $L\left(u_{n}\right)=\{r, s\}$. We now have the following:

Claim 7.1.3. $n \notin\{1, t\}$.

Proof: Suppose toward a contradiction that u_{n} is an endpoint of $H \backslash P$ and, without loss of generality, let $n=1$. Since $\left|L\left(p_{1}\right)\right| \geq 3$ and $\left|L\left(u_{1}\right)\right|=2$, there is a color $c \in L\left(p_{1}\right)$ such that $c \notin L\left(u_{1}\right)$. If $u_{1}=u_{n}=u_{t}$, then, since $L\left(p_{3}\right) \mid \geq 3$, we choose a color $d \in L\left(p_{3}\right)$ such that $d \notin L\left(u_{1}\right)$. Then any L-coloring of P using c, d on p_{1}, p_{3} respectively extends to H, since there is a color left over for u_{1}, contradicting the fact that H is a minimal counterexample. Thus, we have $t>1$. For each $d \in L\left(p_{3}\right)$, the path $u_{1} \cdots u_{t}$ is not $L_{\sigma_{c d}}$-colorable, and each internal vertex of $u_{1} \cdots u_{t}$ has an $L_{\sigma_{c d}}$-list of size at least two. Since $t>1$, it follows from our choice of c that, for each $d \in L\left(p_{3}\right)$, we have $\left|L_{\sigma^{c d}}\left(u_{1}\right)\right| \geq 1$ and $\left|L_{\sigma^{c d}}\left(u_{t}\right)\right| \geq 1$.

Thus, for each $d \in L\left(p_{3}\right)$, we have $\left|L_{\sigma^{c d}}\left(u_{1}\right)\right|=\left|L_{\sigma^{c d}}\left(u_{t}\right)\right|=1$, and each internal vertex of $u_{1} \cdots u_{t}$ has an $L_{\sigma^{c d}}$-list of size precisely two. Since $\left|L\left(u_{t}\right)\right|=3$, we conclude that $L\left(p_{3}\right)=L\left(u_{t}\right)$, and, for each $d \in L\left(p_{3}\right)$ and $j=1, \cdots, t$, $\sigma^{c d}\left(p_{2}\right)$ lies in $L\left(u_{j}\right)$. Applying Claim 7.1.2, we have $L\left(u_{1}\right)=\left\{\sigma^{c d}\left(p_{2}\right): d \in L\left(p_{3}\right)\right\}$. In particular, we have $\sigma^{c r}\left(p_{2}\right)=s$ and $\sigma^{c s}\left(p_{2}\right)=r$. Since $c \notin L\left(u_{1}\right)$, we have $c \notin\{r, s\}$. Let $q \in L\left(p_{3}\right) \backslash\{r, s\}$. Since $\sigma^{c q}\left(p_{2}\right) \in\{r, s\}$, suppose without loss of generality that $\sigma^{c q}\left(p_{2}\right)=r$.

Let L^{\prime} be a list-assignment for $u_{1} \cdots u_{t} p_{3}$ obtained by deleting r from the L-list of each vertex in $u_{1} \cdots u_{t} p_{3}$. Then each vertex of $u_{2} \cdots u_{t} p_{3}$ has an L^{\prime}-list of size at least two, and $L^{\prime}\left(p_{3}\right)=\{s, q\}$. Thus, there is an L^{\prime}-coloring of $u_{1} \cdots u_{t} p_{3}$ which uses s on u_{1}, and thus one of $\sigma^{c s}, \sigma^{c q}$ extends to an L-coloring of H, which is false.

Now we have the following:

Claim 7.1.4. For any $(c, d) \in L\left(p_{1}\right) \times L\left(p_{3}\right)$, if $\sigma^{c d}\left(p_{2}\right) \notin\{r, s\}$, then $\sigma^{c d}\left(p_{2}\right) \in L\left(u_{i}\right)$ for each $i=1, \cdots, n-$ $1, n+1, \cdots, t$, and furthermore, either $L\left(u_{n-1}\right)=\left\{r, s, \sigma^{c d}\left(p_{2}\right)\right\}$, or $L\left(u_{n+1}\right)=\left\{r, s, \sigma^{c d}\left(p_{2}\right)\right\}$.

Proof: Let $(c, d) \in L\left(p_{1}\right) \times L\left(p_{3}\right)$ and let $\sigma^{c d}\left(p_{2}\right):=q$ for some $q \notin\{r, s\}$. By Observation 1.4.2, since $q \notin L\left(u_{n}\right)$, we have $\mathcal{Z}_{H_{n}^{\text {leff }}}(c, q, \bullet) \neq \varnothing$ and $\mathcal{Z}_{H_{n}^{\text {right }}}(\bullet, q, d) \neq \varnothing$. Note that $\mathcal{Z}_{H_{n}^{\text {leff }}}(c, q, \bullet) \cap \mathcal{Z}_{H_{n}^{\text {right }}}(\bullet, q, d)=\varnothing$, or else $\sigma^{c d}$ extends to an L-coloring of H, which is false. Thus, we have $\left|Z_{H_{n}^{\text {leff }}}(c, q, \bullet)\right|=\left|\mathcal{Z}_{H_{n}^{\text {right }}}(\bullet, q, d)\right|=1$, so suppose without loss of generality that $\mathcal{Z}_{H_{n}^{\text {leff }}}(c, q, \bullet)=\{r\}$ and ${\underset{Z}{H_{n}^{\text {righ }}}}(\bullet, q, d)=\{s\}$. Thus, by 2) of Proposition 1.4.4, we have $q \in L\left(u_{i}\right)$ for each $i=1, \cdots, n-1$ and each $i=n+1, \cdots, t$, and since $s \notin \mathcal{Z}_{H_{n}^{\text {leff }}}(c, q, \bullet)$, we have $s \in L\left(u_{n-1}\right)$, and likewise, since $r \notin \mathcal{Z}_{H_{n}^{\text {right }}}(\bullet, q, d)$, we have $r \in L\left(u_{n+1}\right)$.

To finish, we need to show that either $r \in L\left(u_{n-1}\right)$ or $s \in L\left(u_{n+1}\right)$. Suppose neither of these hold. Applying Claim 7.1.2, there exists a pair $\left(c_{1}, d_{1}\right) \in S_{r}$. Since $\sigma^{c_{1} d_{1}}$ does not extend to an L-coloring of H, we have $\mathcal{Z}_{H_{n}^{\text {left }}}\left(c_{1}, r, \bullet\right) \cap$ $\mathcal{Z}_{H_{n}^{\text {right }}}\left(\bullet, r, d_{1}\right)=\varnothing$. As $r \notin L\left(u_{n-1}\right)$, it follows from 1) of Proposition 1.4.4 that $s \in \mathcal{Z}_{H_{n}^{\text {leff }}}\left(c_{1}, r, \bullet\right)$. Since $s \notin L\left(u_{n+1}\right)$, we have $s \in \mathcal{Z}_{H_{n}^{\text {righ }}}\left(\bullet, r, d_{1}\right)$, contradicting the fact that $\mathcal{Z}_{H_{n}^{\text {leff }}}\left(c_{1}, r, \bullet\right) \cap \mathcal{Z}_{H_{n}^{\text {right }}}\left(\bullet, r, d_{1}\right)=\varnothing$.

We can show that there exists such a pair of colors:

Claim 7.1.5. There exist $c_{*} \in L\left(p_{1}\right)$ and $d_{*} \in L\left(p_{3}\right)$ such that $\sigma^{c_{*} d_{*}}\left(p_{2}\right) \notin\{r, s\}$.

Proof: By Claim 7.1.2, we have $n \neq 1, t$. Thus, let $q \in L\left(u_{n-1}\right)$ and $q^{\prime} \in L\left(u_{n+1}\right)$ with $q, q^{\prime} \notin\{r, s\}$. By Theorem 1.5.5, there exists a $c \in L\left(p_{1}\right)$ such that any L-coloring of $P_{n-1}^{\text {left }}$ using c, q on p_{1}, u_{n-1} respectively extends to an L coloring of $H_{n-1}^{\text {left }}$, and $c \neq q$ if $n=2$. Likewise, there exists a $d \in L\left(p_{3}\right)$ such that any L-coloring of $P_{n+1}^{\text {right }}$ using q^{\prime}, d on u_{n+1}, p_{3} respectively extends to an L-coloring of $H_{n+1}^{\text {right }}$, and $q^{\prime} \neq d$ if $n+1=t$. Suppose that $\sigma^{c d}\left(p_{2}\right) \notin\left\{q, q^{\prime}\right\}$. Then $\left(c, \sigma^{c d}, q\right)$ is a proper L-coloring of $p_{1} p_{2} u_{n-1}$, and $\left(q^{\prime}, \sigma^{c d}\left(p_{2}\right), d\right)$ is a proper L-coloring of $u_{n+1} p_{2} p_{1}$. By our choice of c, d, the coloring $\sigma_{c d}$ extends to an L-coloring of $H-u_{n}$ using q, q^{\prime} on u_{n-1}, u_{n+1} respectively. Since one of r, s is left over for $u_{n}, \sigma^{c d}$ extend to an L-coloring of H, which is false. Thus, we have $\sigma^{c d}\left(p_{2}\right) \in\left\{q, q^{\prime}\right\}$.

Applying Claim 7.1.5, we fix a pair $\left(c_{*}, d_{*}\right) \in L\left(p_{1}\right) \times L\left(p_{3}\right)$ such that $\sigma^{c_{*} d_{*}}\left(p_{2}\right) \notin\{r, s\}$. Let $q:=\sigma^{c_{*} d_{*}}\left(p_{2}\right)$. By Claim 7.1.4, we have $q \in L\left(u_{i}\right)$ for each $i=1, \cdots, n-1, n+1, \cdots, t$.

Claim 7.1.6. For any pair of colors $(c, d) \in L\left(p_{1}\right) \times L\left(p_{3}\right)$, we have $\sigma^{c d}\left(p_{2}\right) \in\{q, r, s\}$.
Proof: Suppose there is a $(c, d) \in L\left(p_{1}\right) \times L\left(p_{3}\right)$ with $\sigma^{c d}\left(p_{2}\right) \notin\{r, s, q\}$. By Claim 7.1.4, we have $\sigma^{c d}\left(p_{2}\right) \in$ $L\left(u_{n-1}\right) \cap L\left(u_{n+1}\right)$ and we have either $L\left(u_{n-1}\right)=\{r, s, q\}$ or $L\left(u_{n+1}\right)=\{r, s, q\}$, a contradiction.

Now we have the following:

Claim 7.1.7. For each $c \in L\left(p_{1}\right)$, there is at most one $d \in L\left(p_{3}\right)$ such that $(c, d) \in S_{q}$. Likewise, for each $d \in L\left(p_{3}\right)$, there is at most one $c \in L\left(p_{1}\right)$ such that $(c, d) \in S_{q}$.

Proof: Suppose that this does not hold, and, without loss of generality, suppose that there exists a $c \in L\left(p_{1}\right)$ such that, for some distinct $d, d^{\prime} \in L\left(p_{3}\right)$, we have $d, d^{\prime} \in S_{q}$. Since $q \notin L\left(u_{n}\right)$ and $\left|L\left(u_{n}\right)\right|=2$, it follows from Observation 1.4.2 that there is at $b \in \mathcal{Z}_{H_{n}^{\text {leff }}}(c, q, \bullet)$. By Claim 7.1.3, $n \neq t$, and thus each of $(b, q, d),\left(b, q, d^{\prime}\right)$ is a proper L-coloring of $u_{n} p_{2} p_{3}$. Applying Observation 1.4.2 again, one of these two L-colorings extends to an L-coloring of $H_{n}^{\text {right }}$, so one of $\sigma^{c d}, \sigma^{c d^{\prime}}$ extends to an L-coloring of H, contradicting our assumption.

Now we have the following:

Claim 7.1.8. $L\left(p_{1}\right)=L\left(u_{1}\right)$ and $L\left(p_{3}\right)=L\left(u_{t}\right)$.
Proof: Suppose that this does not hold, and, without loss of generality, suppose that $L\left(p_{1}\right) \neq L\left(u_{1}\right)$. Thus, there exists a $q^{\prime} \in L\left(p_{1}\right)$ with $q^{\prime} \notin L\left(u_{1}\right)$.

Subclaim 7.1.9. For each $d \in L\left(p_{3}\right)$, we have $\sigma^{q^{\prime} d}\left(p_{2}\right) \in\{r, s\}$.
Proof: Suppose this does not hold. Then, by Claim 7.1.6, there exists a $d \in L\left(p_{3}\right)$ such that $\left(q^{\prime}, d\right) \in S_{q}$. Since $q^{\prime} \notin L\left(u_{1}\right)$, and $u_{1} \neq u_{n}$, we have ${\underset{z}{H_{n}^{\text {left }}}}\left(q^{\prime}, q, \bullet\right)=L\left(u_{n}\right)=\{r, s\}$ by Proposition 1.4.4. Again by Observation 1.4.2, we have $\mathcal{Z}_{H_{n}^{\text {right }}}(\bullet, q, d) \neq \varnothing$, since $q \notin\{r, s\}$. But then $\mathcal{Z}_{H_{n}^{\text {left }}}\left(q^{\prime}, q, \bullet\right) \cap \mathcal{Z}_{H_{n}^{\text {righ }}}(\bullet, q, d) \neq \varnothing$, so $\sigma^{q^{\prime} d}$ extends to an L-coloring of H, which is false.

Since $\left|L\left(p_{3}\right)\right| \geq 3$, it follows from Subclaim 7.1.9 that there exist $d, d^{\prime} \in L\left(p_{3}\right)$ such that $\sigma^{q^{\prime} d}\left(p_{2}\right)=\sigma^{q^{\prime} d^{\prime}}\left(p_{2}\right)$, say without loss of generality that $\sigma^{q^{\prime}} d\left(p_{2}\right)=\sigma^{q^{\prime} d^{\prime}}\left(p_{2}\right)=r$. By Observation 1.4.2, the L-coloring of the edge $u_{n} p_{2}$ with (s, r) extends to an L-coloring ψ of $H_{n}^{\text {right }}$ using one of d, d^{\prime} on p_{3}. Suppose without loss of generality that $\psi\left(p_{3}\right)=d$. Since $q^{\prime} \notin L\left(u_{1}\right)$, it follows from Proposition 1.4.4 that the coloring $\left(q^{\prime}, r, s\right)$ of $p_{1} p_{2} u_{n}$ extends to an L-coloring ϕ of $H_{n}^{\text {left. }}$. But then $\phi \cup \psi$ is an extension of $\sigma^{q^{\prime} d}$ to an L-coloring of H, which is false.

By Claim 7.1.3, $n \notin\{1, t\}$. Since $q \in L\left(u_{i}\right)$ for each $i \in\{1, \cdots, n-1, n+1, \cdots, t\}$, it follows from Claim 7.1.8 that $q \in L\left(p_{1}\right) \cap L\left(p_{3}\right)$.

Claim 7.1.10. $L\left(p_{1}\right)=L\left(p_{3}\right)=\{q, r, s\}$.

Proof: Suppose not. Then, without loss of generality, suppose that $L\left(p_{1}\right) \neq\{q, r, s\}$. By Claim 7.1.8, we have $L\left(u_{1}\right) \neq\{q, r, s\}$. Since $q \in L\left(u_{1}\right)$ and $\left|L\left(u_{1}\right)\right|=3$, one of r, s does not lie in $L\left(u_{1}\right)$, so suppose without loss of generality that $r \notin L\left(u_{1}\right)$.

Subclaim 7.1.11. For any $c \in L\left(p_{1}\right)$, there is at most one one $d \in L\left(p_{3}\right)$ such that $(c, d) \in S_{r}$.
Proof: Let $c \in L\left(p_{1}\right)$ and suppose toward a contradiction that there exist distinct $d, d^{\prime} \in L\left(p_{3}\right)$ such that (c, d) and $\left(c, d^{\prime}\right) \in S_{r}$. By Claim 7.1.3, we have $n \neq 1$. Since $r \notin L\left(u_{1}\right)$, it follows from Proposition 1.4.4 that $s \in \mathcal{Z}_{H_{n}^{\text {left }}}(c, r, \bullet)$. Consider the two L-colorings $(s, r, d),\left(s, r, d^{\prime}\right)$ of $u_{n} p_{2} p_{3}$. By Claim 7.1.3, $n \neq t$, so each of $(s, r, d),\left(s, r, d^{\prime}\right)$ is a proper L-coloring of $u_{n} p_{2} p_{3}$, and, by Observation 1.4.2, one of these extends to an L-coloring of $H_{n}^{\text {right }}$. Thus, one of $\sigma^{c d}, \sigma^{c d^{\prime}}$ extends to an L-coloring of H, which is false.

Now note the following:
Subclaim 7.1.12. $s \notin L\left(p_{1}\right)$.
Proof: Suppose that $s \in L\left(p_{1}\right)$. By Claim 7.1.6, we have $\sigma^{s d}\left(p_{2}\right) \in\{r, q\}$ for each $d \in L\left(p_{3}\right)$. By Subclaim 7.1.11, there is at most one $d \in L\left(p_{3}\right)$ such that $\sigma^{s d}\left(p_{2}\right)=r$, and, by Claim 7.1.7, there is at most one $d \in L\left(p_{3}\right)$ such that $\sigma^{s d}\left(p_{2}\right)=q$. Since $\left|L\left(p_{3}\right)\right| \geq 3$, we have a contradiction.

Since $s \notin L\left(p_{1}\right)$, it follows from Claim 7.1.8 that $s \notin L\left(u_{1}\right)$. Thus, we have $\{r, s\} \cap L\left(u_{1}\right)=\varnothing$. Recall that $q \in L\left(p_{1}\right)$. By Claim 7.1.6, we have $\sigma^{q d}\left(p_{2}\right) \in\{r, s\}$ for each $d \in L\left(p_{3}\right)$. By Subclaim 7.1.11, since $\left|L\left(p_{3}\right)\right| \geq 3$, there exist two distinct colors $d, d^{\prime} \in L\left(p_{3}\right)$ such that $\sigma^{q d}\left(p_{2}\right)=\sigma^{q d^{\prime}}\left(p_{2}\right)=s$.

Since $n \neq t$, each of $(r, s, d),\left(r, s, d^{\prime}\right)$ is a proper L-coloring of $u_{n} p_{2} p_{3}$, and, by Observation1.4.2, one of these extends to an L-coloring of $H_{n}^{\text {right }}$, so suppose without loss of generality that $d \in z_{H_{n}^{\text {right }}}(r, s, \bullet)$. Since $s \notin L\left(u_{1}\right)$ and $n \neq 1$, it follows from Proposition 1.4.4 that the L-coloring (q, s, r) of $p_{1} p_{2} u_{n}$ extends to an L-coloring of $H_{n}^{\text {left }}$, so $\sigma^{q d}$ extend to an L-coloring of H, contradicting our assumption.

We now have enough to finish the proof of 1) of Theorem 7.1.1.

Claim 7.1.13. $\sigma^{r r}\left(p_{2}\right)=s$ and $\sigma^{s s}\left(p_{2}\right)=r$.

Proof: Suppose that one of these does not hold, and suppose without loss of generality that $\sigma^{r r}\left(p_{2}\right) \neq s$. By Claim 7.1.6, we have $\sigma^{r r}\left(p_{2}\right)=q$, and we also have $\sigma^{r s}\left(p_{2}\right)=q$, so we contradict Claim 7.1.7.

Applying Claim 7.1.6, we have $\sigma^{q q}\left(p_{2}\right) \in\{r, s\}$, so suppose without loss of generality that $\sigma^{q q}\left(p_{2}\right)=r$. By Observation 1.4.2, $\mathcal{Z}_{H_{n}^{\text {lef }}}(\bullet, r, s)$ contains one of q, s and $z_{H_{n}^{\text {righ }}}(s, r, \bullet)$ also contains one of q, s. If s lies in both of these lists, then, since $\sigma^{s s}=r$, the coloring $\sigma^{s s}$ extends to an L-coloring of H, contradicting our assumption. Thus, suppose without loss of generality that $\mathcal{Z}_{H_{n}^{\text {left }}}(\bullet, r, s)=\{q\}$. If $q \in \mathcal{Z}_{H_{n}^{\text {right }}}(s, r, \bullet)$, then, since $\sigma^{q q}\left(p_{2}\right)=r$, it follows that $\sigma^{q q}$ extends to an L-coloring of H, contradicting our assumption. Thus, $\mathcal{Z}_{H_{n}^{\text {right }}}(s, r, \bullet)=\{s\}$. Applying Claim 7.1.6 again, we have $\sigma^{q s}\left(p_{2}\right)=r$. Since $z_{H_{n}^{\text {left }}}(\bullet, r, s)=\{q\}$ and $z_{H_{n}^{\text {ight }}}(s, r, \bullet)=\{s\}$, it follows that $\sigma^{q s}$ extends to an L-coloring of H, contradicting our assumption. This completes the proof of 1) of Theorem 7.1.1.
2) of Theorem 7.1.1 deals with the case where one of the two endpoints of the principal path has a 4-list. We now prove 2), which we restate with the lemma below.

Lemma 7.1.14. Let H be a broken wheel with principal path $P:=p_{1} p_{2} p_{3}$, and let $u_{\star} \in V(H \backslash P)$. Let L be a list-assignment for H such that the following hold.

1) $\left|L\left(u_{\star}\right)\right| \geq 2$; AND
2) $\left|L\left(p_{3}\right)\right| \geq 4$, and, for each $v \in V(H) \backslash\left\{u_{\star}, p_{2}, p_{3}\right\},|L(v)| \geq 3$.

Then there exists a a color $c \in L\left(p_{1}\right)$ and two distinct colors $d_{0}, d_{1} \in L\left(p_{3}\right)$ such that, for each $i=0,1$ and any L-coloring ϕ of $V(P)$ using c, d_{i} on p_{1}, p_{3} respectively, ϕ extends to an L-coloring of H.

Proof. Let H be a counterexample to the lemma. By removing colors from some of the lists if necessary, we suppose that $|L(v)|=3$ for all $v \in V(H) \backslash\left\{u_{\star}, p_{2}, p_{3}\right\},\left|L\left(p_{3}\right)\right|=4$, and $\left|L\left(u_{\star}\right)\right|=2$. Let $S \subseteq L\left(p_{1}\right) \times L\left(p_{3}\right)$ be the set of pairs (c, d) such that any L-coloring of P using c, d on p_{1}, p_{3} respectively extends to an L-coloring of H. Let $H-p_{2}=p_{1} u_{1} \cdots u_{t} p_{3}$ for some $t \geq 1$ and let $m \in\{1, \cdots, t\}$ with $u_{m}=u_{\star}$. Let $H^{\text {left }}$ be the broken wheel with principal path $P^{\text {left }}:=p_{1} p_{2} u_{m}$, where $H^{\text {left }}-p_{2}=p_{1} u_{1} \cdots u_{m}$. Likewise, let $H^{\text {right }}$ be the broken wheel with principal path $P^{\text {right }}:=u_{m} p_{2} p_{3}$, where $H^{\text {right }}-p_{2}=u_{m} \cdots u_{t} p_{3}$. Since $\left|L\left(u_{t}\right)\right|=3$ and $\left|L\left(p_{3}\right)\right|=4$, let $L\left(p_{3}\right)=\left\{d_{0}, d_{1}, d_{2}, d_{3}\right\}$, where $d_{3} \notin L\left(u_{t}\right)$.

Since H is a counterexample, there are is at most one pair in S whose second coordinate is d_{3}, so let $c_{0}, c_{1} \in L\left(p_{1}\right)$ be distinct colors with $\left(c_{0}, d_{3}\right),\left(c_{1}, d_{3}\right) \notin S$. Thus, for each $i=0,1$, there is an L-coloring $\sigma_{i 3}$ of $V(P)$ using c_{i}, d_{3} on the respective colors p_{1}, p_{3}, where $\sigma_{i 3}$ does not extend to an L-coloring of H.

Claim 7.1.15. For each $i=0,1$, we have $\mathcal{Z}_{H^{\text {left }}}\left(c_{i}, \sigma_{i 3}\left(p_{2}\right), \bullet\right)=\varnothing$ and $\sigma_{i 3}\left(p_{2}\right)=d_{i}$. Furthermore, $L\left(u_{m}\right)=$ $\left\{\sigma_{03}\left(p_{2}\right), \sigma_{13}\left(p_{2}\right)\right\}$.

Proof: Suppose there is an L-coloring ϕ of $H^{\text {left }}$ using $c_{i}, \sigma_{i 3}\left(p_{2}\right)$ on the respective vertices p_{1}, p_{2}. Since $d_{3} \notin L\left(u_{t}\right)$, it follows from Proposition 1.4.4 that the L-coloring $\left(\phi\left(u_{m}\right), \sigma_{i 3}\left(p_{2}\right), d_{3}\right)$ of $P^{\text {right }}$ extends to an L-coloring of $H^{\text {right }}$ (this is true even if $H^{\text {right }}$ is a triangle, since $d_{3} \notin L\left(u_{t}\right)$). This contradicts our assumption that $\sigma_{i 3}$ does not extend to an L-coloring of H. Thus, we indeed have $\mathcal{Z}_{H^{\text {left }}}\left(c_{i}, \sigma_{i 3}\left(p_{2}\right), \bullet\right)=\varnothing$ for each $i=0,1$.

For each $i=0,1$, let $r_{i}:=\sigma_{i 3}\left(p_{3}\right)$.
Claim 7.1.16. For each $i=0,1, c_{1-i}=r_{i}$.

Proof: Let h be a color distinct from r_{0}, r_{1} and let L^{\prime} be a list-assignment for $V\left(H^{\text {left }}\right)$ where $L^{\prime}\left(u_{m}\right)=\left\{r_{0}, r_{1}, h\right\}$ and otherwise $L^{\prime}=L$. By Theorem 0.2.3, we have $z_{H^{\text {left }}, L^{\prime}}\left(c_{i}, \sigma_{i 3}\left(p_{2}\right), \bullet\right) \neq \varnothing$ for each $i=0,1$. Thus, by Claim 7.1.15, we have $z_{H^{\text {left }}, L^{\prime}}\left(c_{i}, \sigma_{i 3}\left(p_{2}\right), \bullet\right)=\{h\}$ for each $i=0,1$. Since $c_{0} \neq c_{1}$, it follows from 2) of Proposition 1.4.7 that, for each $i=0,1$, we have $c_{1-i}=\sigma_{i 2}\left(p_{2}\right)$ and thus $c_{1-i}=r_{i}$.

Combining Claim 7.1.15 and Claim 7.1.16, we have $\left\{c_{0}, c_{1}\right\} \subseteq L\left(p_{2}\right)$ and $L\left(u_{m}\right)=\left\{c_{0}, c_{1}\right\}$. Since $\left|L\left(p_{1}\right)\right|=3$, let f be the lone color of $L\left(p_{1}\right) \backslash\left\{c_{0}, c_{1}\right\}$.

Claim 7.1.17. $\mathfrak{z}_{H^{\mathrm{left}}}\left(\bullet, c_{1}, c_{0}\right)=\mathcal{z}_{H^{\mathrm{left}}}\left(\bullet, c_{0}, c_{1}\right)=\{f\}$ and furthermore, $\left\{c_{0}, c_{1}\right\} \subseteq L\left(u_{1}\right)$.
Proof: Suppose that there is an $i \in\{0,1\}$ such that $\mathcal{Z}_{H^{\text {left }}}\left(\bullet, c_{i}, c_{1-i}\right) \neq\{f\}$, say $i=0$ without loss of generality. Since $L\left(p_{1}\right)=\left\{c_{0}, c_{1}, f\right\}$, it follows from Theorem 0.2.3 that $c_{1} \in \mathcal{Z}_{H^{\mathrm{left}}}\left(\bullet, c_{0}, c_{1}\right)$. By Claim 7.1.16, we have $r_{1}=c_{0}$. Yet we also have $r_{1}=\sigma_{13}\left(p_{2}\right)$ and, by Claim 7.1.15, $z_{H^{\text {left }}}\left(c_{1}, r_{1}, \bullet\right)=\varnothing$, so we have a contradiction. We now check that $\left\{c_{0}, c_{1}\right\} \subseteq L\left(u_{1}\right)$. If $H^{\text {left }}$ is not a triangle, then this immediately follows from Proposition 1.4.4, since $\left|\mathcal{Z}_{H^{\text {left }}}\left(\bullet, c_{i}, c_{1-i}\right)\right|=1$ for each $i=0$, 1 . If $H^{\text {left }}$ is a triangle and there is an $i \in\{0,1\}$ with $c_{i} \notin L\left(u_{1}\right)$, then $m=1$ and $z_{H^{\text {left }}}\left(c_{i}, \sigma_{i 3}\left(p_{2}\right), \bullet\right) \neq \varnothing$, contradicting Claim 7.1.15.

We now have the following:

Claim 7.1.18. $\left(f, d_{3}\right) \in S$

Proof: Suppose that $\left(f, d_{3}\right) \notin S$. Thus, there is an L-coloring τ of $p_{1} p_{2} p_{3}$ using f, d_{3} on the respective vertices p_{1}, p_{3}, where τ does not extend to an L-coloring of H. At least one of r_{0}, r_{1} is distinct from $\tau\left(p_{2}\right)$, suppose without loss of generality that $\tau\left(p_{2}\right) \neq r_{0}$. Note that $\tau\left(p_{2}\right) \neq f$, since $f=\tau\left(p_{1}\right)$. Since $d_{3} \notin L\left(u_{t}\right)$ and $L\left(u_{m}\right)=$ $\left\{r_{0}, r_{1}\right\}$, it follows from Proposition 1.4.4 that $r_{0} \in \mathcal{Z}_{H^{\text {right }}}\left(\bullet, \tau\left(p_{2}\right), d_{3}\right)$. This is true even if $H^{\text {right }}$ is a triangle, since $d_{3}, \tau\left(p_{2}\right) \neq r_{0}$. Thus, we have $f \notin \mathcal{Z}_{H^{\text {left }}}\left(\bullet, \tau\left(p_{2}\right), r_{0}\right)$, or else τ extends to an L-coloring of H. Since $r_{0}=c_{1}$ and $f \in L\left(p_{1}\right) \backslash\left\{c_{0}, c_{1}\right\}$, we have $\tau\left(p_{2}\right), r_{0} \neq f$, so $H^{\text {left }}$ is not a triangle.

Since $r_{0}=c_{1}, r_{1}=c_{0}$, and $f \notin \mathcal{Z}_{H^{\text {left }}}\left(\bullet, \tau\left(p_{2}\right), r_{0}\right)$, we have $\tau\left(p_{2}\right) \neq r_{1}$, or else we contradict Caim 7.1.17. Thus, $\tau\left(p_{2}\right) \notin\left\{c_{0}, c_{1}, f\right\}$. By Proposition 1.4.4, since $H^{\text {left }}$ is not a triangle, we have $f, \tau\left(p_{2}\right) \in L\left(u_{1}\right)$. By Claim 7.1.17, $c_{0}, c_{1} \in L\left(u_{1}\right)$. Thus, $L\left(u_{1}\right)$ contains the two disjoint sets $\left\{f, \tau\left(p_{2}\right)\right\},\left\{c_{0}, c_{1}\right\}$, which is false as $\left|L\left(u_{1}\right)\right|=3$.

Since $\left(f, d_{3}\right) \in S$, it follows that $\left(f, d_{0}\right),\left(f, d_{1}\right),\left(f, d_{2}\right) \notin S$, or else we contradict our assumption that H is a counterexample. Thus, for each $i=0,1,2$ there is an L-coloring τ_{i} of P using f, d_{i} on the respective vertices p_{1}, p_{3}, where τ_{i} does not extend to an L-coloring of H.

Claim 7.1.19. For each $k=0,1,2, \tau_{k}\left(p_{2}\right) \in\left\{c_{0}, c_{1}\right\}$.
Proof: Let $k \in\{0,1,2\}$ and suppose that $\tau_{k}\left(p_{2}\right) \notin\left\{c_{0}, c_{1}\right\}$. . Since $L\left(u_{m}\right)=\left\{c_{0}, c_{1}\right\}$, it follows from Observation 1.4.2 that $\mathcal{Z}_{H^{\text {right }}}\left(\bullet, \tau_{k}\left(p_{2}\right), d_{k}\right) \neq \varnothing$, so let $j \in\{0,1\}$ with $c_{j} \in \mathcal{Z}_{H^{\text {right }}}\left(\bullet, \tau_{k}\left(p_{2}\right), d_{k}\right)$. By Claim 7.1.17, we have $\left\{c_{0}, c_{1}\right\} \subseteq L\left(u_{1}\right)$. Since $\left|\left\{f, \tau_{3}\left(p_{2}\right)\right\}\right|=2$ and $\left\{f, \tau_{k}\left(p_{2}\right)\right\} \cap\left\{c_{0}, c_{1}\right\}=\varnothing$, one of $f, \tau_{k}\left(p_{2}\right)$ does not lie in u_{1}, as $\left|L\left(u_{1}\right)\right|=3$. By Proposition 1.4.4, $f \in \mathcal{Z}_{H^{\text {left }}}\left(\bullet, \tau_{k}\left(p_{2}\right), c_{j}\right)$, and τ_{k} extends to an L-coloring of H, which is false.

Since $\left\{\tau_{0}\left(p_{2}\right), \tau_{1}\left(p_{2}\right), \tau_{2}\left(p_{2}\right)\right\} \subseteq\left\{c_{0}, c_{1}\right\}$, there exist $j, k \in\{0,1,2\}$ and a $c \in\left\{c_{0}, c_{1}\right\}$ and such that $\tau_{j}\left(p_{2}\right)=$ $\tau_{k}\left(p_{2}\right)=c$, say $c=c_{0}$ without loss of generality. Thus, we have $d_{j}, d_{k} \neq c_{0}$. By Claim 7.1.17, we have $f \in$ $\mathcal{Z}_{H^{\text {left }}}\left(\bullet, c_{0}, c_{1}\right)$, and, by Observation 1.4.2, the L-coloring $\left(c_{0}, c_{1}\right)$ of $p_{2} u_{m}$ extends to an L-coloring of $H^{\text {right }}$ using one of d_{j}, d_{k} on p_{3}. Thus, one of τ_{j}, τ_{k} extends to an L-coloring of H, which is false. This completes the proof of Lemma 7.1.14 and thus completes the proof of Theorem 7.1.1.

7.2 Completing the Proof of Theorem 7.0.1

This short section consists of the proof of Theorem 7.0.1, which we do not restate as the statement is somewhat lengthy. Let $G, C, P, P_{\star}, u_{\star}$ be as in the statement of Theorem 7.0.1. Let p, p^{\prime} be the endpoints of P and let q, q^{\prime} be the endpoints of P_{\star}, where the (not necessarily distinct) vertices of $\left\{p, p^{\prime}, q, q^{\prime}\right\}$ have the order $p^{\prime}, q^{\prime}, q, p$ on the path P. The following easy observation is an immediate consequence of the assumption that C is induced in G.

Recall that, by 1) of Theorem 1.7.4 we have the following: For any subpath R of C, letting x, x^{\prime} be the endpoints of R, and letting $y \in V(R)$ be an R-hinge, we get that, for any $\psi \in \operatorname{Link}_{L}(x R y)$ and $\psi^{\prime} \in \operatorname{Link}_{L}\left(y R x^{\prime}\right)$, if $\psi(y)=\psi^{\prime}(y)$, the union $\psi \cup \psi^{\prime}$ lies in $\operatorname{Link}_{L}(R)$. By Condition 3) of Theorem 7.0.1, each of q, q^{\prime} is a P-hinge. Combining this with Theorem 1.7.5, we immediately have the following by taking appropriate unions.

Claim 7.2.1. Let $v \in V(p P q)$ be a P-hinge with $v \neq u_{\star}$ and suppose there exist two elements $\psi_{1}, \psi_{2} \in \operatorname{Link}_{L}\left(v P q^{\prime}\right)$ with $\psi_{1}(v) \neq \psi_{2}(v)$. Then there exist two elements τ_{1}, τ_{2} of $\operatorname{Link}_{L}(P)$ such that $\tau_{1}(p) \neq \tau_{2}(p)$ and such that, for each $i \in\{1,2\}$, the restriction of τ_{i} to $\operatorname{dom}\left(\tau_{i}\right) \cap V\left(v P p^{\prime}\right)$ is one of ψ_{1}, ψ_{2}.

Now we return to the proof of Theorem 7.0.1. We break this into two cases.
Case 1: There is no $w \in D_{1}(C)$ such that $G[N(w) \cap V(P)]$ is a subpath of P with u_{\star} as an internal vertex

In this case, u_{\star} is a P-hinge and $P_{\star}=u_{\star}=q=q^{\prime}$. By Theorem 1.7.5, there is an element ψ of $\operatorname{Link}_{L}\left(u_{\star} P p^{\prime}\right)$, since every vertex of $u_{\star} P p^{\prime}$ has an L-list of size at least three, except possibly the endpoint u_{\star}. We first prove A). Applying 1) of Theorem 1.7.5, there exists a $\psi^{\prime} \in \operatorname{Link}_{L}\left(p P u_{\star}\right)$ such that $\psi^{\prime}\left(u_{\star}\right)=\psi\left(u_{\star}\right)$. By 1) of Theorem 1.7.4, the union $\psi \cup \psi^{\prime}$ lies in $\operatorname{Link}_{L}(P)$. This proves Statement A) in this case. Now we prove B).

Let $v \in V(p P q) \backslash\left\{u_{\star}\right\}$ with $|L(v)| \geq 4$ and suppose that v is a P-hinge. By Theorem 1.7.5, there exist two elements ψ_{1}, ψ_{2} of $\operatorname{Link}_{L_{\phi}}\left(u_{\star} P v^{\dagger}, C^{1}, \tilde{G}\right)$ which use $\psi\left(u_{\star}\right)$ on u_{\star} and which color v^{\dagger} with two different colors. Since $u_{\star} \notin T^{\mathrm{int}}$, it follows from 1) of Theorem 1.7.4 that each of $\psi \cup \psi_{1}$ and $\psi \cup \psi_{2}$ lies in $\operatorname{Link}_{L_{\phi}}\left(p^{\prime} P v^{\dagger}, C^{1}, \tilde{G}\right)$. Combining this with Claim 7.2.1, we prove Statement B). Thus, Theorem 7.0.1 holds in this case.

Case 2: There exists a $w \in D_{2}(C)$ such that $G[N(w) \cap V(P)]$ is a subpath of P with u_{\star} as an internal vertex.
In this case, applying Condition 3) of Theorem 7.0.1, let $w \in D_{1}(C)$ be the unique vertex such that $P_{\star}=G[N(w) \cap$ $V(C)]=q P q^{\prime}$, where u_{\star} is an internal vertex of $q P q^{\prime}$.

Claim 7.2.2. $\operatorname{Link}_{L}\left(q P p^{\prime}\right) \neq \varnothing$.
Proof: By 1) of Theorem 7.1.1, there is an element ψ of $\operatorname{Link}_{L}\left(P_{\star}\right)$ obtained by coloring q, q^{\prime}. By Theorem 1.7.5, there is an element ψ^{\prime} of $\operatorname{Link}_{L}\left(q^{\prime} P p^{\prime}\right)$ which uses $\psi\left(q^{\prime}\right)$ on q^{\prime}. Since q^{\prime} is a P-hinge, it follows from 1) of Theorem 1.7.4 that the union $\psi^{\prime} \cup \psi$ is an element of $\operatorname{Link}_{L}\left(q P p^{\prime}\right)$.

We first prove Statement A) of Theorem 7.0.1. Applying Claim 7.2.2, there is a $\psi^{*} \in \operatorname{Link}_{L}\left(q P p^{\prime}\right)$. Applying 1) of Theorem 1.7.5, there exists an element σ of $\operatorname{Link}_{L}(p Q q)$ with $\sigma(q)=\psi^{*}(q)$. Since q is a P-hinge, it follows from 1) of Theorem 1.7.4 that the union $\psi^{*} \cup \sigma$ lies in $\operatorname{Link}_{L}(P)$. This proves A). Now we prove B). Let $v \in V(p P q)$, where v is a P-hinge and $|L(v)| \geq 4$. Since u_{\star} is an internal vertex of P_{\star}, we have $v \neq u_{\star}$. We now break the proof of B) into two cases

Subcase $2.1 v \neq q$
In this case, as above, we fix a $\psi^{*} \in \operatorname{Link}_{L}\left(q P p^{\prime}\right)$ by applying Claim 7.2.2. Again applying Theorem 1.7.5, there exist two elements σ_{1}, σ_{2} of $\operatorname{Link}_{L}(v P q)$ which both color q with $\psi^{*}(q)$ and use different colors on v. Since v is a P-hinge, it follows from 1) of Theorem 1.7.4 that the union $\psi^{*} \cup \sigma_{i}$ lies in $\operatorname{Link}_{L}\left(v P p^{\prime}\right)$ for each $i=1,2$. Combining this with Claim 7.2.1, we prove B) in this case.

Subcase $2.2 v=q$
In this case, since $|L(q)| \geq 4$, it follows from 2) of Theorem 7.1.1 that there exist two L-colorings ψ_{1}, ψ_{2} of $\left\{q, q^{\prime}\right\}$ which use the same color on q^{\prime} and different colors on q, where $\psi_{1}, \psi_{2} \in \operatorname{Link}_{L}\left(P_{\star}\right)$. Let $c=\psi_{1}\left(q^{\prime}\right)=\psi_{2}\left(q^{\prime}\right)$. As above, by Theorem 1.7.5, there is a $\psi^{*} \in \operatorname{Link}_{L}\left(q^{\prime} P p^{\prime}\right)$ with $\psi^{*}\left(q^{\prime}\right)=c$. Applying 1) of Theorem 1.7.4, each of the unions $\psi^{*} \cup \psi_{1}, \psi^{*} \cup \psi_{2}$ lies in $\operatorname{Link}_{L}\left(p P q^{\prime}\right)$. Combining the above with Claim 7.2.1, we complete the proof of B). This completes the proof of Theorem 7.0.1.

Chapter 8

Boundary Analysis for Closed Rings

In this chapter, we prove an analogue of Theorem 3.0.2 for closed rings. In order to state the main result of Chapter 8, we begin with the following observation.

Observation 8.0.1. Let $\mathcal{T}=\left(G, \mathcal{C}, L, C_{*}\right)$ be a critical mosaic and let C be a closed \mathcal{T}-ring. Then there is a unqiue cycle $C^{1} \subseteq G$ such that $V\left(C^{1}\right)=B_{1}(C, G)$. Furthermore, letting $G=G_{0} \cup G_{1}$ be the natural C-partition of G, where $C \subseteq G_{0}$, we have $E\left(G_{0}\right)=E(C) \cup E\left(C^{1}\right) \cup E\left(C, C^{1}\right)$.

Proof. By Corollary 2.2.10, C is a chordless cycle in G. Furthermore, there does not exist an $x \in D_{1}(C, G)$ such that x is adjacent to each vertex of C, or else, since C is a facial subgraph of G and G is short-separation-free, we have $V(G)=V(C) \cup\{x\}$, contradicting Corollary 2.2.29. Since C is an L-predictable subgraph of $G, G[N(x) \cap V(C)]$ is a proper subpath of C for each $x \in D_{1}(C, G)$. Since C is a chordless cycle, it follows from our triangulation conditions that G contains a cycle C^{1} with $V\left(C^{1}\right)=D_{1}(C, G)$, and C^{1} separates C from $G \backslash B_{1}(C, G)$.

Given a closed ring $C \in \mathcal{C}$, we call the ring C^{1} above the 1-necklace of C. Note that this is analogous to the 1-necklace of an open ring of \mathcal{T} from Theorem 3.0.2. When we delete vertices near a closed ring $C \in \mathcal{C}$, it is easier to analyze proper k-chords of C^{1} in $G \backslash C$ for small values of k, rather than proper k-chords of C for small values of k.

Observation 8.0.2. Let $\mathcal{T}=\left(G, \mathcal{C}, L, C_{*}\right)$ be a critical mosaic and let C be a closed \mathcal{T}-ring. Let C^{1} be the 1-necklace of C and let $k<\frac{N_{\mathrm{mo}}}{3}-2$ and let Q be a proper k-chord of C^{1}. Let $G_{0} \cup G_{1}$ be the natural $\left(C^{1}, Q\right)$-partition of $G \backslash C$. Then there exists an $i \in\{0,1\}$ such that $C^{\prime} \subseteq G_{i}$ for all $C^{\prime} \in \mathcal{C} \backslash\{C\}$.

Proof. Let u, u^{\prime} be the endpoints of Q. If there exist $v \in N(u) \cap V(C)$ and $v^{\prime} \in N\left(u^{\prime}\right) \cap V(C)$ with $v \neq v^{\prime}$, then the claim follows from 1) of Theorem 2.2.4. If no such pair v, v^{\prime} exists, then there exists a lone vertex $v \in V(C)$ such that $N(u) \cap V(C)=N\left(u^{\prime}\right) \cap V(C)=\{v\}$, and then the claim follows from 2) of Theorem 2.2.4.

Given the result of Observation 8.0.2, it is natural to introduce the following notation analogous to Definition 2.3.9 and Definition 6.0.4.

Definition 8.0.3. Let $\mathcal{T}=\left(G, \mathcal{C}, L, C_{*}\right)$ be a critical mosaic and let C be a closed \mathcal{T}-ring. We set $\tilde{G}:=G \backslash C$. Let C^{1} be the 1-necklace of C and let $k<\frac{N_{\mathrm{mo}}}{3}-2$ and let Q be a proper k-chord of C^{1}. We then let $\tilde{G}=\tilde{G}_{Q}^{\text {small }} \cup \tilde{G}_{Q}^{\text {large }}$ denote the natural $\left(C^{1}, Q\right)$-partition of \tilde{G}, where, for each $C^{\prime} \in \mathcal{C} \backslash\{C\}$, we have $C^{\prime} \subseteq \tilde{G}_{Q}^{\text {large }}$.

In this chapter, we analyze the structure of G near the C^{1} to obtain a result analogous to the results for open rings from Chapters 3 and 4. This analysis is simpler and shorter than that of Chapters 3 and 4. The main result of Chapter 8 is the following, which is an analogue of Theorem 3.0.2.

Theorem 8.0.4. Let $\mathcal{T}=\left(G, \mathcal{C}, L, C_{*}\right)$ be a critical mosaic, let $C \in \mathcal{C}$ be a closed ring, let $\tilde{G}:=G \backslash C$, and let C^{1} be the 1-necklace of C. Then C^{1} is an induced subgraph of G, and, for each 2-chord xwy of C^{1} in \tilde{G}, the graph $\tilde{G}_{x w y}^{\text {small }}$ is a broken wheel with principal path $x w y$.

8.1 3-Lists on the 1-Necklace of a Closed Ring

We begin with the following:
Lemma 8.1.1. Let $\mathcal{T}=\left(G, \mathcal{C}, L, C_{*}\right)$ be a critical mosaic and let $C \in \mathcal{C}$ be a closed ring. Let Q be a 3-chord of C and, suppose that $V\left(C^{1} \cap G_{Q}^{\text {small }}\right) \nsubseteq V(Q)$. Then $G_{Q}^{\text {large }}$ is L-colorable.

Proof. Given a 3-chord Q of C, we say that Q is bad if $V\left(C^{1} \cap G_{Q}^{\text {small }}\right) \nsubseteq V(Q)$, but $G_{Q}^{\text {large }}$ is L-colorable. Suppose toward a contradiction that there exists a bad 3-chord Q of C, and, among all bad 3-chords of C, we choose Q so that $\left|V\left(G_{Q}^{\text {large }}\right)\right|$ is minimized. Let $Q:=p x y p^{\prime}$ and let $P:=C \cap G_{Q}^{\text {small }}$ Note that $d\left(p, p^{\prime}\right) \geq 2$, or else G contains a 4-cycle separating an internal vertex of $C^{1} \cap G_{Q}^{\text {large }}$ from $G_{Q}^{\text {small }} \backslash Q$.

Claim 8.1.2. There is no chord of Q in G_{Q}^{large}, except possibly that $p p^{\prime} \in E(C)$.
Proof: Suppose toward a contradiction that there exists such a chord of Q. Since C is induced, $G_{Q}^{\text {large }}$ contains either the edge $p y$ or the edge $p^{\prime} x$. Suppose without loss of generality that $p^{\prime} x \in E\left(G_{Q}^{\text {large }}\right)$. Since C is L-predictable and an induced subgraph of G, and x is adjacent to each of p, p^{\prime}, x is adjacent to each vertex of $C \cap G_{Q}^{\text {large }}$. But then the triangle $p^{\prime} x y$ separates an element of $\mathcal{C} \backslash\{C\}$ from C, contradicting short-separation-freeness.

Let G^{\dagger} be a graph obtained from G by deleting all the vertices of $G_{p x y p^{\prime}}^{\mathrm{small}} \backslash\left\{p, x, y, p^{\prime}\right\}$ and replacing them with a single vertex $p^{\text {in }}$ adjacent to each of x, y, p, p^{\prime}.

Claim 8.1.3. G^{\dagger} is short-separation-free.
Proof: If G^{\dagger} is not short-separation-free, then $G_{Q}^{\text {large }}$ either contains a chord of Q which is not an edge of C, or a 2-chord of Q whose endpoints are either p, y or p^{\prime}, x. In the former case we contradict Claim 8.1.2, so there exists a $v \in V\left(G_{Q}^{\text {large }} \backslash Q\right)$ such that $V(Q) \cap N(v)$ contains at least one of $\left\{p^{\prime}, x\right\}$ or $\{p, y\}$. Suppose without loss of generality that $\{p, y\} \subseteq N(v)$. If $v \in V(C)$, then, since C is an induced cycle in G we have $p v \in E(C)$, and, since C is L-predictable, y is adjacent to each vertex of $\left(C \cap G_{Q}^{\text {large }}\right) \backslash\{p\}$. But then the 4-cycle $p v y x$ separates an element of $\mathcal{C} \backslash\{C\}$ from p^{\prime}, contradicting the fact that \mathcal{T} is a tessellation.

Since $v \notin V(C), Q^{*}:=p v y p^{\prime}$ is a 3-chord of C. Since G is short-separation-free, we have $G_{Q^{*}}^{\text {small }} \backslash\{v\}=G_{Q}^{\text {small }}$ and $G_{Q}^{\text {large }} \backslash\{x\}=G_{Q^{*}}^{\text {large }}$. Thus, we have $V\left(C^{1} \cap G_{Q^{*}}^{\text {small }}\right) \nsubseteq V\left(Q^{*}\right)$, since $C^{1} \cap G_{Q^{*}}^{\text {small }}$ contains an internal vertex of $C^{1} \cap G_{Q}^{\text {small }}$, and we have $\left|V\left(G_{Q^{*}}^{\text {large }}\right)\right|<\left|V\left(G_{Q}^{\text {large }}\right)\right|$. By the minimality of $\left|V\left(G_{Q}^{\text {large }}\right)\right|$, it follows that $G_{Q^{*}}^{\text {large }}$ admits an L-coloring ψ, and $\left|L_{\psi}(x)\right| \geq 2$, so ψ extends to an L-coloring of $G_{Q}^{\text {large }}$, contradicting our assumption.
Let C^{\dagger} be the cycle obtained from C by replacing P with $p p^{\text {in }} p^{\prime}$. Let L^{\prime} be a list-assignment for $V\left(G^{\dagger}\right)$ where $L^{\prime}\left(p^{\text {in }}\right)$ is a lone color not lying in $L(p) \cup L(x) \cup L(y) \cup L\left(p^{\prime}\right)$, and otherwise $L^{\prime}=L$. Let C_{*}^{\dagger} be the outer face of G^{\dagger} and let $\mathcal{T}^{\dagger}:=\left(G^{\dagger},(\mathcal{C} \backslash\{C\}) \cup\left\{C^{\dagger}\right\}, L^{\prime}, C_{*}^{\dagger}\right)$. By Claim 8.1.3, G^{\dagger} is short-separation-free. Since C^{\dagger} is L^{\prime}-colorable by our choice of $L^{\prime}, \mathcal{T}^{\dagger}$ is a tessellation, where C^{\prime} is a closed \mathcal{T}^{\dagger}-ring.
We claim now that \mathcal{T}^{\dagger} is a mosaic. Since $|V(P)| \geq 3$, we have $\left|V\left(C^{\dagger}\right)\right| \leq|V(C)|$, so M0) is satisfied, and M1) is immediate. Since C is induced in G, C^{\dagger} is induced in G^{\dagger}, and each vertex of $D_{1}\left(C^{\dagger}, G^{\dagger}\right)$ still satisfies the property
that its neighborhood in C^{\dagger} consists of a subpath of C^{\dagger}. Thus, by our choice of $L^{\prime}\left(p^{i n}\right), C^{\dagger}$ is an L^{\prime}-predictable facial subgraph of \mathcal{T}^{\dagger}, so M2) is satisfied. Finally, for any $C^{\prime} \in \mathcal{C} \backslash\{C\}$, there is no shortest $\left(w_{\mathcal{T}}\left(C^{\prime}\right), C\right)$-path in G whose C-endpoint is an internal vertex of P. Since $\left|V\left(C^{\dagger}\right)\right| \leq|V(C)|$, the rank of C has not increased, so \mathcal{T}^{\dagger} also satisfies the distance conditions of Definition 2.1.6.

Thus, \mathcal{T}^{\dagger} is a mosaic, as desired. By assumption, we have $V\left(C^{1} \cap G_{Q}^{\text {small }}\right) \nsubseteq V(Q)$, so $\left|V\left(G^{\dagger}\right)\right|<|V(G)|$, so G^{\dagger} admits an L^{\prime}-coloring ψ by the minimality of \mathcal{T}. The restriction of ψ to $G_{Q}^{\text {large }}$ is an L-coloring of $G_{Q}^{\text {large }}$. Thus, our assumption that Q is bad is false.

We now rule out some of the chords of the 1-necklace of a closed ring in a critical mosaic.
Lemma 8.1.4. Let $\mathcal{T}=\left(G, \mathcal{C}, L, C_{*}\right)$ be a critical mosaic, let $C \in \mathcal{C}$ be a closed ring, and let C^{1} be the 1-necklace of C. Let ϕ be the unique L-coloring of $V(C)$. Let P be a subpath of C^{1} and suppose that each internal vertex of P has an L_{ϕ}-list of size at least three. Then P is an induced subpath of G.

Proof. Let $\tilde{G}:=G \backslash C$, and suppose toward a contradiction that the claimed result does not hold. Then there is a chord $x y$ of C^{1} such that each internal vertex of $C^{1} \cap \tilde{G}_{x y}^{\text {small }}$ has an L_{ϕ}-list of size at least three. Let $P^{1}:=\tilde{G}_{x y}^{\text {small }} \cap C^{1}$. That is, P^{1} is a subpath of C^{1} of length at least two, with endpoints x, y. Since each vertex of P^{1} has a neighbor in C consisting of a subpath of C, let P^{0} be the subpath of C such that $V\left(P_{0}\right)=D_{1}\left(P^{1}, C\right)$. For any $q, q^{\prime} \in V\left(P_{0}\right)$ with $q \in N(x)$ and $q^{\prime} \in N(y), q, q^{\prime}$ are of distance at least two apart, or else G contains a 4-cycle separating an internal vertex of P^{0} from $\tilde{G}_{x y}^{\text {small }}$. Let P_{0}^{*} be the subpath of P_{0} intersecting $N(x)$ and $N(y)$ only on its endpoints. Note that $\left|V\left(P_{0}^{*}\right)\right| \geq 3$. Let p, p^{\prime} be the endpoints of P_{*}^{0}, where $p \in N(x)$ and $p^{\prime} \in N(y)$, and let $Q:=p x y p^{\prime}$.

Claim 8.1.5. Q is an induced subpath of $G_{Q}^{\text {small }}$.
Proof: If this does not hold, then, since $d\left(p, p^{\prime}\right) \geq 2, G_{Q}^{\text {small }}$ contains one of the edges $p^{\prime} x, p y$, so suppose without loss of generality that $p^{\prime} x \in E(G)$. Then the triangle $p^{\prime} x y$ separates an internal vertex of P^{1} from $G_{Q}^{\text {large }}$, contradicting short-separation-freeness.

Since $\left|V\left(P^{1}\right)\right| \geq 3$, it follows from Lemma 8.1.1 that there is an L-coloring ψ of $G_{Q}^{\text {large }}$. Since Q is an induced subpath of $G_{Q}^{\text {small }}, \psi$ is an L-coloring of the subgraph of G induced by $G_{Q}^{\text {large }}$.
Since each neighbor of $\{x, y\}$ in C lies in $\operatorname{dom}(\psi)$, the union $\psi \cup \phi$ is a proper L-coloring of $V\left(G_{Q}^{\text {arge }} \cup P^{0}\right)$. Now, $G_{Q}^{\text {small }} \backslash P_{*}^{0}$ contains a cyclic facial subgraph $F:=P^{1}+x y$. By assumption, each vertex of $F \backslash\{x, y\}$ has an $L_{\psi \cup \phi}^{x y}$-list of size at least three, and furthermore, each vertex of $\left(G_{Q}^{\text {small }} \backslash P_{*}^{0}\right) \backslash F$ has an $L_{\psi \cup \phi}^{x y}$-list of size five. Thus, by Theorem 0.2.3, $\psi \cup \phi$ extends to an L-coloring of G, contradicting the fact that \mathcal{T} is critical.

We now have the following intermediate result which is analogous to Lemma 8.1.1.
Lemma 8.1.6. Let $\mathcal{T}=\left(G, \mathcal{C}, L, C_{*}\right)$ be a critical mosaic and let $C \in \mathcal{C}$ be a closed ring. Let Q be a 4-chord of C and, suppose that $\left|V\left(G_{Q}^{\text {small }} \backslash Q\right)\right|>3$. Then $G_{Q}^{\text {large }}$ is L-colorable.

Proof. Given a 4-chord Q of C, we say that Q is bad if $\left|V\left(G_{Q}^{\text {small }} \backslash Q\right)\right|>3$ but $G_{Q}^{\text {large }}$ is L-colorable. Suppose toward a contradiction that there exists a bad 4-chord Q of C, and, among all bad 4-chords of C, we choose Q so that $\left|V\left(G_{Q}^{\text {large }}\right)\right|$ is minimized. Let $Q:=p x w y p^{\prime}$, let $P^{0}:=C \cap G_{Q}^{\text {small }}$ and $P^{1}:=C^{1} \cap G_{Q}^{\text {small }}$. Note that $d\left(p, p^{\prime}\right) \geq 2$, or else G contains a 4-cycle separating an internal vertex of $C^{1} \cap G_{Q}^{\text {large }}$ from $G_{Q}^{\text {small }} \backslash Q$. Thus, we have $\left|V\left(P^{0}\right)\right| \geq 3$.

Claim 8.1.7. There is no chord of Q in $G_{Q}^{\mathrm{small} . ~ F u r t h e r m o r e, ~ i f ~ t h e r e ~ i s ~ a n ~ e d g e ~} e \in E\left(G_{Q}^{\mathrm{large}}\right.$ which is a chord of Q, then $e=p p^{\prime}$ and $e \in E\left(C^{\prime}\right)$.

Proof: Suppose toward a contradiction that there is a chord e of Q in $G_{Q}^{\text {small. Since } C \text { is an induced cycle of } G \text { and }}$ $\left|V\left(P^{0}\right)\right| \geq 2$, we have $e \neq p p^{\prime}$. Furthermore, we have $e \notin\left\{w p, w p^{\prime}\right\}$, since $G_{Q}^{\text {small }}$ contains an (x, y)-path which is disjoint to Q except for its endpoints.

Thus, we have $e \in\left\{x y, p y, p^{\prime} x\right\}$. If $e=x y$, then G contains the 3 -chord $Q^{*}:=p x y p^{\prime}$, and, since G is short-separation-free, we have $G_{Q}^{\text {large }}=G_{Q^{*}}^{\text {large }}-e$. In particular, $P_{0} \subseteq G_{Q^{*}}^{\text {small }}$, and since $\left|V\left(P_{0}\right)\right| \geq 3$, it follows from Lemma 8.1.1 that $G_{Q^{*}}^{\text {large }}$ admits an L-coloring ψ. Since $G_{Q}^{\text {large }}=G_{Q^{*}}^{\text {large }}-e, \psi$ is also an L-coloring of $G_{Q}^{\text {large }}$, contradicting our assumption.

We conclude that $x y \notin V\left(G_{Q}^{\text {small }}\right)$, so $e \in\left\{p y, p^{\prime} x\right\}$. Since $x y \notin V\left(G_{Q}^{\text {small }}\right)$, we have $\left|V\left(P_{1}\right)\right| \geq 3$. Suppose without loss of generality that $e=p^{\prime} x$. Then the 4-cycle $x w y p^{\prime}$ separates an internal vertex of P_{1} from $G_{Q}^{\text {large }} \backslash Q$, contradicting short-separation-freeness. We conclude that there is no chord of Q in $G_{Q}^{\text {small }}$, as desired. Now suppose that there is a chord e of Q in $G_{Q}^{\text {large }}$. If $e=p p^{\prime}$ then, since C is an induced cycle of G, we have $e \in E(C)$, and we are done in that case, so suppose toward a contradiction that $e \neq p p^{\prime}$.

Suppose first that $e \in\left\{p^{\prime} x, p y\right\}$, and, without loss of generality, let $e=p^{\prime} x$. Since G is L-predictable and C is induced in G, x is adjacent to each vertex of $C \backslash \stackrel{\circ}{P}^{9}$, so the 4-cycle $x w y p^{\prime}$ separates an element of $\mathcal{C} \backslash\{C\}$ from each vertex of $G_{Q}^{\text {small }} \backslash Q$, contradicting short-separation-freeness.

Thus, we have $e \in\left\{x y, p y, p^{\prime} y\right\}$. In particular, the endpoints of e are of distance precisely two apart on Q. Let $e=q q^{\prime}$ and let q^{*} be the unique vertex of Q such that q, q^{*}, q^{\prime} are consecutive on Q. Since G is short-separation-free, G contains a 3-chord Q^{*} of C with the same endpoints as Q, where $G_{Q^{*}}^{\text {large }}=G_{Q}^{\text {large }} \backslash\left\{q^{*}\right\}$ and $G_{Q^{*}}^{\text {small }}=G_{Q}^{\text {small }}+q q^{\prime}$. Thus, $P_{1} \subseteq G_{Q^{*}}^{\text {large }}$, and since $\left|V\left(P_{1}\right)\right| \geq 3$, it follows from Lemma 8.1.1 that $G_{Q^{*}}^{\text {small }}$ admits an L-coloring ψ. Since $q^{*} \in\{x, w, y\}$, we have $\left|L_{\psi}\left(q^{*}\right)\right| \geq 3$, and ψ extends to an L-coloring of $G_{Q}^{\text {large }}$, contradicting our assumption.

Now we have the following:

Claim 8.1.8. For any two vertices $q, q^{\prime} \in V(Q)$ which are of distance precisely two apart in Q, q, q^{\prime} do not have a common neighbor in $V\left(G_{Q}^{\text {large }}\right) \backslash V(Q)$.

Proof: Suppose toward a contradiction that q, q^{\prime} have a common neighbor w^{*} in $G_{Q}^{\text {large }} \backslash Q$, and let $q^{\prime \prime}$ be the unique common neighbor of q, q^{\prime} on the path Q. Then G contains the 4 -cycle $q w^{*} q^{\prime} q^{\prime \prime}$. By Claim 8.1.7, $q q^{\prime} \notin E(G)$, so we have $w^{*} \in N\left(q^{\prime \prime}\right)$ by our triangulation conditions.

We claim now that $w^{*} \notin V(C)$. Suppose that $w^{*} \in V(C)$. If $\{x, y\} \subseteq N\left(w^{*}\right)$, then, since C is L-predictable, x is adjacent to each vertex of the subpath of $C \cap G_{Q}^{\text {large }}$ with endpoints p, w^{*}, and y is adjacent to each vertex of the subpath of $C \cap G_{Q}^{\text {arge }}$ with endpoints p^{\prime}, w^{*}. But then the 4 -cycle $x w y w^{*}$ separates an element of $\mathcal{C} \backslash\{C\}$ from p, p^{\prime}, contradicting the fact that \mathcal{T} is a tessellation. Thus, at least one of x, y lies outside of $N\left(w^{*}\right)$, so suppose without loss of generality that $y \notin N\left(w^{*}\right)$. Thus, we have $q q^{\prime \prime} q^{\prime}=p x w$, and G contains the 3-chord $R:=w^{*} w y p^{\prime}$ of C. Since G is short-separation-free, we have $G_{R}^{\text {large }}=G_{Q}^{\text {large }} \backslash\{x, p\}$. Since $V\left(P^{1}\right) \subseteq V\left(G_{R}^{\text {small }}\right)$, it follows from Lemma 8.1.1 that $G_{R}^{\text {arge }}$ admits an L-coloring ψ. Since w^{*} is precolored and $w p$ is an edge of C, ψ extends to an L-color $\operatorname{dom}(\psi) \cup\{p\}$, and the resulting extension leaves a color for x, since $\left|L_{\psi}(x)\right| \geq 3$. Thus, ψ extends to an L-coloring of $G_{Q}^{\text {large }}$, contradicting our assumption. We conclude that $w^{*} \notin V(C)$.

Since $w^{*} \notin V(C), G$ contains a 4-chord Q^{*} of C obtained from Q by replacing $q q^{\prime \prime} q^{\prime}$ with $q w^{*} q^{\prime}$. Since G is short-separation-free, we have $G_{Q}^{\text {small }}=G_{Q^{*}}^{\text {small }} \backslash\left\{w^{*}\right\}$ and $G_{Q}^{\text {large }} \backslash\left\{q^{\prime \prime}\right\}=G_{Q^{*}}^{\text {large }}$. Thus, we have $\left|V\left(G_{Q^{*}}^{\text {large }} \backslash Q^{*}\right)\right|>3$ as well, and, by the minimality of $Q, G_{Q^{*}}^{\text {large }}$ admits an L-coloring ψ. By Claim 8.1.7, $N\left(q^{\prime \prime}\right) \cap V(Q)=\left\{q, q^{\prime}\right\}$, so $\left|L_{\psi}(w)\right| \geq 2$. Thus, ψ extends to an L-coloring of $G_{Q}^{\text {large }}$, contradicting our assumption.

With the above in hand, we prove the following:
Claim 8.1.9. $\left|V\left(P^{0}\right)\right|=3$
Proof: Suppose toward a contradiction that $\left|V\left(P^{0}\right)\right| \neq 3$. Since p, p^{\prime} are of distance at least two apart, we have $\left|V\left(P^{0}\right)\right|>3$. Now let G^{\dagger} be a graph obtained from G in the following way: We first delete all the vertices of $G_{Q}^{\text {small }} \backslash(Q \cup C)$, and the contract P^{0} to a path $p q q^{\prime} p^{\prime}$ of length three with endpoints p, p^{\prime}, deleting any loops. Finally, we add the edges $x q, y q^{\prime}$, and we add a vertex w^{*} adjacent to all five vertices of the cycle $w q q^{\prime} y w$.

Note that $G_{Q}^{\text {large }} \subseteq G^{\dagger}$, and $G^{\dagger} \backslash G_{Q}^{\text {large }}$ consists of the triangle $q q^{\prime} w^{*}$. Let C^{\dagger} be the cycle obtained from C by the contraction of P^{0} to $p q q^{\prime} q^{\prime}$.

We claim now that G^{\dagger} is short-separation-free. Let $H \cup G_{Q}^{\text {large }}$ be the natural Q-partition of G^{\dagger}. Each of H and $G_{Q}^{\text {large }}$ is short-separation-free, so if G^{\dagger} is not short-separation-free, then there is either a chord of Q in $G_{Q}^{\text {large }}$ which is not an edge of C, or a 2-chord of Q in $G_{Q}^{\text {large }}$ whose endpoints are of distance precisely two apart on Q. In the former case, we contradict Claim 8.1.7, and in the latter case, we contradict Claim 8.1.8.

Thus, G^{\dagger} is indeed short-separation-free. Let c, c^{\prime} be colors where $c \neq c^{\prime}, c \notin L(p) \cup L(x)$, and $c^{\prime} \notin L\left(p^{\prime}\right) \cup L(y)$. Let L^{\prime} be a list-assignment for $V\left(G^{\dagger}\right)$ where $L^{\prime}(q)=\{c\}, L^{\prime}\left(q^{\prime}\right)=\left\{c^{\prime}\right\}, L^{\prime}\left(w^{*}\right)$ is an arbitrary 5-list, and otherwise $L^{\prime}=$ L. Let C_{*}^{\dagger} be the outer face of G^{\dagger}. By construction of G^{\dagger} and L^{\prime}, each face of G^{\dagger}, except those among $(\mathcal{C} \backslash\{C\}) \cup\left\{C^{\dagger}\right\}$, is a triangle, and $V\left(C^{\dagger}\right)$ is L^{\prime}-colorable. Thus, since G^{\dagger} is short-separation-free, $\mathcal{T}^{\dagger}:=\left(G^{\dagger},\left(\mathcal{C} \backslash\left\{C^{\dagger}\right\}\right), L^{\prime}, C_{*}^{\dagger}\right)$ is a tessellation. We claim now that \mathcal{T}^{\dagger} is a mosaic.

Since $\left|V\left(P_{0}\right)\right|>3$, we have $\left|V\left(C^{\dagger}\right)\right| \leq|V(C)|$, so M0) is satisfied, and M1) is immediate. Since C is induced in G, C^{\dagger} is induced in G^{\dagger}, and, by our construction of G^{\dagger}, ech vertex of $D_{1}\left(C^{\dagger}, G^{\dagger}\right)$ has a neighborhood in C^{\dagger} consisting of a subpath of C^{\dagger}.

By our choice of colors $c, c^{\prime}, C^{\dagger}$ is L^{\prime}-predictable, so M2) is satisfied as well. We just need to check that the distance conditions of Definition 2.1.6 hold. Since $\left|V\left(C^{\dagger}\right)\right| \leq|V(C)|$, the rank of C has not increased, and since $d_{G}(w, C) \leq$ 2, it follows that, for any $C^{\prime} \in \mathcal{C} \backslash\{C\}$, we have $d_{G^{\dagger}}\left(w_{\mathcal{T}}\left(C^{\prime}\right), C^{\dagger}\right) \geq d_{G}\left(w_{\mathcal{T}}\left(C^{\prime}\right), C\right)$. Since $w_{\mathcal{T}^{\dagger}}\left(C^{\prime}\right)=w_{\mathcal{T}}(C)$, \mathcal{T}^{\dagger} satisfies the desired distance conditions. Thus, \mathcal{T}^{\dagger} is a mosaic.

Since $G^{\dagger} \backslash G_{Q}^{\text {large }}=q q^{\prime} w^{*}$ and $\left|V\left(G_{Q}^{\text {small }} \backslash Q\right)\right|>3$, we have $\left|V\left(G^{\dagger}\right)\right|<|V(G)|$. By the minimality of \mathcal{T}, G^{\dagger} admits an L^{\prime}-coloring ψ, and ψ restricts to an L-coloring of $G_{Q}^{\text {large }}$, contradicting our assumption that Q is bad.
Since $\left|V\left(P^{0}\right)\right|=3$, let $p^{i n}$ be the lone internal vertex of P^{0}. Then $P^{0}:=p p^{i n} p^{\prime}$. We now construct a smaller mosaic than \mathcal{T} in the following way. Let G^{\prime} be a graph obtained from G by first deleting all the vertices of $G_{Q}^{\text {small }} \backslash(Q \cup C)$ and replacing them with an edge $w^{*} w^{* *}$, where $N\left(w^{*}\right) \cap V(C \cup Q)=\left\{p^{i n}, x, p, w\right\}$ and $N\left(w^{* *}\right) \cap V(C \cup Q)=$ $\left\{p^{i n}, w, y, p^{\prime}\right\}$.

We claim now that G^{\prime} is short-separation-free. Let $G^{\prime}=H \cup G_{Q}^{\text {large }}$ be the natural Q^{\prime}-partition of G^{\prime}. Note that G^{\prime} does not contain a separating cycle of length at most four containing both of p, p^{\prime}, or else, since C is an induced cycle of G^{\prime}, there is a 2-chord $p u p^{\prime}$ of Q with $u \in V\left(G_{Q}^{\text {arge }} \backslash Q\right)$, where $p u p^{\prime}$ is not a subpath of C. But then, $p u p^{\prime} p^{i n}$ is also a separating cycle in G, contradicting the fact that \mathcal{T} is a tessellation. Since each of H and $G_{Q}^{\text {large }}$ is short-separation-free,
if G^{\prime} is not short-separation-free, then there is either a chord of Q in $G_{Q}^{\text {large }}$ which is not an edge of C, or a 2-chord of Q in $G_{Q}^{\text {large }}$ whose endpoints are of distance precisely two apart on Q, or a 2-chord of Q. In the former case, we contradict Claim 8.1.7, and in the latter case, we contradict Claim 8.1.8. Thus, G^{\prime} is short-separation-free.

Let L^{\prime} be a list-assignment for $V\left(G^{\prime}\right)$ where each of $L^{\prime}\left(w^{*}\right)$ and $L^{\prime}\left(w^{* *}\right)$ is an arbitrary 5-list, and otherwise $L^{\prime}=L$. Then $\mathcal{T}^{\prime}:=\left(G^{\prime}, \mathcal{C}, L^{\prime}, C_{*}\right)$ is a tessellation. M0) and M1) are immediate, and each of $w^{*}, w^{* *}$ has a neighborhood on C consisting of a path of length precisely one, so, since C is L-predictable in G, it is also L^{\prime}-predictable in G^{\prime}. Thus, M2) is satisfied as well. Finally, since $d_{G}(w, C) \leq 2$, it follows that, for any $C^{\prime} \in \mathcal{C} \backslash\{C\}$, we have $d_{G^{\prime}}\left(w_{\mathcal{T}}\left(C^{\prime}\right), C\right) \geq d_{G}\left(w_{\mathcal{T}^{\prime}}\left(C^{\prime}\right), C\right)$. Since $w_{\mathcal{T}^{\prime}}\left(C^{\prime}\right)=w_{\mathcal{T}}(C), \mathcal{T}^{\prime}$ satisfies the distance conditions of Definition 2.1.6. Thus, \mathcal{T}^{\prime} is a tessellation. Since $\left|V\left(G^{\text {small }} \backslash Q\right)\right|>3$, we have $\left|V\left(G^{\prime}\right)\right|<|V(G)|$, so, by the minimality of \mathcal{T}, G^{\prime} admits an L^{\prime}-coloring ψ, and ψ restricts to an L-coloring of $G_{Q}^{\text {large }}$, contradicting our assumption that Q is bad.

With the above in hand, we prove an analogue of Lemma 8.1.4 for 2-chords of the 1-necklace:
Lemma 8.1.10. Let $\mathcal{T}=\left(G, \mathcal{C}, L, C_{*}\right)$ be a critical mosaic, let $C \in \mathcal{C}$ be a closed ring, and let C^{1} be the 1-necklace of C. Let $\tilde{G}:=G \backslash C$ and let ϕ be the unique L-coloring of $V(C)$. Let P be a subpath of C^{1} with $|V(P)| \geq 2$ and suppose that each internal vertex of P has an L_{ϕ}-list of size at least three. Let x, y be the endpoints of P and suppose there is a vertex $w \in D_{1}\left(C^{1}, \tilde{G}\right)$ adjacent to each of x, y. Then $V\left(\tilde{G}_{x w y}^{\text {small }}\right)=V(P) \cup\{w\}$ and $\tilde{G}_{x w y}^{\text {small }}$ is a broken wheel with principal path $x w y$.

Proof. For any 2-chord $x w y$ of C^{1} with $w \in D_{1}\left(C^{1}, G \backslash C\right)$, we say that $w x y$ is defective if $\left|V\left(\tilde{G}_{x w y}^{\text {small }} \backslash C^{1}\right)\right|>1$. Suppose toward a contradiction that there exists a defective 2-chord $x w y$ of C^{1}, and, among all defective 2-chords, we choose $w x y$ so that $\left|V\left(\tilde{G}_{x w y}^{\text {small }}\right)\right|$ is minimized. Let $P^{1}:=\tilde{G}_{x w y}^{\text {small }} \cap C^{1}$. By Lemma 8.1.4, P^{1} is an induced path in G.

Claim 8.1.11. For each $v \in V\left(\stackrel{\circ}{P}^{1}\right), w \notin N(v)$.

Proof: Suppose toward a contradiction that there is a $v \in V\left(\dot{P}^{1}\right)$ with $w \in N(v)$. Then \tilde{G} contains the 2-chords $x w v$ and $v w y$ of C^{1}. Furthermore, $\left|\tilde{G}_{x w v}^{\text {small }}\right|<\left|V\left(\tilde{G}_{x w y}^{\text {small }}\right)\right|$ and $\left|\tilde{G}_{v w y}^{\text {small }}\right|<\left|V\left(\tilde{G}_{x w y}^{\text {small }}\right)\right|$. By the minimality of $w x y$, we have $\{w\}=V\left(\tilde{G}_{v w y}^{\text {small }} \backslash C^{1}\right)=V\left(\tilde{G}_{x w v}^{\text {small }} \backslash C^{1}\right)$, so $\{w\}=V\left(\tilde{G}_{x w y}^{\text {small }} \backslash C^{1}\right)$, contradicting the fact that $x w y$ is defective.

Let P^{0} be the unique subpath of C such that $V(P)=V(C) \cap D_{1}\left(P^{1}, G\right)$, and let P_{*}^{0} be the subpath of P^{0} intersecting $N(x) \cup N(y)$ only on its endpoints. Let p, p^{\prime} be the endpoints of P_{*}^{0}, where $p \in N(x)$ and $p^{\prime} \in N(y)$. Note that $\left|V\left(P_{*}^{0}\right)\right|>1$, or else, since G is short-separation-free, $\tilde{G}_{x w y}^{\text {small }}$ consists of the triangle $x w y$, contradicting the fact that $x w y$ is defective. Thus, $Q:=p x w y p^{\prime}$ is a proper 4-chord of C.
Let $\left.S:=V\left(\tilde{G}_{x w y}^{\text {small }}\right) \backslash V\left(C^{1}\right) \cup\{w\}\right)$. Since $x w y$ is defective, we have $S \neq \varnothing$. Furthermore, we have $\left|V\left(\stackrel{\circ}{P}^{1}\right)\right| \geq 2$, or else $x P_{1} y w$ is a cycle of length at most four separating a vertex of S from $G_{Q}^{\text {arge }} \backslash Q$.

Claim 8.1.12. If e is a chord of Q in G_{Q}^{small}, then $e=p p^{\prime}$ and $e \in E(C)$.
Proof: Suppose there is a chord e of Q in $G_{Q}^{\text {small }}$. If $e=p p^{\prime}$ then $e \in E(C)$, since C is an induced subgraph of G, so we are done. Now suppose toward a contradiction that $e \neq p p^{\prime}$. Since $\left|V\left(\stackrel{\circ}{P}^{1}\right)\right| \geq 2$ and P^{1} is an induced subpath of $G_{Q}^{\text {small }}$, we have $e \neq x y$. Since $w \in D_{1}\left(C^{1}, G \backslash C\right)$, we have $e \notin\left\{p w, p^{\prime} w\right\}$, so $e \in\left\{p^{\prime} x, p y\right\}$. Suppose without loss of generality that $e=p^{\prime} x$. Since C is an induced subgraph of G and C is L-predictable, x is adjacent to each vertex of P^{0}, so the 4-cycle $x w y p^{\prime}$ separates a vertex of S from $G_{Q}^{\text {large }} \backslash Q$, contradicting short-separation-freeness.

We now have the following:

Claim 8.1.13. For any L-coloring ψ of $G_{Q}^{\mathrm{large}}, \psi \cup \phi$ is a proper L-coloring of $V\left(G_{Q}^{\mathrm{large}} \cup P^{0}\right)$.

Proof: Firstly, we note that ψ is an L-coloring of the subgraph of G induced by $V\left(G_{Q}^{\text {large }}\right)$. To see this, just note that, by Claim 8.1.12, if e is a chord of Q in $G_{Q}^{\text {small }}$, then $e=p p^{\prime}$, and the endpoints of e are precolored in L. Thus, ψ is indeed a proper L-coloring of the subgraph of G induced by $V\left(G_{Q}^{\text {large }}\right.$. Furthermore, since each vertex of $(N(x) \cup N(y)) \cap V(C)$ lies in $\operatorname{dom}(\psi)$, the union $\psi \cup \phi$ is indeed a proper L-coloring of the subgraph of G induced by $V\left(G_{Q}^{\text {large }} \cup P^{0}\right)$.

We now establish the following.

Claim 8.1.14.

1) If $|S|=1$ then $\left|V\left(P_{*}^{0}\right)\right| \geq 3$; AND
2) $G_{Q}^{\text {large }}$ admits an L-coloring.

Proof: Let $|S|=1$ and suppose toward a contradiction that $\mid V\left(\left(P_{*}^{0}\right) \mid \leq 2\right.$. Then P_{*}^{0} consists of the edge $p p^{\prime}$. Let $R:=p x P^{1} y p^{\prime}$. Since C^{1} separates C from $G \backslash C^{1}$ and $P^{0}=p p^{\prime}$, we have $V\left(G_{R}^{\text {small }}\right)=V(R)$. Since P^{1} is an induced subpath of $G_{Q}^{\text {small }}$ and $p p^{\prime}$ is the only chord of Q in $G_{Q}^{\text {small }}$, it follows from our triangulation conditions that there is a vertex $q \in V(R) \backslash\{x, y\}$ such that q is adjacent to both vertices of $p p^{\prime}$.

Since $V\left(\dot{P}^{1}\right) \mid \geq 2$, there is a vertex $q^{\prime} \in V\left(\stackrel{\circ}{P}^{1}\right)$ with $q^{\prime} \neq q$. Suppose without loss of generality that q^{\prime} lies in the subpath $y R q$ of R. Then the edge $q p^{\prime}$ separates q^{\prime} from p. Since $q^{\prime} \in V\left(C^{1}\right), q^{\prime}$ has a neighbor among p, p^{\prime}, so $N\left(q^{\prime}\right) \cap V\left(C^{1}\right)=\left\{p^{\prime}\right\}$.

By Claim 8.1.12, Q has no chord in $G_{Q}^{\text {small }}$ except for $p p^{\prime}$, and, by Claim 8.1.11, w has no neighbor in $P^{1} \backslash\{x, y\}$. Thus, since P^{1} is an induced subpath of $G_{Q}^{\text {small }}$, the cycle $w y P^{1} x$ is an induced subgraph of $G_{Q}^{\text {small }}$. Since $|S|=1$, it then follows from our triangulation conditions that S is a lone vertex u adjacent to every vertex of the cycle $w y P^{1} x$. Yet since each of q, q^{\prime}, y are adjacent to p^{\prime}, G contains a $K_{2,3}$ with bipartition $\left\{u, p^{\prime}\right\},\left\{q, q^{\prime}, y\right\}$, contradicting the fact that \mathcal{T} is a tessellation. This proves 1). Now suppose toward a contradiction that $G_{Q}^{\text {large }}$ is not L-colorable. By Lemma 8.1.6, $\left|V\left(G_{Q}^{\text {small }} \backslash Q\right)\right| \leq 3$. Since $S \neq \varnothing,\left|V\left(\stackrel{\circ}{P}^{1}\right)\right| \geq 2$, and $p \neq p^{\prime}$, it follows that $|S|=1,\left|V\left(\stackrel{\circ}{P}^{1}\right)\right|=2$, and P_{*}^{0} is the edge $p p^{\prime}$. This contradicts 1).

Applying Claim 8.1.14, let ψ be an L-coloring of $G_{Q}^{\text {large }}$. By Claim 8.1.11, the union $\psi \cup \phi$ is a proper L-coloring of $V\left(G_{Q}^{\text {large }} \cup P^{0}\right)$. Let $P^{1}:=u_{0} \cdots u_{t}$, where $u_{0}=x$ and $u_{t}=y$.

Claim 8.1.15.

1) $|S|=1$, and $\tilde{G}_{x w y}^{\text {small }}$ consists of a wheel whose central vertex is adjacent to each vertex of $V\left(P^{1}\right) \cup\{w\}$; AND
2) For any L-coloring ψ^{\prime} of $G_{Q}^{\text {large }}$, we have $\left|L_{\psi^{\prime}}\left(u_{\star}\right)\right|=2$.

Proof: We first show that there exists a vertex $u_{\star} \in S$ adjacent to each of x, w, y. Suppose toward a contradiction that no such vertex exists. Now, $\tilde{G}_{x w y}^{\text {small }}$ contains a cyclic facial subgraph F such that $V(F)=\{w\} \cup V\left(P^{1}\right)$. Thus, $\tilde{G}_{x w y}^{\text {small }} \backslash\{x, w, y\}$ contains a facial subgraph F^{\prime} such that $V\left(F^{\prime}\right)=V\left({ }^{1}{ }^{1}\right) \cup\left(D_{1}(\operatorname{dom}(\phi \cup \psi), G) \cap S\right)$. By Claim 8.1.11, w has no neighbors among w_{1}, \cdots, w_{t}. Thus, since P^{1} is an induced graph of G, we have $N(u) \cap \operatorname{dom}(\psi \cup \phi) \subseteq V(C)$ for each $u \in\left\{u_{2}, \cdots, u_{t-1}\right\}$, and thus, by assumption, $\left|L_{\psi \cup \phi}\left(u_{i}\right)\right| \geq 3$ for each $i \in\{2, \cdots, t-2\}$. Since $t \geq 3$, we have $\left|L_{\psi \cup \phi}\left(u_{1}\right)\right| \geq 2$ and $\left|L_{\psi \cup \phi}\left(u_{t-1}\right)\right| \geq 2$. Since no vertex of S is adjacent to all three of x, w, y, we have $\left|L_{\psi \cup \phi}(v)\right| \geq 3$ for all $v \in V\left(F^{\prime}\right) \backslash\left\{u_{1}, \cdots, u_{t}\right\}$, and each vertex of $\left(\tilde{G}_{x w y}^{\text {small }} \backslash\{x, w, y\}\right) \backslash F^{\prime}$ has an $L_{\psi \cup \phi}$-list of size five. Thus, by Theorem 1.3.4, $\psi \cup \phi$ extends to an L-coloring of G, contradicting the fact that \mathcal{T} is critical.

Thus, there is indeed a vertex $u_{\star} \in S$ adjacent to all three of x, w, y, so $G \backslash C$ contains the 3-chord $x u_{\star} y$ of C^{1}. By the minimality of $x w y$, we get that $x u_{\star} y$ is not defective, so $V\left(\tilde{G}_{x u_{\star} y}^{\text {small }}=V\left(P^{1}\right) \cup\left\{u_{\star}\right\}\right.$. Since P^{1} is an induced path in G, it follows from our triangulation conditions that u_{\star} is adjacent to each vertex of u_{0}, \cdots, u_{t}. Thus, since G is short-separation-free, $\tilde{G}_{x w y}^{\text {small }}$ consists of a a wheel with central vertex u_{\star} adjacent to every vertex of the cycle $u_{0} \cdots u_{t} w$, and $S=\left\{u_{\star}\right\}$. This proves 1).
If ψ^{\prime} is an L-coloring of $G_{Q}^{\text {arge }}$ and $\left|L_{\psi}\left(u_{\star}\right)\right|>2$, then $\psi^{\prime} \cup \phi$ is a proper L-coloring of $V\left(G_{Q}^{\text {large }} \cup P^{0}\right)$ by Claim 8.1.13, and each vertex of the broken wheel $\tilde{G}_{x u_{\star} y}^{\text {small }}$ has an $L_{\psi^{\prime} \cup \phi}$-list of size at least three, except for u_{1}, u_{t-1}, which ave $L_{\psi^{\prime} \cup \phi}$-lists of size at least two. Thus, by Theorem 1.3.4, $\psi^{\prime} \cup \phi$ extends to the broken wheel $\tilde{G}_{x u_{\star} y}^{\text {small }}$, contradicting the fact that \mathcal{T} is critical. This proves 2).

As in Claim 8.1.15, let $S=\left\{u_{\star}\right\}$. Since $\operatorname{dom}(\psi \cup \phi) \cap N\left(u_{\star}\right)=\{x, w, y\}$, there are two colors $r, s \in L_{\psi \cup \phi}\left(u_{\star}\right)$. Since $\psi \cup \phi$ does not extend to an L-color the broken wheel $\tilde{G}_{x u_{\star} y}^{\text {small }}$, we immediately have the following by Proposition 1.4.4.

Claim 8.1.16.

1) $\left|L_{\psi \cup \phi}\left(u_{1}\right)\right|=L_{\psi \cup \phi}\left(u_{t-1}\right) \mid=2$ and $\left|L_{\psi \cup \phi}\left(u_{i}\right)\right|=3$ for each $i \in\{2, \cdots, t-2\}$; AND
2) $r, s \in L\left(u_{i}\right)$ for each $i=1, \cdots, t-1$. In particular, $L\left(u_{\star}\right)=\{r, s, \psi(x), \psi(w), \psi(y)\}$.

Now we have the following.

Claim 8.1.17.

1) If e is a chord of Q in $G_{Q}^{\text {large }}$, then $e=p p^{\prime}$ and $e \in E(C)$.
2) There is no vertex $v \in V\left(G_{Q}^{\text {large }} \backslash Q\right)$ such that v is adjacent to two vertices of Q which are of distance precisely two apart on Q.

Proof: Firstly, since x, w, y are adjacent to u_{\star}, we have $x y \notin E\left(G_{Q}^{\text {large }}\right)$, and there is no vertex of $G_{Q}^{\text {large }} \backslash Q$ adjacent to x, y, or else G contains either a copy of K_{4} or $K_{2,3}$, contradicting short-separation-freeness. Likewise, since p, x, w are adjacent to u_{1}, we have $w p \notin E\left(G_{Q}^{\text {large }}\right)$, and there is no vertex of $G_{Q}^{\text {large }} \backslash Q$ adjacent to w, p. Since p^{\prime}, y, w are adjacent to u_{t-1}, we have $w p^{\prime} \notin E\left(G_{Q}^{\text {large }}\right)$, and there is no vertex of $G_{Q}^{\text {large }} \backslash Q$ adjacent to w, p^{\prime}. The above proves 2), and shows that there is a chord e of Q in $G_{Q}^{\text {large }}$, then $e \in\left\{p p^{\prime}, x p^{\prime}, y p\right\}$. We just need to show that any such e is an edge of C. Suppose not. Then, since C is an induced cycle of $G, G_{Q}^{\text {large }}$ contains one of the edges $x p^{\prime}, y p$, say $x p^{\prime}$ without loss of generality. Since C is L-predictable, x is adjacent to each vertex of $C \cap G_{Q}^{\text {arge }}$, and the 4-cycle $x w y p^{\prime}$ separates an element of $\mathcal{C} \backslash\{C\}$ from p, contradicting the fact that \mathcal{T} is a tessellation.

Now let G^{\prime} be a graph obtained from G by first deleting the vertices of $G_{Q}^{\text {small }} \backslash Q$ and replacing them with a triangle $q q^{\prime} p^{i n}$, where $p^{i n}$ is adjacent top each of p, p^{\prime}, q is adjacent to w, x, p and q^{\prime} is adjacent to w, y, p^{\prime} (alternatively phrased, we delete S and then contract P_{*}^{0} to a path of length two and P^{1} to a path of length three). Let C^{\prime} be the cycle obtained from C by replacing P_{*}^{0} with $p p^{i n} p^{\prime}$. Now, each facial subgraph of G^{\prime}, except possibly those among $(\mathcal{C} \backslash\{C\}) \cup\left\{C^{\prime}\right\}$, is bounded by a triangle.

Note that G^{\prime} is short-separation-free, or else G contains either a chord of Q which is not an edge of C, or a 2-chord of Q whose endpoints are of distance precisely two apart on Q. In either case, we contradict Claim 8.1.17. Now let c, d be distinct colors where $c, d \notin L(p) \cup L\left(p^{\prime}\right) \cup\{r, s, \psi(x), \psi(w), \psi(y)\}$. Let L^{\prime} be a list-assignment for $V\left(G^{\prime}\right)$ defined as follows:
$L^{\prime}(v):=\left\{\begin{array}{l}\{c\} \text { if } v=p^{\text {in }} \\ \{\phi(p), \psi(x), \psi(w), c, d\} \text { if } v=q \\ \left\{\phi\left(p^{\prime}\right), \psi(y), \psi(w), c, d\right\} \text { if } v=q^{\prime} \\ L(v) \text { if } v \in V\left(G_{Q}^{\text {large }}\right)\end{array}\right.$
Let C_{*}^{\prime} be the outer face of G^{\prime}. By our choice of $c, V\left(C^{\prime}\right)$ is L^{\prime}-colorable, and, since G^{\prime} is short-separation-free, the tuple $\mathcal{T}^{\prime}:=\left(G^{\prime},(\mathcal{C} \backslash\{C\}) \cup\left\{C^{\prime}\right\}, L^{\prime}, C_{*}^{\prime}\right)$ is a tessellation. We claim now that \mathcal{T}^{\prime} is a mosaic.

Since $|S|=1$, we have $\left|V\left(P^{0}\right)\right| \geq 3$ by 1) of Claim 8.1.14. Thus, $\left|V\left(C^{\prime}\right)\right| \leq|V(C)|$, so M0) is satisfied, and M1) is immediate. By construction of G^{\prime}, C^{\prime} is an induced subgraph of G^{\prime}, since C is an induced subgraph of G, and, for each $v \in D_{1}\left(C^{\prime}, G^{\prime}\right)$, the neighborhood of v on C^{\prime} is a subpath of C^{\prime}. Thus, by our choice of $L^{\prime}\left(p^{i n}\right)$, since C is L-predictable, C^{\prime} is also L^{\prime}-predictable.

For any $C^{\prime \prime} \in \mathcal{C} \backslash\{C\}, Q$ separates $C^{\prime \prime}$ from each vertex of P_{*}^{0}, and, by definition of P_{*}^{0}, x, y have no neighbors in $V\left(\stackrel{\circ}{P}_{*}^{0}\right)$. Since $d_{G}(w, C)=2$ and $p x u_{\star} y p^{\prime}$ separates w from each vertex of P_{*}^{0}, there is no shortest $\left(w_{\mathcal{T}}\left(C^{\prime \prime}\right), C\right)$-path in G whose C-endpoint is an internal vertex of P_{*}^{0}. Thus, since \mathcal{T} satisfies the distance conditions of Definition 2.1.6, and the rank of C has not increased, \mathcal{T}^{\prime} also satisfies the distance conditions of Definition 2.1.6.

We conclude that \mathcal{T}^{\prime} is a mosaic. Since $\left|V\left(P^{0}\right)\right| \geq 3,\left|V\left(P^{1}\right)\right| \geq 4$, and $S \neq \varnothing$, we have $\left|V\left(G^{\prime}\right)\right|<|V(G)|$. Thus, by the minimality of \mathcal{T}, G^{\prime} admits an L^{\prime}-coloring σ. Let σ^{*} be the restriction of σ to $V\left(G_{Q}^{\text {large }}\right)$. By our construction of L^{\prime}, σ^{*} is an L-coloring of $G_{Q}^{\text {large }}$, and, by Claim 8.1.13, the union $\sigma^{*} \cup \phi$ is a proper L-coloring of $V\left(G_{Q}^{\text {large }} \cup P^{0}\right)$. By 2) of Claim 8.1.15, we have $\left|L_{\sigma^{*}}\left(u_{\star}\right)\right|=2$, and, since $\sigma^{*} \cup \phi$ does not extend to an L-coloring of G, we have the following.

1) $\sigma^{*}(x) \in L_{\phi}\left(u_{1}\right)$ and $\sigma^{*}(y) \in L_{\phi}\left(u_{t-1}\right) ; A N D$
2) $\mid L_{\sigma^{*}}\left(u_{\star}\right) \subseteq L_{\phi}\left(u_{i}\right)$ for each $i=1, \cdots t-1$.

Recall that, by Claim 8.1.16, we have $\mid L_{\phi}\left(u_{1}\right)=\{r, s, \psi(x)\}$ and $L\left(u_{\star}\right)=\{r, s, \psi(x), \psi(w), \psi(y)\}$.

Claim 8.1.18. Either $\sigma(x) \neq \psi(x)$ or $\sigma(y) \neq \psi(y)$.

Proof: Suppose toward a contradiction that $\sigma(x)=\psi(x)$ and $\sigma(y)=\psi(y)$. If $\sigma(w) \neq \psi(w)$, then, since $\left|L_{\sigma *}\left(u_{\star}\right)\right|=$ 2 and $L\left(u_{\star}\right)=\{r, s, \psi(x), \psi(w), \psi(y)\}$, the color $\psi(w)$ lies in $L_{\sigma^{*}}\left(u_{\star}\right)$. Since $L_{\phi}\left(u_{1}\right)=\{r, s, \psi(x)\}$, we have $\psi(w)$ not $\in L_{\phi}\left(u_{1}\right)$, so, coloring u_{\star} with $\psi(w)$, the union $\sigma^{*} \cup \phi$ extends to a proper L-coloring of the broken wheel $G_{Q}^{\text {small }} \backslash C$. Thus, G is L-colorable, contradicting the fact that \mathcal{T} is critical. It follows that $\sigma(w)=\psi(w)$, so σ and ψ restrict to the same L-coloring of the path $x w y$. Yet, by our construction of L^{\prime}, σ uses the color d on each of q, q^{\prime}, contradicting the fact that σ is a proper L^{\prime}-coloring of $V\left(G^{\prime}\right)$.

Applying Claim 8.1.18, suppose without loss of generality that $\sigma(x) \neq \psi(x)$. Since $\sigma(x) \in L_{\phi}\left(u_{1}\right)$, we have $\sigma^{*}(x) \in\{r, s\}$. Suppose without loss of generality that $\sigma^{*}(x)=r$. Thus, since $L_{\sigma^{*}}\left(u_{\star}\right) \subseteq L_{\phi}\left(u_{1}\right)$, we have $L_{\sigma^{*}}\left(u_{\star}\right)=\{s, \psi(x)\}$. Furthermore, by Claim 8.1.16, we have $L_{\phi}\left(u_{t-1}\right)=\{r, s, \psi(y)\}$, and these colors are distinct. Since $\psi(x) \neq \psi(y)$, there is a color of $L_{\sigma^{*}}\left(u_{\star}\right)$ not lying in $L_{\phi}\left(u_{t-1}\right)$, so $\sigma^{*} \cup \phi$ extends to an L-coloring of G, contradicting the fact that \mathcal{T} is critical.

To complete the proof of Theorem 8.0.4, we need analogues to Lemmas 8.1.4 and 8.1.10 in which we deal with vertices on the 1-necklace with lists of size less than three after we delete the precolored cycle. We obtain these lemmas and complete the proof of Theorem 8.0.4 in the remaining sections of Chapter 8.

8.2 Ruling Out the Remaining Chords

This section consists of the following lone result.
Lemma 8.2.1. Let $\mathcal{T}=\left(G, \mathcal{C}, L, C_{*}\right)$ be a critical mosaic, let $C \in \mathcal{C}$ be a closed ring, and let C^{1} be the 1-necklace of C. Then C^{1} is an induced cycle of G.

Proof. Given a 3-chord Q of C, we say that Q is defective if $V\left(G_{Q}^{\text {small }} \cap C^{1}\right) \neq V\left(Q \cap C^{1}\right)$. Suppose toward a contradiction that C^{1} is not an induced subgraph of G. Then G contains a defective 3-chord Q of C. Among all defective 3-chords of C, we choose Q so that the quantity $\left|V\left(G_{Q}^{\text {large }}\right)\right|$ is minimized. Let $Q:=x u u^{\prime} y$, let C_{\dagger}^{0} be the cycle $C \cap G_{Q}^{\text {large }}+Q$, and let C_{\dagger}^{1} be the cycle $\left(C^{1} \cap G_{Q}^{\text {large }}\right)+u u^{\prime}$. Likewise, let D_{\dagger}^{0} be the cycle $\left(C \cap G_{Q}^{\text {small }}\right)+Q$ and let D_{\dagger}^{1} be the cycle $\left(C^{1} \cap G_{Q}^{\text {small }}\right)+u u^{\prime}$.
Let ϕ be the unique L-coloring of $V(C)$. By Lemma 8.1.4, there is an internal vertex u_{\star} of the path $C^{1} \cap G_{Q}^{\text {small }}$ such that $\left|L\left(u_{\star}\right)\right|<2$. Since C is L-predictable and an induced subgraph of G, we have $\left|L\left(u_{\star}\right)\right|=2$, and u_{\star} is the unique vertex of C^{1} with an L_{ϕ}-list of size less than three.

Claim 8.2.2. $N(u) \cap V\left(C_{\dagger}^{0}\right)=\{x\}$ and $N\left(u^{\prime}\right) \cap V\left(C_{\dagger}^{0}\right)=\{y\}$. In particular, C_{\dagger}^{0} is induced in G.
Proof: Since each of $G[N(u) \cap V(C)]$ and $G\left[N\left(u^{\prime}\right) \cap V(C)\right]$ is a subpath of C, it is immediately from the minimality of Q that $N(u) \cap V\left(C_{\dagger}^{0}\right)=\{x\}$ and $N\left(u^{\prime}\right) \cap V\left(C_{\dagger}^{0}\right)=\{y\}$. Since C is an induced subgraph of G, it follows that C_{\dagger}^{0} is also an induced subgraph of G.

We also have the following easy facts:
Claim 8.2.3. u_{\star} has at least one neighbor in $D_{\dagger}^{0} \backslash\left(N(u) \cup N\left(u^{\prime}\right)\right)$. Furthermore, at least one of u, u^{\prime} is not the endpoint of a chord of D_{\dagger}^{1}.

Proof: Suppose that u_{\star} has no neighbors in $D_{\dagger}^{0} \backslash\left(N(y) \cup N\left(u^{\prime}\right)\right)$. since each of $\left.G[N u) \cap V(C)\right]$ and $G\left[N\left(u^{\prime}\right) \cap V(C)\right]$ is a subpath of C, u and u^{\prime} have a common neighbor in $C \cap G_{Q}^{\text {small }}$, and G contains a 4-cycle which separates u_{\star} from $G_{Q}^{\text {large }} \backslash Q$, contradicting the fact that \mathcal{T} is a tessellation.
By Lemma 8.1.4, any chord of $\left(C \cap G_{Q}^{\text {small }}\right)+u u^{\prime}$ with u as an endpoint separates u^{\prime} from u_{\star}. Likewise, any chord of $\left(C \cap G_{Q}^{\text {small }}\right)+u u^{\prime}$ with u^{\prime} as an endpoint separates u from u_{\star}. Thus, if there is a chord of $\left(C \cap G_{Q}^{\text {small }}\right)+u u^{\prime}$ with u as an endpoint, then there is no chord of $\left(C \cap G_{Q}^{\text {small }}\right)+u u^{\prime}$ with u^{\prime} as an endpoint, and vice-versa.
We now have the following:
Claim 8.2.4. C_{\dagger}^{1} is an induced subgraph of G. Furthermore, for each $w \in V\left(G_{Q}^{\mathrm{large}}\right) \backslash V\left(C \cup C^{1}\right)$, the graph $G\left[N(w) \cap V\left(C_{\dagger}^{1}\right)\right]$ is a subpath of C_{\dagger}^{1}.

Proof: Suppose toward a contradiction that G has a chord $w w^{\prime}$ of C_{\dagger}^{1}. Then $w w^{\prime}$ is also a chord of C^{1}, and, in $G \backslash C$, ww separates u_{\star} from each element of $\mathcal{C} \backslash\{C\}$, or else we contradict Lemma 8.1.4. Each of w, w^{\prime} has a neighbor in $C \cap G_{Q}^{\text {arge }}$, since each lies in C^{1} and Q separates w, w^{\prime} from each internal vertex of the path $D_{\dagger}^{0}-u u^{\prime}$. Thus, let $z, z^{\prime} \in V\left(C \cap G_{Q}^{\text {large }}\right.$ with $z \in N(w)$ and $z^{\prime} \in N\left(w^{\prime}\right)$, and let $Q^{\prime}:=z w w^{\prime} z^{\prime}$. Then $u_{\star} \in V\left(G_{Q^{\prime}}^{\text {small }}\right)$ and $G_{Q}^{\text {small }} \subseteq G_{Q^{\prime}}^{\text {small }}$. Note that $w w^{\prime} \neq u u^{\prime}$, since $u u^{\prime}$ is not a chord of C_{\dagger}^{1}. Thus, we have $\left|V\left(G_{Q}^{\text {small }}\right)\right|<\left|V\left(G_{Q^{\prime}}^{\text {small }}\right)\right|$ and $\left|V\left(G_{Q}^{\text {large }}\right)\right|>\left|V\left(G_{Q^{\prime}}^{\text {large }}\right)\right|$, contradicting the minimality of Q.

Now let $w \in V\left(G_{Q}^{\text {large }}\right) \backslash V\left(C \cup C^{1}\right)$. If w is adjacent to at most one of u, u^{\prime}, then it immediately follows from Lemma 8.1.10 that $G\left[N(w) \cap V\left(C_{\dagger}^{1}\right)\right]$ is a subpath of C^{1} and also a subpath of C_{\dagger}^{1}. Now suppose that w is adjacent to each of u, u^{\prime}. Applying Lemma 8.1.10, the graph $C^{1} \cap G[N(w)]$ consists of two disjoint subpaths of $C^{1} \cap G_{Q}^{\text {large }}$, where one of these paths has u as an endpoint and the other has u^{\prime} as an endpoint. Since C_{\dagger}^{1} is an induced subgraph of G, the graph $G\left[N(w) \cap V\left(C_{\dagger}^{1}\right)\right]$ is a subpath of C_{\dagger}^{1} containing the edge $u u^{\prime}$.

We now note the following:

Claim 8.2.5. For each $v \in\left\{u, u^{\prime}\right\}$ there exist two elements $\psi_{1}, \psi_{2} \in \Phi\left(\phi, G_{Q}^{\mathrm{small}}\right)$, where $\psi_{1}(v) \neq \psi_{2}(v)$.
Proof: We first note that $G_{Q}^{\text {small }} \backslash C$ has a facial cycle D_{\dagger}^{1} which contains every vertex of $G_{Q}^{\text {small }} \backslash C$ with an L_{ϕ}-list of size less than five. Furthermore, u_{\star} is the lone vertex of this cycle with an L_{ϕ}-list of size less than three, and $\left|L_{\phi}\left(u_{\star}\right)\right|=2$. Thus, it immediately follows from Theorem 1.3.4 that there exist $\psi_{1}, \psi_{2} \in \Phi\left(\phi, G_{Q}^{\text {small }}\right)$ with $\psi_{1}(v) \neq \psi_{2}(v)$.

We now have the following:

Claim 8.2.6. If u_{\star} is the only internal vertex of the path $D_{\dagger}^{1}-u u^{\prime}$ with more than one neighbor in C, then $\mid N(u) \cap$ $V(C) \mid>1$ and $\left|N\left(u^{\prime}\right) \cap V(C)\right|>1$.

Proof: Suppose toward a contradiction that at least one of u, u^{\prime} is adjacent to precisely one vertex of C, and thus suppose without loss of generality that $N(u) \cap V(C)=\{x\}$. Let G^{\prime} be a graph obtained from G by deleting every vertex of $G_{Q}^{\text {small }} \backslash Q$ and replacing them with a lone vertex v^{\star}, where v^{\star} is adjacent to each vertex of Q. Let C^{\prime} be the cycle $\left(G_{Q}^{\text {large }} \cap C\right)+x v^{\star} y$. Now let a be a color in $L_{\phi}\left(u_{\star}\right)$ and let L^{\prime} be a list-assignment for $V\left(G^{\prime}\right)$ where $L^{\prime}\left(v^{\star}\right)=\{a\}$ and otherwise $L^{\prime}=L$.

Subclaim 8.2.7. G^{\prime} is short-separation-free, and furthermore, C^{\prime} is an L^{\prime}-predictable facial subgraph of G^{\prime}.
Proof: Suppose toward a contradiction that G^{\prime} is not short-separation-free. Since C_{\dagger}^{1} is an induced subgraph of G^{\prime}, there is a vertex w of $G_{Q}^{\text {large }} \backslash Q$ with at least three neighbors in Q. Since Q is an induced subgraph of G and G is short-separation-free, it follows from our triangulation conditions that $G[N(w) \cap V(Q)]$ is a subpath of Q of length at least two, so suppose without loss of generality that w is adjacent to each of x, u, u^{\prime}. Thus, $w \in V\left(C_{\dagger}^{1}\right) \backslash\left\{u, u^{\prime}\right\}$. By Claim 8.2.4, C_{\dagger}^{1} is an induced subgraph of G, so $C_{\dagger}^{1}=u u^{\prime} w$, and G contains a triangle which separates C from each element of $\mathcal{C} \backslash\{C\}$, contradicting the fact that \mathcal{T} is a tessellation. Thus, G^{\prime} is indeed short-separation-free.

Now we check that C^{\prime} is L^{\prime}-predictable. Let ϕ^{\prime} be the unique L^{\prime}-coloring of $V\left(C^{\prime}\right)$. We have $\left|L_{\phi}(u) \backslash\{a\}\right| \geq 3$, since $|N(u) \cap V(C)|=1$. For each $w \in V\left(G^{\prime} \backslash C^{\prime}\right)$, if $w \neq u, u^{\prime}$, then $\mid L_{\phi^{\prime}}(w)=L_{\phi}(w)$ and thus $\left|L_{\phi^{\prime}}(w)\right| \geq 3$. Since $\left|L_{\phi^{\prime}}(u)\right| \geq 3$ and $\left|L_{\phi^{\prime}}\left(u^{\prime}\right)\right| \geq 2, C^{\prime}$ is indeed an L^{\prime}-predictable facial subgraph of G^{\prime}.

Let $\mathcal{T}^{\prime}:=\left(G^{\prime},(\mathcal{C} \backslash\{C\}) \cup\left\{C^{\prime}\right\}, L^{\prime}, C_{*}^{\prime}\right)$. By our choice of $L^{\prime}\left(v^{\star}\right), V\left(C^{\prime}\right)$ is L^{\prime}-colorable, and since G^{\prime} is short-separation-free, \mathcal{T}^{\prime} is a tessellation in which C^{\prime} is a closed ring. By Claim 8.2.3, $C \cap G_{Q}^{\text {small }}$ is a path of length at least two, so $\left|V\left(C^{\prime}\right)\right| \leq|V(C)|$. We claim now that \mathcal{T}^{\prime} is a mosaic. Since $\left.\left|V\left(C^{\prime}\right)\right| \leq|V(C)|, \mathrm{M} 0\right)$ is satisfied, and M1) is trivial. By Subclaim 8.2.7, C^{\prime} is an L^{\prime}-predictable facial subgraph of G^{\prime}, so M2) is satisfied as well.

Now, for each $C^{\prime \prime} \in \mathcal{C} \backslash\{C\}$, there is no shortest $\left(w_{\mathcal{T}}\left(C^{\prime \prime}\right), C\right)$-path in G whose C-endpoint lies in $V\left(C \cap G_{Q}^{\text {small }} \backslash\right.$ $\{x, y\}$, or else, since Q separates $C^{\prime \prime}$ from $G_{Q}^{\text {small }} \backslash Q$, one of u, u^{\prime} has a neighbor in $V\left(C_{\dagger}^{0} \backslash Q\right)$, contradicting Claim 8.2.2. Since $\left|V\left(C^{\prime}\right)\right| \leq|V(C)|$, we have $\operatorname{Rk}\left(\mathcal{T}^{\prime} \mid C^{\prime}\right) \leq \operatorname{Rk}(\mathcal{T} \mid C)$. Since $w_{\mathcal{T}^{\prime}}\left(C^{\prime \prime}\right)=w_{\mathcal{T}}\left(C^{\prime \prime}\right)$ for each $C^{\prime \prime} \in \mathcal{C} \backslash\{C\}$,
and \mathcal{T} satisfies the distance conditions of Definition 2.1.6, it follows so \mathcal{T}^{\prime} is also satisfies the distance conditions of Definition 2.1.6.

We conclude that \mathcal{T}^{\prime} is a mosaic. Since $\left|V\left(G^{\prime}\right)\right|<|V(G)|, G^{\prime}$ admits an L^{\prime}-coloring ψ. Let ψ^{\prime} be the restriction of ψ to $G^{\prime} \backslash\left\{v^{\star}\right\}$. Note that ψ^{\prime} is an L-coloring of $G_{Q}^{\text {large }}$. We claim now that ψ^{\prime} extends to an L-coloring of G. By Claim 8.2.2, D_{\dagger}^{0} is an induced subgraph of G, so the union $\psi^{\prime} \cup \phi$ is a proper L-coloring of the subgraph of G induced by $C \cup G_{Q}^{\text {large }}$. The graph $G_{Q}^{\text {small }} \backslash V(C \cup Q)$ has a face F which contains every vertex of $G_{Q}^{\text {small }} \backslash V(C \cup Q)$ with an $L_{\psi^{\prime} \cup \phi}$ list of size less than five. If $G_{Q}^{\text {small }} \backslash V(C \cup Q)$ is $L_{\psi^{\prime} \cup \phi^{\prime}}$-colorable, then ψ^{\prime} extends to an L-coloring of G, contradicting the fact that \mathcal{T} is critical. Thus, $G_{Q}^{\text {small }} \backslash V(C \cup Q)$ is not $L_{\psi^{\prime} \cup \phi}$-colorable. Now consider the following cases:

Case 1: u_{\star} is adjacent to at least one of u, u^{\prime}
Suppose without loss of generality that u_{\star} is adjacent to u. Since there is no chord of D_{\dagger}^{1} with u_{\star} as an endpoint, it follows that $u_{\star} u$ is an edge of D_{\dagger}^{1}, and since any chord of D_{\dagger}^{1} separates u_{\star} from at least one of u, u^{\prime}, there is no chord of D_{\dagger}^{1} with u^{\prime} is an endpoint.

Suppose first that both u, u^{\prime} are adjacent to u_{\star}. In that case, D_{\dagger}^{1} consists of the triangle $u u^{\prime} u_{\star}$, and since G is short-separation-free, we have $G_{Q}^{\text {small }} \backslash C=u u^{\prime} u_{\star}$. Since $\psi\left(v^{\star}\right)=a$, we have $\left\{\psi^{\prime}(u), \psi^{\prime}\left(u^{\prime}\right)\right\} \neq L_{\phi}\left(v^{\star}\right)$, so $\psi^{\prime} \cup \phi$ extends to L-color the triangle $u u^{\prime} u_{\star}$. Thus, $G_{Q}^{\text {small }} \backslash V(C \cup Q)$ is $L_{\psi^{\prime} \cup \phi}$-colorable, which is false. The only remaining possibility in Case 1 is that u s adjacent to u_{\star} and u^{\prime} is not. Thus, we have $\left|L_{\psi^{\prime} \cup \phi}\left(u_{\star}\right)\right| \geq 1$. Since there is no chord of D_{\dagger}^{1} with u^{\prime} is an endpoint, and u_{\star} is the only internal vertex of the path $D_{\dagger}^{1}-u u^{\prime}$ with more than one neighbor in C, it follows that each vertex of $F \backslash\left\{u_{\star}\right\}$ has an $L_{\psi^{\prime} \cup \phi}$-list of size at least three. Thus, by Theorem 0.2.3, $G_{Q}^{\text {small }} \backslash V(C \cup Q)$ is $L_{\psi^{\prime} \cup \phi \text {-colorable, which is false. }}$

Case 2: u_{\star} is adjacent to neither u nor u^{\prime}
In this case, we have $\left|L_{\psi^{\prime} \cup \phi}\left(u_{\star}\right)\right| \geq 2$. Since each internal vertex of $D_{\dagger}^{1}-u u^{\prime}$, except for u_{\star}, has an L_{ϕ}-list of size at least four, and u, u^{\prime} have at most one common neighbor in D_{\dagger}^{1}, it follows that there is a vertex $v \in V(F) \backslash\left\{u_{\star}\right\}$ such that $\left|L_{\psi^{\prime} \cup \phi}(v)\right| \geq 2$, and, for each $w \in V(F) \backslash\left\{v, u_{\star}\right\},\left|L_{\psi^{\prime} \cup \phi}(w)\right| \geq 3$. Thus, by Theorem 1.3.4, $G_{Q}^{\text {small }} \backslash V(C \cup Q)$ is $L_{\psi^{\prime} \cup \phi \text {-colorable, which is false. }}$

We now have the following:

Claim 8.2.8. Either $|N(u) \cap V(C)|>1$ or $\left|N\left(u^{\prime}\right) \cap V(C)\right|>1$.

Proof: Suppose toward a contradiction that $N(u) \cap V(C)=\{x\}$ and $N\left(u^{\prime}\right) \cap V(C)=\{y\}$. Since at least one of u, u^{\prime} is not the endpoint of a chord of D_{\dagger}^{1}, suppose without loss of generality that u is not the endpoint of any chord of D_{\dagger}^{1}. Let p be the unique neighbor of u on the path $C_{\dagger}^{1}-u u^{\prime}$ and let q be the unique neighbor of u on the path $D_{\dagger}^{1}-u u^{\prime}$. Since $p \neq u_{\star}$, we have $\left|L_{\phi}(p)\right| \geq 3$. Since $N(u) \cap V(C)=\{x\}$, we have $\left|L_{\phi}(u)\right|=4$. Thus, there exists a $c \in L_{\phi}(u)$ such that $\left|L_{\phi}(p) \backslash\{c\}\right| \geq 3$,

Subclaim 8.2.9. There exists a $\psi \in \Phi\left(\phi, G_{Q}^{\text {small }}\right)$ such that $\psi(u)=c$.
Proof: Let ϕ^{\prime} be the extension of ϕ to $V(C) \cup\{u\}$ obtained by coloring u with c. Since $N\left(u^{\prime}\right) \cap V(C) \mid=1$, we have $\left|L_{\phi}\left(u^{\prime}\right)\right| \geq 4$, and thus $\left|L_{\phi^{\prime}}\left(u^{\prime}\right)\right| \geq 3$. Let F be the lone facial subgraph of $G_{Q}^{\text {small }} \backslash(V(C) \cup\{u\})$ containing all the vertices of $G_{Q}^{\text {small }} \backslash(V(C) \cup\{u\})$ with $L_{\phi^{\prime}}$-lists of size less than five. Since there is no chord of D_{\dagger}^{1} with u as an endpoint, each vertex of $F \backslash\left\{u_{\star}, q\right\}$ has an $L_{\phi^{\prime}}$-list of size at least three. If $u_{\star} \neq q$, then each of u_{\star}, q has an $L_{\phi^{\prime}}$-list of size at least two, and thus ϕ^{\prime} extends to an L-coloring of $G_{Q}^{\text {small }}$ by Theorem 1.3.4. If $u_{\star}=q$, then
$\left|L_{\phi^{\prime}}\left(u_{\star}\right)\right| \geq 1$, and thus, by Theorem $0.2 .3, \phi^{\prime}$ extends to an L-coloring of $G_{Q}^{\text {small }}$. In any case, there exists such a ψ in $\Phi\left(\phi, G_{Q}^{\text {small }}\right)$.
Now we let $\psi \in \Phi\left(\phi, G_{Q}^{\text {small }}\right)$ with $\psi(u)=c$. Let L^{\prime} be a list-assignment for $V\left(G_{Q}^{\text {large }}\right)$ where $L^{\prime}(v)=\{\psi(v)\}$ for each $v \in V\left(C_{\dagger}^{0}\right)$, and otherwise $L^{\prime}=L$. Let C_{*}^{\prime} be the outer face of $G_{Q}^{\text {large }}$ and let $\mathcal{T}^{\prime}:=\left(G_{Q}^{\text {large }}, L^{\prime}, C_{*}^{\prime}\right)$. Note that \mathcal{T}^{\prime} is a tessellation in which C_{\dagger}^{0} is a closed \mathcal{T}^{\prime}-ring. We claim now that \mathcal{T}^{\prime} is a mosaic. Firstly, by Claim 8.2.6, there is a vertex $w \in V\left(D_{\dagger}^{1}\right) \backslash\left\{u, u^{\prime}, u_{\star}\right\}$ with at least two neighbors in C. Since $G[N(w) \cap V(C)]$ and $G\left[N\left(u_{\star}\right) \cap V(C)\right]$ are paths which intersect at most on a common endpoint, and $G\left[N\left(u_{\star}\right) \cap V(C)\right]$ has length at least two, it follows that there $D_{\dagger}^{0} \backslash\{x, y\}$ is a path of length at least two, so we have $\left|V\left(C^{\prime}\right)\right|<|V(C)|$.
Since $\left|V\left(C^{\prime}\right)\right|<|V(C)|, \mathcal{T}^{\prime}$ satisfies M0), and M1) is trivially satisfied. Furthermore, the rank of C^{\prime} has dropped by at least one (that is, $\operatorname{Rk}\left(\mathcal{T}^{\prime} \mid C^{\prime}\right)<\operatorname{Rk}(\mathcal{T} \mid C)$, and thus, since \mathcal{T} satisfies the distance conditions of Definition 2.1.6, \mathcal{T}^{\prime} does as well. Thus, we just need to check that C^{\prime} is an L^{\prime}-predictable facial subgraph of G^{\prime}.
Since C is L-predictable in G and $u_{\star} \notin V\left(G_{Q}^{\text {large }}\right)$, each neighbor of C^{\prime} has an L_{ψ}-list of size at least three, except for the neighbors of u, u^{\prime} on the cycle C_{\dagger}^{1}. By our choice of ψ, we have $\left|L_{\psi}(p)\right| \geq 3$. Let p^{\prime} be the unique neighbor of u^{\prime} on the path $C_{\dagger}^{1}-u u^{\prime}$. Note that $p \neq p^{\prime}$, or else G contains a triangle which separates each element of $\mathcal{C} \backslash\{C\}$ from C, contradicting the fact that \mathcal{T} is a tessellation. Furthermore, since $\left|L_{\phi}\left(p^{\prime}\right)\right| \geq 3$, we have $\left|L_{\psi}\left(p^{\prime}\right)\right| \geq 2$.
Let $v \in V\left(G_{Q}^{\text {large }} \backslash C^{\prime}\right)$. If $u, u^{\prime} \notin N(v)$, then, since C is L-predictable in G, the graph $G\left[N(v) \cap V\left(C^{\prime}\right)\right]$ is a subpath of C^{\prime}. If at least one of $u, u^{\prime} \in N(v)$, then, since C_{\dagger}^{1} is an induced subgraph of G, and $G[N(v) \cap V(C)]$ is a subpath of C, it again follows that $G\left[N(v) \cap V\left(C^{\prime}\right)\right]$ is a subpath of C^{\prime}. Thus, C^{\prime} is an L^{\prime}-predictable facial subgraph of $G_{Q}^{\text {large }}$, and \mathcal{T}^{\prime} is indeed a mosaic. Since $\left|V\left(G_{Q}^{\text {large }}\right)\right|<|V(G)|$, it follows from the minimality of \mathcal{T} that $G_{Q}^{\text {large }}$ admits an L^{\prime}-coloring ψ^{\prime}. Thus, $\psi \cup \psi^{\prime}$ is an L-coloring of G, contradicting the fact that \mathcal{T} is critical.

We now have the following:
Claim 8.2.10. Let $v \in\left\{u, u^{\prime}\right\}$. If each vertex of $C_{\dagger}^{1}-v$ has at least two neighbors in C, then $\left|V\left(C_{\dagger}^{1}\right)\right|<|V(C)|$.
Proof: Suppose toward a contradiction that $\left|V\left(C_{\dagger}^{1}\right)\right| \geq|V(C)|$. Note that $C_{\dagger}^{1}-v$ is a subpath of C^{1}. Let $R:=$ $G\left[D_{1}\left(C_{\dagger}^{1}-v\right) \cap V(C)\right]$. Since C is L-predictable in G, and each vertex of $C_{\dagger}^{1}-v$ has at least two neighbors in C, it follows that R is a subpath of C of length at least $\left|E\left(C_{\dagger}^{1}-v\right)\right|$. Since $\left|E\left(C_{\dagger}^{1}\right)\right|=\left|E\left(C_{\dagger}^{1}-v\right)\right|+2$, it follows that $\left|E\left(C_{\dagger}^{1}\right)\right| \leq|E(R)|+2$ and thus $|V(C)| \leq|E(R)|+2$. Thus, we have $|V(C)| \leq|V(R)|+1$.
By Claim 8.2.3, there is a neighbor p of u_{\star} in $D_{\dagger}^{0} \backslash\left(N(u) \cup N\left(u^{\prime}\right)\right)$, and since $D_{\dagger}^{0} \backslash\left(N(u) \cup N\left(u^{\prime}\right)\right)$ is vertex-disjoint to R, p is the lone vertex of $C \backslash R$. If $|N(v) \cap V(C)|>1$, then there is a neighbor of v lying in $C \backslash R$, and since $p \notin N(v)$, we contradict the fact that $V(C \backslash R)=\{p\}$. Thus, we have $|N(v) \cap V(C)|=1$, and furthermore, since $\{p\}=V(C \backslash R)$, no internal vertex of the path $D_{\dagger}^{1}-u u^{\prime}$ other than u_{\star}, has more than one neighbor on C. Since $|N(v) \cap V(C)|=1$, we contradict Claim 8.2.6.

We have an analogous result for a proper subpath of $C_{\dagger}^{1}-u u^{\prime}$, where we construct a new cycle in G by adjoining a path in C to a path C_{\dagger}^{1} :

Claim 8.2.11. Let $v, v^{*} \in\left\{u, u^{\prime}\right\}$ with $v \neq v^{*}$ and let x^{*} be the unique vertex of $N\left(v^{*}\right) \cap\{x, y\}$. Let P be a subpath of $C_{\dagger}^{1}-u u^{\prime}$ with v as an endpoint, where $V(P) \nsubseteq V\left(C_{\dagger}^{1}-v^{*}\right)$. Let q be an endpoint of P where $q=v$ if $|V(P)|=1$ and otherwise q is the other endpoint of P. Let z be the unique vertex of $N(q) \cap V(C)$ which is closest to x^{*} on the path $C_{\dagger}^{0}-u u^{\prime}$ and let P_{0} be the unique subpath of $C_{\dagger}^{0}-u u^{\prime}$ with z, x^{*} as an endpoints. Finally, let C^{\prime} be the cycle $v P q z P_{0} x^{*} v^{*}$. Then the following hold.

1) C^{\prime} is an induced subgraph of G, and, for each $w \in V(G) \backslash B_{1}\left(C^{\prime}\right), G\left[N(w) \cap V\left(C^{\prime}\right)\right]$ is a subpath of C^{\prime}; AND
2) If each vertex of $P-v$ has at least two neighbors in C, then $\left|V\left(C^{\prime}\right)\right|<|V(C)|$.

Proof: Suppose without loss of generality that $v=u$, so $v^{*}=u^{\prime}$ and $x^{*}=y$. Since $V(P) \nsubseteq V\left(C_{\dagger}^{1}-u^{\prime}\right)$, there is a unique vertex p of $C_{\dagger}^{1} \backslash\left(V(P) \cup\left\{u^{\prime}\right\}\right)$ which is adjacent to q. We claim now that C^{\prime} is an induced subgraph of C. To see this, we first note that C_{\dagger}^{1} is an induced subgraph of G by Claim 8.2.4, and P_{0} is an induced subgraph of G, since C is an induced subgraph of G^{\prime}. Since C is L-predictable in G, and $q, p \neq u^{\prime}$, there is no edge of G with one endpoint in P_{0} and the other endpoint in $C^{\prime} \backslash P_{0}$, except for $y u^{\prime}$ and $q z$. Thus C^{\prime} is indeed an induced subgraph of G.

Now let $w \in V(G) \backslash B_{1}\left(C^{\prime}\right)$, if w has a neighbor in C^{\prime}, then $G^{\prime}\left[N(w) \cap V\left(C^{\prime}\right)\right]$ is a subpath of C^{\prime}. To see this, note that $G[N(w) \cap V(C)]$ is a subpath of C (possibly empty) since C is L-predictable in G, and, by Claim 8.2.4, $G^{\prime}\left[N(w) \cap V\left(C_{\dagger}^{1}\right)\right]$ is a subpath of C_{\dagger}^{1}. Since C_{\dagger}^{1} is an induced subgraph of $G, G^{\prime}\left[N(w) \cap V\left(C^{\prime}\right)\right]$ is a subpath of C^{\prime}.

Now suppose that each vertex of $P-v$ has at least two neighbors in C, and suppose toward a contradiction that $\left|V\left(C^{\prime}\right)\right| \geq|V(C)|$. Note that we have the disjoint union $V\left(C^{\prime}\right)=\{u\} \cup V(P) \cup V\left(P_{0}\right)$. Since C is an L-predictable and induced subgraph of G, the graph $G\left[V(C) \cap D_{1}(P)\right]$ is a subpath of C. Since each vertex of $P-v$ is adjacent to a subpath of C of length at least one, it follows that $|V(P)| \leq\left|D_{1}(P) \cap V(C)\right|$. Since $G\left[D_{1}(P) \cap V(C)\right]$ is a subpath of C which intersects with P_{0} precisely on the point w, and $V\left(C^{\prime}\right)=\{u\} \cup V(P) \cup V\left(P_{0}\right)$, it follows that $\left|V\left(C^{\prime}\right)\right| \leq$ $1+\left(\left|V\left(P_{0}\right)\right|+\left|D_{1}(P) \cap V(C)\right|\right)-1$. Since $\left|V\left(C^{\prime}\right)\right| \geq|V(C)|$, we have $|V(C)| \leq\left(\left|V\left(P_{0}\right)\right|+\left|D_{1}(P) \cap V(C)\right|\right)$. Now, $C \backslash\left(V\left(P_{0}\right) \cup D_{1}(P)\right)$ is a subpath of $G_{Q}^{\text {small }} \cap C$. Since $|V(C)| \leq\left(\left|V\left(P_{0}\right)\right|+\left|D_{1}(P) \cap V(C)\right|\right)$ and the sum on the right counts the vertex w precisely twice, it follows that the path $C \backslash\left(V\left(P_{0}\right) \cup D_{1}(P)\right)$ consists of at most one vertex. By Observation 8.2.3, this path consists of precisely one vertex, this vertex does not lie in $N\left(u^{\prime}\right)$, and u_{\star} is the only vertex of $D_{\dagger}^{1} \backslash\left\{u, u^{\prime}\right\}$ with more than one neighbor in C. Thus, since $N\left(u^{\prime}\right) \cap V\left(C_{\dagger}^{0}\right)=\{y\}$, we have $N\left(u^{\prime}\right) \cap V(C)=\{y\}$, contradicting Claim 8.2.6.

We now define a set $S_{u} \subseteq L_{\phi}(u)$ and a set $S_{u^{\prime}} \subseteq L_{\phi}\left(u^{\prime}\right)$, where S_{u} is the set of colors used on u by elements of $\Phi\left(\phi G_{Q}^{\text {small }}\right)$, and $S_{u^{\prime}}$ is the set of colors used on u^{\prime} by elements of $\Phi\left(\phi G_{Q}^{\text {small }}\right)$. By Claim 8.2.5, we have $\left|S_{u}\right| \geq 2$ and $\left|S_{u^{\prime}}\right| \geq 2$. We now define a subpath P_{u} of $C_{\dagger}^{1}-u u^{\prime}$ in the following way: P_{u} is the unique maximal subpath of $C_{\dagger}^{1}-u u^{\prime}$ such that u is an endpoint of P_{u} and P satisfies the property that, for each $v \in V\left(P_{u}-u\right), S_{u} \subseteq L_{\phi}(v)$ and $\left|L_{\phi}(v)\right|=3$. Likewise, we define a subpath $P_{u^{\prime}}^{\prime}$ of $C_{\dagger}^{1}-u u^{\prime}$ in the following way: $P_{u^{\prime}}^{\prime}$ is the unique maximal subpath of $C_{\dagger}^{1}-u u^{\prime}$ such that u^{\prime} is an endpoint of $P_{u^{\prime}}^{\prime}$ and, for each $v \in V\left(P_{u^{\prime}}^{\prime}-u^{\prime}\right), S_{u^{\prime}} \subseteq L_{\phi}(v)$ and $\left|L_{\phi}(v)\right|=3$. Note that each vertex of $P_{u}-u$ is adjacent to at least two vetices of C, and likewise for $P_{u^{\prime}}-u^{\prime}$.

Applying Claim 8.2.4, we define two subsets $\mathrm{Ob}(u)$ and $\mathrm{Ob}\left(u^{\prime}\right)$ of $V\left(G_{Q}^{\text {large }}\right) \backslash V\left(C \cup C^{1}\right)$ in the following way: Let $\mathrm{Ob}(u)$ be the set of vertices $v \in V\left(G_{Q}^{\text {large }}\right) \backslash V\left(C \cup C^{1}\right)$ such that $G\left[N(v) \cap V\left(C^{1}\right)\right]$ is a subpath of C_{\dagger}^{1} of length at least two with u as an endpoint. We define $\mathrm{Ob}\left(u^{\prime}\right)$ analogously. Note that each of $\mathrm{Ob}(u)$ and $\mathrm{Ob}\left(u^{\prime}\right)$ has size at most two. Furthermore, at most one of these sets have size precisely two. To see this, suppose that $\left|\mathrm{Ob}\left(u^{\prime}\right)\right|=2$. Then there s a vertex $v \in V\left(G_{Q}^{\text {large }}\right) \backslash V\left(C \cup C^{1}\right)$ such that $G\left[N(v) \cap V\left(C^{1}\right)\right]$ is a subpath of C^{1} with u as an internal vertex, and thus $\mathrm{Ob}(u)=\varnothing$.

Claim 8.2.12. If $\left|\mathrm{Ob}\left(u^{\prime}\right)\right| \leq 1$, then $V\left(C_{\dagger}^{1}-u^{\prime}\right) \nsubseteq V\left(P_{u}\right)$. Likewise, if $\mathrm{Ob}(u) \mid \leq 1$, then $V\left(C_{\dagger}^{1}-u\right) \nsubseteq V\left(P_{u^{\prime}}^{\prime}\right)$.
Proof: As the two claims are symmetric, suppose without loss of generality that $\left|\mathrm{Ob}\left(u^{\prime}\right)\right| \leq 1$ and suppose toward a contradiction that $V\left(C_{\dagger}^{1}-u^{\prime}\right) \subseteq V\left(P_{u}\right)$. Let p^{\prime} be the unique vertex of $C_{\dagger}^{1}-u$ which is adjacent to u^{\prime}

Subclaim 8.2.13. There exists $a \sigma \in \Phi\left(\phi, G_{Q}^{\text {small }} \cup C_{Q}^{1}\right)$ and a vertex $w \in V\left(G_{Q}^{\text {large }}\right) \backslash V\left(C \cup C^{1}\right)$ such that $\left|L_{\sigma}(w)\right| \geq 2$, and, for each $v \in V\left(G_{Q}^{\text {large }}\right) \backslash V\left(C \cup C^{1}\right)$, if $v \neq w$, then $\left|L_{\sigma}(v)\right| \geq 3$.

Proof: We break this into two cases:
Case 1: $S_{u} \cap S_{u^{\prime}} \neq \varnothing$
In this case, there exists a $\psi \in \Phi\left(\phi, G_{Q}^{\text {small }}\right)$ such that ψ extends to an L-coloring of $\operatorname{dom}(\psi) \cup V\left(C_{\dagger}^{1}-p^{\prime}\right)$ obtained by 2-coloring of the path $C_{\dagger}^{1}-p^{\prime}$ with the colors of $\left\{\psi(u), \psi\left(u^{\prime}\right)\right\}$. Since $p^{\prime} \neq u_{\star}$, we have $\left|L_{\phi}\left(p^{\prime}\right)\right| \geq 3$, so there is a color left over for p^{\prime}. This is permissible as C_{\dagger}^{1} is an induced subgraph of G. Let σ be the resulting extension of ψ to $\operatorname{dom}(\psi) \cup V\left(C_{\dagger}^{1}\right)$. We claim that σ satisfies the desired properties. If there is a vertex $w \in V\left(G_{Q}^{\text {large }}\right) \backslash B_{1}(C)$ such that p^{\prime} is an internal vertex of $G\left[N(w) \cap V\left(C_{\dagger}^{1}\right)\right.$, then $\left|L_{\sigma}(w)\right| \geq 2$ and w is the lone vertex of $G_{Q}^{\text {large }} \backslash B_{1}(C)$ with an L_{σ}-list of size less than three, since, for any other vertex $v \in V\left(G_{Q}^{\text {large }}\right) \backslash B_{1}(C)$, the colors used by σ among the neighbors of v all lie in $\left\{\psi(u), \psi\left(u^{\prime}\right)\right\}$. On the other hand, if no such vertex exists, then, for any $w \in V\left(G_{Q}^{\text {large }}\right) \backslash B_{1}(C)$, if $\left|L_{\sigma}(w)\right|<3$, we have $w \in \mathrm{Ob}\left(u^{\prime}\right)$ and $\left|L_{\sigma}(w)\right|=2$, so, again, we are done.
Case 2: $S_{u} \cap S_{u^{\prime}} \neq \varnothing$
In this case, we simply choose a $\psi \in \Phi\left(\phi, G_{Q}^{\text {small }}\right)$ and extend ϕ to an L-coloring of C_{\dagger}^{1} by 2-coloring the path $C_{\dagger}^{1}-u^{\prime}$ using colors from S_{u}. Let σ be the resulting L-coloring of $V\left(G_{Q}^{\text {small }}\right) \cup V\left(C \cup C^{1}\right)$. For each $v \in V\left(G_{Q}^{\text {large }}\right) \backslash B_{1}(C)$, if $v \notin \mathrm{Ob}\left(u^{\prime}\right)$, then $\left|L_{\sigma}(v)\right| \geq 3$, and, if $v \in \mathrm{Ob}\left(u^{\prime}\right)$, then $\left|L_{\sigma}(v)\right| \geq 2$.
Let σ be as in the statement of Subclaim 8.2.13. We let $G^{\prime}:=G_{Q}^{\text {large }} \backslash C$ and let L^{\prime} be a list-assignment for $V\left(G^{\prime}\right)$ defined as follows. For each $v \in V\left(C_{\dagger}^{1}\right)$, we set $L^{\prime}(v)=\{\sigma(v)\}$, and, for each $v \in V\left(G^{\prime} \backslash C_{\dagger}^{1}\right)$, we set $L^{\prime}(v)=L(v)$. Let C_{*}^{\prime} be the outer face of G^{\prime} and let $\mathcal{T}^{\prime}:=\left(G^{\prime},(\mathcal{C} \backslash\{C\}) \cup\left\{C_{\dagger}^{1}\right\}, L^{\prime}, C_{*}^{\prime}\right)$. Note that \mathcal{T}^{\prime} is a tessellation in which C^{\prime} is a closed ring. We claim now that \mathcal{T}^{\prime} is a mosaic.

Subclaim 8.2.14. $V\left(C_{1}^{\dagger}\right)|<|V(C)|$.
Proof: If $|N(u) \cap V(C)|>1$, then, since $V\left(C_{\dagger}^{1}-u^{\prime}\right) \subseteq V\left(P_{u}\right)$, it follows from the definition of P_{u} each vertex of $C_{\dagger}^{1}-u^{\prime}$ is adjacent to at least two vertices of C, so, by Claim 8.2.10, we have $\left|V\left(C_{\dagger}^{1}\right)\right|<|V(C)|$. Now suppose that $|N(u) \cap V(C)|=1$. By Claim 8.2 .8 , we have $\left|N\left(u^{\prime}\right) \cap V(C)\right|>1$. Since each vertex of $C_{\dagger}^{1}-u^{\prime}$ lies in P, it follows that each vertex of $C_{\dagger}^{1}-u$ is adjacent to at least two vertices of C, so, again applying Claim 8.2.8, we have $\left|V\left(C_{\dagger}^{1}\right)\right|<|V(C)|$.

Since $\left|V\left(C_{\dagger}^{1}\right)\right|<|V(C)|$, it immediately follows that \mathcal{T}^{\prime} satisfies M0), and M1) is trivial. Combining Subclaim 8.2.13 with Claim 8.2.4, we immediately get that C_{\dagger}^{1} is an L^{\prime}-predictable facial subgraph of G^{\prime}, so M2) is satisfied as well. Since $\left|V\left(C_{\dagger}^{1}\right)\right|<|V(C)|$, we have $\operatorname{Rk}\left(\mathcal{T}^{\prime} \mid C_{\dagger}^{1}\right)<\operatorname{Rk}(C \mid \mathcal{T})$. Since $V\left(C_{\dagger}^{1}\right) \subseteq B_{1}(C, G)$ and \mathcal{T} satisfies the distance conditions of Definition 2.1.6, it immediately follows that \mathcal{T}^{\prime} does as well. Thus, \mathcal{T}^{\prime} is indeed a mosaic. Since $\left|V\left(G^{\prime}\right)\right|<|V(G)|$, it follows from the minimality of \mathcal{T} that G^{\prime} admits an L^{\prime}-coloring, so σ extends to an L-coloring of G, contradicting the fact that \mathcal{T} is critical.

We now have the following:

Claim 8.2.15. Let $v, v^{*} \in\left\{u, u^{\prime}\right\}$ with $\left|\mathrm{Ob}\left(v^{*}\right)\right| \leq 1$ and $v \neq v^{*}$. Then the following hold.

1) There is a vertex $w \in V\left(G_{Q}^{\text {large }} \backslash B_{1}(C)\right)$ which is adjacent to v^{*} and has at least two neighbors in P_{v}; AND
2) The path $C_{\dagger}^{1} \backslash P_{v}$ consists of precisely one edge v^{*} p, where $|N(p) \cap V(C)| \geq 2$.

Proof: Suppose without loss of generality that $v^{*}=u^{\prime}$ and $v=u$, and suppose toward a contradiction that at least one of the two conditions is not satisfied. Applying Claim 8.2.12, we have $V(P) \nsubseteq V\left(C_{\dagger}^{1}-u^{\prime}\right)$. Let $P_{u}:=u_{0} u_{1} \cdots u_{t}$, where $u_{0}=u$. Let p be the unique vertex which does not lie in P_{u} and is adjacent to u_{t} on the path $C_{\dagger}^{1}-u u^{\prime}$. Since $V\left(P_{u}\right) \nsubseteq V\left(C_{\dagger}^{1}-u^{\prime}\right)$, the subpath of $C_{\dagger}^{1}-u u^{\prime}$ with endpoints u_{t}, u^{\prime} has length at least two. Furthermore, there is at most one vertex $w \in V\left(G_{Q}^{\text {large }} \backslash B_{1}(C)\right)$ such that $w \in N\left(u^{\prime}\right)$ and w is adjacent to at least two vertices of P_{u}. If such a w exists and the path $G\left[N(w) \cap V\left(C_{\dagger}^{1}\right)\right]$ has u^{\prime} as an internal vertex, then this is immediate, since u^{\prime} has degree three in $G \backslash C$, and if u^{\prime} is an endpoint of $G\left[N(w) \cap V\left(C_{\dagger}^{1}\right)\right]$, then it follows from our assumption that w is the only vertex of $G_{Q}^{\text {large }} \backslash B_{1}(C)$ with at least two neighbors in P_{u}.

Subclaim 8.2.16. There is an L-coloring $\sigma \in \Phi\left(\phi, G_{Q}^{\mathrm{small}} \cup P_{u}\right)$ such that the following hold.

1) σ 2-colors the elements of $V\left(P_{u}\right)$ with colors of S_{u}; AND
2) If there exists a $w \in N\left(u^{\prime}\right)$ with at least two neighbors in P, then $\left|L_{\sigma}(p)\right| \geq 3$.

Proof: By definition of P_{u}, there exists a 2-coloring of the path $u_{0} \cdots u_{t}$ with two colors from S_{u}, where either the color used on u_{t} does not lie in p, or $\left|L_{\phi}(p)\right|>3$. Since C_{\dagger}^{1} is a chordless cycle, we have $\left|L_{\sigma}(p)\right| \geq 2$. Furthermore, if there exists a $w \in N\left(u^{\prime}\right)$ with at least two neighbors in P, then, by assumption, either p is not adjacent to u^{\prime}, or, if p is adjacent to u^{\prime}, then $\left|L_{\phi}\left(v^{*}\right)\right|=4$. In either case, we have $\left|L_{\sigma}(p)\right| \geq 3$.

We now fix a $\sigma \in \Phi\left(\phi, G_{Q}^{\text {small }} \cup P\right)$ satisfying Subclaim 8.2.16. Since C is L-predictable in G, the graph $G\left[N\left(u_{t}\right) \cap\right.$ $\left.V\left(C \cap G_{Q}^{\text {large }}\right)\right]$ is a subpath of $C \cap G_{Q}^{\text {large }}$. Let z be the vertex of $G\left[N\left(u_{t}\right) \cap V\left(C \cap G_{Q}^{\text {large }}\right)\right]$ which is closest to y on this path. Let P_{0} be the unique subpath of $C \cap G_{Q}^{\text {large }}$ with endpoints z, y, and let C^{\prime} be the cycle $u_{0} \cdots u_{t} z P_{0} y u^{\prime} u_{0}$. By Claim 8.2.11, C^{\prime} is an induced subgraph of G and $\left|V\left(C^{\prime}\right)\right|<|V(C)|$. Let L^{\prime} be a list-assignment for $V\left(G^{\prime}\right)$ in which $V\left(C^{\prime}\right)$ is precolored by σ and otherwise $L^{\prime}=L$. Let $\mathcal{T}^{\prime}:=\left(G^{\prime}, L^{\prime},(\mathcal{C} \backslash\{C\}) \cup\left\{C^{\prime}\right\}, C_{*}^{\prime}\right)$. Note that \mathcal{T}^{\prime} is a tessellation in which C^{\prime} is a closed ring.

Subclaim 8.2.17. C^{\prime} is an L^{\prime}-predictable facial subgraph of G^{\prime}.
Proof: It immediately follows from Claim 8.2.11 that, for each $w \in V\left(G^{\prime}\right) \backslash B_{1}\left(C^{\prime}\right), G^{\prime}\left[N(w) \cap V\left(C^{\prime}\right)\right]$ is a subpath of C^{\prime}. Since the path P_{u} is 2-colored by σ, it follows from $\operatorname{Subclaim} 8.2 .16$ that, if $\left|L_{\sigma}(p)\right|<3$, then $\left|L_{\sigma}(p)\right|=2$ and p is the lone vertex of $G^{\prime} \backslash B_{1}\left(C^{\prime}\right)$ with an L_{σ}-list of size less than three, and furthermore, if $\left|L_{\sigma}(p)\right| \geq 3$, then any vertex of $G^{\prime} \backslash B_{1}\left(C^{\prime}\right)$ with an L_{σ}-list of size less than three is adjacent to u^{\prime} and to at least two vertices of P_{u}. In the latter case, by assumption, there is precisely one vertex of $G^{\prime} \backslash B_{1}\left(C^{\prime}\right)$ with an L_{σ}-list of size less than three, and this vertex has an L_{σ}-list of size two. In either case, C^{\prime} is L^{\prime}-predictable in G^{\prime}.

As $\left|V\left(C^{\prime}\right)\right|<|V(C)|$, it follows that \mathcal{T}^{\prime} satisfies M0), and that the rank of C^{\prime} has dropped by at least one, i.e $\operatorname{Rk}\left(\mathcal{T}^{\prime} \mid C^{\prime}\right)<\operatorname{Rk}(\mathcal{T} \mid C)$. Thus, since \mathcal{T} satisfies the distance conditions of Definition 2.1.6, \mathcal{T}^{\prime} does as well., and M1) is trivially satisfied. Since C^{\prime} is an L^{\prime}-predictable facial subgraph of G^{\prime}, M2) is satisfied as well. We conclude that \mathcal{T}^{\prime} is a mosaic. Since $\left|V\left(G_{Q}^{\text {small }} \backslash Q\right)\right|>0$, we have $\left|V\left(G^{\prime}\right)\right|<|V(G)|$. By the minimality of \mathcal{T}, G^{\prime} admits an L^{\prime}-coloring, and thus σ extends to an L-coloring of G, contradicting the fact that \mathcal{T} is critical.

We now have the following:
Claim 8.2.18. $S_{u} \cap S_{u^{\prime}}=\varnothing$.
Proof: Suppose toward a contradiction that $S_{u} \cap S_{u^{\prime}} \neq \varnothing$. Since at most one of $\mathrm{Ob}(u), \mathrm{Ob}\left(u^{\prime}\right)$ has size two, suppose without loss of generality that $\left|\mathrm{Ob}\left(u^{\prime}\right)\right| \leq 1$. By Claim 8.2.12, $V\left(C_{\dagger}^{1}-u^{\prime}\right) \nsubseteq V\left(P_{u}\right)$. Since $S_{u} \cap S_{u^{\prime}} \neq \varnothing$, there is a $\psi \in \Phi\left(\phi, G_{Q}^{\text {small }}\right)$ which extends to an L-coloring σ of $\operatorname{dom}(\psi) \cup V(P)$, where σ colors the vertices of the
path $P_{u}+u u^{\prime}$ with the two colors $\left\{\psi(u), \psi\left(u^{\prime}\right)\right\}$. This is permissible since C_{\dagger}^{1} is an induced subgraph of G and $V\left(P+u u^{\prime}\right) \neq V\left(C_{\dagger}^{1}\right)$. By Claim 8.2.15, there is a vertex p of C_{\dagger}^{1} adjacent to each endpoint of $P+u u^{\prime}$, where $V\left(C_{\dagger}^{1}\right)=V\left(P+u u^{\prime}\right) \cup\{p\}$. Let z be the unique vertex of the path $N\left(u_{t}\right) \cap V(C)$ which is closest to y, and let P_{0} be the subpath of $C_{\dagger}^{0}-u u^{\prime}$ with z, y as endpoints. Since $\left|V\left(C_{\dagger}^{1}\right)\right|>4$ and $P_{u}+u u^{\prime}$ consists all but a lone vertex of C_{\dagger}^{1}, P_{u} has length at least two, so let q be the non- u endpoint of P_{u}, and let $C^{\prime}:=u P_{u} q z P_{0} y u^{\prime} u$.
Let $G^{\prime}:=G_{Q}^{\text {large }} \backslash\left(C \backslash P_{0}\right)$ and let C_{*}^{\prime} be the outer face of G^{\prime}. Let L^{\prime} be a list-assignment for $V\left(G^{\prime}\right)$ where $L^{\prime}(v)=\{\sigma(v)\}$ for all $v \in V\left(C^{\prime}\right)$, and otherwise $L^{\prime}=L$. Let $\left.\mathcal{T}^{\prime}:=\left(G^{\prime}, \mathcal{C} \backslash\{C\}\right) \cup\left\{C^{\prime}\right\}, L^{\prime}, C_{*}^{\prime}\right)$. Note that \mathcal{T}^{\prime} is a tessellation in which C^{\prime} is a closed ring precolored by σ. It immediately follows from Claim 8.2.11 that C^{\prime} is an induced subgraph of G^{\prime}, and for each $w \in V\left(G^{\prime} \backslash C^{\prime}\right)$, the graph $G^{\prime}\left[N(w) \cap V\left(C^{\prime}\right)\right]$ is a subpath of C^{\prime}. By definition of P, we have $\left|L_{\sigma}(q)\right| \geq 2$, since either $\left|L_{\phi}(q)\right|>3$ or $\left\{\sigma(u), \sigma\left(u^{\prime}\right)\right\} \nsubseteq L_{\phi}(q)$. Furthermore, for any $w \in V\left(G^{\prime} \backslash C^{\prime}\right)$, if $w \neq q$, then $w \notin B_{1}(C)$, and thus we have $\left|L_{\sigma}(w)\right| \geq 3$, since σ only uses two colors among the neighbors of w. We conclude that C^{\prime} is an L^{\prime}-predictable facial subgraph of G^{\prime}.

We claim that \mathcal{T}^{\prime} is a mosaic. By Claim 8.2.11, we have $\left|V\left(C^{\prime}\right)\right|<|V(C)|$, so it immediately follows that \mathcal{T}^{\prime} satisfies M0), and M1) is trivially satisfied. Since C^{\prime} is L^{\prime}-predictable in G^{\prime}, M2) is satisfied as well. Since $\left|V\left(C^{\prime}\right)\right|<|V(C)|$, we have $\operatorname{Rk}\left(\mathcal{T}^{\prime} \mid C^{\prime}\right)<\operatorname{Rk}(\mathcal{T} \mid C)$. Since $V\left(C^{\prime}\right) \subseteq B_{1}(C)$, it follows that \mathcal{T}^{\prime} also satisfies the distance conditions of Ddefinition 2.1.6. Thus, \mathcal{T}^{\prime} is a mosaic. Since $\left|V\left(G^{\prime}\right)\right|<|V(G)|$, it follows from the minimality of \mathcal{T} that G^{\prime} admits an L^{\prime}-coloring, so σ extends to an L-coloring of G, contradicting the fact that \mathcal{T} is critical.

Since at most one of $\mathrm{Ob}(u), \mathrm{Ob}\left(u^{\prime}\right)$ has size two, suppose now without loss of generality that $\mathrm{Ob}\left(u^{\prime}\right) \mid \leq 1$. Let p be the unique vertex of $C_{\dagger}^{1}-u$ adjacent to u^{\prime}. By Claim 8.2.15 $P_{u}=C_{\dagger}^{1}-\left\{u^{\prime}, p\right\}$. Note that $P_{u^{\prime}}$ is a subpath of $u^{\prime} p$, or else, since $\left|V\left(C_{\dagger}^{1}\right)\right|>4$, there is a vertex $q \in V\left(P_{u} \cap P_{u^{\prime}}\right) \backslash\left\{u, u^{\prime}\right\}$, and thus $\left|L_{\phi}(q)\right|=3$ and $S_{u} \cup S_{u^{\prime}} \subseteq L_{p h i}(q)$. Since $\left|S_{u}\right| \geq 2$ and $\left|S_{u^{\prime}}\right| \geq 2$, this contradicts Claim 8.2.18.

Claim 8.2.19. $|\mathrm{Ob}(u)|=2$.

Proof: Suppose that $\mathrm{Ob}(u) \mid<2$. Applying Claim 8.2.15 again, every vertex of C_{\dagger}^{1}, except for the three vertices in the 2-path in C_{\dagger}^{1} with u as a midpoint, lies in $P_{u^{\prime}}-u^{\prime}$. Since $\left|V\left(C_{\dagger}^{1}\right)\right|>4$, this contradicts the fact that $P_{u^{\prime}}$ is a subpath of $u^{\prime} p$. Thus, $\mathrm{Ob}(u) \mid=2$.

Since $\mathrm{Ob}(u) \mid=2$, there exist two vertices $w, w^{*} \in V\left(G_{Q}^{\text {arge }}\right) \backslash B_{1}(C)$ such that $G\left[N(w) \cap V\left(C_{\dagger}^{1}\right)\right]$ and $G\left[N\left(w^{*}\right) \cap\right.$ $\left.V\left(C_{\dagger}^{1}\right)\right]$ are subpaths of C_{\dagger}^{1}, each of length at least two, which intersect precisely on u. Thus, precisely one of these two paths, say $G\left[N\left(w^{*}\right) \cap V\left(C_{\dagger}^{1}\right)\right]$ for the sake of definiteness, contains u^{\prime} as an internal vertex. In particular, we have $\mathrm{Ob}\left(u^{\prime}\right)=\varnothing$. Let $C_{\dagger}^{1}=u_{0} u_{1} \cdots u_{t} p u^{\prime}$, where $u_{0}=0$ and $u_{0} u_{1} \cdots u_{t}=P_{u}$. Since w^{*} is the unique vertex of $G_{Q}^{\text {large }} \backslash B_{1}(C)$ adjacent to u^{\prime}, it follows from Claim 8.2.15 that w^{*} has at least two neighbors in P_{u}, so p is also an internal vertex of $G\left[N\left(w^{*}\right) \cap V\left(C_{\dagger}^{1}\right)\right]$.

Claim 8.2.20. $\left|V\left(C_{\dagger}^{1}\right)\right|<|V(C)|$.
Proof: Since p is an internal vertex of $G\left[N\left(w^{*}\right) \cap V\left(C_{\dagger}^{1}\right)\right]$, it follows that $|N(p) \cap V(C)|>1$, or else G contains a copy of $K_{2,3}$, contradicting the fact that G is short-separation-free. Thus, by definition of P_{u}, each vertex of $C_{\dagger}^{1}-\left\{u, u^{\prime}\right\}$ is adjacent to at least two vertices of C. By Claim 8.2.8, at least one of u, u^{\prime} is also adjacent to more than one vertex of C, so it immediately follows from Claim 8.2.10 that $\left|V\left(C_{\dagger}^{1}\right)\right|<|V(C)|$.

Now we have enough to finish the proof of Lemma 8.2.1. We define a $\sigma \in \Phi\left(\phi, G_{Q}^{\text {small }} \backslash\{p\}\right)$ in the following way. By definition of P_{u}, there is an L-coloring $\psi \in \Phi\left(\phi, G_{Q}^{\text {small }}\right)$ such that ψ admits an extension σ to dom $(\psi) \cup V(P)$,
where $\left|L_{\phi}(p) \backslash\left\{\sigma\left(u_{t}\right)\right\}\right| \geq 3$ and σ colors P_{u} with two colors from S_{u}. Let L^{\prime} be a list-assignment for $V\left(G_{Q}^{\text {large }} \backslash C\right)$ defined as follows. We set $L^{\prime}(q)$ to be a lone color not lying in $\{\sigma(v): v \in N(w) \cap \operatorname{dom}(\sigma)\} \cup L\left(w^{*}\right)$. For each $v \in V\left(C_{\dagger}^{1}-q\right)$, we set $L^{\prime}(v)=\{\sigma(v)\}$, and, otherwise we set $L^{\prime}=L$.
Let C_{*}^{\prime} be the outer face of $G_{Q}^{\text {large }} \backslash C$ and let $\mathcal{T}^{\prime}:=\left(G_{Q}^{\text {large }} \backslash C,(\mathcal{C} \backslash\{C\}) \cup\left\{C_{\dagger}^{1}\right\}, L^{\prime}, C_{*}^{\prime}\right)$. Note that \mathcal{T}^{\prime} is a tessellation, where C_{\dagger}^{1} is L^{\prime}-precolored. We claim that \mathcal{T}^{\prime} is a mosaic. Since $\left|V\left(C_{\dagger}^{1}\right)\right|<|V(C)|$, it immediately follows that \mathcal{T}^{\prime} satisfies M0), and M1) is trivially satisfied. Let σ^{\prime} be the unique L^{\prime}-coloring of $V\left(C_{\dagger}^{1}\right)$. By our choice of $L^{\prime}(p)$, we have $\left|L_{\sigma^{\prime}}\left(w^{*}\right)\right| \geq 2$. For each $v \in V\left(G^{\prime}\right) \backslash V\left(C_{\dagger}^{1}\right)$, we have $\left|L_{\sigma}(v)\right| \geq 3$, since only at most two colors are used by σ^{\prime} among the neighbors of v. Applying Claim 8.2.4, it follows that C_{\dagger}^{1} is an L^{\prime}-predictable facial subgraph of $G_{Q}^{\text {large }} \backslash C$, so \mathcal{T}^{\prime} satisfies M2) as well. Since $\left|V\left(C_{\dagger}^{1}\right)\right|<|V(C)|$, we have $\operatorname{Rk}\left(\mathcal{T}^{\prime} \mid C_{\dagger}^{1}\right)<\operatorname{Rk}(\mathcal{T} \mid C)$, and thus, since \mathcal{T} satisfies the distance conditions of Definition 2.1.6, \mathcal{T}^{\prime} does as well.

Thus, \mathcal{T}^{\prime} is a mosaic. Since $\left|V\left(G_{Q}^{\text {large }} \backslash C\right)\right|<|V(G)|$, it follows from the minimality of \mathcal{T} that $G_{Q}^{\text {large }} \backslash C$ admits an L^{\prime}-coloring τ. Let τ^{\prime} be the restriction of τ to $\operatorname{dom}(\tau) \backslash\{q\}$. By definition of $L^{\prime}, \tau^{\prime}$ is an L-coloring of its domain, and, by our choice of σ, the union $\tau^{\prime} \cup \phi$ is an L-coloring of $G-\{p\}$. Furthermore, by our choice of precoloring σ for $C_{\dagger}^{1}-p$, there is a color left over in $L_{\phi}(p) \backslash\left\{\tau\left(w^{*}\right), \tau\left(u^{\prime}\right), \tau\left(u_{t}\right)\right\}$, so $\tau^{\prime} \cup \phi$ extends to an L-coloring of G, contradicting the fact that \mathcal{T} is critical. This completes the proof of Lemma 8.2.1.

8.3 A Box Lemma for Pairs of 2-Paths

In Section 8.5, we complete the proof of Theorem 8.0 .4 by dealing with the 4 -chords of a closed ring in a critical mosaic which are not dealt with by Lemma 8.1.10. In order to prove the lone result of Section 8.5, we first prove two intermediate results, the first of which is the content of this section, and the second of which is the content of Section 8.4. The lone result of this section is a "box lemma" deals with the case of a pair of 2-chords of the 1-necklace of a closed ring a critical mosaic, where this pair of 2 -chords encloses a region consisting only of 5-lists (i.e the 2-chords are two sides of a box which otherwise consists of edges of the 1-necklace, hence the name), and it is stated in purely general terms, i.e it is not a statement about critical mosaics. We begin with the following

Definition 8.3.1. Given a short-separation-free planar graph H, a tuple $\left\langle D, z, z^{*}, L\right\rangle$ is called an H-box if D is a cyclic facial subgraph of H, z, z^{*} are distinct vertices of D, L is a list-assignment for $V(H)$, and the following hold.

1) $z z^{*} \notin E(D)$ and there is no chord of D with z^{*} as an endpoint, except possibly $z z^{*}$; AND
2) There is no chord of D which separates z from z^{*}; AND
3) $|L(v)| \geq 3$ for all $v \in V(D) \backslash\left\{z, z^{*}\right\}$ and $|L(v)| \geq 5$ for all $v \in\left\{z, z^{*}\right\} \cup V(H \backslash D)$.

We introduce one more definition and then state and prove the lone result of this section.
Definition 8.3.2. Let H be a short-separation-free planar graph and let $\left\langle D, z, z^{*}, L\right\rangle$ be an H-box. Let y, y^{\prime} be the two neighbors of z on D, and let u, u^{\prime} be the two neighbors of z^{*} on D (possibly $\left\{u, u^{\prime}\right\} \cap\left\{y, y^{\prime}\right\} \neq \varnothing$). A $\left\langle D, z, z^{*}, L\right\rangle$ corner coloring is an L-coloring σ of $\left\{u, u^{\prime}, y, y^{\prime}\right\}$ such that, for any $c \in L\left(z^{*}\right) \backslash\left\{\sigma(u), \sigma\left(u^{\prime}\right)\right\}, \sigma$ extends to an L-coloring of H using c on z^{*}.

Lemma 8.3.3. (Box Lemma) Let H be a short-separation-free planar graph and let $\left\langle D, z, z^{*}, L\right\rangle$ be an H-box. Let y, y^{\prime} be the two neighbors of z on D. Then any L-coloring of $\left\{y, y^{\prime}\right\}$ extends to $\left\langle D, z, z^{*}, L\right\rangle$-corner coloring.

Proof. Suppose there is a short-separation-free H and an H-box for which this does not hold, and choose H to be vertex-minimal with respect to this property By assumption, there is an H-box $\left\langle D, z, z^{*}, L\right\rangle$, such that, letting y, y^{\prime} be the neighbors of z on D, there is an L-coloring ψ of $\left\{y, y^{\prime}\right\}$ which does not extend to a $\left\langle D, z, z^{*}, L\right\rangle$-corner coloring. Let u, u^{\prime} be the neighbors of z^{*} on D. Let P, P^{\prime} be the two connected components of of $D-\left\{z, z^{*}\right\}$ and suppose without loss of generality that P has endpoints u, y and P^{\prime} has endpoints u^{\prime}, y^{\prime}, as shown in Figure 8.3.1.

Figure 8.3.1: A box between P and P^{\prime}

Claim 8.3.4. There is no 2 -chord of D which separates z from z^{*}

Proof: Let \mathcal{P} be the set of 2 -chords of D which separate z from z^{*}, and suppose toward a contradiction that $\mathcal{P} \neq \varnothing$. For each $Q \in \mathcal{P}$, we let $H=H_{Q}^{\text {left }} \cup H_{Q}^{\text {right }}$ be the natural Q-partition of H, where $z \in V\left(H_{Q}^{\text {right }}\right)$ and $z^{*} \in V\left(H_{Q}^{\text {left }}\right)$. Among all the elements of \mathcal{P}, we choose Q so that $\left|V\left(H_{Q}^{\text {right }}\right)\right|$ is minimized. Precisely one endpoint of Q lies in P and the other endpoint lies in P^{\prime}, so let $Q:=v w v^{\prime}$, where $v \in V(P)$ and $v^{\prime} \in V\left(P^{\prime}\right)$.

Let $D^{\text {right }}$ be the cycle $w v P y z y^{\prime} P^{\prime} v^{\prime} w$ and let $D^{\text {left }}$ be the cycle $w v P u z^{*} u^{\prime} P^{\prime} v^{\prime} w$. Now, since H has no chord of D which separates z from z^{*}, it follows that $H_{Q}^{\text {right }}$ has no chord of $D^{\text {right }}$ which separates z from w, and likewise, $H_{Q}^{\text {left }}$ has no chord of $D^{\text {left }}$ which separates z^{*} from w. Thus, $\left\langle D^{\text {left }}, w, z^{*}, L\right\rangle$ is an $H_{Q}^{\text {left }}$-box. By the minimality of Q, there is no chord of $D^{\text {right }}$ in $H_{Q}^{\text {right }}$ which has w as an endpoint, except possibly $w z$. Thus, $\left\langle D^{\text {right }}, z, w, L\right\rangle$ is an $H_{Q}^{\text {right }}$-box. Since H is a minimal counterexample and $\left|V\left(H_{Q}^{\text {right }}\right)\right|<|V(H)|, \psi$ extends to a $\left\langle D^{\text {right }}, z, w, L\right\rangle$-corner coloring ψ^{*} of $\left\{v, v^{\prime}, y, y^{\prime}\right\}$. Since $\left|V\left(H_{Q}^{\text {left }}\right)\right|<|V(H)|$ and $\left\langle D^{\text {left }}, w, z^{*}, L\right\rangle$ is an $H_{Q}^{\text {left }}$-box, there is an $\left\langle D^{\text {left }}, w, z^{*}, L\right\rangle$-corner coloring σ^{*} of $\left\{u, u^{\prime}, v, v^{\prime}\right\}$ which uses $\psi^{*}(v), \psi^{*}\left(v^{\prime}\right)$ on the respective vertices v, v^{\prime}.

Let ψ^{\dagger} be the extension of ψ to $\left\{u, u^{\prime}, y, y^{\prime}\right\}$ obtained by coloring u, u^{\prime} with the respective colors $\sigma^{*}(u), \sigma^{*}\left(u^{\prime}\right)$, and let $c \in L\left(z^{*}\right) \backslash\left\{\sigma^{*}(u), \sigma^{*}\left(u^{\prime}\right)\right\}$. Since σ^{*} is a $\left\langle D^{\text {left }}, w, z^{*}, L\right\rangle$-corner coloring, there is an extension of σ^{*} to an L-coloring τ of $H_{Q}^{\text {left }}$ using c on z^{*}. Since ψ^{*} is a $\left\langle D^{\text {right }}, z, w, L\right\rangle$-corner coloring of $\left\{v, v^{\prime}, y, y^{\prime}\right\}$ and $\tau(w) \in$ $L(w) \backslash\left\{\psi^{*}(v), \psi^{*}\left(v^{\prime}\right)\right\}, \tau$ extends to an L-coloring of $H_{Q}^{\text {right }}$ using $\psi(y), \psi\left(y^{\prime}\right)$ on the respective vertices y, y^{\prime}. Thus, ψ^{\dagger} is an extension of ψ to a $\left\langle D, z, z^{*}, L\right\rangle$-corner coloring, contradicting our choice of ψ.

Now consider the following cases:
Case 1: $z z^{*} \notin E(H)$
In this case, we apply the work of Section 1.7. Since each vertex of $P \cup P^{\prime}$ has an L-list of size at least three, it follows from Theorem 1.7.5 that there is a $\sigma \in \operatorname{Link}_{L}(P, D, H)$ and a $\sigma^{\prime} \in \operatorname{Link}_{L}\left(P^{\prime}, D, H\right)$, where σ uses $\psi(y)$
on y and σ^{\prime} uses $\psi^{\prime}\left(y^{\prime}\right)$ on y^{\prime}. By definition, there is no chord of D with one endpoint in P and one endpoint in P^{\prime}, so $\sigma^{\dagger}:=\sigma \cup \sigma^{\prime}$ is proper L-coloring of its domain. Let ψ^{*} be the extension of ψ to an L-coloring of $\left\{y, y,{ }^{\prime}, u, u^{\prime}\right\}$ obtained by coloring u with $\sigma(u)$ and coloring u^{\prime} with $\sigma\left(u^{\prime}\right)$. Note that we indeed have $u \in \operatorname{dom}(\sigma)$ and $u^{\prime} \in \operatorname{dom}\left(\sigma^{\prime}\right)$ by definition, since u is an endpoint of P and u^{\prime} is an endpoint of P^{\prime}.

By definition of the sets $\operatorname{Link}_{L}(P, D, H)$ and $\operatorname{Link}_{L}(P, D, H)$, we have $|N(z) \cap \operatorname{dom}(\sigma)| \leq 2$ and $\left|N(z) \cap \operatorname{dom}\left(\sigma^{\prime}\right)\right| \leq$ 2 , so $L_{\sigma^{\dagger}}(z) \mid \geq 1$. By Claim 8.3.4, there is no vertex of $H \backslash D$ with one neighbor in P and one neighbor in P^{\prime}. In the language of Definition 1.7.3, the vertex z is $D-z^{*}$-hinge for D, and since $\left|L_{\sigma^{\dagger}}(z)\right| \geq 1$, it follows that σ^{\dagger} extends to an element τ of $\operatorname{Link}_{L}\left(D-z^{*}, D, H\right)$.

Now, let $c \in L\left(z^{*}\right) \backslash\left\{\psi^{*}(u), \psi^{*}\left(u^{\prime}\right)\right\}$. Since $z z^{*} \notin E(D)$, there is no chord of D with z^{*} as an endpoint, so $c \in L_{\tau}\left(z^{*}\right)$. By 3) of Theorem 1.7.3, τ extends to an L-coloring of H using c on z^{*}, so ψ^{*} extends to an L-coloring of H using c on z^{*}, and ψ^{*} is an extension of ψ to a $\left\langle D, z, z^{*}, L\right\rangle$-corner coloring, contradicting our assumption. This rules out Case 1 .

Case 2: $z z^{*} \in E(H)$
In this case, we apply the work of Section 1.6. Let $H=H^{\uparrow} \cup H^{\downarrow}$ be the natural $z z^{*}$-partition of H, where $P \subseteq H^{\uparrow}$ and $P^{\prime} \subseteq H^{\downarrow}$. Let D^{\uparrow} be the cycle $P+u z^{*} z y$ and let D^{\downarrow} be the cycle $P^{\prime}+u^{\prime} z^{*} z y^{\prime}$.

Claim 8.3.5. There exists an L-coloring ψ^{\downarrow} of $\left\{u^{\prime}, y^{\prime}\right\}$ which uses $\psi\left(u^{\prime}\right)$ on u^{\prime}, such that any extension of ψ^{\downarrow} to an L-coloring of $\left\{u^{\prime}, z^{*}, z, y^{\prime}\right\}$ also extends to L-coloring H^{\downarrow}. Likewise, there exists an L-coloring ψ^{\uparrow} of $\left\{u^{\prime}, y^{\prime}\right\}$ which uses $\psi(u)$ on u, such that any extension of ψ^{\uparrow} to an L-coloring of $\left\{u, z^{*}, z, y\right\}$ also extends to L-coloring H^{\uparrow}.

Proof: These two statements are symmetric so it just suffices to prove that the first one holds. If $u^{\prime}=y^{\prime}$, then D^{\downarrow} is a triangle and the claim follows immediately from Corollary 0.2.4. Now suppose that $u^{\prime} \neq y^{\prime}$. Thus, $u^{\prime} z^{*} z y^{\prime}$ is a proper subpath of D^{\downarrow} of length three. By assumption, z^{*} has no neighbors in D^{\downarrow} except for u^{\prime}, z. By Theorem 1.6.1, there is a $d \in L\left(u^{\prime}\right)$, where $d \neq \psi\left(y^{\prime}\right)$ if $u^{\prime} y^{\prime} \in E\left(H^{\downarrow}\right)$, such that any L-coloring of of $\left\{u^{\prime}, z^{*}, z, u^{\prime}\right\}$ which uses $d, \psi\left(y^{\prime}\right)$ on the respective vertices u^{\prime}, y^{\prime} also extends to L-color all of D^{\downarrow}, so we have our desired L-coloring of $\left\{u^{\prime}, y^{\prime}\right\}$.

Let $\psi^{\downarrow}, \psi^{\uparrow}$ be as in Claim 8.3.5, the union $\psi^{\downarrow} \cup \psi^{\uparrow}$ is a $\left\langle D, z, z^{*}, L\right\rangle$-corner coloring and an extension of ψ, contradicting our assumption. This completes the proof of Lemma 8.3.3.

8.4 An Improved Coloring Result for 4-Chords of Closed Rings

We use this lemma both in the remainder of Section 8.4 and in Section 8.5, The second of the two lemmas of this section is a coloring result for one side of a 4-chord of a closed ring in a a critical mosaic, where this lemma strengthens Lemma 8.1.6 under some additional conditions.

Lemma 8.4.1. Let $\mathcal{T}=\left(G, \mathcal{C}, L, C_{*}\right)$ be a critical mosaic, let $C \in \mathcal{C}$ be a closed ring, let C^{1} be the 1-necklace of C, and let $\tilde{G}:=G \backslash C$. Let ϕ be the unique L-coloring of $V(C)$, and let Q be a 4-chord of C such that the middle vertex of Q lies in $D_{2}(C)$ and there is an internal vertex of the path $C \cap G_{Q}^{\text {small }}$ with an L_{ϕ}-list of size two. Then, letting y, y^{\prime} be the endpoints of $Q \backslash C$, then the following hold.
A) $C^{1} \cap G_{Q}^{\text {large }}$ is a path of length at least three and $G_{Q}^{\text {large }}$ is an induced subgraph of G; AND
B) If $\left|V\left(C \cap G_{Q}^{\text {small }}\right)\right|>5$, then any L_{ϕ}-coloring of $\left\{y, y^{\prime}\right\}$ extends to an L-coloring of the subgraph of G induced by $V\left(G_{Q}^{\text {large }}\right)$.

Proof. We first prove A), which is the easier and shorter of the two results. Let $Q:=x y z y^{\prime} x^{\prime}$, where $z \in D_{2}(C)$. Firstly, if $C^{1} \cap G_{Q}^{\text {large }}$ has length less than three, then $\left(C^{1} \cap G_{Q}^{\text {large }}\right)+y z y^{\prime}$ is a cycle of length at most four which separates C from each element of $\mathcal{C} \backslash\{C\}$, contradicting the fact that \mathcal{T} is a tessellation. Suppose now that $G_{Q}^{\text {large }}$ is not an induced subgraph of G. Since $z \in D_{2}(C), G_{Q}^{\text {small }}$ does not contain the edges $z x, z x^{\prime}$, so $E\left(G_{Q}^{\text {small }}\right)$ contains one of the edges $y y^{\prime}, y x^{\prime}, y^{\prime} x$. By Lemma 8.2.1, C^{1} is an induced subgraph of G, and, by assumption, the path $C^{1} \cap G_{Q}^{\text {small }}$ has at least one internal vertex, so $y y^{\prime} \notin E\left(G_{Q}^{\mathrm{small}}\right)$ and one of $y x^{\prime}, y^{\prime} x$ lies in $E\left(G_{Q}^{\mathrm{small}}\right)$. Suppose without loss of generality that $y x^{\prime} \in E\left(G_{Q}^{\text {small }}\right)$. Thus, G contains the 4 -cycle $y z y^{\prime} x^{\prime}$, and, by since \mathcal{T} is a tessellation, it follows from our triangulation conditions that either $z y^{\prime}$ or $y y^{\prime}$ lies in $E\left(G_{Q}^{\text {small }}\right)$, both of which have already been ruled out. This proves A) of Lemma 8.4.1. Now we prove B).

Definition 8.4.2. Given a 4-chord Q of C, we say that Q is defective if all of the following hold:

1) The middle vertex of Q lies in $D_{2}(C)$ and there is an internal vertex of the path $C \cap G_{Q}^{\text {small }}$ with an L_{ϕ}-list of size two; AND
2) $\left|V\left(C \cap G_{Q}^{\text {small }}\right)\right|>5$; AND
3) Letting y, y^{\prime} be the endpoints of $Q \backslash C$, there exists an L_{ϕ}-coloring of $\left\{y, y^{\prime}\right\}$ which does not extend to an L-coloring of $V\left(G_{Q}^{\text {large }}\right)$.

It suffices to prove that there are no defective 4-chords of C. Suppose toward a contradiction that there is a defective 4-chord Q of C. Among all defective 4-chords of C, we choose Q so that $\mid V\left(G_{Q}^{\text {small }}\right)$ is maximized. Let $Q:=x y z y^{\prime} x^{\prime}$, let $P^{0}:=C \cap G_{Q}^{\text {large }}$, and let $P^{1}:=C^{1} \cap G_{Q}^{\text {large }}$. Since Q is defective, let ψ be an L_{ϕ}-coloring of $\left\{y, y^{\prime}\right\}$ which does not extend to an L-coloring of $V\left(G_{Q}^{\text {large }}\right)$. By 1$), G_{Q}^{\text {large }}$ is an induced subgraph of G, so ψ does not extend to an L-coloring of $G_{Q}^{\text {large }}$. By assumption, there is an internal vertex of the path $C^{1} \cap G_{Q}^{\text {small }}$ with an L_{ϕ}-list of size two. Since C is induced in G and L-predictable, every vertex of P^{1} has an L_{ϕ}-list of size at least three. Note that $P^{1}+y z y^{\prime}$ is a cyclic facial subgraph of $\tilde{G}_{y z y^{\prime}}^{\text {large }}$.

Claim 8.4.3.

1) $y y^{\prime} \notin E\left(G_{Q}^{\text {large }}\right)$ and y, y^{\prime} have no common neighbor in $G_{Q}^{\text {large }}$ other than z; AND
2) $N(y) \cap V\left(P^{0}\right)=\{x\}$ and $N\left(y^{\prime}\right) \cap V\left(P^{0}\right)=\left\{x^{\prime}\right\}$.

Proof: By Lemma 8.2.1, C^{1} is induced in G, and, by A), $\left|E\left(P^{1}\right)\right| \geq 3$, so $y y^{\prime} \notin E\left(G_{Q}^{\text {large }}\right)$. Suppose toward a contradiction that there is a $w \in V\left(G_{Q}^{\text {large }}\right)$ with $w \neq z$ such that w is adjacent to each of y, y^{\prime}. Since G is short-separation-free and $y y^{\prime} \notin E\left(G_{Q}^{\text {large }}\right)$, it follows from our triangulation conditions that $w z \in E\left(G_{Q}^{\text {large }}\right)$. If $w \in V\left(C^{1}\right)$, then, since C^{1} is an induced subgraph of G, we have $P^{1}=y w y^{\prime}$, contradicting A). Thus, we have $w \in D_{2}(C)$, and, letting $Q^{\prime}:=x y w y^{\prime} x^{\prime}, V\left(G_{Q^{\prime}}^{\text {large }}\right)=V\left(G_{Q}^{\text {large }}\right) \cup\{w\}$, since G is short-separation-free, and $G_{Q}^{\text {small }} \subseteq G_{Q^{\prime}}^{\text {small }}$. Thus, Q^{\prime} also satisfies conditions 1) and 2) of Definition 8.4.2. By the maximality of $\left|V\left(G_{Q}^{\text {small }}\right)\right|, \psi$ extends to an L-coloring ψ^{*} of $V\left(G_{Q^{\prime}}^{\text {large }}\right)$, and since $\left|L_{\psi^{*}}(z)\right| \geq 2, \psi^{*}$ extends to L-color $G_{Q}^{\text {large }}$, which is false. This proves 1).

Now we prove 2). Suppose one of the statements of 2) does not hold, and suppose without loss of generality that $N(y) \cap V\left(P^{0}\right) \neq\{x\}$. Let $x^{*} \in V\left(\stackrel{\circ}{0}_{0}\right) \cap N(y)$. Let $Q^{*}:=x^{\prime} y z y x^{*}$. Since C is L-predictable, we have $G_{Q^{*}}^{\text {large }}=$ $V\left(G_{Q}^{\text {large }}\right) \cup V\left(x^{*} P^{0} x\right)$, and $G_{Q}^{\text {large }} \subseteq G_{Q^{*}}^{\text {large }}$. In particular, Q^{*} also satisfies conditions 1) and 2) of Definition 8.4.2 and, by the maximality of $\left|V\left(G_{Q}^{\text {small }}\right)\right|, \phi \cup \psi$ extends to an an L_{ϕ}-coloring of $V\left(G_{Q^{*}}^{\text {large }}\right)$. As every vertex of $G_{Q}^{\text {large }} \backslash G_{Q^{*}}^{\text {large }}$ is already precolored by ϕ, it follows that $\phi \cup \psi$ extends to an L_{ϕ}-coloring of $V\left(G_{Q}^{\text {large }}\right)$, which is false.

Now we have the following:
Claim 8.4.4. There is no 2-chord of the cycle $P^{1}+y z y^{\prime}$ in $\tilde{G}_{y z y^{\prime}}^{\text {large }}$ which separates z from an element of $\mathcal{C} \backslash\{C\}$.
Proof: Suppose toward a contradiction that there is a 2 -chord R of $P^{1}+y z y^{\prime}$ which, in $\tilde{G}_{y z y^{\prime}}^{\text {larg }}$, separates z from an element of $\mathcal{C} \backslash\{C\}$. Among all such 2-chords of $P^{1}+y z y^{\prime}$, we choose R so that the quantity $\left|V\left(\tilde{G}_{R}^{\text {small }}\right)\right|$ is minimized. We have $\tilde{G}_{R}^{\text {small }} \supseteq \tilde{G}_{y z y^{\prime}}^{\text {small }}$, and there is a 4-chord $R^{\text {aug }}$ of C such that $R^{\text {aug }} \backslash C=R$ and $G_{R^{\text {aug }}}^{\text {small }} \supseteq G_{Q}^{\text {small }}$. Since R is a 2-chord of $P^{1}+y z y^{\prime}$, we have $\left|V\left(G_{Q}^{\text {small }}\right)\right|<\left|V\left(G_{R^{\text {small }}}^{\text {s. }}\right)\right|$, and $R^{\text {aug }}$ satisfies 1) and 2) of Definition 8.4.2. Thus, by the maximality of $Q, R^{\text {aug }}$ violates 3) of Definition 8.4.2.

Let $R:=u z^{*} u^{\prime}$ and let $H:=\tilde{G}_{u z^{*} u^{\prime}}^{\text {small }} \cap \tilde{G}_{y z y^{\prime}}^{\text {small }}$. Possibly one of u, u^{\prime} lies in $\left\{y, y^{\prime}\right\}$, but not both, or else we contradict 1) of Claim 8.4.3. Now, there is a unique cyclic facial subgraph F of H which contains the paths $y z y^{\prime}$ and $u z^{*} u^{\prime}$, and since $z \neq z^{*}, F-\left\{z, z^{*}\right\}$ consists of two disjoint paths P, P^{\prime}, where each of P, P^{\prime} has one endpoint in $\left\{u, u^{\prime}\right\}$ and the other in $\left\{y, y^{\prime}\right\}$, so suppose without loss of generality that P has endpoints u, y and P^{\prime} has endpoints u^{\prime}, y^{\prime}.

Now we apply our box lemma. By the minimality of $\left|V\left(\tilde{G}_{R}^{\text {small }}\right)\right|, z^{*}$ has no neighbors in $P \cup P^{\prime}$, except for $\left\{u, u^{\prime}\right\}$. By A), the path $C^{1} \cap \tilde{G}_{u z^{*} u^{\prime}}^{\text {large }}$ has at least one internal vertex, and, by assumption, the path $C^{1} \cap \tilde{G}_{y z y^{\prime}}^{\text {small }}$ has at least one internal vertex. Thus, since C^{1} is an induced subgraph of G, there is no chord of F with one endpoint in P and the other endpoint in P^{\prime}. Since all the vertices of $P \cup P^{\prime}$ have $L_{\phi^{-}}$-lists of size at least three, and all other vertices of H have $L_{\phi^{-}}$ lists of size at least five, it follows that $\left\langle F, z, z^{*}, L_{\phi}\right\rangle$ is an H-box, and, by Lemma 8.3.3, ψ extends to a $\left\langle F, z, z^{*}, L_{\phi}\right\rangle$ corner coloring ψ^{*}, i.e ψ^{*} is an L_{ϕ}-coloring of $\left\{u, u^{\prime}, y, y^{\prime}\right\}$ such that, for any $c \in L_{\phi}(z) \backslash\left\{\psi^{*}(u), \psi^{*}\left(u^{\prime}\right)\right\}, \psi^{*}$ extends to an L_{ϕ}-coloring of H using c on z^{*}.

As indicated above, $R^{\text {aug }}$ violates 3) of Definition 8.4 .2 , so there is an L-coloring τ of $V\left(G_{R^{\text {aug }}}^{\text {lage }}\right) \operatorname{using} \psi^{*}(u), \psi^{*}\left(u^{\prime}\right)$ on the respective vertices u, u^{\prime}. By our choice of ψ^{*}, since $L_{\phi}\left(z^{*}\right)=L\left(z^{*}\right)$, it follows that τ extends to an $L_{\phi^{-}}$ coloring of H using $\psi(y), \psi\left(y^{\prime}\right)$ on the respective vertices y, y^{\prime}, so ψ extends to an L-coloring of $G_{Q}^{\text {large }}$, contradicting our choice of ψ.

We now introduce the following notation.

Definition 8.4.5.

1) We set T to be a subset of $V\left(C^{1} \cap G_{Q}^{\text {large }}\right)$, where $v \in T$ if and only if there is a $w \in D_{2}(C)$ such that $G\left[N(w) \cap V\left(P^{1}\right)\right]$ is a path with v as an internal vertex.
2) G^{\star} is a graph obtained from $G_{Q}^{\text {large }}$ by adding to $G_{Q}^{\text {large }}$ a vertex v^{\dagger} adjacent to all three of y, z, y^{\prime}.
3) C^{\star} is the cyclic facial subgraph $P^{0}+x y v^{\dagger} y^{\prime} x^{\prime}$ of G^{\star}.
4) C_{*}^{\star} is the outer face of G^{\star}.
5) L^{\star} is a list-assignment for $V\left(G^{\star}\right)$, where $L^{\star}(y)=\{\psi(y)\}, L^{\star}\left(y^{\prime}\right)=\left\{\psi\left(y^{\prime}\right)\right\}$, and $L^{\star}\left(v^{\dagger}\right)$ is a lone color not lying in $\left\{\psi(y), \psi\left(y^{\prime}\right)\right\} \cup L(z)$. Otherwise, $L^{\star}=L$.

We now have the following.

Claim 8.4.6.

1) $\left(G^{\star},(\mathcal{C} \backslash\{C\}) \cup\left\{C^{\star}\right\}, L^{\star}, C_{*}^{\star}\right)$ is a tessellation; $A N D$
2) $\left|V\left(C^{\star}\right)\right|<|V(C)|$; AND
3) C^{\star} is induced in G^{\star} and, for any $w \in D_{1}\left(C^{\star}, G^{\star}\right)$, the graph $G^{\star}\left[N(w) \cap V\left(C^{\star}\right)\right]$ is a subpath of C^{\star}.

Proof: As shown above in A), P^{1} is a path of length at least three, and since C^{1} is an induced subgraph of G, it follows from Claim 8.4.3, y, y^{\prime} have no common neighbor in $G_{Q}^{\text {large }}$. Thus, $G^{\text {aux }}$ is short-separation-free, and $\left(G^{\star},(\mathcal{C} \backslash\right.$ $\left.\{C\}) \cup\left\{C^{\star}\right\}, L^{\star}, C_{*}^{\star}\right)$ is a tessellation in which C^{\star} is a closed ring. This proves 1). By assumption, we have $\left|V\left(C \cap G_{Q}^{\text {small }}\right)\right|>5$, so $\left|V\left(C \backslash P^{0}\right)\right|>3$ and $\left|V\left(C^{\star}\right)\right|<|V(C)|$. This proves 2).
Now we prove 3). By 2) of Claim 8.4.3, $N(y) \cap V\left(P^{0}\right)=\{x\}$ and $N\left(y^{\prime}\right) \cap V\left(P^{0}\right)=\left\{x^{\prime}\right\}$. Since C is induced in G, it immediately follows that C^{\star} is induced in G^{\star}. Now let $w \in D_{1}\left(C^{\star}, G^{\star}\right)$. We claim that $G\left[N(w) \cap V\left(C^{\star}\right)\right]$ is a subpath of C^{\star}.

If $N(w) \cap V\left(C^{\star}\right) \subseteq V(C)$, then we are done, since C is L-predictable and induced in G. Now suppose that $N(w) \cap$ $V\left(C^{\star} \nsubseteq V(C)\right.$. Thus, at least one of $y, y^{\prime}, v^{\dagger}$ is adjacent to w. If $v^{\dagger} \in N(w)$, then $w=z$ and $N(w) \cap V\left(C^{\star}\right)=$ $\left\{y, v^{\dagger}, y^{\prime}\right\}$, since $z \in D_{2}(C)$, so we are done in that case. Finally, suppose that $v^{\dagger} \notin N(w)$. By Claim 8.4.3, precisely one of y, y^{\prime} is adjacent to w, so suppose without loss of generality that $N(w) \cap\left\{y, y^{\prime}, v^{\dagger}\right\}=\{y\}$. Thus, we have $w \in V\left(P^{1}\right) \backslash\left\{y, y^{\prime}\right\}$. Since each of C and C^{1} is an induced subgraph of G, and C is L-predictable in G, it follows that $G^{\star}\left[N(w) \cap V\left(C^{\star}\right)\right]$ is a subpath of $P^{0}-\left\{y^{\prime}, z\right\}$ with y as an endpoint, so we are done.

Analogous to 3) of Claim 8.4.6, we have the following easy observation.
Claim 8.4.7. Let $v_{1} \cdots v_{k}$ be a subpath of P^{1}, where $v_{1}=y, k>1$, and $N\left(v_{k}\right) \cap V(C) \nsubseteq\{x\}$. Let x^{*} be the unique vertex of the path $G\left[N\left(x^{*}\right) \cap V(C)\right]$ which, on P^{0}, is farthest from x. Let D be the cycle obtained from C^{\star} by replacing $V\left(x P^{0} x^{*}\right) \backslash\left\{x^{*}\right\}$ with $v_{1} \cdots v_{k} x^{*}$. Then D is an induced subgraph of $G^{\star} \backslash\left(V\left(x P^{0} x^{*}\right) \backslash\left\{x^{*}\right\}\right)$, and, for each $w \in V\left(G^{\star}\right) \backslash\left(V\left(x P^{0} x^{*}\right) \backslash\left\{x^{*}\right\}\right)$ of distance one from D, the graph $G^{\star}[N(w) \cap V(D)]$ is a subpath of D.

Proof: Since each of C, C^{1} is induced in G and v^{\dagger} has no neighbors in $P^{1} \cup P^{0}$ except for y, y^{\prime}, it follows from our choice of x^{*} that D is induced in G. Let $w \in V\left(G^{*}\right) \backslash\left(V\left(x P^{0} x^{*}\right) \backslash\left\{x^{*}\right\}\right)$, where distance one from D. If $w \in V\left(C^{1}\right)$, then, since C is L-predictable in G and C^{1} is induced in G, it follows that $G^{\star}[N(w) \cap V(D)]$ is either a subpath of $C \cap D$ or a subpath of D with v_{k} as an endpoint. Now suppose that $w \notin V\left(C^{1}\right)$. For any 2-chord $u w u^{\prime}$ of D with midpoint w, every vertex of $\tilde{G}_{u w u^{\prime}}^{\text {small }}$ has an L_{ϕ}-list of size at least three, or else, in $G \backslash C$, $u w u^{\prime}$ separates z from an element of $\mathcal{C} \backslash\{C\}$, contradicting Claim 8.4.4. Thus, it follows from Lemma 8.1.10 that $G^{\star}[N(w) \cap V(D)]$ is a subpath of D.

We now have the following:

Claim 8.4.8. Every internal vertex of the path P^{1} has at least two neighbors in C.
Proof: Suppose toward a contradiction that there is an internal vertex v of P^{1} such that $|N(v) \cap V(C)|=1$. Among all vertices of $\stackrel{\circ}{P}_{1}$ with precisely one neighbor on C, we choose v to be the one which is closest to y on the path P^{1}. Now let ψ^{\star} be the unique L^{\star}-coloring of $V\left(C^{\star}\right)$.

Subclaim 8.4.9. $y, y^{\prime} \notin N(v)$.
Proof: Suppose there is a $y^{*} \in\left\{y, y^{\prime}\right\}$ such that $y^{*} \in N(v)$. Since C^{1} is an induced subgraph of $G, y^{*} v$ is a terminal edge of P^{1}. By A), P^{1} has length at least three, and, since C^{1} is an induced subgraph of G, we have $N(v) \cap\left\{y, y^{\prime}\right\}=\left\{y^{*}\right\}$. Since $|N(v) \cap V(C)|=1$ and $N(v) \cap\left\{y, y^{\prime}\right\}=\left\{y^{*}\right\}$., we have $\left|L^{\star}(v)\right| \geq 3$. Since P^{1} has at least three, there is a terminal vertex v^{\prime} of $P^{1}-\left\{y, y^{\prime}\right\}$ with $v^{\prime} \neq v$. Now, each vertex of $P^{1} \backslash\left\{y, y^{\prime}\right\}$, except for v^{\prime}, has an $L_{\psi^{\star}}^{\star}$-list of size at least three, and $\left|L_{\psi^{\star}}^{\star}\left(v^{\prime}\right)\right| \geq 2$. Furthermore, by our choice of color of
$L^{\star}\left(v^{\dagger}\right)$, we have $\left|L_{\psi^{\star}}^{\star}(z)\right| \geq 3$. Thus, applying 3) of Claim 8.4.6, C^{\star} is an L^{\star}-predictable facial subgraph of G^{\star}. We claim now that $\left(G^{\star},(\mathcal{C} \backslash\{C\}) \cup\left\{C^{\star}\right\}, L^{\star}, C_{*}^{\star}\right)$ is a mosaic.

By 1) of Claim 8.4.6, $\mathcal{T}^{\star}:=\left(G^{\star},(\mathcal{C} \backslash\{C\}) \cup\left\{C^{\star}\right\}, L^{\star}, C_{*}^{\star}\right)$ is a tessellation, and, since C^{\star} is an L^{\star}-predictable facial subgraph of G^{\star}, this tessellation satisfies M2) of Definition 2.1.6. By 2) of Claim 8.4.6, $\left|V\left(C^{\star}\right)\right|<|V(C)|$, so M0) is satisfied, and M1) is trivially satisfied. Furthermore, $\operatorname{since} \operatorname{Rk}\left(\mathcal{T}^{\star} \mid C^{\star}\right)<\operatorname{Rk}(\mathcal{T} \mid C)$, and v^{\dagger} is separated from each element of $\mathcal{C} \backslash\{C\}$ by vertices of $B_{2}(C, G)$, it follows that the distance conditions of Definition 2.1.6 are also satisfied. Thus, $\left(G^{\star},(\mathcal{C} \backslash\{C\}) \cup\left\{C^{\star}\right\}, L^{\star}, C_{*}^{\star}\right)$ is indeed a mosaic. Since $\left|V\left(G^{\text {small }} \backslash Q\right)\right|>1$, we have $\left|V\left(G^{\star}\right)\right|<|V(G)|$. By the minimality of \mathcal{T}, it follows that G^{\star} is L^{\star}-colorable, and thus $\psi \cup \phi$ extends to an L-coloring of $G_{Q}^{\text {large }}$, contradicting our choice of ψ.

Suppose toward a contradiction that there is a $v \in V\left(P^{1}\right) \backslash\left\{y, y^{\prime}\right\}$ such that $|N(v) \cap V(C)|=1$. By Subclaim 8.4.9, v is an internal vertex of $P^{1}-\left\{y, y^{\prime}\right\}$, and, since C^{1} is an induced subgraph of $G, y, y^{\prime} \notin N(v)$. By our choice of v, each internal vertex of the path $y P^{1} v$ is adjacent to a subpath of C of length at least one. Let x^{*} be the unique neighbor of v in C^{1}. If $x^{*}=x$, then, for each $u \in V\left(v P^{1} y\right)$, we have $N(u) \cap V(C)=\{x\}$, and, by our choice of v, it follows that $v y$ is a terminal edge of P^{1}, contradicting Subclaim 8.4.9. Thus, $x P^{0} x^{*}$ is a path of length at least one.

Since $v \notin N(y)$, let $y P^{1} v=v_{0} \cdots v_{k}$ for some $k \geq 2$, where $v_{0}=y$ and $v_{k}=v$. Since $N(v) \cap V(C)=\left\{x^{*}\right\}$, x^{*} is a terminal vertex of $G\left[N\left(v_{k-1}\right) \cap V(C)\right]$. Since $N(y) \cap V\left(P^{0}\right)=\{x\}$, we get that x is a terminal vertex of $G\left[N\left(v_{1}\right) \cap V(C)\right]$. Now let $C^{\text {aux }}$ be the cycle obtained from C^{\star} by replacing $x P^{0} x^{*}$ with $y v_{1} \cdots v_{k-1} x^{*}$. Since each of v_{1}, \cdots, v_{k-1} has at least two neighbors in C, we have $\left|V\left(C^{\text {aux }}\right)\right| \leq\left|V\left(C^{\star}\right)\right|$. Let $G^{\text {aux }}:=G^{\star} \backslash\left(V\left(x P^{0} x^{*}\right) \backslash\left\{x^{*}\right\}\right)$ Since $\left|L_{\phi}\left(v_{k-1}\right)\right| \geq 3$, it follows from Theorem 1.7.5 that there is a $\sigma \in \operatorname{Link}_{L_{\phi}}\left(y P^{1} v_{k-1}, C^{1}, \tilde{G}\right)$ using $\psi(y)$ on y. Note that $\psi^{\star} \cup \sigma$ is a proper L^{\star}-coloring of its domain in G^{\star}. Since $|N(v) \cap V(C)|=1$, we have $v \notin T$, or else there are three consecutive vertices of P^{1} with a common neighbor in $D_{2}(C)$ and a common neighbor in C, contradicting the fact that G is $K_{2,3}$-free. Thus, it follows from Lemma 8.1.10 that, in the notation of Section 1.7, we have $T \cap V\left(y P^{1} v_{k-1}\right)=\operatorname{Sh}_{2, L_{\phi}}\left(y P^{1} v_{k-1}, C^{1}, \tilde{G}\right)$
Let $L^{\text {aux }}$ be a list-assignment for $V\left(G^{\text {aux }}\right)$ defined as follows.

1) For each $u \in \operatorname{dom}(\sigma)$, we set $L^{\text {aux }}(u)=\{\sigma(u)\}$, and, for each $u \in V\left(C^{\text {aux }}\right) \backslash(\operatorname{dom}(\sigma) \cup T)$, we set $L^{\text {aux }}(u)=$ $\left\{\psi^{\star}(u)\right\}$.
2) We set $\left\{L^{\text {aux }}(u): u \in T \cap V\left(y P^{1} v_{k-1}\right)\right\}$ to be a a collection of disjoint singletons, where, for each $u \in$ $T \cap V\left(y P^{1} v_{k-1}\right)$, the lone color of $L^{\text {aux }}(u)$ is disjoint from the L-lists of all the vertices in $B_{2}(C)$.
3) Otherwise, we set $L^{\text {aux }}=L^{\star}=L$.

By Lemma 8.1.10, we have $\operatorname{Sh}_{2, L_{\phi}}\left(y P^{1} v_{k-1}, C^{1}, \tilde{G}\right) \subseteq T$, so the definition above yields a unique $L^{\text {aux }}$-coloring $\psi^{\star \star}$ of $V\left(C^{\text {aux }}\right)$. Let $C_{*}^{\text {aux }}$ be the outer face of $G^{\text {aux }}$. We claim now that $\mathcal{T}^{\text {aux }}:=\left(G^{\text {aux }},(\mathcal{C} \backslash\{C\}) \cup\left\{C^{\text {aux }}\right\}, L^{\text {aux }}, C_{*}^{\text {aux }}\right)$ is a mosaic. By Claim 8.4.6, $\left(G^{\star},(\mathcal{C} \backslash\{C\}) \cup\left\{C^{\star}\right\}, L^{\star}, C_{*}^{\star}\right)$ is a tessellation, so $\mathcal{T}^{\text {aux }}$ is also a tessellation. Since $\left|L_{\phi}(v)\right| \geq 4$ and C^{1} is an induced subgraph of G, we have $\left|L_{\psi^{\star \star}}^{\text {aux }}(v)\right| \geq 3$. Letting v^{\prime} be the unique neighbor of y^{\prime} on P^{1}, every vertex of $D_{1}\left(C^{\text {aux }}, G^{\text {aux }}\right)$, except possibly v^{\prime}, has an $L_{\psi^{\star \star}}^{\text {aux }}$-list of size at least three, and v^{\prime} has an $L_{\psi^{\star \star}}^{\text {aux }}$-list of size at least two. Combining this with Claim 8.4.7, it follows that $C^{\text {aux }}$ is an $L^{\text {aux }}$-predictable facial subgraph of $G^{\text {aux }}$, so M2) is satisfied.

By 2) of Claim 8.4.6, we have $\left|V\left(C^{\star}\right)\right|<|V(C)|$. Since $\left|V\left(C^{\text {aux }}\right)\right| \leq\left|V\left(C^{\star}\right)\right|, \mathcal{T}^{\text {aux }}$ satisfies M0) and $\operatorname{Rk}\left(\mathcal{T}^{\text {aux }} \mid C^{\text {aux }}\right)<$ $\operatorname{Rk}(\mathcal{T} \mid C)$. Since v^{\dagger} is separated from each element of $\mathcal{C} \backslash\{C\}$ by vertices of $B_{2}(C, G)$, and each vertex of $C^{\text {aux }}-v^{\dagger}$ lies in $B_{1}(C, G)$, it follows that the distance conditions of Definition 2.1.6 are also satisfied. M1) is trivial.

Thus, $\mathcal{T}^{\text {aux }}$ is indeed a mosaic. Since $\left|V\left(G^{\text {large }}\right)\right|<|V(G)|$, ity follows from the minimality of \mathcal{T} that $G^{\text {aux }}$ admits an $L^{\text {aux }}$-coloring τ. Let τ^{*} be the restriction of τ to $V\left(G^{\text {aux }}\right) \backslash\left(T \cap V\left(y P^{1} v_{k-1}\right) \cup\left\{v^{\dagger}\right\}\right)$. Then $\operatorname{dom}\left(\tau^{*}\right)=V\left(G_{Q}^{\text {large }}\right) \backslash$ $\left(T \cap V\left(y P^{1} v_{k-1}\right)\right.$ and τ^{*} is a proper L-coloring of its domain. Furthermore, since $\sigma \in \operatorname{Link}_{L_{\phi}}\left(y P^{1} v_{k-1}, C^{1}, \tilde{G}\right)$ and ϕ is the unique L-coloring of $V(C)$, it follows that τ^{*} extends to L-color the vertices of $T \cap V\left(y P^{1} v_{k-1}\right)$, i.e τ^{*} extends to an L-coloring of $G_{Q}^{\text {large }}$, contradicting our assumption that Q is defective.

As a consequence of the above, we have the following:
Claim 8.4.10. $|V(C)|>\left|V\left(P^{1}+y z y^{\prime}\right)\right|+1$.

Proof: Since each internal vertex of P^{1} has at least two neighbors in C, we have $\left|V\left(P^{1}\right)\right| \leq\left|V\left(P^{0}\right)\right|+1$, and thus $\left|V\left(P^{1}+y z y^{\prime}\right)\right| \leq\left|V\left(P^{0}\right)\right|+2$. By assumption, $\left|V\left(C \cap G_{Q}^{\text {large }}\right)\right|>5$, so $|V(C)|>\left|V\left(P^{0}\right)\right|+3$ Thus, we have $|V(C)|>\left|V\left(P^{0}\right)\right|+3>\left|V\left(P^{1}+y z y^{\prime}\right)\right|$, so $|V(C)|>\left|V\left(P^{1}+y z y^{\prime}\right)\right|+1$.

We now introduce the following terminology. Given a $v \in V\left(P^{1}\right)$, we say that v is a pivot vertex if there is a $w \in D_{2}(C) \cap N(v)$ such that $G\left[N(w) \cap V\left(P^{1}\right)\right]$ is a subpath of P^{1} of length at most two.

Claim 8.4.11. Suppose there is at least one pivot vertex. Then there is a pivot vertex $v \in V\left(P^{1}\right)$, a $w \in D_{2}(C, G) \cap$ $V\left(G_{Q}^{\text {large }}\right)$ and an extension of ψ to an L_{ϕ}-coloring ψ^{*} of $\left(V\left(P^{1}\right) \backslash T\right) \cup\{v\}$ such that the following hold.

1) $V\left(P^{1}\right) \backslash \operatorname{dom}\left(\psi^{*}\right)$ is $\left(L, \phi \cup \psi^{*}\right)$-inert in G; AND
2) Every vertex of $D_{2}\left(C, G_{Q}^{\text {large }}\right) \backslash\{w\}$ has an $L_{\phi \cup \psi^{*}-l i s t ~ o f ~ s i z e ~ a t ~ l e a s t ~ t h r e e ; ~}^{\text {and }}$
3) $\left|L_{\phi \cup \psi^{*}}(w)\right| \geq 2$

Proof: As above, we apply the work of Section 1.7. Let v be a pivot vertex and consider the following cases:
Case 1: There is a $w \in D_{2}(C)$ such that $G\left[N(w) \cap V\left(C^{1}\right)\right]$ is a path of length two with midpoint v.
In this case, let $G\left[N(w) \cap V\left(C^{1}\right)\right]=u v u^{\prime}$, where $u \in V\left(v P^{1} y\right)$ and $u^{\prime} \in V\left(v P^{1} y^{\prime}\right)$.
By Theorem 1.7.5, there is a $\sigma_{0} \in \operatorname{Link}_{L_{\phi}}\left(y P^{1} u, C^{1}, \tilde{G}\right)$ using $\psi(y)$ on y and a $\sigma_{1} \in \operatorname{Link}_{L_{\phi}}\left(u^{\prime} P^{1} y^{\prime}, C^{1}, \tilde{G}\right)$ using $\psi\left(y^{\prime}\right)$ on y^{\prime}. Since $\left|L_{\phi}(v)\right| \geq 3$ and C^{1} is an induced subgraph of $G, \sigma_{0} \cup \sigma_{1}$ extends to a proper L_{ϕ}-coloring σ^{*} of $\operatorname{dom}\left(\sigma_{0} \cup \sigma_{1}\right) \cup\{v\}$, and $\left|L_{\phi \cup \sigma^{*}}(w)\right| \geq 2$. If there is a vertex w^{*} of $D_{2}\left(C, G_{Q}^{\text {large }}\right) \backslash\{w\}$ with an $L_{\phi \cup \sigma^{*}}$-list of size less than three, then, since $\sigma_{0} \in \operatorname{Link}_{L_{\phi}}\left(y P^{1} u, C^{1}, \tilde{G}\right)$ and $\sigma_{1} \in \operatorname{Link}_{L_{\phi}}\left(u^{\prime} P^{1} y^{\prime}, C^{1}, \tilde{G}\right)$, it follows that w^{*} has a neighbor $p \in V\left(y P^{1} u\right)$ and a neighbor $p^{\prime} \in V\left(u^{\prime} P^{1} y^{\prime}\right)$. But then, by Claim 8.4.4, $\tilde{G}_{p w^{*} p^{\prime}}^{\text {small }}$ contains the path $p P^{1} p^{\prime}$, and thus contains v, and, by Lemma 8.1.10, $\tilde{G}_{p w^{*} p^{\prime}}^{\text {small }}$ is a broken wheel with principal path $p w^{*} p^{\prime}$, so $w^{*}=w$, which is false. So we are done in this case.

Case 2: There does not exist a $w \in D_{2}(C)$ such that $G\left[N(w) \cap V\left(C^{1}\right)\right]$ is a path of length two with midpoint v.
In this case, since v is a pivot vertex, there does not exist a $w \in D_{2}(C)$ such that v is an internal vertex of $G[N(w) \cap$ $V(C)]$. It follows from our triangulation conditions that, for any $e \in E\left(P^{1}\right)$, there is a unique $w \in D_{2}(C)$ such that e is a subpath of $G\left[N(w) \cap V\left(C^{1}\right)\right]$ which contains e. Since v is a pivot vertex and P^{1} has length at least three, it follows from Lemma 8.1.10 that there is an $e \in E\left(P^{1}\right)$ incident to v and a $w \in D_{2}(C)$ such that $G\left[N(w) \cap V\left(P^{1}\right)\right]$ is a path of length at most two which contain e and has v as an endpoint. If $G\left[N(w) \cap V\left(P^{1}\right)\right]$ has length precisely two, then its midpoint is also a pivot vertex and we are back to Case 1 with v replaced by the midpoint of $G\left[N(w) \cap V\left(P^{1}\right)\right]$, so suppose that this path has length one. Letting $e=v v^{\prime}$, we have $G\left[N(w) \cap V\left(P^{1}\right)\right]=v v^{\prime}$. Note that v^{\prime} is also a pivot
vertex. Possibly, v is an endpoint of P^{1}, but it is permissible to suppose that v is an internal vertex of P^{1}, because, if it is not, then we simply replace v with v^{\prime}, and, since P^{1} has length at least three, v^{\prime} is an internal vertex of P^{1}.

Thus, we suppose without loss ouf generality that v is an internal vertex of P^{1}, and we suppose further without loss of generality that v^{\prime} lies in the subpath $v P^{1} y^{\prime}$ of P^{1}. Since v is an internal vertex of P^{1}, let $v^{\prime \prime}$ be the other neighbor of v on P^{1}. As above, it follows from Theorem 1.7.5 that there is a $\sigma_{0} \in \operatorname{Link}_{L_{\phi}}\left(y P^{1} v^{\prime \prime}\right)$ and a $\sigma_{1} \in \operatorname{Link}_{L_{\phi}}\left(v^{\prime} P^{1} y^{\prime}\right)$. Since $\left|L_{\phi}(v)\right| \geq 3$, and since C^{1} is an induced subgraph of $G, \sigma_{0} \cup \sigma_{1}$ extends to a proper L_{ϕ}-coloring σ^{*} of $\operatorname{dom}\left(\sigma_{0} \cup \sigma_{1}\right) \cup\{v\}$. Possibly, there is a $w^{*} \in D_{2}(C)$ such that $G\left[N\left(w^{*}\right) \cap V\left(C^{1}\right)\right]$ is a subpath of $C^{1}-v^{\prime}$ which has length at least two and has v as an endpoint, and this vertex has an $L_{\phi \cup \sigma^{*}}$-list of size at least two, and every other vertex of $D_{2}\left(C, G_{Q}^{\text {large }}\right)$ has an $L_{\phi \cup \psi^{*}}$-list of size at least three, so we are done.

With the above in hand, we have the following:

Claim 8.4.12. There does not exist a pivot vertex.

Proof: Suppose toward a contradiction that there is a pivot vertex. Then there is a pivot vertex v, a $w \in D_{2}(C) \cap$ $V\left(G_{Q}^{\text {large }}\right)$ and $\psi^{*} \in \Phi_{L_{\phi}}\left(\psi,\left(V\left(P^{1}\right) \backslash T\right) \cup\{v\}\right)$ such that v, w, ψ^{*} satisfy Claim 8.4.11.
Recall that G^{\star} is a graph obtained from $G_{Q}^{\text {large }}$ by adding a lone vertex v^{\dagger} adjacent to all three of y, z, y^{\prime}. Let $H:=$ $G^{\star} \backslash C$ and let $D:=P^{1}+y v^{\dagger} y^{\prime}$. Then D is a cyclic facial subgraph of H, and, since $|V(D)|=\left|V\left(P^{1}+z y z^{\prime}\right)\right|$, it follows from Claim 8.4.10 that $|V(C)|>|V(D)|+1$. Now we define a list-assignment L^{*} for H in the following way.

1) For each vertex of $\operatorname{dom}\left(\psi^{*}\right)$, we set $L^{*}(u)=\left\{\psi^{*}(u)\right\}$.
2) We set $\left\{L^{*}(u): u \in V(D) \backslash \operatorname{dom}\left(\psi^{*}\right)\right\}$ to be a a collection of disjoint singletons, where, for each $u \in$ $V(D) \backslash \operatorname{dom}\left(\psi^{*}\right)$, the lone color of $L^{*}(u)$ is disjoint from the L-lists of all the vertices in $B_{2}(C)$.
3) Otherwise, we set $L^{*}=L$.

Now, let D_{*} be the outer face of H and consider the tuple $\mathcal{T}^{*}:=\left(H,(\mathcal{C} \backslash\{C\}) \cup\{D\}, L^{*}, D_{*}\right)$. Note that \mathcal{T}^{*} is a tessellation in which D is a closed ring. We claim that \mathcal{T}^{*} is a mosaic. Since $|V(C)|>|V(D)|+1$, M 0) is trivially satisfied, and $\operatorname{Rk}(\mathcal{T} \mid C) \geq \operatorname{Rk}\left(\mathcal{T}^{*} \mid D\right)+2$. Since v^{\dagger} is separated from each element of $\mathcal{C} \backslash\{C\}$ by vertices of $B_{2}(C, G)$, and each vertex of $D-\left\{v_{\dagger}\right\}$ lies in $B_{1}(C, G)$, it follows that \mathcal{T}^{*} also satisfies the distance conditions of Definition 2.1.6. To finish, we just need to check that D is an L^{*}-predictable facial subgraph of H.

Letting τ be the unique L^{*}-coloring of $V(D)$, it follows from our construction of L^{*} that $L_{\tau}^{*}(w) \mid \geq 2$ and each vertex of H of distance 1 from D, other than w, has an L_{τ}^{*}-list of size at least three. Since C^{1} is induced in G, D is induced in H. Combining Claim 8.4.4 with Lemma 8.1.10, it follows that, for every vertex $w^{\prime} \in V(H)$ of distance 1 from D, the graph $H\left[N\left(w^{\prime}\right) \cap V(D)\right]$ is a subpath of D. Note that this is true even if z is the midpoint of this 2-chord.

Thus, D is an L^{*}-predictable facial subgraph of H, so \mathcal{T}^{*} is a mosaic. Since $|V(H)|<|V(G)|, H$ admits an L^{*} coloring σ. Let σ^{\prime} be the restriction of σ to $H \backslash\left(D \backslash \operatorname{dom}\left(\psi^{*}\right)\right)$. Then σ^{\prime} is a proper L_{ϕ}-coloring of its domain. B our choice of $\psi^{*}, \sigma^{\prime} \cup \phi$ extends to L-color the vertices of $V\left(P^{1}\right) \backslash \operatorname{dom}\left(\psi^{*}\right)$, so $G_{Q}^{\text {large }}$ is L-colorable, which is false.

We now define a cycle C^{\dagger} of G as follows. We let C^{\dagger} be the unique cycle of G which intersects with the cycle $P^{1}+y z y^{\prime}$ on precisely the vertices of $\{z\} \cup V\left(P^{1} \backslash T\right)$, where, for each subpath R of P^{1} of length at least two whose endpoints lie in $P^{1} \backslash T$ and whose internal vertices lie in T, we replace $\stackrel{\circ}{R}$ with the unique 2-path whose endpoints are the endpoints of R and whose midpoint is the unique vertex of $D_{2}(C)$ adjacent to the endpoints of R.

Since there is no pivot vertex, no two vertices of $P^{1} \backslash T$ are adjacent, so P^{1} admits a partition into a collection of edge-disjoint paths R_{1}, \cdots, R_{k} with $P^{1}=R_{1} \cup \cdots \cup R_{k}$ such that, for each $j=1, \cdots, k$, the endpoints of R_{i} lie in $P^{1} \backslash T$ and $V\left(\stackrel{\circ}{R}_{j}\right) \subseteq T$, and there is a unique vertex $w_{j} \in D_{2}(C)$ such that $R_{j}:=G\left[N\left(w_{j}\right) \cap V\left(C^{1}\right)\right]$. Furthermore, each of the paths R_{1}, \cdots, R_{k} has length at least three. For each $j=1, \cdots, k$, let M_{j} be the unique 2-path whose midpoint is w_{i} and whose endpoints are the endpoints of R_{j}. Note that, for each $j=1, \cdots, k$, we have $\frac{\left|E\left(R_{j}\right)\right|}{\left|E\left(M_{j}\right)\right|} \geq \frac{3}{2}$.
Now, $\left|V\left(C^{\dagger}\right)\right|=\left|E\left(C^{\dagger}\right)\right|=2+\sum_{j=1}^{k}\left|E\left(M_{j}\right)\right|$. On the other hand, $\left|V\left(P^{1}+y z y^{\prime}\right)\right|=\left|E\left(P^{1}+z y z^{\prime}\right)\right|=2+$ $\sum_{j=1}^{k}\left|E\left(R_{j}\right)\right|$. Thus, $\left|V\left(P^{1}+y z y^{\prime}\right)\right| \geq 2+\sum_{j=1}^{k} \frac{3}{2}\left|E\left(M_{j}\right)\right|$, so $\left|V\left(P^{1}+y z y^{\prime}\right)\right| \geq 2+\frac{3}{2}\left(\left|V\left(C^{\dagger}\right)\right|-2\right)$. By Claim 8.4.10, we thus have $|V(C)|>3+\frac{3}{2}\left(\left|V\left(C^{\dagger}\right)\right|-2\right)$, so $|V(C)|>\frac{3}{2}\left|V\left(C^{\dagger}\right)\right|$. Since $y, y^{\prime} \in V\left(C^{\dagger} \cap P^{1}\right)$, we have $d\left(C^{\dagger}, C\right) \leq 1$. Since $\operatorname{Rk}(\mathcal{T} \mid C)=|V(C)|$ and C^{\dagger} separates C from each element of $\mathcal{C} \backslash\{C\}$, this contradicts Corollary 2.1.30. Thus, our original assumption that Q is defective is false. This completes the proof of Lemma 8.4.1.

8.5 2-Chords of the 1-Necklace with a 2-List on the Small Side

This section consists of the lone result below, which, combined with Lemma 8.2.1, is enough to complete the proof of Theorem 8.0.4.

Lemma 8.5.1. Let $\mathcal{T}=\left(G, \mathcal{C}, L, C_{*}\right)$ be a critical mosaic, let $C \in \mathcal{C}$ be a closed ring, let C^{1} be the 1-necklace of C, and let $\tilde{G}:=G \backslash C$. Then, for each 2-chord $x w y$ of C^{1} in \tilde{G}, the graph $\tilde{G}_{x w y}^{\text {small }}$ is a broken wheel with principal path $x w y$.

Proof. Given a 2-chord $u z u^{\prime}$ of C^{1} in \tilde{G}, we say that $u z u^{\prime}$ is $b a d$ if $V\left(\tilde{G}_{u z u^{\prime}}^{\text {small }}\right) \neq\{z\} \cup V\left(C^{1} \cap \tilde{G}_{u z u^{\prime}}^{\text {small }}\right)$. By Lemma 8.2.1, C^{1} is an induced cycle of G. It follows that, for any 2 -chord $u z u^{\prime}$ of C^{1} in \tilde{G}, if $u z u^{\prime}$ is not bad, then, by our triangulation conditions, $\tilde{G}_{u z u^{\prime}}^{\text {small }}$ is a broken wheel with principal path $u z u^{\prime}$. Thus, it suffices to prove that there are no bad 2-chords of C^{1}. Suppose toward a contradiction that there is bad 2-chord $u z u^{\prime}$ of C^{1}, where $u z u^{\prime}$ has been chosen to minimize the quantity $\left|V\left(\tilde{G}_{u z u^{\prime}}^{\text {small }}\right)\right|$ over all bad 2 -chords of C^{1}. Let ϕ be the unique L-coloring of $V(C)$. By Lemma 8.1.10, there is an internal vertex u_{\star} of the path $C^{1} \cap \tilde{G}_{u z u^{\prime}}^{\text {small }}$ with an L_{ϕ}-list of size less than three. Since C is L-predictable and an induced subgraph of $G,\left|L_{\phi}\left(u_{\star}\right)\right|=2$ and every vertex of $C^{1}-u_{\star}$ has an L_{ϕ}-list of size at least three. We now set $Q_{1}^{\text {large }}$ to be the path $C^{1} \cap \tilde{G}_{u z u^{\prime}}^{\text {large }}$ and set $Q_{1}^{\text {small }}$ to be the path $C^{1} \cap \tilde{G}_{u z u^{\prime}}^{\text {small }}$. Furthermore, we set $F_{1}^{\text {small }}$ to be the cycle $Q_{1}^{\text {small }}+u z u^{\prime}$.

Claim 8.5.2.

1) For any 2-chord $y z^{*} y^{\prime}$ of C^{1} in \tilde{G}, if $\tilde{G}_{u z u^{\prime}}^{\text {small }} \subseteq \tilde{G}_{y z^{*} y^{\prime}}^{\text {small }}$, then $y y^{\prime} \notin E(G)$. In particular $u u^{\prime} \notin E(G)$; AND
2) $F_{1}^{\text {small }}$ is induced in G.

Proof: Suppose that $y y^{\prime} \in E(G)$. Since C^{1} is an induced subgraph of G, and since u_{\star} is an internal vertex of $Q_{1}^{\text {small }}$, we have $y y^{\prime} \in E\left(C^{1}\right)$ and $y y^{\prime}=Q_{1}^{\text {large }}$, so $y z^{*} y^{\prime}$ is a triangle separating an element of $\mathcal{C} \backslash\{C\}$ from u_{\star}, contradicting the fact that \mathcal{T} is a tessellation. This proves 1). Now suppose that $F_{1}^{\text {small }}$ is not induced in G. Since C^{1} is an induced subgraph of G, it follows that $N(z) \cap V\left(C^{1} \cap \tilde{G}_{u z u^{\prime}}^{\text {small }}\right) \neq\left\{u, u^{\prime}\right\}$. Thus, z has a neighbor $u^{\prime \prime}$ which is an internal vertex of the path $C^{1} \cap \tilde{G}_{u z u^{\prime}}^{\text {small }}$, and, by the minimality of $u z u^{\prime}$, neither $u z u^{\prime \prime}$ nor $u^{\prime \prime} z u^{\prime}$ is a bad 2-chord of C^{1}, and since $\tilde{G}_{u z u^{\prime}}^{\text {small }}=\tilde{G}_{u z u^{\prime \prime}}^{\text {small }} \cup \tilde{G}_{u^{\prime \prime} z u^{\prime}}^{\text {small }}$, it follows that $u z u^{\prime}$ is also not bad, contradicting our assumption.

Applying the fact that C is induced in G and L-predictable, we now define the following subgraphs of G :

Definition 8.5.3.

1) For each vertex $v \in V\left(C^{1}\right)$, we let P_{v} be the path $G[N(v) \cap V(C)]$.
2) We set $Q_{0}^{\text {large }}$ to be the unique subpath of $C \backslash \stackrel{\circ}{P}_{u_{\star}}$ which intersects with P_{u} on precisely an endpoint and intersects with $P_{u^{\prime}}$ on precisely an endpoint,
3) We set $Q_{0}^{\text {small }}$ to be the unique subpath of C consisting of the edges of $E(C) \backslash E\left(Q_{0}^{\text {large }}\right)$.
4) We set $Q_{0+}^{\text {large }}$ to be the path $G\left[V\left(Q_{0}^{\text {large }} \cup P_{u} \cup P_{u^{\prime}}\right)\right]$, and we set $Q_{0-}^{\text {small }}$ to be the unique subpath of C consisting of the edges of $E(C) \backslash E\left(Q_{0+}^{\text {large }}\right)$.
5) We set R to be the unique 4-chord of C whose endpoints are the endpoints of $Q_{0}^{\text {large }}$ and whose middle two edges are $u z u^{\prime}$. Likewise, we set R_{+}to be the unique 4-chord of C whose endpoints are the endpoints of $Q_{0+}^{\text {large }}$ and whose middle two edges are $u z u^{\prime}$.

Since $\left|L_{\phi}\left(u_{\star}\right)\right|=2$, the path $P_{u_{\star}}$ has length at least two, so $Q_{0}^{\text {large }}$ is well-defined and $Q_{0}^{\text {small }}$ is nonempty. Since $Q_{0}^{\text {large }}$ intersects with each of $P_{u}, P_{u^{\prime}}$ on an endpoint, $Q_{0+}^{\text {large }}$ is a connected subgraph of G, and since $P_{u_{\star}}$ has length at least two, $Q_{0+}^{\text {large }}$ is a subpath of $V(C)$ with $\left|V\left(Q_{0+}^{\text {large }}\right)\right|<|V(C)|$, so all of the notation above is well-defined. We also have the following observation.

Claim 8.5.4.

1) $P_{u} \cap P_{u^{\prime}}=\varnothing$ and each of R, R_{+}is a proper 4-chord of C; AND
2) $Q_{1}^{\text {small }}$ has length at least three; $A N D$
3) If u, u^{\prime} have a common neighbor in G_{Q}^{small}, other than z, then $\tilde{G}_{u z u^{\prime}}^{\mathrm{small}}$ is a wheel with a central vertex adjacent to every vertex of $F_{1}^{\text {small }}$.

Proof: Suppose that $P_{u} \cap P_{u^{\prime}} \neq \varnothing$. Since C is an induced cycle and $P_{u_{\star}}$ has length at least two, P_{u} and $P_{u^{\prime}}$ share a vertex v of $Q_{0}^{\text {large }}$, and $v u z u^{\prime}$ is a 4-cycle which separates an element of $\mathcal{C} \backslash\{C\}$ from u_{\star}, contradicting the fact that \mathcal{T} is a tessellation. Since $P_{u} \cap P_{u^{\prime}}=\varnothing$, each of $Q_{0}^{\text {large }}$ and $Q_{0+}^{\text {large }}$ has length at least one, and so each of R, R_{+}has distinct endpoints and is a proper 4-chord of C. If $Q_{1}^{\text {small }}$ has length less than three then, $Q_{1}^{\text {small }}=u u_{\star} u^{\prime}$, and since G is short-separation-free, $V\left(\tilde{G}_{u z u^{\prime}}^{\text {small }}\right)=\left\{u z, u^{\prime}, u_{\star}\right\}$, contradicting the fact that $u z u^{\prime}$ is bad. This proves 1) and 2).

Now suppose that u, u^{\prime} have a common neighbor w in $G_{Q}^{\text {small }}$, where $w \neq z$. Since $w \notin\left\{u, z, u^{\prime}\right\}$, we have $w \notin V\left(C^{1}\right)$ by Claim 8.5.2, so $d\left(z^{*}, C\right)=2$. By 1) of Claim 8.5.2, uu $\notin E(G)$, so, since G is short-separation-free, it follows from our triangulation conditions that w is adjacent to each of u, z, u^{\prime}, and, by the minimality of $u z u^{\prime}$, the 2-chord $u w u^{\prime}$ of C^{1} is not bad, so $V\left(\tilde{G}_{u w u^{\prime}}^{\text {small }}\right)=\{w\} \cup V\left(C^{1} \cap \tilde{G}_{u w u^{\prime}}^{\text {small }}\right)$. By Lemma 8.2.1, C^{1} is induced in G, so it follows from our triangulation conditions that w is adjacent to each vertex of the path $C^{1} \cap \tilde{G}_{u w u^{\prime}}^{\text {small }}$, and, since G is short-separation-free, $\tilde{G}_{u z u^{\prime}}^{\text {small }}$ is a wheel with central vertex adjacent w.

We now have the following:
Claim 8.5.5. $V\left(\tilde{G}_{u z u^{\prime}}^{\text {large }}\right)$ is L_{ϕ}-colorable. Furthermore, if $Q_{1}^{\text {small }}$ has length three, then $\tilde{G}_{u z u^{\prime}}^{\text {small }}$ is a wheel.
Proof: Let x_{*}, x_{*}^{\prime} be the endpoints of R_{+}, where x_{*} is also an endpoint of P_{u} and x_{*}^{\prime} is also an endpoint of $P_{u^{\prime}}$. Suppose toward a contradiction that $\tilde{G}_{u z u^{\prime}}^{\text {large }}$ is not L_{ϕ}-colorable. By A) of Lemma 8.4.1, $G_{R_{+}}^{\text {large }}$ is an induced subgraph of G, so any L-coloring of $G_{R_{+}}^{\text {large }}$ restricts to an L_{ϕ}-coloring of the subgraph of G induced by $V\left(\tilde{G}_{u z u^{\prime}}^{\text {large }}\right)$. Thus, $G_{R_{+}}^{\text {large }}$ is not L-colorable.

Subclaim 8.5.6. All of the following hold.

1) $\left|V\left(G_{R_{+}}^{\mathrm{large}}\right)\right|+3=|V(G)|$; AND
2) u_{\star} is adjacent to each endpoint of R_{+}and $P_{u_{\star}}$ has length two; AND
3) $Q_{1}^{\text {small }}$ is a path of length three.

Proof: Firstly, if $\left|V\left(G_{R_{+}}^{\text {large }}\right)\right|+3<|V(G)|$, then it immediately follows from Lemma 8.1.6 that $G_{R_{+}}^{\text {large }}$ is L colorable, contradicting our assumption. Thus, we have $\left|V\left(G_{R_{+}}^{\text {large }}\right)\right| \geq|V(G)|-3$. By 2) of Claim 8.5.4, $Q_{\text {small }}^{1}$ has length at least three, and since $P_{u_{\star}}$ has at least one internal vertex, we have $\left|V\left(G_{R_{+}}^{\text {small }} \backslash R^{-}+\right)\right| \geq 3$, and thus $\left|V\left(G_{R_{+}}^{\text {large }}\right)\right|+3=|V(G)|$. Furthermore, since $Q_{\text {small }}^{1}$ has at least two internal vertices, $P_{u_{\star}}$ is a path of length two whose endpoints are x_{*}, x_{*}^{\prime}, and $Q_{1}^{\text {small }}$ has precisely two internal vertices.
Appyling Subclaim 8.5.6, there is a vertex $v \in V\left(C^{1}\right)$ such that $Q_{1}^{\text {small }}-\left\{u, u^{\prime}\right\}=v u_{\star}$, so suppose without loss of generality that $Q_{1}^{\text {small }}=u v u_{\star} u^{\prime}$. Again by Subclaim 8.5.6, u_{\star} is adjacent to all three vertices of $C \cap G_{R_{+}}^{\text {small }}$, and since C^{1} is an induced subgraph of G, it follows that $N(v) \cap V(C)=\left\{x_{*}\right\}$.
Now let p be the lone internal vertex of $P_{u_{\star}}$) and let C^{\dagger} be the cycle $\left(C \cap G_{R_{+}}^{\text {large }}\right)+x_{*} u_{\star} x_{*}^{\prime}$. Note that $\left|V\left(C^{\dagger}\right)\right|=|V(C)|$ and C^{\dagger} is a facial subgraph of $G-p$. Since $L_{\phi}\left(u_{\star}\right) \mid=2$, let L^{\dagger} be a list-assignment for $G-p$ in which $L^{\dagger}\left(u_{\star}\right)$ is a lone color of $L_{\phi}\left(u_{\star}\right)$, and otherwise $L^{\dagger}=L$. Let C_{*}^{\dagger} be the outer face of $G-p$ and let $\mathcal{T}^{\dagger}:=(G-p,(\mathcal{C} \backslash\{C\}) \cup$ $\left.\left\{C^{\dagger}\right\}, L^{\dagger}, C_{*}^{\dagger}\right)$. Then \mathcal{T}^{\dagger} is a tessellation in which C^{\dagger} is a closed ring. We claim that \mathcal{T}^{\dagger} is a mosaic.
Firstly, since $\left|V\left(C^{\dagger}\right)\right|=|V(C)|$, we have $\operatorname{Rk}\left(\mathcal{T}^{\dagger} \mid C^{\dagger}\right)=\operatorname{Rk}(\mathcal{T} \mid C)$, and, by Claim 8.5.2, $u_{\star} \notin N(z)$, so \mathcal{T}^{\dagger} satisfies the distance conditions of Definition 2.1.6. The only other nontrivial condition to check is that C^{\dagger} is L^{\dagger}-predictable in $G-p$. Firstly, C^{\dagger} is an induced subgraph of $G-p$ and, for every $w \in B_{1}\left(C^{\dagger}, G-p\right)$, the neighborhood of w in C^{\dagger} is a subpath of C^{\dagger}. Let ψ be the unique L^{\dagger}-coloring of C^{\dagger}. Since v only has one neighbor in C, it has precisely two neighbors in C^{\dagger}, so every vertex of $B_{1}\left(C^{\dagger}, G-p\right)$ has an L_{ψ}^{\dagger}-list of size at least three, except possibly u^{\prime}. Since $\left|L_{\phi}\left(u^{\prime}\right)\right| \geq 3$, we have $\left|L_{\psi}^{\dagger}\left(u^{\prime}\right)\right| \geq 2$, so C^{\dagger} is indeed L^{\dagger}-predictable in $G-p$. Thus, \mathcal{T}^{\dagger} is a mosaic, and since $|V(G-p)|<|V(G)|$, it follows from the minimality of \mathcal{T} that $G-p$ is L^{\dagger}-colorable. Since u_{\star} is the only neighbor of p in G which is not precolored, it follows that G is L-colorable, contradicting the fact that \mathcal{T} is critical.

Thus, our assumption that $V\left(\tilde{G}_{u z u^{\prime}}^{\text {large }}\right)$ is not L-colorable is false. Let ψ be an L_{ϕ}-coloring of $V\left(\tilde{G}_{u z u^{\prime}}^{\text {large }}\right)$ and suppose $Q_{1}^{\text {small }}$ has length three. By 2) of Claim 8.5.2, z is not adjacent to any internal vertex of $Q_{1}^{\text {small }}$. Since $Q_{1}^{\text {small }}$ is induced in $G, Q_{1}^{\text {small }}-\left\{u, u^{\prime}\right\}$ is an edge in which one endpoint has an $L_{\phi \cup \psi}$-list of size at least one and the other endpoint has an $L_{\phi \cup \psi}$-list of size at least two. Thus, $\phi \cup \psi$ extends to L-color $\operatorname{dom}(\phi \cup \psi) \cup V\left(Q_{1}^{\text {small }}\right)$, and, since G is not L-colorable, it follows from Theorem 1.3.5 that $\tilde{G}_{u z u^{\prime}}^{\text {small }}$ is a wheel with a central vertex adjacent to all of $F_{1}^{\text {small }}$.
Claim 8.5.5 has the following useful consequence.
Claim 8.5.7. For any vertex $v \in V\left(Q_{1}^{\text {small }}\right) \backslash\left\{u, u^{\prime}\right\}$, if v is adjacent to either of u, u^{\prime}, then $|N(v) \cap V(C)|>1$.
Proof: Suppose that this does not hold, and suppose without loss of generality that there is a $v \in V\left(Q_{1}^{\text {small }}\right) \backslash\left\{u, u^{\prime}\right\}$ which is adjacent to u and has only one neighbor on C. Since C^{1} is an induced subgraph of G, v is adjacent to u on the path $Q_{1}^{\text {small }}$, so let $Q_{1}^{\text {small }}=u_{1} \cdots u_{k}$ for some $k \geq 2$, where $u_{1}=u, u_{k}=u^{\prime}$, and $u_{2}=v$. Since u_{\star} is an internal vertex of $Q_{1}^{\text {small }}$, we have $v \neq u_{k-1}$.
Applying Claim 8.5.5, we fix an L_{ϕ}-coloring ψ of $V\left(\tilde{G}_{u z u^{\prime}}^{\text {larg }}\right)$. Now, $\tilde{G}_{u z u^{\prime}}^{\text {small }} \backslash\left\{u, z, u^{\prime}\right\}$ has a facial subgraph F containing all the vertices of $\tilde{G}_{u z u^{\prime}}^{\text {small }} \backslash\left\{u, z, u^{\prime}\right\}$ with $L_{\phi \cup \psi}$-lists of size less than five. By Claim 8.5.8, there is no common neighbor of u, z, u^{\prime} in F, and, by Claim 8.5.2, z has no neighbors in F. Since C^{1} is an induced subgraph of
F and $\left|L_{\phi}(v)\right| \geq 4$, it follows that every vertex of F, except possibly u_{\star}, u_{k-1}, has an $L_{\phi \cup \psi}$-lists of size at least three. If $u_{\star} \neq u_{k-1}$, then u_{\star} has no neighbors in $\left\{u, z, u^{\prime}\right\}$ and each of u_{\star}, u_{k-1} has an $L_{\phi \cup \psi}$-list of size at least two. If $u_{\star}=u_{k-1}$, then $\left|L_{\phi \cup \psi}\left(u_{k-1}\right)\right| \geq 1$. In either case, applying Theorem 1.3.4 or Theorem 0.2.3 respectively, ψ extends to an L_{ϕ}-coloring of $\tilde{G}_{u z u^{\prime}}^{\text {small }}$, so G is L-colorable, contradicting the fact that \mathcal{T} is critical.

Now we have the following simple observation:

Claim 8.5.8. If there is a $v \in V\left(Q_{1}^{\text {small }}\right) \backslash\left\{u, u^{\prime}\right\}$ such that $|N(v) \cap V(C)|=1$, then u, u^{\prime} have no common neighbor in $\tilde{G}_{u z u^{\prime}}^{\text {small }}$, except for z.

Proof: Suppose that u, u^{\prime} have a common neighbor z^{*} in $V\left(\tilde{G}_{u z u^{\prime}}^{\text {small }}\right)$ with $z^{*} \neq z$. By 3) of Claim 8.5.4, $\tilde{G}_{u z u^{\prime}}^{\text {small }}$ is a wheel with a central vertex adjacent to each vertex of $\mathrm{D}_{1}^{\text {small }}$. However, since there is an internal vertex of $Q_{1}^{\text {small }}$ adjacent to only one vertex of C, and C is induced and L-predictable in G, there are three consecutive vertices of $Q_{1}^{\text {small }}$ with a common neighbor in C, so G contains a copy of $K_{2,3}$, contradicting the fact that \mathcal{T} is a tessellation.

We now make the following definition. An L_{ϕ}-coloring ψ of $\left\{u, u^{\prime}\right\}$ is called desirable if every extension of ψ to an L_{ϕ}-coloring of $u z u^{\prime}$ also extends to L_{ϕ}-color all of $\tilde{G}_{u z u^{\prime}}^{\text {small }}$. We now have the following key claim.

Claim 8.5.9. There exists a desirable L_{ϕ}-coloring of $\left\{u, u^{\prime}\right\}$.

Proof: To prove this, we apply the work of Chapter 7. In order to use the main result of Chapter 7, we first prove the following easy observation:

Subclaim 8.5.10. There is a subpath R_{\star} of $Q_{1}^{\text {small }}$ such that each endpoint of R_{\star} is a $Q_{1}^{\text {small }}$-hinge of $F_{1}^{\text {small }}$ and such that precisely one of the following holds.

1) $R_{\star}=u_{\star}$; $O R$
2) There is a unique $w \in V\left(\tilde{G}_{u z u^{\prime}}^{\text {small }}\right) \backslash V(D)$ such that $G\left[N(w) \cap V\left(Q_{1}^{\text {small }}\right)\right]$ is a subpath of $Q_{1}^{\text {small }}$ with u_{\star} as an internal vertex, and any 2-chord of $F_{1}^{\text {small }}$ which separates u_{\star} from z has w as a midpoint.
Proof: If there is a 2 -chord P of $F_{1}^{\text {small }}$ in $\tilde{G}_{u z u^{\prime}}^{\text {small }}$ which separates u_{\star} from z, then, since $u z u^{\prime}$ is a minimal bad 2-chord of C^{1}, we have $V\left(\tilde{G}_{P}^{\text {small }}\right)=V(P) \cup V\left(C^{1} \cap \tilde{G}_{P}^{\text {small }}\right)$, and, since C^{1} is an induced subgraph of G, it follows from our triangulation conditions that $\tilde{G}_{P}^{\text {small }}$ is a broken wheel with principal path P. Thus, any such 2-chord of $F_{1}^{\text {small }}$, if it exists, has a unique midpoint w, and $G\left[N(w) \cap V\left(C^{1}\right)\right]$ is a subpath of $F_{1}^{\text {small }}$ with u_{\star} as an internal vertex. If no such 2-chord of $F_{1}^{\text {small }}$ exists, then u_{\star} is a $Q_{1}^{\text {small }}$-hinge of $F_{1}^{\text {small }}$ by definition.

Let R_{\star} be as in Sublaim 8.5.10. Since $Q_{1}^{\text {small }}$ differs from D by only one vertex, it immediately follows from 3) of Theorem 1.7.3 that, for any $\sigma \in \operatorname{Link}_{L_{\phi}}\left(Q_{1}^{\text {small }}, F_{1}^{\text {small }}, G_{Q}^{\text {small }}\right)$, the restriction of σ to $\left\{u, u^{\prime}\right\}$ is a desirable L_{ϕ}-coloring of $\left\{u, u^{\prime}\right\}$. Each of u, u^{\prime} is trivially a $Q_{1}^{\text {small }}$-hinge of $F_{1}^{\text {small }}$, because u, u^{\prime} are the endpoints of $Q_{1}^{\text {small }}$. By Claim 8.5.2, $F_{1}^{\text {small }}$ is induced in $\tilde{G}_{u u z^{\prime}}^{\text {small }}$, so it follows from Sublaim 8.5.10 that all the conditions of Theorem 7.0.1 are satisfied, and it immediately follows from A) of Theorem 7.0.1 that $\operatorname{Link}_{L_{\phi}}\left(Q_{1}^{\text {small }}, D, G_{Q}^{\text {small }}\right) \neq \varnothing$. Thus, there is at least one desirable L_{ϕ}-coloring of $\left\{u, u^{\prime}\right\}$.

We now have the following:

Claim 8.5.11. For any 4-chord M of C whose middle three vertices are u, z, u^{\prime}, we have $\left|V\left(G_{M}^{\text {small }} \cap C\right)\right| \leq 5$. In particular, we have $4 \leq\left|V\left(Q_{0-}^{\text {small }}\right)\right| \leq\left|V\left(Q_{0}^{\text {small }}\right)\right| \leq 5$.

Proof: Suppose toward a contradiction that there is a 4-chord M of C whose middle three vertices are u, z, u^{\prime}, where $\left|V\left(G_{M}^{\text {small }} \cap C\right)\right|>5$. Applying Claim 8.5.9, let ψ be a desirable L_{ϕ}-coloring of $\left\{u, u^{\prime}\right\}$. By B) of Lemma 8.4.1, $\psi \cup \phi$ extends to an L-coloring ψ^{*} of $V\left(\tilde{G}_{Q}^{\text {large }}\right)$, and, since ψ is desirable, ψ^{*} extends to L-color $\tilde{G}_{u z u^{\prime}}^{\text {small }}$, so ψ^{*} extends to an L-coloring of G, contradicting the fact that \mathcal{T} is critical. Thus, no such M exists.

Now, by 2) of Claim 8.5.4, $Q_{1}^{\text {small }}$ has length at least three, so there is at least one vertex v of $Q_{1}^{\text {small }} \backslash\left\{u, u^{\prime}, u_{\star}\right\}$ with a neighbor in $\left\{u, u^{\prime}\right\}$, and $P_{v}, P_{u_{\star}}$ intersect on at most a common endpoint. By Claim 8.5.7, $\left|V\left(P_{v}\right)\right| \geq 2$, and since $\left|V\left(P_{u_{\star}}\right)\right| \geq 3$, there are at least two vertices of $C \backslash Q_{0+}^{\text {large }}$. We conclude that $4 \leq\left|V\left(Q_{0-}^{\text {small }}\right)\right| \leq\left|V\left(Q_{0}^{\text {small }}\right)\right|$. As shown above, we have $\left|V\left(Q_{0}^{\text {small }}\right)\right| \leq 5$, since $Q_{0}^{\text {small }}=C \cap G_{R}^{\text {small }}$, so we are done.

Claim 8.5.11 has the following easy consequence.

Claim 8.5.12. At least one of u, u^{\prime} has precisely one neighbor in C.

Proof: Suppose that each of u, u^{\prime} has more than one neighbor in C. Then each of P_{u} and $P_{u^{\prime}}$ is a path of length at least one, and the paths $Q_{0}^{\text {small }}$ and $Q_{0-}^{\text {small }}$ differ in length by at least two, contradicting Claim 8.5.11.

We now have the following:

Claim 8.5.13. There is at least one internal vertex of the path $Q_{1}^{\text {small }} \backslash\left\{u, u^{\prime}\right\}$ with more than one neighbor in C.

Proof: Suppose not. By 2) of Claim 8.5.4, $Q_{1}^{\text {small }}$ has length at least three and, by Claim 8.5.7, each endpoint of $Q_{1}^{\text {small }}-\left\{u, u^{\prime}\right\}$ has more than one neighbor in C. Thus, it follows from our assumption that u_{\star} is one of the endpoints of $Q_{1}^{\text {small }} \backslash\left\{u, u^{\prime}\right\}$, and there is a $p \in V\left(Q_{1}^{\text {small }} \backslash\left\{u, u^{\prime}\right\}\right.$ such that $p \neq u_{\star}$, where p is the other endpoint of $Q_{1}^{\text {small }} \backslash\left\{u, u^{\prime}\right\}$, and p, u_{\star} are the only vertices of $Q_{1}^{\text {small }}-\left\{u, u^{\prime}\right\}$ with more than one neighbor in C. Suppose without loss of generality that $u u_{\star}$ and $p u^{\prime}$ are the terminal edges of $Q_{1}^{\text {small }}$.

Subclaim 8.5.14. $Q_{1}^{\text {small }}=u u_{\star} p u^{\prime}$.
Proof: By Claim 8.5.5, there is an L_{ϕ}-coloring ψ of $\tilde{G}_{u z u^{\prime}}^{\text {large }}$. Now suppose toward a contradiction that $Q^{\text {small }}$ has length strictly greater than three. Let p^{\prime} be the lone neighbor of u_{\star} on $Q_{1}^{\text {small }}-u$. Thus, $p^{\prime} \neq p$, and, by assumption, we have $|N(p) \cap V(C)|=1$. By Claim 8.5.8, the vertices u, u^{\prime} do not have a common neighbor in $\tilde{G}_{u z u^{\prime}}^{\text {small }}$ other than z. Since $\left|L_{\phi \cup \psi}\left(u_{\star}\right)\right| \geq 1, \psi$ extends to an L_{ϕ}-coloring ψ^{*} of $\operatorname{dom}(\psi) \cup\left\{u_{\star}\right\}$. We have $\left|L_{\phi}(p)\right| \geq 3$ and, by assumption, $\left|L_{\phi}\left(p^{\prime}\right)\right| \geq 4$. Let $H:=\tilde{G}_{u z u^{\prime}}^{\text {small }} \backslash\left\{u, z, u^{\prime}, u_{\star}\right\}$. Since $F_{1}^{\text {small }}$ is an induced cycle in G, it follows from our triangulation conditions that u, u_{\star} have a unique common neighbor $w \in D_{2}(C) \cap V\left(\tilde{G}_{u z u^{\prime}}^{\text {small }}\right)$.

Since $Q_{1}^{\text {small }}$ is an induced path in G and u, u^{\prime} have no common neighbor in $\tilde{G}_{u z u^{\prime}}^{\text {small }}$ other than z, it follows that H has a unique facial subgraph F such that every vertex of $H \backslash F$ has an $L_{\phi \cup \psi^{*}}$-list of size at least five and every vertex of $F \backslash\{w, p\}$ has an $L_{\phi \cup \psi^{*}}$-list of size at least three. Possibly w is as adjacent to z, but not to u^{\prime}, so each of p, w has an $L_{\phi \cup \psi^{*}}$-list of size at least two, and, by Theorem 1.3.4, H is $L_{\phi \cup \psi^{*}}$-colorable, so $\phi \cup \psi^{*}$ extends to an L-coloring of G, contradicting the fact that \mathcal{T} is critical.

Let G^{\dagger} be the graph obtained from G by deleting from G all the internal vertices of $Q_{0-}^{\text {small }}$. Since $V\left(Q_{0-}^{\text {small }}\right) \mid \geq 4$ by Claim 8.5.11, we have $\left|V\left(G^{\dagger}\right)\right| \leq|V(G)|-2$. SiInce $L_{\phi}(p) \mid \geq 3$ and $\left|L_{\phi}\left(u_{\star}\right)\right| \geq 2$, let σ be an L_{ϕ}-coloring of $p u_{\star}$. Let L^{\dagger} be a list-assignment for $V\left(G^{\dagger}\right)$, such that $L^{\dagger}\left(u_{\star}\right)=\left\{\sigma\left(u_{\star}\right)\right.$ and $L^{\dagger}(p)=\{\sigma(p)\}$, and otherwise $L^{\dagger}=L$. Let x, x^{\prime} be the endpoints of $Q_{0-}^{\text {small }}$, where x is an endpoint of P_{u} and x^{\prime} is an endpoint of $P_{u^{\prime}}$. Note that G^{\dagger} contains the cyclic facial subgraph $C^{\dagger}:=Q_{0+}^{\text {large }}+x u_{\star} p x^{\prime}$, and let C_{*}^{\dagger} be the outer face of G^{\dagger}. By our construction
of L^{\dagger}, we get that $V\left(C^{\dagger}\right)$ is L^{\dagger}-colorable, and since $G^{\dagger} \subseteq G$, we get that G^{\dagger} is short-separation-free. Thus, the tuple $\mathcal{T}^{\dagger}:=\left(G^{\dagger},(\mathcal{C} \backslash\{C\}) \cup\left\{C^{\dagger}, L^{\dagger}, C_{*}^{\dagger}\right)\right.$ is a tessellation in which C^{\dagger} is a closed ring. We claim now that \mathcal{T}^{\dagger} is a mosaic. Since $Q_{0-}^{\text {small }}$ has at least two internal vertices, we have $\left|V\left(C^{\dagger}\right)\right| \leq|V(C)|$, so M0) is satisfied, and $\operatorname{Rk}\left(\mathcal{T}^{\dagger} \mid C^{\dagger}\right) \leq$ $\operatorname{Rk}(\mathcal{T} \mid C)$. By 2) of Claim 8.5.2, z is not adjacent to either of p, u_{\star}. Since $x u z u x^{\prime}$ separates $p u_{\star}$ from all the elements of $\mathcal{C} \backslash\{C\}$, it follows that \mathcal{T}^{\dagger} satisfies the distance conditions of Definition 2.1.6. M1) is trivially satisfied so the only thing left to check is that C^{\dagger} is L^{\dagger}-predictable in G^{\dagger}. Since C is induced in G, C^{\dagger} is induced in G^{\dagger}. Now, u us the unique common neighbor of x, u_{\star} in G^{\dagger} and u^{\prime} is the unique common neighbor of x^{\prime}, p^{\prime} in G^{\dagger}. Any other vertex of $D_{1}\left(C^{\dagger}, G^{\dagger}\right)$ with a neighbor in $\left\{p, u_{\star}\right\}$ is not adjacent to any vertex of C and is adjacent to one or both of p, u_{\star}. Since C is L-predictable in G, it follows that C^{\dagger} satisfies the subpath condition of Definition 2.1.3.

Let ϕ^{\dagger} be the unique L^{\dagger}-coloring of $V\left(C^{\dagger}\right)$. As indicated above, any vertex of $D_{1}\left(C^{\dagger}, G^{\dagger}\right) \backslash\left\{u, u^{\prime}\right\}$ with a neighbor in $\left\{u_{\star}, p\right\}$ has no other neighbors in C^{\dagger} and thus has an $L_{\phi^{\dagger}}^{\dagger}$-list of size at least three. By Claim 8.5.12, at most one of u, u^{\prime} has more than one neighbor in C, so every vertex of $D_{1}\left(C^{\dagger}, G^{\dagger}\right)$ has an $L_{\phi^{\dagger}}^{\dagger}$-list of size at least three, except possibly one of $\left\{u, u^{\prime}\right\}$, which has an $L_{\phi^{\dagger}}^{\dagger}$-list of size at least two. Thus, C^{\dagger} is indeed L^{\dagger}-predictable in G^{\dagger} and \mathcal{T}^{\dagger} is a mosaic. Since $\left|V\left(G^{\dagger}\right)\right| \leq|V(G)|-2$, it follows from the minimality of \mathcal{T} that G^{\dagger} admits L^{\dagger}-coloring σ^{*}. As G^{\dagger} contains all the neighbors of u, u^{\prime} in C and $Q_{1}^{\text {small }} \backslash\left\{u, u^{\prime}\right\}$ is precolored by σ, it follows that $\sigma^{*} \cup \phi$ is a proper L-coloring of G, contradicting the fact that \mathcal{T} is critical. This completes the proof of Claim 8.5.13.

Combining Claim 8.5.13 with Claim 8.5.7, there are at least three vertices of $Q_{1}^{\text {small }} \backslash\left\{u, u^{\prime}\right\}$ with more than one neighbor in C, and since $\left|E\left(P_{u_{\star}}\right)\right| \geq 2$, it follows that $E\left(Q_{0-}^{\text {small }}\right) \mid \geq 4$ and thus $\left|V\left(Q_{0-}^{\text {small }}\right)\right|>4$. By Claim 8.5.11, we have $\mid V\left(Q_{0-}^{\text {small }}|=| V\left(Q_{0}^{\text {small }} \mid=5\right.\right.$, so each of u, u^{\prime} has precisely one neighbor on C. Let p, p^{\prime} be the endpoints of $Q_{1}^{\text {small }}$, where $p u, p^{\prime} u^{\prime}$ are the terminal edges of $Q_{1}^{\text {small }}$. As there are at least three vertices of $Q_{1}^{\text {small }} \backslash\left\{u, u^{\prime}\right\}$ with more than one neighbor in C, let q be an internal vertex of $Q_{1}^{\text {small }} \backslash\left\{u, u^{\prime}\right\}$ with more than one neighbor in C. Note that $u_{\star} \in\left\{p, p^{\prime}, q\right\}$ and every vertex of $Q_{1}^{\text {small }} \backslash\left\{p, p^{\prime}, q\right\}$ has precisely one neighbor in C. If at least one of these does not hold, then, since $\left|V\left(P_{u}\right)\right|=\left|V\left(P_{u^{\prime}}\right)\right|=1$, it follows that $\left|E\left(Q_{0}^{\text {small }}\right)\right| \geq 5$ and thus $\left|V\left(Q_{0}^{\text {small }}\right)\right| \geq 6$, which is false.

Claim 8.5.15. There is a terminal edge $Q_{1}^{\text {small }} \backslash\left\{u, u^{\prime}\right\}$ which contains u_{\star} and contains q (possibly $q=u_{\star}$).
Proof: Suppose that this does not hold and, applying Claim 8.5.5, let ψ be an L_{ϕ}-coloring of $V\left(\tilde{G}_{u z u^{\prime}}^{\text {large }}\right)$. The assumption of Claim 8.5.15 implies that $Q_{u z u^{\prime}}^{\mathrm{small}} \neq u p q p^{\prime} u^{\prime}$, so there is a vertex of $Q \backslash\left\{u, u^{\prime}\right\}$ with precisely one neighbor in C. By Claim 8.5.8, u, u^{\prime} have no common neighbor in $\tilde{G}_{u z u^{\prime}}^{\text {small }}$ other than z. Since $D_{1}^{\text {small }}$ is induced in G, we have $\left|L_{\phi \cup \psi^{*}}\left(u_{\star}\right)\right| \geq 1$, so ψ extends to an L-coloring ψ^{*} of $\operatorname{dom}(\psi) \cup\left\{u_{\star}\right\}$. Let $H:=\tilde{G}_{1}^{\text {small }} \backslash\left\{u, z, u^{\prime}, u_{\star}\right\}$. Then H has a unique facial subgraph F such that F contains $Q^{\text {small }} \backslash\left\{u, u^{\prime}, u_{\star}\right\}$ and every vertex of $H \backslash F$ has an $L_{\phi \cup \psi^{*}}$-list of size at least five. Consider the following cases:

Case 1: $u_{\star}=q$
In this case, u_{\star} is an internal vertex of $Q_{1}^{\text {small }} \backslash\left\{u, u^{\prime}\right\}$. Let v, v^{\prime} be the two neighbors of q on $Q_{1}^{\text {small }}$. By assumption, $v, v^{\prime} \notin\left\{p, p^{\prime}\right\}$, so each of v, v^{\prime} has precisely one neighbor on C. Each of v, v^{\prime} has an $L_{\phi \cup \psi^{*}-\text { list at least three, and }}$ each of p, p^{\prime} has an $L_{\phi \cup \psi^{*}}$-list of size at least two. Since u, u^{\prime} have no common neighbor in F, any remaining vertices of F also have $L_{\phi \cup \psi^{*}}$-lists of size at least three. By Theorem 1.3.4, H is $L_{\phi \cup \psi^{*}}$-colorable, so $\phi \cup \psi^{*}$ extends to an L-coloring of G, contradicting the fact that \mathcal{T} is critical.

Case 2: $u_{\star} \neq q$
In this case, suppose without loss of generality that $u_{\star}=p$. By assumption, $p q$ is not a terminal edge of $Q^{\text {small }} \backslash\left\{u, u^{\prime}\right\}$, so there is a vertex $v \in V\left(Q_{1}^{\text {small }}\right) \backslash\left\{p, p^{\prime}, q\right\}$ such that $p v$ is a terminal edge of $Q_{1}^{\text {small }} \backslash\left\{u, u^{\prime}\right\}$, and $|N(v) \cap V(C)|=1$.

Since $D_{1}^{\text {small }}$ is an induced subgraph of G, it follows that $\left|L_{\phi \cup \psi^{*}}(v)\right| \geq 3$ and $\left|L_{\phi \cup \psi^{*}}\left(p^{\prime}\right)\right| \geq 2$, and furthermore, for any vertex $w \in V(F) \backslash\left\{p^{\prime}\right\}$ with an $L_{\phi \cup \psi^{*}}$-list of size less than three, we have $N(w) \cap \operatorname{dom}\left(\psi^{*}\right) \subseteq\left\{u, z, u^{\prime}, u_{\star}\right\}$. As indicated above, any such w is adjacent to at most one of u, u^{\prime}, and since $D_{1}^{\text {small }}$ is induced in G, it follows from our triangulation conditions that $N(w) \cap \operatorname{dom}\left(\psi^{*}\right) \neq\left\{u^{\prime}, z, u_{\star}\right\}$, so $N(w) \cap \operatorname{dom}\left(\psi^{*}\right)=\left\{z, u, u_{\star}\right\}$. Thus, such a w, if it exists, is unique and has an $L_{\phi \cup \psi^{*}}$-list of size two. By Theorem 1.3.4, $\phi \cup \psi^{*}$ extends to an L-coloring of H, and thus $\phi \cup \psi^{*}$ extends to an L-coloring of G, contradicting the fact that \mathcal{T} is critical.

Applying Claim 8.5.15, we suppose without loss of generality that q is adjacent to p (i.e $p q$ is a terminal edge of $\left.Q_{1}^{\text {small }} \backslash\left\{u, u^{\prime}\right\}\right)$ and u_{\star} is an endpoint of $p q$.

Claim 8.5.16. $Q_{1}^{\text {small }}=u p q p^{\prime} u^{\prime}$.

Proof: Suppose not. Let v be the lone neighbor of q on $Q_{1}^{\text {small }}$ which is distinct from p. Since $v \neq q^{\prime}$, we have $|N(v) \cap V(C)|=1$. By Claim 8.5.8, u, u^{\prime} have no common neighbor in $\tilde{G}_{u z u^{\prime}}^{\text {small }}$ except for z.

Subclaim 8.5.17. The four vertices of $\{z, u, p, q\}$ have a unique common neighbor in $\tilde{G}_{u z u^{\prime}}^{\text {small }} \backslash D_{1}^{\text {small }}$.
Proof: Suppose not. Since $D_{1}^{\text {small }}$ is induced in G, ψ extends to an L_{ϕ}-coloring ψ^{\dagger} of $\operatorname{dom}(\psi) \cup\{p, q\}$. Let $H:=$ $\tilde{G}_{u z u^{\prime}}^{\text {small }} \backslash\left\{u^{\prime}, z, u, p, q\right\}$. Note that H has a unique facial subgraph F which contains the path $Q^{\text {small }} \backslash\left\{u, u^{\prime}, p, q\right\}$, where each vertex of $H \backslash F$ has an $L_{\phi \cup \psi^{\dagger}}$-list of size at least five. We have $\left|L_{\phi \cup \psi^{\dagger}}\left(p^{\prime}\right)\right| \geq 2$ and $\left|L_{\phi \cup \psi^{\dagger}}(v)\right| \geq 3$.

Since u, u^{\prime} have no common neighbor in F and $D_{1}^{\text {small }}$ is induced in G, it follows that, for any other vertex w of $V(F) \backslash\left\{p^{\prime}\right\}$ which has an $L_{\phi \cup \psi^{\dagger}}$-list of size less than three, w has at least three neighbors among $\{z, u, p, q\}$. By assumption, any such w is not adjacent to all four of these vertices, and, since $D_{1}^{\text {small }}$ is induced in G, it follows from our triangulation conditions that $G\left[N(w) \cap \operatorname{dom}\left(\psi^{\dagger}\right)\right.$ is a subpath of $z u u_{\star} q$ of length precisely two, so any such w, if it exists, is unique, and has an $\mid L_{\phi \cup \psi^{\dagger}}$-list of size two. It now follows from Theorem 1.3.4 that H is $L_{\phi \cup \psi^{\dagger}}$-colorable, so $\phi \cup \psi^{\dagger}$ extends to an L-coloring of G, contradicting the fact that \mathcal{T} is critical.

Applying Subclaim 8.5.17, let w be the unique common neighbor of $\{z, u, p, q\}$ in $\tilde{G}_{u z u^{\prime}}^{\text {small }} \backslash D_{1}^{\text {small }}$. Since every internal vertex of the path $q Q_{1}^{\text {small }} p^{\prime}$ has precisely one neighbor in C, it follows that q, p^{\prime} have a unique common neighbor $x^{\dagger} \in V(C)$, and $\tilde{G}_{u z u^{\prime}}^{\text {small }}$ contains the 6 -cycle $u^{\prime} z u p q x^{\dagger} p^{\prime} u^{\prime}$. Let $W \subseteq \mathbb{R}^{2}$ be the unique open region containing v. Since $D_{1}^{\text {small }}$ is induced in G, it follows that $\phi \cup \psi$ extends to L-color $\operatorname{dom}\left(\phi \cup \psi\left(\cup \psi\left(p, q, w, p^{\prime}\right\}\right.\right.$ and since G is not L-colorable, it follows from Theorem 1.3.5 that $|V(G) \cap W| \leq 3$.

Subclaim 8.5.18. $\mathrm{Cl}(W)$ has no chord of D^{\dagger}.
Proof: Suppose toward a contradiction that $\mathrm{Cl}(W)$ contains a chord of D^{\dagger}. Since $D_{1}^{\text {small }}$ is induced in G,it is easy to check that $\phi \cup \psi$ extends to an L-coloring σ of $\operatorname{dom}\left(\phi \cup \psi\left(\cup \psi\left(p, q, w, p^{\prime}, v\right\}\right.\right.$, and furthermore, any chord of D^{\dagger} chord has w as an endpont. Note that w is not adjacent to q^{\prime}, or else it follows from our triangulation conditions that w is also adjacent to u^{\prime}, which is false since u, u^{\prime} have no common neighbor in $\tilde{G}_{u z u^{\prime}}^{\text {small }}$ except for z.

Thus, $w v$ is the unique chord of D^{\dagger} in $\mathrm{Cl}(W)$, or else, since G is short-separation-free, we have $W \cap V(G)=\{v\}$, and since $w q^{\prime}, w u^{\prime} \notin E(G) \cap \mathrm{Cl}(W)$, it then follows from our triangulation conditions that $z v \in E(G) \cap \mathrm{Cl}(W)$, contradicting 2) of Claim8.5.2. We conclude that $w z$ is the unique chord of D^{\dagger} in W. Since σ does not extend to L-color G and $u^{\prime} z w v q^{\prime}$ is a 5-cycle, it follows from Theorem 1.3.5 that there is a vertex v^{\prime} such that $V(G) \cap W=$ $\left\{v, v^{\prime}\right\}$ and v^{\prime} is adjacent to all five vertices of $u^{\prime} z w v q^{\prime}$. Let ψ^{\prime} be an extension of ψ to an L_{ϕ}-coloring of $\operatorname{dom}(\psi) \cup\left\{p^{\prime}\right\}$. Since $u_{\star} \in\{p, q\}$, consider the following cases:

Case 1: $q=u_{\star}$

In this case, we have $\left|L_{\phi \cup \psi^{\prime}}(p)\right| \geq 2$. Coloring and deleting the vertices of $\operatorname{dom}\left(\phi \cup \psi^{\prime}\right)$, we are left with the graph in Figure 8.5.1, with lower bounds on the sizes of the $L_{\phi \cup \psi^{\prime}}$-lists.

Figure 8.5.1: Case 1 of Subclaim 8.5.18
Case 2: $u_{\star}=p$
In this case, again deleting the domain of $\phi \cup \psi^{\prime}$, we have the same graph as above except that $\left|L_{\phi \cup \psi^{\prime}}(p)\right| \geq 1$ and $\left|L_{\phi \cup \psi^{\prime}}(q)\right| \geq 3$, so we have the graph in Figure 8.5.2, with lower bounds on the sizes of the $L_{\phi \cup \psi^{\prime}}$-lists.

Figure 8.5.2: Case 2 of Subclaim 8.5.18
It is easy to check that the graph in Figure 8.5 .2 colorable, so $\phi \cup \psi^{\prime}$ extends to an L-coloring of G, contradicting the fact that \mathcal{T} is critical. This completes the proof of Subclaim 8.5.18.

Applying Subclaim 8.5.18, $\mathrm{Cl}(W)$ has no chord of D^{\dagger}, and since v is an internal vertex of $q Q_{1}^{\text {small }} p^{\prime}$, it follows from Theorem 1.3.5 that $(W \cap V(G)) \backslash V\left(q Q_{1}^{\text {small }} p^{\prime}\right)$ consists of precisely two vertices, or else all the vertices of $q q^{\text {small }} p^{\prime}$ have a common neighbor in W and also have x^{\dagger} as a common neighbor, contradicting the fact that is short-separationfree. Since $|V(G) \cap W| \leq 3$, it follows that v is the lone internal vertex of $q Q_{1}^{\text {small }} p^{\prime}$ and $G \cap W$ consists of a triangle $s s^{\prime} v$ for some $s, s^{\prime} \in W \cap V(G)$. Let ψ^{*} be an extension of ψ to an L_{ϕ}-coloring of $\operatorname{dom}(\psi) \cup\{p, q, w\}$. Then $G \backslash \operatorname{dom}\left(\phi \cup \psi^{*}\right)$ consists of the graph in Figure 8.5.3, with lower bounds on the size of the $L_{\phi \cup \psi^{*}}$-lists of each vertex indicated in red. Note that each of s^{\prime}, v has an $L_{\phi \cup \psi^{*}}$-list of size at least three because p^{\prime} has not been deleted.

Figure 8.5.3: The last configuration in Claim 8.5.16

The graph in Figure 8.5.3 is $L_{\phi \cup \psi^{*}}$-colorable, so $\phi \cup \psi^{*}$ extends to an L-coloring of G, contradicting the fact that \mathcal{T} is critical. This completes the proof of Claim 8.5.16.

Applying Claim 8.5.16, we have $Q^{\text {small }}=u p q p^{\prime} u^{\prime}$. Since $Q_{1}^{\text {small }} \backslash\left\{u, u^{\prime}\right\}$ is a path in which $L_{\phi}\left(u_{\star}\right) \mid \geq 2$ and every other vertex has an L_{ϕ}-list of size at least three, there is an L_{ϕ}-coloring σ of $Q_{1}^{\text {small }}$. As in Claim 8.5.13, let G^{\dagger} be the graph obtained from G by deleting all the internal vertices of $Q_{0}^{\text {small }}$. Since each of u, u^{\prime} has precisely one neighbor on C, let $N(u) \cap V(C)=\{x\}$ and $N\left(u^{\prime}\right) \cap V(C)=\left\{x^{\prime}\right\}$ for some $x, x^{\prime} \in V(C)$.

Let L^{\dagger} be a list-assignment for $V\left(G^{\dagger}\right)$ such that $L^{\dagger}(v)=\{\sigma(v)\}$ for each $v \in\left\{p, q, p^{\prime}\right\}$ and otherwise $L^{\dagger}=L$. Note that G^{\dagger} contains the cyclic facial subgraph $C^{\dagger}:=Q_{0}^{\text {large }}+x p q p^{\prime} x^{\prime}$, and let C_{*}^{\dagger} be the outer face of G^{\dagger}. By our construction of L^{\dagger}, we get that $V\left(C^{\dagger}\right)$ is L^{\dagger}-colorable, and since $G^{\dagger} \subseteq G$, we get that G^{\dagger} is short-separation-free. Thus, the tuple $\mathcal{T}^{\dagger}:=\left(G^{\dagger},(\mathcal{C} \backslash\{C\}) \cup\left\{C^{\dagger}\right\}, L^{\dagger}, C_{*}^{\dagger}\right)$ is a tessellation in which C^{\dagger} is a closed ring.

Claim 8.5.19. C^{\dagger} is an L^{\dagger}-predictable facial subgraph of G^{\dagger}.

Proof: As C is induced in G, C^{\dagger} is induced in G^{\dagger}. Now, u us the unique common neighbor of x, u_{\star} in G^{\dagger} and u^{\prime} is the unique common neighbor of x^{\prime}, p^{\prime} in G^{\dagger}. Any other vertex of $D_{1}\left(C^{\dagger}, G^{\dagger}\right)$ with a neighbor in $\{p, q, p\}$ is not adjacent to any vertex of C. Since $p q p^{\prime}$ is an induced path in G, it follows from our triangulation conditions, that, for any $v \in D_{1}\left(C^{\dagger}, G^{\dagger}\right) \backslash\left\{u, u^{\prime}\right\}$, if v has a neighbor in $C^{\dagger} \backslash C$, then $G^{\dagger}\left[N(v) \cap V\left(C^{\dagger}\right)\right]$ is a subpath of $p q p^{\prime}$. Since C is L-predictable in G, it immediately follows that C^{\dagger} satisfies the subpath condition of Definition 2.1.3.

Let ϕ^{\dagger} be the unique L^{\dagger}-coloring of $V\left(C^{\dagger}\right)$. As indicated above, any vertex of $D_{1}\left(C^{\dagger}, G^{\dagger}\right) \backslash\left\{u, u^{\prime}\right\}$ with a neighbor in $\left\{p, q, p^{\prime}\right\}$ has no other neighbors in C^{\dagger}. Furthermore, each of u, u^{\prime} has precisely one neighbor in C and thus precisely two neighbors in C^{\dagger}. It follows that every vertex of $D_{1}\left(C^{\dagger}, G^{\dagger}\right)$ has an $L_{\phi^{\dagger}}^{\dagger}$-list of size at least three, unless that vertex is adjacent to all three of p, q, p^{\prime}. Such a vertex, if it exists, as unique and has no other neighbors in C^{\dagger} and thus has an $L_{\phi^{\dagger}}^{\dagger}$-list of size at least two. It follows that C^{\dagger} is indeed L^{\dagger}-predictable in G^{\dagger}.
Since $\left|V\left(Q_{0}^{\text {small }}\right)\right|=5$, we have $\left|V\left(C^{\dagger}\right)\right|=|V(C)|$, so M0) is satisfied, and $\operatorname{Rk}\left(\mathcal{T}^{\dagger} \mid C^{\dagger}\right)=\operatorname{Rk}(\mathcal{T} \mid C)$. By 2) of Claim 8.5.2, z is not adjacent to any of $\left\{p, q, p^{\prime}\right\}$, and since $x u z u x^{\prime}$ separates $p q p^{\prime}$ from all the elements of $\mathcal{C} \backslash\{C\}$, it follows that \mathcal{T}^{\dagger} satisfies the distance conditions of Definition 2.1.6. M1) is trivially satisfied. It follows from Claim 8.5.19 that \mathcal{T}^{\dagger} satisfies M2) as well and thus \mathcal{T}^{\dagger} is indeed a mosaic. Since $\left|V\left(G^{\dagger}\right)\right|=|V(G)|-3$, it follows from the minimality of \mathcal{T} that G^{\dagger} admits L^{\dagger}-coloring σ^{*}. Since G^{\dagger} contains all the neighbors of u, u^{\prime} in C and $Q_{1}^{\text {small }} \backslash\left\{u, u^{\prime}\right\}$ is precolored by σ, it follows that $\sigma^{*} \cup \phi$ is a proper L-coloring of G, contradicting the fact that \mathcal{T} is critical. We conclude that our original assumption that there exists a bad 2-chord of C^{1} is false. This completes the proof of Lemma 8.5.1 and thus completes the proof of Theorem 8.0.4.

Chapter 9

Corner Colorings

In Section 1.6, we proved a result for 3-paths of a facial cycle in a planar graph which showed that, under certain circumstances, we can find a coloring of the endpoints of the 3-path such that any extension of this precoloring to the entire 3-path also extends to the entire graph. Results of this form are very useful for the situation in which we want to delete the vertices on the small side of a 3-chord of a facial cycle in a critical mosaic while we are trying to precolor as few vertices as possible in order to avoid creating lists of size less than three. In this section and the next, we prove two variants of Theorem 1.6 .1 in which, rather than only coloring the endpoints of the 3-path, we allow ourselves to precolor all but one internal vertex of the 3-path (i.e we leave a corner uncolored). The lone theorem which makes up the entiretiy of Chapter 9 is stated below. We use this theorem in Chapter 10.

Theorem 9.0.1. Let H be a planar graph with facial cycle C, and let $P:=p_{1} p_{2} p_{3} p_{4}$ be a subpath of C of length three. Let L be a list-assignment for H such that each vertex of $C \backslash P$ has an list of size at least three and each vertex of $H \backslash C$ has a list of size at least five. If either of the conditions below hold, then there exists an L-coloring ψ of $\left\{p_{1}, p_{3}, p_{4}\right\}$ such that, for any extension of ψ to an L-coloring ψ^{\prime} of $V(P), \psi^{\prime}$ extends to an L-coloring of H.

1) $\left|L\left(p_{1}\right)\right| \geq 2$ and $\left|L\left(p_{4}\right)\right| \geq 2$; OR
2) $\left\{p_{1}, p_{4}\right\}$ is L-colorable and there exists a vertex of $C \backslash P$ with a list of size at least four.

Chapter 9 has two sections. In Section 9.1, we show that such a coloring always exists under the first condition, and in Section 9.2, we show that such a coloring always exists under the second condition.

9.1 Corner Colorings: Part I

This section consists of the following result.
Lemma 9.1.1. Let H be a planar graph with facial cycle C, and let $P:=p_{1} p_{2} p_{3} p_{4}$ be a subpath of C of length three. Let L be a list-assignment for H such that the following hold:

1) $\left|L\left(p_{1}\right)\right| \geq 2$ and $\left|L\left(p_{4}\right)\right| \geq 2$; AND
2) $\left|L\left(p_{3}\right)\right| \geq 4$ and, for each $v \in V(C \backslash P),|L(v)| \geq 3$; AND
3) For each $v \in V(H \backslash C),|L(v)| \geq 5$.

Then there is an L-coloring ψ of $\left\{p_{1}, p_{3}, p_{4}\right\}$ such that any extension of ψ to an L-coloring of $V(P)$ also extends to an L-coloring of H.

Proof. Suppose that this does not hold and let H be a vertex-minimal counterexample to the claim. For convenience, we suppose, by applying an appropriate stereographic projection, that C is the outer face of H. By adding edges to H if necessary, we also suppose that every facial subgraph of H, except possibly C, is a triangle. By removing colors from the lists of $V(H)$ if necessary, we suppose forther that $\left|L\left(p_{1}\right)\right|=\left|L\left(p_{4}\right)\right|=2$ and $|L(u)|=3$ for each $u \in V(C \backslash P)$.

Since H is a counterexample, it follows that, for any proper L-coloring σ of $\left\{p_{1}, p_{3}, p_{4}\right\}$ there is an extension of σ to an L-coloring Ψ_{σ} of $V(P)$ such that Ψ_{σ} does not extend to an L-coloring of H. If $V(C)=V(P)$ then it follows from Corollary 0.2 .4 that, for any L-coloring σ of $\left\{p_{1}, p_{3}, p_{4}\right\}, \Psi_{\sigma}$ extends to an L-coloring of H, which is false. Thus, we have $|V(C)|>4$, so let $C:=p_{4} p_{3} p_{2} p_{1} u_{1} \cdots u_{t}$ for some $t \geq 1$. As usual applying Theorem 0.2 .3 and Corollary 0.2 .4 , we immediately have the following from the minimality of H.

Claim 9.1.2. H is short-separation-free Any chord of C has an endpoint in $\left\{p_{2}, p_{3}\right\}$.

We now fix two colors a_{0}, a_{1} such that $L\left(p_{1}\right)=\left\{a_{0}, a_{1}\right\}$ and b_{0}, b_{1} such that $L\left(p_{4}\right)=\left\{b_{0}, b_{1}\right\}$.

Claim 9.1.3. Every chord of C has p_{2} as an endpoint.

Proof: We first rule out the possibility that $p_{1} p_{3} \in E(H)$. Suppose toward a contradiction that $p_{1} p_{3} \in E(H)$. Since H is short-separation-free, $H-p_{2}$ is bounded by outer cycle $C^{\prime}:=p_{1} u_{1} \cdots u_{t} p_{4} p_{3}$. Since $\left|L\left(p_{1}\right)\right| \geq 2$ and $\left|L\left(p_{4}\right)\right| \geq 2$, it follows from Theorem 1.5.10 that there is a pair $(c, d) \in L\left(p_{1}\right) \times L\left(p_{4}\right)$ such that any L-coloring of $p_{1} p_{3} p_{4}$ coloring p_{1}, p_{4} with c, d respectively extends to an L-coloring of $H-p_{2}$. Possibly $c=d$. This is permissible since $|V(C)|>4$ and, by Claim 9.1.2, $p_{1} p_{4}$ is not a chord of C. Let σ be any L-coloring of $\left\{p_{1}, p_{3}, p_{4}\right\}$ using c, d on the respective vertices p_{1}, p_{4}. Then Ψ_{σ} extends to an L-coloring of H, which is false.

Thus, we have $p_{1} p_{3} \notin E(H)$. Now suppose toward a contradiction that there is a chord of C which does not have p_{2} as an endpoint. By Claim 9.1.2, there is a chord of C of the form $p_{3} u_{m}$ for some $m \in\{1, \cdots, t\}$. Let m be the minimal index such that this holds. Let $H=K \cup K^{\prime}$ be the natural $p_{3} u_{m}$-partition of H, where $p_{1} \in V(K)$, and $p_{4} \in V\left(K^{\prime}\right)$.

Subclaim 9.1.4. $u_{m} \in N\left(p_{2}\right)$.
Proof: Suppose toward a contradiction that $u_{m} \notin N\left(p_{2}\right)$. Let $P^{\prime}:=p_{1} p_{2} p_{3} u_{m}$. Note that K is bounded by outer face $C^{\prime}:=p_{1} p_{2} p_{3} u_{m} \cdots u_{1}$. By our choice of m, we have $N\left(p_{3}\right) \cap V\left(C^{\prime}\right)=\left\{p_{2}, u_{m}\right\}$, as we have already shown that $p_{1} p_{3} \notin E(H)$. Since $\left|L\left(u_{m}\right)\right|=3$, it follows from Theorem 1.6.1 that, for each $i=0,1$, there is a $d_{i} \in L\left(u_{m}\right)$ such that any L-coloring of $V\left(P^{\prime}\right)$ using a_{i}, d_{i} on the respective vertices p_{1}, p_{4} extends to an L-coloring of K, where $a_{i} \neq d_{i}$ if $p_{1} u_{m} \in E\left(H^{\prime}\right)$ (possibly $\left.d_{0}=d_{1}\right)$.

Since $\left|L\left(p_{3}\right)\right| \geq 4$ and $\left|L\left(p_{4}\right)\right|=2$, let $f \in L\left(p_{3}\right) \backslash\left(L\left(p_{4}\right) \cup\left\{d_{0}\right\}\right)$. By our choice of f, it follows from Observation 1.4.2 that the L-coloring $\left(d_{0}, f\right)$ of $u_{m} p_{3}$ extends to an L-coloring ϕ of K^{\prime}. Now let σ be the L coloring of $\left\{p_{1}, p_{3}, p_{4}\right\}$ using $a_{0}, f, \phi\left(p_{4}\right)$ on the respective vertices p_{1}, p_{3}, p_{4}. Since $u_{m} \notin N\left(p_{2}\right)$, the union $\phi \cup \sigma$ is a proper L-coloring of its domain in H, and, by our choice of d_{0}, it follows that Ψ_{σ} extends to an L-coloring of H, which is false.

Since $u_{m} p_{2} \in E(H)$, let H^{\prime} be the subgraph of H bounded by outer cycle $p_{1} p_{2} u_{m} \cdots u_{1}$. Note that H^{\prime} and K^{\prime} intersect precisely on u_{m}. Let $P_{\ell}:=p_{1} p_{2} u_{m}$ and $P_{r}:=u_{m} p_{3} p_{4}$.

Subclaim 9.1.5. H^{\prime} is a broken wheel with principal path P_{ℓ}.
Proof: Suppose toward a contradiction that H^{\prime} is not a broken wheel with principal path P_{ℓ}. By Claim 9.1.2, any chord of the outer face of H^{\prime} has p_{2} as an endpoint. By Theorem 1.5.3, there is an $i \in\{0,1\}$ such that any L coloring of $V\left(P_{\ell}\right)$ using a_{i} on p_{1} extends to an L-coloring of H^{\prime}. Since $\left|L\left(p_{3}\right)\right| \geq 4$, let $c \in L\left(p_{3}\right) \backslash L\left(u_{m}\right)$ and let $j \in\{0,1\}$ with $b_{j} \neq c$. Let σ be an L-coloring of $\left\{p_{1}, p_{3}, p_{4}\right\}$ using a_{i}, c, b_{j} on the respective vertices p_{1}, p_{3}, p_{4}. Since $p_{1} p_{3} \notin E(H), \sigma$ is a proper L-coloring of its domain. Since $c \notin L\left(u_{m}\right)$, it follows from Observation 1.4.2 that there is an extension of Ψ_{σ} to an L-coloring ϕ of $V(P) \cup V\left(K^{\prime}\right)$ such that $\phi\left(u_{m}\right) \neq \Psi_{\sigma}\left(p_{2}\right)$. By assumption, H^{\prime} is not a triangle, so, by Claim 9.1.2, $p_{1} u_{m}$ is not an edge of H^{\prime}. Thus, the coloring $\left(a_{i}, \Psi_{\sigma}\left(p_{2}\right), \phi\left(p_{2}\right)\right)$ is a proper L-coloring of $V\left(P_{\ell}\right)$. By our choice of a_{i}, this L-coloring of P_{ℓ} extends to an L-coloring of K^{\prime}, so Ψ_{σ} extends to an L-coloring of H, which is false.

We now make the following definition:
Definition 9.1.6. A coloring matrix for K^{\prime} is a 2×2 array $\left(\phi^{i j}: 0 \leq i, j \leq 1\right)$ such that the following holds:
arabic* For each $0 \leq i, j \leq 1, \phi^{i j}$ is a proper L-coloring of $\left\{p_{1}, p_{3}, p_{4}\right\}$ such that $\phi^{i j}\left(p_{1}\right)=a_{i}$; AND
arabic*) There exist $q_{0}, q_{1} \in L\left(u_{m}\right)$ such that $q_{0} \neq q_{1}$ and, for each $0 \leq i, j \leq 1, z_{H^{\prime}}^{P_{\ell}}\left(a_{i}, \Psi_{\phi^{i j}}\left(p_{2}\right), \bullet\right)=\left\{q_{j}\right\}$.
Subclaim 9.1.7. There does not exist a coloring matrix of K^{\prime}.
Proof: Suppose toward a contradiction that such an array ($\phi^{i j}: 0 \leq i, j \leq 1$) exists. For each $0 \leq i, j \leq 1$, let $s_{i j}:=\Psi_{\phi^{i j}}\left(p_{2}\right)$ and let q_{0}, q_{1} be two distinct colors of $L\left(u_{m}\right)$ such that, for each $0 \leq i, j \leq 1, z_{H^{\prime}}^{P_{e}}\left(a_{i}, s_{i j}, \bullet\right)=$ $\left\{q_{j}\right\}$.

By Subclaim 9.1.5, H^{\prime} is a broken wheel with principal path P_{ℓ}. For each $i \in\{0,1\}$, we have $s_{i 0} \neq s_{i 1}$, since $z_{H^{\prime}}^{P_{\ell}}\left(a_{i}, s_{i 0} \bullet\right) \neq z_{H^{\prime}}^{P_{\ell}}\left(a_{i}, s_{i 1}, \bullet\right)$. Thus, it immediately follows from 1) of Proposition 1.4.7 that $s_{i 0}=q_{1}$ and $s_{i 1}=q_{0}$ for each $i \in\{0,1\}$. Since each of the four colorings $\left\{\Psi_{\phi^{i j}}: 0 \leq i, j \leq 1\right\}$ is a proper L-coloring of its domain, it follows that $\left\{a_{0}, a_{1}\right\} \cap\left\{q_{0}, q_{1}\right\}=\varnothing$.

Now, if H^{\prime} is a triangle, then, for each $0 \leq i, j \leq 1$, since $\left|z_{H^{\prime}}^{P_{\ell}}\left(a_{i}, s_{i j}, \bullet\right)\right|=1$, we have $a_{i} \in L\left(u_{1}\right)$ and $s_{i j} \in L\left(u_{1}\right)$. Likewise, if H^{\prime} is not a triangle, then, for each pair $0 \leq i, j \leq 1$, since $z_{H^{\prime}}^{P_{\ell}}\left(a_{i}, s_{i j}, \bullet\right) \mid=1$, it immediately follows from Proposition 1.4.4 that $a_{i} \in L\left(u_{1}\right)$ and $s_{i j} \in L\left(u_{1}\right)$. Thus, in any case, we have $\left\{a_{0}, a_{1}\right\} \cup\left\{q_{0}, q_{1}\right\} \subseteq L\left(p_{1}\right)$. Since $\left\{a_{0}, a_{1}\right\} \cap\left\{q_{0}, q_{1}\right\}=\varnothing$. this contradicts the fact that $\left|L\left(u_{1}\right)\right|=3$.

We now have the following:
Subclaim 9.1.8. K^{\prime} is a broken wheel with principal path P_{r} and $\left\{b_{0}, b_{1}\right\} \subseteq L\left(u_{t}\right)$.
Proof: Suppose toward a contradiction that at least one of these does not hold. We claim now that there exists a $k \in\{0,1\}$ such that any L-coloring of $V\left(P_{r}\right)$ using b_{k} on p_{4} extends to an L-coloring of K^{\prime} and such that, if K^{\prime} is a broken wheel with principal path P_{r}, then $b_{k} \notin L\left(u_{t}\right)$.

If K^{\prime} is not a broken wheel with principal path P_{r}, then this immediately follows from Theorem 1.5.3, since, by Claim 9.1.2, there is no chord of the outer face of K^{\prime} without p_{3} as an endpoint. Now suppose that K^{\prime} is a broken wheel with principal path P_{r}. By assumption, there is a $k \in\{0,1\}$ such that $b_{k} \notin L\left(u_{t}\right)$, and thus, by Proposition 1.4.4, any L-coloring of $V\left(P_{r}\right)$ using b_{k} on p_{4} extends to an L-coloring of K^{\prime} (possibly K^{\prime} is a triangle and any proper L-coloring of $V\left(P_{r}\right)$ is also an L-coloring of K^{\prime}).

Let $k \in\{0,1\}$ be as above, and suppose without loss of generality that $k=0$. Let q_{0}, q_{1} be distinct colors in $L\left(p_{3}\right) \backslash\left\{b_{0}\right\}$. For each $i \in\{0,1\}$ and $j \in\{0,1\}$, let $\phi^{i j}$ be the L-coloring of $\left\{p_{1}, p_{3}, p_{4}\right\}$ obtained by coloring p_{1}, p_{3}, p_{4} with the respective colors a_{i}, q_{j}, b_{0}. Since $p_{1} p_{3} \notin E(H)$, each such $\phi^{i j}$ is a proper L-coloring of its domain. For each $0 \leq i, j \leq 1$, let $s_{i j}:=\Psi_{\phi^{i j}}\left(p_{2}\right)$. We claim now that, for each such pair $0 \leq i, j \leq 1$, we have $z_{H^{\prime}}^{P_{\ell}}\left(a_{i}, s_{i j}, \bullet\right)=\left\{q_{j}\right\}$.
Fix a pair $0 \leq i \leq 1,0 \leq j \leq 2$, and suppose toward a contradiction that $\mathcal{Z}_{H^{\prime}}^{P_{\ell}}\left(a_{i}, s_{i j}, \bullet\right) \neq\left\{q_{j}\right\}$. Since $z_{H^{\prime}}^{P_{e}}\left(a_{i}, s_{i j}, \bullet\right) \neq \varnothing$, let $q \in z_{H^{\prime}}^{P_{e}}\left(a_{i}, s_{i j}, \bullet\right)$ with $q \neq q_{j}$. If K^{\prime} is a triangle, then K^{\prime} is a broken wheel with principal path P_{r}, and, by assumption, we have $b_{0} \notin L\left(u_{t}\right)$. Since K^{\prime} is a triangle, we have $u_{m}=u_{t}$ and $q \neq b_{0}$. Since we also have $q \neq q_{j}$ as well, $\Psi_{\phi^{i j}}$ extends to an L-coloring of H, which is false.

Thus, K^{\prime} is not a triangle. Since $u_{m} p_{1}$ is not a chord of C, we have $u_{m} p_{1} \notin E\left(K^{\prime}\right)$ and $\left(q, q_{j}, b_{0}\right)$ is a proper L-coloring of the subgraph of H induced by $u_{m} p_{3} p_{4}$. By our choice of b_{0}, this coloring of P_{r} extends to an L-coloring of K^{\prime}, so $\Psi_{\phi^{i j}}$ extends to an L-coloring of H, which is false. We conclude that, for each $0 \leq i, j \leq 1$, we have $\mathcal{Z}_{H^{\prime}}^{P_{\ell}}\left(a_{i}, s_{i j}, \bullet\right)=\left\{q_{j}\right\}$, as desired. Thus, $\left(\phi^{i j}: 0 \leq i, j \leq 1\right)$ is a coloring matrix for K^{\prime}, contradicting Subclaim 9.1.7.

We now have the following:
Subclaim 9.1.9. K^{\prime} is not a triangle.
Proof: Suppose toward a contradiction that K^{\prime} is a triangle. Thus, $u_{m}=u_{t}$. By Subclaim 9.1.8, we have $\left\{b_{0}, b_{1}\right\} \subseteq L\left(u_{m}\right)$, and there is a $c \in L\left(p_{3}\right) \backslash L\left(u_{m}\right)$ Since $p_{1} p_{3} \notin E(H)$ and $\left|L\left(p_{3}\right)\right| \geq 4$, it follows that, for each pair $0 \leq i, j \leq 1$, there is an L-coloring $\phi^{i j}$ of $\left\{p_{1}, p_{3}, p_{4}\right\}$ using a_{i}, c, b_{j} on the respective vertices p_{1}, p_{3}, p_{4}. For each $0 \leq i, j \leq 1$, let $s_{i j}:=\Psi_{\psi^{i j}}\left(p_{2}\right)$. Note that, for each $0 \leq i, j \leq 1$, we have $z_{H^{\prime}}^{P^{\ell}}\left(a_{i}, s_{i j}, \bullet\right)=\left\{b_{j}\right\}$, or else, since $\mathcal{Z}_{H^{\prime}}^{P^{\ell}}\left(a_{i}, s_{i j}, \bullet\right) \neq \varnothing$ and $c \notin L\left(u_{m}\right), \Psi_{\phi^{i j}}$ extends to an L-coloring of H, which is false. Thus, ($\phi^{i j}: 0 \leq i, j \leq 1$) is a coloring matrix for K^{\prime}, contradicting Subclaim 9.1.7.

We now have the following:
Subclaim 9.1.10. There is a set $A \subseteq L\left(p_{3}\right)$ with $|A|=3$ such that, for each $v \in\left\{u_{m+1}, \cdots, u_{t}\right\}, L(v)=A$.
Proof: Suppose toward a contradiction that this does not hold. Since $\left|L\left(p_{3}\right)\right| \geq 4$, there is a pair of colors $f_{0}, f_{1} \in L\left(p_{3}\right)$ such that, for each $i=0,1, f_{i} \notin \bigcap_{k=m+1}^{t} L\left(u_{k}\right)$. For each pair $0 \leq i, j \leq 1$, let $\phi^{i j}$ be an L-coloring of $\left\{p_{1}, p_{3}, p_{4}\right\}$ using a_{i}, f_{j} on the respective vertices p_{1}, p_{3}. Since $\left|L\left(p_{4}\right)\right|=2$ and $p_{1} p_{3} \notin E(H)$, there exists such a $\phi^{i j}$ for each pair $0 \leq i, j \leq 1$.
For each $0 \leq i, j \leq 1$, let $s_{i j}:=\Phi_{\phi^{i j}}\left(p_{2}\right)$. We claim now that, for any $0 \leq i, j \leq 1$, we have $Z_{H^{\prime}}^{P_{\ell}}\left(a_{i}, s_{i j}, \bullet\right)=$ $\left\{f_{j}\right\}$. Suppose toward a contradiction that there is a pair $0 \leq i, j \leq 1$ for which this does not hold. Since $z_{H^{\prime}}^{P_{\ell}}\left(a_{i}, s_{i j}, \bullet\right) \neq \varnothing$, let $q \in z_{H^{\prime}}^{P_{\ell}}\left(a_{i}, s_{i j}, \bullet\right)$ with $q \neq f_{j}$. By Subclaim 9.1.9, K^{\prime} is not a triangle, so $\left(q, f_{j}, \phi^{i j}\left(p_{4}\right)\right)$ is a proper L-coloring of $u_{m} p_{3} p_{4}$. By our choice of f_{j}, this L-coloring of P_{r} extends to an L-coloring of K^{\prime}, so $\Phi_{\phi^{i j}}$ extends to an L-coloring of H, which is false. Thus, we indeed have $z_{H^{\prime}}^{P_{\ell}}\left(a_{i}, s_{i j}, \bullet\right)=\left\{f_{j}\right\}$ for all $0 \leq i, j \leq 1$, so ($\phi^{i j}: 0 \leq i, j \leq 1$) is a coloring matrix for K^{\prime}, contradicting Subclaim 9.1.7.

Let $A \subseteq L\left(p_{3}\right)$ be as in Subclaim 9.1.10.
Subclaim 9.1.11. Let $q \in L\left(p_{3}\right) \backslash A$ and let σ be an L-coloring of $V(P)$ with $\sigma\left(p_{3}\right)=q$. Then $\mathcal{Z}_{H^{\prime}}^{P_{e}}\left(\sigma\left(p_{1}\right), \sigma\left(p_{2}\right), \bullet\right)=$ $\{q\}$. In particular, $q \in L\left(u_{m}\right)$.
Proof: Since $\mathcal{Z}_{H^{\prime}}^{P_{\ell}}\left(\sigma\left(p_{1}\right), \sigma\left(p_{2}\right), \bullet\right) \neq \varnothing$, let $q^{*} \in \mathcal{Z}_{H^{\prime}}^{P_{\ell}}\left(\sigma\left(p_{1}\right), \sigma\left(p_{2}\right), \bullet\right)$ and suppose that $q^{*} \neq q$. Since K^{\prime} is not a triangle, $\left(q^{*}, q, \sigma\left(p_{1}\right)\right)$ is a proper L-coloring of $u_{m} p_{3} p_{4}$, and since $q \notin A$, it follows from Proposition 1.4.4
that Ψ_{σ} extends to an L-coloring of H, which is false. Thus, we indeed have $z_{H^{\prime}}^{P_{\ell}}\left(\sigma\left(p_{1}\right), \sigma\left(p_{2}\right), \bullet\right)=\{q\}$.
With the subclaims above in hand, we now have enough to finish the proof of Claim 9.1.3 by constructing a coloring matrix for K^{\prime}. Since $\left|L\left(p_{3}\right)\right| \geq 4$ and $\left|L\left(u_{m}\right)\right|=3$, let $q_{0} \in L\left(p_{3}\right) \backslash A$ and let $q_{1} \in L\left(p_{3}\right) \backslash L\left(u_{m}\right)$. By Subclaim 9.1.11, we have $q_{0} \neq q_{1}$, since $q_{1} \notin L\left(u_{m}\right)$. Since $\left\{b_{0}, b_{1}\right\} \subseteq A$, we have $q_{0} \notin\left\{b_{0}, b_{1}\right\}$, so we fix a color $b \in\left\{b_{0}, b_{1}\right\} \backslash\left\{q_{0}, q_{1}\right\}$.
For each pair $0 \leq i, j \leq 1$, let $\phi^{i j}$ be an L-coloring of $\left\{p_{1}, p_{3}, p_{4}\right\}$ obtained by coloring the vertices p_{1}, p_{3}, p_{4} with the respective colors a_{i}, q_{j}, b. Since $p_{1} p_{3}, p_{1} p_{4} \notin E(H)$, it follows that, for each $0 \leq i, j \leq 1, \phi^{i j}$ is a proper L-coloring of its domain. For each $0 \leq i, j \leq 1$, let $s_{i j}:=\Psi_{\phi^{j}}\left(p_{2}\right)$. It follows from Subclaim 9.1.11 that, for each $i \in\{0,1\}$, we have $\mathcal{Z}_{H^{\prime}}^{P_{e}}\left(a_{i}, s_{i 0}, \bullet\right)=\left\{q_{0}\right\}$. We claim now that there exists a $c \in L\left(u_{m}\right) \backslash\left\{q_{0}\right\}$, such that, for each $i \in\{0,1\}$, we have $\mathcal{z}_{H^{\prime}}^{P_{e}}\left(a_{i}, s_{i 1}, \bullet\right)=\{c\}$.
Let $i \in\{0,1\}$. Since $\mathcal{Z}_{H^{\prime}}^{P_{\ell}}\left(a_{i}, s_{i 1}, \bullet\right) \neq \varnothing$, let $c \in \mathcal{Z}_{H^{\prime}}^{P_{\ell}}\left(a_{i}, s_{i 1}, \bullet\right)$. Since $q_{1} \notin L\left(u_{m}\right)$ and K^{\prime} is not a triangle, $\left(c, q_{1}, b\right)$ is a proper L-coloring of $u_{m} p_{2} p_{3}$, and since $\Psi_{\phi^{i 1}}$ does not extend to an L-coloring of $H,\left(c, q_{1}, b\right)$ does not extend to an L-coloring of K^{\prime}. Now consider the following cases:

Case 1: $q_{1} \notin\left\{b_{0}, b_{1}\right\}$
In this case, we have $c \in\left\{b_{0}, b_{1}\right\}$, or else we extend $\left(c, q_{1}, b\right)$ to an L-coloring of K^{\prime} by 2 -coloring the path $u_{m+1} \cdots u_{t}$. If the path $K^{\prime}-p_{3}$ has even length, then c is the lone color of $\left\{b_{0}, b_{1}\right\} \backslash\{b\}$, or else we extend $\Psi_{\phi^{i j}}$ to an L-coloring of H by 2-coloring $K^{\prime}-p_{3}$ with $\left\{b_{0}, b_{1}\right\}$. Likewise, if the path $K^{\prime}-p_{3}$ has odd length, then $c=b$, or else, again, we extend $\Psi_{\phi^{i j}}$ to an L-coloring of H by 2 -coloring $K^{\prime}-p_{3}$ with $\left\{b_{0}, b_{1}\right\}$. In any case, c is unique and independent of the choice of $i \in\{0,1\}$, and $c \in\left\{b_{0}, b_{1}\right\}$, so $c \neq q_{0}$.

Case 2: $q_{1} \in\left\{b_{0}, b_{1}\right\}$
In this case, let q^{\prime} be the lone color of $A \backslash\left\{b_{0}, b_{1}\right\}$. Note that $c=q^{\prime}$, or else we extend $\left(c, q_{1}, b\right)$ to an L-coloring of K^{\prime} by 2 -coloring the path $u_{m+1} \cdots u_{t}$ with the colors of $\left\{b, q^{\prime}\right\}$. Thus, c is unique and, since $c \in A$, we have $c \neq q_{0}$.

Since the case analysis above is independent of the choice of $i \in\{0,1\}$, it follows that there exists a $c \in L\left(u_{m}\right) \backslash\left\{q_{0}\right\}$, such that, for each $i \in\{0,1\}$, we have $\mathcal{Z}_{H^{\prime}}^{P_{e}}\left(a_{i}, s_{i 1}, \bullet\right)=\{c\}$. Thus, array ($\phi^{i j}: 0 \leq i, j \leq 1$) is a coloring matrix for K^{\prime}, contradicting Subclaim 9.1.7. This completes the proof of Claim 9.1.3.

We now have the following:
Claim 9.1.12. p_{1}, p_{3} have no common neighbor in H, except for p_{2}.
Proof: Suppose that p_{1}, p_{3} have a common neighbor $w \in V\left(H-p_{2}\right)$. Since $|V(C)|>4$, we have $w \notin V(C)$, or else there is a chord of C without p_{2} as an endpoint, contradicting Claim 9.1.3. Since H is short-separation-free, $H-p_{2}$ is bounded by outer cycle $C^{\prime}:=p_{1} w p_{3} p_{4} u_{t} \cdots u_{1}$. By the minimality of H, there is an L-coloring σ of $\left\{p_{1}, p_{3}, p_{4}\right\}$ such that any extension of σ to an L-coloring of $\left\{p_{1}, w, p_{3}, p_{4}\right\}$ also extends to an L-coloring of $H-p_{2}$. Since $\left|L_{\Psi_{\sigma}}(w)\right| \geq 1$, it follows that Ψ_{σ} extends to an L-coloring of H, contradicting our assumption.

We now have the following:
Claim 9.1.13. $p_{2} p_{4} \notin E(H)$, and p_{2}, p_{4} have no common neighbor in H, except for p_{3}.
Proof: Suppose toward a contradiction that $p_{2} p_{4} \in E(H)$. Since H is short-separation-free, $H-p_{3}$ is bounded by outer face $C^{\prime}:=p_{1} p_{2} p_{4} u_{t} \cdots u_{1}$. By Theorem 1.5.10, there is a pair $(c, d) \in L\left(p_{1}\right) \cap L\left(p_{4}\right)$, where $c \neq d$ if
$p_{1} p_{4} \in E\left(H-p_{3}\right)$, such that any L-coloring of $p_{1} p_{2} p_{4}$ using c, d on the respective vertices p_{1}, p_{4} extends to an L-coloring of H. Since $\left|L\left(p_{3}\right)\right| \geq 4$, let σ be an L-coloring of $\left\{p_{1}, p_{3}, p_{4}\right\}$ using c, d on the respective vertices p_{1}, p_{4}. Then Ψ_{σ} extends to an L-coloring of H, which is false. Thus, $p_{2} p_{4} \notin E(H)$.

Now suppose toward a contradiction that p_{2}, p_{4} have a common neighbor $w \in V\left(H-p_{3}\right)$. We first show that $w \notin V(C)$. Suppose that $w \in V(C)$. Then $w=u_{t}$, or else there is a chord of C without p_{2} as an endpoint, contradicting Claim 9.1.3. Since $w=u_{t}, H$ contains the 4 -cycle $p_{2} u_{t} p_{4} p_{3}$, and since H is short-separation-free and $p_{2} p_{4} \notin E(H)$, it follows from our triangulation conditions that $u_{t} p_{3} \in E(H)$, which again contradicts Claim 9.1.3.

Thus, $w \notin V(C)$. Since H is short-separation-free, $H-p_{3}$ is bounded by outer cycle $C^{\prime}:=p_{1} p_{2} w p_{4} u_{t} \cdots u_{1}$. Since $|L(w)| \geq 5$, it follows from the minimality of H that there exist two L-colorings ψ_{0}, ψ_{1} of $\left\{p_{1}, w, p_{4}\right\}$, where $\psi_{0}(w) \neq \psi_{1}(w)$, such that, for each $i=0,1$, any extension of ψ_{i} to an L-coloring of $p_{1} p_{2} w p_{4}$ also extends to an L-coloring of $H-p_{3}$. For each $i=0$, 1 , we let $c_{i}:=\psi_{i}(w)$.

Subclaim 9.1.14. For each $i \in\{0,1\}, c_{i} \in L\left(p_{2}\right) \backslash\left\{\psi_{i}\left(p_{1}\right\}\right.$, and furthermore, letting τ_{i} be the L-coloring of $\left\{p_{1}, p_{2}, p_{4}\right\}$ obtained by coloring p_{1}, p_{2}, p_{4} with the respective vertices $\psi_{i}\left(p_{1}\right), c_{i}, \psi_{i}\left(p_{r}\right), \tau_{i}$ does not extend to an L-coloring of $H-p_{3}$.

Proof: Since $\left|L\left(p_{3}\right)\right| \geq 4$, we define the following: For each $i \in\{0,1\}$, let $f_{i 0}$, $f_{i 1}$ be two distinct colors of $L\left(p_{3}\right) \backslash\left\{\psi_{i}(w), \psi_{i}\left(p_{4}\right)\right\}$. For each pair $0 \leq i, j \leq 1$, we let $\sigma^{i j}$ be the L-coloring of p_{1}, p_{3}, p_{4} with the respective colors $\psi_{i}\left(p_{1}\right), f_{i j}, \psi_{i}\left(p_{4}\right)$ (note that the four resulting colorings of p_{1}, p_{3}, p_{4} are not necessarily distinct.)

We first note that, for each $0 \leq i, j \leq 1$, we have $\Psi_{\sigma^{i j}}\left(p_{2}\right)=c_{i}$. To see this, let $0 \leq i, j \leq 1$ and suppose toward a contradiction that $\Psi_{\sigma^{i j}}\left(p_{2}\right) \neq c_{i}$. Since $f_{i j} \neq c_{i}$, we then have $c_{i} \in L_{\Psi_{\sigma^{i j}}}(w) \backslash\left\{f_{i j}\right\}$, as ψ_{i} is a proper L-coloring of its domain in $H-p_{3}$ by assumption. Thus, $\Psi_{\sigma^{i j}}$ extends to an L-coloring of H, which is false. We conclude that $\Psi_{\sigma^{i j}}\left(p_{2}\right)=c_{i}$ for each pair $0 \leq i, j \leq 1$, so $c_{i} \in L\left(p_{2}\right) \backslash\left\{\psi_{i}\left(p_{1}\right)\right\}$.

For each $i=0,1$, let τ_{i} be as in the statement of the subclaim. Since $p_{2} p_{4} \notin E(H)$, each of τ_{0}, τ_{1} is a proper L-coloring of its domain. Suppose toward a contradiction that one of these extends to an L-coloring of $H-p_{3}$, and suppose without loss of generality that τ_{0} extends to an L-coloring τ_{0}^{*} of $H-p_{3}$. Since one of f_{00}, f_{01} is left over in $L_{\tau_{0}^{*}}\left(p_{3}\right)$, it follows that one of $\Psi_{\sigma^{00}}, \Psi_{\sigma^{01}}$ extends to an L-coloring of H, which is false.

Let τ_{0}, τ_{1} be as in the statement of Subclaim 9.1.14.
Subclaim 9.1.15. There is a chord of C with p_{2} as an endpoint. Furthermore, if m is the maximal index among $\left\{1 \leq j \leq t: u_{j} \in N\left(p_{2}\right)\right\}$, then $m<t$ and $u_{m} \in N(w)$.

Proof: Suppose that this does not hold. By Claim 9.1.3, C is an induced cycle of H. Let F be the outer face of $H \backslash P$, and consider the list-assignment $L_{\tau_{0}}$ for $H \backslash P$. By Claim 9.1.12, we have $p_{1} \notin N(w)$. Thus, since we have not colored p_{3}, we have $\left|L_{\tau_{0}}(w)\right| \geq 3$. Since H is short-separation-free, w is the unique common neighbor of p_{1}, p_{3}, so we have $\left|L_{\tau_{0}}(z)\right| \geq 3$ for all $z \in V(F) \backslash\left\{u_{1}, u_{t}\right\}$. If $t=1$, then, since C is an induced subgraph of H, we have $\left|L\left(u_{1}\right)\right| \geq 1$, and, by Theorem $0.2 .3, H \backslash P$ is $L_{\tau_{0}}$-colorable, contradicting Subclaim 9.1.14. If $t>1$, then, again, since C is an induced subgraph of $H,\left|L_{\tau_{0}}\left(u_{1}\right)\right| \geq 2$ and $\left|L_{\tau_{0}}\left(u_{t}\right)\right| \geq 2$. Thus, follows from Theorem 1.3.4 that $H \backslash P$ is $L_{\tau_{0}}$-colorable, contradicting Subclaim 9.1.14.

Since there is a chord of C with p_{2} as an endpoint and $p_{2} p_{4} \notin E(H)$, let m be the maximal index among $\{1$ leqj $\left.\leq t: u_{j} \in N\left(p_{2}\right)\right\}$. Let $H-p_{3}=H^{\prime} \cup H^{\prime \prime}$, where $H^{\prime} \cap H^{\prime \prime}=p_{2} u_{m}, p_{1} \in V\left(H^{\prime}\right)$, and $p_{4} \in V\left(H^{\prime \prime}\right)$. Then the outer face of $H^{\prime \prime}$ is the cycle $u_{m} p_{2} w_{4} u_{t} \cdots u_{m+1}$, and since every chord of C in H has p_{2} as an endpoint, this is an induced subgraph of $H^{\prime \prime}$. If $m=t$, then, in H, the 4-cycle $p_{2} p_{3} p_{4} u_{t}$ separates w from p_{1}, contradicting
the fact that H is short-separation-free. Thus, $m<t$.
Let $i \in\{0,1\}$. Then, by Theorem 0.2 .3 , we have $z_{H^{\prime}}\left(\tau_{i}\left(p_{1}\right), c_{i}, \bullet\right) \neq \varnothing$, and since $m<t$ and the outer face of $H^{\prime \prime}$ is an induced subgraph of $H^{\prime \prime}$, it follows that there is an extension of τ_{i} to an L-coloring τ_{i}^{*} of $V\left(H^{\prime}\right) \cup\left\{w, p_{4}\right\}$. Since $u_{m} \notin N(w)$, we have $\left|L_{\tau_{i}^{*}}(w)\right| \geq 3$, so, applying the same argument as above, with the role of p_{1} replaced by u_{m}, τ_{i}^{*} extends to an L-coloring of $H-p_{3}$, and thus τ_{i} extends to an L-coloring of $H-p_{3}$, contradicting Subclaim 9.1.14.

As above, let $m \in\{1, \cdots, t\}$ be the maximal index among $\left\{1 \leq j \leq t: u_{j} \in N\left(p_{2}\right)\right\}$, and let $H-p_{3}=H^{\prime} \cup H^{\prime \prime}$ be the natural $p_{2} u_{m}$-partition of $H-p_{3}$, where $p_{1} \in V\left(H^{\prime}\right)$ and $p_{4} \in V\left(H^{\prime \prime}\right)$. Since H is short-separation-free, $H^{\prime \prime}-p_{2}$ is bounded by outer face $u_{m} w u_{t} u_{t-1} \cdots u_{m}$.

Subclaim 9.1.16. $H^{\prime \prime}-p_{2}$ is a broken wheel with principal path $u_{m} w p_{4}$, and $L\left(p_{4}\right) \subseteq L\left(u_{t}\right)$.
Proof: Suppose that at least one of these conditions does not hold. Note that every chord of the outer face of $H^{\prime \prime}-p_{2}$ has w as an endpoint, or else there is a chord of C which does not have p_{2} as an endpoint, contradicting Claim 9.1.3. If $H^{\prime \prime}-p_{2}$ is not a broken wheel with principal path $u_{m} w p_{4}$, it follows from Theorem 1.5.3 that there is a $b \in L\left(p_{r}\right)$ such that any L-coloring of $u_{m} w p_{4}$ using b on p_{4} extends to an L-coloring of $H^{\prime \prime}-p_{2}$. Likewise, if $H^{\prime \prime}-p_{2}$ is a broken wheel with principal path $u_{m} w p_{4}$, but $L\left(p_{4}\right) \nsubseteq L\left(u_{t}\right)$, then it follows from Proposition 1.4.4 that there is a $b \in L\left(p_{4}\right)$ such that any L-coloring of $u_{m} w p_{4}$ using b on p_{4} extends to an L-coloring of $H^{\prime \prime}-p_{2}$. Thus, in any case, we fix such a $\left.b \in L p_{4}\right)$.

Let σ be an L-coloring of $\left\{p_{1}, p_{3}, p_{4}\right\}$ with $\sigma\left(p_{4}\right)=b$. Since $z_{H^{\prime}}\left(\sigma\left(p_{1}\right), \Psi_{\sigma}\left(p_{2}\right), \bullet\right) \neq \varnothing$ and $u_{m} \notin N\left(p_{4}\right), \Psi_{\sigma}$ extends to an L-coloring Ψ^{*} of $V\left(H^{\prime}\right) \cup\left\{p_{3}, p_{4}\right\}$. Since $N(w) \cap \operatorname{dom}\left(\Psi^{*}\right)=\left\{p_{2}, p_{3}, p_{4}, u_{m}\right\}$ and $|L(w)| \geq 5$, Ψ^{*} extends to L-color w as well, and, by our choice of b, the resulting L-coloring of the principal path $u_{m} w p_{4}$ extends to an L-coloring of H, so Ψ_{σ} extends to an L-coloring of H, which is false.

Recall that $L\left(p_{4}\right)=\left\{b_{0}, b_{1}\right\}$. Since $\left|L\left(u_{t}\right)\right|=3$, let $L\left(u_{t}\right)=\left\{b_{0}, b_{1}, f\right\}$ for some color f. For each $i=0,1$, let τ_{i}^{*} be an extension of τ_{i} to an L-coloring of $V\left(H^{\prime}\right) \cup\left\{p_{1}\right\}$. As indicated above, such a τ_{i}^{*} exists $m<t$ and $u_{m}, p_{2} \notin N\left(p_{4}\right)$.

Subclaim 9.1.17. For each $i \in\{0,1\}$, the following hold.

1) $L_{\tau_{i}^{*}}(w) \subseteq\left\{b_{0}, b_{1}, f\right\}$ and $\left|L_{\tau_{i}^{*}}(w)\right|=2$; AND
2) $L_{\tau_{i}^{*}}(w) \subseteq L\left(u_{k}\right)$ for each $k=m+1, \cdots, t$

Proof: Let $i \in\{0,1\}$, and suppose without loss of generality that $i=0$. We first prove 1). Suppose that at least one of these two conditions does not hold. Since $\tau_{0}^{*}\left(p_{4}\right) \in\left\{b_{0}, b_{1}\right\}$, it follows that there is a color $f^{*} \in L_{\tau_{i}^{*}}(w) \backslash\left\{b_{0}, b_{1}, f\right\}$. By Proposition 1.4.4, the L-coloring $\left(\tau_{0}^{*}\left(p_{2}\right), f^{*}, \tau_{0}^{*}\left(p_{4}\right)\right)$ of $u_{m} w p_{4}$ extends to an L-coloring of $H^{\prime \prime}-p_{2}$, so τ_{0}^{*} extends to an L-coloring of H, and thus τ_{0} extends to an L-coloring of H, contradicting Subclaim 9.1.14. This proves 1). Likewise, since τ_{0}^{*} does not extend to an L-coloring of H, it follows from Proposition 1.4.4 that $L_{\tau_{0}^{*}}(w) \subseteq L\left(u_{k}\right)$ for each $k=m+1, \cdots, t$.

For each $i \in\{0,1\}$, since τ_{i}^{*} does not extend to an L-coloring of H, we have $\tau_{i}^{*}\left(u_{m}\right) \notin\left\{b_{0}, b_{1}\right\}$, or else $L_{\tau_{i}^{*}}$ contains at least two colors not lying on $\left\{b_{0}, b_{1}\right\}$, contradicting Subclaim 9.1.17. Now let $i \in\{0,1\}$ and suppose without loss of generality that $\tau_{i}^{*}\left(p_{4}\right)=b_{0}$. Applying Subclaim 9.1.17 we then have $L_{\tau_{i}^{*}}(w)=\left\{b_{1}, f\right\}$. As indicated above, we have $\left\{b_{1}, f\right\} \subseteq L\left(u_{k}\right)$ for each $k=m+1, \cdots, t$. Again applying Proposition 1.4.4, since $\tau_{i}^{*}\left(u_{m}\right) \notin L_{\tau_{i}^{*}}(w)$ and τ_{i}^{*} does not extend to an L-coloring of H, we have $L\left(u_{m+1}\right)=\left\{\tau_{i}^{*}\left(u_{m}\right), b_{1}, f\right\}$. Consider the following cases:

Case 1: $\tau_{1-i}^{*}\left(p_{4}\right)=b_{0}$

In this case, as with τ_{i}^{*}, we have $L_{\tau_{1-i}^{*}}(w)=\left\{b_{1}, f\right\}$ and $L\left(u_{m+1}\right)=\left\{\tau_{1-i}^{*}\left(u_{m}\right), b_{1}, f\right\}$. In particular, τ_{1-i}^{*} and τ_{1-i}^{*} use the same colors on u_{m}, p_{4}, and, by construction, they do not use the same color on p_{2}. Since each of $L_{\tau_{0}^{*}}(w)$ $L_{\tau_{1}^{*}}(w)$ has size two, it follows that $L_{\tau_{0}^{*}}(w) \neq L_{\tau_{1}^{*}}(w)$, contradicting the fact that $L_{\tau_{0}^{*}}(w)=L_{\tau_{0}^{*}}(w)=\left\{b_{1}, f\right\}$.

Case 2: $\tau_{1-i}^{*}\left(p_{4}\right)=b_{1}$
In this case, we have $L_{\tau_{1-i}^{*}}(w)=\left\{b_{0}, f\right\}$. Since $L_{\tau_{i}^{*}}(w)=\left\{b_{1}, f\right\}$, it follows from 2) of Subclaim 9.1.17 that $L\left(u_{k}\right)=\left\{b_{0}, b_{1}, f\right\}$ for all $k=m+1, \cdots, t$. Since $L\left(u_{m+1}\right)=\left\{\tau_{i}^{*}\left(u_{m}\right), b_{1}, f\right\}$, we have $\tau_{i}^{*}\left(u_{m}\right)=b_{0}$, so τ_{i}^{*} uses the same color on u_{m}, p_{4}. Thus, $\left|L_{\tau_{i}^{*}}(w)\right| \geq 3$, contradicting 1) of Subclaim 9.1.17. This completes the proof of Claim 9.1.13.

We now deal with any remaining chords of C.

Claim 9.1.18. There exists a chord of C.

Proof: Suppose that C is induced. If any three vertices of P have a common neighbor in $H \backslash C$ there is a vertex of $H \backslash C$ which is either a common neighbor of p_{2}, p_{4}, or a common neighbor of p_{1}, p_{3}, so we contradict either Claim 9.1.12 or Claim 9.1.13 Thus, no three vertices of P have a common neighbor in $H \backslash C$, and thus, by 1) of Proposition 1.5.1, for any L-coloring σ of $\left\{p_{1}, p_{2}, p_{4}\right\}, \Psi_{\sigma}$ extends to an L-coloring of H, which is false.

By Claim 9.1.13, $p_{2} p_{4} \notin E(H)$. By Claim 9.1.3, any chord of C has p_{2} as an endpoint. Thus, let m be the maximal index in $\left\{1 \leq j \leq t: u_{j} \in N\left(p_{2}\right)\right\}$ and let $H=H_{0} \cup H_{1}$ be the natural $p_{2} u_{m}$-partition of H, where $P_{1} \in V\left(H_{0}\right)$, and $p_{4} \in V\left(H_{1}\right)$. Then H_{1} is bounded by outer cycle $C_{1}:=u_{m} p_{2} p_{3} p_{4} u_{t} \cdots u_{m+1}$, and, by our choice of m, C_{1} is an induced subgraph of H_{1}. Furthermore, C_{1} contains the path $P_{1}:=u_{m} p_{2} p_{3} p_{4}$. As in Claim 9.1.13, $m \neq t$, or else, since H is short-separation-free and C_{1} is an induced subgraph of H_{1}, we contradict our triangulation conditions.

Claim 9.1.19. There exists a $w^{\star} \in V\left(H_{1} \backslash C_{1}\right)$ such that w^{\star} adjacent to each of u_{m}, p_{2}, p_{3} and w^{\star} is not adjacent to p_{r}. Furthermore, for any L-coloring σ of $\left\{p_{1}, p_{3}, p_{4}\right\}$ and any $d \in \mathcal{Z}_{H_{0}}\left(\sigma\left(p_{1}\right), \Psi_{\sigma}\left(p_{2}\right), \bullet\right)$, we have $\mid L\left(w^{\star}\right) \backslash$ $\left\{d, \Psi_{\sigma}\left(p_{2}\right), \sigma\left(p_{3}\right)\right\} \mid=2$.

Proof: Let σ be an L-coloring of $\left\{p_{1}, p_{3}, p_{4}\right\}$. By Theorem 0.2 .3, there is a $d \in \mathcal{Z}_{H_{0}}\left(\sigma\left(p_{1}\right), \Psi_{\sigma}\left(p_{2}\right), \bullet\right)$. Since C_{1} is a chordless cycle and $m \neq t,\left(d, \Psi_{\sigma}\left(p_{2}\right), \sigma\left(p_{3}\right), \sigma\left(p_{4}\right)\right)$ is a proper L-coloring of the path $u_{m} p_{2} p_{3} p_{4}$. Thus, there is an extension of Ψ_{σ} to an L-coloring Ψ^{*} of $V\left(H_{0}\right) \cup\left\{p_{3}, p_{4}\right\}$ such that $\Psi^{*}\left(u_{m}\right)=d$.

Since Ψ_{σ} does not extend to an L-coloring of H and C_{1} is a chordless cycle in H_{1}, it follows from 1) of Proposition 1.5.1 that there is a $w^{\star} \in V\left(H_{1} \backslash C_{1}\right)$ such that $\left|L_{\Psi^{*}}(w)\right|<3$. By Claim 9.1.13, at most one of p_{2}, p_{4} is adjacent to w^{\star}. Since w^{\star} has at least three neighbors on the path $u_{m} p_{2} p_{3} p_{4}$ and H is short-separation-free, it follows from our triangulation conditions that $H\left[N\left(w^{\star}\right) \cap\left\{u_{m}, p_{2}, p_{3}, p_{4}\right\}\right]$ consists precisely of the path $u m p_{2} p_{3}$. Thus, we conclude that $N\left(w^{\star}\right) \cap \operatorname{dom}\left(\Psi^{*}\right)=\left\{u_{m}, p_{2}, p_{3}\right\}$ and $\left|L\left(w^{\star}\right) \backslash\left\{d, \Psi_{\sigma}\left(p_{2}\right), \sigma\left(p_{3}\right)\right\}\right|=2$. The vertex w^{\star} is the unique vertex of $H_{1} \backslash C_{1}$ with at least three neighbors on $u_{m} p_{2} p_{3} p_{4}$ and is independent of our choice of σ.

We fix a vertex w^{\star} as in Claim 9.1.19, and now note the following:

Claim 9.1.20. For any L-coloring σ of $\left\{p_{1}, p_{3}, p_{4}\right\},\left|\mathcal{Z}_{H_{0}}\left(\sigma\left(p_{1}\right), \Psi_{\sigma}\left(p_{2}\right), \bullet\right)\right|=1$.

Proof: Suppose there is a σ for which this does not hold. By Theorem 0.2.3, $\mathcal{Z}_{H_{0}}\left(\sigma\left(p_{1}\right), \Psi_{\sigma}\left(p_{2}\right), \bullet\right)$ is nonempty, so we have $\left|\mathcal{Z}_{H_{0}}\left(\sigma\left(p_{1}\right), \Psi_{\sigma}\left(p_{2}\right), \bullet\right)\right|>2$. Let F be the outer face of $H_{1} \backslash\left\{p_{2}, p_{3}, p_{4}\right\}$ and let L^{\dagger} be a list-assignment for $H_{1} \backslash\left\{p_{2}, p_{3}, p_{4}\right\}$, where $L^{\dagger}\left(u_{m}\right)=\mathcal{z}_{H_{0}}\left(\sigma\left(p_{1}\right), \Psi_{\sigma}\left(p_{2}\right), \bullet\right)$ and otherwise $L^{\dagger}=L_{\Psi_{\sigma}}$.

Since $w^{\star} \notin N\left(p_{4}\right)$ and C_{1} is an induced cycle of H_{1}, it follows that every vertex of F has an L^{\dagger}-list of size at least three, except for u_{m}, u_{t}. Since $m \neq t$, each of u_{m}, u_{t} has an L^{\dagger}-list of size at least two, so, by Theorem 1.3.4, $H_{1} \backslash\left\{p_{2}, p_{3}, p_{4}\right\}$ admits an L^{\dagger}-coloring. Since u_{m} is not adjacent to either of p_{3}, p_{4}, it follows that Ψ_{σ} extends to an L-coloring Ψ^{*} of $V\left(H_{1}\right) \cup\left\{p_{1}\right\}$ which uses a color of $\mathcal{Z}_{H_{0}}\left(\sigma\left(p_{1}\right), \Psi_{\sigma}\left(p_{2}\right), \bullet\right)$ on u_{m}. Thus, Ψ_{σ} extends to an L-coloring of H, contradicting our assumption.
We now have the following:
Claim 9.1.21. Let σ^{0}, σ^{1} be two L-colorings of $\left\{p_{1}, p_{3}, p_{4}\right\}$ which differ only on the color used on p_{1}, where $\sigma^{i}\left(p_{1}\right)=$ a_{i} for each $i=0,1$. Then the following hold.

1) $z_{H_{0}}\left(\sigma^{0}\left(p_{1}\right), \Psi_{\sigma^{0}}\left(p_{2}\right), \bullet\right) \neq \mathcal{z}_{H_{0}}\left(\sigma^{1}\right)$; AND
2) $\Psi_{\sigma^{0}}\left(p_{2}\right) \neq \Psi_{\sigma^{1}}\left(p_{2}\right)$

Proof: For each $i=0,1$, let $s_{i}:=\Psi_{\sigma^{i}}\left(p_{2}\right)$ and, Applying Claim 9.1.20, let c_{i} be the lone color of $z_{H_{0}}\left(a_{i}, s_{i}, \bullet\right)$. Let $b=\sigma^{0}\left(p_{4}\right)=\sigma^{1}\left(p_{4}\right)$ and $d=\sigma_{0}\left(p_{3}\right)=\sigma_{1}\left(p_{3}\right)$. We first prove the following intermediate result:

Subclaim 9.1.22. If $c_{0}=c_{1}$ then $s_{0}=s_{1}$
Proof: Let $c_{0}=c_{1}=c$ for some color c. Suppose toward a contradiction that $s_{0} \neq s_{1}$. Let σ^{*} be the L-coloring of $\left\{u_{m}, p_{3}, p_{4}\right\}$ obtained by coloring u_{m}, p_{3}, p_{4} with the respective colors c, d, b, and let F be the outer face of $H_{1} \backslash P_{1}$. Since $p_{4} \notin N\left(w^{\star}\right)$ and we have not colored p_{2}, we have $L_{\sigma^{*}}\left(w^{\star}\right) \mid \geq 3$. Since w^{\star} is the unique common neighbor of u_{m}, p_{3} outside of C_{1}, and C_{1} is an induced subgraph of H_{1}, we have $\left|L_{\sigma^{*}}(u)\right| \geq 3$ for all $u \in V(F) \backslash\left\{u_{m+1}, u_{t}\right\}$. If $m+1=t$, then $\left|L_{\sigma^{*}}\left(u_{t}\right)\right|=1$ and thus, by Theorem 0.2.3, $H_{1} \backslash P_{1}$ is $L_{\sigma^{*}}$-colorable. Likewise, if $m+1<t$, then, by Theorem 1.3.4, $H_{1} \backslash P_{1}$ is $L_{\sigma^{*}}$-colorable

Thus, in any case, σ^{*} extends to an L-coloring $\sigma^{* *}$ of $H_{1}-p_{2}$. Since $\sigma^{* *}$ uses the colors c, d on the respective vertices u_{m}, p_{3}, and $s_{0}, s_{1} \notin\{c, d\}$, it follows that one of s_{0}, s_{1} is left over for p_{2}, as $\operatorname{dom}\left(\sigma^{* *}\right) \cap N\left(p_{2}\right)=$ $\left\{w^{\star}, u_{m}, p_{3}\right\}$. Since $\{c\}=z_{H_{0}}\left(\sigma^{i}\left(p_{1}\right), \Psi_{\sigma^{i}}\left(p_{2}\right), \bullet\right)$ for each $i=0,1$, it follows that one of $\Psi_{\sigma^{0}}, \Psi_{\sigma^{1}}$ extends to an L-coloring of H, contradicting our assumption.

Now we prove 1). Suppose toward a contradiction that $c_{0}=c_{1}=c$ for some color c. Applying Subclaim 9.1.22, let $s_{0}=s_{1}=s$ for some color s. Thus, we have $s \notin\left\{a_{0}, a_{1}\right\}$, since each of σ^{0}, σ^{1} is a proper L-coloring of its domain. Since $\left|L\left(u_{m}\right)\right|=3$, let $s^{*} \in L\left(u_{m}\right) \backslash\{c, s\}$. It follows from Observation 1.4.2 that the L-coloring $\left(s^{*}, s\right)$ of $u_{m} p_{2}$ extends to an L-coloring of H_{0} using one of a_{0}, a_{1} on p_{1}, contradicting the fact that $z_{H_{0}}\left(\sigma^{i}\left(p_{1}\right), \Psi_{\sigma^{i}}\left(p_{2}\right), \bullet\right)=\{c\}$ for each $i=0,1$. This proves 1).

Now we prove 2). Suppose toward a contradiction that $s_{0}=s_{1}=s$ for some s. Then $s \notin\left\{c_{0}, c_{1}\right\}$, and, by 1), $c_{0} \neq c_{1}$. Let F be the outer face of $H_{1} \backslash\left\{p_{2}, p_{3}, p_{4}\right\}$ and let σ^{\prime} be the L-coloring of $p_{2} p_{3} p_{4}$ coloring p_{2}, p_{3}, p_{4} with the respective colors s, d, b. Since $p_{4} \notin N\left(w^{\star}\right),\left|L_{\sigma^{\prime}}\left(w^{\star}\right)\right| \geq 3$ and C_{1} is an induced subgraph of H_{1}, every vertex of $F \backslash\left\{u_{t}, u_{m}\right\}$ has an $L_{\sigma^{\prime}}$-list of size at least three and $\left|L_{\sigma^{\prime}}\left(u_{t}\right)\right| \geq 2$. By Theorem 1.3.4, there is an $L_{\sigma^{\prime}}$-coloring of $H_{1} \backslash\left\{p_{2}, p_{3}, p_{4}\right\}$ using one of c_{0}, c_{1} on u_{m}, so one of $\Psi_{\sigma^{0}}, \Psi_{\sigma^{1}}$ extends to an L-coloring of H, which is false.

For any L-coloring σ of the edge $p_{3} p_{4}$, we now define a set $S_{\sigma} \subseteq L\left(u_{m}\right)$ as follows. Let σ^{0}, σ^{1} be the two extensions of σ to $\left\{p_{1}, p_{3}, p_{4}\right\}$, where $\sigma^{i}\left(p_{1}\right)=a_{i}$ for each $i=0,1$, and let $S_{\sigma}:=z_{H_{0}}\left(a_{0}, \Psi_{\sigma^{0}}\left(p_{2}\right), \bullet\right) \cup z_{H_{0}}\left(a_{1}, \Psi_{\sigma^{1}}\left(p_{2}\right), \bullet\right)$. Combining Claim 9.1.20 with 1) of Claim 9.1.21, we have $\left|S_{\sigma}\right|=2$ for any L-coloring σ of $p_{3} p_{4}$. Applying Proposition 1.4.4 and Claim 9.1.20, we immediately have the following.

Claim 9.1.23. Let σ be an L-coloring of $p_{3} p_{4}$ and, for each $i=0,1$ let σ^{i} be the extension of σ to an L-coloring of $\left\{p_{1}, p_{3}, p_{4}\right\}$ in which p_{1} is colored with a_{i}. Then, for each $k=1, \cdots, m$, we have $\left\{\Psi_{\sigma^{0}}\left(p_{2}\right), \Psi_{\sigma^{1}}\left(p_{2}\right)\right\} \subseteq L\left(u_{k}\right)$, and furthermore, $\left\{a_{0}, a_{1}\right\} \subseteq L\left(u_{1}\right)$ and, if $m>1$, then $S_{\sigma} \subseteq L\left(u_{m-1}\right)$.

We note now that the sets of the form S_{σ} are not constant as σ runs over all the L-colorings of $p_{3} p_{4}$.

Claim 9.1.24. There does not exist a set $S \subseteq L\left(u_{m}\right)$ such that, for any L-coloring σ of $p_{3} p_{4}$, we have $S_{\sigma}=S$.

Proof: Suppose toward a contradiction that such an S exists. Since $\left|L\left(p_{3}\right)\right| \geq 4$, there is a $d \in L\left(p_{3}\right)$ such that $\left|L\left(w^{\star}\right) \backslash(\{d\} \cup S)\right| \geq 3$. Since $\left|L\left(p_{4}\right)\right|=2$, there is an L-coloring σ of $p_{3} p_{4}$ such that $\sigma\left(p_{3}\right)=d$. Let σ^{0}, σ^{i} be the two extensions of σ to $\left\{p_{1}, p_{3}, p_{4}\right\}$, where $\sigma^{i}\left(p_{1}\right)=a_{i}$ for each $i=0,1$. Since $S_{\sigma}=S$, there is an extension of σ to an L-coloring σ^{*} of $\left\{u_{m}, p_{3}, p_{4}\right\}$ such that $\sigma^{*}\left(u_{m}\right) \in S$ and $\left|L_{\sigma^{*}}\left(w^{\star}\right)\right| \geq 3$. But since σ^{*} uses a color of $z_{H_{0}}\left(a_{0}, \Psi_{\sigma^{0}}\left(p_{2}\right), \bullet\right) \cup \mathcal{Z}_{H_{0}}\left(a_{1}, \Psi_{\sigma^{1}}\left(p_{2}\right), \bullet\right)$ on u_{m}, we contradict Claim 9.1.19.

We now fix an L-coloring σ of $p_{3} p_{4}$. For each $i=0,1$, let σ^{i} be the extension of σ to $\left\{p_{1}, p_{3}, p_{4}\right\}$ in which $\sigma^{i}\left(p_{1}\right)=a_{i}$. Furthermore, for each $i=0,1$, let $s_{i}:=\Psi_{\sigma^{i}}\left(p_{2}\right)$, and let f_{i} be the lone color of $z_{H_{0}}\left(a_{i}, s_{i}, \bullet\right)$. Note that $S_{\sigma}=\left\{f_{0}, f_{1}\right\}$ and $f_{0} \neq f_{1}$. By Claim 9.1.24, there is an L-coloring τ of $p_{3} p_{4}$ such that $S_{\tau} \neq S_{\sigma}$. Let τ^{0}, τ^{1} be the two extension of τ to $\left\{p_{1}, p_{3}, p_{4}\right\}$, where. For each $i=0,1$, let $t_{i}:=\Psi_{\tau^{i}}\left(p_{2}\right)$ and let g_{i} be the lone color of $\mathcal{Z}_{H_{0}}\left(a_{i}, t_{i}, \bullet\right)$. Note that $S_{\tau}=\left\{g_{0}, g_{1}\right\}$.

Claim 9.1.25. $\left\{t_{0}, t_{1}\right\} \neq\left\{s_{0}, s_{1}\right\}$.

Proof: Suppose toward a contradiction that $\left\{t_{0}, t_{1}\right\}=\left\{s_{0}, s_{1}\right\}$. By our choice of τ, we have $\left\{f_{0}, f_{1}\right\} \neq\left\{g_{0}, g_{1}\right\}$. If $s_{0}=t_{0}$, then $s_{1}=t_{1}$, and, for each $i=0,1$, we have $z_{H_{0}}\left(a_{i}, s_{i}, \bullet\right)=z_{H_{0}}\left(a_{i}, t_{i}, \bullet\right)$, contradicting the fact that $\left\{f_{0}, f_{1}\right\} \neq\left\{g_{0}, g_{1}\right\}$. Thus, we have $s_{0}=t_{1}$ and $s_{1}=t_{0}$. Now, since $s_{0} \neq t_{0}$, it follows from 1) of Proposition 1.4.7 that $t_{0}=f_{0}$ and $s_{0}=g_{0}$. Likewise, $t_{1}=f_{1}$ and $s_{1}=g_{1}$. In particular, since $\left\{s_{0}, s_{1}\right\}=\left\{t_{0}, t_{1}\right\}$ we have $\left\{f_{0}, f_{1}\right\}=\left\{g_{0}, g_{1}\right\}$, contradicting our choice of τ.

Since $\left\{t_{0}, t_{1}\right\} \neq\left\{s_{0}, s_{1}\right\}$ and $L\left(u_{k}\right) \mid=3$ for each $k=1, \cdots, m$, it follows from Claim 9.1.23 that $L\left(u_{1}\right)=\cdots=$ $L\left(u_{m}\right)$ and $\left\{a_{0}, a_{1}\right\} \subseteq L\left(u_{k}\right)$ for each $k=1, \cdots, m$. Let q be the lone color of $\left.\bigcap_{k=1}^{m} L\left(u_{k}\right) \backslash\left\{a_{0}, a_{1}\right\}\right)$. Since $S_{\sigma} \neq S_{\tau}$ we have $S_{\sigma} \cup S_{\tau}=L\left(u_{m}\right)$, so, by Claim 9.1.19, we have $L\left(u_{m}\right) \subseteq L\left(w^{\star}\right)$ and $\left|L\left(w^{\star}\right)\right|=5$. For each $d \in L\left(p_{3}\right)$, there is an L-coloring of $p_{3} p_{4}$ using d on p_{3}, since $\left|L\left(p_{4}\right)\right|=2$. Thus, again applying Claim 9.1.19, we have $L\left(p_{3}\right) \subseteq L\left(w^{\star}\right)$, so at least one of a_{0}, a_{1} lies in $L\left(p_{3}\right)$. Suppose without loss of generality that $a_{0} \in L\left(p_{3}\right)$.

Let ϕ be an L-coloring of $p_{3} p_{4}$ with $\phi\left(p_{3}\right)=a_{0}$. For each $i=0,1$, let ϕ^{i} be the extension of ϕ to $\left\{p_{1}, p_{3}, p_{4}\right\}$ obtained by coloring p_{1} with a_{i}. If $\phi^{i}\left(u_{m}\right)=a_{0}$ for some $i \in\{0,1\}$, then, since $u_{m} p_{3} \notin E(H)$, we contradict Claim 9.1.19. Thus, we have $S_{\phi}=\left\{a_{1}, q\right\}$. For each $i=0,1$, let h_{i} be the lone color of $z_{H_{0}}\left(a_{i}, \Psi_{\phi^{i}}\left(p_{2}\right), \bullet\right)$. By Claim 9.1.23, we have $\left\{\Psi_{\phi^{0}}\left(p_{2}\right), \Psi_{\phi^{1}}\left(p_{2}\right)\right\} \subseteq\left\{a_{0}, a_{1}, q\right\}$, and, by Claim 9.1.21, $\left|\left\{\Psi_{\phi^{0}}\left(p_{2}\right), \Psi_{\phi^{1}}\left(p_{2}\right)\right\}\right|=2$. Since $\Psi_{\phi^{i}}$ is a proper L-coloring of its domain for each $i=0$, 1 , we have $\Psi_{\phi^{0}}\left(p_{2}\right)=a_{1}$ and $\Psi_{\phi^{1}}\left(p_{2}\right)=q$. Since $\left|S_{\phi}\right|=2$, we thus have $h_{0}=a_{1}$ and $h_{1}=q$. Now consider the following cases:

Case 1: m is odd
In this case, we extend the L-coloring $\left(a_{1}, q\right)$ of $p_{1} p_{2}$ to an L-coloring of H_{0} by coloring $u_{1}, u_{3}, \cdots, u_{m}$ with a_{0}, which leaves a color for each of $u_{2}, u_{4}, \cdots, u_{m-1}$, since each of these vertices has two neighbors using the same color. Thus, we have $a_{0} \in \mathcal{Z}_{H_{0}}\left(a_{1}, \Psi_{\phi^{1}}\left(p_{2}\right), \bullet\right)$, which is false.

Case 2: m is even

In this case, we extend the L-coloring $\left(a_{0}, a_{1}\right)$ of $p_{1} p_{2}$ to an L-coloring of H_{1} by coloring $u_{2}, u_{4}, \cdots, u_{m}$ with a_{0}, which leaves a color for each of $u_{1}, u_{3}, \cdots, u_{m-1}$, as each of these vertices has two neighbors using the same color. Thus, we have $a_{0} \in \mathcal{Z}_{H_{0}}\left(a_{0}, \Psi_{\phi^{0}}\left(p_{2}\right), \bullet\right)$, which is false. This completes the proof of Lemma 9.1.1.

9.2 Corner Colorings: Part II

In this section, we complete the proof of Theorem 9.0.1. We first prove the following simple lemma.
Lemma 9.2.1. Let G be a planar graph, let C be a facial cycle of G, and let $P:=p_{1} p_{2} p_{3}$ be a subpath of C. Suppose further that any chord of C is incident to p_{2}. Let L be a list-assignment for $V(G)$ such that each vertex of $C \backslash P$ has a list of size at least three and every vertex of $G \backslash C$ has a list of size at least five. Suppose further that there is a vertex of $C \backslash P$ with a list of size at least four. Then any L-coloring of $V(P)$ extends to an L-coloring of G.

Proof. Suppose that this does not hold and let G be a vertex-minimal counterexample to the lemma. Thus, by assumption, there is an L-coloring ϕ of $V(P)$ which does not extend to an L-coloring of G. Let $\hat{u} \in V(C \backslash P)$, where $|L(\hat{u})| \geq 4$. For notational convenience, we suppose that C is the outer face of G. Applying Corollary 0.2 .4 , it immediately follows from the minimality of G that G is short-separation-free.

Claim 9.2.2. There is no chord of C except possibly $\hat{u} p_{2}$.

Proof: Suppose not. Since any chord of C has p_{2} as an endpoint, G contains a chord of C of the form $p_{2} u$ for some $u \in V(C \backslash P) \backslash\{\hat{u}\}$. Let $G=G_{0} \cup G_{1}$ be the natural $p_{2} u$-partition of G, where $p_{1} \in V\left(G_{0}\right)$, and $p_{3} \in V\left(G_{1}\right)$. Suppose without loss of generality that $\hat{u} \in V\left(G_{0}\right) \backslash\left\{p_{2}, u\right\}$. Let C_{0} be the outer face of G_{0}. By Theorem 0.2.3, the precoloring $\left(\phi\left(p_{3}\right), \phi\left(p_{2}\right)\right)$ of the edge $p_{3} p_{2}$ extends to an L-coloring ψ of G_{1}. Since \hat{u} is an internal vertex of the path $C_{0}-p_{2}$, and every chord of C has p_{2} as an endpoint, we have $p_{1} u \notin E(G)$, so $\phi \cup \psi$ of a proper L-coloring of its domain in G, even if $\phi\left(p_{1}\right)=\psi(u)$. Furthermore, every chord of C_{0} has p_{2} as an endpoint. Since $\left|V\left(G_{0}\right)\right|<|V(G)|$ and G_{0} is also short-separation-free, the precoloring $\left(\phi\left(p_{1}\right), \phi\left(p_{2}\right), \psi(\hat{u})\right)$ of $p_{1} p_{2} \hat{u}$ extends to an L-coloring of G_{0}, so ϕ extends to an L-coloring of G, contradicting our assumption.

We now rule out the last remaining chord.

Claim 9.2.3. There is no chord of C.

Proof: Suppose C has a chord By Claim 9.2.2, $\hat{u} p$ is the lone chord of C. Let $G=G_{0} \cup G_{1}$ be the natural $p_{2} \hat{u}$-partition of G, where $p_{1} \in V\left(G_{0}\right)$ and $p_{3} \in V\left(G_{1}\right)$. Let $P_{0}:=p_{1} p_{2} \hat{u}$ and let $P_{1}:=\hat{u} p_{2} p_{3}$. For each $i=0,1$, let C_{i} be the outer face of G_{i}.

If $V(C)=V(P) \cup\{\hat{u}\}$, then, since G is short-separation-free, it follows that G is a broken wheel with principal path $p_{1} p_{2} p_{3}$, and $G-p_{2}=p_{1} \hat{u} p_{3}$. In that case, since $|L(\hat{u})| \geq 4, \phi$ extends to an L-coloring of G, contradicting our assumption. Thus, $V(P) \cup\{\hat{u}\}$ is a proper subset of $V(C)$, and there is an $i \in\{0,1\}$ such that $V\left(C_{i}\right) \neq V\left(P_{i}\right)$, say $i=0$ without loss of generality. Since there is no chord of C other than $p_{2} \hat{u}, C_{0}$ is an induced subgraph of G_{0}. Furthermore, as $V\left(C_{0}\right) \neq V\left(P_{0}\right)$, it follows that $p_{1} \hat{u} \notin E(G)$ and G_{0} is not a broken wheel with principal path P_{0}.

Since $|L(\hat{u})| \geq 4$, it follows from Theorem 0.2 .3 that the precoloring $\left(\phi\left(p_{2}\right), \phi\left(p_{3}\right)\right)$ of the edge $p_{2} p_{3}$ extends to two distinct L-colorings of ψ, ψ^{*} of G_{1} which use different colors on \hat{u}. Since $p_{1} \hat{u} \notin E(G)$, each of $\left(\phi\left(p_{1}\right), \phi\left(p_{2}\right), \psi(\hat{u})\right)$ and $\left(\phi\left(p_{1}\right), \phi\left(p_{2}\right), \psi^{*}(\hat{u})\right)$ is a proper L-coloring of $p_{1} p_{2} \hat{u}$. Since C_{0} is an induced subgraph of G_{0} and G_{0} is not a
broken wheel with principal path P_{0}, it follows from Theorem 1.5.3 that one of these extends to an L-coloring of G_{0}, so ϕ extends to an L-coloring of G, contradicting our assumption.

Since there is no chord of C and ϕ does not extend to an L-coloring of G, it follows from 1) of Proposition 1.5.1 that p_{1}, p_{2}, p_{3} have a common neighbor w in $G \backslash C$. Let C^{\prime} be the outer face of $G-p_{2}$. Since G is short-separationfree, we have $C^{\prime}-p_{2}=C-p_{2}$. Since there is no chord of C, every chord of C^{\prime} in $G-p_{2}$ has w as an endpoint. Since $\left|L_{\phi}(w)\right| \geq 2$, let $c \in L_{\phi}(w)$, By the minimality of G, the L-coloring $\left(\phi\left(p_{1}\right), c, \phi\left(p_{3}\right)\right)$ of $p_{1} w p_{3}$ extends to an L-coloring of $G-p_{2}$, and since $N\left(p_{2}\right)=\left\{p_{1}, w, p_{3}\right\}$, ϕ extends to an L-coloring of G, contradicting our assumption.

We now state and prove the lone result which makes up the remainder of Section 9.2. The combination of the lemma below with Lemma 9.1.1 implies Theorem 9.0.1.

Lemma 9.2.4. Let H be a planar graph with facial cycle C, and let $P:=p_{1} p_{2} p_{3} p_{4}$ be a subpath of C of length three. Let \hat{u} be a vertex of $C \backslash P$ and let L be a list-assignment for H such that the following hold.

1) $\left\{p_{1}, p_{4}\right\}$ is L-colorable; AND
2) $|L(\hat{u})| \geq 4$ and $\left|L\left(p_{3}\right)\right| \geq 4$; AND
3) For each $v \in V(C) \backslash(V(P) \cup \hat{u}),|L(v)| \geq 3$; AND
4) For each $v \in V(H \backslash C),|L(v)| \geq 5$.

Then there is an L-coloring ψ of $\left\{p_{1}, p_{3}, p_{4}\right\}$ such that any extension of ψ to an L-coloring of $V(P)$ also extends to an L-coloring of H.

Proof. Suppose that this does not hold and let H be a vertex-minimal counterexample to the lemma. For convenience, we suppose, by applying an appropriate stereographic projection, that C is the outer face of H. By adding edges to H if necessary, we also suppose that every facial subgraph of H, except possibly C, is a triangle.

Since $\left\{p_{1}, p_{4}\right\}$ is L-colorable, we fix an L-coloring σ of $\left\{p_{1}, p_{4}\right\}$. Note that $\left|L_{\sigma}\left(p_{3}\right)\right| \geq 2$, and, since H is a counterexample, it follows that, for each $c \in L_{\sigma}\left(p_{3}\right)$, there is an extension of σ to an L-coloring τ^{c} of $V(P)$ such that τ^{c} uses c on on p_{3} and does not extend to an L-coloring of H. Thus, it follows from Corollary 0.2 .4 that $|V(C)|>4$, so let $C:=p_{4} p_{3} p_{2} p_{1} u_{1} \cdots u_{t}$ for some $t \geq 1$. By removing colors from $L(\hat{u})$ if necessary, we suppose that $|L(\hat{u})|=4$. As usual applying Theorem 0.2 .3 and Corollary 0.2 .4 , we immediately have the following from the minimality of H.

Claim 9.2.5. H is short-separation-free and any chord of C has an endpoint in $\left\{p_{2}, p_{3}\right\}$

We now have the following.
Claim 9.2.6. $p_{1} p_{3} \notin E(H)$ and p_{1}, p_{3} have no common neighbor in $H \backslash C$. In particular, $\left|L_{\sigma}\left(p_{3}\right)\right| \geq 3$.

Proof: Suppose that $p_{1} p_{3} \in E(H)$ and let $c \in L_{\sigma}(u)$.. Since H is short-separation-free, it follows that $N\left(p_{2}\right)=$ $\left\{p_{1}, p_{3}\right\}$, and $H-p_{2}$ has outer face $C^{\prime}:=p_{1} p_{3} p_{4} u_{t} \cdots u_{1}$. It follows from Claim 9.2.5 that any chord of C^{\prime} has p_{3} as an endpoint. Since $L(\hat{u}) \mid \geq 4$, it follows from Lemma 9.2.1 that the coloring $\left(\sigma\left(p_{1}\right), c, \sigma\left(p_{3}\right)\right)$ of $p_{1} p_{3} p_{4}$ extends to an L-coloring of $H-p_{2}$, and since $N\left(p_{2}\right)=\left\{p_{1}, p_{3}\right\}, \tau^{c}$ extends to an L-coloring of of H, contradicting our assumption. Since $p_{1} p_{3} \notin E(H)$, we have $\left|L_{\sigma}\left(p_{3}\right)\right| \geq 3$.

Suppose that p_{1}, p_{3} have a common neighbor $w \in V(H \backslash C)$. Since H is short-separation-free and $p_{1} p_{3} \notin E(H)$, we have $w p_{2} \in E(H)$ by our triangulation conditions, and $H-p_{2}$ has outer face $C^{\prime}:=p_{1} w p_{3} p_{4} u_{t} \cdots u_{1}$. Let $P^{\prime}:=p_{1} w p_{3} p_{4}$. Since $\left|V\left(H-p_{2}\right)\right|<\mid V(H)$, it follows from the minimality of H that there exists an extension of σ to an L-coloring ψ of $\left\{p_{1}, p_{3}, p_{4}\right\}$ such that any extension of ψ to an L-coloring of $V\left(P^{\prime}\right)$ also extends to an L-coloring of $H-p_{2}$. Let $c=\psi\left(p_{3}\right)$. Possibly $p_{4} \in N(w)$, but in any case, since $\left|L(w) \backslash\left\{\sigma\left(p_{1}\right), \tau^{c}\left(p_{2}\right), c, \sigma\left(p_{4}\right)\right\}\right| \geq 1$, there is an extension of ψ to a proper L-coloring ψ^{*} of $V\left(P^{\prime}\right)$ such that $\psi^{*}(w) \neq \tau^{c}\left(p_{2}\right)$. Thus, ψ^{*} extends to an L-coloring of $H-p_{2}$, and since $N\left(p_{2}\right)=\left\{p_{1}, w, p_{3}\right\}, \tau^{c}$ extends to an L-coloring of H, contradicting our assumption.

We have an analogous result for the other side.

Claim 9.2.7. $p_{2} p_{4} \notin E(H)$ and p_{2}, p_{4} have no common neighbor in $H \backslash C$.

Proof: Suppose that $p_{2} p_{4} \in E(H)$ and let $c \in L_{\sigma}(u)$.. Since H is short-separation-free, it follows that $N\left(p_{3}\right)=$ $\left\{p_{2}, p_{4}\right\}$, and $H-p_{3}$ has outer face $C^{\prime}:=p_{1} p_{2} p_{4} u_{t} \cdots u_{1}$. It follows from Claim 9.2.5 that any chord of C^{\prime} has p_{2} as an endpoint. Since $L(\hat{u}) \mid \geq 4$, it follows from Lemma 9.2.1 that the coloring $\left(\sigma\left(p_{1}\right), \tau^{c}\left(p_{2}\right), \sigma\left(p_{4}\right)\right)$ of $p_{1} p_{2} p_{4}$ extends to an L-coloring of $H-p_{3}$, and since $N\left(p_{3}\right)=\left\{p_{2}, p_{4}\right\}, \tau^{c}$ extends to an L-coloring of of H, contradicting our assumption.

Now suppose toward a contradiction that p_{2}, p_{4} have a common neighbor $w \in V(H \backslash C)$. Since H is short-separationfree and $p_{2} p_{4} \notin E(H)$, it follows from our triangulation assumption that $p_{3} \in N(w)$, and $H-p_{3}$ has outer face $C^{\prime}:=$ $p_{1} p_{2} w p_{4} u_{t} \cdots u_{1}$. Let $P^{\prime}:=p_{1} p_{2} w p_{4}$. Since $|L(w)| \geq 5$, it follows from the minimality of H that there exist two distinct extensions ψ_{0}, ψ_{1} of σ to L-colorings of $\left\{p_{1}, w, p_{4}\right\}$ such that, for each $i=0,1$, any extension of ψ_{i} to an L coloring of $V\left(P^{\prime}\right)$ extends to an L-coloring of $H-p_{3}$. Since $\left|L_{\sigma}\left(p_{3}\right)\right| \geq 3$, there exists a $c \in L_{\sigma}\left(p_{3}\right) \backslash\left\{\psi_{0}(w), \psi_{1}(w)\right\}$. Since $\psi_{0}(w) \neq \psi_{1}(w)$, there exists an $i \in\{0,1\}$ such that $\tau^{c}\left(p_{3}\right) \neq \psi_{i}(w)$. Thus, τ^{c} extends to an L-coloring of H, contradicting our assumption.

Claim 9.2.8. p_{2}, p_{3} have no common neighbor in C.

Proof: Suppose toward a contradiction that p_{2}, p_{3} have a common neighbor in C. By Claims 9.2.6 and 9.2.7 $p_{1} p_{3}, p_{2} p_{4} \notin$ $E(G)$. Thus, there exists an $s \in\{1, \cdots, t\}$ such that $u_{s} \in N\left(p_{2}\right) \cap N\left(p_{3}\right)$. Let H_{0} be the subgraph of H bounded by outer cycle $C_{0}:=p_{1} p_{2} u_{s} \cdots u_{1}$ and let H_{1} be the subgraph of H bounded by outer cycle $C_{1}:=u_{s} \cdots p_{t} p_{4} p_{3}$. Since H is short-separation-free, we have $H=\left(H_{0} \cup H_{1}\right)+p_{2} p_{3}$. Let $P_{0}:=p_{1} p_{2} u_{s}$ and let $P_{1}:=u_{s} p_{3} p_{4}$. For each $c \in L_{\sigma}\left(p_{3}\right)$, since τ^{c} does not extend to an L-coloring of H, we have $z_{H_{0}}^{P_{0}}\left(\sigma\left(p_{1}\right), \tau^{c}\left(p_{2}\right), \bullet\right) \cap z_{H_{1}}^{P_{1}}\left(\bullet, c, \sigma\left(p_{4}\right)\right)=\varnothing$. By Claim 9.2.6, $\left|L_{\sigma}\left(p_{3}\right)\right| \geq 3$, so let $c_{1}, c_{2}, c_{3} \in L_{\sigma}\left(p_{3}\right)$. Consider the following cases:

Case 1: $\hat{u} \in V\left(H_{1}\right) \backslash\left\{u_{s}\right\}$
In this case, by Claim 9.2.5, we have $u_{s} p_{4} \notin E(H)$ so it follows from Lemma 9.2.1 that $\mathcal{Z}_{H_{1}}^{P_{1}}\left(\bullet, c, \sigma\left(p_{4}\right)\right)=$ $L\left(u_{s}\right) \backslash\{c\}$ for each $c \in L_{\sigma}\left(p_{3}\right)$. Thus, for each $c \in L_{\sigma}\left(p_{3}\right)$, we have $\mathcal{Z}_{H_{0}}^{P_{0}}\left(\sigma\left(p_{1}\right), \tau^{c}\left(p_{2}\right), \bullet\right)=\{c\}$, since $z_{H_{0}}^{P_{0}}\left(\sigma\left(p_{1}\right), \tau^{c}\left(p_{2}\right), \bullet\right)$ is nonempty. It follows that $\tau^{c_{1}}\left(p_{2}\right), \tau^{c_{2}}\left(p_{2}\right), \tau^{c_{3}}\left(p_{2}\right)$ are three distinct colors, and, by Proposition 1.5.14, there is an $i \in\{1,2,3\}$ such that $\left|\mathcal{Z}_{H_{0}}^{P_{0}}\left(\sigma\left(p_{1}\right), \tau^{c_{i}}\left(p_{2}\right), \bullet\right)\right| \geq 2$, a contradiction.

Case 2: $\hat{u} \in V\left(H_{0}\right) \backslash\left\{u_{s}\right\}$
In this case, it follows from Claim 9.2.5 that $u_{s} p_{1} \notin E(H)$ and thus, by Lemma 9.2.1, we have $z_{H_{0}}^{P_{0}}\left(\sigma\left(p_{1}\right), \tau^{c}\left(p_{2}\right), \bullet\right)=$ $L\left(u_{s}\right) \backslash\left\{\tau^{c}\left(p_{2}\right)\right\}$ for each $c \in L_{\sigma}\left(p_{3}\right)$. Thus, for each $c \in L_{\sigma}\left(p_{3}\right)$, we have $z_{H_{1}}^{P_{1}}\left(\bullet, c, \sigma\left(p_{4}\right)\right)=\left\{\tau^{c}\left(p_{2}\right)\right\}$, since $z^{P_{1}}\left(\bullet, c, \sigma\left(p_{4}\right)\right)$ is nonempty. Since $\left|L_{\sigma}\left(p_{3}\right)\right| \geq 3$, it follows from Proposition 1.5.14 that there is a $c \in L_{\sigma}\left(p_{3}\right)$ such that $\left|\mathcal{Z}_{H_{1}}^{P_{1}}\left(\bullet, c, \sigma\left(p_{4}\right)\right)\right| \geq 2$, a contradiction.

Case 3: $\hat{u}=u_{s}$
In this case, since $|L(\hat{u})|=4$, it follows from Theorem 0.2.3 that, for each $c \in L_{\sigma}\left(p_{3}\right)$ we have $\left|\mathcal{Z}_{H_{0}}^{P_{0}}\left(\sigma\left(p_{1}\right), \tau^{c}\left(p_{2}\right), \bullet\right)\right| \geq$ 2. Furthermore, it follows from Proposition 1.5 .14 that there is an $i \in\{1,2,3\}$ such that $\left|\mathcal{Z}_{H_{1}}^{P_{1}}\left(\bullet, c_{i}, \sigma\left(p_{4}\right)\right)\right| \geq 3$. Thus, for some $i \in\{1,2,3\}$, we have $\mathcal{Z}_{H_{0}}^{P_{0}}\left(\sigma\left(p_{1}\right), \tau^{c}\left(p_{2}\right), \bullet\right) \cap \mathcal{Z}_{H_{1}}^{P_{1}}\left(\bullet, c, \sigma\left(p_{4}\right)\right) \neq \varnothing$, which is false. This completes the proof of Claim 9.2.8.

We now have the following.

Claim 9.2.9. There are at least two distinct colors in $\left\{\tau^{c}\left(p_{2}\right): c \in L_{\sigma}\left(p_{3}\right)\right\}$.

Proof: Suppose not. Thus, there is a lone color d such that $\tau^{c}\left(p_{2}\right)=d$ for all $c \in L_{\sigma}\left(p_{3}\right)$. Let σ^{\prime} be an extension of σ to an L-coloring of $\left\{p_{1}, p_{2}, p_{4}\right\}$ obtained by coloring p_{2} with d. Note that $d \notin L_{\sigma}\left(p_{3}\right)$. By Claim 9.2.6, $\left|L_{\sigma}\left(p_{3}\right)\right| \geq 3$, so $\left|L_{\sigma^{\prime}}\left(p_{3}\right)\right| \geq 3$. If σ^{\prime} extends to an L-coloring of H, then there exists a $c \in L_{\sigma^{\prime}}\left(p_{3}\right)$ such that τ^{c} extends to an L-coloring of H, which is false, so σ^{\prime} does not extend to an L-coloring of H. Consider the following cases.

Case 1: There is no chord of C with p_{2} as an endpoint.
In this case, by Claim 9.2.5, there is no chord of C with an endpoint in $\operatorname{dom}\left(\sigma^{\prime}\right)$. By Claim 9.2.7, p_{2}, p_{4} have no common neighbor in H. Thus, every vertex on the outer face of $H \backslash \operatorname{dom}\left(\sigma^{\prime}\right)$ has an $L_{\sigma^{\prime}}$-list of size at least three, except for the endpoints of $u_{1} \cdots u_{t}$. Possibly $t=1$ and $u_{1}=\hat{u}=u_{t}$, but in any case, since $|L(\hat{u})| \geq 4$, each endpoint of $u_{1} \cdots u_{t}$ has an $L_{\sigma^{\prime}}$-list of size at least two, so, by Theorem 1.3.4, σ^{\prime} extends to an L-coloring of H, which is false.

Case 2: There is a chord of C with p_{2} as an endpoint.
Since $p_{2} p_{4} \notin E(H)$, let m be the maximal index among $\left\{j \in\{1, \cdots, t\}: u_{j} \in N\left(p_{2}\right)\right\}$. Let $H=H_{0} \cup H_{1}$ be the natural $p_{2} u_{m}$-partition of H, where $p_{1} \in V\left(H_{0}\right)$. Since $p_{2} p_{4} \notin E(H)$, it follows from Claim 9.2.5 and our choice of m that the outer face of H_{1} has no chords with an endpoint in $\operatorname{dom}(\psi)$ (possibly there is a chord with p_{3} as an endpoint).

Subcase $2.1 m=t$
In this case, we have $\hat{u} \in\left\{u_{1}, \cdots, u_{t}\right\}$. If $\hat{u} \in\left\{u_{1}, \cdots, u_{t-1}\right\}$, then, by Lemma 9.2.4, we have $\mathcal{Z}_{H_{0}}\left(\sigma\left(p_{1}\right), d, \bullet\right)=$ $L\left(u_{t}\right) \backslash\{d\}$. If $\hat{u}=u_{t}$, then it follows from Theorem 0.2 .3 that $z_{H_{0}}\left(\sigma\left(p_{1}\right), d, \bullet\right) \mid \geq 2$. In any case, there exists an $f \in \mathcal{Z}_{H_{0}}\left(\sigma\left(p_{1}\right), d, \bullet\right)$ such that $f \neq \sigma\left(p_{4}\right)$. Thus, by Corollary 0.2 .4 , there is an extension of σ^{\prime} to an L-coloring ψ of $\operatorname{dom}\left(\sigma^{\prime}\right) \cup V\left(H_{0}\right)$ such that ψ also extends to L-color H_{1}, so σ^{\prime} extends to an L-coloring of H, which is false.

Case $2.2 m<t$
In this case, $u_{m} p_{4} \notin E(H)$, so, since $\mathcal{Z}_{H_{0}}\left(\sigma\left(p_{1}\right), d, \bullet\right) \neq \varnothing$, it follows that σ^{\prime} extends to an L-coloring ψ of $\operatorname{dom}\left(\sigma^{\prime}\right) \cup V\left(H_{0}\right)$. By Claim 9.2.7, p_{2}, p_{4} have no common neighbor in $H \backslash C$. Thus, every vertex on the outer face of $H \backslash\left(V\left(H_{0}\right) \cup\left\{p_{4}\right\}\right)$ has an $L_{\sigma^{\prime}}$-list of size at least three, except for the endpoints of $u_{m+1} \cdots u_{t}$. Applying Theorem 0.2 .3 if $m+1=t$ and otherwise applying Theorem 1.3.4, it follows that ψ extends to an L-coloring of H so σ^{\prime} extends to an L-coloring of H, which is false. This completes the proof of Claim 9.2.9.

Let $n \in\{1, \cdots, t\}$ where $\hat{u}=u_{n}$. We now have the following.

Claim 9.2.10. There is no chord of C which separates \hat{u} from p_{2}.

Proof: Suppose toward a contradiction that there is a chord of C which separates \hat{u} from p_{2}. By Claim 9.2.5, any such chord has p_{3} as an endpoint, and, by Claim 9.2.6, $p_{1} p_{3} \notin E(H)$, so there exists a chord of C of the form $u_{j} p_{3}$ for some $j \in\{1, \cdots, n-1\}$. Let m be the minimal index in $\left\{j \in\{1, \cdots, t\}: p_{3} \in N\left(u_{j}\right)\right\}$. By assumption, such an m exists and $m \leq n-1$. Let $H:=H^{0} \cup H^{1}$ be the natural $p_{3} u_{m}$-partition of H, where $p_{1} \in V\left(H_{0}\right)$. Let $P^{0}:=p_{1} p_{2} p_{3} u_{m}$ and $P^{1}:=u_{m} p_{3} p_{4}$.

Let C^{0} be the outer face of H^{0}. Since $p_{1} p_{3} \notin E(H)$, it follows from our choice of m that H_{0} has no chord of C^{0} with p_{3} as an endpoint. Thus, by Theorem 1.6.1, there is a color $d \in L\left(u_{m}\right)$, where $d \neq \sigma\left(p_{1}\right)$ if $p_{1} u_{m} \in E\left(H^{0}\right)$, such that any L-coloring of $V\left(P^{0}\right)$ using $\sigma\left(p_{1}\right), d$ on the respective vertices p_{1}, u_{m} extends to an L-coloring of H^{0}. Possibly $d=\sigma\left(p_{4}\right)$, but, since $\hat{u} \in\left\{u_{m+1}, \cdots u_{t}\right\}$, it follows from Claim 9.2.5 that $u_{m} p_{4} \notin E(H)$, so $\left(d, c, \sigma\left(p_{4}\right)\right)$ is a proper L-coloring of $V\left(P^{1}\right)$. By Lemma 9.2.4, this L-coloring extends to an L-coloring of H^{1}. Possibly $d=\tau^{c}\left(p_{2}\right)$, but, by Claim 9.2.8, $p_{2} u_{m} \notin E(H)$, so $\left(\sigma\left(p_{1}\right), \tau^{c}\left(p_{2}\right), c, d\right)$ is a proper L-coloring of the subgraph of H induced by $p_{1} p_{2} p_{3} u_{m}$. Thus, by our choice of d, τ^{c} extends to an L-coloring of H^{0}, contradicting our assumption.

We have an analogous result for the other side.

Claim 9.2.11. There is no chord of C which separates \hat{u} from p_{3}.

Proof: Suppose toward a contradiction that there is a chord of C which separates \hat{u} from p_{3}. By Claim 9.2.5, any such chord has p_{2} as an endpoint, and, by Claim 9.2.7, $p_{2} p_{4} \notin E(H)$, so there exists a chord of C of the form $u_{j} p_{2}$ for some $j \in\{n+1, \cdots, t\}$. Let m be the maximal index in $\left\{j \in\{1 \cdots, t\}: p_{3} \in N\left(u_{j}\right)\right\}$. By assumption, such an m exists and $m \geq n+1$. Let $H:=H^{0} \cup H^{1}$ be the natural $p_{3} u_{m}$-partition of H, where $p_{1} \in V\left(H^{0}\right)$. Let $P^{0}:=p_{1} p_{2} p_{3} u_{m}$ and $P^{1}:=u_{m} p_{3} p_{4}$.

Let C^{1} be the outer face of H^{1}. Since $p_{2} p_{4} \notin E(H)$, it follows from our choice of m that H^{1} has no chord of C^{1} with p_{2} as an endpoint. Thus, by Theorem 1.6.1, there is a color $d \in L\left(u_{m}\right)$, where $d \neq \sigma\left(p_{4}\right)$ if $p_{4} u_{m} \in E\left(H^{1}\right)$, such that any L-coloring of $V\left(P^{1}\right)$ using $\sigma\left(p_{4}\right), d$ on the respective vertices p_{4}, u_{m} extends to an L-coloring of H^{1}. By Claim 9.2.9, there exists a $c \in L_{\sigma}\left(p_{3}\right)$ such that $\tau^{c}\left(p_{3}\right) \neq d$. Thus, $\left(\sigma\left(p_{1}\right), \tau^{c}\left(p_{2}\right), d\right)$ is a proper L-coloring of the subgraph of H induced by $p_{1} p_{2} u_{m}$. By Claim 9.2.8, $u_{m} p_{3} \notin E(H)$, so $\left(d, \tau^{c}\left(p_{2}\right), c, \sigma\left(p_{4}\right)\right)$ is a proper L-coloring of the subgraph of H induced by $u_{m} p_{2} p_{3} p_{4}$. By Lemma 9.2.1, the coloring $\left(\sigma\left(p_{1}\right), \tau^{c}\left(p_{2}\right), d\right)$ of P^{0} extends to an L-coloring of H_{0}, and, by our choice of d, the coloring of P^{1} extends to an L-coloring of H^{1}, so τ^{c} extends to an L-coloring of H, contradicting our assumption.

We now have the following.

Claim 9.2.12. Neither p_{2} nor p_{3} is adjacent to \hat{u}. In particular, $N\left(p_{2}\right) \cap V(C) \subseteq\left\{p_{1}, p_{3}\right\} \cup\left\{u_{1}, \cdots, u_{n-1}\right\}$ and $N\left(p_{3}\right) \cap V(C) \subseteq\left\{p_{2}, p_{4}\right\} \cup\left\{u_{n+1}, \cdots, u_{t}\right\}$.

Proof: Suppose toward a contradiction that $\hat{u} \in N\left(p_{3}\right)$. Let H^{\prime} be the subgraph of H bounded by outer cycle $C^{\prime}:=$ $p_{1} p_{2} p_{3} \hat{u} \cdots u_{1} p_{1}$ and let $H^{\prime \prime}$ be the subgraph of H bounded by outer cycle $C^{\prime \prime}:=\hat{u} \cdots u_{t} p_{4} p_{3}$. Let $P^{\prime \prime}:=\hat{u} p_{3} p_{4}$. By Claim 9.2.6, $\mid L_{\sigma}\left(p_{3}\right) \geq 3$. Since $|L(\hat{u})| \geq 4$, it follows from Proposition 1.5.14 that there is a $c \in L_{\sigma}\left(p_{3}\right)$ such that $\mid z_{L}^{P^{\prime \prime}}\left(\bullet, c, \sigma\left(p_{4}\right) \mid \geq 3\right.$. Let L^{*} be a list-assignment for $V\left(H^{\prime \prime}\right)$ defined as follows.

1) The vertices p_{1}, p_{2}, p_{3} are precolored with the respective colors $\sigma\left(p_{1}\right), \tau^{c}\left(p_{2}\right), c$.
2) $L^{\prime}(\hat{u})=Z_{H^{\prime \prime}}^{P^{\prime \prime}}\left(\bullet, c, \sigma\left(p_{4}\right)\right)$.
3) Otherwise $L^{*}=L$.

Now we simply color and delete p_{3}. Let ψ be the lone L^{*}-coloring of $\left\{p_{1}, p_{2}, p_{3}\right\}$. By Claim 9.2.10, there is no chord of C^{\prime} in H^{\prime} with p_{3} as an endpoint, so every vertex of the outer face of $H^{\prime}-p_{3}$, other than p_{1}, p_{2}, has an $\left(L^{*}\right)_{\psi}^{p_{1} p_{2}}$-list of size at least three. Thus, by Theorem $0.2 .3, \psi$ extends to an L^{*}-coloring of $V\left(H^{\prime}\right)$. Since $L^{*}(\hat{u})=\mathcal{Z}_{H^{\prime \prime}}^{P^{\prime \prime}}\left(\bullet, c, \sigma\left(p_{4}\right)\right)$, it follows that τ^{c} extends to an L-coloring of H, contradicting our assumption. Thus, we have $\hat{u} \notin N\left(p_{3}\right)$. Combining this with Claim 9.2.10, we get that $N\left(p_{3}\right) \cap V(C) \subseteq\left\{p_{2}, p_{4}\right\} \cup\left\{u_{n+1}, \cdots, u_{t}\right\}$.

Now we do the other side. Suppose toward a contradiction that $\hat{u} \in N\left(p_{2}\right)$. Let H^{*} be the subgraph of H bounded by outer cycle $C^{*}:=p_{1} p_{2} \hat{u} \cdots u_{t}$ and let $H^{* *}$ be the subgraph of H bounded by outer cycle $C^{* *}:=\hat{u} \cdots u_{t} p_{4} p_{3} p_{2}$. Let $P^{*}:=p_{1} p_{2} \hat{u}$. Since $|L(\hat{u})| \geq 4$, it follows from Theorem 0.2 .3 that, for any $d \in L\left(p_{2}\right)$, we have $\left|\mathcal{Z}_{H^{*}}^{P^{*}}\left(\sigma\left(p_{1}\right), d, \bullet\right)\right| \geq$ 2. By Claim 9.2.11, $H^{* *}$ has no chord of $C^{* *}$ with p_{2} as an endpoint. Consider the following cases.

Case 1: There is no chord of C with p_{3} as an endpoint
In this case, it follows from Claim 9.2.5 that $C^{* *}$ is an induced subgraph of $H^{* *}$. Let $c \in L_{\sigma}\left(p_{3}\right)$ and let $L^{* *}$ be a list-assignment for $V\left(H^{* *}\right)$ defined as follows.

1) The vertices p_{2}, p_{3}, p_{4} are precolored with the respective colors $\tau^{c}\left(p_{2}\right), c, \sigma\left(p_{4}\right)$.
2) $L^{* *}(\hat{u})=\left\{\tau^{c}\left(p_{2}\right)\right\} \cup Z_{H^{*}}^{P^{*}}\left(\sigma\left(p_{1}\right), \tau^{c}\left(p_{2}\right), \bullet\right)$.
3) Otherwise $L^{* *}=L$.

If $H^{* *}$ is $L^{* *}$-colorable, then τ^{c} extends to an L-coloring of H, which is false, so $H^{* *}$ is not $L^{* *}$-colorable. Note that $\left|L^{* *}(\hat{u})\right| \geq 3$, since $\left|\mathcal{Z}_{H^{*}}^{P^{*}}\left(\sigma\left(p_{1}\right), \tau^{c}\left(p_{2}\right), \bullet\right)\right| \geq 2$ and $\tau^{c}\left(p_{2}\right) \notin Z_{L}^{P^{*}}\left(\sigma\left(p_{1}\right), \tau^{c}\left(p_{2}\right), \bullet\right)$. By Claim 9.2.6, p_{1}, p_{3} have no common neighbor in $H \backslash C$, and thus no common neighbor in $H^{* *} \backslash C^{* *}$. Thus, by 1) of Proposition 1.5.1, $H^{* *}$ is $L^{* *}$-colorable, contradicting our assumption.

Case 2: There is a chord of C with p_{3} as an endpoint.
In ths case, since $p_{1} p_{3} \notin E(H)$, let $m^{+} \in\{1, \cdots, n\}$ be the maximal index among $\left\{j \in\{1, \cdots, t\}: u_{j} \in N\left(p_{3}\right)\right\}$. As shown above, we have $m^{+} \in\{n+1, \cdots, t\}$. Let $Q:=u_{m+} p_{3} p_{2}$ and let J be the subgraph of H bounded by outer cycle $u_{m^{+}} \cdots u_{t} p_{4} p_{3}$. By Proposition 1.5.14, since $\left|L_{\sigma}\left(p_{3}\right)\right| \geq 3$, there is a $c \in L_{\sigma}\left(p_{3}\right)$ such that $\left|Z_{J, L}^{Q}\left(\bullet, c, \sigma\left(p_{4}\right)\right)\right| \geq$ 2. Let H^{+}be the subgraph of H bounded by outer cycle $C^{+}:=p_{2} p_{3} u_{m^{+}} \cdots u_{n}$. Let L^{+}be a list-assignment for $V\left(H^{+}\right)$defined as follows.

1) p_{2}, p_{3} are precolored with the respective colors $\tau^{c}\left(p_{2}\right), c$.
2) $L^{+}(\hat{u})=\left\{\tau^{c}\left(p_{2}\right)\right\} \cup \mathcal{Z}_{H^{*}}^{P^{*}}\left(\sigma\left(p_{1}\right), \tau^{c}\left(p_{2}\right), \bullet\right)$ and $L^{+}\left(u_{m^{+}}\right)=\{c\} \cup \mathcal{Z}_{J, L}^{Q}\left(\bullet, c, \sigma\left(p_{4}\right)\right)$.
3) Otherwise $L^{+}=L$.

Note that $c \notin \mathcal{Z}_{J}^{Q}\left(\bullet, c, \sigma\left(p_{4}\right)\right)$ and $\tau^{c}\left(p_{2}\right) \notin \mathcal{Z}_{H^{*}}^{P^{*}}\left(\sigma\left(p_{1}\right), \tau^{c}\left(p_{2}\right), \bullet\right)$. Since $\left|Z_{H^{*}}^{P^{*}}\left(\sigma\left(p_{1}\right), \tau^{c}\left(p_{2}\right), \bullet\right)\right| \geq 2$ and $\left|Z_{J}^{Q}\left(\bullet, c, \sigma\left(p_{4}\right)\right)\right| \geq$ 2, each of $\hat{u}, u_{m^{+}}$has an L^{+}-list of size at least three. By Theorem $0.2 .3, H^{+}$is L^{+}-colorable, so τ^{c} extends to an L-coloring of H, contradicting our assumption.

We now have the following.

Claim 9.2.13. There is a chord of C with p_{2} as an endpoint

Proof: Suppose not, and consider the following cases.
Case 1: There is no chord of C with p_{3} a an endpoint.

In this case, by Claim 9.2.8, C is an induced subgraph of G. Let $c \in L_{\sigma}\left(p_{2}\right)$. By Claim 9.2.6 p_{1}, p_{3} have no common neighbor in $H \backslash C$, and, by Claim 9.2.7, p_{2}, p_{4} have no common neighbor in $H \backslash C$. By 1) of Proposition 1.5.1, τ^{c} extends to an L-coloring of H, contradicting our assumption.

Case 2: There is a chord of C with p_{3} as an endpoint.
Since $p_{1} p_{3} \notin E(H)$, let $m \in\{1, \cdots, t\}$ be the minimal index among $\left\{j \in\{1, \cdots, t\}: p_{j} \in N\left(p_{3}\right)\right\}$. By Claim 9.2.12, $m \in\{n+1, \cdots t\}$. Let H^{\prime} be the subgraph of H bounded by outer face $C^{\prime}:=p_{1} u_{1} \cdots u_{m} p_{3} p_{2}$ and let $H^{\prime \prime}$ be the subgraph of H bounded by outer face $C^{\prime \prime}:=u_{m} \cdots u_{t} p_{4} p_{3}$. Let $P^{\prime \prime}:=u_{m} p_{3} p_{4}$. Since $p_{1} p_{3} \notin E(H)$, and there is no chord of C with p_{2} as an endpoint, it follows from our choice of m that C^{\prime} is an induced subgraph of H^{\prime}. By Proposition 1.5.14, since $\left|L_{\sigma}\left(p_{3}\right)\right| \geq 3$, there is a $c \in L_{\sigma}\left(p_{3}\right)$ such that $\left|Z_{H^{\prime \prime}}^{P^{\prime \prime}}\left(\bullet, c, \sigma\left(p_{4}\right)\right)\right| \geq 2$. Let L^{\prime} be a list-assignment for $V\left(H^{\prime}\right)$ defined as follows.

1) The vertices p_{1}, p_{2}, p_{3} are precolored with the respective colors $\sigma\left(p_{1}\right), \tau^{c}\left(p_{2}\right), c$.
2) $L^{\prime}\left(u_{m}\right)=\{c\} \cup z_{H^{\prime \prime}}^{P^{\prime \prime}}\left(\left(\bullet, c, \sigma\left(p_{4}\right)\right)\right.$.
3) Otherwise $L^{\prime}=L$.

Note that $\left|L^{\prime}\left(u_{m}\right)\right| \geq 3$, since $c \notin \mathbb{Z}_{H^{\prime \prime}}^{P^{\prime \prime}}\left(\left(\bullet, c, \sigma\left(p_{4}\right)\right)\right.$. If H^{\prime} is L^{\prime}-colorable, then there is an L-coloring of H^{\prime} which uses a color of $z_{H^{\prime \prime}}^{P^{\prime \prime}}\left(\left(\bullet, c, \sigma\left(p_{4}\right)\right)\right.$ on u_{m}, and thus τ^{c} extends, to an L-coloring of H, which is false. Thus H^{\prime} is not L^{\prime}-colorable. Since C^{\prime} is an induced subgraph of H^{\prime}, it follows from 1) of Proposition 1.5.1 that p_{1}, p_{2}, p_{3} have a common neighbor in $H^{\prime} \backslash C^{\prime}$ and thus a common neighbor in $H \backslash C$, contradicting Claim 9.2.6.

Applying Claim 9.2.13, since $p_{2} p_{4} \notin E(H)$, let m^{-}be the maximal index in $\left\{j \in\{1, \cdots, t\}: p_{2} \in N\left(u_{j}\right)\right\}$. We then have $m^{-} \in\{1, \cdots, n-1\}$. Let H^{-}be the subgraph of H bounded by outer cycle $p_{1} p_{2} u_{m^{-}} \cdots u_{1}$ and let $P^{-}:=p_{1} p_{2} u_{m^{-}}$,

Claim 9.2.14. There is no chord of C with p_{3} as an endpoint.

Proof: Suppose toward a contradiction that such a chord exists. By Claim 9.2.6, $p_{1} p_{3} \notin E(H)$, so let m^{+}be the minimal index in $\left\{j \in\{1, \cdots, t\}: p_{3} \in N\left(u_{j}\right)\right\}$. By Claim 9.2.12, we have $m^{+} \in\{n+1, \cdots, t\}$. Let $H^{\text {box }}$ be the subgraph of H bounded by outer cycle $D:=u_{m^{-}} \cdots u_{m+} p_{3} p_{2}$. Let $P^{+}:=u_{m+} p_{3} p_{4}$. Let H^{+}be the subgraph of H bounded by outer cycle $u_{m^{+}} \cdots u_{t} p_{4} p_{3}$. Applying Proposition 1.5.14, since $\left|L_{\sigma}\left(p_{3}\right)\right| \geq 3$, there is a $c \in L_{\sigma}\left(p_{3}\right)$ with $\left|z_{H^{+}}^{P^{+}}\left(\bullet, c, \sigma\left(p_{4}\right)\right)\right| \geq 2$. Since $z_{H^{-}}^{P^{-}}\left(\sigma\left(p_{1}\right), \tau^{c}\left(p_{2}\right), \bullet\right) \neq \varnothing$, let $r \in \mathcal{Z}_{H^{-}}^{P^{-}}\left(\sigma\left(p_{1}\right), \tau^{c}\left(p_{2}\right), \bullet\right)$. Let L^{*} be a list-assignment for $V\left(H^{\text {box }}\right)$ defined as follows.

1) $u_{m^{-}}, p_{2}, p_{3}$ are precolored with the respective colors $r, \tau^{c}\left(p_{2}\right), c$.
2) $L^{*}\left(u_{m^{+}}\right)=\{c\} \cup Z_{H^{+}}^{P^{+}}\left(\bullet, c, \sigma\left(p_{4}\right)\right)$.
3) Otherwise $L^{*}=L$.

Since $p_{2} p_{4}, p_{1} p_{3} \notin E(H)$ and every chord of C has one of p_{2}, p_{3} as an endpoint, it follows from our choice of m^{-}, m^{+}that D is an induced subgraph of $H^{\text {box }}$. We now apply the work of Section 1.7. Let $Q:=u_{m^{-}} \cdots u_{n-1} . Q$ is a nonempty subpath of D since $m^{-} \leq n-1$.

Since every vertex of $H^{\text {box }} \backslash D$ has an L^{*}-list of size at least five, Q is $\left(2, L^{*}\right)$-short in (D, H). Applying i) of Theorem 1.7.5, there exists a $\psi \in \operatorname{Link}_{L^{*}}\left(Q, D, H^{\text {box }}\right)$ with $\psi\left(u_{m^{-}}\right)=r$. Let ϕ be the unique L^{*}-coloring of the edge $p_{2} p_{3}$. Since D is an induced subgraph of $H^{\text {box }}, \phi \cup \psi$ is a proper L^{*}-coloring of its domain. Again since D is an induced subgraph of G and $\left|L\left(u_{n}\right)\right| \geq 4$, we have $\left|L_{\psi}^{*}\left(u_{n}\right)\right| \geq 3$, and every vertex of $\left\{u_{n+1}, \cdots, u_{m+}\right\}$ also has an $L_{\psi^{*}}^{*}$-list
of size at least three. Thus, it immediately follows from 3a) of Theorem 1.7.4 that $\phi \cup \psi$ extends to an L^{*}-coloring φ of $H^{\text {box }}$. Thus, φ is an L-coloring of $H^{\text {box }}$ which uses a color of $z_{H^{-}, L}^{P^{-}}\left(\sigma\left(p_{1}\right), \tau^{c}\left(p_{2}\right), \bullet\right)$ on $u_{m^{-}}$and a color of $z_{H^{+}, L}^{P^{+}}\left(\bullet, c, \sigma\left(p_{4}\right)\right)$ on $u_{m^{+}}$, so it follows that τ^{c} extends to an L-coloring of H, which is false.

Let H^{\dagger} be the subgraph of H bounded by outer cycle $D:=u_{m^{-}} \cdots u_{t} p_{4} p_{3} p_{2}$. Since every chord of C has one of p_{2}, p_{3} as an endpoint, it follows from Claim 9.2.14 and our choice of m^{-}that D is an induced subgraph of H^{\dagger}.

Claim 9.2.15. There exist two distinct colors $c, c^{\prime} \in L_{\sigma}\left(p_{3}\right)$ such that $\tau^{c}\left(p_{2}\right)=\tau^{c^{\prime}}\left(p_{2}\right)$.
Proof: Suppose not. Since $\left|L_{\sigma}\left(p_{3}\right)\right| \geq 3$, we have $\left|\left\{\tau^{c}\left(p_{2}\right): c \in L_{\sigma}\left(p_{3}\right)\right\}\right| \geq 3$. Thus, by Proposition 1.5, there exists a $c \in L_{\sigma}\left(p_{3}\right)$ such that $\left|Z_{H^{-}}^{P^{-}}\left(\sigma\left(p_{1}\right), \tau^{c}\left(p_{2}\right), \bullet\right)\right| \geq 2$. Let L^{\prime} be a list-assignment for $V\left(H^{\dagger}\right)$ defined as follows.

1) p_{2}, p_{3}, p_{4} are precolored with the respective colors $\tau^{c}\left(p_{2}\right), c, \sigma\left(p_{4}\right)$.
2) $L^{\prime}\left(u_{m^{-}}\right)=\{c\} \cup Z_{H^{-}}^{P^{-}}\left(\sigma\left(p_{1}\right), \tau^{c}\left(p_{2}\right), \bullet\right)$.
3) Otherwise $L^{\prime}=L$.

Note that $\left|L^{\prime}\left(u_{m^{-}}\right)\right| \geq 3$. It follows from Claim 9.2.7 that there is no vertex of $H^{\dagger} \backslash D$ which is adjacent to each of p_{2}, p_{4}. Since D is an induced subgraph of H and $\left(\tau^{c}\left(p_{2}\right), c, \sigma\left(p_{4}\right)\right)$ is a proper L^{\prime}-coloring of $p_{2} p_{3} p_{4}$, it follows from 1) of Proposition 1.5.1 that H^{\dagger} admits an L^{\prime}-coloring ψ. Since $\psi\left(p_{2}\right)=c$, we have $\psi\left(u_{m^{-}}\right) \in \mathcal{Z}_{H^{-}}^{P^{-}}\left(\sigma\left(p_{1}\right), \tau^{c}\left(p_{2}\right), \bullet\right)$, so τ^{c} extends to an L-coloring of H, contradicting our assumption.

Now we have enough to finish the proof of Lemma 9.2.4. Let $c, c^{\prime} \in L_{\sigma}\left(p_{3}\right)$ and let $d \in L_{\sigma}\left(p_{3}\right)$ such that $\tau^{c}\left(p_{2}\right)=$ $\tau^{c^{\prime}}\left(p_{2}\right)=d$. Let $r \in z_{H^{-}}^{P^{-}}\left(\sigma\left(p_{1}\right), d, \bullet\right)$. Let L^{\dagger} be a list-assignment for $V\left(H^{\dagger}\right)$ defined as follows.

1. $u_{m^{-}}, p_{2}, p_{4}$ are precolored with the respective colors $r, d, \sigma\left(p_{4}\right)$.
2. $L^{\dagger}\left(p_{3}\right)=\left\{c_{1}, c_{2}, d\right\}$.
3. Otherwise $L^{\dagger}=L$.

Let Q be the subpath $u_{n+1} \cdots u_{t} p_{4}$ of D (possibly Q is just p_{4}). We again apply the work of Section 1.7. By i) of Theorem 1.7.5, there is a $\psi \in \operatorname{Link}_{L^{\dagger}}\left(Q, D, H^{\dagger}\right)$. Let ϕ be the unique L^{\dagger}-coloring of $p_{2} p_{3} p_{4}$. Since D is an induced subgraph of $H^{\dagger}, \phi \cup \psi$ is a proper L^{\dagger}-coloring of its domain, and since $\left|L^{\dagger}\left(u_{n}\right)\right| \geq 4$, it follows that every vertex of $D \backslash\left(V(Q) \cup\left\{p_{2}, p_{3}\right\}\right)$ has an L_{ψ}^{\dagger}-list of size at least three. Thus, by 3a) of Theorem 1.7.4, $\phi \cup \psi$ extends to an L^{\dagger}-coloring φ of H^{\dagger}. Since $\varphi\left(p_{3}\right)=d$, we have $\varphi\left(p_{2}\right) \in\left\{c, c^{\prime}\right\}$ and since $\varphi\left(u_{m^{-}}\right) \in Z_{H^{-}}^{P^{-}}\left(\sigma\left(p_{1}\right), d, \bullet\right)$, it follows that either τ^{c} or $\tau^{c^{\prime}}$ extends to an L-coloring of H, contradicting our assumption. This completes the proof of Lemma 9.2.4

Chapter 10

Coils and Their Applications: Deleting Vertices Near the Closed Rings of Critical Mosaics

Abstract

In this chapter, we prove an analogue of Theorem 6.0.9 for closed rings. In Chapter 11, which is the final chapter of the proof of Theorem 2.1.7, we then combine this result with Theorem 6.0.9 to construct a smaller counterexample from a critical mosaic. Theorem 6.0 .9 is specific to the context of critical mosaics, but we state our analogous result for closed rings in more general terms. We begin with the following definition.

Definition 10.0.1. Given a short-separation-free planar graph G, a facial cycle C of G, and a list-assignment L-for $V(G)$, we say that C is an L-coil of G (or just an L-coil) if $V(C)$ is precolored by L, and, letting ϕ be the unique L-coloring of $V(C)$, the following hold.

Co1) C is an induced cycle and L-predictable facial subgraph of G; AND
Co2) For every $v \in B_{2}(C)$, every facial subgraph G containing v, except possibly C, is a triangle; $A N D$
Co3) Every vertex of $V(G \backslash C) \cap B_{2}(C)$ has an L-list of size at least five, and furthermore, there is a cyclic facial subgraph $F^{<5}$ of G with $V\left(F^{<5}\right) \subseteq V(G) \backslash B_{2}(C)$, where all the vertices of $F^{<5}$ have L-lists of size less than five; $A N D$

Co4) There is a unique cycle C^{1} in G such that $V\left(C^{1}\right)=D_{1}(C)$, and C^{1} satisfies the following:
a) C^{1} is chordless; AND
b) For any $1 \leq k \leq 6$ and any k-chord P of C, letting $G=G_{0} \cup G_{1}$ be the natural P-partition of G, there exists an $i \in\{0,1\}$ such that every vertex of $V\left(G_{i}\right) \backslash V(C \cup P)$ has an L-list of size at least five; AND
c) Either every vertex of C^{1} has an L_{ϕ}-list of size at least three, or there is a vertex of C^{1} with precisely one neighbor in C; AND
d) If C^{1} contains a vertex with an L_{ϕ}-list of size less than three, then, for every $w \in D_{2}(C)$, the graph $G\left[N(w) \cap V\left(C^{1}\right)\right]$ is a subpath of C^{1};

The reason we introduce this definition is that we use the main result of Chapter 10 not only to complete the proof of Theorem 2.1.7, but also for part of the argument in Chapter 13 which involves an annulus consisting of two precolored cycles. That is, in this chapter we prove a result which holds for all short-separation-free G such that G contains a facial subgraph C which is an L-coil for some list-assignment L.

Note that Co4b) of Definition 10.0 .1 is slightly weaker than the condition that C^{1} is $(6, L)$-short, since, in Co4b) Definition 10.0.1, we do not require the vertices of $P \backslash C$ themselves to have L-lists of size at least five. When we apply the main result of Chapter 10 in the context of critical mosaics in Chapter 11, this distinction does not matter because of the distance conditions imposed on mosaics, but in Chapter 12 we apply the main result of Chapter 10 in the context of a graph with two precolored cycles which are possibly close together, and in that case, the distinction above does matter.

In order to state our lone main result for Chapter 10, we need several additional definitions. We first have the following simple observation, which is an immediate consequecne of short-separation-freeness.

Observation 10.0.2. Let G be a short-separation-free planar graph with facial cycle C and list-assignment L, where C is an L-coil. Let $C^{1}:=G\left[D_{1}(C)\right]$, let $2 \leq k \leq 4$ and let R be a k-chord of C^{1} in $G \backslash C$, where R separates two vertices of $G \backslash C$. Then R is a proper generalized chord of C^{1}. In particular, there is a $k+2$-chord R^{\prime} of C in G such that $R \subseteq R^{\prime}$.

Note that Co3-Co4 of Definition 10.0.1, together with Observation 10.0.2, specify a unique small and large side of a k-chord of C^{1} in $G \backslash C$ for $2 \leq k \leq 4$. Thus, analogous to Definition 8.0.3, we introduce the following natural notation.

Definition 10.0.3. Let G be a short-separation-free planar graph with facial cycle C and list-assignment L, where C is an L-coil. Let $C^{1}:=G\left[D_{1}(C)\right]$ and let ϕ be the unique L-coloring of $V(C)$. Letting $\tilde{G}=G \backslash C$, we introduce the following notation. For any $2 \leq k \leq 4$ and any k-chord R of C^{1} in \tilde{G}, we set $\tilde{G}_{R}^{\text {small }}$ and $\tilde{G}_{R}^{\text {large }}$ to be the unique subgraphs of \tilde{G} such that $\tilde{G}_{R}^{\text {small }} \cup \tilde{G}_{R}^{\text {large }}=\tilde{G}$ is the natural $\left(C^{1}, R\right)$-partition of \tilde{G}, where all of the vertices of $\tilde{G} \backslash\left(C^{1} \cup R\right)$ with L-lists of size less than five lie in $V\left(\tilde{G}_{R}^{\text {large }}\right)$. It follows from $\operatorname{Co} 3$ of Definition 10.0.1 that these two graphs are uniquely specified.

Analogous to Definition 6.0.6 from Chapter 6, we introduce the following natural definition.
Definition 10.0.4. Let G be a short-separation-free planar graph with facial cycle C and list-assignment L, where C is an L-coil. Let $C^{1}:=G\left[D_{1}(C)\right]$ and let ϕ be the unique L-coloring of $V(C)$. Given a $z \in D_{2}\left(C^{1}\right)$, we associate to z a subgraph $\operatorname{Span}(z)$ of $G \backslash C$ in the following way.

1) If there exists a proper 4-chord P of C^{1} in $G \backslash C$ whose midpoint in C, then we set $\operatorname{Span}(z)$ to be the unique proper 4-chord P of C^{1} in $G \backslash C$ which minimizes the quantity $\left|V\left(\tilde{G}_{P}^{\text {small }}\right)\right|$.
2) If no such proper 4 -chord of C^{1} exists, then we define $\operatorname{Span}(z)$ in the following way:
a) If $N(z) \cap D_{2}(C)$ consists of a lone vertex v, and $N(v) \cap V\left(C^{1}\right) \mid=1$, then we set $\operatorname{Span}(z)$ to be the unique 2-path with z as an endpoint and the other endpoint in C^{1}.
b) If $N(z) \cap D_{2}(C)$ consists of a lone vertex v, and $N(v) \cap V\left(C^{1}\right) \mid>1$, then we set P to be the claw on the vertices $\left\{v, z, x, x^{\prime}\right\}$, where P has central vertex z and $x v x^{\prime}$ is the unique 2-chord of C^{1} with central vertex v which maximizes the quantity $\left|V\left(\tilde{G}_{x v x^{\prime}}^{\text {small }}\right)\right|$.
c) If $\left|N(z) \cap D_{2}(C)\right|>1$, then, since G is $K_{2,3}$-free, there exist vertices v, v^{\prime}, x such that $N(z) \cap D_{2}(C)=$ $\left\{v, v^{\prime}\right\}$ and $N(v) \cap V\left(C^{1}\right)=N\left(v^{\prime}\right) \cap V\left(C^{1}\right)=\{x\}$, and we set P to be the 4-cycle $z v x v^{\prime}$.

Thus, for each $z \in D_{2}\left(C^{1}\right), \operatorname{Span}(z)$ is either a 4-path, a 4-cycle, a claw, or a 2-path. To state oir main result for Chapter 10, which requires the following definition. This definition is a natural analogue of Definition 6.0 .8 in the setting of L-coils (which, in particular, specializes to the setting of closed rings).

Definition 10.0.5. Let G be a short-separation-free graph with facial cycle C and list-assignment L, where C is an L-coil. Let $C^{1}:=G\left[D_{1}(C)\right]$, let ϕ be the unique L-coloring of $V(C)$. Given a $z \in D_{2}\left(C^{1}\right)$, a $z \in D_{2}\left(C^{1}\right) \backslash$ $\mathrm{Sh}_{4}\left(C^{1}, G \backslash C\right)$, a (C, z)-opener is a pair $[H, \psi]$, where ψ is an extension of ϕ to an partial L-coloring of G, and the following holds.

1) H is a connected subgraph of G and $\operatorname{dom}(\psi) \subseteq V(H) \subseteq \operatorname{Sh}_{4}\left(C^{1}, G \backslash C\right) \cup B_{2}(C) \cup\{z\}$; AND
2) $V(H) \backslash \operatorname{dom}(\psi)$ is L_{ψ}-inert; AND
3) For each $u \in D_{1}(H),\left|L_{\psi}(u)\right| \geq 3$; AND
4) There is at most one vertex of $\left(\operatorname{dom}(\psi) \cap D_{1}\left(C^{1}, G \backslash C\right)\right) \backslash \operatorname{Sh}_{4}\left(C^{1}, G \backslash C\right)$ which does not lie in Span (z); AND
5) For any $v \in V(H) \cap \operatorname{Sh}_{4}\left(C^{1}, G \backslash C\right)$, either $v \in \operatorname{Sh}_{3}\left(C^{1}, G \backslash C\right)$ or $\operatorname{Span}(z)$ is a proper 4-chord of C^{1} which, in $G \backslash C$, separates v from every vertex of $G \backslash C$ with an L-list of size less than five.

We introduce one final definition and then we state the lone main result of Chapter 10.
Definition 10.0.6. Let G be a short-separation-free graph with facial cycle C and list-assignment L, where C is an L-coil. Let $C^{1}:=G\left[D_{1}(C)\right]$. Given a $z \in D_{2}\left(C^{1}\right)$, we say that z is a C-pentagonal vertex (or just pentagonal if the cycle C is clear from the context) if the following hold.

1) Every vertex of $B_{2}(z)$ has an L-list of size at least five; $A N D$
2) For any $2 \leq k \leq 4$, there is no k-chord of C^{1} in $G \backslash C$ which separates z from a vertex of $G \backslash C$ with an L-list of size less than five.

We are now ready to state the lone main result of Chapter 10. Analogous to Theorem 6.0.9, our lone main result for Chapter 10 is the following.

Theorem 10.0.7.

1) Let G be a short-separation-free graph with facial cycle C and list-assignment L, where C is an L-coil. Let $C^{1}:=G\left[D_{1}(C)\right]$. For any pentagonal $z \in D_{2}\left(C^{1}\right)$, there exists a (C, z)-opener; AND
2) Let $\mathcal{T}:=\left(G, \mathcal{C}, L, C_{*}\right)$ be a critical mosaic and let $C \in \mathcal{C}$ be a closed \mathcal{T}-ring. Let C^{1} be the 1-necklace of C. Then C is an L-coil of G and furthermore, for any $z \in D_{2}\left(C^{1}\right) \backslash \operatorname{Sh}_{4}\left(C^{1}, G \backslash C\right)$, there exists a (C, z)-opener.

We use 2) of Theorem 10.0.7 in Chapter 11, in combination with Theorem 6.0.9, to reduce a critical mosaic to a smaller counterexample by deleting a path between the outer face and an internal ring of a critical mosaic.

In Section 10.1, we show that closed rings of critical mosaics satisfy Definition 10.0.1, so for the remainder of Chapter 10 after Section 10.1, it just suffices to prove 1) of Theorem 10.0.7. In Section 10.2, we gather the preliminary facts we need in order to prove 1) of Theorem 10.0.7. In the remaining sections of Chapter 10, we prove a sequence of lemmas which we combine to prove 1) of Theorem 10.0.7. In each of these lemmas, we apply the work from Chapters $1,7,8$, and 9 to produce our deletion set H by coloring and deleting a subpath of a specified cycle in a way which leaves some sets of vertices inert with respect to our coloring if those vertices are separated by our deletion set from the rings of $\mathcal{C} \backslash\{C\}$ by a 2- or 3-chord of a specified cycle. In Sections 10.2-10.3, we first introduce the machinery that we need in order to prove our sequence of results that make up the proof of Theorem 10.0.7. Theorem 10.0.7 is considerably more difficult than the analogous statement Theorem 6.0.9 for open rings.

10.1 Specializing to Closed Rings

The purpose of this short section is to prove the following lone result.
Lemma 10.1.1. For any critical mosaic $\mathcal{T}=\left(G, \mathcal{C}, L, C_{*}\right)$ and any closed ring $C \in \mathcal{C}, C$ is an L-coil of G. In particular, if 1) of Theorem 10.0.7 holds, then 2) of Theorem 10.0.7 also holds.

We begin with the following.
Proposition 10.1.2. Let $\mathcal{T}=\left(G, \mathcal{C}, L, C_{*}\right)$ be a critical mosaic, let C be a closed ring, let C^{1} be the 1-necklace of C, and let ϕ be the unique L-coloring of $V(C)$. Then C^{1} is $\left(4, L_{\phi}\right)$-short in $\left(C^{1}, G \backslash C\right)$, and, for any $w \in D_{2}(C)$, the graph $G\left[V\left(C^{1}\right) \cap N(w)\right]$ is a subpath of C^{1}.

Proof. Let $\tilde{G}=G \backslash C$. For any $2 \leq k \leq 4$, any k-chord of C^{1} in \tilde{G} which separates two vertices of \tilde{G} is a proper k-chord of C^{1}, since G is short-separation-free. Thus, it immediately follows from 2) of Theorem 2.2.4 that, for any k chord R of C^{1}, one side of R contains all the elenents of $\mathcal{C} \backslash\{C\}$, so C^{1} is $\left(4 L_{\phi}\right)$-short in $\left(C^{1}, \tilde{G}\right)$. The corresponding partition is specified in Definition 8.0.3. Note that, for any $u, u^{\prime} \in N(w)$ with $u \neq u^{\prime}$, the path $C^{1} \cap \tilde{G}_{u w u^{\prime}}^{\text {large }}$ has length greater than one, or else there is a cycle of length three which separates C from an element of $\mathcal{C} \backslash\{C\}$, contradicting short-separation-freeness. Thus, by Theorem 8.0.4, $G\left[N(w) \cap V\left(C^{1}\right)\right]$ is an subpath of C^{1}.

In order to prove Lemma 10.1.1, the only nontrivial thing left to check is that a closed ring of a critical mosaic satisfies property Co4c) of Definition 10.0.1.

Proposition 10.1.3. Let $\mathcal{T}=\left(G, \mathcal{C}, L, C_{*}\right)$ be a critical mosaic and let $C \in \mathcal{C}$ be a closed ring. Let C^{1} be the 1necklace of C. If there exists a vertex $v \in V\left(C^{1}\right)$ such that $|N(v) \cap V(C)|>2$, then there also a exists a $v^{\prime} \in V\left(C^{1}\right)$ such that $|N(v) \cap V(C)|=1$.

Proof. Suppose there is at least one vertex of C^{1} with at least three neighbors in C. Since C is L-predictable and an induced subgraph of G, it follows that there is a vertex $u_{\star} \in V\left(C^{1}\right)$, where $\left|N\left(u_{\star}\right) \cap V(C)\right|>2$, such that $\left|L_{\phi}\left(u_{\star}\right)\right| \geq 2$, and, for all $v \in V\left(C-u_{\star}\right),\left|L_{\phi}(v)\right| \geq 3$.

Let $T^{<2}:=\left\{v \in V\left(C^{1}\right):|N(v) \cap V(C)|=1\right\}$ and let $T^{\text {int }}$ be the set of vertices in $v \in V\left(C^{1}\right)$ for which there exists a $w \in D_{2}(C)$ such that $G\left[N(w) \cap V\left(C^{1}\right)\right]$ is a subpath of C^{1} with v as an internal vertex. Now suppose toward a contradiction that $T^{<2}=\varnothing$, i.e every vertex of C^{1} has at least two neighbors in C. Thus, since u_{\star} has at least three neighbors in C, it follows that $\left|V\left(C^{1}\right)\right|<|V(C)|$. Let $C^{1}:=v_{1} \cdots v_{k} v_{1}$. Note that $k \geq 5$, as G is short-separation-free.

Claim 10.1.4. There exists a partial L_{ϕ}-coloring ψ of $V\left(C^{1}\right)$ and a vertex $w \in B_{2}(C)$ such that the following hold.

1) $\left|L_{\psi}(w)\right| \geq 2$, and, for all $w^{\prime} \in B_{2}(C) \backslash\{w\},\left|L_{\psi}\left(w^{\prime}\right)\right| \geq 3$; AND
2) $V\left(C^{1}\right) \backslash \operatorname{dom}(\psi)$ is $L_{\phi \cup \psi}$-inert and a subset of T^{int}.

Proof: We first deal with the following easy case.
Subclaim 10.1.5. Suppose there exists a $j \in\{1, \cdots, k\}$ such that, for any $w \in D_{2}(C) \cap N\left(v_{j}\right)$, w is adjacent to at most two vertices of C^{1}. Then there exists a partial L_{ϕ}-coloring ψ of $V\left(C^{1}\right)$ such that $V\left(C^{1}\right) \backslash \operatorname{dom}(\psi)$ is $L_{\phi \cup \psi}$-inert and a subset of $T^{\text {int }}$, and furthermore, for all $w \in B_{2}(C),\left|L_{\psi}(w)\right| \geq 3$.

Proof: Let $j \in\{1, \cdots, k\}$ satisfy the condition above.

For any $w \in D_{2}(C) \cap N\left(v_{j}\right), G\left[N(W) \cap V\left(C^{1}\right)\right]$ is a subpath of C^{1} and, by assumption, w is adjacent to at most two vertices of C^{1}, so it follows that the path $C^{1}-v_{j}$ is $\left(2, L_{\phi}\right)$-short in $\left(C^{1}, \tilde{G}\right)$. Now consider the following cases:

Case 1: $v_{j}=u_{\star}$
In this case, every vertex of the path $C^{1}-u_{\star}$ has an L_{ϕ}-list of size at least three. Since $\left|L_{\phi}\left(v_{j-1}\right)\right| \geq 3$, let $c \in L_{\phi}\left(v_{j-1}\right)$ with $\left|L_{\phi}\left(v_{j}\right) \backslash\{c\}\right| \geq 2$. By Theorem 1.7.5, there is a $\psi \in \operatorname{Link}_{L_{\phi}}\left(C^{1}-v_{j}, C^{1}, \tilde{G}\right)$ such that $\psi\left(v_{j-1}\right)=c$. Since C^{1} is an induced subgraph of \tilde{G}, ψ extends to a proper L_{ϕ}-coloring ψ^{*} of $V\left(C^{1}\right)$, and, by our assumption on v_{j}, it follows that, for each $w \in B_{2}(C)$, we have $\left|L_{\psi^{*}}(w)\right| \geq 3$. By definition of $\operatorname{Link}_{L_{\phi}}\left(C^{1}-v_{j}, C^{1}, \tilde{G}\right), V\left(C^{1}\right) \backslash \operatorname{dom}\left(\psi^{*}\right)$ is $L_{\phi \cup \psi^{*}-\text { inert in }} G$ and a subset of $T^{\text {int }}$.

Case 2: $v_{j} \neq u_{\star}$
In this case, since u_{\star} is the only vertex of C^{1} with an L_{ϕ}-list of size less than three, it again follows from Theorem 1.7.5 that there is a $\psi \in \operatorname{Link}_{L_{\phi}}\left(C^{1}-v_{j}, C^{1}, \tilde{G}\right)$ (although we do not get to choose the color of v_{j-1} in this case). Since $\left|L_{\phi}\left(v_{j}\right)\right| \geq 3$ and C^{1} is an induced subgraph of G, ψ extends to a proper L_{ϕ}-coloring ψ^{*} of $V\left(C^{1}\right)$, and, by our assumption on v_{j}, it follows that, for each $w \in B_{2}(C)$, we have $\left|L_{\psi^{*}}(w)\right| \geq 3$. By definition of $\operatorname{Link}_{L_{\phi}}\left(C^{1}-v_{j}, C^{1}, \tilde{G}\right), V\left(C^{1}\right) \backslash \operatorname{dom}\left(\psi^{*}\right)$ is $L_{\phi \cup \psi^{*}}$-inert and a subset of $T^{\text {int }}$.

For the remainder of the proof of Claim 10.1.4, we suppose that, for each $j \in\{1, \cdots, k\}$, there is a $w \in B_{2}(C)$ such that $G\left[N(w) \cap V\left(C^{1}\right)\right]$ is a path of length two which contains v_{j}, since, if this does not hold, then, by Subclaim 10.1.5, we are done.

Subclaim 10.1.6. There exists a $w \in B_{2}(C)$ such that $G\left[N(w) \cap V\left(C^{1}\right)\right]$ is a subpath of C^{1} of length precisely two.

Proof: Suppose toward a contradiction that no such w exists. Note that, by our assumption on $\left\{v_{1}, \cdots, v_{j}\right\}$, no two vertices of $C^{1} \backslash T^{\text {int }}$ are consecutive in $T^{\text {int }}$. We now define a cycle C^{\prime} as follows. We let C^{\prime} be the unique cycle of G which intersects with C^{1} on precisely the vertices of $C^{1} \backslash T^{\text {int }}$, where, for each subpath P of C^{1} with $V(\stackrel{\circ}{P}) \subseteq{ }^{\text {int }}$ and $V(P) \backslash V(\stackrel{\circ}{P}) \subseteq V\left(C^{1}\right) \backslash T^{\text {int }}$, we replace P with the unique 2-path in G whose midpoint lies in $B_{2}(C)$ and whose endpoints are also the endpoints of P.

Since no two vertices of $C^{1} \backslash T^{\text {int }}$ are adjacent in C^{1}, C^{1} admits a partition $C^{1}=P_{1} \cdots P_{r}$, where P_{1}, \cdots, P_{r} is a collection of edge-disjoint paths, and, for each $i=1, \cdots, r$, the following hold.
i) The endpoints of P_{i} lie in $C^{1} \backslash T^{\text {int }}$ and $V\left(\stackrel{\circ}{P}_{i}\right) \subseteq T^{\text {int }}$; AND
ii) There is a unique vertex $w_{i} \in D_{2}(C)$ such that $P_{i}:=G\left[N\left(w_{i}\right) \cap V\left(C^{1}\right)\right]$; AND
iii) P_{i}, P_{i+1} intersect on a unique common endpoint of P_{i}, P_{i+1}, where the indices are read $\bmod r$.

Condition iii) holds since $r>2$, or else there is a cycle of length four which separates C from an element of $\mathcal{C} \backslash\{C\}$, contradicting the fact that \mathcal{T} is a tessellation. By assumption, each of the paths P_{1}, \cdots, P_{r} has length at least three. For each $i=1, \cdots, r$, let Q_{i} be the unique 2-path whose midpoint is w_{i} and whose endpoints are the endpoints of P_{i}, where w_{1}, \cdots, w_{r} as as in ii) above. Note that, for each $i=1, \cdots, r$, we have $\frac{\left|E\left(P_{i}\right)\right|}{\left|E\left(Q_{i}\right)\right|} \geq \frac{3}{2}$.
Since $\left|V\left(C^{1}\right)\right|=\left|E\left(C^{1}\right)\right|=\sum_{i=1}^{r}\left|E\left(P_{i}\right)\right|$ and $\left|V\left(C^{\prime}\right)\right|=\left|E\left(C^{\prime}\right)\right|=\sum_{i=1}^{r}\left|E\left(Q_{i}\right)\right|$, it follows that $\left|V\left(C_{1}\right)\right| \geq$ $\left\lceil\frac{3}{2}\left|V\left(C^{\prime}\right)\right|\right\rceil$. Since C^{\prime} has nonempty intersection with C_{1}, we have $d\left(C^{\prime}, C\right)=1$. Since C^{\prime} separates C from each element of $\mathcal{C} \backslash\{C\}$, it follows from Corollary 2.1.30 that $|V(C)|<1+\frac{3}{2}\left|V\left(C^{\prime}\right)\right|$. But since $\left|V\left(C_{1}\right)\right|<|V(C)|$, we have $|V(C)|>\left\lceil\frac{3}{2}\left|V\left(C^{\prime}\right)\right|\right\rceil$, so we get $\left\lceil\frac{3}{2}\left|V\left(C^{\prime}\right)\right|\right\rceil<|V(C)|<\frac{3}{2}\left|V\left(C^{\prime}\right)\right|+1$, which is false.

Now we have enough to finish the proof of Claim 10.1.4. Applying Subclaim 10.1.6, let $w \in B_{2}(C)$, where $P:=$ $G\left[N(w) \cap V\left(C^{1}\right)\right]$ is a subpath of C^{1} of length precisely two, and let $P:=v_{j} v_{j+1} v_{j+2}$ for some $j \in\{1, \cdots, k\}$. Note that $v_{j+1} \in T^{\text {int }}$, and, since $G\left[N(w) \cap V\left(C^{1}\right)\right]$ has length precisely two, the path $C^{1}-v_{j}$ is $\left(2, L_{\phi}\right)$-short in $\left(C^{1}, \tilde{G}\right)$. Consider the following cases:

Case 1: $v_{j}=u_{\star}$
In this case, every vertex of the path $C^{1}-u_{\star}$ has an L_{ϕ}-list of size at least three. Since $\left|L_{\phi}\left(v_{j-1}\right)\right| \geq 3$, let $c \in L_{\phi}\left(v_{j-1}\right)$ with $\left|L_{\phi}\left(v_{j}\right) \backslash\{c\}\right| \geq 2$. By Theorem 1.7.5, there is a $\psi \in \operatorname{Link}_{L_{\phi}}\left(C^{1}-v_{j}, C^{1}, \tilde{G}\right)$ such that $\psi\left(v_{j-1}\right)=c$. Since C^{1} is an induced subgraph of \tilde{G}, ψ extends to a proper L_{ϕ}-coloring ψ^{*} of $V\left(C^{1}\right)$, and, for each $w^{\prime} \in B_{2}(C) \backslash\{w\}$, we have $\left|L_{\psi^{*}}\left(w^{\prime}\right)\right| \geq 3$. Furthermore, $\left|L_{\psi^{*}}(w)\right| \geq 2$, since P has length two, so our choice of ψ^{*}, w satisfies Claim 10.1.4.

Case 2: $v_{j} \neq u_{\star}$
In this case, by A) of Theorem 7.0.1, there is a $\psi \in \operatorname{Link}_{L_{\phi}}\left(C^{1}-v_{j}, C^{1}, \tilde{G}\right)$ (although we no longer have control over the color $\psi\left(v_{j-1}\right)$ in this case). Since $\left|L_{\phi}\left(v_{j}\right)\right| \geq 3$ and C^{1} is an induced subgraph of G, ψ extends to a proper L_{ϕ}-coloring ψ^{*} of $V\left(C^{1}\right)$, and, for each $w^{\prime} \in B_{2}(C) \backslash\{w\}$, we have $\left|L_{\psi^{*}}\left(w^{\prime}\right)\right| \geq 3$. As above, $\left|L_{\psi^{*}}(w)\right| \geq 2$, since P has length two, so our choice of ψ^{*}, w satisfies Claim 10.1.4. This completes the proof of Claim 10.1.4.

Now we have enough to finish the proof of Proposition 10.1.3. Let ϕ, w be as in Claim 10.1.4. We now define a list-assignment L^{\dagger} for $V(G \backslash C)$ as follows. For each $x \in B_{2}(C)$, we set $L^{\dagger}(x):=L(x)$. For each $x \in \operatorname{dom}(\psi)$, we set $L^{\dagger}(x):=\{\psi(x)\}$. Finally, for each $x \in V\left(C^{1} \backslash \operatorname{dom}(\phi)\right)$, we set $L^{\dagger}(x)$ to consist of a lone color not lying in $\bigcup_{y \in N_{G}(x)} L(y)$, where these lone colors are chosen so that $V\left(C^{1}\right)$ is L^{\dagger}-colorable (we can just choose all of these singletons to be distinct colors). Now let C_{*}^{\dagger} be the outer face of \tilde{G} and consider the tuple $\mathcal{T}^{\dagger}:=(\tilde{G},(\mathcal{C} \backslash\{C\}) \cup$ $\left\{C^{1}\right\}, L^{\dagger}, C_{*}^{\dagger}$). Note that \mathcal{T}^{\dagger} is a tessellation in which C^{1} is a closed ring. We claim now that \mathcal{T}^{\dagger} is a mosaic.
Since $\left|V\left(C^{1}\right)\right|<|V(C)|$ and $V\left(C^{1}\right)=B_{1}(C)$, it follows that \mathcal{T}^{\dagger} satisfies the distance conditions of Definition 2.1.6, since $\operatorname{Rk}\left(\mathcal{T}^{\dagger} \mid C^{1}\right)<\operatorname{Rk}(\mathcal{T} \mid C)$, and it also immediately follows that \mathcal{T}^{\dagger} satisfies M0).

Since each vertex of C^{1} has an L^{\dagger}-list of size one, let σ be the unique L^{\dagger}-coloring of $V\left(C^{1}\right)$. By our choice of L^{\dagger}-lists for the vertices of $C^{1} \backslash \operatorname{dom}(\phi)$, we have $\left|L_{\sigma}(w)\right| \geq 2$, and, for each $w^{\prime} \in B_{2}(C, G) \backslash\{w\}$, we have $\left|L_{\sigma}\left(w^{\prime}\right)\right| \geq 3$. By Theorem 8.0.4, each vertex of $w^{\prime} \in B_{2}(C, G)$, the graph $G\left[N\left(w^{\prime}\right) \cap V\left(C^{1}\right)\right]$ is a subpath of C^{1}, and since C^{1} is an induced subgraph of $G \backslash C$, it follows that C^{1} is an L^{\dagger}-predictable facial subgraph of $G \backslash C$. Thus, \mathcal{T}^{\dagger} also satisfies M2), and M1) is trivially satisfied. We conclude that \mathcal{T}^{\dagger} is indeed a mosaic. Since $|V(G \backslash C)|<|V(G)|$, it follows from the minimality of \mathcal{T} that there is an L^{\dagger}-coloring τ of \tilde{G}. Let τ^{*} be the restriction of τ to $V(\tilde{G}) \backslash V\left(C^{1} \backslash \operatorname{dom}(\psi)\right)$. By our construction of ψ, the union $\phi \cup \tau^{*}$ is a proper L-coloring of $V(G) \backslash V\left(C^{1} \backslash \operatorname{dom}(\psi)\right)$, and $\phi \cup \tau^{*}$ extends to an L-coloring of G, contradicting the fact that G is not L-colorable. This completes the proof of Proposition 10.1.3.

Now we finish the proof of Lemma 10.1.1, which we restate below.
Lemma 10.1.1. For any critical mosaic $\mathcal{T}=\left(G, \mathcal{C}, L, C_{*}\right)$ and any closed ring $C \in \mathcal{C}, C$ is an L-coil of G. In particular, if 1) of Theorem 10.0.7 holds, then 2) of Theorem 10.0.7 also holds.

Proof. Let C^{1} be the 1-necklace of C. We first check that C is an L-coil of G. Since C is an induced subgraph of G, it follows from Definition 2.1.6 that C satisfies Co1 of Definition 10.0.1. Since \mathcal{T} is a tessellation, It immediately follows from Corollary 2.2.29 and the distance conditions of Definition 2.1.6 that Co2-Co3 hold as well. Now we just check that C^{1} satisfies Co4. By Theorem 8.0.4, C^{1} satisfies Co4a) and, by Proposition 10.1.2, C^{1} satisfies Co4b) and

Co4d). By Proposition 10.1.3, C^{1} satisfies $\mathrm{Co4c}$), so C is indeed an L-coil of G. It also follows from the distance conditions on \mathcal{T} that every vertex of $D_{2}\left(C^{1}\right) \backslash \mathrm{Sh}_{4}\left(C^{1}, G \backslash C\right)$ is pentagonal. Thus, if 1) of Theorem 10.0.7 holds, then 2) of Theorem 10.0.7 also holds.

Since we have Lemma 10.1.1, the remainder of Chapter 10 deals entirely with 1) of Theorem 10.0.7, i.e all of the remaining work of Chapter 10 is exclusively in the context of the general structures defined in Definition 10.0.1.

10.2 Preliminaries to the Proof of 1) of Theorem 10.0.7

For the remainder of Chapter 10, we fix the following data.

1) A planar graph G with facial cycle C and list-assignment L, where C is an L-coil of G and $\tilde{G}:=G \backslash C$.
2) An L-coloring ϕ of $V(C)$ (i.e the unique L-coloring of $V(C)$.
3) A cycle C^{1}, where $C^{1}:=G\left[D_{1}(C)\right]$.

We show in the remainder of Chapter 10 that, for every pentagonal vertex of $D_{2}\left(C^{1}\right)$, there exists a (C, z)-opener. We begin with the following definitions.

Definition 10.2.1.

1) Let $T^{<2}:=\left\{v \in V\left(C^{1}\right):|N(v) \cap V(C)|=1\right\}$.
2) Let S_{\star} be the set of vertices of C^{1} with L_{ϕ}-lists of size less than three. Since C is L-predictable and induced in G, we have either $S_{\star}=\varnothing$ or ${ }^{\star}$ consists of a lone vertex with an L_{ϕ}-list of size two.
3) We define a subpath $S_{\star}^{\text {path }}$ of C^{1} as follows.
(a) If $S_{\star}=\varnothing$ then $S_{\star}^{\text {path }}=\varnothing$.
(b) Otherwise, letting u_{\star} be the lone vertex of S_{\star}, if $u_{\star} \notin \operatorname{Sh}_{2, L_{\phi}}\left(C^{1}, \tilde{G}\right)$, then we set $S_{\star}^{\text {path }}:=u_{\star}$, and, if $u_{\star} \in \operatorname{Sh}_{2, L_{\phi}}\left(C^{1}, \tilde{G}\right)$, then we set $S_{\star}^{\text {path }}:=G\left[N(w) \cap V\left(C^{1}\right)\right]$, where w is the unique element of $D_{2}(C)$ such that u_{\star} is an internal vertex of $G\left[N(w) \cap V\left(C^{1}\right)\right]$.
4) Given a subpath Q of C^{1}, we say that Q is divisible if, for some $k \geq 2$, there is a proper k-chord R of C^{1} in \tilde{G} such that either $Q \subseteq C^{1} \cap \tilde{G}_{R}^{\text {small }}$ or $Q \subseteq C^{1} \cap \tilde{G}_{R}^{\text {large }}$.

Note that $S_{\star}^{\text {path }}$ is well-defined by the subpath condition Co4d) of Definition 10.0.1. We now have the following simple observation, which we use repeatedly.

Observation 10.2.2. Let Q be a divisible subpath of C^{1}. Then Q is $\left(2, L_{\phi}\right)$-short in $\left(\tilde{G}, C^{1}\right)$.
Proof. Suppose toward a contradiction that Q is not $\left(2, L_{\phi}\right)$-short in $\left(\tilde{G}, C^{1}\right)$). Since $G\left[N(w) \cap V\left(C^{1}\right)\right]$ is a subpath of C^{1} for each $w \in D_{2}(C)$, it follows that there exists a $w \in D_{2}(C)$ such that $|N(w) \cap V(Q)|>2$ and Q contains both endpoints of $G\left[N(w) \cap V\left(C^{1}\right)\right]$, but does not contain all of $G\left[N(w) \cap V\left(C^{1}\right)\right]$. That is, letting $P^{w}:=G[N(w) \cap$ $\left.V\left(C^{1}\right)\right], Q$ contains an internal vertex of P^{w} but $Q \cap P^{w}$ is not connected.
By definition, for some $k \geq 2$, there is a proper k-chord R of C^{1} in \tilde{G} such that either $Q \subseteq C^{1} \cap \tilde{G}_{R}^{\text {small }}$ or $Q \subseteq$ $C^{1} \cap \tilde{G}_{R}^{\text {large }}$. Consider the following cases.

Case 1: $w \in V(R)$

In this case, one endpoint of P^{w} lies in $\tilde{G} \backslash R$ and the other lies in $\tilde{G} \backslash R$, or else $P^{w} \cap Q$ is connected. But since both endpoints of P^{w} lie in Q, we contradict the fact that either $Q \subseteq \tilde{G}_{R}^{\text {small }}$ or $Q \subseteq \tilde{G}_{R}^{\text {large }}$.

Case 2: $w \notin V(R)$
In this case, suppose without loss of generality that $w \in V\left(\tilde{G}_{R}^{\text {large }}\right) \backslash V(R)$. Thus, P^{w} is a subpath of $C^{1} \cap \tilde{G}_{R}^{\text {large }}$ and intersects with $C^{1} \cap \tilde{G}_{R}^{\text {small }}$ at most on its endpoints. Since Q contains an internal vertex of P^{w} and both endpoints of P^{w}, we have $Q=P^{w}=\tilde{G}^{\text {small }}$, contradicting our assumption that $Q \cap P^{w}$ is not connected.

In view of the results of Sections 1.6 and 9.1-9.2, we introduce the following very natural definitions, since we frequently deal with 3 -chords of C^{1} in \tilde{G}.

Definition 10.2.3. Given a 3 -chord R of C^{1} in \tilde{G}, we have the following notation.

1) We set $\operatorname{Base}(R)$ to be the set of L_{ϕ}-colorings ψ of the endpoints of R such that any extension of ψ to an L_{ϕ}-coloring of $V(R)$ extends to L_{ϕ}-color all of $\tilde{G}_{R}^{\text {small }}$.
2) For any $x \in V(\stackrel{\circ}{R})$, we set $\operatorname{Corner}(R, x)$ to be the set of L_{ϕ}-colorings ψ of $V(R-x)$ such that any extension of ψ to an L_{ϕ}-coloring of $V(R)$ extends to L_{ϕ}-color all of $\tilde{G}_{R}^{\text {small }}$.

Unless otherwise specified, given a subpath Q of C^{1}, whenever we write $\operatorname{Link}(Q)$ in the remainder of Chapter 10, we mean $\operatorname{Link}_{L_{\phi}}\left(Q, C^{1}, \tilde{G}\right)$, and likewise, whenever we write $\operatorname{Sh}_{2}(Q)$, we mean $\operatorname{Sh}_{2, L_{\phi}}\left(Q, C^{1}, \tilde{G}\right)$. We supress these subscript and coordinates as they are clear from the context of the data that we fixed at the beginning of Section 10.2. Likewise, for any partial L_{ϕ}-coloring σ of \tilde{G} and vertex set $A \subseteq V(\tilde{G})$, we always write $\Phi(\sigma, A)$ to mean $\Phi_{\tilde{G}, L_{\phi}}(\sigma, A)$.
Proposition 10.2.4. Suppose that $S_{\star} \neq \varnothing$ and let u_{\star} be the lone vertex of S_{\star}. Let P be a divisible subpath of C^{1} of length at least one, where $S_{\star}^{\text {path }}$ is a proper subpath of P. Let p, p^{\prime} be the endpoints of P and let q, q^{\prime} be the endpoints of $S_{\star}^{\text {path }}$, where the (not necessarily distinct) vertices of $\left\{p, p^{\prime}, q, q^{\prime}\right\}$ have the order $p^{\prime}, q^{\prime}, q, p$ on the path P. Then the following hold.

1) $\operatorname{Link}(P) \neq \varnothing$; AND
2) If there is a vertex $v^{\dagger} \in V(q P p) \cap T^{<2}$, then there exist two elements ψ_{1}, ψ_{2} of $\operatorname{Link}(P)$ which use different colors on p and which both restrict to the same partial L_{ϕ}-coloring of $p^{\prime} P q^{\prime}$.

Proof. Since $S_{\star} \neq \varnothing$, it follows from Co4d) of Definition 10.0.1 that every vertex of $D^{2}(C)$. has a neighborhood in C^{1} consisting of a subpath of C^{1}. Since G is $K_{2,3}$-free, it follows that, for any $w \in D_{2}(C)$, no vertex of $T^{<2}$ is an internal vertex of the path $G\left[N(w) \cap V\left(C^{1}\right)\right]$. In the language of Definition 1.7.3, any vertex of $V(P) \cap T^{<2}$ is a P-hinge of C, and since $u_{\star} \notin T^{<2}$, the proposition is an immediate consequence of Theorem 7.0.1.

The result above has the following compact corollary.

Corollary 10.2.5.

1) For any divisible subpath Q of $C^{1}, \operatorname{Link}(Q) \neq \varnothing$; AND
2) For any $x \in V\left(C^{1}\right)$, if $C^{1}-x$ is a divisible subpath of C^{1}, then there exists a $\psi \in \operatorname{Link}\left(C^{1}-x\right)$ such that $\left|L_{\phi \cup \psi}(x)\right| \geq 1$
3) If $S_{\star} \neq \varnothing$ and let $x x^{\prime} \in E\left(C^{1}\right) \backslash E\left(S_{\star}^{\text {path }}\right)$, where $C^{1}-x x^{\prime}$ is a divisible subpath of C^{1}, then there is a $\sigma \in \operatorname{Link}\left(C^{1}-x x^{\prime}\right)$ such that $\sigma(x) \neq \sigma\left(x^{\prime}\right)$ (i.e particular, σ is a proper L_{ϕ}-coloring of its domain in \tilde{G})

Proof. If $S_{\star} \cap V(Q)=\varnothing$, or there is a vertex u_{\star} with $S_{\star}=\left\{u_{\star}\right\}$, where $S_{\star}^{\text {path }}$ intersects with Q on at most an endpoint, then we are done by Theorem 1.7.5. If $S_{\star}^{\text {path }} \subseteq Q$, then we are done by Proposition 10.2.4. The only remaining possibility is that there exist two vertices p, p^{\prime} of $S_{\star}^{\text {path }}$, where $S_{\star}^{\text {path }} \cap Q=p Q p^{\prime}, p$ is an endpoint of Q, p^{\prime} is an internal vertex of Q and an endpoint of $S_{\star}^{\text {path }}$, and u_{\star} is an internal vertex of $p Q p^{\prime}$. Let p^{*} be the non- p endpoint of Q. By Theorem 7.0.1, there is an element ψ of $\operatorname{Link}\left(p Q p^{\prime}\right)$ obtained by coloring p, p^{\prime}. By Theorem 1.7.5, there is a $\psi^{*} \in \operatorname{Link}\left(p^{\prime} Q p^{*}, C^{1}, \tilde{G}\right)$ using $\psi\left(p^{\prime}\right)$ on p^{\prime}. Since $p Q p^{\prime}$ is a path of length at least two, there is a unique vertex $w \in B_{2}(C)$ such that $S_{\star}^{\text {path }}=G\left[N(w) \cap V\left(C^{1}\right)\right]$. Since $N(w) \cap V(Q)=V\left(p Q p^{\prime}\right)$, and $p^{\prime} \notin T^{\text {int }}$, we have $\psi \cup \psi^{\prime} \in \operatorname{Link}\left(p Q p^{\prime}\right)$. This proves 1).

Now we prove 2). Suppose first that $x \notin S_{\star}$. By 1), there is a $\psi \in \operatorname{Link}\left(C^{1}-x\right.$,), and since C^{1} is an induced subgraph of G and $L_{\phi}(x) \mid \geq 3$, we have $\left|L_{\phi \cup \psi}(x)\right| \geq 1$. Now suppose that $x \in S_{\star}$. Thus, $S_{\star}=\{x\}$ and $\left|L_{\phi}\left(x_{\ell}\right)\right| \geq 3$, so, there is a $c \in L_{\phi}\left(x_{\ell}\right)$ with $\left|L_{\phi}(x) \backslash\{c\}\right| \geq 2$. By Theorem 1.7.5, there is a $\psi \in \operatorname{Link}_{L_{\phi}}\left(C^{1}-x\right)$ with $\psi\left(x_{\ell}\right)=c$, so we again have $\left|L_{\phi \cup \psi}(x)\right| \geq 1$.

Now we prove 3). Since $S_{\star} \neq \varnothing$, it follows from Co4c) of Definition 10.0.1 that $T^{<2} \neq \varnothing$. Since $x x^{\prime}$ is not an edge of $S_{\star}^{\text {path }}$, then it immediately follows from Proposition 10.2 .4 that there is a $\sigma \in \operatorname{Link}\left(C^{1}-x x^{\prime}\right)$ such that $\sigma(x) \neq \sigma\left(x^{\prime}\right)$, so σ is a proper L_{ϕ}-coloring of its domain in \tilde{G}.

We now return to setting up the proof of Theorem 10.0.7. For each $z \in D_{2}\left(C^{1}\right)$, we associate to z a partition of \tilde{G} in the following way.

Definition 10.2.6. For each $z \in D_{2}\left(C^{1}\right)$, we let $\tilde{G}_{z}^{\text {small }}$ and $\tilde{G}_{z}^{\text {large }}$ be the unique subgraphs of \tilde{G} such that $\tilde{G}=$ $\tilde{G}_{z}^{\text {small }} \cup \tilde{G}_{z}^{\text {large }}$, where the following hold.

1) Each vertex of $\tilde{G} \backslash C^{1}$ with an L_{ϕ}-list of size less than five lies in $V\left(\tilde{G}_{z}^{\text {large }}\right)$; AND
2) $\tilde{G}_{z}^{\text {small }} \cap \tilde{G}_{z}^{\text {large }}=\operatorname{Span}(z) ; A N D$
3) If $\operatorname{Span}(z)$ is either a cycle or a proper 4-chord of C^{1}, then $\tilde{G}_{z}^{\text {small }} \cup \tilde{G}_{z}^{\text {large }}$ is the natural $\operatorname{Span}(z)$-partition of \tilde{G}; AND
4) If $\operatorname{Span}(z)$ is a claw, then $\tilde{G}_{z}^{\text {small }}-z$ and $\tilde{G}_{z}^{\text {large }}$ are the two subgraphs of the natural partition of \tilde{G} associated to the 2-chord $\operatorname{Span}(z) \backslash\{z\}$ of \tilde{G}; AND
5) If $\operatorname{Span}(z)$ is a 2-path, then $\tilde{G}_{z}^{\text {small }}=\operatorname{Span}(z)$ and $\tilde{G}_{z}^{\text {large }}=\tilde{G}$.

By Co3 of Definition 10.0.1, these two graphs are uniquely specified.
Note that, if $\operatorname{Span}(z)$ is a proper 4-chord P of \tilde{G}, then $\tilde{G}_{z}^{\text {small }}=\tilde{G}_{P}^{\text {small }}$ and $\tilde{G}_{z}^{\text {large }}=\tilde{G}_{P}^{\text {large }}$. If $\operatorname{Span}(z)$ is a 2-path, then $\tilde{G}_{z}^{\text {small }}=\operatorname{Span}(z)$ and $\tilde{G}_{z}^{\text {large }}=\tilde{G}$. If $\operatorname{Span}(z)$ is a 4-cycle, the, since G is short-separation-free and $z \in D_{2}\left(C^{1}\right)$, it follows from our triangulation conditions that $\tilde{G}_{z}^{\text {small }}$ consists of the 4-cycle $\operatorname{Span}(z)$ and an edge between the two neighbors of z in $V(\operatorname{Span}(z))$. Given the definitions above, there is a very natural way to associate to each $z \in D_{2}\left(C^{1}\right)$ a cycle obtained from C^{1} by rerouting through a path in $\operatorname{Span}(z)$.

Definition 10.2.7. For each $z \in D_{2}\left(C^{1}\right)$, we associate to z a cycle C_{z}^{1} in G in the following way. If $\operatorname{Span}(z)$ is either a 2-path or a 4-cycle, then we set $C_{z}^{1}:=C^{1}$. If $\operatorname{Span}(z)$ is a claw, then we set C_{z}^{1} to be the cycle $\left(C^{1} \cap \tilde{G}_{z}^{\text {large }}\right)+x w x^{\prime}$, where $x w x^{\prime}$ is the 2-path $\operatorname{Span}(z) \backslash\{z\}$. Finally, if $\operatorname{Span}(z)$ is a proper 4-chord of C^{1}, then we simply set C_{z}^{1} to be the cycle $\tilde{G}_{z}^{\text {large }}+\operatorname{Span}(z)$.

We now have the following.

Proposition 10.2.8. For any pentagonal $z \in D_{2}\left(C^{1}\right)$, the following hold.

1) C_{z}^{1} is an induced subgraph of $\tilde{G}_{z}^{\text {small }}$; AND
2) No two vertices of $V(\operatorname{Span}(z)) \cap D_{2}(C)$ have a common neighbor other than z in \tilde{G}_{z}^{1}; AND
3) For any $u \in N(z) \cap V\left(\tilde{G}_{z}^{\text {large }} \backslash \operatorname{Span}(z)\right)$, the set $N(u) \cap\left(V\left(C_{z}^{1}\right) \cup \operatorname{Span}(z)\right)$ consists of z and at most one vertex of $\operatorname{Span}(z) \cap D_{2}(C)$.

Proof. We first prove 1). This is trivial if $\operatorname{Span}(z)$ is a 2-path or a 4-cycle, since in that case we have $C_{z}^{1}=C^{1}$ and so the proposition follows from $\operatorname{Co} 4 \mathrm{a}$) of Definition 10.0.1. Now suppose that $\operatorname{Span}(z)$ is a claw, where $\operatorname{Span}(z)-z$ is the 2-chord $x w x^{\prime}$ of C^{1}. We then have $N(w) \cap V\left(C^{1}\right) \subseteq V\left(\tilde{G}_{z}^{\text {small }}\right)$, or else we contradict the maximality of the 2-chord $x w x^{\prime}$, Thus, C_{z}^{1} is again an induced subgraph in this case, since $z \in D_{2}\left(C^{1}\right)$.

Now suppose that $\operatorname{Span}(z)$ is a proper 4-chord $x y z y^{\prime} x^{\prime}$ of C^{1}. W first show that $x^{\prime} y, x y^{\prime} \notin E\left(\tilde{G}_{z}^{\text {large }}\right)$. Suppose this does not hold, and suppose without loss of generality that $x^{\prime} y \in E\left(\tilde{G}_{z}^{\text {large }}\right)$. Then \tilde{G} contains the 2-chord $x y x^{\prime}$ of C^{1}, and since G is short-separation-free, the 4-cycle $x^{\prime} y z y^{\prime}$ does not separate x from any vertex of $G \backslash B_{4}(C)$ with an L_{ϕ}-list of size less than five. Thus, we have $\tilde{G}_{z}^{\text {small }} \subseteq \tilde{G}_{x y x^{\prime}}^{\text {small }}$, and $z \in V\left(\tilde{G}_{x y x^{\prime}}^{\text {small }}\right)$, contradicting the fact that z is pentagonal. Now suppose toward a contradiction that C_{z}^{1} is not an induced subgraph of $\tilde{G}_{z}^{\text {large }}$. Since C^{1} is an induced subgraph of $G, x^{\prime} y, x y^{\prime} \notin E\left(\tilde{G}_{z}^{\text {large }}\right)$, and $z \in D_{2}(C)$, it follows that there exists an edge $e \in E\left(\tilde{G}_{z}^{\text {large }}\right)$ with one endpoint in $\left\{y, y^{\prime}\right\}$ and the other endpoint in $V\left(C_{z}^{1} \backslash \operatorname{Span}(z)\right)$. Without loss of generality, let $e=y u$, and note that $u \in V\left(C^{1}\right) \backslash\left\{x, x^{\prime}\right\}$.
Now, in $\tilde{G}_{z}^{\text {large }}$, the chord $y u$ of C_{z}^{1} separates $z y^{\prime} x^{\prime}$ from no vertex of $G \backslash B_{4}(C)$ with an L_{ϕ}-list of size less than five, and, letting $P^{*}:=u y z y^{\prime} x^{\prime}$, we have $\tilde{G}_{z}^{\text {small }} \subseteq \tilde{G}_{P^{*}}^{\text {small }}$. Since $u \notin V\left(\tilde{G}_{z}^{\text {small }}\right)$, we have $\left|V\left(\tilde{G}_{z}^{\text {small }}\right)\right|<\left|V\left(\tilde{G}_{P^{*}}^{\text {small }}\right)\right|$, so we contradict the maximality of $\operatorname{Span}(z)$. This proves 1).

Now we prove 2) and 3) together. We first show that 2) and 3) hold if $\operatorname{Span}(z)$ is either a claw, a 4-cycle, or a 2-path. 2) is trivial if $\operatorname{Span}(z)$ is either a claw of a 2-path, since there is only vertex of $\operatorname{Span}(z) \cap D_{2}(C)$ in that case, and, if $\operatorname{Span}(z)$ is a 4-cycle, then the claim immediately follows from the fact that G is $K_{2,3}$-free. Now let $u \in$ $N(z) \cap V\left(\tilde{G}_{z}^{\text {large }} \backslash \operatorname{Span}(z)\right)$. If $\operatorname{Span}(z)$ is a 2-path, a claw, or a 4-cycle, then, by definition, we have $N(u) \cap V\left(C^{1}\right)=\varnothing$, so, by 2), $N(u) \cap\left(V\left(C_{z}^{1}\right) \cup \operatorname{Span}(z)\right)$ consists of at most z and the lone vertex of $D_{2}(C) \cap V(\operatorname{Span}(z))$. Thus, 2) and 3) hold in the case where $\operatorname{Span}(z)$ is either a claw, a 4-cycle, or a 2-path.

Now we show that 2) and 3) hold in the case where $\operatorname{Span}(z)$ is a proper 4-chord $x y z y^{\prime} x^{\prime}$ of C^{1}. We claim that, for any $u \in V\left(\tilde{G}_{z}^{\text {large }} \backslash C_{z}^{1}\right)$ with $u \in N(z)$, the set $N(u) \cap V\left(C_{z}^{1}\right)$ is either a subset of $\{z, y\}$ or a subset of $\left\{z, y^{\prime}\right\}$. Let $u \in V\left(\tilde{G}_{z}^{\text {large }}-z\right)$ and suppose toward a contradiction that u is adjacent to each of y, y^{\prime}. By 1$)$, we have $u \notin V\left(C^{1}\right)$, and $x y u y^{\prime} x^{\prime}$ is a proper 4-chord of C^{1}. In $G \backslash C$, this 4-chord of C^{1} separates z from a vertex of $G \backslash B_{4}(C)$ with an L_{ϕ}-list of size less than five, since G is short-separation-free. This contradicts the fact that z is pentagonal. Thus, u is adjacent to at most one of y, y^{\prime}. Now let $u \in V\left(\tilde{G}_{z}^{\text {large }} \backslash C_{z}^{1}\right)$ with $u \in N(z)$. Suppose toward a contradiction that u has a neighbor $u^{\prime} \in V\left(C_{z}^{1}\right) \backslash\left\{z, y, z^{\prime}\right\}$. Note that $u^{\prime} \in V\left(C^{1}\right)$. Consider the following cases:

Case 1: $u \in\left\{x, x^{\prime}\right\}$
Suppose without loss of generality that $u=x$. Then, in $G \backslash C$, the 4-chord $P^{*}:=x u z y^{\prime} x^{\prime}$ of C^{1} separates y from a vertex of $G \backslash B_{4}(C)$ with an L_{ϕ}-list of size less than five, since G is short-separation-free. In particular, $\tilde{G}_{z}^{\text {small }} \subseteq \tilde{G}_{P^{*}}^{\text {small }}-u$, contradicting the maximality of $\tilde{G}_{z}^{\text {small }}$.

Case 2: $u \notin\left\{x, x^{\prime}\right\}$

In this case, \tilde{G} contains the proper 4-chords $Q:=u^{\prime} u z y x$ and $Q^{\prime}:=u^{\prime} u z y^{\prime} x^{\prime}$ of C^{1}, and we have either $\tilde{G}_{z}^{\text {small }} \subseteq$ $\tilde{G}_{Q}^{\text {small }}$ or $\tilde{G}_{z}^{\text {small }} \subseteq \tilde{G}_{Q^{\prime}}^{\text {small }}$. Suppose without loss of generality that $\tilde{G}_{z}^{\text {small }} \subseteq \tilde{G}_{Q}^{\text {small }}$. Since $u^{\prime}, u \notin V\left(\tilde{G}_{z}^{\text {small }}\right)$, we have $\mid V\left(\tilde{G}_{z}^{\text {small }}\left|<\left|V\left(\tilde{G}_{Q}^{\text {small }}\right)\right|\right.\right.$, contradicting the maximality of $\tilde{G}_{z}^{\text {small }}$. Thus, u has no neighbors in $V\left(C_{z}^{1}\right) \backslash\left\{z, y, z^{\prime}\right\}$. Since u is adjacent to at most one of $y, y^{\prime}, N(u) \cap V\left(C_{z}^{1}\right)$ is either a subset of $\{z, y\}$ or a subset of $\left\{z, y^{\prime}\right\}$.

The final proposition we prove in this section is short but extremely useful.
Proposition 10.2.9. Let $k \leq 2 \leq 3$ and let R be a proper k-chord of C^{1}. Let P be a subpath of C^{1}, where $C^{1} \cap \tilde{G}_{R}^{\text {small }} \subseteq P$ and each endpoint of R is a P-hinge. Then, for any $\psi \in \operatorname{Link}(P)$, any extension of ψ to an L_{ϕ}-coloring of $\operatorname{dom}(\psi) \cup V(R)$ extends to L_{ϕ}-color all of $\tilde{G}_{R}^{\text {small }}$ as well.

Proof. Let u, u^{\prime} be the endpoints of R and let Q be the path $C^{1} \cap \tilde{G}_{R}^{\text {small }}$. Since each of u, u^{\prime} is a P-hinge, we have $u, u^{\prime} \in \operatorname{dom}(\psi)$, and ψ restricts to an element ψ^{\prime} of $\operatorname{Link}_{L_{\phi}}\left(Q, C^{1}, \tilde{G}\right)$. Now, $\tilde{G}_{R}^{\text {small }}$ contains a cyclic facial subgraph $F:=Q+R$, where each vertex of $\tilde{G}_{R}^{\text {small }} \backslash F$ has an L_{ϕ}-list of size at least five, so ψ^{\prime} is also an element of $\operatorname{Link}_{L_{\phi}}\left(Q, F, \tilde{G}_{R}^{\text {small }}\right)$. The desired result now follows immediately from 3b) of Theorem 1.7.4.

10.3 Matchable Colors

In order to prove Theorem 10.0 .7 in the most difficult and general case, which is there case where we deal witha $z \in D_{2}\left(C^{1}\right)$ such that $\operatorname{Span}(z)$ is a proper 4-chord of C^{1}, (i.e $\operatorname{Span}(z)$ has no degeneracies) we need some results about partial colorings of $\operatorname{Span}(z)$ which extend to $\tilde{G}_{z}^{\text {small }}$. The purpose of Section 10.3 is to gather the results of this form that we need. To state the lone main result of Section 10.3, we first introduce the following terminology.

Definition 10.3.1. Let $k \geq 3$ and let P be a proper k-chord of C^{1} in \tilde{G}, where $k \geq 3$. Let $x y, x^{\prime} y^{\prime}$ be the terminal edges of P, where $x, x^{\prime} \in V\left(C^{1}\right)$. Let $c \in L_{\phi}\left(x^{\prime}\right)$ and let A be a subgraph of $x y$.

1) We say that c is (A, P)-matchable if there is at most on L_{ϕ}-coloring of $\left\{x^{\prime}\right\} \cup V(A)$ which uses c on x^{\prime} and does not extend to an L_{ϕ}-coloring of $V\left(\tilde{G}_{P}^{\text {small }}\right)$; $A N D$
2) We say that c is highly (A, P)-matchable if every L_{ϕ}-coloring of $\left\{x^{\prime}\right\} \cup V(A)$ which uses c on x^{\prime} extends to an L_{ϕ}-coloring of $V\left(\tilde{G}_{P}^{\text {small }}\right)$.

Our lone result for Section 10.3 is the following.
Lemma 10.3.2. Let P be a proper k-chord of C^{1} in \tilde{G}, where $3 \leq k \leq 4$. Let $x y, x^{\prime} y^{\prime}$ be the terminal edges of P, where $x, x^{\prime} \in V\left(C^{1}\right)$, and let $Q:=C^{1} \cap \tilde{G}_{P}^{\text {small }}$. Suppose that $\tilde{G}_{P}^{\text {large }}$ has no chord of P, except possibly $x x^{\prime}$. Then the following holds.

Pm1) Suppose that $V(Q) \cap S_{\star}=\varnothing$, and suppose further that either x^{\prime}, y have no common neighbor in $\tilde{G}_{P}^{\text {small }} \backslash P$, or each of the sets $V(\tilde{Q}) \cap T^{<2} \neq \varnothing$ and S_{\star} is nonempty. Then every color of $L_{\phi}\left(x^{\prime}\right)$. is highly $(x y, P)$-matchable.

Pm2) At most one color of $L_{\phi}\left(x^{\prime}\right)$ is not (x, P)-matchable; AND
Pm3) If $\left|L_{\phi}\left(x^{\prime}\right)\right| \geq 4$, then there is a color of $L_{\phi}\left(x^{\prime}\right)$ which is highly (x, P)-matchable; AND
Pm4) If $N(y) \cap S_{\star} \cap V(\AA)=\varnothing$ and x^{\prime}, y have no common neighbor in $\tilde{G}_{P}^{\text {small }} \backslash P$, then there is a color of $L_{\phi}\left(x^{\prime}\right)$ which is highly $(x y, P)$-matchable.

Pm5) If $N(y) \cap S_{\star} \cap V(\grave{Q})=\varnothing$ and $V(\grave{Q}) \cap T^{<2} \neq \varnothing$, then at most one color in $L_{\phi}\left(x^{\prime}\right)$ is not highly $(x y, P)-$ matchable.

Proof. In the proof of each of Pm1)-Pm5), whenever we have a partial L_{ϕ}-coloring of $V(P)$ whose domain includes x, x^{\prime}, and we want to show that this extends to L_{ϕ}-color $V\left(\tilde{G}_{P}^{\text {small }}\right)$, it suffices to check that this partial coloring extends to an L_{ϕ}-coloring of $\tilde{G}_{P}^{\text {small }}$, since $\tilde{G}_{P}^{\text {large }}$ has no chord of P, except possibly $x x^{\prime}$. We now fix the following definitions.
A) Let p be the unique vertex of $N(y) \cap V(Q)$ which, on Q, is closest to x^{\prime} (possibly $p=x^{\prime}$).
B) Let K be a subgraph of G, where $K=y p$ if $p=x$, and otherwise $K:=\tilde{G}_{x y p}^{\text {small }}$.
C) Let v be the unique neighbor of x on Q and let v^{\prime} be the unique neighbor of x^{\prime} on Q.
D) Let D be the cyclic facial subgraph $Q+\operatorname{Span}(z)$ of $\tilde{G}_{P}^{\text {small }}$.

We begin by proving Pm1). Suppose that P satisfies the conditions of Pm1). We now have the following.
Claim 10.3.3. Any L_{ϕ}-coloring of $\left\{x, x^{\prime}, y\right\}$ extends to an L_{ϕ}-coloring of $\left\{x^{\prime}\right\} \cup V(K)$.

Proof: Note that, if K is not an edge, then, since every internal vertex of $p Q x^{\prime}$ has an L_{ϕ}-list of size three, we have $z_{K}(\psi(u), \psi(y), \bullet) \neq \varnothing$.

Case 1: x^{\prime}, y have no common neighbor in Q
In this case, we have either $p=x$ or $p x^{\prime} \notin E\left(G_{P}^{\text {small }}\right)$. If $p=x$, then K is an edge and we are done, so suppose that $p \neq x$. Thus, we have $p x^{\prime} \notin E\left(G_{P}^{\text {small }}\right)$, and there is an extension of ψ to an L_{ϕ}-coloring ψ^{*} of $\left\{x^{\prime}\right\} \cup V(K)$, even if $z_{K, L_{\phi}}(\psi(u), \psi(y), \bullet)=\left\{\psi\left(x^{\prime}\right)\right\}$.
Case 2: x^{\prime}, y have a common neighbor a Q
In this case, by assumption, we have $V(\AA) \cap T^{<2} \neq \varnothing$ and $S_{\star} \neq \varnothing$, and, by Co4d) of Definition 10.0.1, $G[N(y) \cap$ $\left.V\left(C^{1}\right)\right]$ is a subpath of C^{1}. Since G is $K_{2,3}$-free, no internal vertex of the path $G\left[N(y) \cap V\left(C^{1}\right)\right]$ lies in $T^{<2}$, and since C^{1} is an induced subgraph of G, it follows that $v \in T^{<2}$ and $p x^{\prime}$ is the unique terminal edge of Q incident to x^{\prime}. Since $\left|L_{\phi}(p)\right| \geq 4$, it follows from Theorem 0.2 .3 that there is at least one color in $z_{K}(\psi(u), \psi(y), \bullet)$ other than $\psi\left(x^{\prime}\right)$, so again, ψ extends to an L_{ϕ}-coloring of $\left\{x^{\prime}\right\} \cup V(K)$.

Suppose toward a contradiction that ψ does not extend to an L_{ϕ}-coloring of K. Let $H:=\tilde{G}_{P}^{\text {small }} \backslash(K \backslash\{y, v\})$. By Claim 10.3.3, ψ extends to an L_{ϕ}-coloring ψ^{*} of $\left\{x^{\prime}\right\} \cup V(K)$. If $p=x^{\prime}$, then H contains the cyclic facial subgraph $x^{\prime} P y x^{\prime}$ and $x \notin V(H)$, and, applying Theorem 0.2 .3 to the edge $y x^{\prime}$, we get that that ψ^{*} extends to an L_{ϕ}-coloring of $V\left(\tilde{G}_{P}^{\text {small }}\right)$, contradicting our assumption. Thus, we have $p \neq x^{\prime}$.

Claim 10.3.4. There is a vertex of $H \backslash(P \cup Q)$ is adjacent to all three of $\left\{x^{\prime}, p, y\right\}$.
Proof: Suppose not. Let H^{*} be a planar embedding obtained by adding to H a vertex $p^{\text {new }}$ adjacent to x^{\prime}, y, so that H^{*} has a facial cycle $D^{\text {new }}:=x^{\prime} p^{\text {new }} y p Q x^{\prime}$. Let $S:=\left\{p, y, x^{\prime}\right\}$ and let L^{*} be a list-assignment for H^{*} where $L^{*}\left(p^{\text {new }}\right)$ is a lone color disjoint to all the $L_{\phi^{\prime}}$-lists of the vertices of $V(H)$, and otherwise $L^{*}:=L_{\phi \cup \psi^{*}}^{S}$. Note that all the vertices of $H^{*} \backslash D^{\text {new }}$ have L^{*}-lists of size at least five. Now, the path $p y p^{\text {new }} x^{\prime}$ admits an $L_{\phi \cup \psi^{*}}^{S}$-precoloring φ which is an extension of ψ^{*}. Since Q is a chordless path and $N(y) \cap V\left(D^{\text {new }}\right)=\left\{p, p^{\text {new }}\right\}$, there is no chord of $D^{\text {new }}$ with an endpoint in $p y p^{\text {new }} x^{\prime}$. By assumption, no vertex of $H^{*} \backslash D^{\text {new }}$ is adjacent to all three of $\left\{x^{\prime}, p, y\right\}$. Thus, by 1) of Proposition 1.5.1, φ extends to an L^{*}-coloring of H^{*}, so ψ^{*} extends to an L_{ϕ}-coloring of H, which is false.

Let $w^{\dagger} \in V(H) \backslash V(P \cup Q)$ be adjacent to all three of x^{\prime}, p, y. We now have $V(Q) \cap T^{<2} \neq \varnothing$ by assumption, and, by Co4d) of Definition 10.0.1, every vertex of $D^{2}(C)$. has a neighborhood in C^{1} consisting of a subpath of C^{1}. Since no internal vertex of $K-y$ and no internal vertex of the path $G\left[N\left(w^{\dagger}\right) \cap V\left(C^{1}\right)\right]$ lies in $T^{<2}$, we have
$v \in V(\AA) \cap T^{<2}$, and G contains the broken wheel K^{\prime} with principal path $v w^{\dagger} x^{\prime}$, where $K^{\prime}-w^{\dagger}=p Q x^{\prime}$. Since $\left|L_{\phi}(v)\right| \geq 4$, we have $\left|z_{K}(\psi(x), \psi(y), \bullet)\right| \geq 2$. Since $p \neq x$, we have $\left|L_{\phi \cup \psi}\left(w^{\dagger}\right)\right| \geq 3$, so there is a $c \in L_{\phi \cup \psi}\left(w^{\dagger}\right)$ with $\left|z_{K}(\psi(x), \psi(y), \bullet) \backslash\{c\}\right| \geq 2$. By Observation 1.4.2, $z_{K}(\psi(x), \psi(y), \bullet) \cap z_{K^{\prime}}\left(\bullet, c, \psi\left(x^{\prime}\right)\right) \neq \varnothing$. Thus, ψ extends to an L_{ϕ}-coloring σ of $V(K) \cup V\left(K^{\prime}\right)$. Since every vertex of $G \backslash\left(K \cup K^{\prime}\right)$ has an L_{ϕ}-list of size at least five, the precoloring $\left(\sigma(y), \sigma\left(w^{\dagger}\right), \sigma\left(x^{\prime}\right)\right)$ of $y w^{\dagger} x^{\prime}$ extends to L_{ϕ}-color $\tilde{G}^{\text {small }} \backslash\left(Q-x^{\prime}\right)$, so σ extends to an L_{ϕ}-coloring of $\tilde{G}_{P}^{\text {small }}$, contradicting our assumption. This proves Pm 1).

Now we prove Pm2). If every internal vertex of Q has an L_{ϕ}-list of size at least three, then it immediate from 2) of Proposition 1.5 .1 that any any L_{ϕ}-coloring of $\left\{x, x^{\prime}\right\}$ extends to an L_{ϕ}-coloring of $\tilde{G}_{P}^{\text {small }}$, since all the vertices of $\stackrel{\circ}{P}$ have L_{ϕ}-lists of size at least five, so we are done in that case. Now suppose there is an internal vertex of Q with an L_{ϕ}-list of size less than three. Thus there is a $u_{\star} \in V(Q) \backslash\left\{x, x^{\prime}\right\}$ with $S_{\star}=\left\{u_{\star}\right\}$.

Since every internal vertex of $x^{\prime} Q u_{\star}$ has an L_{ϕ}-list of size at least three, it follows from ii) of Theorem 1.7.5 that, for all but at most one $c \in L_{\phi}\left(x^{\prime}\right)$, there is a $\psi \in \operatorname{Link}_{L_{\phi}}\left(x^{\prime} Q u_{\star}, C^{1}, \tilde{G}\right)$ using c on x^{\prime}. Thus, given a $\psi \in \operatorname{Link}_{L_{\phi}}\left(x^{\prime} Q u_{\star}, C^{1}, \tilde{G}\right)$, it suffices to show that $\psi\left(x^{\prime}\right)$ is (x, P)-matchable.
Note that ψ is also an element of $\operatorname{Link}_{L_{\phi}}\left(x^{\prime} Q u_{\star}, D, \tilde{G}_{P}^{\text {small }}\right)$, since every vertex of $\tilde{G}_{P}^{\text {small }} \backslash D$ has an L_{ϕ}-list of size at least five. Let $H:=\tilde{G}_{P}^{\text {small }} \backslash\left(\operatorname{dom}(\psi) \cup \operatorname{Sh}_{2, L_{\phi}}\left(x^{\prime} Q u_{\star}, D, \tilde{G}_{P}^{\text {small }}\right)\right)$. Since u_{\star} is an internal vertex of Q, three is a unique vertex q on the path $u_{\star} Q x$ which is adjacent to u_{\star}. Now, H has a unique facial subgraph F such that $V(D) \backslash V\left(x^{\prime} Q u_{\star}\right) \subseteq V(F)$, where all the vertices of $H \backslash F$ have $L_{\phi \cup \psi}$-lists of size at least five. By 2) of Theorem 1.7.4, each vertex of $F \backslash D$ has a an list of size at least three, and each vertex of $\stackrel{\circ}{P}$ has an $L_{\phi \cup \psi}$-list of size at least three. Since C^{1} is an induced subgraph of G and $u_{\star} \in \operatorname{dom}(\psi)$, each vertex of $V(F) \backslash\{x, q\}$ has an $L_{\phi \cup \psi}$-list of size at least three, and $\left|L_{\phi \cup \psi}(q)\right| \geq 2$. By our inertness condition, any $L_{\phi \cup \psi}$-coloring of H extends to an $L_{\phi \cup \psi}$-coloring of $\tilde{G}_{P}^{\text {small }} \backslash \operatorname{dom}(\psi)$. Let $c:=\psi\left(x^{\prime}\right)$ and consider the following cases:

Case 1: $q \neq x$
In this case, for any L_{ϕ}-coloring σ of $\left\{x, x^{\prime}\right\}$ such that $\sigma\left(x^{\prime}\right)=c$, the union $\psi \cup \sigma$ is a proper L_{ϕ}-coloring of its domain, since C^{1} is an induced subgraph of G. By Theorem 1.3.4, there is at most one color of $L_{\phi \cup \psi}(x)$ which is not used by any $L_{\phi \cup \psi}$-coloring of H, so there is at most one L_{ϕ}-coloring of $\left\{x, x^{\prime}\right\}$ which uses c on x^{\prime} and does not extend to an L_{ϕ}-coloring of $\tilde{G}_{P}^{\text {small }}$, so we are done in this case.

Case 2: $q=x$
In this case, $u_{\star} x$ is a terminal edge of Q. We claim that any L_{ϕ}-coloring of $\left\{x, x^{\prime}\right\}$ which uses c on x^{\prime} and does not use $\psi\left(u_{\star}\right)$ on x extends to an L_{ϕ}-coloring of \tilde{G}. Then we are done. Let σ be an L_{ϕ}-coloring of $\left\{x, x^{\prime}\right\}$ with $\sigma\left(x^{\prime}\right)=c$ and $\sigma(x) \neq \psi\left(u_{\star}\right)$. Then $\psi \cup \sigma$ is a proper coloring of its domain in G, as C^{1} is an induced subgraph of G. Note that since $\psi \in \operatorname{Link}_{L_{\phi}}\left(Q-x, D, \tilde{G}_{P}^{\text {small }}\right)$ as well, since every vertex of $\tilde{G}^{\text {small }} \backslash D$ has an L_{ϕ}-list of size at least five. Since each internal vertex of P has an $L_{\phi \cup \psi}$-list of size at least three, it follows from 3a) of Theorem 1.7.4 that $\psi \cup \sigma$ extends to an L_{ϕ}-coloring of $\tilde{G}_{P}^{\text {small }}$, so we are done. This proves Pm2).

Before proving Pm3)-Pm5), we show the following.

Claim 10.3.5. Let q be a vertex of $V\left(x^{\prime} Q p\right) \backslash\{p\}$ and let q^{*} be the unique neighbor of q which, on Q, is closer to p. Let $\psi \in \operatorname{Link}_{L_{\phi}}\left(x^{\prime} Q q, C^{1}, \tilde{G}\right)$. Let ψ^{\prime} be an L_{ϕ}-coloring of $V(K)$ and suppose that $\psi \cup \psi^{\prime}$ is a proper L_{ϕ}-coloring of its domain. Suppose that at least one of the following holds.

1) $\left|L_{\phi \cup \psi}\left(q^{*}\right)\right| \geq 3$; OR
2) $S_{\star} \subseteq V\left(x^{\prime} Q q\right)$; $O R$
3) q^{*} is the lone vertex of S_{\star} and $\left|L_{\phi \cup \psi}\left(q^{*}\right)\right| \geq 2$.

Then $\psi \cup \psi^{\prime}$ extends to an L_{ϕ}-coloring of $V\left(\tilde{G}_{P}^{\text {small }}\right)$.
Proof: Let $K^{\dagger}:=\tilde{G}_{P}^{\text {small }} \backslash(K \backslash\{y, p\})$ and let D^{\dagger} be the facial cycle $x^{\prime} y^{\prime} z y p Q x^{\prime}$ of K^{\dagger}. Now, ψ is also an element of $\operatorname{Link}_{L_{\phi}}\left(x^{\prime} Q q, D^{\dagger}, K^{\dagger}\right)$, since every vertex of $K^{\dagger} \backslash D^{\dagger}$ has an L_{ϕ}-list of size at least five. If $q^{*} p \in E(G)$, then $q^{*} p$ is an edge of Q, and in that case, it follows from 3a) of Theorem 1.7.4 that the precoloring $\left(\psi^{\prime}(y), \psi^{\prime}(p)\right)$ of the edge $y p$ extends to an L_{ϕ}-coloring of K^{\dagger} which is also an extension of ψ, so in that case, $\psi \cup \psi$ extends to an L_{ϕ}-coloring of $V\left(\tilde{G}_{P}^{\text {small }}\right)$, and we are done. So now suppose that $q^{*} p \notin E(G)$.

Let $\sigma:=\psi \cup \psi^{\prime}$ and let $K^{\dagger \dagger}:=K^{\dagger} \backslash \operatorname{Sh}_{2, L_{\phi}}\left(x^{\prime} Q q, C^{1}, \tilde{G}\right)$. Note that $\operatorname{dom}\left(\psi \cup \psi^{\prime}\right) \subseteq V\left(\tilde{G}_{P}^{\text {small }}\right) \backslash \operatorname{Sh}_{2, L_{\phi}}\left(x^{\prime} Q q, C^{1}, \tilde{G}\right)$. We just need to show that $\psi \cup \psi^{\prime}$ extends to an L_{ϕ}-coloring of $V\left(K^{\dagger \dagger}\right)$, and then it follows from our inertness condition that $\psi \cup \psi^{\prime}$ extends to an L_{ϕ}-coloring of $V\left(\tilde{G}_{P}^{\text {small }}\right)$. Now, $K^{\dagger \dagger}$ has a facial subgraph F such that every vertex of $K^{\dagger} \backslash F$ has an $L_{\phi \cup \sigma}$-list of size at least five. Let p^{*} be the unique neighbor of p on $x^{\prime} Q p$. Since $q^{*} p \notin E(G)$, we have $q^{*} \neq p^{*}$. Furthermore, each of y^{\prime}, z has an $L_{\phi \cup \sigma}$-list of size at least three. Consider the following cases.

Case 1: No vetex of $q^{*} Q p^{*}$ lies in S_{\star}
In this case, since C^{1} is an induced subgraph of G, it follows from our assumption that every vertex of $F \backslash\left\{p^{*}, q^{*}\right\}$ has an $L_{\phi \cup \sigma}$-list of size at least three. Since $p^{*} \neq q^{*}$ and $p^{*}, q^{*} \notin S_{\star}$, each of p^{*}, q^{*} has an $L_{\phi \cup \sigma}$-list of size at least two. By Theorem 1.3.4, σ extends to an L_{ϕ}-coloring of $K^{\dagger \dagger}$.

Case 2: There is a vertex of $q^{*} Q p^{*}$ lies in S_{\star}
In this case, if $S_{\star}=\left\{q_{*}\right\}$, then it follows from our choice of ψ that each of p^{*}, q^{*} has an $L_{\phi \cup \sigma}$-list of size at least two, and, by Theorem 1.3.4, σ extends to an L_{ϕ}-coloring of $K^{\dagger \dagger}$. Now suppose that $S_{\star} \neq\left\{q_{*}\right\}$. Thus, since C^{1} is an induced subgraph of G, it follows from our choice of ψ that every vertex of $F \backslash\left(S_{\star} \cup\left\{p_{*}\right\}\right)$ has an $L_{\phi \cup \sigma}$-list of size at least three and each vertex of $S_{\star} \cup\left\{p_{*}\right\}$ has an $L_{\phi \cup \sigma}$-list of size at least two. By Theorem 1.3.4, σ extends to an L_{ϕ}-coloring of $K^{\dagger \dagger}$, so we are done.

Now we prove Pm3). Suppose that $\left|L_{\phi}\left(x^{\prime}\right)\right| \geq 4$. Thus, there is a color $c \in L_{\phi}\left(x^{\prime}\right)$ such that either $\mid L_{\phi}\left(v^{\prime}\right) \backslash$ $\{c\} \mid \geq 3$ or both $v^{\prime} \in S_{\star}$ and $c \notin L_{\phi}\left(v^{\prime}\right)$. Now, any L_{ϕ}-coloring of the singleton x^{\prime} is a trivially an element of $\operatorname{Link}_{L_{\phi}}\left(x^{\prime}, C^{1}, \tilde{G}\right)$, so it follows from Claim 10.3.5 that c is (x, P)-matchable.

Now we prove Pm4). Suppose that $N(y) \cap S_{\star} \cap V(\AA)=\varnothing$ and that x^{\prime}, y have no common neighbor in \dot{Q}. Any choice of color for x^{\prime} extend to an L_{ϕ}-coloring of $\left\{x, y, x^{\prime}\right\}$. Thus, if $V(Q) \cap S_{\star}=\varnothing$, then we are done by Pm1), so now suppose there is a lone vertex $u_{\star} \in V(Q)$ such that $\left\{u_{\star}\right\}=S_{\star}$. Since $u_{\star} \notin N(y)$, it follows that u_{\star} is an internal vertex of $x^{\prime} Q p$. Thus, there is a unique neighbor v_{\star} of u_{\star} on $x^{\prime} Q u_{\star}$. Since every vertex of $x^{\prime} Q v_{\star}$ has an L_{ϕ}-list of size at least three, it follows from i) of Theorem 1.7.5 that there is a $\psi \in \operatorname{Link}_{L_{\phi}}\left(x Q v_{\star}, C^{1}, \tilde{G}\right)$ such that $\psi\left(v_{\star}\right) \notin L_{\phi}\left(u_{\star}\right)$. We claim now that $\psi\left(x^{\prime}\right)$ is $(x y, P)$-matchable. Let σ be an L_{ϕ}-cloring of $\left\{x, y, x^{\prime}\right\}$ using $\psi\left(x^{\prime}\right)$ on x^{\prime}.

By Theorem 0.2.3, the L_{ϕ}-coloring $(\sigma(x), \sigma(y))$ of $x y$ extends to an L_{ϕ}-coloring σ^{*} of $V(K)$, since $u_{\star} \notin V(K)$. Since C^{1} is an induced subgraph of G and u_{\star} is an internal vertex of $x^{\prime} Q p$, the union $\sigma^{*} \cup \psi$ is a proper L_{ϕ}-coloring of its domain, and an extension of σ. By Claim 10.3.5, $\sigma^{*} \cup \psi$ extends to an L_{ϕ}-coloring of $V\left(\tilde{G}_{P}^{\text {small }}\right)$, so $\psi\left(x^{\prime}\right)$ is indeed $(x y, P)$-matchable. This proves Pm4).

Now we prove Pm5). Suppose that $\left.N(y) \cap S_{\star} \cap V(\AA)\right)=\varnothing$ and let $\hat{u} \in V(\AA) \cap T^{<2}$. If $\left.S_{\star} \cap(V(Q)) \backslash N(y)\right)=\varnothing$, then, by Pm1), every color in $L_{\phi}\left(x^{\prime}\right)$ is $(x y, P)$-matchable, so we are done in that case. Now suppose that $S_{\star} \cap$
$(V(Q) \backslash N(y)) \neq \varnothing$ and let $S_{\star}=\left\{u_{\star}\right\}$. Suppose toward a contradiction that there are at least two colors of $L_{\phi}\left(x^{\prime}\right)$ which are not $(x y, P)$-matchable.

Claim 10.3.6. x^{\prime} has no neighbors in K and $\hat{u} \notin V\left(x^{\prime} Q u_{\star}\right)$.

Proof: Since at least two colors of $L_{\phi}\left(x^{\prime}\right)$ are not $(x y, P)$-matchable, there is an L_{ϕ}-coloring σ of $\left\{x, y, x^{\prime}\right\}$ such that $\sigma\left(x^{\prime}\right)=c$ and σ does not extend to an L_{ϕ}-coloring of $V\left(\tilde{G}_{P}^{\text {small }}\right)$.

Suppose that x^{\prime} has a neighbor in K. Firstly, if $x^{\prime} \in N(y)$, then $Q=\tilde{G}_{x^{\prime} y x}^{\text {small }} \cap C^{1}=G\left[N(y) \cap V\left(C^{1}\right)\right]$ by Co4d) of Definition 10.0.1, since $S_{\star} \neq \varnothing$, and furthermore, and \hat{u} is an internal vertex of the path $K-y$, which is false, since $\hat{u} \in T^{<2}$. Thus, we have $x^{\prime} \notin N(y)$, and x^{\prime} is adjacent to p. Since C^{1} is an induced subgraph of $G, x^{\prime} p$ is an edge of Q. Since \hat{u} is not an internal vertex of the path $K-y$, we have $\hat{u}=p=v^{\prime}$ and K is a broken wheel with principal path xyp. Since $\left|L_{\phi}(p)\right| \geq 4$, we have $z_{K}(\sigma(x), \sigma(y), \bullet) \backslash\left\{\sigma\left(y^{\prime}\right)\right\} \neq \varnothing$, so σ extends to an L_{ϕ}-coloring of $\tilde{G}^{\text {small }} \backslash(K \backslash\{y, p\})$. Now, $x^{\prime} P y p x^{\prime}$ is a cyclic facial subgraph of $\tilde{G}_{P}^{\text {small }} \backslash(K \backslash\{y, p\})$, and every vertex of $\tilde{G}_{P}^{\text {small }} \backslash(K \backslash\{y, p\})$, except for x^{\prime}, p, has an L_{ϕ}-list of size at least five, so the precoloring $\left(\sigma\left(x^{\prime}\right), \sigma(p), \sigma(y)\right)$ of the 2-path $x^{\prime} p y$ extends to L_{ϕ}-color $\tilde{G}_{P}^{\text {small }} \backslash(K \backslash\{y, p\})$. Thus σ extends to L_{ϕ}-color $\tilde{G}_{P}^{\text {small }}$, contradicting our assumption. We conclude that x^{\prime} has no neighbors in K.

Since $S_{\star} \cap V(K)=\varnothing$ and x^{\prime} has no neighbors in K, it follows that σ extends to an L_{ϕ}-coloring τ of $V(K) \cup\left\{x^{\prime}\right\}$. Now suppose toward a contradiction that $\hat{u} \in V\left(x^{\prime} Q u_{\star}\right)$. Let u^{\dagger} be the unique neighbor of \hat{u} on $x^{\prime} Q \hat{u}$. Possibly $u^{\dagger}=x^{\prime}$, but, in any case, by i) of Theorem 1.7.5, there is a $\psi \in \operatorname{Link}\left(x^{\prime} Q u^{\dagger}\right)$ with $\psi\left(x^{\prime}\right)=\sigma\left(x^{\prime}\right)$, since very vertex of $V\left(x^{\prime} Q u^{\dagger}\right) \backslash\left\{x^{\prime}\right\}$ has an L_{ϕ}-list of size at least three. Furthermore, we have $\left|L_{\phi \cup \psi}(\hat{u})\right| \geq 3$, since $\hat{u} \in T^{<2}$. Now, y has no neighbors in $\operatorname{dom}(\psi)$, and since $u_{\star} \notin V(K)$, we get that u_{\star} is an internal vertex of $u^{\dagger} Q p$. Since C^{1} is an induced subgraph of G, the union $\psi \cup \tau$ is a proper L_{ϕ}-coloring of its domain. By Claim 10.3.5, $\psi \cup \tau$ extends to an L_{ϕ}-coloring of $V\left(\tilde{G}_{P}^{\text {small }}\right)$, contradicting our choice of σ.

Now, by assumption, there exist two colors $c_{0}, c_{1} \in L_{\phi}\left(x^{\prime}\right)$ such that neither c_{0} nor c_{1} is $(x y, P)$-matchable. By ii) of Theorem 1.7.5, there exists a $\psi \in \operatorname{Link}_{L_{\phi}}\left(x^{\prime} Q u_{\star}, C^{1}, \tilde{G}\right)$ such that $\psi\left(x^{\prime}\right) \in\left\{c_{0}, c_{1}\right\}$. Suppose without loss of generality that $\psi\left(x^{\prime}\right)=c_{0}$. Since c_{0} is not $(x y, P)$-matchable, there exists an L_{ϕ}-coloring σ of $\left\{x, y, x^{\prime}\right\}$ with $\sigma\left(x^{\prime}\right)=c_{0}$, where σ does not extend to an L_{ϕ}-coloring of $V\left(\tilde{G}_{P}^{\text {small }}\right)$.

Claim 10.3.7. There exists an extension of σ to an L_{ϕ}-coloring σ^{*} of $V(K) \cup\left\{x^{\prime}\right\}$.

Proof: Firstly, by Claim 10.3.6, we have $x^{\prime} y \notin E(G)$, and since $K-y$ is disjoint to $x^{\prime} Q u_{\star}, y$ has no neighbors in $\operatorname{dom}(\psi)$. If p also has no neighbors in $\operatorname{dom}(\psi)$, then we are immediately done, so suppose that p has a neighbor in $\operatorname{dom}(\psi)$. Possibly $p=x$ and $x x^{\prime} \in E(G)$, but then we are done since x^{\prime}, p are both precolored by σ. Since C^{1} is an induced subgraph of G, the only remaining possibility is that $u_{\star} p$ is an edge of C^{1}. By Claim 10.3.6, $\hat{u} \notin V\left(x^{\prime} Q u_{\star}\right)$ and since \hat{u} is not an internal vertex of the path $K-y$, we have $\hat{u}=p$ (recall that, by Co4d) of Definition 10.0.1, K is a broken wheel with principal path $x y p$, as $S_{\star} \neq \varnothing$). Since $\left|L_{\phi}(\hat{u})\right| \geq 4$, we have $z_{K}(\sigma(x), \sigma(y), \bullet) \backslash\left\{\psi\left(u_{\star}\right)\right\} \neq \varnothing$, so we are done.

Letting σ^{*} be as in Claim 10.3.7, it now follows immediately from Claim 10.3.5 that $\sigma^{*} \cup \psi$ extends to an $L_{\phi^{-}}$ coloring, contradicting our assumption that σ does not extend to an L_{ϕ}-coloring of $V\left(\tilde{G}_{P}^{\text {small }}\right)$. This completes the proof of Lemma 10.3.2.

10.4 Non-End-Repelling Vertices

That is, throughout the remainder of Chapter 10, we reserve the Lemma environment exclusively for statements of the form "if the following conditions hold, then there exists a (C, z)-opener". We use the Proposition environment for any other auxiliary facts we need to prove along the way.

In this section, we deal with the special case where we have a pentagonal $z \in D_{2}\left(C^{1}\right)$ such that $\operatorname{Span}(z)$ is part of a cycle of length at most six which separates C from a vertex of $G \backslash B_{4}(C)$ with an L_{ϕ}-list of size less than five. We begin with the following definition.

Definition 10.4.1. Let $z \in D_{2}\left(C^{1}\right)$ be a pentagonal vertex. We say that z is end-repelling if $\left|E\left(C^{1} \cap \tilde{G}_{z}^{\text {large }}\right)\right|>1$, and, letting e, e^{\prime} be the two edges of $C^{1} \cap \tilde{G}_{z}^{\text {large }}$ which are incident to $\operatorname{Span}(z)$, there is no 2-chord of $G\left[V\left(C_{z}^{1} \cup \operatorname{Span}(z)\right)\right]$ which separates both of e, e^{\prime} from z.

The lemma below is the lone result of Section 10.4 and the first in the sequence of lemmas which make up the proof of Theorem 10.0.7.

Lemma 10.4.2. Let $z \in D_{2}\left(C^{1}\right)$ be a pentagonal vertex and suppose that one of the following holds:

1) $\left|E\left(C^{1} \cap \tilde{G}_{z}^{\text {large }}\right)\right| \leq 1 ;$ OR
2) $\left|E\left(C^{1} \cap \tilde{G}_{z}^{\text {large }}\right)\right|>1$ and, letting e, e^{\prime} be the two edges of C^{1} which are incident to $\operatorname{Span}(z)$, there exists a 2-chord of $G\left[V\left(C_{z}^{1} \cup \operatorname{Span}(z)\right)\right]$ which separates both of e, e^{\prime} from z.

Then $\left|E\left(C^{1} \cap \tilde{G}_{z}^{\text {small }}\right)\right|>1$ and there exists a (C, z)-opener.

Proof. We first show the following.
Claim 10.4.3. $\operatorname{Span}(z)$ is a proper 4-chord of C^{1}.

Proof: Suppose not. Thus, $\operatorname{Span}(z)$ is either a 2-path, a 4-cycle, or a claw. If $\operatorname{Span}(z)$ is a claw, then $\left|E\left(C^{1} \cap \tilde{G}_{z}^{\text {large }}\right)\right|>$ 1 , or else there is a triangle which separates C from an element of \mathcal{C}. Likewise, if $\operatorname{Span}(z)$ is eitehr a 4-cycle or a 2-path, then $\left|E\left(C^{1} \cap \tilde{G}_{z}^{\text {large }}\right)\right|>1$, since G is a simple graph. Thus, in any case, $\left|E\left(C^{1} \cap \tilde{G}_{z}^{\text {large }}\right)\right|>1$, so there exist two distinct edges e, e^{\prime} of $C^{1} \cap \tilde{G}_{z}^{\text {large }}$ which are incident to $\operatorname{Span}(z)$, and there is a 2-chord of C_{z}^{1} which separates each of e, e^{\prime} from z. Since G has no repeated edges, $\operatorname{Span}(z)$ is a claw, and G contains a 4-cycle which separates z from C, contradicting short-separation-freeness.

Since $\operatorname{Span}(z)$ is a proper 4-chord of C^{1}, the graph $C^{1} \cap \tilde{G}_{z}^{\text {large }}$ is a subpath of C^{1} (i.e not equal to all of C^{1}). S Let $\operatorname{Span}(z):=x y z y^{\prime} x^{\prime}$. Now suppose toward a contradiction that there does not exist a (C, z)-opener. Let $Q^{\text {small }}:=C^{1} \cap \tilde{G}_{z}^{\text {small }}$ and $Q^{\text {large }}:=C^{1} \cap \tilde{G}_{z}^{\text {large }}$.

Claim 10.4.4. $\left|E\left(Q^{\text {small }}\right)\right|>1$.

Proof: Suppose not. Thus, we have $Q^{\text {small }}=x x^{\prime}$, and since G is a simple graph, $\left|E\left(Q^{\text {large }}\right)\right|>1$. By assumption, there is a vertex $w \in V\left(\tilde{G}_{z}^{\text {large }} \backslash C_{z}^{1}\right)$ with at least one neighbor in $\{x, y\}$ and at least one neighbor in $\left\{x^{\prime}, y^{\prime}\right\}$. By 2) of Proposition 10.2.8, $\left\{y, y^{\prime}\right\} \nsubseteq N(w)$, so suppose without loss of generality that $x \in N(w)$. Since w is adjacent to at least one of $x^{\prime}, y^{\prime}, G$ contains a 4 -cycle which separates z from C, contradicting short-separation-freeness.

Let U be the set of vertices $w \in V\left(\tilde{G}_{z}^{\text {large }} \backslash C_{z}^{1}\right)$ such that $N(w)$ has nonempty intersection with each of $\{x, y\}$ and $\left\{x^{\prime}, y^{\prime}\right\}$. By 3) of Proposition 10.2.8, we have $U \cap N(z)=\varnothing$.

Claim 10.4.5. If $\left|E\left(Q^{\text {large }}\right)\right| \leq 1$ then there is a vertex $w \in U$ with three neighbors on $\operatorname{Span}(z)$, and $N(w) \cap$ $V(\operatorname{Span}(z))$ consists of $\left\{x, x^{\prime}\right\}$ and precisely one of y, y^{\prime}.

Proof: In this case, we have $Q^{\text {large }}=x x^{\prime}$. Let H be the subgraph of G induced by $V\left(C^{1} \cup \tilde{G}_{z}^{\text {small }}\right)$. Every vertex of C^{1} has an L_{ϕ}-list of size at least three, except for possibly a lone vertex with a list of size precisely two, so, by Theorem 0.2.3, H admits an L_{ϕ}-coloring ψ. By assumption, the pair $[G[V(H \cup C)], \phi \cup \psi]$ is not a (C, z)-opener, so there exists a vertex $w \in V\left(\tilde{G}_{z}^{\text {large }} \backslash C_{z}^{1}\right)$ such that $\left|L_{\phi^{*}}(w)\right|<3$. Since C_{z}^{1} is the 5-cycle $x y z y^{\prime} x^{\prime}$, it follows that w has at least three neighbors in $\operatorname{Span}(z)$. Since $z \notin N(w)$. Since w is adjacent to at most of y, y^{\prime}, we get that $\left\{x, x^{\prime}\right\} \subseteq N(w)$ and precisely one of y, y^{\prime} lies in $N(w)$.

We now have the following.
Claim 10.4.6. $x y^{\prime}, y^{\prime} x \notin E(G)$. Furthermore, there is a $w^{\dagger} \in U$ such that no vertex of $\tilde{G}_{z}^{\text {large }} \backslash\left(C_{z}^{1} \cup \operatorname{Sh}_{2}\left(Q^{\text {large }}\right)\right)$, except possibly w^{\dagger}, has more than two neighbors in C_{z}^{1}.

Proof: If $\left|E\left(Q^{\text {large }}\right)\right|>1$, then we have $U \neq \varnothing$ by assumption, and, if $\left|E\left(Q^{\text {large }}\right)\right| \leq 1$, then $U \neq \varnothing$ by Claim 10.4.6, so we have $U \neq \varnothing$ in any case.

Subclaim 10.4.7. $x y^{\prime}, x^{\prime} y \notin E(G)$, and no vertex of $V\left(\tilde{G} \backslash C_{z}^{1}\right) \backslash U$ has more than two neighbors in C_{z}^{1}.
Proof: Suppose toward a contradiction that $E(G)$ contains one of $x y^{\prime}, x^{\prime} y$, say $x y^{\prime} \in E(G)$ without loss of generality. Since $U \neq \varnothing$, let $w \in U$. By 1) of Proposition 10.2 .8 , we have $x^{\prime} y \in E\left(\tilde{G}_{z}^{\text {small }}\right)$, and thus $x^{\prime} w x y^{\prime}$ is a 4-cycle which separates C from a vertex of $G \backslash B_{4}(C)$ with an L_{ϕ}-list of size less than five, contradicting short-separation-freeness.

Now suppose toward a contradiction that there is a $w \in V\left(\tilde{G}_{z}^{\text {large }} \backslash C_{z}^{1}\right)$ with more than two neighbors in C_{z}^{1}, where $w \notin U$. Since $V\left(\tilde{G}_{x w^{\dagger} x^{\prime}}^{\text {small }}\right)=V\left(Q^{\text {small }}\right) \cup\left\{w^{\dagger}\right\}$, it follows that $N(w) \cap V\left(C_{z}^{1}\right) \subseteq\left\{x, y, z, y^{\prime}, x^{\prime}\right\}$, so w has at least three neighbors in $\operatorname{Span}(z)$. By 3) of Proposition 10.2.8, $z \notin N(w)$ and, by 2) of Proposition 10.2.8, $\left\{y, y^{\prime}\right\} \nsubseteq N(w)$, so both of x, x^{\prime} lie in $N(w)$, contradicting our assumption that $w \notin U$.

To finish the proof of Claim 10.4.6, it just suffices to show that at most one vertex of $U \backslash \operatorname{Sh}_{2}\left(Q^{\text {large }}\right)$ has more than two neighbors in C_{z}^{1}. Suppose toward a contradiction that there are two such vertices w, w^{*}. Note that neither of w, w^{*} lies in $N(x) \cap N\left(x^{\prime}\right)$, or else, if each of w, w^{*} is adjacent to both of x, x^{\prime}, then one of x, x^{\prime} lies in $\operatorname{Sh}_{2}\left(Q^{\text {large }}\right)$, which is false.

Since $w \in U$ and $w \notin N(x) \cap N\left(x^{\prime}\right)$, suppose without loss of generality that $x, y^{\prime} \in N(w)$. Thus, \tilde{G} contains the 3-chord $R:=x w y^{\prime} x^{\prime}$ of C^{1}. Consider the following cases.

Case 1: $w^{*} \in V\left(\tilde{G}_{R}^{\text {large }}\right)$,
In this case, since z is pentagonal, we have $N\left(w^{*}\right) \cap V\left(C_{z}^{1}\right) \subseteq\left\{y^{\prime}, z, y, x\right\}$. Since $U \cap N(z)=\varnothing$ and w^{*} has at least three neighbors on C_{z}^{1}, it follows that w^{*} is adjacent to each of y, y^{\prime}, contradicting 2) of Proposition 10.2.8.

Case 2: $w^{*} \in V\left(\tilde{G}_{R}^{\text {small }}\right)$,
In this case, since $w^{*} \in U, N\left(w^{*}\right)$ has nonempty intersection with each of $\left\{x^{\prime}, y^{\prime}\right\}$ and $\{y\}$. Since $w^{*} \notin N(x) \cap N\left(x^{\prime}\right)$, it follows that w^{*} is adjacent to each of x, y^{\prime}, and we are back to Case 1 with the roles of w, w^{*} interchanged, so we are done.

Let $w^{\dagger} \in U$ be the vertex specified in Claim 10.4.6. Since no vertex of U lies in $N(y) \cap N\left(y^{\prime}\right)$, suppose without loss of generality that $y^{\prime} \notin N\left(w^{\dagger}\right)$, and thus $x^{\prime} \in N\left(w^{\dagger}\right)$. Since $U \cap N(z)=\varnothing$, we have $N\left(w^{\dagger}\right) \cap V(\operatorname{Span}(z)) \subseteq\left\{x, y, x^{\prime}\right\}$. By Claim 10.4.4, $\left|E\left(Q^{\text {small }}\right)\right|>1$, so every element of $\operatorname{Link}\left(Q^{\text {large }}\right)$ is a proper L_{ϕ}-coloring of its domain in \tilde{G}.

Claim 10.4.8. For any $\sigma \in \operatorname{Link}\left(Q^{\text {large }}\right)$, the following hold.

1) For any extension of σ to an L_{ϕ}-coloring σ^{*} of $\operatorname{dom}(\sigma) \cup\{y\}$, either $\left|L_{\phi \cup \sigma^{*}}\left(w^{\dagger}\right)\right|=2$ or σ^{*} does not extend to an L_{ϕ}-coloring of $V\left(\tilde{G}_{z}^{\text {small }}\right)$; AND
2) $\sigma\left(x^{\prime}\right)$ is not highly $(x y, \operatorname{Span}(z))$-matchable; AND
3) If $y \notin N\left(w^{\dagger}\right)$, then $\sigma\left(x^{\prime}\right)$ is not highly $(x, \operatorname{Span}(z))$-matchable.

Proof: Since $w^{\dagger} \in U, w^{\dagger}$ has a neighbor in $\{x, y\}$, so, for some $2 \leq k \leq 3, \tilde{G}$ contains a k-chord R of C^{1}, where R is either $x^{\prime} w^{\dagger} x$ or $x^{\prime} w^{\dagger} y x$. Since z is pentagonal, we have $\tilde{G}_{R}^{\text {small }} \cap \tilde{G}_{z}^{\text {small }} \subseteq\left\{x, y, x^{\prime}\right\}$. Now, by Proposition 10.2.9, $V\left(\tilde{G}_{R}^{\text {small }}-w^{\dagger}\right)$ is $(L, \phi \cup \sigma)$-inert in G.

We first prove 1). Let σ^{*} be an extension of σ to an L_{ϕ}-coloring of $\operatorname{dom}(\sigma) \cup\{y\}$. Suppose that $\left|L_{\phi \cup \sigma^{*}}\left(w^{\dagger}\right)\right| \neq 2$. Since $z \notin V\left(C^{1}\right)$ and $\left|L_{\phi \cup \sigma}\left(w^{\dagger}\right)\right| \geq 3$, we have $\left.\mid L_{\phi \cup \sigma^{*}}\right)\left(w^{\dagger}\right) \mid>2$. Now suppose toward a contradiction that σ^{*} extends to an L_{ϕ}-coloring τ of $V\left(\tilde{G}_{z}^{\text {small }}\right)$. Since $N\left(w^{\dagger}\right) \cap V(\operatorname{Span}(z)) \subseteq\left\{x, y, x^{\prime}\right\}$, we have $\left|L_{\phi \cup \tau}\left(w^{\dagger}\right)\right| \geq 3$. Let H be the subgraph of G induced by $\operatorname{dom}\left(\phi \cup \sigma^{*}\right) \cup V\left(\tilde{G}_{z}^{\text {small }}\right) \cup V\left(-w^{\dagger}\right)$. As indicated above, $V\left(\tilde{G}_{R}^{\text {small }}-w^{\dagger}\right)$ is $(L, \phi \cup \sigma)$-inert in G. By Claim 10.4.6, w^{\dagger} is the only vertex of $\tilde{G}_{z}^{\text {large }} \backslash\left(C_{z}^{1} \cup \operatorname{Sh}_{2}\left(Q^{\text {large }}\right)\right)$ with more than two neighbors in C_{z}^{1}, so $[H, \phi \cup \tau]$ is a (C, z)-opener, contradicting our assumption.

Now we prove 2) and 3) together. If one of these does not hold, then, letting $A:=G\left[N\left(w^{\dagger}\right) \cap\{x, y\}\right], \sigma\left(x^{\prime}\right)$ is highly $(A, \operatorname{Span}(z))$-matchable. If $y \notin N\left(w^{\dagger}\right)$, then, by assumption, $\sigma\left(x^{\prime}\right)$ is highly $(x, \operatorname{Span}(z))$-matchable, and since $V\left(\tilde{G}_{R}^{\text {small }}\right) \cap V\left(\tilde{G}_{z}^{\text {small }}\right) \subseteq\left\{x, y, x^{\prime}\right\}, \sigma$ extends to an L_{ϕ}-coloring τ of $\operatorname{dom}(\sigma) \cup V\left(\tilde{G}_{z}^{\text {small }}\right)$. Since $\left|L_{\phi \cup \sigma}\left(w^{\dagger}\right)\right| \geq 3$ and $y \notin N\left(w^{\dagger}\right)$, we have $\left|L_{\phi \cup \tau}\left(w^{\dagger}\right)\right| \geq 3$, contradicting 1). Thus, we have $y \in N\left(w^{\dagger}\right)$. By Claim 10.4.6, $x^{\prime} y \notin E(G)$, and since $N(y) \cap V\left(C^{1}\right) \subseteq V\left(Q^{\text {small }}\right)$, we have $\left|L_{\phi \cup \sigma}(y)\right| \geq 4$. Thus, σ extends to an L_{ϕ}-coloring σ^{*} of dom $(\sigma) \cup\{y\}$ such that $\left|L_{\phi \cup \sigma^{*}}\left(w^{\dagger}\right)\right| \geq 3$. Since $\sigma\left(x^{\prime}\right)$ is highly $(x y, \operatorname{Span}(z))$-matchable, we again contradict 1$)$.
By 1) of Corollary 10.2 .5 , we have $\operatorname{Link}\left(Q^{\text {small }}\right) \neq \varnothing$, so, by 2) of Claim 10.4.8, we immediately have the following.

Claim 10.4.9. At least one color of $L_{\phi}\left(x^{\prime}\right)$ is not highly $(x y, \operatorname{Span}(z))$-matchable. Furthermore, if $y \notin N\left(w^{\dagger}\right)$, then at least one color of $L_{\phi}\left(x^{\prime}\right)$ is not highly $(x, \operatorname{Span}(z))$-matchable.

Now let $p \in V\left(Q^{\text {small }}\right)$ be the neighbor of y, which, on the path $Q^{\text {small }}$, is closest to x^{\prime}. Let K be a subgraph of G, where $K:=x y$ if $p=x$, and otherwise $K:=\tilde{G}_{x y p}^{\text {small }}$.

Claim 10.4.10. $N\left(w^{\dagger}\right) \cap V(\operatorname{Span}(z))=\left\{x, x^{\prime}\right\}$.
Proof: Suppose not. Since $y^{\prime}, z \notin N\left(w^{\dagger}\right)$ and $w^{\dagger} \in U$, we have $y \in N\left(w^{\dagger}\right)$. We now note the following.
Subclaim 10.4.11. x^{\prime}, y have no common neighbor in $\tilde{G}_{z}^{\text {small }}$.
Proof: Suppose that x^{\prime}, y have a common neighbor in $\tilde{G}_{z}^{\text {small }}$. Possibly this common neighbor lies in $\operatorname{Span}(z)$, but, in any case, since every chord of $\operatorname{Span}(z)$, except possibly $x x^{\prime}$, lies in $\tilde{G}_{z}^{\text {small }}$, and x^{\prime}, y are both adjacent to w^{\dagger}, it follows that G contains a 4-cycle which separates C from a vertex of $G \backslash B_{4}(C)$ with an L_{ϕ}-list of size less than five, contradicting short-separation-freeness.

We now have the following.

Subclaim 10.4.12. $S_{\star} \cap V\left(Q^{\text {small }}\right) \neq \varnothing$.
Proof: Suppose toward a contradiction that $S_{\star} \cap V\left(Q^{\text {small }}\right)=\varnothing$. Thus, every internal vertex of $Q^{\text {small }}$ has an L_{ϕ}-list of size at least three. By Subclaim 10.4.11, x^{\prime}, y have no common neighbor in $\tilde{G}_{z}^{\text {small }}$, and thus, by Pm1) of Lemma 10.3.2, every color of $L_{\phi}\left(x^{\prime}\right)$ is highly $(x y, \operatorname{Span}(z))$-matchable, contradicting Claim 10.4.9.

Since $y x^{\prime} \notin E(G)$, we get that, for each vertex $v \in N(y) \cap N\left(C^{1}\right), \tilde{G}$ contains the 3 -chord $R^{v}:=v y w^{\dagger} x^{\prime}$ of C^{1} and the 4-chord $P^{v}:=v y z y^{\prime} x^{\prime}$ of C^{1}. Note that $P^{x}=\operatorname{Span}(z)$. Since z is pentagonal, the 5-cycle $x^{\prime} y^{\prime} z y w^{\dagger}$ separates C from a vertex of $G \backslash B_{4}(C)$ with an L_{ϕ}-list of size less than five. In particular, since $N(y) \cap V\left(C^{1}\right) \subseteq V\left(Q^{\text {small }}\right)$, it follows that $V\left(\tilde{G}_{R^{v}}^{\text {small }} \cap \tilde{G}_{P^{v}}^{\text {small }}\right) \subseteq\left\{v, y, x^{\prime}\right\}$ for each $v \in N(y) \cap V\left(C^{1}\right)$.

Subclaim 10.4.13. $S_{\star} \cap N(y) \neq \varnothing$.
Proof: Suppose toward a contradiction that $S_{\star} \cap N(y)=\varnothing$. By Subclaim 10.4.11, x^{\prime}, y have no common neighbor in $\tilde{G}_{z}^{\text {small }}$, so it immediately follows from Pm4) of Lemma 10.3 .2 that there is a color $c \in L_{\phi}\left(x^{\prime}\right)$ is highly $(x y, \operatorname{Span}(z))$-matchable. Since $u_{\star} \notin V\left(Q^{\text {large }}\right)$, it follows from i) of Theorem 1.7.5 that there is a $\sigma \in \operatorname{Link}\left(Q^{\text {large }}\right)$ using c on x^{\prime}, contradicting 2) of Claim 10.4.8.

Since $S_{\star} \neq \varnothing$, it follows from Co4d) of Definition 10.0.1 that K is either an edge or a broken wheel with principal path $x y p$. Applying Subclaim 10.4.13, there is a lone vertex $u_{\star} \in N(y)$ such that $S_{\star}=\left\{u_{\star}\right\}$. Since $u_{\star} \in V\left(Q^{\text {small }}\right)$, K is a broken wheel with principal path $x y p$. Possibly $x \in N\left(w^{\dagger}\right)$, but the trick now is to leave x uncolored. By Subclaim 10.4.11, $p x^{\prime} \notin E(G)$, so it follows that $\tilde{G}_{R^{u_{\star}}}^{\text {small }}$ is an induced subgraph of G. Since $\left|L_{\phi}\left(u_{\star}\right)\right|=2,\left|L_{\phi}\left(x^{\prime}\right)\right| \geq 3$, and $\left|L_{\phi}(y)\right| \geq 5$, it follows from 1) of Theorem 9.0.1 that there exists an L_{ϕ}-coloring ψ of $\left\{u_{\star}, y, x^{\prime}\right\}$ such that any extension of ψ to an L_{ϕ}-coloring of $V\left(R^{u_{\star}}\right)$ also extends to an L_{ϕ}-coloring of $\tilde{G}_{R^{u_{\star}}}^{\text {small }}$.

Since $u_{\star} \in N(y)$, every internal vertex of $u_{\star} Q^{\text {small }} x^{\prime}$ has an L_{ϕ}-list of size at least three, and, by Subclaim 10.4.11, x^{\prime}, y have no common neighbor in $\tilde{G}_{z}^{\text {small }}$, so it follows from Pm1) of Lemma 10.3.2 that ψ extends to an L_{ϕ}-coloring ψ^{*} of $V\left(\tilde{G}_{P^{u_{\star}}}^{\text {small }}\right)$. Let H be the subgraph of G induced by $\operatorname{dom}\left(\phi \cup \psi^{*}\right) \cup V\left(\tilde{G}_{R^{u} \dagger}^{\text {small }}-w^{\dagger}\right)$. By our choice of ψ^{*}, we get that $V\left(\tilde{G}_{R^{u}{ }_{\star}}^{\text {small }}\right)$ is $\left(L, \phi \cup \psi^{*}\right)$-inert in G. Since x is uncolored, we have $\left|L_{\phi \cup \psi^{*}}\left(w^{\dagger}\right)\right| \geq 3$. Since $S_{\star} \neq \varnothing$ and every vertex of $D_{2}(C)$ has a neighborhood on C^{1} consisting precisely of a subpath of C^{1}, we have $\operatorname{Sh}_{2}\left(Q^{\text {large }}\right) \subseteq V\left(Q^{\text {large }}\right)$, and, by Claim 10.4.6, w^{\dagger} is the only vertex of $G \backslash C_{z}^{1}$ with more than two neighbors in C_{z}^{1}. Thus, $\left[H, \phi \cup \psi^{*}\right]$ is a (C, z)-opener, contradicting our assumption. This completes the proof of Claim 10.4.10.
Note that, since z is pentagonal, the graphs $\tilde{G}_{x w^{\dagger} x^{\prime}}^{\text {small }}$ and $\tilde{G}_{z}^{\text {small }}$ intersect precisely on x, x^{\prime}, and $Q^{\text {large }}=C^{1} \cap \tilde{G}_{x w^{\dagger} x^{\prime}}^{\text {small }}$. By Claim 10.4.9, there is a color of $L_{\phi}\left(x^{\prime}\right)$ which is not highly $(x, \operatorname{Span}(z))$-matchable, since $y \notin N\left(w^{\dagger}\right)$.

If $S_{\star} \cap V\left(Q^{\text {small }}\right)=\varnothing$, then, by 2) of Proposition 1.5.1, any L_{ϕ}-coloring of $\left\{x, x^{\prime}\right\}$ extends to an L_{ϕ}-coloring of $V\left(\tilde{G}_{z}^{\text {small }}\right)$, so every color of $L_{\phi}\left(x^{\prime}\right)$ is highly $(x, \operatorname{Span}(z))$-matchable. Thus, we have $S_{\star} \cap V\left(Q^{\text {small }}\right) \neq \varnothing$. Since $S_{\star} \cap V\left(Q^{\text {small }}\right) \neq \varnothing$, every vertex of $Q^{\text {large }}$ has an L_{ϕ}-list of size at least three, so, by i) of Theorem 1.7.5, for every $d \in L_{\phi}\left(x^{\prime}\right)$, there is an element of $\operatorname{Link}\left(Q^{\text {small }}\right)$ using d on x^{\prime}. Thus, no color of x^{\prime} is highly $(x, \operatorname{Span}(z))$-matchable.

Let u_{\star} be the lone vertex of S_{\star}. By Co4c)-d) of Definition 10.0.1, there is a $\hat{u} \in T^{<2}$, and every vertex of $D_{2}(C)$ has a neighborhood on C^{1} which consists precisely of a subpath of C^{1}. Since no internal vertex of $G\left[N\left(w^{\dagger}\right) \cap V\left(C^{1}\right)\right]$ lies in $T^{<2}$, we have $\hat{u} \in V\left(Q^{\text {small }}\right)$. If $\hat{u}=x^{\prime}$, then, since $\left|L_{\phi}(\hat{u})\right| \geq 4$, it follows from Pm3) of Lemma 10.3.2 that there is a highly $(x, \operatorname{Span}(z))$-matchable color in $L_{\phi}\left(x^{\prime}\right)$, contradicting Claim 10.4.9. Thus, we have $\hat{u} \in V\left(Q^{\text {small }}-x^{\prime}\right)$. Consider the following cases:

Case 1: $\hat{u}=x$

By $\operatorname{Pm} 2$) of Lemma 10.3.2, there is an $(x, \operatorname{Span}(z))$-matchable color $c \in L_{\phi}\left(x^{\prime}\right)$. Since every internal vertex of $Q^{\text {large }}$ has an L_{ϕ}-list of size at least three, it follows from i) of Theorem 1.7.5 that there are two elements σ_{0}, σ_{1} of $\operatorname{Link}\left(Q^{\text {large }}\right)$ which use c on x^{\prime} and use different colors on x. Since c is $(x, \operatorname{Span}(z))$-matchable, there exists an $i \in\{0,1\}$ such that σ_{0} extends to an L_{ϕ}-coloring of $V\left(\tilde{G}_{z}^{\text {small }}\right)$. Since $y \notin N\left(w^{\dagger}\right)$, this contradicts 1) of Claim 10.4.8. Case 2: $\left.\hat{u} \in V \hat{Q}^{\text {small }}\right)$

In this case, since no color of $L_{\phi}\left(x^{\prime}\right)$ is highly $(x, \operatorname{Span}(z))$-matchable, it follows from Pm5) of Lemma 10.3.2 that $u_{\star} \in N(y)$. Let $P^{\times}:=p y z y^{\prime} x^{\prime}$. Now, applying Corollary 10.2 .5 , we fix a $\sigma \in \operatorname{Link}\left(p Q^{\text {small }} x Q^{\text {large }} x^{\prime}\right)$. By 2) of Theorem 1.7.4, each of y, z, y^{\prime} has an $L_{\phi \cup \sigma}$-list of size at least three, so, by 2) of Proposition 1.5.1 applied to $\tilde{G}_{P \times}^{\text {small }}$, we get that σ extends to an L_{ϕ}-coloring σ^{*} of $\operatorname{dom}(\sigma) \cup V\left(\tilde{G}_{P \times}^{\text {small }}\right.$. Since σ restricts to an element of $\operatorname{Link}\left(x Q^{\text {small }} p\right)$, the L_{ϕ}-coloring $\left(\sigma(x), \sigma^{*}(y), \sigma(p)\right)$ of xyp extends to L_{ϕ}-color K as well, so σ extends to L_{ϕ}-color an L_{ϕ}-coloring τ of $\operatorname{dom}(\sigma) \cup V\left(\tilde{G}_{z}^{\text {small }}\right)$. Since $y \notin N\left(w^{\dagger}\right)$, we have $\operatorname{dom}(\phi \cup \tau) \cap N\left(w^{\dagger}\right)=\left\{x, x^{\prime}\right\}$ and $\left|L_{\phi \cup \tau}\left(w^{\dagger}\right)\right|=3$, contradicting 1) of Claim 10.4.8. This completes the proof of Lemma 10.4.2.

10.5 Obstruction Vertices

When we construct a (C, z)-opener for a given a pentagonal $z \in D_{2}\left(C^{1}\right)$, the main obstacle is the presence of vertices of $\tilde{G}_{z}^{\text {large }} \backslash V\left(C^{1} \cup \operatorname{Span}(z)\right)$ which have neighbors on C^{1} and neighbors in $\operatorname{Span}(z)$, so we introduce the following terminology.

Definition 10.5.1. Let $z \in D_{2}\left(C^{1}\right)$ be a pentagonal vertex and suppose that $\left|E\left(C^{1} \cap \tilde{G}_{z}^{\text {large }}\right)\right|>1$. Let $e=x x_{*}$ be one of the two edges of $C^{1} \cap \tilde{G}_{z}^{\text {large }}$ which is incident to $\operatorname{Span}(z)$, where $x \in V\left(\operatorname{Span}(z) \cap C^{1}\right)$ and $x_{*} \in V\left(C^{1} \cap\right.$ $\left.\tilde{G}_{z}^{\text {large }}\right) \backslash V(\operatorname{Span}(z))$. We then have the following definitions.

1) An e-obstruction is a vertex $w \in V\left(\tilde{G}_{z}^{\text {large }}\right) \backslash V\left(C_{z}^{1} \cup \operatorname{Span}(z)\right)$ such that the following hold.
a) w is adjacent to at least one endpoint of the lone edge of $\operatorname{Span}(z)$ incident to $x ; A N D$
b) There is a 2-chord of $G\left[V\left(C_{z}^{1} \cup \operatorname{Span}(z)\right)\right]$ with w as a midpoint, where, in $\tilde{G}_{z}^{\text {large }}$, this 2-chord separates z from the edge $x x_{*}$.
2) We denote the set of e-obstruction vertices by $\mathrm{Ob}_{z}(e)$. We say that an e-obstruction w is maximal if there does not exist an e-obstruction w^{\prime} and a 2-chord of $G\left[V\left(C_{z}^{1} \cup \operatorname{Span}(z)\right)\right]$ which has w^{\prime} as a midpoint and which separates w from z.

Proposition 10.5.2. Let $z \in D_{2}\left(C^{1}\right)$ be a pentagonal, end-repelling vertex and let e be one of the two edges of $C^{1} \cap \tilde{G}_{z}^{\text {large }}$ which is incident to $\operatorname{Span}(z)$. Then $\mathrm{Ob}_{z}(e) \neq \varnothing$ and there exists a unique $w \in \mathrm{Ob}_{z}(e)$ and a 2-chord R_{e} of $G\left[V\left(C_{z}^{1} \cup \operatorname{Span}(z)\right)\right]$ with w as a midpoint, where $\tilde{G}_{z}^{\text {large }}$ admits a partition $\tilde{G}_{z}^{\text {large }}=J_{e}^{0} \cup J_{e}^{1}$, such that the following hold.

1) $J_{e}^{0} \cap J_{e}^{1}$ is the natural R_{e}-partition of $\tilde{G}_{z}^{\text {large }}$, where $z \in V\left(J_{e}^{0}\right)$ and each vertex of $\tilde{G} \backslash C^{1}$ with an L_{ϕ}-list of size less than five lies in $V\left(J_{e}^{0}\right)$; AND
2) w is an e-obstruction and each e-obstruction lies in J_{e}^{1}; AND
3) $N(w) \cap V\left(C^{1}\right) \subseteq V\left(J_{e}^{1}\right)$

Proof. Let $e=x x^{*}$, where $x \in V(\operatorname{Span}(z))$, and let $x y$ be the unique edge of $\operatorname{Span}(z)$ incident to x. Note that, since C^{1} is an induced subgraph of G, it follows that, for each endpoint e of $C^{1} \cap \tilde{G}_{z}^{\text {large }}$, an e-obstruction always exists, since the endpoints of e have a common neighbor in $D_{2}(C)$. We break the remainder of the proof into two cases:

Case 1: There does not exist an element of $\mathrm{Ob}_{z}\left(x x_{*}\right)$ adjacent to y
In this case, we let \mathcal{P} be the set of 2-chords P of C^{1} in $G \backslash C$ such that P has x as an endpoint and the midpoint of P lies in $\tilde{G}_{z}^{\text {large }}$. There is a unique element of \mathcal{P} which maximizes the quantity $\left|V\left(\tilde{G}_{P}^{\text {small }}\right)\right|$, and the midpoint of this element of \mathcal{P} is the unique maximal obstruction vertex.

Case 2: There exists an element of $\mathrm{Ob}_{z}\left(x x_{*}\right)$ adjacent to y
In this case, let \mathcal{S} be the set of proper 3-chords P of C^{1} in $G_{z}^{\text {large }}$ in which $x y$ is a terminal edge, the non- y endpoint of the middle edge of P is an e-obstruction, and the 3-chord P of C^{1} separates $x u$ from z. By assumption, $\mathcal{S} \neq \varnothing$. Note that each element of \mathcal{S} is a 2-chord of $G\left[V\left(C_{z}^{1} \cup \operatorname{Span}(z)\right)\right]$.

To show that the proposition holds in this case, it suffices to show that, for any $Q, Q^{\prime} \in \mathcal{S}$, we have either $\tilde{G}_{Q}^{\text {small }} \subseteq$ $\tilde{G}_{Q^{\prime}}^{\text {small }}$ or $\tilde{G}_{Q^{\prime}}^{\text {small }} \subseteq \tilde{G}_{Q}^{\text {small }}$. If this holds, then, letting Q be the unique element of \mathcal{S} which maximizes $\left|V\left(\tilde{G}_{Q}^{\text {small }}\right)\right|$, the choice $R_{e}=Q$ satisfies the proposition. If this total ordering of the elements of \mathcal{S} does not hold, then there exists a $Q \in \mathcal{S}$ which separates $G_{z}^{\text {small }} \backslash Q$ from a vertex of $G \backslash B_{4}(C)$ with an L_{ϕ}-list of size less than five, contradicting the fact that z is pentagonal.

Given the result above, it is natural to introduce the following definition.
Definition 10.5.3. Given an end-repelling pentagonal vertex $z \in D_{2}\left(C^{1}\right)$ and an edge e of $C^{1} \cap \tilde{G}_{z}^{\text {large }}$ which is incident to $\operatorname{Span}(z)$, the notation J_{e}^{0}, J_{e}^{1} always refers to the two subgraphs of $\tilde{G}_{z}^{\text {large }}$ specified in Proposition 10.5.2 and the notation R_{e} always refers to the 2-chord of $G\left[V\left(C_{z}^{1} \cup \operatorname{Span}(z)\right)\right]$ specified in Proposition 10.5.2. Note that R_{e} is either a 2 -chord of a 3 -chord of C^{1}.

We now prove two propositions about obstruction vertices.
Proposition 10.5.4. Let $z \in D_{2}\left(C^{1}\right)$ be a pentagonal vertex, where $\left|E\left(C^{1} \cap \tilde{G}_{z}^{\text {large }}\right)\right|>1$, and let e be an edge of $C^{1} \cap \tilde{G}_{z}^{\text {large }}$ incident to $\operatorname{Span}(z)$, where $x \in V(\operatorname{Span}(z))$. Let wu be the lone edge of $R_{e} \backslash \operatorname{Span}(z)$, where $u \in V\left(C^{1}\right)$ and w is the unique maximal e-obstruction. Let B be a nonempty subset of $D_{2}(C) \cap N(w)$, where each $w^{*} \in B$ has a neighbor in $C_{z}^{1} \backslash J_{e}^{1}$. Then there exists a proper 3-chord R of C^{1}, where wu is one of the terminal edges of R, such that. letting $w^{*} w$ be the middle edge of R, the following hold.

1) $\tilde{G}_{R}^{\text {small }} \cap J_{e}^{1}=w u$; AND
2) $w^{*} \in B, N\left(w^{*}\right) \cap V\left(C^{1}\right) \subseteq V\left(\tilde{G}_{R}^{\text {small }}\right)$, and $B \subseteq V\left(\tilde{G}_{R}^{\text {small }}\right)$.

Proof. Since $B \neq \varnothing, \tilde{G}_{z}^{\text {large }}$ contains a proper 3-chord of C^{1} in which $w u$ is a terminal edge and the non- w endpoint of the middle edge lies in B. Let \mathcal{S} be the set of proper 3-chords of C^{1} satisfying these properties. To show that Proposition 10.5.4 holds, it suffices to show that, for any $R, R^{\prime} \in \mathcal{S}$, we have either $\tilde{G}_{R}^{\text {small }} \subseteq \tilde{G}_{R^{\prime}}^{\text {small }}$ or $\tilde{G}_{R^{\prime}}^{\text {small }} \subseteq \tilde{G}_{R}^{\text {small }}$, and then the element of \mathcal{S} which maximizes $\left|V\left(\tilde{G}_{Q}^{\text {small }}\right)\right|$ satisfies 1) and 2). If this total ordering of the elements of \mathcal{S} does not hold, then there exists a $R \in \mathcal{S}$ such that R separates z from a vertex of $G \backslash B_{4}(C)$ with an L_{ϕ}-list of size less than five, and since R is a 3 -chord of C^{1}, this contradicts the fact that z is pentagonal.

In general, when we construct (C, z)-openers, we want to avoid deleting the obstruction vertices but sometimes we have to delete them, and Proposition 10.5.4 specifies a natural way to define maximal "second generation" obstruction
vertices.
Definition 10.5.5. Let $z \in D_{2}\left(C^{1}\right)$ be a pentagonal vertex, where $\left|E\left(C^{1} \cap \tilde{G}_{z}^{\text {large }}\right)\right|>1$, and let e be an edge of $C^{1} \cap \tilde{G}_{z}^{\text {arge }}$ incident to $\operatorname{Span}(z)$, where $x \in V(\operatorname{Span}(z))$. Let $w u$ be the lone edge of $R_{e} \backslash \operatorname{Span}(z)$, where $u \in V\left(C^{1}\right)$ and w is the unique maximal e-obstruction. Let B be a nonempty subset of $D_{2}(C) \cap N(w)$, where each $w^{*} \in B$ has a neighbor in $C_{z}^{1} \backslash J_{e}^{1}$. We call the 3-chord R of C^{1} defined in Proposition 10.5.4 the e-enclosure of B and we call the lone edge of $R \backslash\{w, u\}$ the e-wall of B.

We now have the following.
Definition 10.5.6. Let $z \in D_{2}\left(C^{1}\right)$ be an end-repelling pentagonal vertex, and let e be one of the two edges of $C^{1} \cap \tilde{G}_{z}^{\text {large }}$ which is incident to $\operatorname{Span}(z) \cap C^{1}$. Let u be the unique non- $\operatorname{Span}(z)$ endpoint of R_{e}. We say that e is problematic if S_{\star} is a nonempty subset (i.e a lone vertex) of $\left(J_{e}^{1} \cap C^{1}\right) \backslash\{u\}$.

Proposition 10.5.7. Let $z \in D_{2}\left(C^{1}\right)$ be a pentagonal end-repelling vertex and let $e=x v$ be one of the two edge of $C^{1} \cap \tilde{G}_{z}^{\text {large }}$ which is incident to $\operatorname{Span}(z)$, where $x \in V\left(\operatorname{Span}(z) \cap C^{1}\right)$. Let y be the lone neighbor of x in $\operatorname{Span}(z) \cap D_{2}(C)$. Suppose that e is unproblematic and let uw be the lone edge of $R_{e} \backslash\{x, y\}$, where $u \in V\left(C^{1}\right)$. Then the following hold.
A) If at most one of x, y is adjacent to w, and there exists an L_{ϕ}-coloring of $\{u, x, y\}$ which does not extend to an L_{ϕ}-coloring of $V\left(J_{e}^{1}\right)$, then $R_{e}=u w y x$ and, in particular, J_{e}^{1} is a wheel where there is a lone vertex of $J_{e}^{1} \backslash R_{e}$ adjacent to all the vertices of the cycle $\left(C^{1} \cap J_{e}^{1}\right)+R_{e} ;$ AND
B) If x is not adjacent to w, then, for any two distinct colors $c_{0}, c_{1} \in L_{\phi}(x)$, any L_{ϕ}-coloring of $\{u, w, z\}$ extends to an L_{ϕ}-coloring of $V\left(J_{e}^{1}\right) \cup\{z\}$ using one of c_{0}, c_{1} on x.

Proof. We first prove A). Let σ be an L_{ϕ}-coloring of $\{u, x, y\}$ which does not extend to an L_{ϕ}-coloring of $V\left(J_{e}^{1}\right)$. Suppose first that $y \notin N(w)$. Thus, J_{e}^{1} is a broken wheel with principal path $u w x$. Since y is not adjacent to w, we have $\left|L_{\phi \cup \sigma}(w)\right| \geq 3$, and it follows from 1) of Proposition 1.5 .1 that σ extends to L_{ϕ}-color $V\left(J_{e}^{1}\right)$, contradicting our assumption. Thus, we have $y \in N(w)$, and, by assumption, $x \notin N(w)$.

Let D be the cycle $\left(C^{1} \cap J_{e}^{1}\right)+R_{e}$. Note that D is a cyclic facial subgraph of J_{e}^{1}. Since σ does not extend to $L_{\phi^{-}}$ color $V\left(J_{e}^{1}\right)$, it follows that $\sigma(u)$ is not highly ($x y, R_{e}$)-matchable. By Pm1) of Lemma 10.3.2, u, y have a common neighbor p in $J_{e}^{1} \backslash D$. Since $u y \notin E(G)$, it follows from our triangulation conditions that p is adjacent to w as well. In particular, w has no neighbors on D other than y, u, and since C^{1} is an induced cycle and there is no chord of D with y as an endpoint. Thus, D is an induced cycle. We claim now p is adjacent to x.

Suppose that $x \notin N(p)$. In that case, $\left|L_{\phi \cup \sigma}(p)\right| \geq 3$ and no vertex of J_{e}^{1} has more than two neighbors among $\{u, x, y\}$. Since D is an induced subgraph of G and $L_{\phi}(w) \mid \geq 5$, it follows that $\left\{v \in V\left(J_{e}^{1}\right) \backslash\{u, x, y\}:\left|L_{\phi \cup \sigma}(v)\right| \leq 2\right\}$ either consists of a lone vertex of D with an L-list of size at least one or two vertices of D with lists of size at least two. Applying Theorem 0.2 .3 in the first case or Theorem 1.3.4 in the second, we get that that σ extends to L_{ϕ}-color $V\left(J_{e}^{1}\right)$, contradicting our assumption. Thus, p is adjacent to x.

To finish, we just need to check that $\tilde{G}_{u p x}^{\text {small }}$ is a broken wheel with principal path upx. Suppose not. We have $\left|L_{\phi \cup \sigma}(w)\right| \geq 3$ and $\left|L_{\phi \cup \sigma}(p)\right| \geq 2$. Since D is an induced subgraph of G, it follows from Theorem 1.5.3 that σ extends to L_{ϕ}-color $V\left(J_{e}^{1}\right)$, contradicting our assumption. This proves A).

Now we prove B). Since $x \notin N(w)$, we have $R_{e}=u w y$. Let σ be an L_{ϕ}-coloring of $\{u, w, z\}$. Let \hat{v} be the lone neighbor of w closest to x on (u, x)-path in $J_{e}^{1} \cap C^{1}$. Since x is the only neighbor of y on this path and $x \notin N(w)$, it
follows from our triangulation conditions that v is not adjacent to x. Furthermore, σ extends to an L_{ϕ}-coloring σ^{*} of $V(H) \cup\{z\}$, and $J_{e}^{1} \backslash H$ has a facial subgraph F containing all the vertices of $J_{e}^{1} \backslash H$ with $L_{\phi \cup \sigma^{*}}$-lists of size less than five. Since C^{1} is an induced subgraph of G, and $\left|L_{\phi \cup \sigma^{*}}(y)\right| \geq 3$, every vertex of F has an $L_{\phi \cup \sigma^{*}}$ list of size at least three, except for at most one vertex of $C^{1} \backslash\{\hat{v}, x\}$, which has n $L_{\phi \cup \sigma^{*}}$-list of size at least two. Thus, by Theorem 1.3.4, σ^{*} extends to an L_{ϕ}-coloring of $V\left(J_{e}^{1}\right) \cup\{z\}$ using one of c_{0}, c_{1} on x.

10.6 The Trickiest Case

The trickiest case to deal with in the proof of Theorem 10.0.7 is the case where $\operatorname{Span}(z)$ is a proper 4-chord of C^{1} such that $\tilde{G}_{z}^{\text {large }} \cap C^{1}$ is a subpath of C^{1} which differs from C^{1} only by an edge (i.e $\tilde{G}_{z}^{\text {small }}$ is just an edge). In this case, letting $Q:=\tilde{G}_{z}^{\text {large }} \cap C^{1}$, an element of $\operatorname{Link}(Q)$ is not necessarily be a proper L_{ϕ}-coloring of its domain in $G \backslash C$, because this partial coloring of Q possibly uses the same color on the endpoints of Q. This is the most difficult and technical aspect of the proof of Theorem 10.0.7.

The purpose of Sections 10.6 and 10.7 is to deal with this obstacle. That is, we show in Sections 10.6-10.7 that, for any pentagonal $z \in D_{2}\left(C^{1}\right)$, if $\operatorname{Span}(z)$ is a proper 4-chord of C^{1} and $\tilde{G}_{z}^{\text {small }} \cap C^{1}$ is a path of length one, then there exists a (C, z)-opener. We begin with the following observation, which we use repeatedly.

Observation 10.6.1. Let $z \in D_{2}\left(C^{1}\right)$ be a pentagonal vertex, where $\operatorname{Span}(z)$ is a proper 4 -chord of C^{1} and $\tilde{G}_{z}^{\text {small } \cap C^{1}}$ is a path of length one. Let $\operatorname{Span}(z)=x y z y^{\prime} x^{\prime}$ for some edge $x x^{\prime}$ of C^{1}. If $\operatorname{Span}(z)$ has a chord other than $x x^{\prime}$, then $\tilde{G}_{z}^{\text {small }}$ either consists of $\operatorname{Span}(z)$ and the edges $\left\{x x^{\prime}, x y^{\prime}, y y^{\prime}\right\}$, or $\operatorname{Span}(z)$ and the edges $\left\{x x^{\prime}, x^{\prime} y, y y^{\prime}\right\}$.

Proof. The 5-cycle $x y z y^{\prime} x^{\prime} x^{\prime}$ is a facial subgraph of $\tilde{G}_{z}^{\text {small }}$. Since $z \in D_{3}(C)$, we have $x, x^{\prime} \notin N(z)$. Furthermore, by Proposition 10.2 .8 , there is no chord of C_{z}^{1} in $\tilde{G}_{z}^{\text {large }}$. Since G is short-separation-free and $x, x^{\prime} \notin N(z)$, the observation immediately follows from our triangulation conditions.

We now have the following.
Proposition 10.6.2. Let $z \in D_{2}\left(C^{1}\right)$ be a pentagonal vertex where $\operatorname{Span}(z)$ is a proper 4-chord of C^{1} and $\tilde{G}_{z}^{\text {small }} \cap C^{1}$ is a path of length one. Let $\operatorname{Span}(z):=x y z y^{\prime} x^{\prime}$ for some $x, x^{\prime} \in V\left(C^{1}\right)$ and $y, y^{\prime} \in D_{2}(C)$. Then, for any $y^{*} \in\left\{y, y^{\prime}\right\}$, the following hold.
a) For any L_{ϕ}-coloring σ of $\left\{x, x^{\prime}\right\}$ there is an extension of σ to a proper L_{ϕ}-coloring ψ of $V\left(\operatorname{Span}(z)-y^{*}\right)$ such that $\left|L_{\phi \cup \psi}\left(y^{*}\right)\right| \geq 3$ and $V\left(G_{z}^{\text {small }}\right) \backslash V(\operatorname{Span}(z))$ is $(L, \phi \cup \psi)$-inert; AND
b) If there is no chord of C^{1} with y^{*} as an endpoint other than $y y^{\prime}$, then, for any L_{ϕ}-coloring τ of $V(\operatorname{Span}(z)) \backslash$ $\left\{y^{*}, z\right\}$ there is an extension of τ to a proper L_{ϕ}-coloring ψ of $V\left(\operatorname{Span}(z)-y^{*}\right)$ such that $\left|L_{\phi \cup \psi}\left(y^{*}\right)\right| \geq 3$ and $V\left(G_{z}^{\text {small }}-y^{*}\right)$ is $(L, \phi \cup \psi)$-inert.

Proof. Suppose without loss of generality that $y^{*}=y^{\prime}$. We break this into two cases.
Case 1: There is a chord of C_{z}^{1} with y^{\prime} as an endpoint
In this case we just need to prove a). Since C_{z}^{1} is an induced cycle of $\tilde{G}_{z}^{\text {large }}$, it follows from Observation 10.6.1 that $V\left(\tilde{G}_{z}^{\text {small }}\right)=\left\{x, y, z, y^{\prime}, x^{\prime}\right\}$. If $\left|L_{\phi \cup \sigma}(y)\right|=3$, then $G_{z}^{\text {small }}$ contains the edge $y x^{\prime}$, so $\left|L_{\phi \cup \sigma}\left(y^{\prime}\right)\right| \geq 4$. Thus, choosing a color $f \in L_{\phi \cup \sigma}(z)$ such that $\left|L_{\phi^{*}}\left(y^{\prime}\right) \backslash\{f\}\right| \geq 4$, and coloring y with any remaining color, we have an extension of $\phi \cup \sigma$ to the edge $y z$ which leaves behind at least three colors in the list of y^{\prime}.

Thus, if $\left|L_{\phi \cup \sigma}(y)\right|=3$, then we are done, so now suppose that $\left|L_{\phi \cup \sigma}(y)\right|>3$. Thus, there is a color $f \in L_{\phi \cup \sigma}(y)$ such that $\left|L_{\phi \cup \sigma}\left(y^{\prime}\right) \backslash\{f\}\right| \geq 3$, and since $\left|L_{\phi \cup \sigma}(z) \backslash\{f\}\right| \geq 4$, there is an extension of $\phi \cup \sigma$ to the edge $y z$ which leaves behind at least three colors in the list of y^{\prime}, so we are done.

Case 2: There is no chord of C_{z}^{1} with y as an endpoint
In this case, since C_{z}^{1} is an induced subgraph of $\tilde{G}_{z}^{\text {large }}$, it follows that, for any extension ψ of ϕ^{*} to an L-coloring of $V(C) \cup\left\{x, y, z, x^{\prime}\right\}$, we have $\left|L_{\psi}\left(y^{\prime}\right)\right| \geq 3$, since the only neighbors of y^{\prime} among the colored vertices are x^{\prime}, z. Now let τ be an L_{ϕ}-coloring of $\left\{x, x^{\prime}, y\right\}$.

If there does not exist a lone vertex of $\tilde{G}_{z}^{\text {small }}$ adjacent to all five vertices of $\operatorname{Span}(z)$, then, by Theorem 1.3.5, any extension of $\phi \cup \tau$ to z satisfies the desired conditions. Now suppose that such a vertex v^{\star} exists. Since C_{z}^{1} is an induced subgraph of $\tilde{G}_{z}^{\text {large }}$, and $\tilde{G}_{z}^{\text {small }}$ is a wheel with central vertex $v^{\star}, x x^{\prime}$ is the only chord of C_{z}^{1} in G. Furthermore, we have $\left|L_{\phi \cup \tau}\left(v^{\star}\right)\right| \geq 2$, and since $\left|L_{\phi \cup \tau}(z)\right| \geq 4$, it immediately follows from Corollary 1.3.6 that there is an extension of τ to an L_{ϕ}-coloring of $\left\{x, y, z, x^{\prime}\right\}$ satisfying the desired properties.

Now we prove the first of two lemmas which make up the remainder of Section 10.6.
Lemma 10.6.3. Let $z \in D_{2}\left(C^{1}\right)$ be a pentagonal vertex, where $\operatorname{Span}(z)$ is a proper 4 -chord of C^{1} such that $\tilde{G}_{z}^{\text {small } \cap C^{1}}$ is a path of length one. Suppose that there does not exist a (C, z)-opener. If there is an element of $\operatorname{Link}\left(C^{1}-x x^{\prime}\right)$ such that $\sigma(x) \neq \sigma\left(x^{\prime}\right)$, then $V\left(\tilde{G}_{\text {small }}^{z}\right)=V(\operatorname{Span}(z))$. In particular, if $S_{\star} \neq \varnothing$, then $V\left(\tilde{G}_{\text {small }}^{z}\right)=V(\operatorname{Span}(z))$.

Proof. By Lemma 10.4.2, z is end-repelling, since $C^{1} \cap \tilde{G}_{z}^{\text {small }}$ is an edge. Let e, e^{\prime} be the two terminal edges of $C^{1} \cap \tilde{G}_{z}^{\text {large }}$, where e is incident to x and e^{\prime} is incident to x^{\prime}.

Let $Q:=C^{1}-x x^{\prime}$ and let $\sigma \in \operatorname{Link}(Q)$, where $\sigma(x) \neq \sigma\left(x^{\prime}\right)$. Suppose toward a contradiction that $V\left(\tilde{G}_{\text {small }}^{z}\right) \neq$ $V(\operatorname{Span}(z))$. By Observation 10.6.1, there is no chord of the path $x y z y^{\prime} x^{\prime}$ in G except for $x x^{\prime}$.

Applying Proposition 10.5.2, let w be the unique maximal e-obstruction and let w^{\prime} be the unique maximal e^{\prime} obstruction. Let $u w$ be the lone edge of $R_{e} \backslash\{x, y\}$ and let $u^{\prime} w^{\prime}$ be the lone edge of $R_{e^{\prime}} \backslash\left\{x^{\prime}, y^{\prime}\right\}$. Since G has no chord of $\operatorname{Span}(z)$ except for $x x^{\prime}$, we have $\left|L_{\phi \cup \sigma}(y)\right| \geq 4$ and $\left|L_{\phi \cup \sigma}\left(y^{\prime}\right)\right| \geq 4$. Since each of w, w^{\prime} has an L_{ϕ}-list of size at least three, we extend σ to an L_{ϕ}-coloring of $\operatorname{dom}(\sigma) \cup\left\{y, y^{\prime}\right\}$ in the following way. We let $f \in L_{\phi \cup \sigma}(y)$ and $f^{\prime} \in L_{\phi \cup \sigma}\left(y^{\prime}\right)$, where $\left|L_{\phi \cup \sigma}(w) \backslash\{f\}\right| \geq 3$ and $\left|L_{\phi \cup \sigma}\left(w^{\prime}\right) \backslash\left\{f^{\prime}\right\}\right| \geq 3$. Possibly $f=f^{\prime}$, which is permissible as $y y^{\prime} \notin E(G)$.

Since $\left|L_{\phi}(z) \backslash\left\{f, f^{\prime}\right\}\right| \geq 3$, it immediately follows from Corollary 1.3.6 that there is an L_{ϕ}-coloring τ of dom $(\sigma) \cup$ $V\left(\tilde{G}_{z}^{\text {small }}\right)$ using f, f^{\prime} on the respective vertices y, y^{\prime}. Let H be the subgraph of G induced by $\operatorname{dom}(\phi \cup \tau) \cup V\left(J_{e}^{1} \cup\right.$ $\left.J_{e^{\prime}}^{1}\right) \cup \mathrm{Sh}_{2}(Q)$.

We claim now that $\left[H \backslash\left\{w, w^{\prime}\right\}, \phi \cup \tau\right]$ is a (C, z)-opener. It suffices to check that each of $V\left(J_{e}^{1}-w\right)$ and $V\left(J_{e^{\prime}}^{1}-w^{\prime}\right)$ is $(L, \phi \cup \tau)$-inert in G. Without loss of generality, we just show that this holds for $J_{e}^{1}-w$. If $R_{e}=u w x$, then $V\left(J_{e}^{1} \backslash R_{e}\right) \subseteq \operatorname{Sh}_{2}(Q)$ and so it immediately follows from the definition of $\operatorname{Link}(Q)$ that $V\left(J_{e}^{1}-w\right)$ is $(L, \phi \cup \tau)$-inert in G. On the other hand, if $R_{e}=u^{\prime} w^{\prime} x^{\prime}$, then this immediately follows from Proposition 10.2 .9 so we are done. Thus, [$\left.H \backslash\left\{w, w^{\prime}\right\}, \phi \cup \tau\right]$ is a (C, z)-opener, contradicting our assumption.

We conclude that, if there is an element of $\operatorname{Link}(Q)$ such that $\sigma(x) \neq \sigma\left(x^{\prime}\right)$, then $V\left(\tilde{G}_{\text {small }}^{z}\right)=V(\operatorname{Span}(z))$. In particular, it immediately follows from 3) of Corollary 10.2 .5 that either $S_{\star}=\varnothing$ or $V\left(\tilde{G}_{\text {small }}^{z}\right)=V(\operatorname{Span}(z))$.

Now we prove the main result of Section 10.6.

Lemma 10.6.4. Let $z \in D_{2}\left(C^{1}\right)$ be a pentagonal vertex, where $\operatorname{Span}(z)$ is a proper 4-chord of C^{1} and $\tilde{G}_{z}^{\text {small }} \cap C$ is a path of length one. Suppose that there does not exist a (C, z)-opener. Suppose further that there is $a u_{\star} \in V\left(C^{1}\right)$ with $S_{\star}=\left\{u_{\star}\right\}$. Then there exists a terminal edge $e=x v$ of $C^{1} \cap \tilde{G}_{z}^{\text {large }}$, where x is an endpoint of $\operatorname{Span}(z)$, such that the following hold.

1) $x v$ is problematic; AND
2) There is a vertex of $T^{<2}$ which, on the path $C^{1} \cap \tilde{G}_{z}^{\text {large }}$, separates u_{\star} from the non-x endpoint of $\operatorname{Span}(z)$.

Proof. Since $S_{\star} \neq \varnothing$, it follows from Co4d) of Definition 10.0.1 that every vertex of $D_{2}(C)$ has a neighborhood on C^{1} consisting precisely of a subpath of C^{1}. By Lemma 10.4.2, z is end-repelling, since $C^{1} \cap \tilde{G}_{z}^{\text {small }}$ is an edge. Let e, e^{\prime} be the two terminal edges of $C^{1} \cap \tilde{G}_{z}^{\text {large }}$, where e is incident to x and e^{\prime} is incident to x^{\prime}.

Let $w u$ be the unique edge of $R_{e} \backslash\{x, y\}$ and let $w^{\prime} u^{\prime}$ be the unique edge of $R_{e^{\prime}} \backslash\left\{x^{\prime}, y^{\prime}\right\}$, where w is an e-obstruction, w^{\prime} is an e^{\prime}-obstruction, $u \in V\left(C^{1}-x\right)$ and $u^{\prime} \in V\left(C^{1}-x^{\prime}\right)$. By Lemma 10.4.2, we have $u, u^{\prime} \notin\left\{x, x^{\prime}\right\}$ and $w \neq w^{\prime}$. Let $Q:=C^{1} \cap \tilde{G}_{z}^{\text {large }}=C^{1}-x x^{\prime}$.

Suppose toward a contradiction that the lemma is not satisfied. By Co4c) of Definition 10.0.1, there is a vertex $v^{\dagger} \in T^{<2}$. Note that $v^{\dagger} \neq u_{\star}$. Let q, q^{\prime} be the endpoints of $S_{\star}^{\text {path (}}$ (possibly $q=q^{\prime}=u_{\star}$), where the vertices of $\left\{q, q^{\prime}, x, x^{\prime}\right\}$ have the cyclic order $x^{\prime}, q^{\prime}, q, x$ (possibly one of q, q^{\prime} lies in $\left\{x, x^{\prime}\right\}$). Since G is $K_{2,3}$-free, v^{\dagger} is not an internal vertex of $S_{\star}^{\text {path }}$. Thus, suppose without loss of generality that $v^{\dagger} \in V(q Q x)$. Recall that $w^{\prime} u^{\prime}$ is the lone edge of $R_{e^{\prime}} \backslash\left\{x^{\prime}, y^{\prime}\right\}$. Since the lemma does not hold, and $v^{\dagger} \in V(q Q x)$, we have by assumption that $u_{\star} \notin V\left(J_{e^{\prime}}^{1}-u^{\prime}\right)$, or else e^{\prime} is problematic and, v^{\dagger} separates u_{\star} from x on the path $C^{1}-x x^{\prime}$. Now we have the following:

Claim 10.6.5. w^{\prime} is adjacent to each of x^{\prime}, y^{\prime}
Proof: We first show that $w^{\prime} y^{\prime}$ is an edge of $R_{e^{\prime}}$. Suppose not. Then $R_{e^{\prime}}=u^{\prime} w^{\prime} x^{\prime}$ and w^{\prime} is the unique e^{\prime}-obstruction. Applying Proposition 10.2.4, there is a $c^{\prime} \in L_{\phi}\left(x^{\prime}\right)$ and an element $\psi \in \operatorname{Link}(Q)$ such that $\psi(x) \neq c^{\prime}$, so $\phi \cup \psi$ is a proper L-coloring of its domain in G. By 2) of Proposition 10.6.2, there is an extension σ of $\phi \cup \psi$ to an L-coloring of $\operatorname{dom}(\phi \cup \psi) \cup\left\{y^{\prime}, z\right\}$ such that $\left|L_{\sigma}(y)\right| \geq 3$ and $V\left(\tilde{G}_{z}^{\text {small }}\right) \backslash V(\operatorname{Span}(z))$ is (L, σ)-inert

Let $H:=\operatorname{dom}(\sigma) \cup V\left(\tilde{G}_{z}^{\text {small }}-y\right) \cup \operatorname{Sh}_{2,}(Q)$. By assumption, $[H, \sigma]$ is not a (C, z)-opener, so there exists a $p \in D_{1}(H)$ with $\left|L_{\sigma}(p)\right|<3$. By Proposition 10.2.8, p is not adjacent to z, and since w^{\prime} is the unique e^{\prime}-obstruction, we have $p=w^{\prime}$. Since w^{\prime} is not adjacent to x^{\prime}, we have $\left|L_{\sigma}(p)\right| \geq 3$, a contradiction. Thus, we indeed have $R_{e^{\prime}}=u^{\prime} w^{\prime} y^{\prime}$.

By Proposition 10.2.4, there is a $d \in L_{\phi}\left(u^{\prime}\right)$ and a pair of elements $\psi_{1}, \psi_{2} \operatorname{in} \operatorname{Link}\left(u^{\prime} Q x\right)$ which use different colors on x and color u^{\prime} with d. Note that $x^{\prime} w^{\prime} \notin E(G)$, or else, since $w^{\prime} \notin N\left(x^{\prime}\right)$ and G is short-separation-free, it follows from our triangulation conditions that $w^{\prime} \in N\left(x^{\prime}\right)$, contradicting our assumption. Now we apply the work of Section 1.6. Since $u_{\star} \notin V\left(J_{e^{\prime}}^{1}-u^{\prime}\right)$ and $N\left(y^{\prime}\right) \cap V\left(C_{z}^{1}\right)=\left\{z, x^{\prime}\right\}$, it follows from Theorem 1.6.1 that there is a color $f \in L_{\phi}\left(x^{\prime}\right)$ such that any L_{ϕ}-coloring of $u^{\prime} w^{\prime} y^{\prime} x^{\prime}$ using d, f on the respective vertices u^{\prime}, x^{\prime} extends to an L_{ϕ}-coloring of $J_{e^{\prime}}^{1}$. Since $\psi_{1}(x), \psi_{2}(x)$ are distinct, suppose without loss of generality that $\psi_{1}(x) \neq f$.

Applying Proposition 10.6.2, let ϕ^{*} be an extension of ϕ to $V(C) \cup\left\{x^{\prime}, y^{\prime}, z, x\right\}$, where ϕ^{*} uses the colors $\psi_{1}(x), f$ on the respective vertices x, x^{\prime}, such that $\left|L_{\phi^{*}}(y)\right| \geq 3$ and $V\left(G_{z}^{\text {small }}\right) \backslash V(\operatorname{Span}(z))$ is $\left(L, \phi^{*}\right)$-inert. Since C_{z}^{1} is an induced subgraph of $\tilde{G}_{z}^{\text {large }}$, the union $\phi^{*} \cup \psi_{1}$ is a proper L_{ϕ}-coloring of its domain.

Let H be the subgraph of G induced by $\operatorname{dom}\left(\phi^{*} \cup \psi_{1}\right) \cup V\left(J_{e^{\prime}}^{1}-w^{\prime}\right) \cup \mathrm{Sh}_{2}\left(u^{\prime} Q x\right) \cup V\left(G_{z}^{\text {small }}-y\right)$. By our construction of $\phi^{*} \cup \psi_{1}, V(H) \backslash \operatorname{dom}\left(\phi^{*} \cup \psi_{1}\right)$ is $L_{\phi^{*} \cup \psi_{1}}$-inert. By assumption, $\left[H, \phi^{*} \cup \psi_{1}\right]$ is not a (C, z)-opener so there is a
$p \in D_{1}(H)$ with $\left|L_{\phi^{*} \cup \psi_{1}}(p)\right|<3$. By Proposition 10.2.8, p is not adjacent to z, so $p=w^{\prime}$. Since $w^{\prime} x^{\prime} \notin E(G)$, we have $N\left(w^{\prime}\right) \cap \operatorname{dom}\left(\phi^{*} \cup \psi_{1}\right)=\left\{u^{\prime}, y^{\prime}\right\}$, so $\left|L_{\phi^{*} \cup \psi_{1}}(p)\right| \geq 3$, a contradiction.

Now we have the following:
Claim 10.6.6. Let $\psi \in \operatorname{Link}(Q)$ with $\psi(x) \neq \psi\left(x^{\prime}\right)$. Let σ be an extension of $\phi \cup \psi$ to an L-coloring of $\operatorname{dom}(\phi \cup$ $\psi) \cup\left\{y^{\prime}, z\right\}$. Suppose that σ is a proper L-coloring of its domain in $G,\left|L_{\sigma}(y)\right| \geq 3$, and $V\left(\tilde{G}_{z}^{\text {small }}\right) \backslash V(\operatorname{Span}(z))$ is (L, σ)-inert. Then $\left|L_{\sigma}\left(w^{\prime}\right)\right|<3$.

Proof: Let H be the subgraph of G induced by $\operatorname{dom}(\sigma) \cup V\left(\tilde{G}_{z}^{\text {small }}-y\right) \cup \operatorname{Sh}_{2}(Q)$. By our construction of $\sigma, V(H) \backslash$ $\operatorname{dom}(\sigma)$ is L_{σ}-inert. By assumption, $[H, \sigma]$ is not a (C, z)-opener, so there exists a $p \in D_{1}(H)$ with $\left|L_{\sigma}(p)\right|<3$. By Proposition 10.2.8, $z \notin N(p)$, so $y^{\prime} \in N(p)$. Since w^{\prime} is the unique e^{\prime}-obstruction, $p=w^{\prime}$.

By Lemma 10.6.3, we have $V\left(\tilde{G}_{z}^{\text {small }}\right)=V(\operatorname{Span}(z))$, so we get $y y^{\prime} \in E\left(\tilde{G}_{z}^{\text {small }}\right)$ by Observation 10.6.1. Applying Claim 10.6.5, $J_{e^{\prime}}^{1}-y^{\prime} w^{\prime}$ consists of a broken wheel K with principal path $u^{\prime} w^{\prime} x$. Since $u_{\star} \notin V\left(J_{e^{\prime}}^{1}-u^{\prime}\right)$, each vertex on the path $K-\left\{u^{\prime}, w^{\prime}\right\}$ has an L_{ϕ}-list of size at at least three.

Claim 10.6.7. $y^{\prime} x \notin E(G)$.
Proof: Suppose toward a contradiction that $y^{\prime} x \in E(G)$. Thus, $\tilde{G}_{z}^{\text {small }}$ consists of the path $\operatorname{Span}(z)$ and the edges $x x^{\prime}, y^{\prime} x, y y^{\prime}$. The key here is to leave x^{\prime} uncolored. Since $u_{\star} \notin V\left(J_{e^{\prime}}^{1}-u^{\prime}\right)$, it follows from Proposition 10.2.4 that there is a pair of colorings $\psi_{0}, \psi_{1} \in \operatorname{Link}\left(u^{\prime} Q x\right)$ which use the same color on u^{\prime} and use different colors on x. Since x^{\prime} is uncolored, each of ψ_{0}, ψ_{1} is a proper L-coloring of its domain in G. Let c be the colored used by ψ_{0}, ψ_{1} on u^{\prime}, and, for each $i=0,1$, let $d_{i}:=\psi_{i}(x)$.

Now, for each $i=0,1$ and $f \in L\left(y^{\prime}\right) \backslash\left\{d_{i}\right\}$, we define a partial L_{ϕ}-coloring σ_{i}^{f} of \tilde{G} as follows. We extend ψ_{i} to an L_{ϕ}-coloring of $\operatorname{dom}\left(\psi_{i}\right) \cup\left\{y^{\prime}, z\right\}$ by coloring y^{\prime} with f and choose a color $f^{\prime} \in L(z)$ such that $\left|L_{\psi_{i}}(y) \backslash\left\{f, f^{\prime}\right\}\right| \geq 3$. Such an f^{\prime} exists since $\left|L_{\psi_{i}}(z) \backslash\{f\}\right| \geq 4$ and $\left|L_{\psi_{i}}(y) \backslash\{f\}\right| \geq 3$. Note that all of colorings of the form σ_{i}^{f} have the same domain in \tilde{G} and each is a proper L_{ϕ}-coloring of its domain. Let $A \subseteq V(\tilde{G})$ be the common domain of all of these colorings and let H be the subgraph of G induced by $V(C) \cup A \cup \operatorname{Sh}_{2}(Q)$.

By assumption, for each $i \in\{0,1\}$ and $f \in L\left(y^{\prime}\right) \backslash\left\{d_{i}\right\}$, the pair $\left[H, \sigma_{i}^{f} \cup \phi\right]$ is not a (C, z)-opener, and the only condition which is violated is the inertness of $V(K) \backslash\left\{u^{\prime}, w^{\prime}\right\}$ in G. Since $y x^{\prime} \notin E(G)$, it follows that, for each $i \in\{0,1\}$ and $f \in L\left(y^{\prime}\right) \backslash\left\{d_{i}\right\}$, there is an extension of $\sigma_{i}^{f} \cup \phi$ to an L-coloring τ_{i}^{f} of $G \backslash\left(K \backslash\left\{u^{\prime}, w^{\prime}\right\}\right)$ which does not extend to L-color the rest of K, so the following holds:

$$
z_{K}\left(c, \tau_{i}^{f}\left(w^{\prime}\right), \bullet\right) \subseteq\left\{d_{i}, f\right\}
$$

Note that all of these extensions use the color c on u^{\prime}, since u^{\prime} is already colored.
Subclaim 10.6.8. $\left\{d_{0}, d_{1}\right\} \subseteq\left(L\left(w^{\prime}\right) \cap L_{\phi}\left(x^{\prime}\right)\right) \backslash\{c\}$.
Proof: Since $\left|L\left(y^{\prime}\right)\right| \geq 5$, there exist two distinct colors $f_{0}, f_{1} \in L\left(y^{\prime}\right)$ such that $\left|L_{\phi}\left(x^{\prime}\right) \backslash\left\{f_{0}, f_{1}\right\}\right| \geq 3$. Since f_{0}, f_{1} are distinct, suppose without loss of generality that $f_{0} \neq d_{0}$ and $f_{1} \neq d_{1}$. Now consider the two L-colorings $\tau_{0}^{f_{0}}$ and $\tau_{1}^{f_{1}}$ of $G \backslash\left(K \backslash\left\{u^{\prime}, w^{\prime}\right\}\right)$.

By Theorem 0.2.3, for each $i=0,1, z_{K}\left(c, \tau_{i}^{f_{i}}\left(w^{\prime}\right), \bullet\right)$ contains a color of $L_{\phi}\left(x^{\prime}\right) \backslash\left\{f_{0}, f_{1}\right\}$, since $\mid L_{\phi}\left(x^{\prime}\right) \backslash$ $\left\{f_{0}, f_{1}\right\} \mid \geq 3$. Let L^{\prime} be a list-assignment for $V(K)$ where $L^{\prime}\left(x^{\prime}\right)=L_{\phi}\left(x^{\prime}\right) \backslash\left\{f_{0}, f_{1}\right\}$ and otherwise $L^{\prime}=L_{\phi}$. By (\dagger), it follows that, for each $i=0,1$, we have $\mathcal{Z}_{K, L^{\prime}}\left(c, \tau_{i}^{f_{i}}\left(w^{\prime}\right), \bullet\right)=\left\{d_{i}\right\}$, so $d_{0}, d_{1} \in L_{\phi}\left(x^{\prime}\right)$. Since
$d_{0} \neq d_{1}$ we have $\tau_{0}^{f_{0}}\left(w^{\prime}\right), \neq \tau_{1}^{f_{1}}\left(w^{\prime}\right)$. By 1) of Proposition 1.4.7 applied to K with the list-assignment L^{\prime}, we get that, for each $i=0,1, \tau_{i}^{f_{i}}\left(w^{\prime}\right)=\left\{d_{1-i}\right\}$. Thus, $d_{0}, d_{1} \neq c$, and $\left\{d_{0}, d_{1}\right\} \subseteq\left(L\left(w^{\prime}\right) \cap L_{\phi}\left(x^{\prime}\right)\right) \backslash\{c\}$.

Now we return to the main proof of Claim 10.6.7. Applying Theorem 1.5.5, there is a color $c^{\prime} \in L_{\phi}\left(x^{\prime}\right)$, where $c \neq c^{\prime}$ if K is a triangle and any L_{ϕ}-coloring of $u^{\prime} w^{\prime} x^{\prime}$ using c, c^{\prime} on u^{\prime}, x^{\prime} respectively extends to an L_{ϕ}-coloring of K.

Subclaim 10.6.9. $c^{\prime} \in\left\{d_{0}, d_{1}\right\}$. Furthermore, $L\left(w^{\prime}\right) \backslash\left\{c, c^{\prime}\right\}=L\left(y^{\prime}\right) \backslash\left\{d_{0}, d_{1}\right\}$.
Proof: Suppose that at least one of these conditions does not hold. Thus, there exists an $i \in\{0,1\}$ and an extension ψ_{i}^{*} of ψ_{i} to a proper L-coloring of $\operatorname{dom}\left(\psi_{i}\right) \cup\left\{y^{\prime}, x^{\prime}\right\}$ such that $\left|L_{\psi_{i}^{*}}\left(w^{\prime}\right)\right| \geq 3$. and $\psi_{i}^{*}\left(x^{\prime}\right)=c^{\prime}$. Since $\left|L_{\psi_{i}^{*}}(z)\right| \geq 4$, there is an extension of ψ_{i}^{*} to an L-coloring ψ_{i}^{\dagger} of $\operatorname{dom}\left(\psi_{i}\right) \cup\left\{y^{\prime}, x^{\prime}, z\right\}$ such that $\left|L_{\psi_{i}^{\dagger}}(y)\right| \geq 3$. Let H be the subgraph of G induced by $\operatorname{dom}\left(\phi \cup \psi_{i}^{\dagger}\right) \cup \operatorname{Sh}_{2},(Q)$. Since $x w \notin E(G)$, each of w^{\prime}, y has an $L_{\psi_{i}^{\dagger}}$-list of size at least three, and $\left[H, \phi \cup \psi_{i}^{\dagger}\right]$ is a (C, z)-opener, contradicting our assumption.

Now we have enough to finish the proof of Claim 10.6.7. By Subclaim 10.6.9, we have $c^{\prime} \in\left\{d_{0}, d_{1}\right\}$, so suppose without loss of generality that $c^{\prime}=d_{0}$. By Subclaim10.6.8, we have $d_{1} \neq c$ and $d_{1} \in L(w)$. Since $d_{1} \neq d_{0}$ we have $d_{1} \in L\left(w^{\prime}\right) \backslash\left\{c, c^{\prime}\right\}$. Yet, by Subclaim 10.6.9, we have $L\left(w^{\prime}\right) \backslash\left\{c, c^{\prime}\right\}=L\left(y^{\prime}\right) \backslash\left\{d_{0}, d_{1}\right\}$, so we have a contradiction. This completes the proof of Claim 10.6.7.

We now return to the main proof of Lemma 10.6.4. Since $y^{\prime} x \notin E(G)$ and $V\left(G_{z}^{\text {small }}\right)=V(\operatorname{Span}(z))$, it follows from Observation 10.6.1 that $G_{z}^{\text {small }}$ consists of the path $\operatorname{Span}(z)$ and the edges $\left\{x x^{\prime}, y x^{\prime}, y y^{\prime}\right\}$.

Claim 10.6.10. $w y \in E(G)$.
Proof: Suppose toward a contradiction that $w y \notin E(G)$. Thus, J_{e}^{1} is a broken wheel with principal path $u w x$. Applying Proposition 10.2.4, there is an L_{ϕ}-coloring $\psi \in \operatorname{Link}(Q)$ such that $\psi(x) \neq \psi\left(x^{\prime}\right)$. Since $\left|L_{\psi \cup \phi}(y)\right| \geq 4$ and $\left|L_{\psi \cup \phi}(z)\right| \geq 5$, there is an extension of $\phi \cup \psi$ to an L-coloring σ of $\operatorname{dom}(\phi \cup \psi) \cup\{y, z\}$ such that $\left|L_{\sigma \cup \phi}\left(y^{\prime}\right)\right| \geq 3$. Since $y \notin N(w)$, we have $\left|L_{\sigma \cup \phi}(w)\right| \geq 3$. Let H be the subgraph of G induced by $V(C) \cup \operatorname{Sh}_{2}(Q) \cup\{y, z\}$. By our construction of $\sigma, V(H) \backslash \operatorname{dom}(\sigma \cup \phi)$ is $L_{\sigma \cup \phi}$-inert. Since each of y^{\prime}, w has an $L_{\sigma \cup \phi}$-list of size at least three, [$H, \sigma \cup \phi]$ is a (C, z)-opener, contradicting our assumption.

Now we have the following:
Claim 10.6.11. $v^{\dagger} \notin V\left(J_{e}^{1}-u\right)$, and $u_{\star} \notin V\left(J_{e}^{1}-u\right)$.
Proof: Suppose toward a contradiction that $v^{\dagger} \in V\left(J_{e}^{1}-u\right)$. Let \hat{v} be the unique neighbor of v^{\dagger} on the path $x^{\prime} Q v^{\dagger}$. Since $v^{\dagger} \in V\left(J_{e}^{1}-u\right)$, we have $\hat{v} \in V\left(J_{e}^{1}\right)$, and furthermore, since v^{\dagger} lies in the unique subpath of Q which has one endpoint in x and intersects with $S_{\star}^{\text {path }}$ on precisely an endpoint common to the two paths, it follows that $S_{\star}^{\text {path }} \subseteq x^{\prime} Q v^{\dagger}$. Applying Proposition 10.2.4, we fix an element $\sigma \in \operatorname{Link}\left(x^{\prime} Q \hat{v}\right)$.

Subclaim 10.6.12. $w x \notin E(G)$
Proof: Suppose toward a contradiction that $w x \in E(G)$. Thus, $J_{e}^{1}-w y$ consists of a broken wheel with principal path $u w x$. Since $v^{\dagger} \in V\left(J_{e}^{1}-u\right)$ and $v^{\dagger} \notin T^{\text {int }}$, we have $v^{\dagger}=x$ in this case. Possibly, u_{\star} is an internal vertex of $J_{e}^{1}-w$, i.e $S_{\star}^{\text {path }}=u Q x$. Since $v^{\dagger}=x$, we have $\left|L_{\phi \cup \sigma}(x)\right| \geq 2$.

Since $N(y) \cap V(Q)=\left\{x, x^{\prime}\right\}$ and $N(z) \cap V(Q)=\varnothing$, we have $\left|L_{\phi \cup \sigma}(y)\right| \geq 4$ and $\left|L_{\phi \cup \sigma}(z)\right| \geq 5$. Furthermore, we have $\left|L_{\phi \cup \sigma}\left(y^{\prime}\right)\right| \geq 4$. Since $\left|L_{\phi \cup \sigma}(x)\right| \geq 2$, we choose a color $d \in L_{\phi \cup \sigma}(y)$ such that $\left|L_{\phi \cup \sigma}(x) \backslash\{d\}\right| \geq 2$.

Since $\left|L_{\phi \cup \sigma}(z) \backslash\{d\}\right| \geq 4$ and $x y^{\prime} \notin E(G)$, there is an extension of $\phi \cup \sigma$ to an L-coloring τ of $\operatorname{dom}(\phi \cup \sigma) \cup\{y, z\}$ such that $\tau(y)=d$ and $\left|L_{\tau}\left(y^{\prime}\right)\right| \geq 3$.

Let H be the subgraph of G induced by $\operatorname{dom}(\tau) \cup V\left(J_{e}^{1}\right) \cup \operatorname{Sh}_{2}\left(x^{\prime} Q \hat{v}\right)$. Note that these three vertex sets are not necessarily pairwise-disjoint. By assumption, the pair $[H, \tau]$ is not a (C, z)-opener, so the inertness condition is violated. That is, there is an extension of τ to an L-coloring τ^{*} of $G \backslash(H \backslash \operatorname{dom}(\tau))$ such that τ^{*} does not extend to L-color $H \backslash \operatorname{dom}(\tau)$.

By our construction of τ from σ, it follows that τ^{*} extends to an L-coloring $\tau^{* *}$ of $\operatorname{dom}\left(\tau^{*}\right) \cup \operatorname{Sh}_{2}\left(x^{\prime} Q \hat{v}\right)$. Note that, since J_{e}^{1} is a broken wheel with principal path $x w y, \operatorname{Sh}_{2}\left(x^{\prime} Q \hat{v}\right)$ contains all the vertices of $J_{e}^{1}-\{w, y\}$, except for x. Thus, $\tau^{* *}$ is an L-coloring of $G-x$. Now, since $y^{\prime} x \notin E(G), N\left(v^{\dagger}\right) \cap V(G \backslash C)=\left\{\hat{v}, w, y, x^{\prime}\right\}$. Thus, by our choice of color $\tau(y)$, it follows that $\left|L_{\tau^{* *}}(x)\right| \geq 1$, so there is a color left over for x, and $\tau^{* *}$ extends to an L-coloring of G, contradicting our assumption.

Since $w x \notin E(G)$, we have $R_{e}=u w x y$.
Subclaim 10.6.13. $\left|N(w) \cap V\left(C^{1}\right)\right|>1$.
Proof: Suppose not. Thus, we have $N(w) \cap V\left(C^{1}\right)=\{u\}$. By 3) of Corollary 10.2.5, there is a $\zeta \in \operatorname{Link}(Q)$ with $\zeta(x) \neq \zeta\left(x^{\prime}\right)$. By Claim 10.6.7, $y^{\prime} x \notin E(G)$. Since $\left|L_{\phi \cup \zeta}(y)\right| \geq 4$ and $\left|L_{\phi \cup \zeta}(z)\right| \geq 5$, there is an extension of ζ to an L_{ϕ}-coloring ζ^{*} of $\operatorname{dom}(\zeta) \cup\{y, z\}$ such that $\left|L_{\phi \cup \zeta^{*}}\left(y^{\prime}\right)\right| \geq 3$. Since $N(w) \cap V\left(C^{1}\right)=\{u\}$, we have $\left|L_{\phi \cup \zeta^{*}}(w)\right| \geq 3$. Letting H^{*} be the subgraph of G induced by $\operatorname{dom}\left(\phi \cup \zeta^{*}\right) \cup \operatorname{Sh}_{2}\left(x^{\prime} Q \hat{v}\right) \cup V\left(J_{e}^{1}-w\right) \cup\{z\}$, the pair $\left[H^{*}, \phi \cup \zeta^{*}\right]$ is a (C, z)-opener, contradicting our assumption.

Since $\left|L_{\phi \cup \sigma}(y)\right| \geq 4$ and $\left|L_{\phi \cup \sigma}(z)\right| \geq 5$, there exists an extension of σ to an L_{ϕ}-coloring ψ of $\operatorname{dom}(\sigma) \cup\{x, y, z\}$ with $\left|L_{\phi \cup \psi}\left(y^{\prime}\right)\right| \geq 3$.

Let H be the subgraph of G induced by $\operatorname{dom}(\phi \cup \psi) \cup V\left(J_{e}^{1}-w\right) \cup \operatorname{Sh}_{2}\left(x^{\prime} Q \hat{v}\right)$. By assumption, the pair $[H, \phi \cup \psi]$ is not a (C, z)-opener, so the inertness condition is violated. Thus, there is an extension of ψ to an L-coloring ψ^{*} of $\operatorname{dom}(\psi) \cup\{w\}$ which does not extend to L_{ϕ}-color J_{e}^{1}.

Now, J_{e}^{1} has a facial cycle $D:=u Q x y w$ which contains all the vertices of $\operatorname{dom}\left(\phi \cup \psi^{*}\right) \cap V\left(J_{e}^{1}\right)$. Let $X:=$ $V\left(J_{e}^{1}\right) \cap \mathrm{Sh}_{2}(u Q \hat{v})$. Note that any extension of ψ^{*} to $\operatorname{dom}(\psi) \cup V\left(J_{e}^{1} \backslash X\right)$ also extends to X, since X is $(L, \phi \cup \sigma)$ inert and $X \cap \operatorname{dom}\left(\phi \cup \psi^{*}\right)=\varnothing$. Thus, to prove the subclaim, it just suffices to show that ψ^{*} extends to an L_{ϕ}-coloring of $J_{e}^{1} \backslash X$.
Consider the list-assignment $L_{\phi \cup \psi^{*}}$ for $J_{e}^{1} \backslash X$. There is a facial subgraph D^{\prime} of J_{e}^{1} which contains all the vertices of $J_{e}^{1} \backslash X$ with $L_{\phi \cup \psi^{*}}$-lists of size less than five. Furthermore, $\operatorname{dom}\left(\phi \cup \psi^{*}\right) \cap\{u, w, y, x\}=\{u, w, y\}$. Note that x remains uncolored. In particular, since $\left|L_{\phi}\left(v^{\dagger}\right)\right| \geq 4$ and C^{1} is an induced cycle of G, any element of $V\left(D^{\prime}\right)$ with an $L_{\phi \cup \psi^{*}}$-list of size less than three is either x or adjacent to all three of u, w, y. Note that there is no vertex of J_{e}^{1} adjacent to all three of u, w, y. To see this, suppose that such a vertex exists. In that case, since $N(w) \cap V\left(C^{1}\right) \subseteq V\left(J_{e}^{1}\right)$, we have $N(w) \cap V\left(C^{1}\right)=\{u\}$, contradicting Subclaim 10.6.13.

Since no vertex of J_{e}^{1} is adjacent to all three of u, w, y, every vertex of D^{\prime} has an $L_{\phi \cup \psi^{*}}$-list of size at least three, except for x. If $x=v^{\dagger}$ then $\left|L_{\phi}(x)\right| \geq 4$ and $\left(N(x) \cap \operatorname{dom}\left(\psi^{*}\right)\right) \backslash V(C)=\left\{x^{\prime}, \hat{v}, y\right\}$, so $\left|L_{\psi^{*}}(x)\right| \geq 1$. If $x \neq v^{\dagger}$ then $\left|L_{\phi}(x)\right| \geq 3$ and $\left(N(x) \cap \operatorname{dom}\left(\psi^{*}\right)\right) \backslash V(C)=\left\{x^{\prime}, y\right\}$, so, again, $L_{\phi \cup \psi^{*}}(x) \mid \geq 1$. In any case, it follows from Theorem 0.2.3 that ψ^{*} extends to L_{ϕ}-color $J_{e}^{1} \backslash X$ and thus extends to J_{e}^{1}, contradicting our choice of ψ^{*}.

Since v^{\dagger} lies in the unique subpath of Q which has one endpoint in x and intersects with $S_{\star}^{\text {path }}$ on precisely an endpoint common to the two paths, it follows that $S_{\star}^{\text {path }} \subseteq x^{\prime} Q u$, and, in particular, $u_{\star} \notin V\left(J_{e}^{1}-u\right)$.

We now have the following:
Claim 10.6.14. $w x \in E(G)$.

Proof: Suppose toward a contradiction that $w x \notin E(G)$. Since w is an e-obstruction, we have $y \in N(w)$. By Claim 10.6.11 $v^{\dagger} \notin V\left(J_{e}^{1}-u\right)$. Thus, applying Proposition 10.2.4, we fix two elements ψ_{0}, ψ_{1} of $\operatorname{Link}\left(x^{\prime} Q u\right)$ which use different colors on u, where $\psi_{0}\left(x^{\prime}\right)=\psi_{1}\left(x^{\prime}\right)=c$ for some color c. Since we have not colored x, each of ψ_{0}, ψ_{1} is a proper L_{ϕ}-coloring of its domain in \tilde{G}.

Since $\left|L_{\phi}(x)\right| \geq 3$ and $\left|L_{\phi}(y)\right| \geq 5$, it follows from 1) Theorem 9.0.1 that there is a $\sigma \in \operatorname{Corner}\left(R_{e}, w\right)$, where $\sigma(u) \in\left\{\psi_{0}(u), \psi_{1}(u)\right\}$, and $\sigma(x) \neq c$, and $\sigma(y) \neq c$.

Since $\sigma(u) \in\left\{\psi_{0}(u), \psi_{1}(u)\right\}$, suppose without loss of generality that $\sigma(u)=\psi_{0}(u)$. Since $\sigma(y) \neq c$ and $\sigma(x) \neq c$, the union $\psi_{0} \cup \sigma$ is a proper L_{ϕ}-coloring of its domain in G. Now, since $x y^{\prime} \notin E(G)$, we have $\left|L_{\sigma \cup \phi}\left(y^{\prime}\right)\right| \geq 3$, and since $\left|L_{\sigma \cup \phi}(z)\right| \geq 4$, there is an extension of $\sigma \cup \phi$ to an L-coloring σ^{*} of $\operatorname{dom}(\sigma \cup \phi) \cup\{z\}$, where $\left|L_{\sigma^{*}}\left(y^{\prime}\right)\right| \geq 3$. Since $z, y \notin N(w)$, we have $N(w) \cap \operatorname{dom}\left(\sigma^{*}\right)=\{x, u\}$, so $\left|L_{\sigma^{*}}(w)\right| \geq 3$ as well.

Let H^{\star} be the subgraph of G induced by $\operatorname{dom}\left(\sigma^{*}\right) \cup V\left(J_{e}^{1}-w\right) \cup \operatorname{Sh}_{2}\left(x^{\prime} Q u\right)$. By our construction of $\sigma^{*}, V(H) \backslash$ $\operatorname{dom}\left(\sigma^{*}\right)$ is $L_{\sigma^{*}}$-inert. Since each of w, y^{\prime} has an $L_{\sigma^{*}}$-list of size at least three, the pair $\left[H^{\star}, \sigma^{*}\right]$ is a (C, z)-opener, so we contradict our assumption.

Recall that, by Co4d) of Definition 10.0.1, $J_{e}^{1}-w y$ consists of a broken wheel K^{*} with principal path $u w x$. By assumption, $u_{\star} \notin V\left(J_{e^{\prime}}^{1}-u^{\prime}\right)$. Thus, by Claim 10.6.11, we have $u_{\star} \in V\left(u^{\prime} Q u\right)$ and $v^{\dagger} \in V\left(u_{\star} Q u\right)$. In particular, each vertex of $K^{*}-\{u, m w\}$ has an L_{ϕ}-list of size at least three. Applying Proposition 10.2.4, we fix two elements ψ_{0}, ψ_{1} of $\operatorname{Link}\left(x^{\prime} Q u\right)$ such that $\psi_{0}\left(u^{\prime}\right)=\psi_{1}\left(u^{\prime}\right), \psi_{0}\left(x^{\prime}\right)=\psi_{0}\left(x^{\prime}\right)$, and ψ_{0}, ψ_{1} use different colors on u^{\prime}. Let $\psi_{0}\left(x^{\prime}\right)=\psi_{0}\left(x^{\prime}\right)=c$ and $\psi_{0}\left(u^{\prime}\right)=\psi_{1}\left(u^{\prime}\right)=d$ for some colors c, d. For each $i=0,1$, let $s_{i}:=\psi_{i}(u)$.

For each $i \in\{0,1\}$ and $f \in L_{\phi \cup \psi_{i}}(y)$, we define an extension of $\phi \cup \psi_{i}$ to an L-coloring σ_{i}^{f} of $\operatorname{dom}\left(\phi \cup \psi_{i}\right) \cup\{y, z\}$ in the following way. Since $\left|L_{\phi \cup \psi_{i}}(z) \backslash\{f\}\right| \geq 4$ and $x y^{\prime} \notin E(G)$, there is an extension of $\phi \cup \psi_{i}$ to an L-coloring σ_{i}^{f} of $\operatorname{dom}\left(\phi \cup \psi_{i}\right) \cup\{y, z\}$ such that $\sigma_{i}^{f}(y)=f$ and $\left|L_{\sigma_{f}^{i}}\left(y^{\prime}\right)\right| \geq 3$. Note that, for each $i=0,1$ and $f \in L_{\phi \cup \psi_{i}}(y)$, we have $\left|L_{\sigma_{i}^{f}}(w)\right| \geq 3$, since $\operatorname{dom}\left(\sigma_{i}^{f}\right) \cap N(w)=\{u, y\}$.

We also note that the colorings of the form σ_{i}^{f} all have the same domain for any $i=0,1$ and $f \in L_{\phi \cup \psi_{i}}(y)$, so let A be this common domain. Let H be the subgraph of G induced by $A \cup V\left(K^{*}-w\right)$. By assumption, for each $i \in\{0,1\}$ and $f \in L_{\phi \cup \psi_{i}}(y)$, the pair $\left[H, \sigma_{i}^{f}\right]$ is not a (C, z)-opener. The only condition that is violated is the inertness condition, and since $\operatorname{Sh}_{2}\left(x^{\prime} Q u\right)$ is $\left(L, \phi \cup \psi_{i}\right)$-inert for each $i=0,1$, it follows that, for each $i \in\{0,1\}$ and $f \in L_{\phi \cup \psi_{i}}(y)$, there is an extension of σ_{i}^{f} to an L-coloring τ_{i}^{f} of $G \backslash\left(K^{*} \backslash\{u, w\}\right)$ such that τ_{i}^{f} does not extend to L-color the broken wheel K^{*}. Since $y^{\prime}, z, \notin N(x)$, it follows that $N(x) \cap V(G \backslash C)$ consists of y and the two neighbors of x in K^{*}. Thus, for each $i \in\{0,1\}$ and $f \in L_{\phi \cup \psi_{i}}(y)$, the following is satisfied.

$$
z_{K^{*}}\left(s_{i}, \tau_{i}^{f}(w), \bullet\right) \subseteq\{c, f\}
$$

We now note the following:

Claim 10.6.15. $\left\{s_{0}, s_{1}\right\} \subseteq L(w) \cap\left(L_{\phi}(x) \backslash\{c\}\right)$. Furthermore, for each $v \in V\left(K^{*} \backslash\{u, w, x\}\right),\left\{s_{0}, s_{1}\right\} \subseteq L_{\phi}(v)$.

Proof: Since $|L(y) \backslash\{c\}| \geq 4$, we fix a $g \in L(y) \backslash\{c\}$ with $\left|L_{\phi}(x) \backslash\{g\}\right| \geq 3$. Since $L(y) \backslash\{c\}=L_{\phi \cup \psi_{i}}(y)$ for each $i=0,1$, we have $g \in L_{\phi \cup \psi_{i}}(y)$. Let L^{\prime} be a list-assignment for $V\left(K^{*}\right)$ where $L^{\prime}(x)=L_{\phi}(x) \backslash\{g\}$ and otherwise
$L^{\prime}=L_{\phi}$. For each $i=0,1$, we get $z_{K^{*}, L^{\prime}}\left(s_{i}, \tau_{i}^{g}(w), \bullet\right) \neq \varnothing$ by applying Theorem 0.2.3. By (\dagger), since $g \notin L^{\prime}(x)$, we have $z_{K^{*}, L^{\prime}}\left(s_{i}, \tau_{i}^{g}(w), \bullet\right)=\{c\}$ for each $i=0,1$. Applying 2) of Proposition 1.4.7, we have $\tau_{i}^{g}(w)=s_{1-i}$ for each $i=0,1$. In particular, we have $\left\{s_{0}, s_{1}\right\} \subseteq L(w)$. Since $z_{K^{*}, L^{\prime}}\left(s_{i}, \tau_{i}^{g}(w), \bullet\right)=\{c\}$ for each $i=0,1$, and $s_{0} \neq s_{1}$, it follows from Proposition 1.4.4 that $\left\{s_{0}, s_{1}\right\} \subseteq L_{\phi}(x) \backslash\{c\}$.

Now we show that $\left\{s_{0}, s_{1}\right\} \subseteq L_{\phi}(v)$ for each $v \in V\left(K^{*} \backslash\{u, w, x\}\right)$. If K^{*} is a triangle, then we are done in that case. Now suppose that K^{*} is not a triangle. Since $z_{K^{*}, L^{\prime}}\left(s_{i}, \tau_{i}^{g}(w), \bullet\right)=\{c\}$ for each $i=0,1$, it follows from Proposition1.4.4 that $s_{0}, s_{1} \in L_{\phi}(v)$ for each $v \in V\left(K^{*} \backslash\{u, w, x\}\right)$, as $\tau_{i}^{g}(w)=s_{1-i}$ for each $i=0,1$.

The last fact we need is the following:

Claim 10.6.16. $\left\{s_{0}, s_{1}\right\} \cap(L(y) \backslash\{c\})=\varnothing$.

Proof: Suppose toward a contradiction that $\left\{s_{0}, s_{1}\right\} \cap(L(y) \backslash\{c\}) \neq \varnothing$, and, without loss of generality, let $s_{0} \in$ $L(y) \backslash\{c\}$.

Subclaim 10.6.17. K^{*} is not a triangle
Proof: Suppose toward a contradiction that K^{*} is a triangle. By Claim 10.6.15, $\left\{s_{0}, s_{1}\right\} \subseteq L_{\phi}(x) \backslash\{c\}$. Since $s_{0} \in L(y) \backslash\{c\}$, we extend $\phi \cup \psi_{0}$ to an L-coloring ψ^{*} of $\operatorname{dom}\left(\phi \cup \psi^{*}\right) \cup\{x, y\}$ by coloring x, y with the respectove colors s_{1}, s_{0}. We then have $\left|L_{\phi^{*}}(w)\right| \geq 3$, since ϕ^{*} uses the same color on u, y. Thus, the pair [H^{\star}, ϕ^{*}] is a (C, z)-opener, contradicting our assumption.

Since K^{*} is not a triangle, let $K^{*}-w=u v_{1} \cdots v_{t} x$ for some $t \geq 1$. Now, since $s_{0} \in L(y) \backslash\{c\}$, and $L(y) \backslash\{c\}=$ $L_{\phi \cup \psi_{i}}(y)$ for each $i=0,1$, consider the two L-colorings $\tau_{0}^{s_{0}}, \tau_{1}^{s_{0}}$ of $G \backslash\left(K^{*} \backslash\{u, w\}\right)$. Applying (\dagger), we have the following:

$$
\begin{aligned}
& z_{K^{*}}\left(s_{0}, \tau_{0}^{s_{0}}(w), \bullet\right) \subseteq\left\{c, s_{0}\right\} \\
& z_{K^{*}}\left(s_{1}, \tau_{1}^{s_{0}}(w), \bullet\right) \subseteq\left\{c, s_{0}\right\}
\end{aligned}
$$

Let $h:=\tau_{1}^{s_{0}}(w)$. Since $\tau_{1}^{s_{0}}$ is a proper L-coloring of $G \backslash\left(K^{*} \backslash\{w, u\}\right)$, we have $h \notin\left\{s_{0}, s_{1}\right\}$, as $\tau_{1}^{s_{0}}(y)=s_{0}$ and $\tau_{1}^{s_{0}}(u)=s_{1}$. Furthermore, since K^{*} is not a triangle, we have $h \in \bigcap_{k=1}^{t} L_{\phi}\left(v_{k}\right)$, or else, by Proposition 1.4.4, we have $s_{1} \in \mathcal{Z}_{K^{*}}\left(s_{1}, h, \bullet\right)$, contradicting the containment above. Applying Claim 10.6.15, we have $\left\{s_{0}, s_{1}, h\right\} \subseteq L\left(v_{k}\right)$ for each $k=1, \cdots, t$.

Subclaim 10.6.18. t is odd.
Proof: Suppose toward a contradiction that t is even. Since $s_{1} \in L_{\phi}(x) \backslash\{c\}$, we now extend $\phi \cup \psi_{0}$ to an L-coloring σ^{*} of $\operatorname{dom}\left(\phi \cup \psi_{0}\right) \cup\{x, y\}$ by coloring x, y with the respective colors s_{0}, s_{1}. Since $s_{0}, s_{1} \neq c$, σ^{*} is a proper L-coloring of its domain. By assumption, $\left[H, \sigma^{*}\right]$ is not a (C, z)-opener. Since u, y are colored with the same color, we have $\left|L_{\sigma^{*}}(y)\right| \geq 3$, so the only condition which is violated is the inertness condition. That is, there is an extension of σ^{*} to an L-coloring τ of $G \backslash\left(H \backslash \operatorname{dom}\left(\sigma^{*}\right)\right)$ such that τ does not extend to L-color $H \backslash \operatorname{dom}\left(\sigma^{*}\right)$. By our construction of σ^{*}, the set $\mathrm{Sh}_{2}\left(x^{\prime} Q u\right)$ is $\left(L, \sigma^{*}\right)$ inert, so τ extends to an L coloring τ^{*} of $G \backslash(K \backslash\{u, w, x\})$, where the principal path $u w x$ of K^{*} is colored with $\left(s_{0}, \tau^{*}(w), s_{1}\right)$. Thus, we have $\tau^{*}(w) \notin\left\{s_{0}, s_{1}\right\}$. We now extend this L_{ϕ}-coloring of $u w x$ to an L_{ϕ}-coloring of K^{*} by coloring each of $v_{1}, v_{3}, \cdots, v_{t-1}$ with s_{1}. This leaves a color for each of $v_{2}, v_{4}, \cdots, v_{t}$, since each of $v_{2}, v_{4}, \cdots, v_{t}$ is adjacent to two vertices colored with s_{1}. But this shows that τ^{*} extends to an L-coloring of G, which is false.

Since t is odd, we now extend the L_{ϕ}-coloring $\left(s_{1}, h\right)$ of the edge $u w$ to an L_{ϕ}-coloring of K^{*} in the following way. We color each of $u_{1}, u_{3}, \cdots, u_{t}$ with s_{0} and color x with s_{1}, which leaves a color for each of u_{2}, \cdots, u_{t-1}, as each
of these vertices has two neighbors of the same color. But then we have $s_{1} \in \mathcal{Z}_{K^{*}}\left(s_{1}, h, \bullet\right)$, contradicting the fact that $\mathcal{Z}_{K^{*}}\left(s_{1}, \tau_{1}^{s_{0}}(w), \bullet\right) \subseteq\left\{c, s_{0}\right\}$. This completes the proof of Claim 10.6.16.

Now we have enough to finish the proof of Lemma 10.6.4. It follows from Theorem 1.5.10 that one of ψ_{0}, ψ_{1} extends to an element of $\operatorname{Link}(Q)$ which uses a color other than c on x, thus, there is a $\sigma \in \operatorname{Link}(Q)$ using one of s_{0}, s_{1} on u, where $\sigma(x) \neq c$ and $\sigma\left(x^{\prime}\right)=c$.

Suppose without loss of generality that σ is an extension of ψ_{0}. We note that $\left|L_{\sigma \cup \phi}(w)\right|=\left|L_{\sigma \cup \phi}(y)\right|=3$ and $L_{\sigma \cup \phi}(w)=L_{\sigma \cup \phi}(y)$. If one of these conditions does not hold, then there exists an extension of $\sigma \cup \phi$ to an L-coloring σ^{*} of $\operatorname{dom}(\sigma \cup \phi) \cup\{y\}$ such that $L_{\sigma^{*}}(w) \mid \geq 3$, and thus $\left[H, \sigma^{*}\right]$ is a (C, z)-opener, contradicting our assumption. Thus, we indeed have $\left|L_{\sigma \cup \phi}(w)\right|=\left|L_{\sigma \cup \phi}(y)\right|=3$ and $L_{\sigma \cup \phi}(w)=L_{\sigma \cup \phi}(y)$. In particular, we have $\sigma(x) \neq s_{0}$, since $\sigma(u)=s_{0}$. If $\sigma(x)=s_{1}$, then we have $L(w) \backslash\left\{s_{0}, s_{1}\right\}=L(y) \backslash\left\{c, s_{1}\right\}$, and thus $s_{1} \in L(y) \backslash\{c\}$, contradicting Claim 10.6.16. Thus, $\sigma(x) \neq s_{1}$. But then $s_{1} \in L_{\sigma \cup \phi}(w)$, and since $L_{\sigma \cup \phi}(w)=L_{\sigma \cup \phi}(y)$, we have $s_{1} \in L_{\sigma \cup \phi}(y)$, and thus $s_{1} \in L(y) \backslash\{c\}$, again contradicting Claim 10.6.16. This completes the proof of Lemma 10.6.4.

10.7 The Trickiest Case: Part II

This section consists of the following lone result.
Lemma 10.7.1. Let $z \in D_{2}\left(C^{1}\right)$ be a pentagonal vertex and suppose that $\operatorname{Span}(z)$ is a proper 4-chord of C^{1} and that $\tilde{G}_{z}^{\text {small }} \cap C^{1}$ is a path of length one. Then there exists a (C, z)-opener.

Proof. Let $\operatorname{Span}(z)=x y z y^{\prime} x^{\prime}$ for some $x, x^{\prime} \in V\left(C^{1}\right)$ and $y, y^{\prime} \in D_{2}(C)$. Let e, e^{\prime} be the two terminal edges of $C^{1} \cap \tilde{G}_{z}^{\text {large }}$, where e is incident to x and e^{\prime} is incident to x^{\prime}.

Let $w u$ be the unique edge of $R_{e} \backslash\{x, y\}$ and let $w^{\prime} u^{\prime}$ be the unique edge of $R_{e^{\prime}} \backslash\left\{x^{\prime}, y^{\prime}\right\}$, where w is an e-obstruction, w^{\prime} is an e^{\prime}-obstruction, $u \in V\left(C^{1}-x\right)$ and $u^{\prime} \in V\left(C^{1}-x^{\prime}\right)$. By Lemma 10.4.2, we have $u, u^{\prime} \notin\left\{x, x^{\prime}\right\}$ and $w \neq w^{\prime}$. Let $Q:=C^{1} \cap \tilde{G}_{z}^{\text {large }}=C^{1}-x x^{\prime}$. Finally, let $Q:=C^{1} \cap \tilde{G}_{z}^{\text {large }}$. Now we apply the previous lemma. By Lemma 10.6.4, since there does not exist a (C, z)-opener, one of the following holds.

1) $S_{\star}=\varnothing$; $O R$
2) There is a lone vertex u_{\star} of S_{\star} and a vertex $v^{\dagger} \in T^{<2}$, where u_{\star} either lies in $J_{e}^{1}-u$ or u_{\star} lies in $J_{e^{\prime}}^{1}-u^{\prime}$. In the former case, v^{\dagger} separates u_{\star} from x^{\prime} on Q, and in the latter case, v^{\dagger} separates u_{\star} from x on Q.

Thus, we suppose without loss of generality that either $S_{\star}=\varnothing$, or, letting $S_{\star}=\left\{u_{\star}\right\}$, we have $u_{\star} \in V\left(J_{e^{\prime}}^{1}-u^{\prime}\right)$, and there is a $v^{\dagger} \in T^{<2}$ which, on Q, separates u_{\star} from x.

In the previous lemma, we didn't color any vertices of $\left.V\left(\tilde{G}_{z}^{\text {large }}\right) \cap D_{2}(C)\right)$ except for y, y^{\prime}. The trick to this lemma is that we also color w. Possibly, there is a 3-chord of C^{1} with $w y$ as a terminal edge, where the other endpoint of this 3-chord does not lie in J_{e}^{1}, but crucially, this 3-chord, if it exists, does not separate z from any vertex of S_{\star}, which was not necessarily the case in the situation of Lemma 10.6.4.

Claim 10.7.2. $w w^{\prime} \notin E(G)$.
Proof: Suppose toward a contradiction that $w w^{\prime} \in E(G)$. Thus, $\tilde{G}_{z}^{\text {large }}$ contains the 3-chord $R:=u^{\prime} w^{\prime} w u$ of C^{1} (possibly $u=u^{\prime}$ and R is a triangle, i.e not a proper 3-chord of C^{1}). We now define a subgraph H of G as follows. If $u=u^{\prime}$, we set H to be the triangle $u^{\prime} w^{\prime} w$, and otherwise R is a proper 3-chord of C^{1}, and we set $H:=\tilde{G}_{R}^{\text {small }}$. Note
that H intersects with $J_{e^{\prime}}^{1}$ precisely on the edge $w^{\prime} u^{\prime}$ and intersects with J_{e}^{1} precisely on the edge $w u$. In particular, by our assumption on S_{\star}, every vertex of H has an L_{ϕ}-list of size at least three. We also have the following, which is an immediate consequence of Proposition10.2.9.

Subclaim 10.7.3. For any $\sigma \in \operatorname{Link}\left(x^{\prime} Q u\right)$ and $\tau \in \Phi\left(\sigma,\left\{w, w^{\prime}, y^{\prime}\right\}\right), \tau$ extends to an L_{ϕ}-coloring of $V\left(J_{e^{\prime}}^{1} \cup\right.$ $H)$.

We now define a cycle D in G in the following way. Let p, p^{\prime} be the respective endpoints of the edges $R_{e}-u$ and $R_{e^{\prime}}-u^{\prime}$ and let D be the cycle consisting of the unique (p, p^{\prime})-path in $\operatorname{Span}(z)$ and the path $p w w^{\prime} p^{\prime}$. Let $G=K^{\text {small }} \cup K^{\text {large }}$ be the natural D-partition of G, where $C \cup C^{1} \subseteq K^{\text {small }}$. For any partial L_{ϕ}-coloring ψ of $K^{\text {small }}$, let U_{ψ} be the set of vertices of $K^{\text {large }} \backslash D$ with $L_{\phi \cup \psi}$-lists of size less than three.

Subclaim 10.7.4. $\operatorname{Span}(z)$ has no chord in G other than $x x^{\prime}$.
Proof: Suppose toward a contradiction that this does not hold. By Observation 10.6.1, there is a chord of the cycle $x y z y^{\prime} x^{\prime} x$ in $\tilde{G}_{z}^{\text {small }}$, and $y y^{\prime}$ is an edge of $\tilde{G}_{z}^{\text {small }}$. Consider the following cases.

Case 1: $w y \in E(G)$
In this case, since $y y^{\prime} \in E(G)$, we have $R_{e^{\prime}}=u^{\prime} w^{\prime} x^{\prime}$, i.e $y^{\prime} \notin N\left(w^{\prime}\right)$. Thus, $y x^{\prime} \notin E(G)$, so $y^{\prime} x \in E(G)$. Applying Corollary 10.2.5, let $\sigma \in \operatorname{Link}\left(x^{\prime} Q u\right)$. Since $u \neq x, \sigma$ is a proper L_{ϕ}-coloring of its domain. Since $\left|L_{\phi \cup \sigma}\left(w^{\prime}\right)\right| \geq 3$ and $\left|L_{\phi \cup \sigma}(w)\right| \geq 4$, let $f \in L_{\phi \cup \sigma}(w)$ with $\left|L_{\phi \cup \sigma}\left(w^{\prime}\right) \backslash\{f\}\right| \geq 3$. Since $w^{\prime} x^{\prime} \in E(G)$, we have $w x \notin E(G)$, or else $x x^{\prime} w^{\prime} w$ is a separating cycle of length 4. Thus, by B) of Proposition 10.5.7, σ extends to an L_{ϕ}-coloring σ^{*} of $\operatorname{dom}(\sigma) \cup V\left(J_{e}^{1}\right)$ using f on w.

Now, for any $\psi \in \Phi\left(\sigma^{*},\left\{y^{\prime}, z\right\}\right)$, it follows from Subclaim 10.7.3 that $V\left(K^{\text {small }}\right)$ is $(L, \phi \cup \psi)$-inert in G, and furthermore, since $\left|L_{\phi \cup \psi}\left(w^{\prime}\right)\right| \geq 3$, we have $U_{\psi} \neq \varnothing$, otherwise $\left[K^{\text {small }} \backslash\left\{w^{\prime}\right\}, \phi \cup \psi\right]$ is a (C, z)-opener, contradicting our assumption that no such pair exists. For any such ψ and any $w^{\dagger} \in U_{\psi}, w^{\dagger}$ has at least three neighbors in $\left\{w, y, z, y^{\prime}\right\}$. Since w^{\prime}, y have no common neighbor outside of $\operatorname{Span}(z)$, we have $N\left(w^{\dagger}\right) \cap \operatorname{dom}(\phi \cup$ $\psi)=\{w, y, z\}$, or else we contradict 1) of Proposition 10.6.2. In particular, there exists a w^{\dagger} such that $\left\{w^{\dagger}\right\}=$ U_{ψ} for each $\psi \in \Phi\left(\sigma^{*},\left\{y^{\prime}, z\right\}\right)$. On the other hand, since $\left|L_{\phi \cup \sigma^{*}}(z)\right| \geq 4$, there is a $\psi \in \Phi\left(\sigma^{*},\left\{y^{\prime}, z\right\}\right)$ such that $\left|L_{\phi \cup \psi}\left(w^{\dagger}\right)\right| \geq 3$, so we have a contradiction.

Case 2: $w y \notin E(G)$
In this case, we have $R_{e}=u w x$. Furthermore $x^{\prime} \notin N\left(w^{\prime}\right)$, or else $x x^{\prime} w^{\prime} w$ is a separating 4-cycle in G. Thus, $R_{e^{\prime}}=u^{\prime} w^{\prime} y^{\prime}$. Furthermore, we have $S_{\star} \neq \varnothing$. To see this, note that if $S_{\star}=\varnothing$, then J_{e}^{1} and $J_{e^{\prime}}^{1}$ are symmetric, and, applying the argument of the previous case with the roles of e, e^{\prime} interchanged, we have $w^{\prime} y^{\prime} \notin E(G)$, which is false. Furthermore, $x y^{\prime} \notin E\left(\tilde{G}_{z}^{\text {small }}\right)$, or else $w w^{\prime} y^{\prime} x$ is a separating 4-cycle in G. Thus, by Observation 10.6.1, $\tilde{G}_{z}^{\text {small }}$ consists of $\operatorname{Span}(z)$ and the edges $\left\{y y^{\prime}, x^{\prime} y, x x^{\prime}\right\}$. Since $S_{\star} \neq \varnothing$, we have by the assumption of Lemma 10.7.1 that there is a vertex of $T^{<2}$, which, on Q, separates x from the lone vertex of S_{\star}. By 2) of Proposition 10.2.4, there is a $\sigma \in \operatorname{Link}(Q)$ with $\sigma(x) \neq \sigma\left(x^{\prime}\right)$, so σ is a proper L_{ϕ}-coloring of its domain in Q.

Since $\left|L_{\phi \cup \sigma}(y)\right| \geq 4$, and $\left|L_{\phi \cup \sigma}(z)\right| \geq 5$, and $x y^{\prime} \notin E(G)$, there is a $\tau \in \Phi(\sigma,\{y, z\})$ such that $\left|L_{\phi \cup \tau}\left(y^{\prime}\right)\right| \geq 3$. By Observation 10.7.3, $V\left(K^{\text {small }}\right) \backslash\left\{y^{\prime}, w, w^{\prime}\right\}$ is $(L, \phi \cup \tau)$-inert in G. By Proposition 10.2.8, no vertex of $K^{\text {large }}$ has more than two neighbors among $\{x, y, z\}$. Since $w y \notin E(G)$, each of w, w^{\prime} has an $L_{\phi \cup \tau}$-list of size at least three, so $\left[K^{\text {small }} \backslash\left\{w, w^{\prime}, y^{\prime}\right\}, \phi \cup \tau\right]$ is a $(C z)$-opener, contradicting our assumption.

Since $\operatorname{Span}(z)$ has no chord in G other than $x x^{\prime}$, it follows from Lemma 10.6.3 that $S_{\star}=\varnothing$. At least one of the edges $w x, w^{\prime} x^{\prime}$ does not lie in $E(G)$, or else $w w^{\prime} x^{\prime} x$ is a separating 4-cycle. Since $S_{\star}=\varnothing$, the two sides of Q are
symmetric, so suppose without loss of generality that $w^{\prime} x^{\prime} \notin E(G)$.
Since $w^{\prime} x^{\prime} \notin E(G)$, we have $R_{e^{\prime}}=u^{\prime} w^{\prime} y^{\prime}$. Since $\operatorname{Span}(z)$ has no chord in G except for $x x^{\prime}$, we have $N\left(y^{\prime}\right) \cap$ $V\left(C^{1}\right)=\left\{x^{\prime}\right\}$. We now fix a color $c \in L_{\phi}\left(u^{\prime}\right)$. By Theorem 1.6.1, since $N\left(y^{\prime}\right) \cap V\left(C^{1}\right)=\left\{x^{\prime}\right\}$ and $S_{\star}=\varnothing$, there is a color $f \in L_{\phi}\left(w^{\prime}\right)$, where $f \neq c$ if $u^{\prime} x^{\prime} \in E\left(\tilde{G}_{x^{\prime} y^{\prime} w^{\prime} u^{\prime}}^{\text {small }}\right)$, and any L_{ϕ}-coloring of $x^{\prime} y^{\prime} w^{\prime} u^{\prime}$ using c, f on the repsective vertices u^{\prime}, x^{\prime} extends to an L_{ϕ}-coloring of $\left.\tilde{G}_{x^{\prime} y^{\prime} w^{\prime} u^{\prime}}^{\text {small }}\right)$. Likewise, since $N(w) \cap V\left(C^{1} \cap \tilde{G}_{R}^{\text {small }}\right)=\{u\}$ by definition of R, it again follows from Theorem 1.6.1 that there is a $d \in L_{\phi}(u)$, where $d \neq c$ if $u^{\prime} u \in E\left(\tilde{G}_{R}^{\text {small }}\right)$, such that any L_{ϕ}-coloring of R using c, d on the respective vertices u^{\prime}, u extends to an L_{ϕ}-coloring of $\tilde{G}_{R}^{\text {small }}$. Thus, let σ be the L_{ϕ}-coloring of $\left\{x^{\prime}, u^{\prime}, u\right\}$ coloring these vertices with the respective colors f, c, d.

Subclaim 10.7.5. $w y \in E(G)$.
Proof: Suppose not. In this case, $R_{e}=u w x$. Since $\operatorname{Span}(z)$ has no chord in G except for $x x^{\prime}$, we have $\left|L_{\phi \cup \sigma^{*}}(y)\right| \geq 4$. Since $\left|L_{\phi \cup \sigma}(x)\right| \geq 2$, there is a color $d^{*} \in L_{\phi \cup \sigma}(w)$ such that $\left|L_{\phi \cup \sigma}(x) \backslash\left\{d^{*}\right\}\right| \geq 2$. Thus, by Observation 1.4.2, σ extends to an L_{ϕ}-coloring σ^{*} of $\left\{x^{\prime}, u^{\prime}\right\} \cup V\left(J_{e}^{1}\right)$.

Since $\operatorname{Span}(z)$ has no chord in G except for $x x^{\prime}$, we have $\left|L_{\phi \cup \sigma^{*}}(y)\right| \geq 4$. Thus, there an extension of σ^{*} to an L_{ϕ}-coloring τ of $\operatorname{dom}\left(\sigma^{*}\right) \cup\{y\}$ such that either no vertex of $K^{\text {large }} \backslash D$ is adjacent to all three of w, x, y, or, if such a vertex exists, then it has an $L_{\phi \cup \tau}$-list of size at least three. In particular, since any such vertex is unique, we have $U_{\tau}=\varnothing$. For any extension of τ to an $L_{\phi^{\prime}}$-coloring τ^{*} of $\operatorname{dom}(\tau) \cup\{z\}$, we have $\left|L_{\phi \cup \tau^{*}}\left(y^{\prime}\right)\right| \geq 3$, since there is no chord of $\operatorname{Span}(z)$ other than $x x^{\prime}$. Likewise, since $x^{\prime} \notin N\left(w^{\prime}\right)$, we have $N\left(w^{\prime}\right) \cap \operatorname{dom}\left(\phi \cup \tau^{*}\right)=\left\{u^{\prime}, w\right\}$, and thus $\left|L_{\phi \cup \tau^{*}}\left(w^{\prime}\right)\right| \geq 3$.

Since $\left|L_{\phi \cup \tau}(z)\right| \geq 4$, it follows from Corollary 1.3.6 that there exists a $\tau^{*} \in \Phi(\tau, z)$ such that $V\left(\tilde{G}_{z}^{\text {small }}\right) \backslash$ $V(\operatorname{Span}(z))$ is $L_{\phi \cup \tau^{*}}$-inert in G, and thus, by our construction of σ, we get that $V\left(K^{\text {small }}\right) \backslash\left\{w^{\prime}, y^{\prime}\right\}$ is $\left(L, \phi \cup \tau^{*}\right)$ inert in G and thus $\left[K^{\text {small }} \backslash\left\{w^{\prime}, y^{\prime}\right\}, \phi \cup \tau^{*}\right]$ is a (C, z)-opener, contradicting our assumption.

Since $w y \in E(G)$, we have $R_{e}=u w y$.
Subclaim 10.7.6. For any $\tau \in \Phi\left(\sigma, V\left(J_{e}^{1}\right) \cup\{z\}\right)$, either $U_{\tau} \neq \varnothing$ or $V\left(\tilde{G}-y^{\prime}\right)$ is not $(L, \phi \cup \tau)$-inert in G.
Proof: Suppose toward a contradiction that $U_{\tau}=\varnothing$ and $V\left(\tilde{G}-y^{\prime}\right)$ is $(L, \phi \cup \tau)$-inert in G. By Subclaim 10.7.4, there is no chord of $\operatorname{Span}(z)$ other than $x x^{\prime}$. Thus, we have $\left|L_{\phi \cup \tau}\left(y^{\prime}\right)\right| \geq 3$. Since y^{\prime} is uncolored, we have $\left|L_{\phi \cup \tau}\left(w^{\prime}\right)\right| \geq 3$, and since $U_{\tau}=\varnothing$, the pair $\left[K^{\text {small }} \backslash\left\{w^{\prime}, y^{\prime}\right\}, \phi \cup \tau\right]$ is a (C, z)-opener, contradicting our assumption.

Now we return to the proof of Claim 10.7.2. Consider the following cases:
Case 1: $\tilde{G}_{z}^{\text {small }}$ is not a wheel
Since $\left|L_{\phi}(x) \backslash\left\{\sigma\left(x^{\prime}\right)\right\}\right| \geq 2$, it follows that σ extends to an L_{ϕ}-coloring σ^{*} of $V\left(J_{e}^{1}\right) \cup\left\{x^{\prime}, u^{\prime}\right\}$. Since $\left|L_{\phi \cup \sigma^{*}}(z)\right| \geq 4$, there is a $\tau \in \Phi\left(\sigma^{*}, z\right)$ such that, if there is a vertex w^{\dagger} of $K^{\text {large }} \backslash D$ adjacent to all three of w, y, z, then $\left|L_{\phi \cup \tau}(z)\right| \geq 3$. Thus, $U_{\tau}=\varnothing$. By Theorem 1.3.5, since $\tilde{G}_{z}^{\text {small }}$ is not a wheel, $V\left(\tilde{G}_{z}^{\text {small }}-y^{\prime}\right)$ is $(L, \phi \cup \tau)$-inert in G, contradicting Subclaim 10.7.6.

Case 2: $\tilde{G}_{z}^{\text {small }}$ is a wheel
In this case, there is a lone vertex x^{\dagger} adjacent to all five vertives of $\operatorname{Span}(z)$, where $V\left(\tilde{G}_{z}^{\text {small }}\right)=\left\{x^{\dagger}\right\} \cup V(\operatorname{Span}(z))$. We break this into two subcases.
Subcase 2.1 $L_{\phi \cup \sigma}(x) \subseteq L\left(x^{\dagger}\right)$

In this case, since $\left|L_{\phi \cup \sigma}(x)\right| \geq 2$ and $\left|L\left(x^{\dagger}\right) \backslash\left\{\sigma\left(x^{\prime}\right)\right\}\right| \geq 4$, there is a color $g \in L(y)$ such that $\left|L_{\phi \cup \sigma}(x) \backslash\{g\}\right| \geq$ 2 and $\left|L_{\phi \cup \sigma}\left(x^{\dagger}\right) \backslash\{g\}\right| \geq 4$. Since $\left|L_{\phi \cup \sigma}(x) \backslash\{g\}\right| \geq 2$, there is an extension of σ to an L_{ϕ}-coloring σ^{*} of $\operatorname{dom}(\sigma) \cup V\left(J_{e}^{1}\right)$ such that $\sigma^{*}(y)=g$. By our choice of g, we get that $\left\{x^{\dagger}\right\}$ is $\left(L, \phi \cup \sigma^{*}\right)$-inert in G.

As above, since $\left|L_{\phi \cup \sigma^{*}}(z)\right| \geq 4$, there is a $\tau \in \Phi\left(\sigma^{*}, z\right)$ such that, if there is a vertex w^{\dagger} of $K^{\text {large }} \backslash D$ adjacent to all three of w, y, z, then $\left|L_{\phi \cup \tau}\left(w^{\dagger}\right)\right| \geq 3$. Thus, $U_{\tau}=\varnothing$. Since $V\left(\tilde{G}_{z}^{\text {small }}-y^{\prime}\right)$ is $(L, \phi \cup \tau)$-inert in G, we contradict Subclaim 10.7.6.

Subcase 2.2 $L_{\phi \cup \sigma}(x) \nsubseteq L\left(x^{\dagger}\right)$
In this case, there is a $\sigma^{\prime} \in \Phi(\sigma, x)$ with $\left|L_{\phi \cup \sigma^{\prime}}\left(x^{\dagger}\right)\right| \geq 4$. As $\operatorname{Span}(z)$ has no chord other than $x x^{\prime}$, we have $x^{\prime} y \notin E(G)$, so it follows from 2) of Proposition 1.5.1 that σ^{\prime} extends to an L_{ϕ}-coloring σ^{*} of $\operatorname{dom}\left(\sigma^{\prime}\right) \cup V\left(J_{e}^{1}\right)$. Again, since $\operatorname{Span}(z)$ has no chord other than $x x^{\prime}$, there is a $\tau \in \Phi\left(\sigma^{*}, z\right)$ such that, if there is a vertex w^{\dagger} of $K^{\text {large }} \backslash D$ adjacent to all three of w, y, z, then $\left|L_{\phi \cup \tau}\left(w^{\dagger}\right)\right| \geq 3$. Thus, $U_{\tau}=\varnothing$. By our choice of $\sigma^{\prime}(x)$, we get that $V\left(\tilde{G}_{z}^{\text {small }}-y^{\prime}\right)$ is $(L, \phi \cup \tau)$-inert in G, contradicting Subclaim 10.7.6. This completes the proof of Claim 10.7.2.

We now make the following definition.

Definition 10.7.7. A partial L_{ϕ}-coloring τ of $V\left(J_{e}^{1}\right) \cup\left\{x^{\prime}, y, z\right\}$ is called an anchor if the following hold.

1) $V\left(\tilde{G}_{z}^{\text {small }} \cup J_{e}^{1}\right) \backslash\left\{y^{\prime}\right\}$ is $(L, \phi \cup \tau)$-inert; $A N D$
2) $\left|L_{\phi \cup \tau}\left(y^{\prime}\right)\right| \geq 3$ and every vertex of $N(w) \backslash \operatorname{dom}(\phi \cup \tau)$ has an $L_{\phi \cup \tau}$-list of size at least three.

We now have the following facts.

Claim 10.7.8. Let σ be a partial L_{ϕ}-coloring of $V\left(x^{\prime} Q u\right)$, and let τ be an anchor such that, for each $v \in\left\{x^{\prime}, u\right\} \cap$ $\operatorname{dom}(\sigma)$, we have $\sigma(v)=\tau(v)$. Then the following hold.

1) $\sigma \cup \tau$ is a proper L_{ϕ}-coloring of its domain in G; AND
2) Letting $\psi^{*}:=\phi \cup \sigma \cup \tau$ and $v^{\star} \in V\left(\tilde{G}_{z}^{\text {large }}\right) \backslash \operatorname{dom}\left(\psi^{*}\right)$, if v^{\star} has a neighbor in $\{y, z\}$, then $\left|L_{\psi^{*}}\left(v^{\star}\right)\right| \geq 3$.

Proof: Let \hat{v} be the unique element of Q adjacent to x^{\prime}. Since $\operatorname{dom}(\tau) \subseteq V\left(J_{e}^{1}\right) \cup\left\{x^{\prime}, z, y\right\}$ and C^{1} is a chordless cycle, it follows that any edge of G with one endpoint in $V\left(x^{\prime} Q u\right) \backslash \operatorname{dom}(\tau)$ and the other endpoint in dom (τ) lies in $\left\{x^{\prime} \hat{v}, w u\right\}$. Thus, $\sigma \cup \tau$ is indeed a proper L_{ϕ}-coloring of its domain in G. This proves 1).

Now we prove 2). Let $v^{\star} \in V\left(\tilde{G}_{z}^{\text {large }}\right) \backslash \operatorname{dom}\left(\psi^{*}\right)$, where v^{\star} has a neighbor in $\{y, z\}$. Suppose that $\left|L_{\psi^{*}}\left(v^{\star}\right)\right|<3$. Since $N\left(y^{\prime}\right) \cap \operatorname{dom}\left(\psi^{*}\right) \subseteq \operatorname{dom}(\tau)$ and τ is an anchor, we have $\left|L_{\psi^{*}}\left(y^{\prime}\right)\right| \geq 3$, so $v^{\star} \neq y^{\prime}$. Since τ is an anchor, it follows that v^{\star} has a neighbor $v^{\star \star} \in \operatorname{dom}(\phi \cup \sigma) \backslash\left\{x^{\prime}, u\right\}$. Suppose first that $v^{\star} \in N(z)$. Then $v^{\star} \notin B_{1}(C)$, so $v^{\star \star} \in \operatorname{dom}(\sigma) \backslash\left\{x^{\prime}, u^{\prime}\right\}$, contradicting Proposition 10.2.8. Thus, we have $z \notin N\left(v^{\star}\right)$, and $y \in N\left(v^{\star}\right)$. Furthermore, v^{\star} has at least two neighbors in $\operatorname{dom}(\sigma)$, so $v^{\star} \in D_{2}(C)$. But then v^{\star} is an e-obstruction, and every e-obstruction lies in $V\left(J_{e}^{1}\right)$. Since $V\left(J_{e}^{1}\right) \cap \operatorname{dom}\left(\psi^{*}\right) \subseteq \operatorname{dom}(\tau)$ and $v^{\star} \notin \operatorname{dom}(\tau)$, we have a contradiction.

We now have the following.

Claim 10.7.9. There exists an L_{ϕ}-coloring σ of $\left\{x^{\prime}, u\right\}$ which does not extend to an anchor.
Proof: We first set $B:=\left\{v \in D_{2}(C) \backslash V\left(J_{e}^{1}\right):\left|N(v) \cap V\left(x^{\prime} Q u\right)\right| \geq 2\right.$ and $\left.w \in N(v)\right\}$. Suppose toward a contradiction that every L_{ϕ}-coloring of $\left\{x^{\prime}, u\right\}$ extends to an anchor.

Subclaim 10.7.10. $B \neq \varnothing$.
Proof: Suppose that $B=\varnothing$. By 1) of Corollary 10.2.5, there is a $\sigma \in \operatorname{Link}\left(x^{\prime} Q u\right)$. By assumption, there is an anchor τ using the colors $\sigma\left(x^{\prime}\right), \sigma(u)$ on the respective vertices x^{\prime}, u. By 1) of Claim 10.7.8, $\sigma \cup \tau$ is a proper L_{ϕ}-coloring of its domain.Thus, let $\psi^{*}:=\sigma \cup \tau \cup \phi$.

Let H be the subgraph of G induced by $\left(V\left(\tilde{G}_{z}^{\text {small }} \cup J_{e}^{1}\right) \backslash\left\{y^{\prime}\right\}\right) \cup \operatorname{Sh}_{2}\left(x^{\prime} Q u\right) \cup \operatorname{dom}(\phi \cup \sigma)$. By our construction of $\psi^{*}, V(H) \backslash \operatorname{dom}\left(\psi^{*}\right)$ is $L_{\psi^{*}}$-inert. By assumption, $\left[H, \psi^{*}\right]$ is not a (C, z)-opener, so there exists a $v \in D_{1}(H)$ with $\left|L_{\psi^{*}}(v)\right|<3$. By 2) of Claim 10.7.8, $v \notin N(y) \cup N(z)$. In particular, $v \neq y^{\prime}$, and v has a neighbor in w.

By our construction of J_{e}^{1}, we have $N(w) \cap V\left(C^{1}\right) \subseteq V\left(J_{e}^{1}\right)$, so $v \notin B_{1}(C)$. Since $\left|L_{\psi^{*}}(v)\right|<3$ and $y \notin N(v)$, it follows that v has a neighbor in $\operatorname{dom}\left(\sigma^{*}\right)$ and $v \in D_{2}(C)$. Furthermore, $z \notin N(v)$, or else we contradict Proposition 10.2.8. Since $\left|L_{\psi^{*}}(v)\right|<3$, it follows that v has at least two neighbors in $V\left(x^{\prime} Q u\right)$, so $v \in B$, contradicting our assumption that $B=\varnothing$.

Applying Proposition 10.5.4, since $B \neq \varnothing$, let $R:=x w w^{*} v$, where $w^{*} v$ is the e-wall of B. By Claim 10.7.2, we have $w^{*} \neq w$. Note that $\tilde{G}_{R}^{\text {small }}$ contains a cyclic facial subgraph $F:=v Q x w w^{*} v$, where F contains all the vertices of $\tilde{G}_{R}^{\text {small }}$ with L_{ϕ}-lists of size less than five. Since $u w$ is a terminal edge of R and $N(w) \cap V(Q) \subseteq V\left(J_{e}^{1}\right)$, and thus $N(w) \cap V(F)=\left\{w^{*}, u\right\}$.

Let H be the subgraph of G induced by $\left(V\left(\tilde{G}_{z}^{\text {small }} \cup J_{e}^{1}\right)-y^{\prime}\right) \cup \operatorname{Sh}_{2}\left(x^{\prime} Q v\right) \cup V\left(\tilde{G}_{R}^{\text {small }}-w^{*}\right) \operatorname{dom}(\phi \cup \sigma)$. By 1) of Corollary 10.2.5, there is a $\sigma \in \operatorname{Link}\left(x^{\prime} Q v\right)$. Since $u \neq x$, we have $\left|L_{\phi \cup \sigma}(u)\right| \geq 3$. Furthermore, each vertex of $\tilde{G}_{R}^{\text {small }} \backslash\{v\}$ has an L_{ϕ}-list of size at least three, since $S_{\star} \subseteq V\left(J_{e^{\prime}}^{1}-u^{\prime}\right)$ by the assumption of Lemma 10.7.1. Now we apply the work of Section 1.6. Since $N(w) \cap V(F)=\left\{w^{*}, u\right\}$, it follows from Theorem 1.6.1 there is a $d \in L_{\phi \cup \sigma}(u)$, where $d \neq \sigma(v)$ if $v u \in E(Q)$, such that any L_{ϕ}-coloring of R using $\sigma(v), d$ on the respective vertices v, u extends to an L_{ϕ}-coloring of $\tilde{G}_{R}^{\text {small }}$.

By assumption, there is an anchor τ using $d, \sigma\left(x^{\prime}\right)$ on the respective vertices u, x^{\prime}. By Claim 10.7.8, the union $\psi^{*}:=\phi \cup \sigma \cup \tau$ is a proper L-coloring of its domain. By our construction of $\psi^{*}, V(H) \backslash \operatorname{dom}\left(\psi^{*}\right)$ is $L_{\psi^{*-}}$ inert. By assumption, $\left[H, \psi^{*}\right]$ is not a (C, z)-opener, so there exists a $v^{\star} \in D_{1}(H)$ with $\left|L_{\psi^{*}}\left(v^{\star}\right)\right|<3$. Since $N\left(w^{*}\right) \cap \operatorname{dom}\left(\psi^{*}\right)=\{v, w\}$, we have $\left|L_{\psi^{*}}\left(w^{*}\right)\right| \geq 3$ Thus, we have $v^{\star} \neq w^{*}$. Since $B \backslash\left\{w^{*}\right\} \subseteq V\left(\tilde{G}_{R}^{\text {small }}-w^{*}\right)$, it follows that $v^{\star} \notin B$. Since v^{\star} has at least three neighbors in $\operatorname{dom}\left(\psi^{*}\right)$, we have $v^{\star} \in N(y) \cup N(z)$, contradicting 2) of Claim 10.7.8.

Claim 10.7.11. If at most one of x, y is adjacent to w, then every L_{ϕ}-coloring of $\{u, x, y\}$ extends to an L_{ϕ}-coloring of $V\left(J_{e}^{1}\right)$.

Proof: Suppose not. By A) of Proposition 10.5.7, we have $R_{e}=u w y x$, and there is a vertex p of $J_{e}^{1} \backslash R_{e}$ adjacent to all the vertices of the cycle $D:=R_{e}+\left(C^{1} \cap J_{e}^{1}\right)$. That is, J_{e}^{1} is a wheel with central vertex p. In particular, $N(w) \cap V\left(C^{1}\right)=\{u\}$.

Subclaim 10.7.12. For any $\sigma \in \operatorname{Link}(Q)$, we have $\sigma(x)=\sigma\left(x^{\prime}\right)$. In particular, $S_{\star}=\varnothing$, and furthermore $L_{\phi}(x)=L_{\phi}\left(x^{\prime}\right)$ and $\left|L_{\phi}(x)\right|=\left|L_{\phi}\left(x^{\prime}\right)\right|=3$.

Proof: Suppose toward a contradiction that there is a $\sigma \in \operatorname{Link}(Q)$ with $\sigma(x) \neq \sigma\left(x^{\prime}\right)$. Thus, σ is a proper L_{ϕ}-coloring of its domain in \tilde{G}. By a) of Proposition 10.6.2 10.6.2, there is an extension of σ to an L_{ϕ}-coloring τ of $\operatorname{dom}(\sigma) \cup V\left(\operatorname{Span}(z)-y^{\prime}\right)$ such that $\left|L_{\phi \cup \tau}\left(y^{\prime}\right)\right| \geq 3$ and $V\left(\tilde{G}_{z}^{\text {small }}\right) \backslash V(\operatorname{Span}(z))$ is $(L, \phi \cup \tau)$-inert in G. Let H be the subgraph of G induced by $\operatorname{dom}(\phi \cup \tau) \cup \operatorname{Sh}_{2}(Q) \cup V\left(J_{e}^{1}-w\right) \cup V\left(\tilde{G}_{z}^{\text {small }}-y^{\prime}\right)$. By Proposition 10.2.9,
$V\left(J_{e}^{1}-w\right)$ is $(L, \phi \cup \tau)$-inert in G, since $y \in \operatorname{dom}(\phi \cup \tau)$. Since $N(w) \cap V\left(C^{1}\right)=\{u\}$, we have $\left|L_{\phi \cup \tau}(y)\right| \geq 3$. Since $\mid L_{\phi \cup \tau}\left(y^{\prime}\right) \geq 3$ as well, the pair $[H, \phi \cup \tau]$ is a (C, z)-opener, contradicting our assumption.

We conclude that there is no element σ of $\operatorname{Link}\left(C^{1}-x x^{\prime}\right)$ with $\sigma(x) \neq \sigma\left(x^{\prime}\right)$, and since $S_{\star}=\varnothing$, we have $L_{\phi}(x)=L_{\phi}\left(x^{\prime}\right)$. and $\left|L_{\phi}(x)\right|=\left|L_{\phi}\left(x^{\prime}\right)\right|=3$.

Now let H^{*} be the subgraph of G induced by $V\left(C \cup C^{1}\right) \cup \operatorname{Sh}_{2}\left(u Q x^{\prime}\right) \cup V\left(\tilde{G}_{z}^{\text {small }}-y^{\prime}\right) \cup V\left(J_{e}^{1}-w\right)$. By Subclaim 10.7.12, we have $L_{\phi}(x)=L_{\phi}\left(x^{\prime}\right)$. and $\left|L_{\phi}(x)\right|=\left|L_{\phi}\left(x^{\prime}\right)\right|=3$. Thus, there is a set c_{0}, c_{1}, c_{2} of three colors such that $\left\{c_{0}, c_{1}, c_{2}\right\}=L_{\phi}(x) \cap L_{\phi}\left(x^{\prime}\right) \cap L_{\phi}(y)$. Since $\left|L_{\phi}(y)\right| \geq 5$, there is a set $\left\{a_{0}, a_{1}\right\}$ of two colors with $\left\{a_{0}, a_{1}\right\} \subseteq L_{\phi}(y) \backslash\left\{c_{0}, c_{1}, c_{2}\right\}$.

Subclaim 10.7.13. $x y^{\prime} \in E\left(\tilde{G}_{z}^{\text {small }}\right)$
Proof: Suppose not. Since every chord of $\operatorname{Span}(z)$ lies in $\tilde{G}_{z}^{\text {small }}$, we have $x y^{\prime} \notin E(G)$. Let \hat{v} be the unique neighbor of u on the path $u Q x$. Since G is short-separation-free, we have $\hat{v} \neq x$. Consider the following cases:

Case 1: Either $L_{\phi}\left(x^{\prime}\right) \nsubseteq L_{\phi}(y)$ or $V\left(\tilde{G}_{z}^{\text {small }}\right) \neq V(\operatorname{Span}(z))$
In this case, there is a $c \in L_{\phi}\left(x^{\prime}\right)$ such that either $c \notin L_{\phi}(y)$ or $V\left(\tilde{G}_{z}^{\text {small }}\right) \neq V(\operatorname{Span}(z))$. Since $S_{\star}=\varnothing$. Since $S_{\star}=\varnothing$, it follows from Theorem 1.7.5 that there is a $\sigma \in \operatorname{Link}\left(u Q x^{\prime}\right)$ with $\sigma\left(x^{\prime}\right)=c$.

Since $\left|L_{\phi \cup \sigma}(p)\right| \geq 4$, there is a $d \in L_{\phi \cup \sigma}(p)$ such that $\left|L_{\phi}(\hat{v}) \backslash\{d\}\right| \geq 3$. Since $\left|L_{\phi \cup \sigma}(x)\right| \geq 2$, it follows that there is a $\sigma^{\prime} \in \Phi\left(\sigma, V\left(J_{e}^{1}\right) \backslash\{w\}\right)$. Since we have either $\sigma\left(x^{\prime}\right) \notin L_{\phi}(y)$ or $x^{\prime} y \notin E(G)$, we have $\left|L_{\phi \cup \sigma^{\prime}}(y)\right| \geq 4$, so there is a $\sigma^{*} \in \Phi(y)$ such that $\left|L_{\phi \cup \sigma^{*}}(w)\right| \geq 3$.

By b) of Proposition 10.6.2, there is a $\tau \in \Phi\left(\sigma^{*}, z\right)$ such that $\left|L_{\phi \cup \tau}\left(y^{\prime}\right)\right| \geq 3$ and $V\left(\tilde{G}_{z}^{\text {small }}-y^{\prime}\right)$ is $(L, \phi \cup \tau)$ inert. Since $z \notin N(w)$, we have $\left|L_{\phi \cup \tau}(w)\right| \geq 3$. Since $J_{e}^{1}-w$ is already colored, $V\left(H^{*}\right) \backslash \operatorname{dom}(\phi \cup \tau)$ is $(L, \phi \cup \tau)$-inert in G and thus $\left[H^{*}, \phi \cup \tau\right]$ is a (C, z)-opener, contradicting our assumption.

Case 2: $L_{\phi}\left(x^{\prime}\right) \subseteq L_{\phi}(y)$ and $V\left(\tilde{G}_{z}^{\text {small }}\right)=V(\operatorname{Span}(z))$
In this case, since $x y^{\prime} \notin E(G)$, we have $E\left(\tilde{G}_{z}^{\text {small }}\right)=E(\operatorname{Span}(z)) \cup\left\{x x^{\prime}, y y^{\prime}, x^{\prime} y\right\}$. Since $S_{\star}=\varnothing$ and no element of $\operatorname{Link}\left(u Q x^{\prime}\right)$ uses a color of $\left\{a_{0}, a_{1}\right\}$ on x^{\prime}, it follows that, for each $d \in L_{\phi}(u)$, there is a partial L_{ϕ}-coloring σ_{i}^{d} of $V\left(u Q x^{\prime}\right) \cup\{y\}$, where $\sigma_{i}^{d}(y)=a_{i}$ and the restriction of σ to $V\left(u Q x^{\prime}\right)$ is an element of $\operatorname{Link}\left(u Q x^{\prime}\right)$ which uses d on u.

For each $d \in L_{\phi}(u)$ and $i=0,1$, since $x y^{\prime} \notin E(G)$, we have $\left|L_{\phi \cup \sigma_{i}^{d}}\left(y^{\prime}\right)\right| \geq 3$ and $\left|L_{\phi \cup \sigma_{i}^{d}}(z)\right| \geq 4$, so there exists a $\tau_{i}^{d} \in \Phi\left(\sigma_{i}^{d}, z\right)$ such that $\left|L_{\phi \cup \tau_{i}^{d}}(z)\right| \geq 3$. We have $\left|L_{\phi \cup \tau_{i}^{d}}(w)\right| \geq 3$ as well. By assumption, for each $d \in L_{\phi}(u)$ and $i=0,1$, the pair $\left[H^{*}, \phi \cup \tau_{i}^{d}\right]$ is not a (C, z)-opener, and thus the inertness condition is violated. since $V\left(\tilde{G}_{z}^{\text {small }}\right)=V(\operatorname{Span}(z))$, it follows that, for each $d \in L_{\phi}(u)$ and $i=0,1$, there is a $\zeta_{i}^{d} \in \Phi\left(\tau_{i}^{d}, w\right)$ which does not extend to L_{ϕ}-color $V\left(J_{e}^{1}\right)$.

Since $a_{0}, a_{1} \notin L_{\phi}(x)$, it follows that, for each $i=0,1$ and $d \in L_{\phi}(u)$, we have $\left|L_{\phi \cup \zeta_{i}^{d}}(p)\right|=2$ and $L_{\phi \cup \zeta_{i}^{d}}(p) \subseteq$ $\left\{c_{0}, c_{1}, c_{2}\right\}$, or else we contradict Observation 1.4.2. Furthermore, we have $d \in L_{\phi}(\hat{v})$ and $L_{\phi \cup \zeta_{i}^{d}}(p) \subseteq L_{\phi}(\hat{v})$ and $\left|L_{\phi}(\hat{v})\right|=3$. Thus, we have $\left|L_{\phi}(p)\right|=5$ and $\left\{a_{0}, a_{1}\right\} \cup L_{\phi}(u)=L_{\phi}(p)$ as a disjoint union. Furthermore, since $d \in L_{\phi}(u)$, suppose without loss of generality that, for some $i \in\{0,1\}$ and $d \in L_{\phi}(u)$, we have $\left\{c_{0}, c_{1}\right\} \subseteq$ $L_{\phi}(p) \cap L_{\phi}(\hat{v})$.

By Theorem 1.7.5, since $S_{\star}=\varnothing$, there is a $\psi \in \operatorname{Link}\left(u Q x^{\prime}\right)$ with $\psi\left(x^{\prime}\right)=c_{2}$. Thus, there is a $\psi^{\prime} \in \Phi(\psi,\{x, y\})$ which colors the edge $x y$ with the colors c_{0}, c_{1}. Since $\left|L_{\phi \cup \psi^{\prime}}\left(y^{\prime}\right)\right| \geq 3$ and $\left|L_{\phi \cup \psi^{\prime}}(z)\right| \geq 4$, there is a $\psi^{*} \in$ $\Phi\left(\psi^{\prime}, z\right)$ with $\left|L_{\phi \cup \psi^{*}}\left(y^{\prime}\right)\right| \geq 3$.

Since $\left[H^{*}, \psi^{*}\right]$ is not a (C, z)-opener and $V\left(\tilde{G}_{z}^{\text {small }}\right)=V(\operatorname{Span}(z))$, there exists a $\psi^{\dagger} \in \Phi\left(\psi^{*}, w\right)$ which does not extend to L_{ϕ}-color $V\left(J_{e}^{1}\right)$. Thus, we have $\psi^{*}(u) \in L_{\phi}(\hat{v})$. Since $\left|L_{\phi}(\hat{v})\right|=3$ and $\left\{c_{0}, c_{1}\right\} \subseteq L_{\phi}(\hat{v})$, there is a color in $L_{\phi \cup \psi_{*}}(p) \backslash L_{\phi}(\hat{v})$. Note that this is true even if $\psi^{*}(u) \in\left\{c_{0}, c_{1}\right\}$, since, in that case, we have $\left|L_{\phi \cup \psi^{*}}(p)\right| \geq 2$. In any case, ψ^{*} extneds to L_{ϕ}-color $V\left(J_{e}^{1}\right)$, a contradiction.

It follows from Subclaim 10.7.13 that $V\left(\tilde{G}_{z}^{\text {small }}\right)=V(\operatorname{Span}(z))$ and $E\left(\tilde{G}_{z}^{\text {small }}\right)=E(\operatorname{Span}(z)) \cup\left\{x x^{\prime}, y y^{\prime}, x y^{\prime}\right\}$. Let \hat{x} be the unique neighbor of x on the path $C^{1} \cap J_{e}^{1}$. Since p is the central vertex of a wheel and G is short-separation-free, we have $\hat{x} \neq u$.

Subclaim 10.7.14. $L_{\phi}(\hat{x})=\left\{c_{0}, c_{1}, c_{2}\right\}$
Proof: Suppose not and suppose without loss of generality that $\left|L_{\phi}(\hat{x}) \backslash\left\{c_{0}\right\}\right| \geq 3$. Since $S_{\star}=\varnothing$, there is a $\sigma \in \operatorname{Link}\left(u Q x^{\prime}\right)$ with $\sigma\left(x^{\prime}\right) \in\left\{c_{1}, c_{2}\right\}$, so there is a $\sigma^{*} \in \Phi(\sigma, x)$ with $\sigma^{*}(x)=c_{0}$. By a) of Proposition 10.6.2, there is a $\tau \in \Phi\left(\sigma^{*},\{y, z\}\right)$ such that $\left|L_{\phi \cup \tau}\left(y^{\prime}\right)\right| \geq 3$. Note that $\left|L_{\phi \cup \tau}(w)\right| \geq 3$ as well. By our choice of color for x, we get that $V\left(J_{e}^{1}-w\right)$ is $(L, \phi \cup \tau)$-inert in G, so $\left[H^{*}, \phi \cup \tau\right]$ is a (C, z)-opener, contradicting our assumption.

Now we fix a $\sigma \in \operatorname{Link}\left(u Q x^{\prime}\right)$. Without loss of generality, let $\sigma\left(x^{\prime}\right)=c_{2}$. Thus, we have $L_{\phi \cup \sigma}\left(x^{\prime}\right)=\left\{c_{0}, c_{1}\right\}$. Since $\left|L_{\phi \cup \sigma}(p)\right| \geq 4$, let $d_{0}, d_{1} \in \backslash\left\{c_{0}, c_{1}\right\}$. By Subclaim 10.7.14, we have $d_{0}, d_{1} \notin L_{\phi}(\hat{x})$.

Now, since $\left|L_{\phi \cup \sigma}(y)\right| \geq 5$, there is a $\sigma^{*} \in \Phi(\sigma, y)$ such that $\sigma^{*}(y) \notin\left\{c_{0}, c_{1}, d_{0}, d_{1}\right\}$. The idea here is to leave $J_{e}^{1} \backslash\{u, y\}$ uncolored. Since $\left|L_{\phi \cup \sigma^{*}}(z)\right| \geq 4$, there is a $\tau \in \Phi\left(\sigma^{*}, z\right)$ such that $\left|L_{\phi \cup \tau}\left(y^{\prime}\right)\right| \geq 3$. By assumption, the pair $\left[H^{*}, \phi \cup \tau\right]$ is not a (C, z)-opener. Since each of w, y^{\prime} has an $L_{\phi \cup \tau}$-list of size at least three, the inertness condition is violated. Thus, there is a $\tau^{*} \in \Phi\left(\tau,\left\{y^{\prime}, w\right\}\right)$ which does not extend to L_{ϕ}-color $V\left(J_{e}^{1}\right)$. But by our choice of color for y we have $\left\{d_{0}, d_{1}\right\} \cap L_{\phi \cup \tau^{*}}(p) \neq \varnothing$, so τ^{*} does indeed extend to L_{ϕ}-color $V\left(J_{e}^{1}\right)$, a contradiction. This completes the proof of Claim 10.7.11.

Let U_{y} be the set of vertices of $\left.V\left(\tilde{G}_{z}^{\text {large }}\right) \backslash V\left(\operatorname{Span}(z) \cup J_{e}^{1}\right)\right)$ with at least three neighbors among $V\left(J_{e}^{1} \cup \operatorname{Span}(z)\right) \backslash\left\{y^{\prime}\right\}$.
Claim 10.7.15. $\left|U_{y}\right|=1$, and furthermore, letting w_{\dagger} be the lone vertex of U_{y}, the following hold.

1) If $w y \in E(G)$ then $\left(N\left(w_{\dagger}\right) \backslash\left\{y^{\prime}\right\}\right) \cap V\left(J_{e}^{1} \cup \operatorname{Span}(z)\right)=\{w, y, z\}$; AND
2) If $w y \notin E(G)$ and $w_{\dagger} \in U_{y}$, then $\left(N\left(w_{\dagger}\right) \backslash\left\{y^{\prime}\right\}\right) \cap V\left(J_{e}^{1} \cup \operatorname{Span}(z)\right)=\{w, x, y\}$.

Proof: Applying Claim 10.7.9, we fix an L_{ϕ}-coloring σ of $\left\{x^{\prime}, u\right\}$ which does not extend to an anchor. We break this into two cases.

Case 1: $w y \notin E(G)$.
Since $w x^{\prime} \notin E(G)$, we have $\left|L_{\sigma \cup \phi}(w)\right| \geq 4$, so there is a a $d \in L_{\sigma \cup \phi}(w) \backslash\left\{c_{0} c_{1}\right\}$. Thus, by Observation 1.4.2, there is an extension of σ to an L_{ϕ}-coloring σ^{\prime} of $V\left(J_{e}^{1}\right) \cup\left\{x^{\prime}\right\}$. By Proposition 10.6.2, σ^{\prime} extends to an L_{ϕ}-coloring τ of $V\left(J_{e}^{1}\right) \cup\left\{x^{\prime}, y, z\right\}$ such that $\left|L_{\tau \cup \phi}\left(y^{\prime}\right)\right| \geq 3$ and $V\left(\tilde{G}_{z}^{\text {small }}\right) \backslash V(\operatorname{Span}(z))$ is $(L, \phi \cup \tau)$-inert. By assumption, τ is not an anchor, so there exists a vertex w_{\dagger} of $N(w) \backslash \operatorname{dom}(\phi \cup \tau)$ such that $\left|L_{\phi \cup \tau}\left(w_{\dagger}\right)\right|<3$. Thus, w_{\dagger} has at least two neighbors among $\left\{u, x, y, z, x^{\prime}\right\}$. If w_{\dagger} is adjacent to x^{\prime}, then G contains a 4-cycle $x w w_{\dagger} x^{\prime}$ which separates z from C, contradicting the fact that \mathcal{T} is a tessellation. Thus, $x^{\prime} \notin N\left(w_{\dagger}\right)$ and w_{\dagger} has at least two neighbors among $\{u, x, y, z\}$.

Suppose now that $u \in N\left(w_{\dagger}\right)$. In that case, by definition of $\operatorname{Span}(z)$, we have $z \notin N\left(w_{\dagger}\right)$. Furthermore, since w is a maximal e-obstruction, we have $x \notin N\left(w_{\dagger}\right)$, so w_{\dagger} is adjacent to each of u, w, y, and G contains the 4-cycle $w w_{\dagger} y x$. Since $w y \notin E(G)$ by assumption, we have $x \in N\left(w_{\dagger}\right)$, which is false, so $u \notin N\left(w_{\dagger}\right)$, and w_{\dagger} has at least
two neighbors among $\{x, y, z\}$. By Proposition 10.2.8, w_{\dagger} is adjacent to at most one of x, z. Thus, if $z \in N\left(w_{\dagger}\right)$, then w_{\dagger} is adjacent to w, y, z, and G contains the 4-cycle $w w_{\dagger} y x$. As above, it follows from our triangulation conditions that $x \in N\left(w_{\dagger}\right)$, contradicting the fact that $w_{\dagger} \notin N(x) \cap N(z)$. We conclude that there is a vertex $w_{\dagger} \in U_{y}$, and furthermore, w_{\dagger} is the unique vertex of U_{y} since G is $K_{2,3}$-free and any vertex of U_{y} is adjacent to w, y, z.

Case 2: $w y \in E(G)$.
This case is trickier. Let $c_{0}, c_{1} \in L_{\phi}(x) \backslash\left\{\sigma\left(x^{\prime}\right)\right\}$. We begin with the following.
Subclaim 10.7.16. If $U_{y}=\varnothing$ then the following hold.

1) $x \in N(w)$ and $J_{e}^{1}-y$ is not a triangle; $A N D$
2) $x y^{\prime} \in E(G)$ and $c_{0}, c_{1} \in L_{\phi \cup \sigma}\left(y^{\prime}\right)$.

Proof: Suppose that $U_{y}=\varnothing$ and suppose toward a contradiction that either $N(w) \cap\{x, y\}=\{y\}$ or $J_{e}^{1}-y=$ $u x w$. By 2a) of Proposition 10.6.2, there is an extension of σ to an L_{ϕ}-coloring σ^{*} of $\left\{u, x, x^{\prime}, y, z\right\}$, where $\left|L_{\sigma^{*}}\left(y^{\prime}\right)\right| \geq 3$ and $V\left(\tilde{G}_{z}^{\text {small }}\right) \backslash V(\operatorname{Span}(z))$ is $\left(L, \phi \cup \sigma^{*}\right)$-inert.

Note that σ^{*} extends to an L_{ϕ}-coloring τ of $\operatorname{dom}\left(\sigma^{*}\right) \cup V\left(J_{e}^{1}\right)$. If $N(w) \cap\{x, y\}=\{y\}$, then this follows from Claim 10.7.11, and if $J_{e}^{1}-w y=u x w$, then this just follows from the fact that there is a color left over for w. We have $\left|L_{\phi \cup \tau}\left(y^{\prime}\right)\right| \geq 3$ and $V\left(\tilde{G}_{z}^{\text {small }}\right) \backslash V(\operatorname{Span}(z))$ is $(L, \phi \cup \tau)$-inert. Since $U=\varnothing, \tau$ is an extension of σ to an anchor, contradicting our choice of σ. Thus, $x \in N(w)$.

Now suppose toward a contradiction that there is a $c \in\left\{c_{0}, c_{1}\right\}$ such that either $c \notin L_{\phi \cup \sigma}\left(y^{\prime}\right)$ or $x y^{\prime} \notin E(G)$. Since $J_{e}^{1}-w y$ is not a triangle and C^{1} is an induced subgraph of G, it follows from 2) of Proposition 1.5.1 that there is an extension of σ to an L_{ϕ}-coloring σ^{*} of $\left\{x^{\prime}\right\} \cup V\left(J_{e}^{1}\right)$ using c on x. By 2) of Proposition 10.6.2, since either $c \notin L_{\phi \cup \sigma}\left(y^{\prime}\right)$ or $x y^{\prime} \notin E(G), \sigma^{*}$ extends to an anchor, contradicting our choice of σ.

We now show that $U_{y} \neq \varnothing$. Suppose that $U_{y}=\varnothing$. By Subclaim 10.7.16, we have $x, y \in N(w)$ and $c_{0}, c_{1} \in$ $L_{\phi \cup \sigma}\left(y^{\prime}\right)$. Furthermore, \tilde{G} consists of $\operatorname{Span}(z)$ and the edges $x x^{\prime}, y y^{\prime}, x y^{\prime}$. In particular, we have $\left|L_{\phi \cup \sigma}(y)\right| \geq 5$, so there is an $f \in L_{\phi \cup \sigma}(y) \backslash\left\{c_{0}, c_{1}\right\}$ such that $\left|L_{\phi \cup \sigma}\left(y^{\prime}\right) \backslash\{f\}\right| \geq 4$. Since $\left|L_{\phi \cup \sigma}(w)\right| \geq 4$, there is a color $f^{*} \in L_{\phi \cup \sigma}(w) \backslash\left\{c_{0}, c_{1}, f\right\}$, and, by Observation 1.4.2, the L_{ϕ}-coloring $\left(\sigma(w), f^{*}\right)$ of the edge $u w$ extends to an L_{ϕ}-coloring of J_{e}^{1} using f on y and one of c_{0}, c_{1} on x. But by our choice of f, since $U_{y}=\varnothing_{i}$ it follows that σ extends to an anchor, contradicting our choice of σ. Thus, $U_{y} \neq \varnothing$.

Let $w_{\dagger} \in U_{y}$. By definition, w_{\dagger} has at least three neighbors in $\left\{w, y, z, x^{\prime}\right\}$. If $x^{\prime} \in N\left(w_{\dagger}\right)$, then, by 3) of Proposition $10.2 .8, w_{\dagger}$ is not adjacent to z, and since $x^{\prime} y \notin E(G)$, we have $x^{\prime} \notin N\left(w_{\dagger}\right)$ and w_{\dagger} is the unique vertex adjacent to all three of w, y, z. Let τ be an extension of σ to an L_{ϕ}-coloring of $V\left(J_{e}^{1}\right) \cup\left\{x^{\prime}, y, z\right\}$. Since $U_{y}=\left\{w_{\dagger}\right\}$, it follows that, if τ satisfies neither 1) nor 2), then τ is an extension of σ to an anchor, contradicting our choice of σ.

Applying Claim 10.7.15 and Claim 10.7.9 and, we fix an L_{ϕ}-coloring σ olf $\left\{x^{\prime}, u\right\}$ which does not extend to an anchor, and we fix a vertex w_{\dagger} such that $U_{y}=\left\{w_{\dagger}\right\}$. Since $x \notin S_{\star}$, we fix two colors $c_{0}, c_{1} \in L_{\phi}(x) \backslash\left\{\sigma\left(x^{\prime}\right)\right\}$. (Possibly J_{e}^{1} is a triangle and $\sigma(u) \in\left\{c_{0}, c_{1}\right\}$).

Claim 10.7.17. $E(G)$ contains at most one of $w x, w y$.
Proof: Suppose toward a contradiction that $w x, w y \in E(G)$. Applying Claim 10.7.15, w_{\dagger} is adjacent to each of w, y, z. Let $K:=\tilde{G}_{u w x}^{\text {small }}$. Note that $K=J_{e}^{1}-y$.

Subclaim 10.7.18. G has a chord of $\operatorname{Span}(z)$ other than $x x^{\prime}$.
Proof: Suppose not. The trick now is to leave y uncolored. Choosing a color of $L_{\phi}(w) \backslash\left\{c_{0}, c_{1}, \sigma(u)\right\}$, it follows from Observation 1.4.2 that there is a $\sigma^{*} \in \Phi\left(\sigma, J_{e}^{1}-y\right)$ using one of c_{0}, c_{1} on x. Since $\left|L_{\phi \cup \sigma^{*}}(z)\right| \geq 5$ and $\left|L_{\phi \cup \sigma^{*}}(y)\right| \geq 3$, there is an extension of σ^{*} to a $\tau \in \Phi\left(\sigma^{*}, z\right)$ such that $\left|L_{\phi \cup \tau}(y)\right| \geq 3$. We claim now that $V\left(J_{e}^{1} \cup \tilde{G}_{z}^{\text {small }}\right) \backslash\left\{y^{\prime}\right\}$ is $(L, \phi \cup \tau)$-inert in G. Applying Corollary 1.3.6, this is immediate if $\tilde{G}_{z}^{\text {small }}$ is not a wheel with a central vertex adjacent to all five vertices of $x y z y^{\prime} x^{\prime}$, so suppose that $\tilde{G}_{z}^{\text {small }}$ is a wheel with central vertex v^{*}.

By our choice of color for z, any extension of $\phi \cup \tau$ to an L-coloring of $G \backslash\left\{v^{*}, y\right\}$ also extends to the edge $v^{*} y$. Thus, in any case, $V\left(J_{e}^{1} \cup \tilde{G}_{z}^{\text {small }}\right) \backslash\left\{y^{\prime}\right\}$ is $(L, \phi \cup \tau)$-inert in G. Furthermore, $\left|L_{\phi \cup \tau}\left(y^{\prime}\right)\right| \geq 3$, since $x, y \notin N\left(y^{\prime}\right)$. Thus, τ in an anchor, contradicting the fact that σ does not extend to an anchor.

We now have the following.
Subclaim 10.7.19. $x y^{\prime} \in E(G)$
Proof: Suppose not. By Subclaim 10.7.18 G has a chord of $\operatorname{Span}(z)$ other than $x x^{\prime}$. Since $x y^{\prime} \notin E(G)$, it follows from Observation 10.6.1 that $\tilde{G}_{z}^{\text {small }}$ consists of $\operatorname{Span}(z)$ and the edges $\left\{x x^{\prime}, y y^{\prime}, x^{\prime} y\right\}$. Since $w x \in E(G), G$ contains a 7 -wheel in which each vertex of the cycle $w x x^{\prime} y^{\prime} z w_{\dagger}$ is adjacent to y. Consider the following cases.

Case 1: K is a triangle
In this case, we leave w uncolored. Since $x \notin S_{\star},\left|L_{\phi \cup \sigma}(x)\right| \geq 1$. Since $\left|L_{\phi \cup \sigma}(y)\right| \geq 4$ and $\left|L_{\phi \cup \sigma}(z)\right| \geq 5$, there is an extension of σ to an L_{ϕ}-coloring τ of $\left\{x^{\prime}, x, u, y, z\right\}$ such that $\left|L_{\phi \cup \tau}\left(y^{\prime}\right)\right| \geq 3$. Since w is uncolored, $\left|L_{\phi \cup \tau}\left(w_{\dagger}\right)\right| \geq 3$, so τ is an anchor, contradicting our choice of σ.

Case 2: K is not a triangle.
In this case, we first claim that there exists an $f \in L_{\phi \cup \sigma}(w)$ such that $\left\{c_{0}, c_{1}\right\} \subseteq z_{K}(\sigma(u), f, \bullet)$. If K is not a broken wheel, then, since C^{1} is an induced subgraph of G, it just follows from Theorem 1.5.3 that such an f exists. If K is a broken wheel, then, since K is not a triangle, it follows from Proposition 1.4.4 that such an f exists, or else there is a vertex of $K \backslash\{u, w, x\}$ with an L_{ϕ}-list of size three which contains both $\left\{c_{0}, c_{1}\right\}$ and two colors of $L_{\phi \cup \sigma}(w) \backslash\left\{c_{0}, c_{1}\right\}$, a contradiction.

Let τ be an extension of σ to an L_{ϕ}-coloring of $\left\{x^{\prime}, u, w, z\right\}$ such that $\tau(w)=f$, where f is as above. Since y is uncolored, each of w_{\dagger}, y^{\prime} has an $L_{\phi \cup \tau}$-list of size at least three, and, by our choice of $\tau, V\left(\tilde{G}_{z}^{\text {small }} \cup J_{e}^{1}\right) \backslash\left\{y^{\prime}\right\}$ is $(L, \phi \cup \tau)$-inert in G, so τ is an anchor, contradicting our choice of σ.

Since $x y^{\prime} \in E(G)$, it follows from Observation 10.6.1 that $\tilde{G}_{z}^{\text {small }}$ consists of $\operatorname{Span}(z)$ and the edges $\left\{x x^{\prime}, y y^{\prime}, x y^{\prime}\right\}$. Thus, G contains a 6-wheel with central vertex y adjacent to all five vertices of the cycle $x w w_{\dagger} z y^{\prime}$.

Case 1: K is a triangle
In this case, the trick is to leave y uncolored. Since $\left|L_{\phi \cup \sigma}(x)\right| \geq 1$, we let σ^{\prime} be an extension of σ to an $L_{\phi^{-}}$ coloring of $\left\{x^{\prime}, x, u\right\}$. Since $\left|L_{\phi \cup \sigma^{\prime}}\left(y^{\prime}\right)\right| \geq 3$ and $\left|L_{\phi \cup \sigma}(z)\right| \geq 5$, let $f_{0}, f_{1} \in L_{\phi \cup \sigma}(z)$, where, for each $i=0,1$, $\left|L_{\phi \cup \sigma^{\prime}}\left(y^{\prime}\right) \backslash\left\{f_{i}\right\}\right| \geq 3$. Now, since $\left|L_{\phi \cup \sigma^{\prime}}(w)\right| \geq 3$ and $\left|L_{\phi \cup \sigma^{\prime}}(y)\right| \geq 4$, there is an extension of σ^{\prime} to an L_{ϕ}-coloring τ of $\left\{u, x, x^{\prime}, w, z\right\}$ such that τ uses one of f_{0}, f_{1} on z and such that $\left|L_{\phi \cup \tau}(y)\right| \geq 3$. By our choice of τ, we have $\left|L_{\phi \cup \tau}\left(y^{\prime}\right)\right| \geq 3$ and $\{y\}$ is $(L, \phi \cup \tau)$-inert. Thus, τ is an anchor, contradicting our choice of σ.

Case 2: K is not a triangle

As above, we choose an $f \in L_{\phi \cup \sigma}(w)$ with $\left\{c_{0}, c_{1}\right\} \subseteq z_{K}(\sigma(u), f, \bullet)$. The trick is to leave $K-\{u, w, y\}$ uncolored. Since $\left|L_{\phi \cup \sigma}(y) \backslash\{f\}\right| \geq 4$, there is an $f^{\prime} \in L_{\phi \cup \sigma}(y) \backslash\left\{f, c_{0}, c_{1}\right\}$. Let σ^{*} be an extension of σ to $\left\{x^{\prime}, u, w, y\right\}$ obtained by coloring w, y with the respective colors f, f^{\prime}. Since $\left|L_{\phi \cup \sigma^{*}}(z)\right| \geq 4$, there is an extension of σ^{*} to an L_{ϕ}-coloring τ of $\left\{x^{\prime}, x, u, w, y, z\right\}$ such that $\left|L_{\phi \cup \tau}\left(w_{\dagger}\right)\right| \geq 3$. Since x is uncolored, we have $\left|L_{\phi \cup \tau}\left(y^{\prime}\right)\right| \geq 3$ as well. By our choice of $\tau, V(K) \backslash\{w, y\}$ is $(L, \phi \cup \tau)$-inert in G, so $V\left(J_{e}^{1} \cup \tilde{G}_{z}^{\text {small }}\right) \backslash\left\{y^{\prime}\right\}$ is $(L, \phi \cup \tau)$-inert in G. Thus, τ is an anchor, contradicting our choice of σ. This completes the proof of Claim 10.7.17.

Now we have the following.

Claim 10.7.20. If $w y \notin E(G)$, then $x y^{\prime} \in E(G)$.
Proof: Suppose that $w y \notin E(G)$. Thus, w is the lone vertex of $\mathrm{Ob}_{e}(z)$, and $J_{e}^{1}=\tilde{G}_{u w x}^{\text {small }}$. Furthermore, it follows from Lemma 10.4.2 that w has no neighbor in $\operatorname{Span}(z)$ other than x. Applying Claim 10.7.15, w_{\dagger} is adjacent to each of w, x, y.

Subclaim 10.7.21. G has a chord of $\operatorname{Span}(z)$ other than $x x^{\prime}$.
Proof: Suppose not. Applying Observation 1.4.2, we extend σ to an L_{ϕ}-coloring σ^{\prime} of $V\left(J_{e}^{1}\right) \cup\left\{x^{\prime}\right\}$ by choosing a $d \in L_{\sigma \cup \phi}(w) \backslash\left\{c_{0}, c_{1}\right\}$. Then $\left|L_{\phi \cup \sigma^{\prime}}\left(w_{\dagger}\right)\right| \geq 3$ and, since $x^{\prime} y \notin E(G),\left|L_{\phi \cup \sigma^{\prime}}(y)\right| \geq 4$, so there is an extension of σ^{\prime} to an L_{ϕ}-coloring σ^{*} of $\operatorname{dom}\left(\sigma^{\prime}\right) \cup\{y\}$ such that $\left|L_{\sigma^{*}}\left(w_{\dagger}\right)\right| \geq 3$.

For any extension τ of σ^{*} to an L_{ϕ}-coloring of $\operatorname{dom}\left(\sigma^{*}\right) \cup\{z\}$, we have $\left|L_{\phi \cup \tau}\left(y^{\prime}\right)\right| \geq 3$, since $\tilde{G}_{z}^{\text {small }}$ has no chord of $\operatorname{Span}(z)$ other than $x x^{\prime}$. By 2b) of Proposition 10.6.2, there is an extension τ of σ^{*} to an L_{ϕ}-coloring of $\operatorname{dom}\left(\sigma^{*}\right) \cup\{z\}$ such that $V\left(\tilde{G}_{z}^{\text {small }}\right) \backslash V(\operatorname{Span}(z))$ is $(L, \phi \cup \tau)$-inert, so τ is an anchor, contradicting our choice of σ.

Since $\tilde{G}_{z}^{\text {small }}$ has a chord of $\operatorname{Span}(z)$ other than $x x^{\prime}$, it follows from Observation 10.6.1 that $\tilde{G}_{z}^{\text {small }}$ consists of $\operatorname{Span}(z)$ and the edges $x x^{\prime}, y y^{\prime}, y x^{\prime}$. We note now the following.

$$
\text { For any } \sigma^{\prime} \in \Phi\left(\sigma, V\left(J_{e}^{1}\right)\right) \text {, we have }\left|L_{\sigma^{\prime} \cup \phi}\left(w_{\dagger}\right)\right|=2
$$

To see this, note that if $\left|L_{\sigma^{\prime} \cup \phi}\left(w_{\dagger}\right)\right| \geq 3$, then, since $\left|L_{\sigma^{\prime} \cup \phi}(z)\right| \geq 4$ and $\left|L_{\sigma^{\prime} \cup \phi}\left(y^{\prime}\right)\right| \geq 3$, there is an extension of σ^{\prime} to an $\tau \in \Phi\left(\sigma, V\left(J_{e}^{1}\right) \cup\{z\}\right)$ such that each of y^{\prime}, w_{\dagger} has an $L_{\phi \cup \tau}$-list of size at least three, so τ is an anchor, contradicting our choice of σ.

Recall that we have fixed two colors $c_{0}, c_{1} \in L_{\phi}(x) \backslash\left\{\sigma\left(x^{\prime}\right)\right\}$. Since $L_{\phi \cup \sigma}(w) \mid \geq 4$, let $f_{0}, f_{1} \in L_{\phi \cup \sigma}(w) \backslash\left\{c_{0} c_{1}\right\}$. It follows from Observation 1.4.2 that, for each $i=0,1$, there is a color of $\left\{c_{0}, c_{1}\right\}$ in $z_{J_{e}^{1}}\left(\sigma(u), f_{j}, \bullet\right)$. Thus, by (\ddagger), we have $\left\{f_{0}, f_{1}\right\} \subseteq L\left(w_{\dagger}\right)$ and $\left|L\left(w_{\dagger}\right)\right|=5$. Furthermore, $f_{0}, f_{1} \notin L_{\phi \cup \sigma}(y)$, or else we color w, y with the same color $f \in\left\{f_{0}, f_{1}\right\} \cap L_{\phi \cup \sigma}(y)$, which leaves a color of $\left\{c_{0}, c_{1}\right\}$ in $\mathcal{Z}_{J_{e}^{1}}(\sigma(u), f, \bullet)$, contradicting (\ddagger). Since $\left\{f_{0}, f_{1}\right\} \subseteq L(w)$, there is a $c \in L_{\phi \cup \sigma}(y)$ with $c \notin L\left(w_{\dagger}\right)$.

Since $x^{\prime} y \in E(G)$, we have $c \neq \sigma\left(x^{\prime}\right)$, and since $\mathcal{Z}_{j_{e}^{1}}\left(\sigma(u), f_{j}, \bullet\right) \backslash\left\{\sigma\left(x^{\prime}\right)\right\} \neq \varnothing$ for each $j=0$, 1 , we have $\mathcal{Z}_{J_{e}^{1}}\left(\sigma(u), f_{j}, \bullet\right) \backslash\left\{\sigma\left(x^{\prime}\right)\right\}=\{c\}$ for each $j=0,1$, or else we contradict (\ddagger). Furthermore, $L\left(w_{\dagger}\right)$ is the disjoint union $\left\{f_{0}, f_{1}\right\}$ and $L(y) \backslash\left\{\sigma\left(x^{\prime}\right), c\right\}$, or else, again, we contradict (\ddagger).

Since $\left|L_{\phi \cup \sigma}(w)\right| \geq 4$, let g_{0}, g_{1} be two colors in $L_{\phi \cup \sigma}(w) \backslash\left\{f_{0}, f_{1}\right\}$. If there is a $g \in\left\{g_{0}, g_{1}\right\}$ such that $\mathcal{Z}_{J_{e}^{1}}(\sigma(u), g, \bullet) \neq$ $\{\sigma(x)\}$, then, since $\mathcal{z}_{J_{e}^{1}}(\sigma(u), g, \bullet) \neq \varnothing$ and $L\left(w_{\dagger}\right)$ is the disjoint union $\left\{f_{0}, f_{1}\right\}$ and $L(y) \backslash\left\{\sigma\left(x^{\prime}\right), c\right\}$, there is an element σ^{\prime} of $\Phi\left(\sigma, V\left(J_{e}^{1}\right)\right)$, using g on w, such that $\left|L_{\phi \cup \sigma^{\prime}}\left(w_{\dagger}\right)\right| \geq 3$, contradicting (\ddagger). We thus have $\mathcal{Z}_{J_{e}^{1}}\left(\sigma(u), g_{0}, \bullet\right)=\mathcal{Z}_{J_{e}^{1}}\left(\sigma(u), g_{1}, \bullet\right)=\{\sigma(x)\}$.

We note now that there is an $f \in\left\{f_{0}, f_{1}\right\}$ such that $L_{\phi}(x) \backslash\{\sigma(x)\} \subseteq \mathcal{Z}_{J_{e}^{1}}(\sigma(u), f, \bullet)$. If K is a broken wheel, then this just follows from 2) of Proposition 1.4.5, and if K is not a broken wheel, then this follows from Theorem 1.5.3. In any case, we contradict the fact that $\mathcal{Z}_{J_{e}^{1}}(\sigma(u), f, \bullet) \backslash\left\{\sigma\left(x^{\prime}\right)\right\}=\{c\}$.

Now we have the following:

Claim 10.7.22. $x^{\prime} y \notin E(G)$.
Proof: Suppose that $x^{\prime} y \in E(G)$. By 1) of Proposition $10.2 .8, x^{\prime} y$ is a chord of $\operatorname{Span}(z)$ in $\tilde{G}_{z}^{\text {small }}$, and, by Observation 10.6.1, $\tilde{G}_{z}^{\text {small }}$ consists of $\operatorname{Span}(z)$ and the edges $x x^{\prime}, y y^{\prime}, x^{\prime} y$. In particular, we have $x y^{\prime} \notin E(G)$, and thus, by Claim 10.7.20, $w y \in E(G)$. Applying Claim 10.7.15, w_{\dagger} is adjacent to each of w, y, z.

By Claim 10.7.17, $w x \notin E(G)$. Since $x y^{\prime} \notin E(G)$, we have $\left|L_{\phi \cup \sigma}\left(y^{\prime}\right)\right| \geq 4$. Since C_{z}^{1} is an induced subgraph of G and $w x \notin E(G)$, it follows from our triangulation conditions that $u x \notin E(G)$. Since $x \notin S_{\star}$ and $u x \notin E(G)$, we have $\left|L_{\phi \cup \sigma}(x)\right| \geq 2$. Since $\left|L_{\phi \cup \sigma}(y)\right| \geq 5$, there is an extension of σ to an L_{ϕ}-coloring σ^{\prime} of $\left\{x^{\prime}, u, x, y\right\}$ such that $\left|L_{\phi \cup \sigma^{\prime}}\left(y^{\prime}\right)\right| \geq 3$.

By Claim 10.7.11, σ^{\prime} extends to an L_{ϕ}-coloring $\sigma^{\prime \prime}$ of $V\left(J_{e}^{1}\right) \cup\left\{x^{\prime}\right\}$, as $w x \notin E(G)$. Since $\left|L_{\phi \cup \sigma^{\prime \prime}}(z)\right| \geq 4$, there is an extension of $\sigma^{\prime \prime}$ to an L_{ϕ}-coloring τ of $V\left(J_{e}^{1}\right) \cup\left\{x^{\prime}, z\right\}$ such that $\left|L_{\phi \cup \tau}\left(w_{\dagger}\right)\right| \geq 3$. By our choice of $\sigma^{\prime \prime}$, we have $\left|L_{\phi \cup \tau}\left(y^{\prime}\right)\right| \geq 3$ as well, so τ is an anchor, contradicting our choice of σ.

Now we have the following.
Claim 10.7.23. $x y^{\prime} \in E(G)$

Proof: Suppose toward a contradiction that $x y^{\prime} \notin E(G)$. By Claim 10.7.20, we have $w y \in E(G)$. Thus, we have $R_{e}=y w u$. By Claim 10.7.22, we have $x^{\prime} y \notin E(G)$. Since neither $x y^{\prime}$ nor $x^{\prime} y$ lies in $E(G)$, it follows from Observation 10.6.1 that $x y z y^{\prime} x$ is an induced cycle of G. Applying Claim 10.7.15, w_{\dagger} adjacent to each of w, y, z.

We claim now that $\tilde{G}_{z}^{\text {small }}$ is a wheel with a central vertex adjacent to all five vertices of $\operatorname{Span}(z)$. Suppose not. Applying 2) of Proposition 1.5.1, we extend σ to an L_{ϕ}-coloring σ^{*} of $\left\{x^{\prime}\right\} \cup V\left(J_{e}^{1}\right)$. Since $\left|L_{\phi \cup \sigma^{*}}(z)\right| \geq 4$, there is a $\tau \in \Phi\left(\sigma^{*}, z\right)$ such that $\left|L_{\phi \cup \tau}\left(w_{\dagger}\right)\right| \geq 3$. Since G has no chord of $\operatorname{Span}(z)$ except for $x x^{\prime}$, we have $\left|L_{\phi \cup \tau}\left(y^{\prime}\right)\right| \geq 3$, and, by Corollary 1.3.6, $V\left(\tilde{G}_{z}^{\text {small }}\right) \backslash V(\operatorname{Span}(z))$ is $L_{\phi \cup \tau}$-inert. Thus, τ is an anchor, contradicting our choice of σ, so let v^{\star} be the lone vertex of $\tilde{G}_{z}^{\text {small }} \backslash \operatorname{Span}(z)$.

Since $y w \in E(G)$, it follows from Claim 10.7.17 that $x w \notin E(G)$. Since $x w \notin E(G)$ and C_{z}^{1} is an induced subgraph of G, it follows from our triangulation conditions that $u x \notin E(G)$. Since $\left|L_{\phi \cup \sigma}\left(v^{\star}\right)\right| \geq 4$ and $\left|L_{\phi \cup \sigma}(y)\right| \geq 5$, there is a $d \in L_{\phi \cup \sigma}(y)$ such that $L_{\phi \cup \sigma}\left(v^{\star}\right) \backslash\{d\} \mid \geq 4$.

At least one of c_{0}, c_{1} is distinct from d, and since $x w \notin E(G)$, it follows from Claim 10.7.11 that there is a $\sigma^{*} \in$ $\Phi\left(\sigma, J_{e}^{1}\right)$ such that $\sigma^{*}(y)=d$. Since $\left|L_{\phi \cup \sigma}\left(w_{\dagger}\right)\right| \geq 3$ and $\left|L_{\phi \cup \sigma^{*}}(z)\right| \geq 4$, there is an extension of σ^{*} to an $L_{\phi^{-}}$ coloring τ of $\operatorname{dom}\left(\sigma^{*}\right) \cup\{z\}$ such that $\left|L_{\phi \cup \tau}\left(w_{\dagger}\right)\right| \geq 3$. By our choice of $\sigma^{*}(y), v^{\star}$ is $L_{\phi \cup \tau}$-inert, and thus τ is an anchor, contradicting our choice of σ.

Since $x y^{\prime} \in E(G)$, it follows from Observation 10.6.1 that $\tilde{G}_{z}^{\text {small }}$ consists of $\operatorname{Span}(z)$ and the edges $y y^{\prime}, x y^{\prime}, x x^{\prime}$. Furthermore, we immediately get $S_{\star} \neq \varnothing$, or else $J_{e}^{1}, J_{e^{\prime}}^{1}$ are symmetric, and, interchanging the roles of the two sides in the above, we obtain $x^{\prime} y \in E\left(\tilde{G}_{z}^{\text {small }}\right)$, which is false. Since $S_{\star} \neq \varnothing$, it follows from 3) of Corollary 10.2.5 that there is a $\psi \in \operatorname{Link}(Q)$ with $\psi(x) \neq \psi\left(x^{\prime}\right)$

Claim 10.7.24. $w y \in E(G)$.

Proof: Suppose that $w y \notin E(G)$. Thus, $R_{e}=u w x$, and w_{\dagger} is adjacent to each of w, x, y. The trick now is to keep w uncolored. By 2a) of Proposition 10.6.2, there is an extension of ψ to an L_{ϕ}-coloring τ of $\operatorname{dom}(\psi) \cup\{y, z\}$ such that $\left|L_{\phi \cup \tau}\left(y^{\prime}\right)\right| \geq 3$. Let H be the subgraph of G induced by $\operatorname{dom}(\phi \cup \tau) \cup \operatorname{Sh}_{2}(Q)$. Since $w y \notin E(G)$ and w is uncolored, each of w, w_{\dagger} has an $L_{\phi \cup \tau}$-list of size at least three. Thus, $[H, \phi \cup \tau]$ is a (C, z)-opener, contradicting our assumption.

Since $w y \in E(G)$, we have $R_{e}=u w y$. By Claim 10.7.17, we have $w x \notin E(G)$. Furthermore, w_{\dagger} is adjacent to each of w, y, z. Furthermore, $N(w) \subseteq V\left(J_{e}^{1}\right) \cup\left\{z, y^{\prime}\right\}$. The trick now is to keep y uncolored. Since $\left|L_{\phi \cup \psi}(z)\right| \geq 5$ and $\left|L_{\phi \cup \psi}(y)\right| \geq 4$, there is an extension of ψ to an L_{ϕ}-coloring τ of $\operatorname{dom}(\psi) \cup\{z\}$ such that $\left|L_{\phi \cup \tau}(y)\right| \geq 4$. Let H be the subgraph of G induced by $\operatorname{dom}(\phi \cup \tau) \cup \operatorname{Sh}_{2}\left(x^{\prime} Q u\right) \cup V\left(J_{e}^{1}\right)$. Since y is uncolored, each of y^{\prime}, w_{\dagger} has an $L_{\phi \cup \tau}$-list of size at least three. By assumption $[H, \phi \cup \tau]$ is not a (C, z)-opener. By construction of $\phi \cup \tau$, any extension of $\phi \cup \tau$ to an L-coloring of $\operatorname{dom}(\phi \cup \tau) \cup V(G \backslash H)$ extends to an L-coloring τ^{*} of $\operatorname{dom}(\phi \cup \tau) \cup \operatorname{Sh}_{2,}\left(x^{\prime} Q u\right)$. By our choice of color for z, τ^{*} also extends to $\{y\}$, and, by Proposition 10.2.9, the resulting L-coloring of $G \backslash\left(J_{e}^{1} \backslash R_{e}\right)$ extends to $J_{e}^{1} \backslash R_{e}$ as well. We conclude that $V(H)$ is $(L, \phi \cup \tau)$-inert in G, so $[H, \phi \cup \tau]$ is a (C, z)-opener, contradicting our assumption. This completes the proof of Lemma 10.7.1.

10.8 Dealing With $\operatorname{Span}(z)$ as a 4-chord: Part III

In this section, we deal with the last difficult case in the proof of 1) of Theorem 10.0.7. The remaining cases are easier and are obtained by similar arguments.

Lemma 10.8.1. Let $z \in D_{2}\left(C^{1}\right)$ be a pentagonal vertex, where $\operatorname{Span}(z):=x y z y^{\prime} x^{\prime}$ is a proper 4 -chord of C^{1}. Suppose further that $E(G)$ contains one of $x^{\prime} y, x y^{\prime}$. Then there exists a (C, z)-opener.

Proof. By 1) of Proposition 10.2.8, we have $x^{\prime} y, x y^{\prime} \notin E\left(\tilde{G}_{z}^{\text {large }}\right)$, so G contains at most one of $x^{\prime} y, x y^{\prime}$. Without loss of generality, let $x^{\prime} y \in E\left(\tilde{G}_{z}^{\text {small }}\right)$. Let $Q^{\text {small }}:=C^{1} \cap \tilde{G}_{z}^{\text {small }}$ and let $Q^{\text {large }}:=C^{1} \cap \tilde{G}_{z}^{\text {large }}$. By Lemma 10.4.2, since there is no (C, z)-opener z is end-repelling. By Lemma 10.7.1, since there is no (C, z)-opener, we have $\left|E\left(Q^{\text {small }}\right)\right|>1$. Crucially, since $\left|E\left(Q^{\text {small }}\right)\right|>1$, every element of $\operatorname{Link}\left(Q^{\text {large }}\right)$ is a proper L_{ϕ}-coloring of its domain in G. Since $\mid E\left(Q^{\text {large }} \mid>1\right.$, let e be the unique terminal edge of $Q^{\text {large }}$ incident to x and let e^{\prime} be the unique terminal edge of $Q^{\text {large }}$ incident to x^{\prime}.

Let $K:=\tilde{G}_{x^{\prime} y x}^{\text {small }}$. Since G is short-separation-free, we have $V\left(\tilde{G}_{z}^{\text {small }}\right)=V(K) \cup\left\{y^{\prime}, z\right\}$. Since $z \in D_{2}\left(C^{1}\right)$, we have $E\left(\tilde{G}_{z}^{\text {small }}\right)=E(K) \cup\left\{y y^{\prime}, x^{\prime} y\right\}$ by our triangulation conditions. In particular, $N\left(y^{\prime}\right) \cap V\left(C^{1}\right)=\left\{x^{\prime}\right\}$, and we immediately have the following.

Claim 10.8.2. For any partial L_{ϕ}-coloring ψ of $V\left(C^{1}\right) \cup\{y\}$, ψ extends to an L_{ϕ}-coloring ψ^{*} of $\operatorname{dom}(\psi) \cup\{z\}$ such that $\left|L_{\phi \cup \psi^{*}}\left(y^{\prime}\right)\right| \geq 3$.

Proof: Since $N\left(y^{\prime}\right) \cap V\left(C^{1}\right)=\left\{x^{\prime}\right\}$ and $z \in D_{2}\left(C^{1}\right)$, we have $\left|L_{\phi \cup \psi}\left(y^{\prime}\right)\right| \geq 3$ and $\left|L_{\phi \cup \psi}(z)\right| \geq 4$, so the claim is immediate.

Recall that, by Co4d) of Definition 10.0.1, if $S_{\star} \neq \varnothing$, then every vertex of $D_{2}(C)$ has a neighborhood on C^{1} consisting precisely of a subpath of C^{1}. In particular, if $S_{\star} \neq \varnothing$, then K is a broken wheel with principal path $x^{\prime} y x$. Since G is $K_{2,3}$-free, it immediately follows from Co 4 c) and d) of Definition 10.0.1 that the following hold.

Claim 10.8.3. If $S_{\star} \neq \varnothing$, then $T^{<2} \cap V\left(Q^{\text {large }}\right) \neq \varnothing$.

Now we have the following.

Claim 10.8.4. R_{e} is a 3-chord of C^{1}, i.e the middle edge of R_{e} is incident to y.

Proof: Suppose not. Thus, there is no e-obstruction adjacent to y. Let H^{\dagger} be the subgraph of G induced by $\mathrm{Sh}_{2}\left(Q^{\text {large }}\right) \cup \operatorname{dom}(\phi \cup \tau)$, and consider the following cases:

Case 1: $S_{\star} \cap V\left(\mathscr{Q}^{\text {small }}\right)=\varnothing$
In this case, applying 1) of Corollary 10.2 .5 , we fix a $\sigma \in \operatorname{Link}\left(Q^{\text {large }}\right)$. By 2) of Proposition 1.5.1, since $S_{\star} \cap$ $V\left(Q^{\text {small }}\right)=\varnothing$, there is an extension of σ to an L_{ϕ}-coloring σ^{*} of $\operatorname{dom}(\sigma) \cup V(K)$. By Claim 10.8.2, σ^{*} extends to an L_{ϕ}-coloring τ of $\operatorname{dom}\left(\sigma^{*}\right) \cup\{z\}$ such that $\left|L_{\phi \cup \tau}\left(y^{\prime}\right)\right| \geq 3$. Since there is no e-obstruction adjacent to y, and $\left|L_{\phi \cup \tau}\left(y^{\prime}\right)\right| \geq 3$, the pair $\left[H^{\dagger}, \phi \cup \tau\right]$ is a (C, z)-opener, contradicting our assumption.

Case 2: $S_{\star} \cap V\left(Q^{\text {small }}\right) \neq \varnothing$.
In this case, by Claim 10.8.3 there is a $\hat{v} \in T^{<2} \cap V\left(Q^{\text {large }}\right)$. By Co4d) of Definition 10.0.1, every vertex of $D_{2}(C)$ has a neighborhood on C^{1} consisting precisely of a subpath of C^{1}. In particular K is a broken wheel.

By 2) of Proposition 10.2.4, there exists a pair of elements σ_{0}, σ_{1} of $\operatorname{Link}\left(Q^{\text {large }}\right)$ using the same color on x^{\prime} and different colors on x. By Proposition 1.4.10, there is an $i=0,1$ such that σ_{i} extends to an L_{ϕ}-coloring σ^{*} of $\operatorname{dom}\left(\sigma_{i}\right) \cup V(K)$. By Claim 10.8.2 σ^{*} extends to an L_{ϕ}-coloring τ of $\operatorname{dom}\left(\sigma^{*}\right) \cup\{z\}$ such that $\left|L_{\phi \cup \tau}\left(y^{\prime}\right)\right| \geq 3$. Since there is no e-obstruction adjacent to y, and $\left|L_{\phi \cup \tau}\left(y^{\prime}\right)\right| \geq 3$, the pair $\left[H^{\dagger}, \phi \cup \tau\right]$ is a (C, z)-opener, contradicting our assumption.

Applying Claim 10.8.4, let $R_{e}:=x y w u$ for some $w \in D_{1}\left(C^{1}\right)$ and $u \in V\left(Q^{\text {large }}\right)$. Since z is end-repelling, we have $u \in V\left(Q^{\text {large }}\right)$. For the remainder of the proof of Lemma 10.8.1, we fix the following notation.

Definition 10.8.5.

1) We set $p_{x^{\prime}}$ to be the unique vertex of the path $Q^{\text {small }}$ which is adjacent to x^{\prime} and set $q_{x^{\prime}}$ to be the unique vertex of $Q^{\text {large }}$ which is adjacent to x^{\prime}. Since K is not a triangle, $p_{x^{\prime}} \neq x$.
2) We set H to be the subgraph of G induced by $V\left(x^{\prime} Q^{\text {large }} u\right) \cup \mathrm{Sh}_{2}\left(x^{\prime} Q^{\text {large }} u\right) \cup V\left(J_{e}^{1}-w\right) \cup V(K \cup C) \cup\{z\}$.

Claim 10.8.6. Suppose that $w x \in E(G)$ and let \hat{J} be the broken wheel $J_{e}^{1}-y$ with principal path $x w u$. Let τ be a partial L_{ϕ}-coloring of $V(Q) \cup\{y, z\}$ with $u, x^{\prime}, y \in \operatorname{dom}(\tau)$ and $\left|L_{\phi \cup \tau}\left(y^{\prime}\right)\right| \geq 3$. Then there exists an extension of τ to an L_{ϕ}-coloring τ^{*} of $\operatorname{dom}(\tau) \cup\{w\}$ such that $\mathcal{Z}_{K}\left(\tau\left(x^{\prime}\right), \tau(y), \bullet\right) \cap \mathcal{Z}_{\hat{J}}\left(\bullet, \tau^{*}(w), \tau(u)\right)=\varnothing$.

Proof: Suppose there is a τ for which this does not hold. Since $\operatorname{dom}(\phi \cup \tau) \cap N(w)=\{y, u\}$, we have $\left|L_{\phi \cup \tau}(w)\right| \geq 3$, and our assumption on τ implies that any extension of τ to an L_{ϕ}-coloring of $\operatorname{dom}(\tau) \cup\{w\}$ also extends to L_{ϕ}-color $V(K \cup \hat{J})$, so the inertness condition is satisfied. Since $\left|L_{\phi \cup \tau}\left(y^{\prime}\right)\right| \geq 3$ as well, it follows that $[H, \phi \cup \tau]$ is a (C, z)-opener, contradicting our assumption.

The claim below is the most difficult part of Lemma 10.8.1.

Claim 10.8.7. $S_{\star} \cap V\left(Q^{\text {small }}\right)=\varnothing$.

Proof: Suppose not, and let $S_{\star}=\left\{u_{\star}\right\}$ for some $u_{\star} \in V\left(Q^{\text {small }}\right)$. By Co4d) of Definition 10.0.1, every vertex of $D_{2}(C)$ has a neighborhood on C^{1} consisting precisely of a subpath of C^{1}. In particular K_{i} is a broken wheel. By Claim 10.8.3, there is a $\hat{v} \in T^{<2} \cap V\left(Q^{\text {large }}\right)$. Now, \tilde{G} contains the 3 -chord $M_{\star}:=u w y u_{\star}$ of C^{1}. Let K_{\star} be the broken wheel with principal path $u_{\star} y x^{\prime}$, where $K_{\star}-y=u_{\star} Q^{\text {small }} x^{\prime}$.

Subclaim 10.8.8. For any $\mathfrak{f} \in \operatorname{Corner}\left(M_{\star}, w\right)$ and $\sigma \in \operatorname{Link}\left(x^{\prime} Q^{\text {large }} u\right)$, we have $\sigma\left(x^{\prime}\right) \notin \mathcal{Z}_{K_{\star}}\left(\mathfrak{f}\left(u_{\star}\right), \mathfrak{f}(y), \bullet\right)$.
Proof: Suppose there is an $\mathfrak{f} \in \operatorname{Corner}\left(M_{\star}, w\right)$ and a $\sigma \in \operatorname{Link}\left(x^{\prime} Q^{\text {large }} u\right)$ such that this does not hold. Thus, $\sigma \cup \mathfrak{f}$ extends to an L_{ϕ}-coloring σ^{\dagger} of $\operatorname{dom}(\sigma \cup \mathfrak{f}) \cup V\left(K_{\star}\right)$. By Claim 10.8.2, σ^{\dagger} extends to an L_{ϕ}-coloring τ of $\operatorname{dom}\left(\sigma^{\star}\right) \cup\{z\}$ such that $\left|L_{\phi \cup \tau}\left(y^{\prime}\right)\right| \geq 3$. Since $N(w) \cap \operatorname{dom}(\phi \cup \tau)=\{y, u\}$, we have $\left|L_{\phi \cup \tau}(w)\right| \geq 3$ as well. Thus, the pair $[H, \phi \cup \tau]$ is a (C, z)-opener, contradicting our assumption.

We also have the following.
Subclaim 10.8.9. $\hat{v} \notin V(u Q x) \backslash\{u\}$
Proof: Suppose toward a contradiction that $\hat{v} \in V(u Q x) \backslash\{u\}$. Thus, \hat{v} is an internal vertex of the path $C^{1} \cap \tilde{G}_{M_{\star}}^{\text {small }}$. Let $P:=u_{\star} Q^{\text {small }} x^{\prime} Q^{\text {large }} u$. By Corollary 10.2 .5 , there is a $\sigma \in \operatorname{Link}(P)$, and σ is a proper L_{ϕ}-coloring of its domain, since $u u_{\star}$ is not an edge of C^{1}. Since x^{\prime} is a P-hinge, we have $x^{\prime} \in \operatorname{dom}(\sigma)$. Since $\left|L_{\phi}(y)\right| \geq 5$, it follows from 2) of Theorem 9.0.1 that there is an $\mathfrak{f} \in \operatorname{Corner}\left(M_{\star}, w\right)$ using $\sigma\left(u_{\star}\right), \sigma(u)$ on the respective vertices u_{\star}, u, where $\mathfrak{f}(y) \neq \sigma\left(x^{\prime}\right)$. Since x^{\prime} is a P-hinge, σ restricts to an element of $\operatorname{Link}\left(u_{\star} Q^{\text {small }} x^{\prime}\right)$, so we have $\sigma\left(x^{\prime}\right) \in \mathcal{Z}_{K_{\star}}\left(\sigma\left(u_{\star}\right), \mathfrak{f}(y), \bullet\right)$. Since σ also restricts to an element of $\operatorname{Link}\left(x^{\prime} Q^{\text {large }} u\right)$, we contradict Subclaim 10.8.8.

We now have the following.
Subclaim 10.8.10. $L_{\phi}\left(x^{\prime}\right) \subseteq L_{\phi}\left(p_{x^{\prime}}\right)$ and $\left|L_{\phi}\left(p_{x^{\prime}}\right)\right|=3$.
Proof: Suppose not. Thus, there is a $d \in L_{\phi}\left(x^{\prime}\right)$ such that either $\left|L_{\phi}\left(p_{x^{\prime}}\right) \backslash\{d\}\right| \geq 3$, or $p_{x^{\prime}}=u_{\star}$ and $d \notin L_{\phi}\left(p_{x^{\prime}}\right)$. By i) of Theorem 1.7.5, there is a $\sigma \in \operatorname{Link}\left(x Q^{\text {large }} u\right)$ with $\sigma\left(x^{\prime}\right)=d$. Consider the following cases.

Case 1: $w x \notin E(G)$
In this case, by Theorem 1.6, there is an extension σ to an L_{ϕ}-coloring σ^{\dagger} of $\operatorname{dom}(\sigma) \cup\{x\}$ such that $V\left(J_{e}^{1}\right) \backslash$ $\{w, y\}$ is $\left(L, \phi \cup \sigma^{\dagger}\right)$-inert in G. Now, $L_{\phi \cup \sigma^{\dagger}}(y) \mid \geq 3$, so there is a color left in $L_{\phi \cup \sigma^{\dagger}}(y) \backslash L_{\phi}\left(u_{\star}\right)$.Thus, by Claim 10.8.2, σ^{\dagger} extends to an L_{ϕ}-coloring τ of $\operatorname{dom}\left(\sigma^{\dagger}\right) \cup\{y, z\}$ such that $\tau(y) \notin L_{\phi}\left(u_{\star}\right)$ and $\left|L_{\phi \cup \tau}\left(y^{\prime}\right)\right| \geq 3$. Note that, since $w x \notin E(G)$, we have $\operatorname{dom}(\phi \cup \tau) \cap N(w)=\{u, y\}$, and $\left|L_{\phi \cup \tau}(y)\right| \geq 3$. By our choice of $d, \tau(y)$, we get that τ extends to an L_{ϕ}-coloring τ^{*} of $\operatorname{dom}(\tau) \cup V(K)$. Thus, the pair $\left[H, \phi \cup \tau^{*}\right]$ is a (C, z)-opener, contradicting our assumption.

Case 2: $w x \in E(G)$
This case is harder. In this case, $J_{e}^{1}-y$ is a broken wheel \hat{J} with principal path $x w u$. The trick in this case is just to leave x uncolored. By Claim 10.8.2, we get that, for each $c \in L_{\phi}(y) \backslash\{d\}$, there is an extension of σ to an L_{ϕ}-coloring τ^{c} of $\operatorname{dom}(\sigma) \cup\{y, z\}$ such that $\tau^{c}(y)=c$ and $\left|L_{\phi \cup \tau^{c}}\left(y^{\prime}\right)\right| \geq 3$. It follows from Claim 10.8.6 that for each $c \in L_{\phi \cup \sigma}(y)$, there exists an extension of τ^{c} to an L_{ϕ}-coloring τ_{*}^{c} of $\operatorname{dom}\left(\tau^{c}\right) \cup\{w\}$ such that $z_{K}(d, c, \bullet) \cap \mathcal{Z}_{\hat{J}}\left(\bullet, \tau_{*}^{c}(w), \sigma(u)\right)=\varnothing$.

By our choice of color for x^{\prime}, we get that, for each $c \in L_{\phi}(y) \backslash L_{\phi}\left(u_{\star}\right)$, we have $z_{K}(d, c, \bullet)=L_{\phi}(x) \backslash\{c\}$. Now, there exist two colors $c_{0}, c_{1} \in L_{\phi}(y) \backslash\left\{\sigma\left(x^{\prime}\right)\right\}$ with $c_{0}, c_{1} \notin L_{\phi}\left(u_{\star}\right)$. Thus, for each $i=0,1$, we have
$Z_{\hat{J}}\left(\bullet, \tau_{*}^{c_{i}}(w), \sigma(u)\right)=\left\{c_{i}\right\}$. By 1) of Proposition 1.4.7, we have $\tau_{*}^{c_{i}}(w)=c_{1-i}$ for each $i=0,1$, and, by Proposition 1.4.4, $\left\{c_{0}, c_{1}\right\}$ lies in the L_{ϕ}-list of each vertex of $\hat{J} \backslash\{u, y\}$.

Note that, for each $h \in L_{\phi \cup \sigma}(y) \backslash\left\{c_{0}, c_{1}\right\}$, we have $h \in L_{\phi}\left(u_{\star}\right)$, or else, if there is an h for which this does not hold, then $z_{K}\left(\sigma\left(x^{\prime}\right), h, \bullet\right)=L(x) \backslash\{h\}$ and $Z_{\hat{J}}\left(\bullet, \tau_{*}^{h}(w), \sigma(u)\right)=\{h\}$, so $\tau_{*}^{h}(w) \notin\left\{c_{0}, c_{1}\right\}$ and we contradict 1) of Proposition 1.4.5. Let $L_{\phi}\left(u_{\star}\right)=\{r, s\}$. Thus, we have $L_{\phi \cup \sigma}(y)=\left\{r, s, c_{0}, c_{1}\right\}$. Recalling that $\sigma\left(x^{\prime}\right)=d$, this implies that $L_{\phi}(y)=\left\{r, s, c_{0}, c_{1}\right\}$ and, in particular, $d \notin\{r, s\}$. The trick now is simply to switch the colors on x^{\prime}, y. By i) of Theorem 1.7.5, there exist two elements $\zeta_{0}, \zeta_{1} \in \operatorname{Link}\left(x^{\prime} Q^{\text {large }} u\right)$ where $\zeta_{0}\left(x^{\prime}\right), \zeta_{1}\left(x^{\prime}\right)$ are two distinct colors of $L_{\phi}\left(x^{\prime}\right) \backslash\{d\}$.

By Claim 10.8.2, for each $j=0,1, \zeta_{j}$ extends to an L_{ϕ}-coloring ζ_{j}^{\dagger} of $\operatorname{dom}\left(\zeta_{j}\right) \cup\{y, z\}$ such that $\left|L_{\phi \cup \zeta_{j}^{\dagger}}\left(y^{\prime}\right)\right| \geq 3$. It follows from Claim 10.8.6 that, for each $j=0,1$, there is an extension of $\phi \cup \zeta_{j}^{\dagger}$ to an L_{ϕ}-coloring ζ_{j}^{*} of $\operatorname{dom}\left(\phi \cup \zeta_{j}^{\dagger}\right) \cup\{w\}$ such that ζ_{j}^{*} does not extend to L_{ϕ}-color the pair of broken wheels $\hat{J} \cup K$.

Since $d \notin L_{\phi}\left(p_{x^{\prime}}\right) \cup\{r, s\}$, we have $\left\{c_{0}, c_{1}\right\} \subseteq z_{K}\left(\zeta_{j}\left(x^{\prime}\right), d, \bullet\right)$ for each $j=0,1$. Note that this is true even if u_{\star} is adjacent to x, since $\left\{c_{0}, c_{1}\right\} \cap\{d, r, s\}=\varnothing$. Let $h \in L_{\phi}\left(x^{\prime}\right) \backslash\left\{c_{0}, c_{1}\right\}$. For each $j=0,1$, we have $z_{\hat{J}}\left(\bullet, d, \zeta_{j}(u)\right)=\{h\}$ and thus $z_{K}(\bullet, d, h) \cap\left\{\zeta_{0}\left(x^{\prime}\right), \zeta_{1}\left(x^{\prime}\right)\right\}=\varnothing$. Since $d \notin L_{\phi}\left(u_{\star}\right)$ and $\left\{\zeta_{0}\left(x^{\prime}\right), \zeta_{1}\left(x^{\prime}\right)\right\} \mid=$ 2, it follows from Observation 1.4.2 that $\mathcal{Z}_{K}(\bullet, d, h) \cap\left\{\zeta_{0}\left(x^{\prime}\right), \zeta_{1}\left(x^{\prime}\right)\right\} \neq \varnothing$, a contradiction.

The subclaim below is an immediate consequence of Subclaim 10.8.10.
Subclaim 10.8.11. K_{\star} is not a triangle and $\hat{v} \in V\left(x^{\prime} Q^{\text {large }} u\right) \backslash\left\{x^{\prime}\right\}$.
Proof: By Subclaim 10.8.9, $\hat{v} \in V\left(x^{\prime} Q^{\text {large }} u\right)$, and, by Subclaim $10.8 .10,\left|L\left(x^{\prime}\right)\right|<4$, so $x^{\prime} \notin T^{<2}$. Thus, $\hat{v} \in V\left(x^{\prime} Q^{\text {large }} u\right) \backslash\left\{x^{\prime}\right\}$. Since $\left|L_{\phi}\left(x^{\prime}\right)\right| \geq 3$, it also follows from Subclaim 10.8.10 that K_{\star} is not a triangle.

Applying Subclaim 10.8.10, we fix a set $A \subseteq L_{\phi}(y)$ with $A \cap\left(L_{\phi}\left(x^{\prime}\right) \cup L_{\phi}\left(p_{x^{\prime}}\right)\right)=\varnothing$ and $|A| \geq 2$.
Subclaim 10.8.12. No element of $\operatorname{Corner}\left(M_{\star}, w\right)$ uses a color of A on y.
Proof: Suppose toward a contradiction that there is an $\mathfrak{f} \in \operatorname{Corner}\left(M_{\star}, w\right)$ with $f(y) \in A$. Since $\mathfrak{f}(y) \notin L_{\phi}\left(x^{\prime}\right)$ and $\mathfrak{f}(y) \notin L_{\phi}\left(p_{x^{\prime}}\right)$ we have $\mathcal{Z}_{K_{\star}}\left(\mathfrak{f}\left(u_{\star}, \mathfrak{f}(y), \bullet\right)=L_{\phi}(u)\right.$, contradicting Subclaim 10.8.8.

Now we have the following.
Subclaim 10.8.13. $A=L_{\phi}\left(u_{\star}\right)$
Proof: Suppose not. Since $|A| \geq 2$, let $a \in A \backslash L_{\phi}\left(u_{\star}\right)$. Let c_{0}, c_{1}, c_{2} be three distinct colors in $L_{\phi}(u)$.
By i) of Theorem 1.7.5, for each $i \in\{0,1,2\}$, there is a $\sigma^{i} \in \operatorname{Link}\left(x^{\prime} Q^{\text {large }} u\right)$ with $\sigma^{i}(u)=c_{i}$. Since $a \notin L_{\phi}\left(x^{\prime}\right)$, the color a is left over in $L_{\phi \cup \sigma^{i}}(y)$ and thus, by Claim 10.8.2, there is an extension of σ^{i} to an L_{ϕ}-coloring τ^{i} of $\operatorname{dom}\left(\sigma^{i}\right) \cup\{y, z\}$ such that $\tau^{i}(y)=a$ and $\left|L_{\phi \cup \tau^{i}}\left(y^{\prime}\right)\right| \geq 3$. Since we have not colored any vertex of $J_{e}^{1} \backslash\{u, y\}$, we have $\left|L_{\phi \cup \tau^{i}}(w)\right| \geq 3$ as well. Now consider the following cases.

Case 1: $w x \in E(G)$
In this case, $J_{e}^{1}-w$ is a broken wheel \hat{J} with principal path $x w u$. Applying Claim 10.8.6, we get that, for each $i=0,1,2$, there is an extension of τ^{i} to an L_{ϕ}-coloring τ_{*}^{i} of $\operatorname{dom}\left(\tau^{i}\right) \cup\{w\}$ such that $\mathcal{Z}_{K}\left(\tau^{i}\left(x^{\prime}\right), a, \bullet\right) \cap$ $z_{\hat{J}}\left(\bullet, \tau_{*}^{i}(w), c_{i}\right)=\varnothing$.

For each $i=0,1,2$, since $a \notin L_{\phi}\left(u_{\star}\right)$ and $a \notin L_{\phi}\left(p_{x^{\prime}}\right)$, we have $z_{K}\left(\tau^{i}\left(x^{\prime}\right), a, \bullet\right)=L_{\phi}(x) \backslash\{a\}$ and thus $z_{\hat{J}}\left(\bullet, \tau_{*}^{i}(w), c_{i}\right)=\{a\}$. But since c_{0}, c_{1}, c_{2} are three distinct colors, this contradicts 2) of Proposition 1.4.7 1.4.7.

Case 2: $w x \notin E(G)$

Since $N(y) \cap V\left(C^{1}\right)=V\left(Q^{\text {small }}\right)$, it follows from Theorem 1.6.1 that, for each $i=0,1,2$, there is a $d_{i} \in L_{\phi}(x)$, where $d_{i} \neq c_{i}$ if $u x$ is an edge of J_{e}^{1}, such that any L_{ϕ}-coloring of uwyw using c_{i}, d_{i} on the respective vertices u, w extends to an L_{ϕ}-coloring of J_{e}^{1}. Consider the following subcases.

Subcase 2.1 There exists an $i \in\{0,1,2\}$ such that $d_{i} \neq a$
In this case, there is an extension of τ_{i} to an L_{ϕ}-coloring ζ of $\operatorname{dom}\left(\tau_{i}\right) \cup\{x\}$ such that $\zeta(x)=d_{i}$. Since $w x \notin E(G)$, we have $\left|L_{\phi \cup \zeta}(w)\right| \geq 3$. Since $a \notin L_{\phi}\left(u_{\star}\right)$ and $a \notin L_{\phi}\left(p_{x^{\prime}}\right)$, the L_{ϕ}-coloring $\left(\zeta\left(x^{\prime}\right), a, d_{i}\right)$ of $x^{\prime} y x$ extends to L_{ϕ}-color K, and so ζ extends to an L_{ϕ}-coloring ζ^{\prime} of $\operatorname{dom}(\zeta) \cup V(K)$. Since each of w, y^{\prime} has an $L_{\phi \cup \zeta^{\prime}}$-list of size at least three, $\left[H, \phi \cup \zeta^{\prime}\right]$ is a (C, z)-opener, contradicting our assumption.

Subcase 2.2 $d_{i}=a$ for all $i=0,1,2$
In this case, we choose a color $d^{*} \in L_{\phi}(y) \backslash\left(L_{\phi}\left(u_{\star}\right) \cup\{a\}\right)$. Let $K_{\star \star}$ be the broken wheel with principal path $u_{\star} y x^{\prime}$, where $K_{\star} \cup K_{\star \star}=K$.

By Observation 1.4.2, since $d^{*} \notin L_{\phi}\left(u_{\star}\right)$, the L_{ϕ}-coloring $\left(d, d^{*}\right)$ of $x y$ extends to an L_{ϕ}-coloring of $K_{\star \star}$, and thus extends to L_{ϕ}-color K, so let ζ be an L_{ϕ}-coloring of K with $\zeta(x)=d$ and $\zeta(y)=d^{*}$. By i) of Theorem 1.7.5, there is a $\psi \in \operatorname{Link}\left(x^{\prime} Q^{\text {large }} u\right)$ with $\psi\left(x^{\prime}\right)=\zeta\left(x^{\prime}\right)$ and $\psi(u) \in\left\{c_{0}, c_{1}, c_{2}\right\}$, and $\zeta^{*}:=\psi \cup \zeta$ is a proper L_{ϕ}-coloring of its domain. Since $x \notin N(w)$, we have $\left|L_{\phi \cup \zeta^{*}}(w)\right| \geq 3$. Since each of w, y^{\prime} has an L_{ϕ}-list of size at least three and $V\left(J_{e}^{1}-w\right)$ is $\left(L, \phi \cup \zeta_{*}\right)$-inert in G, the pair $\left[H, \phi \cup \zeta^{*}\right]$ is a (C, z)-opener, contradicting our assumption.

Let p_{\star} be the unique neighbor of u_{\star} on $K_{\star}-y$. By Subclaim $10.8 .11, K_{\star}$ is not a triangle, so $p_{\star} \neq x^{\prime}$.
Subclaim 10.8.14. For any two $\mathfrak{f}^{0}, \mathfrak{f}^{1} \in \operatorname{Corner}\left(M_{\star}\right.$, w), we have $\mathfrak{f}^{0}\left(u_{\star}\right)=\mathfrak{f}^{1}\left(u_{\star}\right)$.
Proof: Suppose not. Thus, by Subclaim 10.8.13, there exist $\mathfrak{f}^{0}, \mathfrak{f}^{1} \in \operatorname{Corner}\left(M_{\star}, w\right)$ such that $L_{\phi}\left(u_{\star}\right)=$ $\left\{\mathfrak{f}^{0}\left(u_{\star}\right), \mathfrak{f}^{1}\left(u_{\star}\right)\right\}=A$. Applying i) of Theorem 1.7.5, for each $i=0,1$, let $\sigma^{i} \in \operatorname{Link}\left(x^{\prime} Q^{\text {large }} u\right)$, where $\sigma^{i}(u)=$ $f^{i}(u)$. By Subclaim 10.8.8, for each $i=0,1$, we have $\sigma^{i}\left(x^{\prime}\right) \notin z_{K_{\star}}\left(f^{i}\left(u_{\star}\right), f^{i}(y), \bullet\right)$. Since K_{\star} is not a triangle, it follows from Proposition 1.4.4 that $\left|L_{\phi}\left(p_{\star}\right)\right|=3,\left\{\mathfrak{f}^{0}(y), \mathfrak{f}^{1}(y)\right\} \subseteq L_{\phi}\left(p_{\star}\right)$ and $\left\{\mathfrak{f}^{0}\left(u_{\star}\right), \mathfrak{f}^{1}\left(u_{\star}\right)\right\} \subseteq L_{\phi}\left(p_{\star}\right)$. Since $A=L_{\phi}\left(u_{\star}\right)$, we have $\left\{\mathfrak{f}^{0}(y), \mathfrak{f}^{1}(y)\right\} \cap\left\{\mathfrak{f}^{0}\left(u_{\star}\right), \mathfrak{f}^{1}\left(u_{\star}\right)\right\}=\varnothing$ by Subclaim 10.8.12. Since $\mathfrak{f}^{0}\left(u_{\star}\right) \neq \mathfrak{f}^{1}\left(u_{\star}\right)$, we have $\mathfrak{f}^{0}(y)=\mathfrak{f}^{1}(y)=c$ for some color c and $L_{\phi}\left(p_{\star}\right)=L_{\phi}\left(u_{\star}\right) \cup\{c\}$.

Since $L_{\phi}(y) \mid \geq 5$, it thus follows from 1) of Theorem 9.0.1 that there exists a $\mathfrak{g} \in \operatorname{Corner}\left(M_{\star}, w\right)$ with $\mathfrak{g}(y) \neq c$. By i) of Theorem 1.7.5, there is a $\tau \in \operatorname{Link}\left(x^{\prime} Q^{\text {large }} u\right)$ with $\tau(u)=\mathfrak{g}(u)$. Again by Subclaim 10.8.8, we have $\tau\left(x^{\prime}\right) \notin z_{K}\left(\mathfrak{g}\left(u_{\star}\right), \mathfrak{g}(y), \bullet\right)$, so, since K_{\star} is not a triangle, we have $\mathfrak{g}(y) \in L_{\phi}\left(p_{\star}\right)$. Since $\left.A=L_{\phi} * u_{\star}\right)$, we get $\mathfrak{g}(y) \notin L_{\phi}\left(u_{\star}\right)$ by Subclaim 10.8.12. Since $L_{\phi}\left(p_{\star}\right)=L_{\phi}\left(u_{\star}\right) \cup\{c\}$, we have a contradiction.

Now we have enough to finish the proof of Claim 10.8.7. Applying Subclaim10.8.14, let $r \in L_{\phi}\left(u_{\star}\right)$, where $\mathfrak{f}\left(u_{\star}\right)=r$ for all $\mathfrak{f} \in \operatorname{Corner}\left(M_{\star}, w\right)$. Let $P:=u_{\star} Q^{\text {small }} x^{\prime} Q^{\text {large }} u_{\star}$. By Subclaim 10.8.11, $\hat{v} \in V\left(x^{\prime} Q^{\text {large }} u\right) \backslash\left\{x^{\prime}\right\}$. Thus, by Proposition 10.2.4, there exist two elements $\sigma_{0}, \sigma_{1} \in \operatorname{Link}(P)$, each of which use the color r on $L_{\phi}\left(u_{\star}\right)$, where σ_{0}, σ_{1} use different colors on u and restrict to the same L_{ϕ}-coloring of $\left\{u_{\star}, x^{\prime}\right\}$. Since $x \in V\left(C^{1} \backslash P\right)$, each of σ_{0}, σ_{1} is a proper L_{ϕ}-coloring of its domain. Let $c \in L_{\phi}\left(x^{\prime}\right)$, where $c=\sigma_{0}\left(x^{\prime}\right)=\sigma_{1}\left(x^{\prime}\right)$. By Theorem 9.0.1, since $\mid L_{\phi}(y) \geq 5$, there is a $\mathfrak{g} \in \operatorname{Corner}\left(M_{\star}, w\right)$ with $\mathfrak{g}(u) \in\left\{\sigma_{0}(u), \sigma_{1}(u)\right\}$ and $\mathfrak{g}(y) \neq c$. Recall that $\mathfrak{g}\left(u_{\star}\right)=r$. Since each of σ_{0}, σ_{1} restricts to an element of $\operatorname{Link}\left(x^{\prime} Q u_{\star}\right)$, and $\mathfrak{g}(y) \neq c, r$, the L_{ϕ}-coloring $(r, \mathfrak{g}(y), c)$ of $u_{\star} y x^{\prime}$ extends to L_{ϕ}-color K_{\star}, contradicting Subclaim 10.8.8. This completes the proof of Claim 10.8.7.

Now we have the following.

Claim 10.8.15. e is problematic.

Proof: Suppose not. Thus, every vertex of $V\left(u Q^{\text {large }} x\right) \backslash\{u\}$ has an L_{ϕ}-list of size at least three. We now have the following.

Subclaim 10.8.16. $w x \in E(G)$.
Proof: Suppose that $w x \notin E(G)$. Applying 1) of Corollary 10.2.5, we first fix a $\sigma \in \operatorname{Link}\left(x^{\prime} Q^{\text {large }} u\right)$. By Theorem 1.6.1 since $u \neq x^{\prime}$ and $N(y) \cap V\left(u Q^{\text {large }} x\right)=\{x\}$, there is an extension of σ to an L_{ϕ}-coloring σ^{\dagger} of $\operatorname{dom}(\sigma) \cup\{x\}$, such that any extension of σ^{\dagger} to an L_{ϕ}-coloring of $\operatorname{dom}\left(\sigma^{\dagger}\right) \cup\{w, y\}$ also extend to L_{ϕ}-color all of J_{e}^{1}. By Claim 10.8.7, we have $S_{\star} \cap V\left(Q^{\text {small }}\right)=\varnothing$, so it follows from 2) of Proposition 1.5.1 that σ^{\dagger} extends to L_{ϕ}-color $V(K)$ as well, and thus, by Claim 10.8.2, σ^{\dagger} extends to an L_{ϕ}-coloring τ of $\operatorname{dom}\left(\phi \cup \sigma^{\dagger}\right) \cup V(K) \cup\{z\}$ such that $\left|L_{\phi \cup \tau}\left(y^{\prime}\right)\right| \geq 3$. Since $w x \notin E(G)$, we have $\left|L_{\phi \cup \tau}(w)\right| \geq 3$ as well, and the pair $[H, \phi \cup \tau]$ is a (C, z)-opener, contradicting our assumption.

Since $w x \in E(G)$, let $\hat{J}:=\tilde{G}_{x w u}^{\text {small }}$. Since G is short-separation-free, we have $\hat{J}=J_{e}^{1}-y$. Applying 1) of Corollary 10.2.5, we fix a $\sigma \in \operatorname{Link}\left(x^{\prime} Q^{\text {large }} u\right)$. We now leave x uncolored. Applying Claim 10.8.2 again, we have that, for each $c \in L_{\phi}(y) \backslash\left\{\sigma\left(x^{\prime}\right)\right\}$, there is an L_{ϕ}-coloring τ^{c} of $\operatorname{dom}(\sigma) \cup\{y, z\}$ with $\left|L_{\phi \cup \tau^{c}}\left(y^{\prime}\right)\right| \geq 3$. Applying Claim 10.8.6, we get that, for each $c \in L_{\phi}(y) \backslash\left\{\sigma\left(x^{\prime}\right)\right\}$, there exists an extension of τ^{c} to an L_{ϕ}-coloring τ_{*}^{c} of $\operatorname{dom}\left(\tau^{c}\right) \cup\{w\}$ such that $z_{K}\left(\sigma\left(x^{\prime}\right), c, \bullet\right) \cap z_{\hat{J}}\left(\bullet, \tau_{*}^{c}(w), \sigma(u)\right)=\varnothing$.

Subclaim 10.8.17. Each of K and \hat{J} is a broken wheel.
Proof: We first show that K is a broken wheel. Suppose not. Since $\left|L_{\phi}(y) \backslash\left\{\sigma\left(x^{\prime}\right)\right\}\right| \geq 4$, it follows from Theorem 1.5.3 that there exist three distinct colors $c_{0}, c_{1}, c_{2} \in L_{\phi}(y) \backslash\left\{\sigma\left(x^{\prime}\right)\right\}$ such that, for each $i=0,1,2$, we have $\mathcal{Z}_{K}\left(\sigma\left(x^{\prime}\right), c, \bullet\right)=L_{\phi}(x) \backslash\left\{c_{i}\right\}$. Thus, for each $i=0,1,2$, we have $z_{\hat{J}}\left(\bullet, \tau_{*}^{c_{i}}(w), \sigma(u)\right)=\left\{c_{i}\right\}$. In particular $\left\{\tau_{*}^{c_{i}}(w): i=0,1,2\right\}$ are three distinct colors, and, applying Theorem 1.5.3 again, \hat{J} is a broken wheel. But since $\left\{\tau_{*}^{c_{i}}(w): i=0,1,2\right\}$ are three distinct colors, we contradict 1) of Proposition 1.4.5 applied to \hat{J}. Thus, K is a broken wheel with principal path $x^{\prime} y x$.

Now we show that \hat{J} is a broken wheel. Suppose not. Since $\left|L_{\phi}(y) \backslash\left\{\sigma\left(x^{\prime}\right)\right\}\right| \geq 4$, we choose a $c \in$ $L_{\phi}(y) \backslash\left\{\sigma\left(x^{\prime}\right)\right\}$ with $\left|L_{\phi}(x) \backslash\{c\}\right| \geq 3$. By Observation 1.4.2, we have $\left|\mathcal{Z}_{K}\left(\sigma\left(x^{\prime}\right), c, \bullet\right)\right| \geq 2$. Thus, we have $\left|\mathcal{Z}_{K}\left(\sigma\left(x^{\prime}\right), c, \bullet\right)\right|=2$ and $\left|\mathcal{Z}_{\hat{J}}\left(\bullet, \tau_{*}^{c}(w), \sigma(u)\right)\right|=1$. In particular, since $\left|L_{\phi}(x) \backslash\{c\}\right| \geq 3$ and K is a broken wheel but not a triangle, we have $c, \sigma\left(x^{\prime}\right) \in L_{\phi}\left(p_{x^{\prime}}\right)$ and $\left|L_{\phi}(x)\right|=3$, or else $\mathcal{Z}_{K}\left(\sigma\left(x^{\prime}\right), c, \bullet\right) \cap$ $z_{\hat{J}}\left(\bullet, \tau_{*}^{c}(w), \sigma(u)\right) \neq \varnothing$, which is false.

Let $d \in \mathcal{Z}_{K}\left(\sigma\left(x^{\prime}\right), c, \bullet\right) \backslash\left\{\tau_{*}^{c}(w)\right\}$. Since \hat{J} is not a broken wheel, it follows that $\tau_{*}^{c}(w) \in L_{\phi}(x)$ and, by Theorem 1.5.3, $\left(d, \tau_{*}^{c}(w), \sigma(u)\right)$ is the unique L_{ϕ}-coloring of $x w u$ which does not extend to L_{ϕ}-color \hat{J}. Thus, for each $s \in L_{\phi}(y) \backslash\left\{\sigma\left(x^{\prime}\right)\right\}$, we have $z_{K}\left(\sigma\left(x^{\prime}\right), s, \bullet\right) \subseteq\left\{\tau_{*}^{s}(w), d\right\}$.

Since $\left|L_{\phi}(y)\right| \geq 5$ and $\left\{\sigma\left(x^{\prime}\right), c\right\} \subseteq L_{\phi}\left(p_{x^{\prime}}\right)$, there exist two distinct colors $s_{0}, s_{1} \in L_{\phi}(y) \backslash L_{\phi}\left(p_{x^{\prime}}\right)$, and $s_{0}, s_{1} \notin\left\{\sigma\left(x^{\prime}\right), c\right\}$.

For each $i=0,1$, since $s_{i} \notin L_{\phi}\left(p_{x^{\prime}}\right)$ and K is a broken wheel, but not a triangle, we have $z_{K}\left(\sigma\left(x^{\prime}\right), s_{i}, \bullet\right)=$ $L_{\phi}(x) \backslash\left\{s_{i}\right\}=\left\{t a u_{*}^{s_{i}}(w), d\right\}$. Since $\left(d, \tau_{*}^{c}(w), \sigma(u)\right)$ is the unique L_{ϕ}-coloring of $x w u$ which does not extend to L_{ϕ}-color \hat{J}, we have $\tau_{*}^{s_{0}}(w)=\tau_{*}^{s_{1}}(w)=\tau_{*}^{c}(w)=r$ for some color r. But then $\left\{d, s_{0}, s_{1}, r\right\}$ are four distinct colors all lying in $L_{\phi}(x)$, which is false, since $\left|L_{\phi}(x)\right|=3$.

Let $X_{\hat{J}}:=\bigcap\left(L_{\phi}(v) ; v \in V(\hat{J}) \backslash\{x, w, u\}\right)$. Since $\left|L_{\phi \cup \sigma}(y)\right| \geq 4$, there exist two colors $d_{0}, d_{1} \in L_{\phi \cup \sigma}(y)$ such that, for each $i=0,1, L_{\phi}\left(p_{x^{\prime}}\right) \backslash\left\{\sigma\left(x^{\prime}\right), d_{i}\right\} \mid \geq 2$. Since K is not a triangle, it follows that, for each $i=0,1$ we have
$Z=L(x) \backslash\left\{d_{i}\right\}$ and $z_{\hat{J}}\left(\bullet, \tau_{*}^{d_{i}}(w), \sigma(u)\right)=\left\{d_{i}\right\}$. Thus, $\left\{d_{0}, d_{1}\right\} \subseteq X_{\hat{J}}$.
By 1) of Proposition 1.4.7, we have $\tau_{*}^{d_{i}}(w)=d_{1-i}$ for each $i=0,1$, and, thus d_{0}, d_{1} are the only vertices in $\left\{d \in L_{\phi}(y) \backslash\left\{\sigma\left(x^{\prime}\right):\left|L_{\phi}\left(p_{x^{\prime}}\right) \backslash\left\{\sigma\left(x^{\prime}\right), d\right\}\right| \geq 2\right\}\right.$. In particular, letting $h_{0}, h_{1} \in L_{\phi} \backslash\left\{d_{0}, d_{1}\right\}$, we have $L_{\phi}\left(p_{x^{\prime}}\right)=$ $\left\{\sigma\left(x^{\prime}\right), h_{0}, h_{1}\right\}$.

By Proposition 1.4.4 applied to \hat{J}, we have $\left\{d_{0}, d_{1}\right\} \subseteq L_{\phi}(x)$ and $\left|L_{\phi}(x)\right|=3$. Thus, we suppose without loss that $h_{0} \notin L_{\phi}(x)$. By Observation 1.4.2, $\left|z_{K}\left(\sigma\left(x^{\prime}\right), h_{0}, \bullet\right)\right| \geq 2$, so $z_{K}\left(\sigma\left(x^{\prime}\right), h_{0}, \bullet\right) \mid=2$ and $\left|z_{\hat{J}}\left(\bullet, \tau_{*}^{h_{0}}(w), \sigma(u)\right)\right|=1$. Thus, $\tau_{*}^{h_{0}}(w) \in\left\{d_{0}, d_{1}\right\}$ so suppose without loss of generality that $\tau_{*}^{h_{0}}(w)=d_{0}$. Let p_{x} be the unique neighbor of x on $Q^{\text {small }}$. Since K is not a triangle, we have $p_{x} \neq x^{\prime}$. Since $\mathcal{Z}_{\hat{J}}\left(\bullet, d_{0}, \sigma(u)\right)=\left\{d_{1}\right\}$, we have $z_{K}\left(\sigma\left(x^{\prime}\right), h_{0}, \bullet\right)=$ $L_{\phi}(x) \backslash\left\{d_{1}\right\}$ and $L_{\phi}\left(p_{x}\right)=\left\{h_{0}, h_{1}, d_{0}\right\}$.

Now let p_{u} be the lone neighbor of u on the path $\hat{J}-w$. Possibly \hat{J} is a triangle and $p_{u}=x$. In any case, since $z_{\hat{J}}\left(\bullet, d_{i}, \sigma(u)\right)=\left\{d_{1-i}\right\}$ for each $i=0,1$, we have $L_{\phi}\left(p_{u}\right)=\left\{\sigma(u), d_{0}, d_{1}\right\}$. That is, we have the following.

1. $L_{\phi}\left(p_{x}\right)=\left\{h_{0}, h_{1}, d_{0}\right\}$ and $L_{\phi}\left(p_{x^{\prime}}\right)=\left\{\sigma\left(x^{\prime}\right), h_{0}, h_{1}\right\}$; AND
2. $L_{\phi}\left(p_{u}\right)=\left\{\sigma(u), d_{0}, d_{1}\right\}$

Now we have the following.

Subclaim 10.8.18.

1. Every element of $\operatorname{Link}\left(x^{\prime} Q^{\text {large }}\right)$ uses a color of $L_{\phi}\left(p_{x^{\prime}}\right)$ on $x^{\prime} ;$ AND
2. Every element of $\operatorname{Link}\left(x^{\prime} Q^{\text {large }} u\right)$ uses $\sigma(u)$ on u.

Proof: We first prove 1). Suppose toward a contradiction that there is a $\zeta \in \operatorname{Link}\left(x^{\prime} Q^{\text {large }} u\right)$ such that $\zeta\left(x^{\prime}\right) \notin$ $L_{\phi}\left(p_{x^{\prime}}\right)$. Thus, $\zeta\left(x^{\prime}\right) \notin L_{\phi}\left(p_{x^{\prime}}\right)$. Since $\left|L_{\phi \cup \zeta}(y)\right| \geq 4$ and $\left|L_{\phi \cup \zeta}(x)\right|=3$, it follows from Claim 10.8.2 that there is an extension of ζ to an L_{ϕ}-coloring ζ^{\prime} of $\operatorname{dom}(\zeta) \cup\{y, z\}$ such that $\zeta^{\prime}(y) \notin L_{\phi}(x)$ and $\left|L_{\phi \cup \zeta^{\prime}}\left(y^{\prime}\right)\right| \geq 3$.

By Claim 10.8.6, there is an extension of ζ^{\prime} to an L_{ϕ}-coloring $\zeta^{\prime \prime}$ of $\operatorname{dom}\left(\zeta^{\prime}\right) \cup\{w\}$ such that $\mathcal{Z}_{K}\left(\zeta^{\prime \prime}\left(x^{\prime}\right), \zeta^{\prime \prime}(y), \bullet\right) \cap$ $z_{\hat{J}}\left(\bullet, \zeta^{\prime \prime}(w), \zeta^{\prime \prime}(u)\right)=\varnothing$. But since $\zeta^{\prime \prime}(y) \notin L_{\phi}(x)$ and $\zeta^{\prime \prime}\left(x^{\prime}\right) \notin L_{\phi}\left(p_{x^{\prime}}\right)$, we have $z_{K}\left(\zeta^{\prime \prime}\left(x^{\prime}\right), \zeta^{\prime \prime}(y), \bullet\right)=$ $L_{\phi}(x)$. Since $z_{\hat{J}}\left(\bullet, \zeta^{\prime \prime}(w), \zeta^{\prime \prime}(u)\right) \neq \varnothing$, we have a contradiction. This proves 1).

Now we prove 2). Suppose toward a contradiction that there is a $\zeta \in \operatorname{Link}\left(x^{\prime} Q^{\text {large }} u\right)$ with $\zeta(u) \neq \sigma(u)$. By 1), since $N(y) \cap \operatorname{dom}(\phi \cup \zeta)=\left\{x^{\prime}\right\}$ and $d_{0}, d_{1} \notin L_{\phi}\left(x^{\prime}\right)$, we have $\left\{d_{0}, d_{1}\right\} \subseteq L_{\phi \cup \zeta}(y)$, so, by Claim 10.8.2, ζ extends to an L_{ϕ}-coloring ζ^{\prime} of $\operatorname{dom}(\zeta) \cup\{y, z\}$ with $\zeta^{\prime}(y) \in\left\{d_{0}, d_{1}\right\}$ and $\left|L_{\phi \cup \zeta^{\prime}}\left(y^{\prime}\right)\right| \geq 3$.

By Claim 10.8.6, there is an extension of ζ^{\prime} to an L_{ϕ}-coloring $\zeta^{\prime \prime}$ of $\operatorname{dom}\left(\zeta^{\prime}\right) \cup\{w\}$ such that $z_{K}\left(\zeta^{\prime \prime}\left(x^{\prime}\right), \zeta^{\prime \prime}(y), \bullet\right) \cap$ $z_{\hat{J}}\left(\bullet, \zeta^{\prime \prime}(w), \zeta^{\prime \prime}(u)\right)=\varnothing$. Since $\zeta^{\prime \prime}(y) \in\left\{d_{0}, d_{1}\right\}$, we have $z_{K}\left(\zeta^{\prime \prime}\left(x^{\prime}\right), \zeta^{\prime \prime}(y), \bullet\right)=L_{\phi}(x) \backslash\left\{\zeta^{\prime \prime}(y)\right\}$ and $z_{\hat{J}}\left(\bullet, \zeta^{\prime \prime}(w), \zeta^{\prime \prime}(u)\right)=\left\{\zeta^{\prime}(y)\right.$. Since $L\left(p_{u}\right)=\left\{\sigma(u), d_{0}, d_{1}\right\}$ and $\zeta^{\prime \prime}(u) \neq \sigma(u)$, it follows that $\zeta^{\prime \prime}(u) \in$ $\left\{d_{0}, d_{1}\right\}$, i.e $\zeta(u) \in\left\{d_{0}, d_{1}\right\}$.

Now we construct a (C, z)-opener in the following way. We extend ζ to an L_{ϕ}-coloring ζ^{*} of $\operatorname{dom}(\zeta) \cup$ $V\left(u Q^{\text {large }} x\right) \cup\{y\}$ by 2-coloring the path $u Q^{\text {large }} x y$ with $\left\{d_{0}, d_{1}\right\}$. By 1), we have $\zeta\left(x^{\prime}\right) \notin\left\{d_{0}, d_{1}\right\}$, so this 2-coloring is indeed permissible, since $u Q^{\text {large }} x y$ is an induced path in G.

Since $\zeta^{*}(y) \in\left\{d_{0}, d_{1}\right\}, \zeta^{*}$ extends to L_{ϕ}-color K as well, and, by Claim 10.8.2, ζ^{*} extends to an L_{ϕ}-coloring $\zeta^{* *}$ of $\operatorname{dom}\left(\zeta^{*}\right) \cup V(K) \cup\{z\}$ such that $\left|L_{\phi \cup \zeta^{* *}}\left(y^{\prime}\right)\right| \geq 3$. Since only d_{0}, d_{1} are used among the neighbors of w in $\operatorname{dom}\left(\phi \cup \zeta^{* *}\right)$, we have $\left|L_{\phi \cup \zeta^{* *}}(w)\right| \geq 3$, so the pair $\left[H, \zeta^{* *}\right]$ is a (C, z)-opener, contradicting our assumption. This proves 2).

Now we have the following.

Subclaim 10.8.19. $S_{\star} \cap V\left(x^{\prime} Q^{\text {small }} u\right) \neq \varnothing$, and, letting $S_{\star}=\left\{u_{\star}\right\}$, we have $T^{<2} \cap V\left(x^{\prime} Q u_{\star}\right) \neq \varnothing$.
Proof: If $S_{\star}=\varnothing$, then it immediately follows from Theorem 1.7.5 that there is an element of $\operatorname{Link}\left(x^{\prime} Q^{\text {small }} u\right)$ using a color other than $\sigma(u)$ on u, contradicting 2) of Subclaim 10.8.18. Thus, $S_{\star} \neq \varnothing$. By Claim 10.8.7, we have $u_{\star} \in V\left(Q^{\text {large }}\right)$. By assumption, e is unproblematic so $u_{\star} \in V\left(x^{\prime} Q^{\text {large }} u\right)$. By Claim 10.8.3, there is a $\hat{v} \in T^{<2} \cap V\left(Q^{\text {large }}\right)$.

Since $\left|L_{\phi}(x)\right|=3$, we have $x \notin T^{<2}$, and since no internal vertex of $\hat{J}-y$ lies in $T^{<2}$, we have $\hat{v} \in V\left(x^{\prime} Q^{\text {large }} u\right)$. If $T^{<2} \cap V\left(u_{\star} Q^{\text {large }} u\right) \neq \varnothing$, then, by Proposition 10.2.4, there is an element of $\operatorname{Link}\left(x^{\prime} Q^{\text {large }} u\right)$ using a color other than $\sigma(u)$ on u, contradicting 2) of Subclaim 10.8.18. Thus, we have $\hat{v} \in V\left(x^{\prime} Q^{\text {large }} u_{\star}\right)$.

Let u_{\star} be the lone vertex of S_{\star} and let $\hat{v} \in T^{<2} \cap V\left(x^{\prime} Q^{\text {large }} u_{\star}\right)$. By Proposition 10.2.4, there are two elements ψ_{0}, ψ_{1} of $\operatorname{Link}\left(x^{\prime} Q^{\text {large }} u\right)$ which use the same color on u and different colors on x^{\prime}. By 2) of Subclaim 10.8.18, there is a $c \in L_{\phi}(u)$ such that $c=\sigma(u)=\psi_{0}(u)=\psi_{1}(u)$. At least one of $\psi_{0}\left(x^{\prime}\right), \psi_{1}\left(x^{\prime}\right)$ is distinct from $\sigma\left(x^{\prime}\right)$ so let $\psi_{0}\left(x^{\prime}\right) \neq \sigma\left(x^{\prime}\right)$. Recall that $L_{\phi}\left(p_{x^{\prime}}\right)=\left\{\sigma\left(x^{\prime}\right), h_{0}, h_{1}\right\}$. By 1) of Subclaim 10.8.18, $\psi_{0}\left(x^{\prime}\right) \in\left\{h_{0}, h_{1}\right\}$, since $\psi_{0}\left(x^{\prime}\right) \neq \sigma\left(x^{\prime}\right)$. Thus, there is a color $f \in L_{\phi}(y) \backslash\left\{\psi\left(x^{\prime}\right), d_{0}, d_{1}, h_{0}, h_{1}\right\}$. By Claim 10.8.2, ψ_{0} extends to an L_{ϕ}-coloring ψ_{*} of $\operatorname{dom}\left(\psi_{0}\right) \cup\{y, z\}$ with $\psi_{*}(y)=f$ and $\left|L_{\phi \cup \psi_{*}}\left(y^{\prime}\right)\right| \geq 3$. By Claim 10.8.6, there is an extension of ψ_{*} to an L_{ϕ}-coloring $\psi_{* *}$ of $\operatorname{dom}\left(\psi_{*}\right) \cup\{w\}$ such that $\mathcal{Z}_{K}\left(\psi_{0}\left(x^{\prime}\right), f, \bullet\right) \cap z_{\hat{J}}\left(\bullet, \psi^{* *}(w), c\right)=\varnothing$.

Recall that $L_{\phi}\left(p_{x}\right)=\left\{h_{0}, h_{1}, d_{1}\right\}$. Thus, $f \notin L_{\phi}\left(p_{x}\right)$. Now, K is not a triangle, and thus, as $f \notin\left\{d_{0}, d_{1}\right\}$ and $\left\{d_{0}, d_{1}\right\} \subseteq L_{\phi}(x)$, it follows that $\left\{d_{0}, d_{1}\right\} \subseteq \mathcal{Z}_{K}\left(\psi_{0}\left(x^{\prime}\right), f, \bullet\right)$. Recall now that $z_{\hat{J}}\left(\bullet, d_{i}, c\right)=\left\{d_{1-i}\right\}$ for each $i=0,1$, since $c=\sigma(u)$. It follows that $\psi_{* *}(w) \notin\left\{d_{0}, d_{1}\right\}$ or else $\mathcal{Z}_{K}\left(\psi_{0}\left(x^{\prime}\right), f, \bullet\right) \cap \mathcal{Z}_{\hat{J}}\left(\bullet, \psi^{* *}(w), c\right) \neq \varnothing$, which is false. Thus, we get $\psi_{* *}(w) \notin\left\{d_{0}, d_{1}\right\}$. But then, since $\left\{d_{0}, d_{1}\right\} \subseteq z_{K}\left(\psi_{0}\left(x^{\prime}\right), f, \bullet\right)$ and the path $\hat{J} \backslash\{y, u\}$ admits a 2 -coloring using $\left\{d_{0}, d_{1}\right\}$, we again have $\mathcal{Z}_{K}\left(\psi_{0}\left(x^{\prime}\right), f, \bullet\right) \cap \mathcal{Z}_{\hat{J}}\left(\bullet, \psi^{* *}(w), c\right) \neq \varnothing$, a contradiction. This completes the proof of Claim 10.8.15.

Applying Claim 10.8.15, we now fix $u_{\star} \in V\left(u Q^{\text {large }} x\right) \backslash\{u\}$ with $S_{\star}=\left\{u_{\star}\right\}$. Since $S_{\star} \neq \varnothing$, it follows from Claim 10.8.3 that $T^{<2} \cap V\left(Q^{\text {large }}\right) \neq \varnothing$. By Co4d) of Definition 10.0.1, every vertex of $D_{2}(C)$ has a neighborhood on C^{1} consisting precisely of a subpath of C^{1}. In particular K is a broken wheel. An analogous argument to that of Claim 10.8.15 shows the following.

Claim 10.8.20. No vertex of $u Q^{\text {large }} x$ lies in $T^{<2}$. In particular, $T^{<2} \cap V\left(x^{\prime} Q^{\text {large }} u\right) \backslash\{u\} \neq \varnothing$.

We now have the following.

Claim 10.8.21. For any $\psi \in \operatorname{Link}\left(Q^{\text {large }}\right)$ and any extension of ψ to an L_{ϕ}-coloring ψ_{*} of $\operatorname{dom}(\psi) \cup\{y\}$, either $\left|L_{\phi \cup \psi_{*}}(w)\right|=2$ or ψ_{*} does not extend to L_{ϕ}-color $V(K)$.

Proof: Suppose there is a ψ for which this does not hold. Thus, there is an extension ψ_{*} of ψ to an L_{ϕ}-coloring of $\operatorname{dom}(\psi) \cup\{y\}$ such that $\left|L_{\phi \cup \psi_{*}}(w)\right| \geq 3$, where ψ_{*} also extends to L_{ϕ}-color $V(K)$. By Claim 10.8.2, there is a $\psi^{\prime} \in \Phi_{L_{\phi}}\left(\psi_{*}, V(K) \cup\{z\}\right)$ such that $\left|L_{\phi \cup \psi^{\prime}}\left(y^{\prime}\right)\right| \geq 3$. Note that $\left|L_{\phi \cup \psi^{\prime}}(w)\right| \geq 3$ as well, since $\operatorname{dom}\left(\psi^{\prime}\right) \cap N(w) \subseteq$ $\operatorname{dom}\left(\psi_{*}\right)$. Since u is a $Q^{\text {large }}$-hinge, ψ restricts to an element of $\operatorname{Link}\left(u Q^{\text {large }} x\right)$. By Proposition 10.2.9, $V\left(J_{e}^{1}-w\right)$ is $\left(L, \phi \cup \psi^{\prime}\right)$-inert in G. Since each of w, y^{\prime} has an $L_{\phi \cup \psi^{\prime}}$-list of size at least three, the pair $\left[H, \phi \cup \psi^{\prime}\right]$ is a (C, z)-opener, contradicting our assumption.

The above has the following simple consequence.

Claim 10.8.22. For each $\sigma \in \operatorname{Link}\left(Q^{\text {large }}\right)$, we have $\left|L_{\phi \cup \sigma}(w)\right|=3$. In particular, $\left|N(w) \cap V\left(C^{1}\right)\right|>1$.

Proof: Suppose not and let $\sigma \in \operatorname{Link}\left(Q^{\text {large }}\right)$ with $\left|L_{\phi \cup \sigma}(w)\right| \geq 4$. By 2) of Proposition 1.5.1, σ extends to an $L_{\phi^{-}}$ coloring σ^{*} of $\operatorname{dom}(\sigma) \cup V(K)$, as $S_{\star} \cap V\left(Q^{\text {small }}\right)=\varnothing$, and, since $\left|L_{\phi \cup \sigma}(w)\right|>3$, we have $\left|L_{\phi \cup \sigma^{*}}(w)\right| \geq 3$, contradicting Claim 10.8.21.

Applying Claim 10.8.22, we introduce the following.

Definition 10.8.23. We define a vertex p^{\dagger} of $\left(N(w) \cap V\left(C^{1}\right)\right)$ as follows. If $u_{\star} \in N(w)$, then we set $p^{\dagger}=u_{\star}$. Otherwise, we set p^{\dagger} to be the non- u endpoint of the path $G\left[N(w) \cap V\left(C^{1}\right)\right]$. Since e is problematic and $\mid N(w) \cap$ $V\left(C^{1}\right) \mid>1$, we have $p^{\dagger} \in V(u Q x) \backslash\{u\}$.

We now introduce the following terminology.

Definition 10.8.24. Given a subpath P of Q with $u Q x \subseteq P$ and a family \mathcal{F} of elements of $\operatorname{Link}(P)$, a $d \in L_{\phi}(y)$ is called \mathcal{F}-universal if, for each $\psi \in \mathcal{F}$, there is a $\psi^{*} \in \Phi_{L_{\phi}}(\psi, y)$ with $\psi^{*}(y)=d$ and $\left|L_{\phi \cup \psi^{*}}(w)\right| \geq 3$.

Claim 10.8.25. For any subpath P of $Q^{\text {large }}-x^{\prime}$ and any $\psi \in \operatorname{Link}_{L_{\phi}}(P)$, there is a $\psi_{*} \in \Phi_{L_{\phi}}(\psi, y)$ such that $\left|L_{\phi \cup \psi_{*}}(w)\right| \geq 3$. In particular, if $u Q^{\text {large }} x \subseteq P$ and \mathcal{F} is a family of elements of $\operatorname{Link}(P)$ which all restrict to the same element of $\operatorname{Link}\left(u Q^{\text {large }} x\right)$, then there is an \mathcal{F}-universal color in $L_{\phi}(y)$.

Proof: For any subpath P of $Q^{\text {large }}$ and any $\psi \in \operatorname{Link}(P)$, we have $\left|L_{\phi \cup \psi}(w)\right| \geq 3$. Since $N(y) \cap V\left(Q^{\text {large }}-x^{\prime}\right)=\{x\}$, we have $\left|L_{\phi \cup \psi}(y)\right| \geq 4$, so both parts of the claim trivially follow.

We now set $u^{\prime} w^{\prime}$ to be the unique edge of $R_{e^{\prime}} \backslash\left\{x^{\prime}, y\right\}$, where $u^{\prime} \in V\left(Q^{\text {large }}-x^{\prime}\right)$ and $w^{\prime} \in D_{2}(C)$. Since z is end-repelling, we have $u^{\prime} \in V\left(x^{\prime} Q^{\text {large }} u\right) \backslash\left\{x^{\prime}\right\}$, and $J_{e}^{1} \cap J_{e^{\prime}}^{1}$ is either empty or $u=u^{\prime}$ and the intersection consists of this lone vertex. Let $B:=\left\{w_{*} \in N(w) \cap: N\left(w_{*}\right) \cap V\left(Q \backslash J_{e}^{1}\right) \neq \varnothing\right\}$.

Claim 10.8.26. $w w^{\prime} \notin E(G)$.

Proof: Suppose toward a contradiction that $w w^{\prime} \in E(G)$. Note that $w^{\prime} \notin N\left(y^{\prime}\right)$, or else, since $y y^{\prime} \in E\left(\tilde{G}_{z}^{\text {small }}\right)$, the 4-cycle $w w^{\prime} y^{\prime} y$ separates C from a vertex of $G \backslash B_{4}(C)$ with an L_{ϕ}-list of size less than five. Thus, $R_{e^{\prime}}=u^{\prime} w^{\prime} x^{\prime}$. Since $x^{\prime} y \in E\left(G_{z}^{\text {small }}\right)$, the 4-cycle $w w^{\prime} x^{\prime} y$ separates C from a vertex of $G \backslash B_{4}(C)$ with an L_{ϕ}-list of size less than five. In any case, we contradict short-separation-freeness.

We now have the following.

Claim 10.8.27. $x^{\prime} \in N\left(w^{\prime}\right)$.

Proof: Suppose not. Thus, $R_{e^{\prime}}$ is a 3 -chord of C^{1}, and $R_{e^{\prime}}=u^{\prime} w^{\prime} y^{\prime} x^{\prime}$. Let H^{2} be the subgraph of G induced by $V\left(x^{\prime} Q^{\text {large }} u^{\prime}\right) \cup \operatorname{Sh}_{2}\left(x^{\prime} Q^{\text {large }} u^{\prime}\right) \cup V\left(J_{e}^{1} \cup K\right) \cup V\left(J_{e^{\prime}}^{1}-w^{\prime}\right) \cup\left\{y^{\prime}, z\right\}$.

Note that $x^{\prime} u^{\prime} \notin E(G)$, or else since $N(y) \cap V\left(C^{1}\right) \subseteq V\left(Q^{\text {small }}\right)$, we have $w^{\prime} \in N\left(x^{\prime}\right)$ by our triangulation conditions, contradicting our assumption. Let $Y_{K}:=\bigcap\left(L_{\phi}(v): v \in V(K) \backslash\left\{x^{\prime}, y, x\right\}\right)$ and let Base $\left(J_{e^{\prime}}^{1}\right)$ be the set of $L_{\phi^{\prime}}$-colorings \mathfrak{f} of $\left\{u^{\prime}, x^{\prime}\right\}$ with the property that any extension of \mathfrak{f} to all of $R_{e^{\prime}}^{1}$ extends to L_{ϕ}-color all of $J_{e^{\prime}}^{1}$

Subclaim 10.8.28. $B \neq \varnothing$.
Proof: Suppose toward a contradiction that $B=\varnothing$. Applying 1) of Corollary 10.2.5, we fix a $\sigma \in \operatorname{Link}\left(u^{\prime} Q^{\text {large }} x\right)$. By Theorem 1.6.1, there is an element \mathfrak{f} of $\operatorname{Base}\left(J_{e^{\prime}}^{1}\right)$ such that $\mathfrak{f}\left(u^{\prime}\right)=\sigma\left(u^{\prime}\right)$. By 2) of Proposition 1.5.1, since $S_{\star} \cap V\left(Q^{\text {small }}\right)=\varnothing, \sigma$ extends to an L_{ϕ}-coloring σ^{\prime} of $\operatorname{dom}(\sigma) \cup V(K)$ with $\sigma^{\prime}\left(x^{\prime}\right)=\mathfrak{f}\left(x^{\prime}\right)$. Now, since $V\left(J_{e}^{1}\right) \backslash\{w, y\}$ is $(L, \phi \cup \sigma)$-inert in G, we get that σ^{\prime} extends to an L_{ϕ}-coloring $\sigma^{\prime \prime}$ of $\operatorname{dom}\left(\sigma^{\prime}\right) \cup V\left(J_{e}^{1}\right)$. Crucially, for any $\tau \in \Phi_{L_{\phi}}\left(\sigma^{\prime \prime},\left\{y^{\prime}, z\right\}\right)$, we have $\left|L_{\phi \cup \tau}\left(w^{\prime}\right)\right| \geq 3$, since $x^{\prime}, z \notin N\left(w^{\prime}\right)$.

Case 1: w, z have no common neighbor other than y.
In this case, for any $\tau \in \Phi_{L_{\phi}}\left(\sigma^{\prime \prime},\left\{y^{\prime}, z\right\}\right)$, the pair $\left[H^{2}, \phi \cup \tau\right]$ is an (C, z)-opener, since $B=\varnothing$. This contradicts our assumption.

Case 2: w, z have a common neighbor w^{\dagger} other than y
In this case, w^{\dagger} is unique, and, since $\left|L_{\phi \cup \sigma^{\prime \prime}}\left(w^{\dagger}\right)\right| \geq 3$ and $\left|L_{\phi \cup \sigma^{\prime \prime}}(z)\right| \geq 4$, there is a $\tau \in \Phi_{L_{\phi}}\left(\sigma^{\prime \prime},\left\{y^{\prime}, z\right\}\right)$ such that $\left|L_{\phi \cup \tau}\left(w^{\dagger}\right)\right| \geq 3$, and, as indicated above, $\left|L_{\phi \cup \tau}\left(w^{\prime}\right)\right| \geq 3$ as well. Since $B=\varnothing,\left[H^{2}, \phi \cup \tau\right]$ is a (C, z)-opener, contradicting our assumption.

Applying Propsotion 10.5.4, let $w_{*} v_{*}$ be the e-wall of B, where $v_{*} \in V\left(C^{1}\right)$, and let $P:=v_{*} w_{*} w u$. By Claim 10.8.26, $w_{*} \neq w^{\prime}$, so $v_{*} \in V\left(u^{\prime} Q^{\text {large }} u\right) \backslash\{u\}$. Now we have a nice trick to finish the proof of Claim 10.8.27. Recalling Definition 10.8.23, let $P^{\dagger}:=v_{*} w_{*} w p^{\dagger}$. Note that, by our choice of p^{\dagger}, each vertex of $p^{\dagger} Q^{\text {large }} x \backslash\{x\}$ has an L_{ϕ}-list of size at least three. Furthermore, each vertex of $\left.x^{\prime} Q^{\text {large }} p^{\dagger}\right) \backslash\left\{p^{\dagger}\right\}$ has an L_{ϕ}-list of size at least three.

Subclaim 10.8.29. There exists $a \mathfrak{f} \in \operatorname{Corner}\left(P^{\dagger}, w_{*}\right)$ such that, for any $\mathfrak{g} \in \operatorname{Base}\left(J_{e^{\prime}}^{1}\right)$, the union $\mathfrak{f} \cup \mathfrak{g}$ extends to an L_{ϕ}-coloring of $\operatorname{dom}(\mathfrak{f} \cup \mathfrak{g}) \cup V\left(J_{e}^{1} \cup K\right)$.

Proof: Since $\left|L_{\phi}\left(p^{\dagger}\right)\right| \geq 2$ and $\left|L_{\phi}\left(u_{*}\right)\right| \geq 3$, it follows from 1) of Theorem 9.0.1 that $\operatorname{Corner}\left(P^{\dagger}, w_{*}\right) \neq \varnothing$. Consider the following cases.

Case 1: $p^{\dagger} \neq x$
In this case, we claim that any $\mathfrak{f} \in \operatorname{Corner}\left(P^{\dagger}, w_{*}\right)$ satisfies the subclaim. Let $\mathfrak{g} \in \operatorname{Base}\left(J_{e^{\prime}}^{1}\right)$ and let $\psi:=$ $\mathfrak{f} \cup \mathfrak{g}$; It just suffices to show that the precoloring ψ of $\left\{p^{\dagger}, w, x^{\prime}\right\}$ extends to L_{ϕ}-color $\tilde{G}_{p^{\dagger} w y x^{\prime}}^{\text {small }}$. Firstly, $D:=$ $p^{\dagger} Q^{\text {large }} x Q^{\text {small }} x^{\prime} y w p^{\dagger}$ is a cyclilc facial subgraph of $\tilde{G}_{p^{\dagger} w y x^{\prime}}^{\text {small }}$, and every vertex of $D \backslash\left\{p^{\dagger}, w, y, x^{\prime}\right\}$ has an $L_{\phi^{-}}$ list of size at least three. By our choice of p^{\dagger}, we have $N(w) \cap V(D)=\left\{p^{\dagger}, y\right\}$, i.e there is no chord of D with w as an endpoint. Since $p^{\dagger} \neq x$, we have $N(y) \cap \operatorname{dom}(\phi \cup \psi)=\left\{x^{\prime}, x\right\}$ and $\left|L_{\phi \cup \psi}(y)\right| \geq 3$, so, by 2) of Proposition 1.5.1, we get that $\phi \cup \psi$ extends to $L_{\phi^{\prime}}$-color $V\left(\tilde{G}_{p^{\dagger} w y x^{\prime}}^{\text {small }}\right)$, as desired.

Case 2: $p^{\dagger}=x$
In this case, x is the lone vertex of S_{\star} and $J_{e}^{1}-y \subseteq \tilde{G}_{P^{\dagger}}^{\text {small }}$. Since $\left|L_{\phi}(y)\right| \geq 5$, it follows from 1) of Theorem 9.0.1 there exist two elements $\mathfrak{f}_{0}, \mathfrak{f}_{1}$ of $\operatorname{Corner}\left(P^{\dagger}, w_{*}\right)$ with $\mathfrak{f}_{0}(w) \neq \mathfrak{f}_{1}(w)$. We show now that one of $\mathfrak{f}_{0}, \mathfrak{f}_{1}$ satisfies the subclaim. Suppose not. Since $J_{e}^{1}-y \subseteq \tilde{G}_{P^{\dagger}}^{\text {small }}$, it follows that, for each $i=0,1$, there exists a $\mathfrak{g}_{i} \in \operatorname{Base}\left(J_{e^{\prime}}^{1}\right)$ such that $\mathfrak{f}_{i} \cup \mathfrak{g}_{i}$ does not extend to $L_{\phi^{\prime}}$-color $\left\{x, w, y^{\prime}\right\} \cup V(K)$. In particular, for each $i=0,1$, letting $X_{i}:=L_{\phi}(y) \backslash\{\mathfrak{f}, \mathfrak{f}, \mathfrak{g}\}$, we have $\mathcal{Z}_{K}\left(\mathfrak{g}\left(x^{\prime}\right), \bullet, \mathfrak{f}(x)\right) \cap X_{i}=\varnothing$. Thus, recalling that $p_{x}, p_{x^{\prime}}$ are the respective neighbors of x, x^{\prime} on $K-y$, and K is not a triangle, we have $L_{\phi}\left(p_{x}\right)=X_{i} \cup\left\{\mathfrak{f}_{i}(x)\right\}$ as a disjoint union and $L_{\phi}\left(p_{x^{\prime}}\right)=X_{i} \cup\left\{\mathfrak{g}_{i}\left(x^{\prime}\right)\right\}$ as a disjoint union, as $\left|X_{i}\right| \geq 2$.

Subcase 2.1: $\mathfrak{f}_{0}(x)=\mathfrak{f}_{1}(x)$

In this case, let $f=\mathfrak{f}_{0}(x)=\mathfrak{f}_{1}(x)$. We have $X_{0}=X_{1}$ and $\mathfrak{g}_{0}\left(x^{\prime}\right)=\mathfrak{g}_{1}\left(x^{\prime}\right)=g$ for some color g. By 2) of Proposition 1.5.1, the precoloring of $\left\{x, x^{\prime}\right\}$ using f, g on x, x^{\prime} respectively extends to L_{ϕ}-color all of K, and since $\mathfrak{f}_{0}(w) \neq \mathfrak{f}_{1}(w)$, the color used on y is distinct from at least one of $\mathfrak{f}_{0}(w), \mathfrak{f}_{1}(w)$. Thus, for some $i=0$, $\mathfrak{f}_{i} \cup \mathfrak{g}_{i}$ extends to L_{ϕ}-color K, contradicting our assumption.

Subcase 2.2: $\mathfrak{f}_{0}(x) \neq \mathfrak{f}_{1}(x)$
In this case, we have $\mathfrak{f}_{0}(x) \in X_{1}$ and $\mathfrak{f}_{1}(x) \in X_{0}$, and furthermore, $X_{0} \neq X_{1}$ and $\left|X_{0}\right|=\left|X_{1}\right|=2$. Thus, we have $\mathfrak{g}_{0} \in X_{1}$ and $\mathfrak{g}_{1} \in X_{0}$, so $\left\{\mathfrak{f}_{0}(x), \mathfrak{f}_{1}(x), \mathfrak{g}_{1}\left(x^{\prime}\right), \mathfrak{g}_{1}\left(x^{\prime}\right)\right\} \subseteq X_{0} \cup X_{1}$. Since $\left|X_{0}\right|=\left|X_{1}\right|=2$, there is a $d \in L_{\phi}(y)$ with $d \notin X_{0} \cup X_{1}$. Since $\mathfrak{f}_{0}(w) \neq \mathfrak{f}_{1}(w)$, there is an $i \in\{0,1\}$ with $d \neq \mathfrak{f}_{i}(w)$, and since $d \neq \mathfrak{f}_{i}(x), \mathfrak{g}_{i}\left(x^{\prime}\right)$, we have $d \in X_{i}$, a contradiction

Let $\mathfrak{f} \in \operatorname{Corner}\left(P^{\dagger}, w_{*}\right)$ be as in Subclaim 10.8.29. Since $S_{\star} \subseteq V\left(J_{e}^{1}\right) \backslash\{u\}$, it follows from i) of Theorem 1.7.5 that there exists a $\sigma \in \operatorname{Link}\left(u^{\prime} Q^{\text {large }} u_{*}\right)$ with $\sigma\left(u_{*}\right)=\mathfrak{f}\left(u_{*}\right)$. By Theorem 1.6.1, there is a $\mathfrak{g} \in \operatorname{Base}\left(J_{e^{\prime}}^{1}\right)$ such that $\mathfrak{g}\left(u^{\prime}\right)=\sigma\left(u^{\prime}\right)$. Note that the union $\psi:=\mathfrak{f} \cup \sigma \cup \mathfrak{g}$ is a proper L_{ϕ}-coloring of its domain. Since all the neighbors of $V\left(K \cup J_{e}^{1}\right) \backslash \operatorname{dom}(\psi)$ in $\operatorname{dom}(\psi)$ lie in $\operatorname{dom}(\mathfrak{f} \cup \mathfrak{g})$, it follows from Subclaim 10.8.29 that ψ extends to an L_{ϕ}-coloring ψ^{*} of $\operatorname{dom}(\psi) \cup V\left(J_{e}^{1}\right)$.

Let H_{+}^{2} be the subgraph of G induced by $\operatorname{dom}\left(\phi \cup \psi^{*}\right) \cup V\left(\tilde{G}_{P^{\dagger}}^{\text {small }}-w_{*}\right) \cup V\left(J_{e^{\prime}}^{1}-w^{\prime}\right) \cup \operatorname{Sh}_{2}\left(u^{\prime} Q^{\text {large }} u_{*}\right) \cup\{z\}$. Since $x^{\prime} \notin N\left(y^{\prime}\right)$, it follows that, for any $\tau \in \Phi\left(\psi^{*},\left\{y^{\prime}, z\right\}\right)$, we have $\left|L_{\phi \cup \tau}\left(w^{\prime}\right)\right| \geq 3$, as $N\left(w^{\prime}\right) \cap \operatorname{dom}(\phi \cup \tau)=\left\{u^{\prime}, y^{\prime}\right\}$. Furthermore, since $p^{\dagger} \in V(u Q x) \backslash\{u\}$, we have $\left|L_{\phi \cup \tau}\left(w_{*}\right)\right| \geq 3$ as well, as $N\left(w_{*}\right) \cap \operatorname{dom}(\phi \cup \tau)=\left\{u_{*}, w\right\}$. Each of $V\left(\tilde{G}_{P \dagger}^{\text {small }}-w_{*}\right)$ and $V\left(J_{e^{\prime}}^{1}-w^{\prime}\right)$ is $(L, \phi \cup \tau)$-inert by our choice of $\mathfrak{f}, \mathfrak{g}$. If w, z have no common neighbor other than y, then, for any $\tau \in \Phi\left(\psi^{*},\left\{y^{\prime}, z\right\}\right)$, the pair $\left[H_{+}^{2}, \phi \cup \tau\right]$ is a (C, z)-opener, contradicting our assumption. Thus, there is a $w^{\dagger} \in(N(w) \cap N(z)) \backslash\{y\}$, and w^{\dagger} is unique. We have $\left|L_{\phi \cup \psi^{*}}\left(w^{\dagger}\right)\right| \geq 3$, and $\left|L_{\phi \cup \psi^{*}}\left(y^{\prime}\right)\right| \geq 3$ and $\left|L_{\phi \cup \psi^{*}}(z)\right| \geq 4$. Since $y^{\prime} \notin N\left(w^{\dagger}\right)$, there is a $\tau \in \Phi_{L_{\phi}}\left(\psi^{*},\left\{y^{\prime}, z\right\}\right.$ such that $\left|L_{\phi \cup \tau}\left(w^{\dagger}\right)\right| \geq 3$, and $\left[H_{+}^{2}, \phi \cup \tau\right]$ is a (C, z)-opener, contradicting our assumption.

We now have the following.

Claim 10.8.30. $J_{e^{\prime}}^{1}-y^{\prime}$ is not a triangle. In particular, the non $\left\{x^{\prime}, y^{\prime}\right\}$-endpoint of $R_{e^{\prime}}$ is not adjacent to x^{\prime}.

Proof: Suppose that either $J_{e^{\prime}}^{1}=\varnothing$ or $J_{e^{\prime}}^{1}-y^{\prime}$ is a triangle. Applying Claim 10.8.20, we fix a $\hat{v} \in V\left(x^{\prime} Q^{\text {large }} u\right) \backslash\{u\}$. Recall that $q_{x^{\prime}}$ is the unique neighbor of x^{\prime} on $Q^{\text {large }}$. Note that, if there is an e^{\prime}-obstruction, then, letting $u^{\prime} w^{\prime}$ be the unique edge of $R_{e^{\prime}} \backslash\left\{x^{\prime}, y^{\prime}\right\}$, where $w^{\prime} \in D_{2}(C)$, we have $u^{\prime}=q_{x^{\prime}}$, since $J_{e^{\prime}}^{1}-y=u^{\prime} y^{\prime} x^{\prime}$. In either case, we get that, for any $\sigma \in \operatorname{Link}\left(Q^{\text {large }}-x^{\prime}\right)$, any extension of σ ot an L_{ϕ}-coloring of $\operatorname{dom}(\sigma) \cup\left\{x^{\prime}\right\}$ is an element of $\operatorname{Link}\left(Q^{\text {large }}\right)$.

Subclaim 10.8.31. For any $\sigma \in \operatorname{Link}\left(q_{x^{\prime}} Q^{\text {large }} x\right)$ and any $d \in L_{\phi \cup \sigma}(y)$ with $\left|L_{\phi \cup \sigma}(y)\right| \geq 3$, we have $\left\{\sigma\left(q_{x^{\prime}}\right)\right\}=$ $z_{K}(\bullet, d, \sigma(x))$

Proof: Suppose toward a contradiction that $\left\{\sigma\left(q_{x^{\prime}}\right)\right\}=\mathcal{Z}_{K}(\bullet, d, \sigma(x))$. Since $\mathcal{z}_{K}(\bullet, d, \sigma(x)) \neq \varnothing$, and any $\sigma^{\prime} \in \Phi_{L_{\phi}}\left(\sigma, x^{\prime}\right)$ lies in $\operatorname{Link}\left(Q^{\text {large }}\right)$, we contradict Claim 10.8.21.

By 1) of Corollary 10.2.5, $\operatorname{Link}\left(q_{x^{\prime}} Q^{\text {large }} x\right) \neq \varnothing$, and, for any $\sigma \in \operatorname{Link}\left(q_{x^{\prime}} Q^{\text {large }} x\right)$, we have $N(y) \cap \operatorname{dom}(\phi \cup \sigma)=$ $\{x\}$ and thus, $\left|L_{\phi \cup \sigma}(y)\right| \geq 4$, so there is a $d \in L_{\phi \cup \sigma}(y)$ such that $\left|L_{\phi \cup \sigma}(w) \backslash\{d\}\right| \geq 3$. Thus, it immediately follows from Subclaim 10.8 .31 that $\hat{v} \neq x^{\prime}$, or else, letting $\sigma \in \operatorname{Link}\left(q_{x^{\prime}} Q^{\text {large }} x\right)$, we have $\left|z_{K}(\bullet, \sigma(y), \sigma(x))\right|>1$, as $\left|L_{\phi}(\hat{v})\right| \geq 4$. Since $\hat{v} \neq x^{\prime}$, we have $\hat{v} \in V\left(q_{x^{\prime}} Q^{\text {large }} u\right) \backslash\{u\}$ by Claim 10.8.20. Thus, by Proposition 10.2.4, there exist two elements ψ_{0}, ψ_{1} of $\operatorname{Link}\left(q_{x^{\prime}} Q^{\text {large }} x\right)$ which use different colors on $q_{x^{\prime}}$ and restrict to the same element of $\operatorname{Link}\left(u Q^{\text {large }} x\right)$. By Claim 10.8.25, there is a $\left\{\psi_{0}, \psi_{1}\right\}$-universal $d \in L_{\phi}(y)$. Since $\psi_{0}\left(q_{x^{\prime}}\right) \neq \psi_{1}\left(q_{x^{\prime}}\right)$, this contradicts

Subclaim 10.8.31. We conclude that $J_{e^{\prime}}^{1} \neq \varnothing$ and $J_{e^{\prime}}^{1}-y^{\prime}$ is not a triangle. Since C^{1} is an induced subgraph of G, the non $\left\{x^{\prime}, y^{\prime}\right\}$-endpoint of $R_{e^{\prime}}$ is not adjacent to x^{\prime}.

Analogous to the set B specified above, we now set $B^{\prime}:=\left\{w_{*} \in N\left(w^{\prime}\right) \cap: N\left(w_{*}\right) \cap V\left(Q \backslash J_{e^{\prime}}^{1}\right) \neq \varnothing\right.$. By Claim 10.8.27, $x^{\prime} \in N\left(w^{\prime}\right)$. Possibly $y^{\prime} \in N\left(w^{\prime}\right)$ as well, but in any case, $J_{e^{\prime}}^{1}-y^{\prime}$ is a broken wheel \hat{J} with principal path $u^{\prime} w^{\prime} x^{\prime}$, and w^{\prime} is the unique e^{\prime}-obstruction

Claim 10.8.32. $B^{\prime} \neq \varnothing$

Proof: Suppose that $B^{\prime}=\varnothing$. Applying 1) of Corollary 10.2.5, we fix a $\sigma \in \operatorname{Link}\left(u^{\prime} Q x\right)$. By Claim 10.8.25, there is a $\sigma^{\prime} \in \Phi_{L_{\phi}}(\sigma, y)$ with $\left|L_{\phi \cup \sigma^{\prime}}(w)\right| \geq 3$. Since $z_{K}\left(\bullet, \sigma^{\prime}(y), \sigma^{\prime}(x)\right) \neq \varnothing$, let $f \in z_{K}\left(\bullet, \sigma^{\prime}(y), \sigma^{\prime}(x)\right)$. Let H^{*} be the subgraph of G induced by $V(H) \cup V\left(J_{e^{\prime}}^{1}\right)$ and let $H^{* *}$ be the subgraph of G induced by $V(H) \cup V\left(J_{e^{\prime}}^{1}\right) \cup\{z\}$. Consider the following cases.

Case 1: $y^{\prime} \notin N\left(w^{\prime}\right)$
In this case, $J_{e^{\prime}}^{1}$ is a broken wheel with principal path $u^{\prime} w^{\prime} x^{\prime}$. By Claim 10.8.30, $J_{e^{\prime}}^{1}$ is not a triangle, so it follows from 2) of Proposition 1.5.1 that there is an L_{ϕ}-coloring of $V\left(J_{e^{\prime}}^{1}\right)$ using $\sigma\left(u^{\prime}\right), f$ on the respective vertices $u^{\prime} x^{\prime}$, so σ^{\prime} extends to an L_{ϕ}-coloring σ^{\dagger} of $\operatorname{dom}\left(\sigma^{\prime}\right) \cup V\left(J_{e^{\prime}}^{1} \cup K\right)$. Since $y^{\prime}, z \notin N\left(w^{\prime}\right)$ and $\sigma^{\dagger}\left(x^{\prime}\right) \in \mathcal{Z}_{K}$ it follows from Claim 10.8.2 that σ^{\dagger} extends to an L_{ϕ}-coloring τ of $\operatorname{dom}\left(\sigma^{\dagger}\right) \cup\{z\}$ such that $\left|L_{\phi \cup \tau}\left(y^{\prime}\right)\right| \geq 3$. We have $\left|L_{\phi \cup \tau}(w)\right| \geq 3$ as well, since $N(w) \cap \operatorname{dom}(\phi \cup \tau) \subseteq \operatorname{dom}\left(\sigma^{\prime}\right)$. Since $B^{\prime}=\varnothing$, every vertex of $D_{1}\left(H^{*}\right)$ has an $L_{\phi \cup \tau}$-list of size at least three, and $\left[H^{*}, \phi \cup \tau\right]$ is a (C, z)-opener, contradicting our assumption.

Case 2: $y^{\prime} \in N\left(w^{\prime}\right)$
In this case, if $w^{\prime}, y^{\prime}, z$ have no common neighbor in G, then, for any $\tau \in \Phi_{L_{\phi}}\left(\sigma^{\dagger},\left\{y^{\prime}, z\right\}\right)$, the pair $\left[H^{\text {aug }}, \phi \cup \tau\right]$ is a (C, z)-opener, so now suppose that $w^{\prime}, y^{\prime}, z$ have a common neighbor p. Thus, G contains a wheel with central vertex y^{\prime} adjacent to all the vertices of the 5-cycle $w^{\prime} p z y x^{\prime}$. Note that $\left|L_{\phi \cup \sigma^{\dagger}}\left(w^{\prime}\right)\right| \geq 2$, and since $\left|L_{\phi \cup \sigma^{\dagger}}(z)\right| \geq 4$, there is a $\tau \in \Phi_{L_{\phi}}\left(\sigma^{\dagger}, z\right)$ such that $\left\{y^{\prime}\right\}$ is $(L, \phi \cup \tau)$-inert. Since $B=\varnothing$, every vertex of $D_{1}\left(H^{* *}\right)$ has an $L_{\phi \cup \tau}$-list of size at least three, and the pair $\left[H^{* *}, \phi \cup \tau\right]$ is a (C, z)-opener, contradicting our assumption.

Applying Proposition 10.5 .4 , let $w_{*} v_{*}$ be the e^{\prime}-wall of B^{\prime}, where $v_{*} \in V\left(C^{1}\right)$. Note that $v_{*} \in V\left(u^{\prime} Q^{\text {small }} x\right) \backslash\left\{u^{\prime}\right\}$ and $w_{*} \in D_{2}(C) \cap N\left(w^{\prime}\right)$. Let $P:=v_{*} w_{*} w^{\prime} u^{\prime}$. By Claim 10.8.26, $w_{*} \neq w$, so $v_{*} \in V\left(u^{\prime} Q^{\text {large }} u\right) \backslash\{u\}$. Furthermore, \tilde{G} contains the 3 -chord $P^{\times}:=v_{*} w_{*} w^{\prime} x^{\prime}$ of C^{1}, with $\tilde{G}_{P}^{\text {small }} \subseteq \tilde{G}_{P^{\times}}^{\text {small }}$.

Claim 10.8.33. Let $\sigma \in \operatorname{Link}\left(v_{*} Q^{\text {large }} x\right)$ and let $\sigma^{\prime} \in \Phi_{L_{\phi}}(\sigma, y)$, where $\left|L_{\phi \cup \sigma^{\prime}}(w)\right| \geq 3$. Let $d^{\prime} \in \mathcal{Z}_{K}\left(\bullet, \sigma^{\prime}(y), \sigma^{\prime}(x)\right)$. Then there is no element of $\operatorname{Corner}\left(P^{\times}, w_{*}\right)$ which uses $\sigma\left(v_{*}\right), d^{\prime}$ on the respective vertices v_{*}, x^{\prime}.

Proof: Suppose toward a contradiction that such an element of $\operatorname{Corner}\left(P^{\times}, w_{*}\right)$ exists. Thus, σ^{\prime} extends to an $L_{\phi^{-}}$ coloring τ of $\operatorname{dom}\left(\sigma^{\prime}\right) \cup\left\{w^{\prime}\right\}$, where τ restricts to an element of $\operatorname{Corner}\left(P^{\times}, w_{*}\right)$. Let H^{\dagger} be the subgraph of G induced by $\operatorname{dom}(\phi \cup \tau) \cup \operatorname{Sh}_{2}\left(v_{*} Q^{\text {large }} x\right) \cup V\left(J_{e}^{1}-w\right) \cup V\left(J_{e^{\prime}}^{1}\right) \cup V\left(\tilde{G}_{P}^{\text {small }}-w_{*}\right) \cup V(K) \cup\{z\}$. Now consider the following cases.

Case 1: $w^{\prime} y^{\prime} \notin E(G)$
Since $y^{\prime} w^{\prime} \notin E(G)$ and $\left|L_{\phi \cup \tau}(z)\right| \geq 4$, there is a $\tau^{\prime} \in \Phi(\tau, z)$ such that $\left|L_{\phi \cup \tau^{\prime}}\left(y^{\prime}\right)\right| \geq 3$. We also get that each of w_{*}, w has an $L_{\phi \cup \tau^{\prime}}$-list of size at least three, since $N(w) \cap \operatorname{dom}\left(\phi \cup \tau^{\prime}\right) \subseteq \operatorname{dom}(\phi \cup \sigma)$, and $N\left(w_{*}\right) \cap \operatorname{dom}(\phi \cup \tau)=$ $\left\{v_{*}, w^{\prime}\right\}$. Thus, $\left[H^{\dagger}, \phi \cup \tau^{\prime}\right]$ is a (C, z)-opener, contradicting our assumption.

Case 2: $w^{\prime} y^{\prime} \in E(G)$
In this case, if $w^{\prime}, y^{\prime}, z$ do not have a common neighbor, then we simply color y^{\prime} as well, and, for any $\tau^{\prime} \in$ $\Phi\left(\tau,\left\{y^{\prime}, z\right\}\right)$, the pair $\left[H^{\dagger}, \phi \cup \tau^{\prime}\right]$ is a (C, z)-opener, contradicting our assumption. Now suppose that $w^{\prime}, y^{\prime}, z$ have a common neighbor w^{\dagger}. We have $\left|L_{\phi \cup \tau}(z)\right| \geq 4$ and $\left|L_{\phi \cup \tau}\left(y^{\prime}\right)\right| \geq 2$, and since y^{\prime} is the universal vertex of a wheel with a 5-cycle,there is a $\tau^{\prime} \in \Phi(\tau, z)$ such that $\left\{y^{\prime}\right\}$ is $\left(L, \phi \cup \tau^{\prime}\right)$-inert. Since y^{\prime} is uncolored, we have $\left|L_{\phi \cup \tau^{\prime}}\left(w^{\dagger}\right)\right| \geq 3$ as well, and $\left[H^{\dagger}, \phi \cup \tau^{\prime}\right]$ is a (C, z)-opener, contradicting our assumption.

Since u is a $Q^{\text {large }}$-hinge, it follows from Propositoon 10.2.4 that there exist a pair of elements ψ_{0}, ψ_{1} of $\operatorname{Link}\left(v_{*} Q^{\text {large }} x\right)$ which use different colors on u^{\prime} and restrict to the same element of $\operatorname{Link}\left(u Q^{\text {large }} x\right)$. By Claim 10.8.25, there is a $\left\{\psi_{0}, \psi_{1}\right\}$-universal $d \in L_{\phi}(w)$. Let $c:=\psi_{0}(x)=\psi_{1}(x)$ and let $d^{\prime} \in z_{K}(\bullet, d, c)$. For each $i=0,1$, let ψ_{i}^{\dagger} be an L_{ϕ}-coloring of $\operatorname{dom}\left(\psi_{i}\right) \cup\left\{y, x^{\prime}\right\}$ using d, d^{\prime} on the respective vertices y, x^{\prime}.

Claim 10.8.34. $u^{\prime} \in N\left(w_{*}\right)$.
Proof: Suppose that $u^{\prime} \notin N\left(w_{*}\right)$. Since $J_{e^{\prime}}^{1}$ is not a triangle, we have $N\left(u^{\prime}\right) \cap \operatorname{dom}\left(\psi_{0}^{\dagger}\right) \subseteq\left\{v_{*}\right\}$, and since $N\left(w^{\prime}\right) \cap$ $\left.V\left(\tilde{G}_{P}^{\text {small }} \cap C^{1}\right)\right)=\left\{u^{\prime}\right\}$, it follows from Theorem 1.6.1 applied to $\tilde{G}_{P}^{\text {small }}$ that there is an extension of ψ_{0}^{\dagger} to an $L_{\phi^{-}}$ coloring τ of $\operatorname{dom}\left(\psi_{\dagger}^{0}\right) \cup\left\{u^{\prime}\right\}$ such that any extension of τ to $V(P)$ extends to L_{ϕ}-color all of $V\left(\tilde{G}_{P}^{\text {small }}\right)$. Possibly $\tau\left(u^{\prime}\right)=d^{\prime}$, but in any case, since $u^{\prime} w^{\prime} \notin E(G)$, it follows from 2) of Proposition 1.5.1 that τ extends to an L_{ϕ}-coloring τ^{\prime} of $\operatorname{dom}(\tau) \cup V\left(J_{e^{\prime}}^{1}-w^{\prime}\right)$, where $\tau^{\prime}\left(x^{\prime}\right)=d^{\prime}$.

Since $u^{\prime} \notin N\left(w_{*}\right)$, it follows that, for any L_{ϕ}-coloring of $V\left(P^{\times}\right)$which uses $\tau^{\prime}\left(u_{\star}\right), \tau^{\prime}\left(w^{\prime}\right), \tau^{\prime}\left(x^{\prime}\right)$ on the on the respective vertices $v_{*}, w^{\prime}, x^{\prime}$, this coloring leaves $\tau\left(u^{\prime}\right)$ for u^{\prime}, so τ^{\prime} restricts to an element of $\operatorname{Corner}\left(P^{\times}, w_{*}\right)$, contradicting Claim 10.8.33.

It follows from Claim 10.8.34 that $\tilde{G}_{P}^{\text {small }}-w^{\prime}$ is a broken wheel K_{P} with principal path $v_{*} w_{*} u^{\prime}$. Let $X_{P}:=\bigcap\left(L_{\phi}(v)\right.$: $\left.v \in V\left(K_{P}\right) \backslash\left\{v_{*}, w_{*}\right\}\right)$. Recall that \hat{J} is the broken wheel $J_{e^{\prime}}^{1}-y^{\prime}$ with principal path $u^{\prime} w^{\prime} x^{\prime}$, and recall that $q_{x^{\prime}}$ is the unique neighbor of x^{\prime} on $Q^{\text {large }}$.

Let $\ell \in\{0,1\}$. It now follows from Claim 10.8.33 that, for each $r \in L_{\phi}\left(w^{\prime}\right) \backslash\left\{d^{\prime}\right\}$, there is an L_{ϕ}-coloring τ^{r} of $V\left(P_{*}\right)$ such that τ^{r} uses $\psi^{\ell}\left(v_{*}\right), r, d^{\prime}$ on the respective vertices $v_{*}, w^{\prime}, x^{\prime}$, where $z_{K_{P}}\left(\psi^{\ell}\left(v_{*}\right), \tau^{r}\left(w_{*}\right), \bullet\right) \cap z_{\hat{J}}\left(\bullet, r, d^{\prime}\right)=\varnothing$. In particular, there is no $r \in L_{\phi}\left(w^{\prime}\right) \backslash\{d\}$ such that $\mathcal{Z}_{\hat{j}}\left(\bullet, r, d^{\prime}\right)=L_{\phi}\left(u^{\prime}\right)$. Thus, each internal vertex of the path $\hat{J}-w^{\prime}$ has an L_{ϕ}-list of size precisely three and $d \in L_{\phi}\left(q_{x^{\prime}}\right)$. In particular, since $\left|L_{\phi}\left(w^{\prime}\right)\right| \geq 5$, there exist $r_{0}, r_{1} \in L_{\phi}\left(w^{\prime}\right) \backslash\left\{d^{\prime}\right\}$ with $r_{0}, r_{1} \notin L_{\phi}\left(q_{x^{\prime}}\right)$. Since \hat{J} is not a triangle, it follows that, for each $i=0$, 1 , we have $z_{\hat{J}}\left(\bullet, r_{i}, d^{\prime}\right)=L_{\phi}\left(u^{\prime}\right) \backslash\left\{r_{i}\right\}$ and $z_{K_{P}}\left(\psi\left(v_{*}\right) \tau^{r_{i}}\left(w_{*}\right), \bullet\right)=\left\{r_{i}\right\}$. By Proposition 1.4.7, we have $\tau^{r_{i}}\left(w_{*}\right)=r_{1-i}$ for each $i=0,1$, and, in particular, letting $p_{v_{*}}$ be the unique neighbor of v_{*} on the path $\tilde{G}_{P}^{\text {small }}-w_{*}$, we have $L_{\phi}\left(p_{v_{*}}\right)=\left\{r_{0}, r_{1}, \psi^{\ell}\left(v_{*}\right)\right\}$. Now, since $\psi^{0}\left(v_{*}\right) \neq \psi^{1}\left(v_{*}\right)$ and $\left\{r_{0}, r_{1}\right\}$ is independent of the choice of ℓ, we have a contradiction. This completes the proof of Lemma 10.8.1.

Chapter 11

Constructing a Smaller Counterexample

In this chapter, we complete the proof of Theorem 2.1 .7 by starting with a critical mosaic and constructing a smaller counterexample. Chapter 11 consists of four sections. In Sections 11.1 and 11.2, we prove two theorems, which together show that, when we construct a new mosaic from a critical mosaic by deleting a path between two rings (one of which is the outer face) with some additional specified conditions, the resulting graph still satisfies the distance conditions of Definition 2.1.6. In Section 11.1, we deal with the case where the outer face is a closed ring. In Section 11.2, we deal with the case where the outer face is an open ring. The deletion sets we construct in Sections 11.1 and 11.2 possibly require some slight modification away from the outer face in order to construct a desirable coloring of this set. This obstacle is dealt with in Section 11.3 with a technical lemma. The overview of Section 11.4, which is the final section in the proof of Theorem 10.0.7, is as follows: Given a critical mosaic $\mathcal{T}=\left(G, \mathcal{C}, L, C_{*}\right)$, we delete a path in G between C_{*} and the ring $C \in \mathcal{C} \backslash\left\{C_{*}\right\}$ in such a way as to produce a smaller counterexample. To do this, we apply Theorem 6.0.9 and Theorem 10.0.7.

In Theorems 6.0.9 and Theorem 10.0.7 we showed that, given a $C \in \mathcal{C}$, there is a way to associate a pair consisting of a subgraph of G and a partial coloring of G to vertex of distance two from a specified cycle close to C. We introduce the following terminology to deal with open and closed rings without excessive repetition.

Definition 11.0.1. Let $\mathcal{T}=\left(G, \mathcal{C}, L, C_{*}\right)$ be a critical mosaic. Given a $C \in \mathcal{C}$, we define a cycle A called the collar of C as follows. If C is a closed ring, then we set A to be the 1-necklace of C, and if C is an open ring, then we set A to be the 2-necklace of C. We define a subgraphs of G called the large side and small side of A as follows: If C is the outer face of G then we call $\operatorname{Int}(A)$ the large side of A and call $\operatorname{Ext}(A)$ the small side of A, and vice-versa if C is not the outer face of G.

Note that the terms "large side" and "small side" in the definition above are consistent with their uses in Definition 6.0.2.

Observation 11.0.2. Let $\mathcal{T}=\left(G, \mathcal{C}, L, C_{*}\right)$ be a critical mosaic, let $C \in \mathcal{C}$, and let A be the collar of C. Let G^{\prime} be the large side of A. Then A is $(4, L)$-short in G^{\prime}.

Proof. For any generalized chord Q of A in G^{\prime} which separates two vertices of $G^{\prime} \backslash Q$, we get that Q is a proper generalized chord of G^{\prime}, since G^{\prime} is short-separation-free. Thus, there is a well-defined side of Q in G^{\prime} which contains all the elements of $\mathcal{C} \backslash\{C\}$, as specified in Definitions 6.0.4 and 8.0.3.

Given Observation 11.0.2 it is convenient to introduce the following compact notation.
Definition 11.0.3. Let $\mathcal{T}=\left(G, \mathcal{C}, L, C_{*}\right)$ be a critical mosaic and let $C \in \mathcal{C}$. Let A be the collar of C and let G^{\prime} be the large side of A. We set $\operatorname{Ann}(C):=V(C) \cup \operatorname{Sh}_{4, L}\left(A, G^{\prime}\right) \cup B_{1}(A, G)$.

The terminology in Definitions 11.0 .1 and 11.0.3 allows us to deal with the settings of Theorems 6.0.9 and Theorem 10.0.7 together. In each of these theorems, given a critical mosaic $\mathcal{T}=\left(G, \mathcal{C}, L, C_{*}\right)$, a $C \in \mathcal{C}$ with collar A, and a vertex z on the large side of A which is of distance two from A, we associate to z a pair consisting of a subgraph K of G and a partial L-coloring of K, where $V(K) \subseteq\{z\} \cup \operatorname{Ann}(C)$.

11.1 Dealing With a Closed Outer Face

The lone result of this section is the following.
Theorem 11.1.1. Let $\mathcal{T}=\left(G, \mathcal{C}, L, C_{*}\right)$ be a critical mosaic and suppose that C_{*} is a closed \mathcal{T}-ring. Let C_{m} be a ring which minimizes the quantity $d_{G}\left(w_{\mathcal{T}}(C), w_{\mathcal{T}}\left(C_{*}\right)\right)$ among all the $C \in \mathcal{C} \backslash\left\{C_{*}\right\}$. Let A be the collar of C_{m} and let A_{*} be the collar of C_{*}. Let H be a connected subgraph of G, where $H \backslash\left(\operatorname{Ann}\left(C_{m}\right) \cup \operatorname{Ann}\left(C_{*}\right)\right)$ is a shortest $\left(D_{2}(A), D_{2}\left(A_{*}\right)\right)$-path in G. Let F be the outer face of $G \backslash H$. Then, for each $C^{\prime} \in \mathcal{C} \backslash\left\{C_{m}, C_{*}\right\}$, we have $d\left(w_{\mathcal{T}}\left(C^{\prime}\right), V(F)\right) \geq \frac{\beta}{3}+4 N_{\mathrm{mo}}$.

Proof. Let H^{\dagger} be the subgraph of G induced by $V\left(C_{*} \cup C_{m}\right) \cup V(H)$, and let Q be the path $H \backslash\left(\operatorname{Ann}\left(C_{m}\right) \cup \operatorname{Ann}\left(C_{m}\right)\right)$.
Claim 11.1.2. For any $C^{\prime} \in \mathcal{C} \backslash\left\{C_{*}, C_{m}\right\}$ we have $d\left(w_{\mathcal{T}}\left(C^{\prime}\right), C_{*}\right)+d\left(w_{\mathcal{T}}\left(C_{m}\right), C_{*}\right) \geq \beta+\frac{3 N_{\mathrm{mo}}}{2}$. In particular, we have $d\left(w_{\mathcal{T}}\left(C^{\prime}\right), C_{*}\right) \geq \frac{\beta}{2}+\frac{3 N_{\mathrm{mo}}}{4}$.

Proof: By our distance conditions, we have $d\left(w_{\mathcal{T}}\left(C^{\prime}\right), w_{\mathcal{T}}\left(C_{m}\right)\right) \geq \beta+2 N_{\text {mo }}$. Since C_{*} is a closed \mathcal{T}-ring, any two vertices of C_{*} are of distance at most $\frac{N_{\mathrm{mo}}}{2}$-apart, so we have $d\left(w_{\mathcal{T}}\left(C^{\prime}\right), C_{*}\right)+d\left(w_{\mathcal{T}}\left(C_{m}\right), C_{*}\right) \geq \beta+\frac{3 N_{\mathrm{mo}}}{2}$. Now suppose toward a contradiction that $d\left(w_{\mathcal{T}}\left(C^{\prime}\right), C_{*}\right)<\frac{\beta}{2}+\frac{3 N_{\text {mo }}}{4}$. By the minimality of C_{m}, we have $d\left(w_{\mathcal{T}}\left(C_{m}\right), C_{*}\right)<$ $\frac{\beta}{2}+\frac{3 N_{\mathrm{mo}}}{4}$ as well, so $d\left(w_{\mathcal{T}}\left(C^{\prime}\right), C_{*}\right)+d\left(w_{\mathcal{T}}\left(C_{m}\right), C_{*}\right)<\beta+\frac{3 N_{\mathrm{mo}}}{2}$, which is false, as indicated above.

We now have the following:
Claim 11.1.3. For any $C^{\prime} \in \mathcal{C} \backslash\left\{C_{*}, C_{m}\right\}$, we have $d\left(w_{\mathcal{T}}\left(C^{\prime}\right), H^{\dagger}\right)>\frac{\beta}{3}+6 N_{\mathrm{mo}}$.
Proof: Suppose toward a contradiction that there is a $C^{\prime} \in \mathcal{C} \backslash\left\{C_{*}, C_{m}\right\}$ violating this inequality. Let P be a shortest $\left(w_{\mathcal{T}}\left(C^{\prime}\right), H^{\dagger}\right)$-path in G, and let $P:=v_{1} \cdots v_{t}$, where $v_{1} \in V\left(w_{\mathcal{T}}\left(C^{\prime}\right)\right)$ and $v_{t} \in V\left(H^{\dagger}\right)$. Then $|E(P)| \leq \frac{\beta}{3}+6 N$. If $v_{t} \in \operatorname{Ann}\left(C_{m}\right)$, then there is a $\left(w_{\mathcal{T}}\left(C^{\prime}\right), B_{4}\left(C_{m}\right)\right)$-path in G of length at most $\frac{\beta}{3}+6 N$. Since each vertex of $B_{4}\left(C_{m}\right)$ is of distance at most $4+\frac{N_{\mathrm{mo}}}{3}$ from $w_{\mathcal{T}}\left(C_{m}\right)$, we have $d\left(w_{\mathcal{T}}\left(C^{\prime}\right), w_{\mathcal{T}}\left(C_{m}\right)\right) \leq \frac{\beta}{3}+6 N+\frac{N_{\mathrm{mo}}}{3}+4$, contradicting our distance conditions. Thus, we have $v_{t} \notin \operatorname{Ann}\left(C_{m}\right)$, so $v_{t} \in \operatorname{Ann}\left(C_{*}\right) \cup V(Q)$. Consider the following cases:

Case 1: $v_{t} \in \operatorname{Ann}\left(C_{*}\right)$
In this case, if $v_{t} \in B_{4}\left(C_{*}\right)$, then we have $d\left(w_{\mathcal{T}}\left(C^{\prime}\right), C_{*}\right) \leq \frac{\beta}{3}+6 N_{\mathrm{mo}}+4$, contradicting Claim 11.1.2 Likewise, if $v_{t} \in \operatorname{Ann}\left(C_{*}\right) \backslash B_{4}\left(C_{*}\right)$, then there exists a generalized chord R of $C^{1} \operatorname{in} \operatorname{Int}\left(C^{1}\right)$, where $|E(R)| \leq 4$, such that, in $\operatorname{Int}\left(C^{1}\right), R$ separates v_{t} from each element of $\mathcal{C} \backslash\left\{C_{*}\right\}$. In that case, since each vertex of R lies in $B_{4}\left(C_{*}\right)$, it follows that there exists a $\left(w_{\mathcal{T}}\left(C^{\prime}\right), C_{*}\right)$-path of length at most $\frac{\beta}{3}+6 N+4$, contradicting Claim 11.1.2.

Case 2: $v_{t} \notin \operatorname{Ann}\left(C_{*}\right)$
In this case, we have $v_{t} \in V(Q)$. Since Q is a $\left(D_{2}(A), D_{2}\left(A_{*}\right)\right)$-path by assumption, we let $Q:=w_{1} \cdots w_{s}$, where $w_{1} \in D_{2}(A)$ and $w_{s} \in D_{2}\left(A_{*}\right)$. There exists an index $i \in\{1, \cdots, s\}$ such that $v_{t}=w_{i}$. Let $P_{1}:=$ $v_{1} P v_{t} Q w_{s}$ and let $P_{2}:=v_{1} P v_{t} Q w_{1}$. Since P_{2} is a $\left(w_{\mathcal{T}}\left(C^{\prime}\right), D_{2}(A)\right)$-path, we have $\left|E\left(P_{2}\right)\right| \geq(\beta-4)-\frac{N_{\mathrm{mo}}}{3}$. Since
$\left|E\left(P_{1}\right)\right|+\left|E\left(P_{2}\right)\right|=2|E(P)|+|E(Q)|$, we obtain the inequality $2|E(P)|+|E(Q)| \geq\left|E\left(P_{1}\right)\right|+(\beta-4)-\frac{N_{\mathrm{mo}}}{3}$. Since $|E(P)| \leq \frac{\beta}{3}+6 N$, we then have

$$
|E(Q)|-\left|E\left(P_{1}\right)\right| \geq(\beta-4)-\left(\frac{2 \beta}{3}+12 N_{\mathrm{mo}}\right)-\frac{N_{\mathrm{mo}}}{3} \geq\left(\frac{\beta}{3}-13 N_{\mathrm{mo}}-4\right)
$$

Since Q is a shortest $\left(D_{2}(A), D_{2}\left(A_{*}\right)\right.$-path in G, we have $d\left(w_{\mathcal{T}}\left(C_{m}\right), C_{*}\right) \geq|E(Q)|+8$. Likewise, we have $\left|E\left(P_{1}\right)\right| \geq d\left(w_{\mathcal{T}}\left(C^{\prime}\right), C_{*}\right)-4$, so we obtain

$$
d\left(w_{\mathcal{T}}\left(C_{m}\right), C_{*}\right) \geq\left|E\left(P_{1}\right)\right|+\left(\frac{\beta}{3}+4-13 N_{\mathrm{mo}}\right) \geq d\left(w_{\mathcal{T}}\left(C^{\prime}\right), C_{*}\right)+\left(\frac{\beta}{3}-13 N_{\mathrm{mo}}\right)
$$

By the minimality of $d\left(w_{\mathcal{T}}\left(C_{m}\right), C_{*}\right)$, we then have $\frac{\beta}{3}-13 N_{\mathrm{mo}} \leq 0$. Recall that $\beta:=\frac{17}{15} N_{\mathrm{mo}}^{2}$ and $N_{\mathrm{mo}} \geq 96$, so the inequality $\beta \leq 39 N_{\mathrm{mo}}$ is false, giving us our desired contradiction. This completes the proof of Claim 11.1.3.

We now return to the proof of Theorem 11.1.1. Applying Claim 11.1.3, for each vertex $v \in V(H)$, every facial subgraph G containing v, except possibly C_{m}, C_{*}, is a triangle, as all the other elements of \mathcal{C} are far from H^{\dagger}. Thus, it immediately follows from Theorem 1.3.2 that $V(F) \backslash V\left(C_{m} \cup C_{*}\right) \subseteq D_{1}(H)$, so we have $V(F) \subseteq B_{1}\left(H^{\dagger}\right)$. Combining this with Claim 11.1.3, it immediately follows that, for any $C^{\prime} \in \mathcal{C} \backslash\left\{C_{m}, C_{*}\right\}$, we have $d\left(F, w_{\mathcal{T}}\left(C^{\prime}\right)\right) \geq$ $\frac{\beta}{3}+4 N_{\mathrm{mo}}$. This completes the proof of Theorem 11.1.1.

11.2 Dealing With an Open Outer Face

We now prove an analogue to Theorem 11.1.1 for the case where the outer face is an open ring. This is surprisingly technical, and considerable harder than the proof of Theorem 11.1.1. The central obstacle is the fact that, given a critical mosaic $\mathcal{T}:=\left(G, \mathcal{C}, L, C_{*}\right)$, it is possible that two elements of $\mathcal{C} \backslash\left\{C_{*}\right\}$ are both close to C_{*} even though they are far from each other. This is not the case when C_{*} is closed because the length of C_{*} is bounded in that case. This obstacle is the reason for the technical conditions in 5) of Definition 6.0 .8 which deal with the distance between the precolored path of the outer face and the deletion set we constructed Theorem 6.0.9. We begin this section with the following definition.

Definition 11.2.1. Let Let $\mathcal{T}=\left(G, \mathcal{C}, L, C_{*}\right)$ be a critical mosaic and suppose that C_{*} is an open \mathcal{T}-ring. Let C_{*}^{2} be the 2-necklace of C, and let $C \in \mathcal{C} \backslash\left\{C_{*}\right\}$. A path P is called C-monotone if P is a $\left(w_{\mathcal{T}}(C), D_{3}\left(C_{*}^{2}\right)\right)$-path which satisfies the following.

1) P is a quasi-shortest path; $A N D$
2) $\left|V(P) \cap D_{4}\left(C_{*}^{2}\right)\right|=1$; AND
3) $|E(P)| \leq d\left(w_{\mathcal{T}}(C), D_{3}\left(C_{*}^{2}\right)\right)+3$.

We now have the following.
Definition 11.2.2. Let $\mathcal{T}=\left(G, \mathcal{C}, L, C_{*}\right)$ be a critical mosaic and suppose that C_{*} is an open \mathcal{T}-ring. Let C_{*}^{1} be the 1-necklace of C_{*} and let C_{*}^{2} be the 2-necklace of C. Given a $C \in \mathcal{C} \backslash\{C\}$, we introduce the following terminology.

1) A subgraph H of G is called a C-seam if there is a unique vertex $z \in V(H) \cap D_{2}\left(C_{*}^{2}\right)$ such that the following hold:
a) $H \backslash\left(\operatorname{Ann}\left(C_{*}\right) \cup\{z\}\right)$ is a C-monotone path and the $D_{3}\left(C_{*}^{2}\right)$-endpoint of this path is adjacent to z; AND
b) The subgraph of G induced by $V(H) \cap\left(\operatorname{Ann}\left(C_{*}\right) \cup\{z\}\right)$ is the underlying graph of a $\left(C_{*}, z\right)$-opener. The head of this $\left(C_{*}, z\right)$-opener is also called the head of H.
2) The vertex z is called the join of H. The path $H \backslash\left(\operatorname{Ann}\left(C_{*}\right) \cup\{z\}\right)$ is called the tail of H.

Note that the head of H is indeed well-defined, since, by Definition 6.0.8, $C_{*}^{2} \cap H$ is a path which contains both $\operatorname{Pin}(z)$ and \mathbf{P}_{*}^{1}. This section is short but somewat technical. The proof of the theorem below, which is an analogue to Theorem 11.1.1 for the case where the outer face is open, makes up the remainder of this section.

Theorem 11.2.3. Let $\mathcal{T}=\left(G, \mathcal{C}, L, C_{*}\right)$ be a critical mosaic and suppose that C_{*} is an open \mathcal{T}-ring. Let C_{*}^{1} be the 1-necklace of C_{*} and let C_{*}^{2} be the 2-necklace of C_{*}. Then there exists a $C \in \mathcal{C} \backslash\left\{C_{*}\right\}$ and a C-monotone path P such that, for any $z \in D_{2}\left(C_{*}^{2}\right)$ which is adjacent to the $D_{3}\left(C_{*}^{2}\right)$-endpoint of P, there exists a C-seam H such that the following hold.

1) P is the tail of H and z is the join of H; AND
2) Letting F be the outer face of $G \backslash H$, every $C^{\prime} \in \mathcal{C} \backslash\left\{C, C_{*}\right\}$ satisfies the inequality $d\left(F, w_{\mathcal{T}}\left(C^{\prime}\right)\right) \geq \frac{\beta}{3}+$ $2 N_{\mathrm{mo}}+\operatorname{Rk}\left(\mathcal{T} \mid C^{\prime}\right)$.

Proof. Suppose toward a contradiction that the theorem does not hold. Given a $C \in \mathcal{C} \backslash\{C\}$ and a C-seam H, an element $C^{\prime} \in \mathcal{C} \backslash\left\{C^{\prime}, C_{*}\right\}$ is called an H-blocker if, letting F be the outer face of $G \backslash H$, we have $d\left(F, w_{\mathcal{T}}\left(C^{\prime}\right)\right)<$ $\frac{\beta}{3}+2 N_{\mathrm{mo}}+\operatorname{Rk}\left(\mathcal{T} \mid C^{\prime}\right)$.

Claim 11.2.4. Let $C \in \mathcal{C} \backslash\left\{C_{*}\right\}$ and let P be a $\left(w_{\mathcal{T}}(C), D_{3}\left(C_{*}^{2}\right)\right)$-path. Then $B_{1}(P) \cap \operatorname{Ann}\left(C_{*}\right)=\varnothing$.

Proof: Suppose that $B_{1}(P) \cap \operatorname{Sh}_{4}\left(C_{*}^{2}, \operatorname{Int}\left(C_{*}^{2}\right)\right) \neq \varnothing$. Since P is a $\left(w_{\mathcal{T}}(C), D_{3}\left(C_{*}^{2}\right)\right)$-path, there is a generalized chord R of C_{*}^{2} in $\operatorname{Int}\left(C_{*}^{2}\right)$ such that $|E(R)| \leq 4$ and $V(R \cap P) \neq \varnothing$. Each vertex of R has distance at most two from $V\left(C_{*}^{2}\right)$ so $V(R) \cap B_{2}\left(C_{*}^{2}\right) \neq \varnothing$. Since $D_{3}\left(C_{*}^{2}\right)$ separates C from $B_{2}\left(C_{*}^{2}\right)$, there is an internal vertex of R in $D_{3}\left(C_{*}^{2}\right)$, contradicting the fact that R is a $\left(w_{\mathcal{T}}(C), D_{3}\left(C_{*}^{2}\right)\right)$-path. Thus, we have $B_{1}(P) \cap \operatorname{Sh}_{4}\left(C_{*}^{2}, \operatorname{Int}\left(C_{*}^{2}\right)\right)=\varnothing$

Now suppose that $B_{1}(P) \cap \operatorname{Ann}\left(C_{*}\right) \neq \varnothing$. S In that case, since $B_{1}(P) \cap \operatorname{Sh}_{4}\left(C_{*}^{2}, \operatorname{Int}\left(C_{*}^{2}\right)\right)=\varnothing$, there is a vertex p of P of distance at most one from $B_{1}\left(C_{*}^{2}\right) \cup V\left(C_{*}\right)$, so $p \in B_{2}\left(C_{*}^{2}\right)$. Since the endpoints of P lie in $w_{\mathcal{T}}(C)$ and $D_{3}\left(C_{*}^{2}\right), p$ is an internal vertex of P. Since the deletion of $D_{3}\left(C_{*}\right)$ disconnects $w_{\mathcal{T}}(C)$ from $B_{2}\left(C_{*}^{2}\right)$, there is an internal vertex of P lying in $D_{3}\left(C_{*}^{2}\right)$, contradicting the fact that P is a $\left(w_{\mathcal{T}}(C), D_{3}\left(C_{*}^{2}\right)\right)$-path.

Now we have the following.

Claim 11.2.5. Let $C \in \mathcal{C} \backslash\left\{C_{*}\right\}$, let P be a C-monotone path, and let z be a vertex of $D_{2}\left(C_{*}^{2}\right)$ which is adjacent to the $D_{3}\left(C_{*}^{2}\right)$-endpoint of P. Then there exists a C-seam H such that P is the tail of H and z is the join of H.

Proof: Since P is C-monotone, it follows from Claim 11.2.4 that $z \in D_{2}\left(C_{*}^{2}\right) \backslash \operatorname{Sh}_{4}\left(C_{*}^{2}, \operatorname{Int}\left(C_{*}^{2}\right)\right)$ by definition. Thus, by Theorem 6.0.9, there exists a $\left(C_{*}, z\right)$-opener. Let K be the underlying graph of a $\left(C_{*}, z\right)$-opener, let p be the $D_{3}\left(C_{*}^{2}\right)$-endpoint of P, and consider the graph $H:=(P \cup K)+z p$. We claim that H is a C-seam in which z is the uniquely specified join. By 5a) of Definition 6.0.8, z is the only vertex of $\left(V(K) \cap D_{2}\left(C_{*}^{2}\right)\right) \backslash \operatorname{Sh}_{4}\left(C_{*}^{2}, \operatorname{Int}\left(C_{*}^{2}\right)\right)$. By Claim 11.2.4, we have $G\left[V(H) \cap\left(V\left(\operatorname{Ann}\left(C_{*}\right) \cup\{z\}\right)\right]=K\right.$, so H is a C-seam in which z is the uniquely specified join of H and P is the tail of H.

Now we introduce the following notation.

Definition 11.2.6. We set \mathcal{S} to be the set of triples (C, P, H) such that the following hold.

1) $C \in \mathcal{C} \backslash\left\{C_{*}\right\}$ and P is a C-monotone path of length at most $\frac{\beta}{3}+2 N_{\mathrm{mo}}+\operatorname{Rk}(\mathcal{T} \mid C)$; AND
2) H is a C-seam with tail P, and there exists an H-blocker.

Now we have the following:

Claim 11.2.7. Let $(C, P, H) \in \mathcal{S}$ and let F be the outer face of $G \backslash H$. Let $C^{\prime} \in \mathcal{C} \backslash\{C\}$ be an H-blocker and let R be a shortest $\left(w_{\mathcal{T}}\left(C^{\prime}\right), F\right)$-path in $G \backslash H$. Then the following holds:

1) $d\left(R, H \backslash \operatorname{Ann}\left(C_{*}\right)\right)>\frac{\beta}{4}+2$; AND
2) The F-endpoint of R is of distance precisely one from $V(H) \cap \operatorname{Ann}\left(C_{*}\right)$, and $V(R) \cap V\left(C_{*}\right)=\varnothing$.

Proof: Suppose toward a contradiction that $d\left(R, H \backslash \operatorname{Ann}\left(C_{*}\right)\right) \leq \frac{\beta}{4}+2$. By assumption, R is a path of length at most $\frac{\beta}{3}+2 N_{\mathrm{mo}}+\operatorname{Rk}\left(\mathcal{T} \mid C^{\prime}\right)-1$, and since $(C, P, H) \in \mathcal{S}$, it follows that $H \backslash \operatorname{Ann}\left(C_{*}\right)$ is a path of length at most $\frac{\beta}{3}+2 N_{\mathrm{mo}}+\operatorname{Rk}(\mathcal{T} \mid C)+1$. Thus, we have $d\left(w_{\mathcal{T}}\left(C^{\prime}\right), w_{\mathcal{T}}(C)\right) \leq \frac{2 \beta}{3}+4 N_{\mathrm{mo}}+\operatorname{Rk}(\mathcal{T} \mid C)+\operatorname{Rk}\left(\mathcal{T} \mid C^{\prime}\right)+\frac{\beta}{4}+2$. Since $C \neq C^{\prime}$ and $C, C^{\prime} \in \mathcal{C} \backslash\left\{C_{*}\right\}$, it follows from our distance conditions on \mathcal{T} that $\frac{\beta}{4}+4 N_{\mathrm{mo}}+2 \geq \frac{\beta}{3}$, and thus $48 N_{\mathrm{mo}}+24 \geq \beta$, which is false.

It follows from Theorem 1.3.2 that $V(F) \subseteq D_{1}(H) \cup V\left(C_{*} \backslash H\right) \cup V(C \backslash H)$. Since $|E(R)|<\frac{\beta}{3}+2_{\text {mo }}+\operatorname{Rk}\left(\mathcal{T} \mid C^{\prime}\right)$, it follows from our distance conditions on \mathcal{T} that the F-endpoint of R does not lie in $C_{*} \backslash \mathbf{\mathbf { P }}^{*}$ and does not lie in $w_{\mathcal{T}}(C)$. Since $R \subseteq G \backslash H$, no vertex of R lies in $C_{*} \cap H$. Since R is a shortest, it follows that $V(R) \cap V\left(C_{*}\right)=\varnothing$. Let z be the join of H. By assumption, the subgraph of G induced by $V(H) \cap\left(\operatorname{Ann}\left(C_{*}\right) \cup\{z\}\right)$ is the underlying graph of a $\left(C_{*}, z\right)$ opener, so it follows from 5a) of Definition 6.0.8 that $V\left(\mathbf{P}_{*}\right) \subseteq V(H) \cap \operatorname{Ann}\left(C_{*}\right)$. Since $d\left(R, H \backslash \operatorname{Ann}\left(C_{*}\right)\right)>\frac{\beta}{4}+2$, it follows that the F-endpoint of R is of distance one from $V(H) \cap \operatorname{Ann}\left(C_{*}\right)$.

We now have the following.

Claim 11.2.8. Let $(C, P, H) \in \mathcal{S}$, let z be the join of H, and let F be the outer face of $G \backslash H$. Let $C^{\prime} \in \mathcal{C} \backslash\{C\}$ be an H-blocker and let $R:=p_{1} \cdots p_{s}$ be a shortest $\left(w_{\mathcal{T}}\left(C^{\prime}\right), F\right)$-path in $G \backslash H$, where p_{s} is the F-endpoint of R. Then $H \cap C_{*}^{2}$ is a path, and the following hold.

1) There is a vertex of $p_{j} \in V(R)$ of distance at most two from $H \cap C_{*}^{2}$, where $j \in\{s-2, s-1, s\}$; AND
2) The path $\operatorname{Pin}(z)$ is a terminal subpath of $H \cap C_{*}^{2}$, and $\operatorname{Pin}(z) \cap \mathbf{P}_{*}^{1}=\varnothing$; AND
3) The head of H is a path of length at least $\frac{\beta}{4}-N_{\text {mo }}$.

Proof: . Since $G\left[V(H) \cap \operatorname{Ann}\left(C_{*}\right)\right]$ is the underlying graph of a $\left(C_{*}, z\right)$-opener, there is a subpath Q of C_{*}^{2} such that $H \cap C_{*}^{2}=Q$, where each of the paths \mathbf{P}_{1}^{*} and $\operatorname{Pin}(z)$ is a subpath of Q.

Subclaim 11.2.9. There is a vertex of $p_{s-2} p_{s-1} p_{s}$ of distance at most two from Q.
Proof: By Claim 11.2.7, p_{s} is of distance precisely one from $V(H) \cap \operatorname{Ann}\left(C_{*}\right)$, and $V(R) \subseteq V\left(G \backslash C_{*}\right)$. If the F-endpoint of R lies in $C^{1} \backslash \mathbf{P}_{*}^{1}$ then, by Condition 5e) of Definition 6.0.8, the F-endpoint of R has distance at most two from Q, so we are done in that case. Now suppose that the F-endpoint of R does not lie in $C^{1} \backslash \mathbf{P}_{1}^{*}$. Since $V(R) \subseteq V\left(G \backslash C_{*}\right)$, the F-endpoint of R lies in $D_{1}\left(V(H) \cap \operatorname{Ann}\left(C_{*}\right)\right) \cap V\left(\operatorname{Ext}\left(C_{*}^{2}\right)\right)$. Let p^{\prime} be a neighbor of p_{s} of distance one from $V(H) \cap \operatorname{Ann}\left(C_{*}\right)$. If $p^{\prime} \in B_{1}\left(C_{*}^{2}\right) \cap V(H)$, then, again by Condition 5e) of Definition 6.0.8, the F-endpoint of R has distance at most two from Q, so we are done in that case. Since
$p_{s} \in V\left(\operatorname{Ext}\left(C_{*}^{2}\right)\right.$ and $\mathbf{P}_{*} \subseteq H$, p_{s} has no neighbors in $C_{*} \backslash H$, so we just need to deal with the case where $p^{\prime} \in \operatorname{Sh}_{4}\left(C_{*}^{2}, \operatorname{Int}\left(C_{*}^{2}\right)\right)$. By Claim 11.2.7, we have $d\left(z, p_{s}\right)>\frac{\beta}{4}$, so, by Condition 5a) of Definition 6.0.8, we have $p^{\prime} \in \operatorname{Sh}_{4}\left(Q, C_{*}^{2}, \operatorname{Int}\left(C_{*}^{2}\right)\right)$. Thus, there is a subpath of R with one endpoint in $w_{\mathcal{T}}\left(C^{\prime}\right)$ and one endpoint q in a generalized chord of C_{*}^{2} of length at most four, where the endpoints of this generalized chord lie in Q. Thus, q has distance at most two from Q. We just need to check that $q \in\left\{p_{s-2}, p_{s-1}, p_{s}\right\}$.

Suppose toward a contradiction that $q \notin\left\{p_{s-2}, p_{s-1}, p_{s}\right\}$. By assumption, we have $|E(R)|<\frac{\beta}{3}+2 N_{\mathrm{mo}}+$ $\operatorname{Rk}\left(\mathcal{T} \mid C^{\prime}\right)$, and thus $E\left(p_{1} R q\right) \left\lvert\,<\frac{\beta}{3}+2 N_{\mathrm{mo}}+\operatorname{Rk}\left(\mathcal{T} \mid C^{\prime}\right)-3\right.$. Since q has distance at most two from Q, there is a $\left(q, C_{*}\right)$-path of length at most four. If this path has an endpoint in $C_{*} \backslash \stackrel{\text { ® }}{\mathbf{P}}$, then we have $\left(w_{\mathcal{T}}\left(C^{\prime}\right), w_{\mathcal{T}}\left(C_{*}\right)\right)$-path of length at most $\frac{\beta}{3}+2 N_{\mathrm{mo}}+\operatorname{Rk}\left(\mathcal{T} \mid C^{\prime}\right)-1$, contradicting the distance conditions on \mathcal{T}. Thus, no such $\left(q, C_{*}\right)-$ path exists, and thus there is a $\left(q, C_{*}\right)$-path which has length at most three and contains an internal vertex of \mathbf{P}_{*}^{1}. But since $\mathbf{P}_{*}^{1} \subseteq Q$, it follows that q has distance at most one from F. Since $q \in V\left(p_{1} R p_{s-3}\right)$, this contradicts the fact that R is a shortest $\left(w_{\mathcal{T}}\left(C^{\prime}\right), F\right)$-path.

The above proves 1).Now we prove 2). Applying Subclaim 11.2.9, let \hat{p} be a vertex of R of distance at most two from Q. Suppose toward a contradiction that $\operatorname{Pin}(z)$ is not a terminal subpath of Q. In that case, by 5 b) of Definition 6.0.8, every vertex of Q is of distance at most 8 from \mathbf{P}_{*}, so the join z of H has distance at most 10 from \mathbf{P}_{*}. Since any two vertices of \mathbf{P}_{*} are of distance at most $\frac{2 N_{\mathrm{mo}}}{3}$ apart, we have $d(\hat{p}, z) \leq 20+\frac{2 N_{\mathrm{mo}}}{3}$. Since $z \in V(H) \backslash \operatorname{Ann}\left(C_{*}\right)$, this contradicts Claim 11.2.7. Thus $\operatorname{Pin}(z)$ is indeed a terminal subpath of $H \cap C_{*}^{2}$

Subclaim 11.2.10. R has distance at most three from $Q \backslash \operatorname{Sh}_{4}\left(Q, C_{*}^{2}, \operatorname{Int}\left(C_{*}^{2}\right)\right)$.
Proof: By Subclaim 11.2.9, there is a vertex $v \in V(Q)$ of distance at most two from R. If $v \in V(Q) \backslash$ $\operatorname{Sh}_{4}\left(Q, C_{*}^{2}, \operatorname{Int}\left(C_{*}^{2}\right)\right)$, then we are done, so suppose that $v \in V(Q) \cap \operatorname{Sh}_{4}\left(Q, C_{*}^{2}, \operatorname{Int}\left(C_{*}^{2}\right)\right)$. In that case, since one endpoint of R lies in $w_{\mathcal{T}}\left(C^{\prime}\right)$, there is a subpath R^{\prime} of R with one endpoint in $w_{\mathcal{T}}\left(C^{\prime}\right)$ and the other endpoint of distance at most one from a proper generalized chord M of C_{*}^{2} in $\operatorname{Int}\left(C_{*}^{2}\right)$, where M has length at most four and the endpoints of M lie in $Q \backslash \operatorname{Sh}_{4}\left(Q, C_{*}^{2}, \operatorname{Int}\left(C_{*}^{2}\right)\right)$. Since each vertex of M has distance at most two from the endpoints of M, it follows that R has distance at most three from $Q \backslash \operatorname{Sh}_{4}\left(Q, C_{*}^{2}, \operatorname{Int}\left(C_{*}^{2}\right)\right)$.

Now suppose toward a contradiction that $\operatorname{Pin}(z) \cap \mathbf{P}_{*}^{1} \neq \varnothing$. In that case, by 5 d$)$ of Definition 6.0 .8 , every vertex of $Q \backslash \operatorname{Sh}_{4}\left(Q, C_{*}^{2}, \operatorname{Int}\left(C_{*}^{2}\right)\right)$ has distance at most 14 from \mathbf{P}_{*}. Since $\operatorname{Pin}(z)$ is a terminal subpath of Q, it follows that z has distance at most two from $Q \backslash \operatorname{Sh}_{4}\left(Q, C_{*}^{2}, \operatorname{Int}\left(C_{*}^{2}\right)\right)$. By Subclaim 11.2.10, R has distance at most three from $Q \backslash \operatorname{Sh}_{4}\left(Q, C_{*}^{2}, \operatorname{Int}\left(C_{*}^{2}\right)\right)$. Since any two vertices of \mathbf{P}_{*} are of distance at most $\frac{2 N_{\mathrm{mo}}}{3}$ apart, it follows that $d(z, R) \leq \frac{2 N_{\mathrm{mo}}}{3}+19$, contradicting Claim 11.2.7. Thus, we have $\operatorname{Pin}(z)=\varnothing$. This proves 2).
Now we prove 3). Let Q_{-}be the head of H. Since $\operatorname{Pin}(z) \cap \mathbf{P}_{*}^{1}=\varnothing$, it follows from 5c) of Definition 6.0 .8 that every vertex of $Q \backslash\left(\mathbf{P}_{*}^{1} \cup Q_{-}\right)$has distance at most 8 from \mathbf{P}_{*}, so each vertex of $Q \backslash P$ has distance at most 8 from \mathbf{P}_{*}. By Subclaim 11.2.9, there is a vertex \hat{p} of R of distance at most two from Q. Suppose toward a contradiction that $|E(P)|<\frac{\beta}{4}-N_{\mathrm{mo}}$. In that case, since each of \hat{p}, z has distance at most two from Q, and each vertex of $Q \backslash Q_{-}$has distance at most 8 from \mathbf{P}_{*}, we have $d(\hat{p}, z)<12+\left|E\left(\mathbf{P}_{*}\right)\right|+\frac{\beta}{4}-N_{\mathrm{mo}}$. Since $\left|E\left(\mathbf{P}_{*}\right)\right| \leq \frac{2 N_{\mathrm{mo}}}{3}$ and $\frac{2 N}{3}+12<N_{\mathrm{mo}}$, we have $d(\hat{p}, z)<\frac{\beta}{4}$, contradicting Claim 11.2.7. Thus, Q_{-}is indeed a path of length at least $\frac{\beta}{4}-N_{\mathrm{mo}}$.

Now we have the following:

Claim 11.2.11. Let $C \in \mathcal{C} \backslash\left\{C_{*}\right\}$, let P be a C-monotone path, let H be a C-seam with tail P, and let $C^{\dagger} \in \mathcal{C} \backslash\{C\}$ be an H-blocker. Then there exists a $\left(w_{\mathcal{T}}\left(C^{\dagger}\right), D_{3}\left(C_{*}^{2}\right)\right)$ path R^{\dagger} such that the following hold.
A) R^{\dagger} is a C^{\dagger}-monotone path and is of length at most $\frac{\beta}{3}+2 N_{\mathrm{mo}}+\operatorname{Rk}\left(\mathcal{T} C^{\dagger}\right)$; AND
B) $d\left(P, R^{\dagger}\right) \geq \frac{\beta}{4}$; AND
C) If $|E(P)| \leq \frac{\beta}{3}+2 N_{\mathrm{mo}}+\operatorname{Rk}(\mathcal{T} \mid C)$, then the $D_{3}\left(C_{*}^{2}\right)$-endpoint of R^{\dagger} is of distance at most 11 from $H \cap C_{*}^{2}$.

Proof: Let z be the join of H. By definition, $G\left[V(H) \cap\left(\operatorname{Ann}\left(C_{*}\right) \cup\{z\}\right)\right]$ is the underlying graph of a $\left(C_{*}, z\right)$-opener, so $H \cap C_{*}^{2}$ is a path Q by 5) of Definition 6.0.8. Let F be the outer face of $G \backslash H$ and let $R:=p_{1} \cdots p_{s}$, where $p_{1} \in w_{\mathcal{T}}\left(C^{\dagger}\right)$ and $p_{s} \in V(F)$.

Subclaim 11.2.12. $V(R) \cap B_{2}\left(C_{*}^{2}\right) \neq \varnothing$.
Proof: By 2) of Claim 11.2.7, p_{s} has a neighbor in $V(H) \cap \operatorname{Ann}\left(C_{*}\right)$. If p_{s} has a neighbor in $V\left(C_{*}\right) \cup B_{1}\left(C_{*}^{2}\right)$, then we immediately have $V(R) \cap B_{2}\left(C_{*}^{2}\right) \neq \varnothing$. Now suppose that p_{s} has a neighbor in $\operatorname{Sh}_{4}\left(C_{*}^{2}, \operatorname{Int}\left(C_{*}^{2}\right)\right)$. Then there is a $j \in\{1, \cdots, s\}$ such that p_{j} lies on a generalized chord of C_{*}^{2} of length at most four, so $p_{j} \in B_{2}\left(C_{*}^{2}\right)$ and we again have $V(R) \cap B_{2}\left(C_{*}^{2}\right) \neq \varnothing$.

Since $V(R) \cap B_{2}\left(C_{*}^{2}\right) \neq \varnothing$ and $D_{4}\left(C_{*}^{2}\right)$ disconnects C^{\dagger} from $B_{2}\left(C_{*}^{2}\right)$, there is an index $m \in\{1, \cdots, s\}$ such that $p_{m} \in D_{4}\left(C_{*}^{2}\right)$. Let m be the minimal index with this property. Since $D_{4}\left(C_{*}^{2}\right)$ disconnects C^{\dagger} from $B_{3}\left(C_{*}^{2}\right)$, we have $V\left(p_{1} R p_{m}\right) \cap B_{3}\left(C_{2}^{*}\right)=\varnothing$, and, in particular, $p_{1} R p_{m}$ is a $\left(w_{\mathcal{T}}\left(C^{\dagger}\right), D_{4}\left(C_{*}^{2}\right)\right)$-path and, for any $q \in D_{3}\left(C_{*}^{2}\right) \cap N\left(p_{j}\right)$, $p_{1} R p_{m} q$ is a $\left(w_{\mathcal{T}}\left(C^{\dagger}\right), D_{3}\left(C_{*}^{2}\right)\right.$)-path. Furthermore, since $V(R) \cap B_{2}\left(C_{*}^{2}\right) \neq \varnothing$, we have $m<s-1$.

Subclaim 11.2.13. For any $q \in D_{3}\left(C_{*}^{2}\right) \cap N\left(p_{j}\right)$, the following hold:

1. $p_{1} R p_{m} q$ is an induced path in G; AND
2. Either $|E(P)|>\frac{\beta}{3}+2 N_{\mathrm{mo}}+\operatorname{Rk}(\mathcal{T} \mid C)$ or $d\left(q, C_{*}^{2} \cap H\right) \leq 8$

Proof: Firstly, since $q \in D_{3}\left(C_{*}^{2}\right) \cap N\left(p_{j}\right)$ and $\mid V\left(p_{1} R p_{m} q\right) \cap B_{4}\left(C_{*}^{2}\right)=\left\{p_{m}, q\right\}$, it immediately follows that p_{m} is the only vertex of $p_{1} R p_{j} q$ adjacent to q. Since R is a shortest $\left(w_{\mathcal{T}}\left(C^{\dagger}\right), F\right)$-path, it is an induced path, so $p_{1} P p_{m} q$ is also an induced path.

Now we prove 2). Suppose that $|E(P)| \leq \frac{\beta}{3}+2 N_{\mathrm{mo}}+\operatorname{Rk}(\mathcal{T} \mid C)$. Thus, we have $(C, P, H) \in \mathcal{S}$. We claim that $d(q, Q) \leq 8$. If p_{m} has distance four from \mathbf{P}_{*}^{1}, then we are done, since $\mathbf{P}_{*}^{1} \subseteq Q$ by 5a) Definition 6.0.8. Now suppose that p_{m} does not have distance three from \mathbf{P}_{*}^{1}. Thus, p_{j} has distance four from a vertex of $C_{*}^{2} \backslash \mathbf{P}_{*}^{1}$. By assumption $|E(R)|<\frac{\beta}{3}+2 N_{\mathrm{mo}}+w_{\mathcal{T}}\left(C^{\dagger}\right)$. Since each vertex of $C^{2} \backslash \mathbf{P}_{*}^{1}$ has distance at most two from $w_{\mathcal{T}}\left(C_{*}\right)$, we have $s-5 \leq m \leq s$, or else we contradict the distance conditions on \mathcal{T}. Combining this with 1) of Claim 11.2.8 it follows that p_{m} has distance at most 7 from from Q, so q has distance at most 8 from $H \cap C_{*}^{2}$, as desired. This proves 2).

We now have the following.
Subclaim 11.2.14. For any $q \in D_{3}\left(C_{*}^{2}\right)$, we have $\left|E\left(p_{1} R p_{m} q\right)\right| \leq d\left(w_{\mathcal{T}}\left(C^{\dagger}\right), D_{3}\left(C_{*}^{2}\right)\right)+3$.
Proof: Suppose toward a contradiction that $\left|E\left(p_{1} R p_{m} q\right)\right|>d\left(w_{\mathcal{T}}\left(C^{\dagger}\right), D_{3}\left(C_{*}^{2}\right)\right)+3$. Since $m<s-1$, we have $\left|E\left(p_{1} R p_{m} q\right)\right| \leq \frac{\beta}{3}+2 N_{\mathrm{mo}}+\operatorname{Rk}\left(\mathcal{T} \mid C^{\dagger}\right)-1$, so it follows that $d\left(w_{\mathcal{T}}\left(C^{\dagger}\right), D_{3}\left(C_{*}^{2}\right)\right)<\frac{\beta}{3}+2 N_{\mathrm{mo}}+\operatorname{Rk}\left(\mathcal{T} \mid C^{\dagger}\right)-4$. Thus, there exists a $\left(w_{\mathcal{T}}\left(C^{\dagger}\right), D_{3}\left(C_{*}^{2}\right)\right)$-path $R_{\text {short }}$ of length at most $\frac{\beta}{3}+2 N_{\text {mo }}+\operatorname{Rk}\left(\mathcal{T} \mid C^{\dagger}\right)-5$. Since every vertex of $C_{*}^{2} \backslash \mathbf{P}_{*}^{1}$ is of distance two from $w_{\mathcal{T}}\left(C_{*}\right)$, it follows that the $D_{3}\left(C_{*}^{2}\right)$-endpoint of $R_{\text {short }}$ lies in $D_{3}\left(\mathbf{P}_{*}^{1}\right)$, or else we contradict the distance conditions on \mathcal{T}.

Since $B_{1}\left(\mathbf{P}_{*}^{1}\right) \subseteq V(H \cup F)$, the $D_{3}\left(C_{*}^{2}\right)$-endpoint of $R_{\text {short }}$ is of distance at most two from $V(H \cup F)$. Since $D_{1}(H) \subseteq V(F)$, there is a $\left(w_{\mathcal{T}}\left(C^{\dagger}, F\right)\right.$-path of length at most $\left|E\left(R_{\text {short }}\right)\right|+3$. By assumption, $\left|E\left(R_{\text {short }}\right)\right|+3<$ $\left|E\left(p_{1} R p_{m} q\right)\right| \leq E(R)$, so this contradicts the fact that R is a shortest $\left(w_{\mathcal{T}}\left(C^{\dagger}\right), F\right)$-path.

Given a path $T:=w_{1} \cdots w_{t}$, we now introduce the following. We set $\operatorname{Def}(T)$ to be the set of $v \in D_{1}(T)$ such that $G[N(v) \cap V(T)]$ is not a subpath of T of length at most two.

Subclaim 11.2.15. Let $T:=w_{1} \cdots w_{t}$ be an induced $\left(w_{\mathcal{T}}\left(C^{\dagger}\right), D_{3}\left(C_{*}^{2}\right)\right)$-path in G.

1) If T is not a quasi-shortest path, then $\operatorname{Def}(T) \neq \varnothing$; $A N D$
2) For any $v \in \operatorname{Def}(T)$, letting $w_{i}, w_{j} \in V(T)$ be the respective vertices of minimal and maximal index in $N(v) \cap V(T)$, we have $|i-j|>2$

Proof: Since G is short-separation-free and no internal vertex of T lies in any element of \mathcal{C}, it follows from our triangulation conditions that any vertex of $D_{1}(T)$ which is adjacent to two vertices of distance two apart on T is also adjacent to the unique neighbor of these two vertices on T. Both 1) and 2) follow immediately.

Since $p_{m} \in D_{4}\left(C_{*}^{2}\right)$, we have $N\left(p_{m}\right) \cap D_{3}\left(C_{*}^{2}\right) \neq \varnothing$, so let $q \in N\left(p_{m}\right) \cap D_{3}\left(C_{*}^{2}\right)$. Let $R^{\dagger}:=p_{1} R p_{m} q$. Now suppose toward a contradiction that does not exist a $\left(w_{\mathcal{T}}, D_{3}\left(C_{*}^{2}\right)\right)$-path which satisfies all of Conditions A), B), and C) of Claim 11.2.11.

Subclaim 11.2.16. $\operatorname{Def}\left(R^{\dagger}\right) \neq \varnothing$ and $\operatorname{Def}\left(R^{\dagger}\right) \subseteq D_{4}\left(C_{*}^{2}\right) \cap N(q)$
Proof: Suppose that $\operatorname{Def}\left(R^{\dagger}\right)=\varnothing$. By 1) of Claim 11.2.13, R^{\dagger} is an induced path, so R^{\dagger} is a quasi-shortest path. Furthermore, by construction of R^{\dagger}, we have $V\left(R^{\dagger}\right) \cap D_{4}\left(C_{*}^{2}\right)=\left\{p_{m}\right\}$, and, by Subclaim 11.2.14, $\left|E\left(R^{\dagger}\right)\right| \leq$ $d\left(w_{\mathcal{T}}\left(C^{\dagger}\right), D_{3}\left(C_{*}^{2}\right)\right)+3$. Thus R^{\dagger} is a C^{\dagger}-monotone path. Since R has length at most $\frac{\beta}{3}+2 N_{\mathrm{mo}}+\operatorname{Rk}\left(\mathcal{T} C^{\dagger}\right)$, R^{\dagger} also has length at most $\frac{\beta}{3}+2 N_{\mathrm{mo}}+\operatorname{Rk}\left(\mathcal{T} C^{\dagger}\right)$, so R^{\dagger} satisfies Condition A). Since $\left|V\left(R^{\dagger}\right) \backslash V(R)\right| \leq 1$, it follows from 1) of Claim 11.2.7 that $d\left(R^{\dagger}, P\right) \geq \frac{\beta}{4}$, so R^{\dagger} satisfies B). Finally, by 2) of Subclaim 11.2.13, R^{\dagger} also satisfies C), contradicting our assumption.

Now, since R is a shortest path between its endpoints, $p_{1} R p_{m}$ is also a shortest path between its endpoints, so we have $\operatorname{Def}\left(R^{\dagger}\right) \subseteq N(q)$, and there exists a $j \in\{1, \cdots, m-2\}$ with $p_{j} \in N(v)$. Since $\left|V\left(R^{\dagger}\right) \cap D_{4}\left(C_{*}^{2}\right)\right|=1$, it follows that v has a neighbor in $D_{3}\left(C_{*}^{2}\right)$ and and a neighbor in $R^{\dagger} \backslash B_{4}\left(C_{*}^{2}\right)$, so we have $v \in D_{4}\left(C_{*}^{2}\right)$.

For each $v \in \operatorname{Def}\left(R^{\dagger}\right)$, let m^{v} be the minimal index among $\left\{1 \leq i \leq s: p_{i} \in N(v)\right\}$. Since $\operatorname{Def}\left(R^{\dagger}\right) \neq \varnothing$, we choose a $v \in \operatorname{Def}\left(R^{\dagger}\right)$ which minimizes the quantity m^{v}. Possibly there are two vertices of $\operatorname{Def}\left(R^{\dagger}\right)$ adjacent to $p_{m^{v}}$, but we just pick one arbitrarily). Let $R_{1}^{\dagger}:=p_{1} R p_{m^{v}} v q$.

Subclaim 11.2.17. All of the following hold.

1) $V\left(R_{1}^{\dagger}\right) \cap D_{4}\left(C_{*}^{2}\right)=\{v\}$ and R_{1}^{\dagger} is an induced $\left(w_{\mathcal{T}}\left(C^{\dagger}\right), D_{3}\left(C_{*}^{2}\right)\right)$-path; AND
2) $\operatorname{Def}\left(R_{1}^{\dagger}\right) \neq \varnothing$; AND
3) For each $w \in \operatorname{Def}\left(R_{1}^{\dagger}\right)$, we have $w \in N(v) \backslash N(q)$.

Proof: Since $\mid V\left(R^{\dagger}\right) \cap D_{4}\left(C_{*}^{2}\right)=\left\{p_{m}\right\}$, it follows that $v \in D_{4}\left(C_{*}^{2}\right)$, since v has a neighbor in $D_{3}\left(C_{*}^{2}\right)$ and a neighbor in $G \backslash B_{4}\left(C_{*}^{2}\right)$. Since $m^{v}<m$, it also follows that $\mid V\left(R_{1}^{\dagger}\right) \cap D_{4}\left(C_{*}^{2}\right)=\{v\}$, and R_{1}^{\dagger} is a $\left(w_{\mathcal{T}}\left(C^{\dagger}\right), D_{3}\left(C_{*}^{2}\right)\right)$-path. By Subclaim 11.2.13, R^{\dagger} is an induced path, so, by our choice of index m^{v}, R_{1}^{\dagger} is also an induced path

Suppose that $\operatorname{Def}\left(R_{1}^{\dagger}\right)=\varnothing$. Thus, R_{1}^{\dagger} is a quasi-shortest path. Since $\left|E\left(R_{1}^{\dagger}\right)\right|<\left|E\left(R^{\dagger}\right)\right|$, it follows from Subclaim 11.2.14 that R^{\dagger} is a C^{\dagger}-monotone path of length at most $\frac{\beta}{3}+2 N_{\mathrm{mo}}+\operatorname{Rk}\left(\mathcal{T} C^{\dagger}\right)$, so R_{1}^{\dagger} satisfies Condition A). Since $\left|V\left(R_{1}^{\dagger}\right) \backslash V(R)\right| \leq 2$, it follows from 1) of Claim 11.2.7 that $d\left(R_{1}^{\dagger}, P\right) \geq \frac{\beta}{4}$, so R_{1}^{\dagger} satisfies B). FInally, by 2) of Subclaim 11.2.13, R_{1}^{\dagger} also satisfies C), contradicting our assumption. Thus, we have $\operatorname{Def}\left(R_{1}^{\dagger}\right) \neq \varnothing$.

Since R is a shortest path between its endpoints, $p_{1} R p_{m^{v}}$ is also a shortest path between its endpoints, so we have $\operatorname{Def}\left(R_{1}^{\dagger}\right) \subseteq N(q) \cup N(v)$. Let $w \in \operatorname{Def}\left(R_{1}^{\dagger}\right)$. To finish, we just need to show that $w \notin N(q)$. Suppose that $w \in N(q)$. If $w \in V\left(R^{\dagger}\right)$, then, since R^{\dagger} is an induced path, we have $w=p_{m}$. Since w is adjacent to a vertex of $\left\{p_{1}, \cdots, p_{m^{v}-1}\right\}$ and $m^{v}<m$, this contradicts the fact that R^{\dagger} is an induced path. Thus, we have $w \in \operatorname{Def}\left(R^{\dagger}\right)$. Since $w \in D_{1}\left(R^{\dagger}\right) \cap N(q)$, and w is adjacent to a vertex of $\left\{p_{1}, \cdots, p_{m^{v}-1}\right\}$, this contradicts the minimality of m^{v}. We conclude that $w \notin N(q)$, as desired.

We now have the following:
Subclaim 11.2.18. $\operatorname{Def}\left(R_{1}^{\dagger}\right) \cap B_{4}\left(C_{*}^{2}\right)=\varnothing$.
Proof: Let $w \in \operatorname{Def}\left(R^{\dagger}\right)$. Since $\left\{p_{1}, \cdots, p_{m-1}\right\} \subseteq V(G) \backslash B_{4}\left(C_{*}^{2}\right)$ and w has a neighbor in $\left\{p_{1}, \cdots, p_{m^{v}-1}\right.$, we have $w \notin B_{3}\left(C_{*}^{2}\right)$, so we just need to check that $w \notin D_{4}\left(C_{*}^{2}\right)$. Suppose toward a contradiction that $w \in D_{4}\left(C_{*}^{2}\right)$. Thus, we have $N(w) \cap D_{3}\left(C_{*}^{2}\right) \neq \varnothing$, so let $w^{*} \in N(w) \cap D_{3}\left(C_{*}^{2}\right)$.

Let n be the minimal index of $\left\{1 \leq i \leq m_{v}: p_{i} \in N(w)\right\}$. By 3) of Subclaim 11.2.17, we have $w \in N(v)$, and, by Subclaim 11.2.15, we have $n \leq m^{v}-2$. Now, we have $m^{v} \leq m-2$ as well, so it follows from Subclaim 11.2.14 that $p_{1} R p_{n} w w^{*}$ is a shortest $\left(w_{\mathcal{T}}\left(C^{\dagger}\right), D_{3}\left(C_{*}^{2}\right)\right)$-path. Since $p_{1} R p_{n} w w^{*}$ is a $\left(w_{\mathcal{T}}\left(C^{\dagger}\right), D_{3}\left(C_{*}^{2}\right)\right)$-path, we get by assumption that $R_{*}^{\dagger}:=p_{1} R p_{n} w w^{*}$ violates one of A$\left.), \mathrm{B}\right)$, or C$)$.

Since R_{*}^{\dagger} is a shortest $\left(w_{\mathcal{T}}\left(C^{\dagger}\right), D_{3}\left(C_{*}^{2}\right)\right)$-path and $\left|E\left(R_{*}^{\dagger}\right)\right| \leq|E(R)|$, it follows that R_{*}^{\dagger} is a C^{\dagger}-monotone path and satisfies Condition A). Since $\left|V\left(R_{*}^{\dagger}\right) \backslash V(R)\right| \leq 2$, it follows from 1) of Claim 11.2.7 that R_{*}^{\dagger} satisfies Condition B). Since G contains the path $w^{*} w v q$, it follows from 2) of Subclaim 11.2.13 that R_{*}^{\dagger} also satisfies Condition C), contradicting our assumption.
It follows from 3) of Subclaim 11.2.17 that each $w \in \operatorname{Def}\left(R_{1}^{\dagger}\right)$ is adjacent to v and to a vertex of $\left\{p_{1}, \cdots, p_{m^{v}-2}\right\}$, so there exists a minimal index n^{w} among $\left\{1 \leq i \leq m^{v}-2: p_{i} \in N(w)\right\}$. As above, we choose a $w \in \operatorname{Def}\left(R_{1}^{\dagger}\right)$ which minimizes the quantity n^{w} and let $R_{2}^{\dagger}:=q v w p_{n^{w}} R p_{1}$. We claim now that R_{2}^{\dagger} is a $\left(w_{\mathcal{T}}\left(C^{\dagger}\right), D_{3}\left(C_{*}^{2}\right)\right)$-path which satisfies all of A), B), and C).

By Subclaim 11.2.18, have $w \notin B_{4}\left(C_{*}^{2}\right)$ and since $n_{w}<m$, we have $\left\{p_{1}, \cdots, p_{n^{w}}, w\right\} \subseteq G \backslash B_{4}\left(C_{*}^{2}\right)$. Thus, we have $V\left(R_{\dagger}^{2}\right) \cap D_{4}\left(C_{*}^{2}\right) \mid=\{v\}$, and $V\left(R_{\dagger}^{2}\right) \cap D_{3}\left(C_{*}^{2}\right)=\{q\}$. In particular, R_{2}^{\dagger} is a $\left(w_{\mathcal{T}}\left(C^{\dagger}\right), D_{3}\left(C_{\dagger}^{2}\right)\right)$-path. Since R_{1}^{\dagger} is induced, it follows from our choice of index n^{w} that R_{2}^{\dagger} is also an induced path.

Subclaim 11.2.19. $\operatorname{Def}\left(R_{2}^{\dagger}\right)=\varnothing$.
Proof: Suppose toward a contradiction that there is a $w^{*} \in \operatorname{Def}\left(R_{2}^{\dagger}\right)$. Since $p_{1} R p_{n^{w}}$ is a shortest path between its endpoints, we have $w^{*} \in N(w) \cup N(v) \cup N(q)$. We claim now that $w^{*} \notin N(v) \cup N(q)$. Suppose that $q \in N\left(w^{*}\right)$. By Subclaim 11.2.15, q is adjacent to a vertex of $\left\{p_{1}, \cdots, p_{n^{w}}\right\}$, and since R^{\dagger} is an induced path, we have $q \neq p^{m}$ and $q \in \operatorname{Def}\left(R^{\dagger}\right)$. But since $n^{w}<m^{v}$, this contradicts the minimality of m^{v}. Thus, we have $w^{*} \notin N(q)$.

Now suppose that $w^{*} \in N(v)$. Thus, again by Subclaim 11.2.15, w^{*} is adjacent to a vertex of $\left\{p_{1}, \cdots, p_{n^{w}-1}\right\}$. Since $n^{w}-1<m^{v}-1$ and R^{\dagger} is an induced path, we have $w^{*} \notin V\left(R_{1}^{\dagger}\right)$, so $w^{*} \in \operatorname{Def}\left(R_{1}^{\dagger}\right)$. But since w^{*} is adjacent to each v and a vertex of $\left\{p_{1}, \cdots, p_{n^{w}-1}\right\}$, this contradicts the minimality of m^{w}.

Thus, we conclude that $w^{*} \notin N(v) \cup N(q)$, so w^{*} is adjacent to w and also to a vertex of $p \in\left\{p_{1}, \cdots, p_{n^{w}-2}\right\}$. It follows that G contains the path $p w^{*} w v q p_{m}$. Since $n^{w} \leq m^{v}-2$ and $m^{v} \leq m-2$, we have $p \in\left\{p_{1}, \cdots, p_{m-6}\right\}$. Since $p_{1} R p_{m}$ is a shortest path between its endpoints, we have a contradiction.

Since $\operatorname{Def}\left(R_{2}^{\dagger}\right)=\varnothing$ and R_{2}^{\dagger} is induced, we get that R_{2}^{\dagger} is a quasi-shortest path. Since $\left.\mid E R_{2}^{\dagger}\right)\left|<\left|E\left(R_{1}^{\dagger}\right)\right|<\left|E\left(R^{\dagger}\right)\right| \leq\right.$ $|E(R)|$, it follows that R_{2}^{\dagger} is a C^{\dagger}-monotone path and satisfies Condition A). Since $\left|V\left(R_{2}^{\dagger} \backslash R\right)\right| \leq 3$, it follows from 1) of Claim 11.2.7 that R_{2}^{\dagger} also satisfies Condition B). Since G contains the path $w v q$, it follows from 2) of Subclaim 11.2.13 that R_{2}^{\dagger} also satisfies Condition C), contradicting our assumption that no such path exists. This completes the proof of Claim 11.2.11.

We now define a subset \mathcal{S}° of \mathcal{S} and a binary relation \otimes on \mathcal{S} in the following way:

Definition 11.2.20.

1) We set \mathcal{S}° be the set of triples $(C, P, H) \in \mathcal{S}$ such that, letting q be the $D_{3}\left(C_{*}^{2}\right)$-endpoint of P we have $d_{G}\left(q, \mathbf{P}_{*}\right) \geq 22$.
2) We define a binary relation \otimes on \mathcal{S}, where $(C, P, H) \otimes\left(C^{\prime}, P^{\prime}, H^{\prime}\right)$ if C^{\prime} is an H-blocker, and, letting z^{\prime} be the join of H^{\prime}, we have $d\left(z^{\prime}, H \cap C_{*}^{2}\right) \leq 12$ and $d\left(P, P^{\prime}\right) \geq \frac{\beta}{4}$.

Now we have the following facts.

Claim 11.2.21.

1) $\mathcal{S} \neq \varnothing$; AND
2) For each $(C, P, H) \in \mathcal{S}$, there exists a $\left(C^{\prime}, P^{\prime}, H^{\prime}\right) \in \mathcal{S}$ with $(C, P, H) \otimes\left(C^{\prime}, P^{\prime}, H^{\prime}\right)$; AND
3) If $(C, P, H) \in \mathcal{S} \backslash \mathcal{S}^{\circ}$ and $\left(C^{\prime}, P^{\prime}, H^{\prime}\right) \in \mathcal{S}$ with $(C, P, H) \otimes\left(C^{\prime}, P^{\prime}, H^{\prime}\right)$, then $\left(C^{\prime}, P^{\prime}, H^{\prime}\right) \in \mathcal{S}^{\circ}$.

Proof: Since we have assumed that Theorem 11.2.3 does not hold, it follows from Claim 11.2.5 that, for each $C \in$ $\mathcal{C} \backslash\left\{C_{*}\right\}$ and each C-monotone path P, there is a C-seam H such that there exist an H-blocker and such that P is the tail of H.

Since $\mathcal{C} \backslash\left\{C_{*}\right\} \neq \varnothing$, let $C \in \mathcal{C} \backslash\left\{C_{*}\right\}$ and let P be a C-monotone path. Such a path exists, since a shortest $\left(w_{\mathcal{T}}(C), D_{3}\left(C_{*}^{2}\right)\right)$-path is a candidate. Thus, there is a C-seam H with tail P such that there exists an H-blocker C^{\prime}, and it follows from Claim 11.2.11 that there exists a C^{\prime}-monotone path R^{\prime} of length at most $\frac{\beta}{3}+2 N_{\mathrm{mo}}+\operatorname{Rk}\left(\mathcal{T} \mid C^{\prime}\right)$ such that $d\left(P, R^{\prime}\right) \geq \frac{\beta}{4}$. Since Theorem 11.2.3 does not hold, it follows from Claim 11.2.5 that there exists a C^{\prime}-seam H^{\prime} with tail R^{\prime} such that there exists an H^{\prime}-blocker. Thus, we have $\left(C^{\prime}, R^{\prime}, H^{\prime}\right) \in \mathcal{S}$. This proves 1).

Now we prove 2). Let $(C, P, H) \in \mathcal{S}$. By definition of \mathcal{S}, there exists an H-blocker C^{\prime}. By definition, we have $C \neq C^{\prime}$ by definition, since C^{\prime} is an H-blocker. Since $|E(P)| \leq \frac{\beta}{3}+2 N_{\mathrm{mo}}+\operatorname{Rk}(\mathcal{T} \mid C)$, it follows from Claim 11.2.11 that there is a C^{\prime}-monotone path R^{\prime} of length at most $\frac{\beta}{3}+2 N_{\mathrm{mo}}+\operatorname{Rk}\left(\mathcal{T} \mid C^{\prime}\right)$ such that $d\left(P, R^{\prime}\right) \geq \frac{\beta}{4}$ and such that the $D_{3}\left(C_{*}^{2}\right)$-endpoint of R^{\prime} is of distance at most 11 from $H \cap C_{*}^{2}$.

Since Theorem 11.2.3 does not hold, it follows from Claim 11.2.5 that there exists a C^{\prime}-seam H^{\prime} with tail R^{\prime} such that there exists an H^{\prime}-blocker. Since $\left|E\left(R^{\prime}\right)\right| \leq \frac{\beta}{3}+2 N_{\mathrm{mo}}+\operatorname{Rk}\left(\mathcal{T} \mid C^{\prime}\right)$ and since there exists an H^{\prime} blocker, we thus have $\left(C^{\prime}, P^{\prime}, H^{\prime}\right) \in \mathcal{S}$. As indicated above, we have $d\left(P, R^{\prime}\right) \geq \frac{\beta}{4}$ and, letting q be the $D_{3}\left(C_{*}^{2}\right)$-endpoint of R^{\prime}, we have $d\left(q, H \cap C_{*}^{2}\right) \leq 11$, so the join of H^{\prime} has distance at most 12 from $H \cap C_{*}^{2}$. Thus, we have $(C, P, H) \otimes\left(C^{\prime}, P^{\prime}, H^{\prime}\right)$. This proves 2).

Now we prove 3). Suppose that $\left(C^{\prime}, P^{\prime}, H^{\prime}\right) \notin \mathcal{S}^{\circ}$. In that case, each of P, P^{\prime} has distance at most 20 from $V\left(\mathbf{P}_{*}\right)$, so $d\left(P, P^{\prime}\right) \leq 42+\frac{2 N_{\mathrm{mo}}}{3}$, contradicting the fact that $d\left(P, P^{\prime}\right) \geq \frac{\beta}{4}$.

We now fix $p_{\text {left }}$ and $p_{\text {right }}$ as the endpoints of \mathbf{P}_{*}^{1}. Since $\left|E\left(\mathbf{P}_{*}^{1}\right)\right| \geq\left|E\left(\mathbf{P}_{*}\right)\right|-2$, these are distinct vertices. It follows from 2) of Claim 11.2.8 that, for each $(C, P, H) \in \mathcal{S}$, the head of H is a path of length at least $\frac{\beta}{4}-N_{\text {mo }}$ whose unique \mathbf{P}_{*}^{1}-endpoint is one of $p_{\text {left }}, p_{\text {right }}$. Thus, we have the following natural way to partition \mathcal{S}. We let $\mathcal{S}=\mathcal{S}_{\text {left }} \cup \mathcal{S}_{\text {right }}$, where these two sets are defines as follows. Given a $(C, P, H) \in \mathcal{S}$, where z is the join of H, we have $(C, P, H) \in \mathcal{S}_{\text {left }}$ if $p_{\text {left }}$ is the unique \mathbf{P}_{*}^{1}-endpoint of the $\left(\operatorname{Pin}(z), \mathbf{P}_{*}^{1}\right)$-subpath of $C_{*}^{2} \cap H$. Likewise, $(C, P, H) \in \mathcal{S}_{\text {right }}$ if $p_{\text {right }}$ is the unique \mathbf{P}_{*}^{1}-endpoint of the $\left(\operatorname{Pin}(z), \mathbf{P}_{*}^{1}\right)$-subpath of $C_{*}^{2} \cap H$.

We now have the following.

Claim 11.2.22. Let $(C, P, H) \in \mathcal{S}$ and $\left(C^{\prime}, P^{\prime}, H^{\prime}\right) \in \mathcal{S}^{\circ}$, where $(C, P, H) \otimes\left(C^{\prime}, P^{\prime}, H^{\prime}\right)$. Let Q be the head of H and let Q^{\prime} be the head of H^{\prime}. Then Q, Q^{\prime} have the same unique \mathbf{P}_{*}^{1}-endpoint and $Q^{\prime} \subseteq Q$. Furthermore, $\left|E(Q) \backslash E\left(Q^{\prime}\right)\right| \geq \frac{\beta}{4}$.

Proof: Since (C, P, H) and $\left(C^{\prime}, P, H^{\prime}\right)$ both lie in \mathcal{S}, it follows from 3) of Claim 11.2.8 that each of the paths Q, Q^{\prime} has length at least $\frac{\beta}{4}-N_{\text {mo }}$. Thus, one of $p_{\text {left }}, p_{\text {right }}$ is the unique \mathbf{P}_{*}^{1}-endpoint of Q, and one of $p_{\text {left }}, p_{\text {right }}$ is the unique \mathbf{P}_{*}^{1}-endpoint of Q^{\prime}. Suppose without loss of generality that $p_{\text {right }}$ is the unique \mathbf{P}_{*}^{1}-endpoint of Q. Let z be the join of H and let z^{\prime} be the join of H^{\prime}. By 2) of Claim 11.2.8, $\operatorname{Pin}(z)$ is a terminal subpath of $C_{*}^{2} \cap H$. Likewise, $\operatorname{Pin}\left(z^{\prime}\right)$ is a terminal subpath of $H^{\prime} \cap C_{*}^{2}$. Since $d\left(P, P^{\prime}\right) \geq \frac{\beta}{4}$, we have $d\left(z, z^{\prime}\right) \geq \frac{\beta}{4}-2$.

Again by 2) of Claim 11.2.8, we have $\operatorname{Pin}(z) \cap \mathbf{P}_{*}^{1}=\varnothing$. By 5c) of Definition 6.0.8, $\left(C_{*}^{2} \cap H\right) \backslash\left(Q \cup \mathbf{P}_{*}^{1}\right)$ consists of a path $Q_{\text {close }}$ such that every vertex of $Q_{\text {close }}$ has distance at most 8 from $V\left(\mathbf{P}_{*}\right)$. Likewise, $C^{2} \cap H \backslash\left(Q^{\prime} \cup \mathbf{P}_{*}^{1}\right)$ consists of a path $Q_{\text {close }}^{\prime}$ such that every vertex of $Q_{\text {close }}^{\prime}$ has distance at most 8 from $V\left(\mathbf{P}_{*}\right)$.

Now, by definition of \otimes, we have $d\left(z^{\prime}, C_{*}^{2} \cap H\right) \leq 12$. Since each vertex of $Q_{\text {close }} \cup \mathbf{P}_{*}^{1}$ has distance at most 8 from $V\left(\mathbf{P}_{*}\right)$, and $\left(C^{\prime}, P^{\prime}, H^{\prime}\right) \in \mathcal{S}^{\circ}$, any $\left(z^{\prime}, C_{*}^{2} \cap H\right)$-path of length at most 12 has its $C_{*}^{2} \cap H$-endpoint in $Q \backslash\left\{p_{\text {right }}\right\}$, or else we have a $\left(z^{\prime}, \mathbf{P}_{*}\right)$-path of length at most 20 . Thus, let M be a $\left(z^{\prime}, Q \backslash\left\{p_{\text {right }}\right\}\right)$-path of length at most 9 with its non- z^{\prime}-endpoint lying in $Q \backslash\left\{p_{\text {right }}\right\}$. Since each vertex of $Q \backslash\left\{p_{\text {right }}\right\}$ has distance two from $C \backslash \mathbf{P}_{*}$, it follows that M extends to a graph M^{\prime} such that the following hold:

1. M^{\prime} is either a cycle of length at most 15 which contains at least one vertex of $V\left(C_{*} \cup C_{*}^{1}\right) \backslash V\left(\mathbf{P} \cup \mathbf{P}_{*}^{1}\right)$, or M^{\prime} is a path of length at most 15 with both endpoints in $C_{*} \backslash \mathbf{P}_{*} ;$ AND
2. M^{\prime} contains a path of length four with z^{\prime} as an endpoint and the other endpoint in $C_{*} \cap D_{2}\left(\operatorname{Span}\left(z^{\prime}\right) \cap C_{*}^{2}\right)$

Note that M^{\prime} possibly intersects with C_{*} on many vertices, so if it is not a cycle, then it is not necessarily a generalized chord of C_{*}. In any case, since z^{\prime} has distance at least $\frac{\beta}{4}-2$ from $V(P) \cup\{z\}$, we have $d\left(z, M^{\prime}\right) \geq \frac{\beta}{4}-17$ and $d\left(P, M^{\prime}\right) \geq \frac{\beta}{4}-17$. Furthermore, since $d\left(z^{\prime}, \mathbf{P}_{*}\right) \geq 21$, we have $M^{\prime} \cap\left(\mathbf{P}_{*} \cup \mathbf{P}_{*}^{1}\right)=\varnothing$.

Given a subpath $M^{\prime \prime}$ of M^{\prime}, we say that $M^{\prime \prime}$ is a touring subpath of M^{\prime} if $M^{\prime \prime}$ is a generalized chord of C_{*}, where $M^{\prime \prime} \cap Q \neq \varnothing$ and $M^{\prime \prime}$ also has nonempty intersection with each of $V\left(C_{*}\right) \cap D_{2}(Q)$ and $V\left(C_{*}\right) \cap D_{2}\left(C_{*}^{2} \backslash Q\right)$.

Subclaim 11.2.23. There is no touring subpath of M^{\prime}.
Proof: . Suppose that there exists a touring subpath $M^{\prime \prime}$ of M^{\prime}. Since $M^{\prime \prime} \cap Q \neq \varnothing$, and $M^{\prime \prime}$ has nonempty intsersection with each of $V\left(C_{*}\right) \cap D_{2}(\stackrel{\circ}{Q})$ and $V\left(C_{*}\right) \cap D_{2}\left(C_{*}^{2} \backslash Q\right)$, it follows that $G_{M^{\prime \prime}}^{\text {small }}$ contains a terminal vertex of Q. Since $\mathcal{C} \backslash\left\{C_{*}\right\} \neq \varnothing$ and $\mathbf{P}_{*} \cap M^{\prime \prime}=\varnothing$, we have $\mathbf{P}_{*} \cap G_{M^{\prime \prime}}^{\text {small }}=\varnothing$. Since $d\left(z, M^{\prime \prime}\right) \geq \frac{\beta}{4}-17$ and $\operatorname{Pin}(z)$ is a terminal subpath of Q, it follows that $z \in V\left(G_{M^{\prime \prime}}^{\text {small }}\right) \backslash V\left(M^{\prime \prime}\right)$. Since $d\left(P, M^{\prime \prime}\right) \geq \frac{\beta}{4}-17$, we have $C^{\prime} \subseteq G_{M^{\prime \prime}}^{\text {small }}$, which is false.

By our construction of M^{\prime}, there is a subpath $M_{\text {trunc }}$ of length two, where $M_{\text {trunc }}$ has one endpoint in $\operatorname{Pin}\left(z^{\prime}\right)$ and the other endpoint in $V\left(C_{*}\right) \cap D_{2}\left(\operatorname{Pin}\left(z^{\prime}\right)\right)$. Let $K:=\operatorname{Ext}\left(C_{*}^{2}\right) \backslash\left(\mathbf{P}_{*} \cup \mathbf{P}_{*}^{1}\right)$. Since $K \cap(\mathbf{P} \cup \mathbf{P})=\varnothing$, we have $M_{\text {trunc }} \subseteq K$. Let q be the unique non- \mathbf{P}_{*}^{1}-endpoint of Q and let q^{\prime} be the non- \mathbf{P}_{*}^{1}-endpoint of Q^{\prime}.

Now suppose toward a contradiction that either $p_{\text {left }}$ is the unique \mathbf{P}_{*}^{1}-endpoint of Q^{\prime}, or, if $p_{\text {right }}$ is the unique $\mathbf{P}_{*}^{1}{ }^{-}$ endpoint of Q^{\prime}, then $Q^{\prime} \nsubseteq Q$. In the latter case, since $q \in \operatorname{Span}(z)$ and $q^{\prime} \in \operatorname{Span}\left(z^{\prime}\right)$, it follows from the definition of \otimes that $\left|E\left(Q^{\prime}\right) \backslash E(Q)\right| \geq \frac{\beta}{4}-4$. Note that, in $K, B_{2}(q)$ disconnects $B_{2}(Q)$ from $V\left(C_{*}^{2} \cap K\right) \backslash V(Q)$. Thus, in either case, it follows that, in K, the set the set $B_{2}(q)$ separates $B_{2}\left(\operatorname{Span}\left(z^{\prime}\right)\right)$ from $B_{2}(\AA)$. Since no touring subpath of M^{\prime} exists, it follows that M^{\prime} contains a path $M^{\prime \prime}$ with $M^{\prime \prime} \subseteq K$, where one endpoint of $M^{\prime \prime}$ lies in $V\left(C_{*}^{2} \cap K\right) \backslash V(Q)$, the other endpoint of $M^{\prime \prime}$ lies in $B_{2}(\stackrel{\circ}{Q})$. Thus, we have $d\left(M^{\prime}, q\right) \leq 2$. Since $d(q, z) \leq 2$, we have $d\left(M^{\prime}, z\right) \leq 4$, which is false.

Thus, our assumption that $Q \subseteq Q^{\prime}$ is false. Since Q, Q^{\prime} share an endpoint \mathbf{P}_{*}^{1}, and since $\operatorname{Span}(z)$ contains the non- \mathbf{P}_{*}^{1} endpoint of Q and $\operatorname{Span}\left(z^{\prime}\right)$ contains the non- \mathbf{P}_{*}^{1} endpoint of Q^{\prime}, it follows that $\left|E(Q) \backslash E\left(Q^{\prime}\right)\right|$ is a path of length at least $\frac{\beta}{4}-4$, since $d\left(P, P^{\prime}\right) \geq \frac{\beta}{4}$. This completes the proof of Claim 11.2.22.

The claim above has the following immediate consequence;
Claim 11.2.24. Each of \mathcal{S}° and $\mathcal{S} \backslash \mathcal{S}^{\circ}$ is nonempty.

Proof: We first show that \mathcal{S}° is nonempty. By 1) of Claim $11.2 .21, \mathcal{S} \neq \varnothing$ so let $(C, P, H) \in \mathcal{S}$. If $(C, P, H) \in \mathcal{S}^{\circ}$, then we are done, so suppose that $(C, P, H) \notin \mathcal{S}^{\circ}$. By 2) of Claim 11.2.21, there exists a $\left(C^{\prime}, P^{\prime}, H^{\prime}\right) \in \mathcal{S}$ with $(C, P, H) \otimes\left(C^{\prime}, P^{\prime}, H^{\prime}\right)$. By 3) of Claim 11.2.21, we have $\left(C^{\prime}, P^{\prime}, H^{\prime}\right) \in \mathcal{S}^{\circ}$, so we are done. Thus, we indeed have $\mathcal{S}^{\circ} \neq \varnothing$. Now we show that $\mathcal{S} \backslash \mathcal{S}^{\circ} \neq \varnothing$. Since $\mathcal{S}^{\circ} \neq \varnothing$, we choose an element $(C, P, H) \in \mathcal{S}^{\circ}$ which minimizes the length of the head of H. Let Q be the head of H. By 2) of Claim 11.2.21, there is a $\left(C^{\prime}, P^{\prime}, H^{\prime}\right) \in \mathcal{S}$ with $(C, P, H) \otimes\left(C^{\prime}, P^{\prime}, H^{\prime}\right)$. We claim now that $\left(C^{\prime}, P^{\prime}, H^{\prime}\right) \in \mathcal{S} \backslash \mathcal{S}^{\circ}$. Let Q^{\prime} be the head of H^{\prime}. Suppose toward a contradiction that $\left(C^{\prime}, P^{\prime}, H^{\prime}\right) \in \mathcal{S}^{\circ}$. In that case, by Claim 11.2.22, we have $\left|E\left(Q^{\prime}\right)\right|<|E(Q)|$, contradicting the minimality of Q. Thus, we indeed have $\left(C^{\prime}, P^{\prime}, H^{\prime}\right) \in \mathcal{S} \backslash \mathcal{S}^{\circ}$, so $\mathcal{S} \backslash \mathcal{S}^{\circ} \neq \varnothing$.

We now have the following.

Claim 11.2.25.

1) Let $(C, P, H) \in \mathcal{S}_{\text {left }} \cap\left(\mathcal{S} \backslash \mathcal{S}^{\circ}\right)$ and let z be the join of H. Then there is no $\left(\operatorname{Pin}(z)\right.$, $\left.p_{\text {left }}\right)$-path of length at most 16 on the small side of C_{*}^{2}; AND
2) Let $(C, P, H) \in \mathcal{S}_{\text {right }} \cap\left(\mathcal{S} \backslash \mathcal{S}^{\circ}\right)$ and let z be the join of H. Then there is no $\left(\operatorname{Pin}(z), p_{\text {right }}\right)$-path of length at most 16 on the small side of C_{*}^{2}.

Proof: These two statements are symmetric so we just prove 1). Let Q be the head of $C^{2} \cap H$. By 3) of Claim 11.2.8, Q is a path of length at least $\frac{\beta}{4}-N_{\text {mo }}$. Let v, v^{\star} be the vertices of $\operatorname{Span}(z) \cap C_{*}^{2}$ (possibly $v=v^{\star}$). By 2) of Claim 11.2.8, one of v, v^{\star} is also the non- $p_{\text {left }}$ endpoint of Q.

Suppose toward a contradiction that there is a $\left(\operatorname{Pin}(z), p_{\text {left }}\right)$ path in $\operatorname{Ext}\left(C_{*}^{2}\right)$ of length at most 16 . Let $K:=\operatorname{Ext}\left(C_{*}^{2}\right) \backslash$ $V\left(\mathbf{P}_{*} \cup \stackrel{\circ}{\mathbf{P}}_{*}^{1}\right)$. Every vertex of \mathbf{P}_{*}^{1} is adjacent to a subpath of \mathbf{P}_{*} of length at most one, so it follows from 2) of Corollary 2.3.14 that each of \mathbf{P}_{*} and \mathbf{P} have length at least $\frac{2 N_{\mathrm{mo}}}{3}-2$. Furthermore, in K, the set $B_{2}\left(\left\{v, v^{\star}\right\}\right)$ disconnects $B_{2}(Q)$ from $B_{2}\left(K \cap\left(C_{*}^{2} \backslash Q\right)\right)$ and disconnects $B_{2}\left(C_{*}^{2} \cap \operatorname{Span}(z)\right)$ from $V(K) \backslash B_{2}\left(\left\{v, v^{\star}\right\}\right)$. Thus, there exists a $\left(B_{2}\left(\left\{v, v^{\star}\right\}\right), p_{\text {left }}\right)$-path M in K, where M has length at most 16 .

By 2) of Claim 11.2.21, there is a $\left(C^{\prime}, P^{\prime}, H^{\prime}\right) \in \mathcal{S}$ with $(C, P, H) \otimes\left(C^{\prime}, P^{\prime}, H^{\prime}\right)$. By 3) of Claim 11.2.21, since $(C, P, H) \in \mathcal{S} \backslash \mathcal{S}^{\circ}$, we have $\left(C^{\prime}, P^{\prime}, H^{\prime}\right) \in \mathcal{S}^{\circ}$. Let z^{\prime} be the join of H^{\prime} and let Q^{\prime} be the head of H^{\prime}. Since $\left(C^{\prime}, P^{\prime}, H^{\prime}\right) \in \mathcal{S}^{\circ}$, it follows from Claim 11.2.22 that $\left(C^{\prime}, P^{\prime}, H^{\prime}\right) \in \mathcal{S}_{\text {left }}$ as well, and Q^{\prime} is a proper subpath of Q. Let q^{\prime} be the unique non- \mathbf{P}_{*}^{1} endpoint of Q^{\prime}. Note that, in K, the set $B_{2}\left(q^{\prime}, K\right)$ separates $\operatorname{Pin}(z)$ from \mathbf{P}_{*}. Thus, we have $d\left(\left\{v, v^{\star}\right\}, q^{\prime}\right) \leq|E(M)|+4$. On the other hand, by definition of $\operatorname{Span}(z)$, we have $d\left(v, v^{\star}\right) \leq 4$, and thus since $d\left(P, P^{\prime}\right) \geq \frac{\beta}{4}$, we have $d\left(q, q^{\prime}\right) \geq \frac{\beta}{4}-10$, a contradiction.

With the above in hand, we prove the following:

Claim 11.2.26. Let $C \in \mathcal{C} \backslash\{C\}$ and let P be a C-monotone path of length at most $\frac{\beta}{3}+2 N_{\mathrm{mo}}+\operatorname{Rk}(\mathcal{T} \mid C)$. Let q be the and suppose that $d\left(q, \mathbf{P}_{*}\right)<22$. Then there exist a pair of elements of $\mathcal{S} \backslash \mathcal{S}^{\circ}$ of the form (C, P, H) and $\left(C, P, H^{\prime}\right)$ for some C-seams H and H^{\prime}, where $(C, P, H) \in \mathcal{S}_{\text {left }} \cap\left(\mathcal{S} \backslash \mathcal{S}^{\circ}\right)$ and $\left(C, P, H^{\prime}\right) \in \mathcal{S}_{\text {right }} \cap\left(\mathcal{S} \backslash \mathcal{S}^{\circ}\right)$, and H, H^{\prime} have the same join.

Proof: By assumption, Theorem 11.2.3 does not hold, so it follows that there exists a $z \in D_{2}\left(C_{*}^{2}\right) \cap N(q)$ such that, for any C-seam H with tail P and join z, there exists an H-blocker. In particular, for any C-seam H with tail P and join z, we have $(C, P, H) \in \mathcal{S}^{\circ} \backslash \mathcal{S}$. By Claim 11.2.5, there is at least one C-seam H with tail P and join z, so suppose without loss of generality that $(C, P, H) \in\left(\mathcal{S} \backslash \mathcal{S}^{\circ}\right) \cap \mathcal{S}_{\text {left. }}$. Combining Claim 11.2.25 with 2) of Theorem 6.0.9, it follows that there exists an element of $\left(\mathcal{S} \backslash \mathcal{S}^{\circ}\right) \cap \mathcal{S}_{\text {right }}$ of the form $\left(C, P, H^{\prime}\right)$ for some C-seam H^{\prime}, where H^{\prime} also has join z, so we are done.

By Claim 11.2.24, $\mathcal{S} \backslash \mathcal{S}^{\circ} \neq \varnothing$, so there exists a $C \in \mathcal{C} \backslash\left\{C_{*}\right\}$ and a C-monotone path P such that, letting q be the $D_{3}\left(C_{*}^{2}\right)$-endpoint of P, we have $|E(P)| \leq \frac{\beta}{3}+2 N_{\text {mo }}+\operatorname{Rk}(\mathcal{T} \mid C)$ and $d\left(q, \mathbf{P}_{*}\right)<22$. By Claim 11.2.26, there exists a pair of elements of $\mathcal{S} \backslash \mathcal{S}^{\circ}$ of the form $(C, P, \overleftarrow{H})$ and (C, P, \vec{H}), where $(C, P, \overleftarrow{H}) \in\left(\mathcal{S} \backslash \mathcal{S}^{\circ}\right) \cap \mathcal{S}_{\text {left }}$ and $(C, P, \vec{H}) \in\left(\mathcal{S} \backslash \mathcal{S}^{\circ}\right) \cap \mathcal{S}_{\text {right }}$, and $\overleftarrow{H}, \vec{H}$ have the same join.
Let z be the common join of \overleftarrow{H} and \vec{H}. Let \overleftarrow{Q} be the head of \overleftarrow{H} and let \vec{Q} be the head of \vec{H}. Note that $\overleftarrow{Q} \cup \vec{Q}=$ $\mathbf{P}_{*}^{1} \backslash\left\{p_{\text {left }}, p_{\text {right }}\right\}$, and $\overleftarrow{Q} \cap \vec{Q}=\operatorname{Span}(z) \cap C_{*}^{2}$.

Now, by 2) of Claim 11.2.21, there exist a $\left(C^{\ell}, P^{\ell}, H^{\ell}\right) \in \mathcal{S}$ and a $\left(C^{r}, P^{r}, H^{r}\right) \in \mathcal{S}$ such that $(C, P, \overleftarrow{H}) \otimes$ $\left(C^{\ell}, P^{\ell}, H^{\ell}\right)$ and $(C, P, \vec{H}) \otimes\left(C^{r}, P^{r}, H^{r}\right)$. By 3) of Claim 11.2.21, each of $\left(C^{\ell}, P^{\ell}, H^{\ell}\right)$ and $\left(C^{r}, P^{r}, H^{r}\right)$ lies in \mathcal{S}°. Let Q^{ℓ} be the head of H^{ℓ}, let Q^{r} be the head of H^{r}, and let z^{ℓ}, z^{r} be the respective joins of H^{ℓ}, H^{r}.

By Claim 11.2.22, Q^{ℓ} is a proper subpath of \overleftarrow{Q} with $p_{\text {left }}$ as an endpoint, and, by 2) of Claim 11.2.8, the other endpoint is a vertex of $\left.\operatorname{Span}\left(z^{\ell}\right) \cap C_{*}^{2}\right)$. Likewise, Q^{ℓ} is a proper subpath of \overleftarrow{Q} with $p_{\text {left }}$ as an endpoint and the other endpoint is a vertex of $\operatorname{Span}\left(z^{\ell}\right) \cap C_{*}^{2}$. Let v_{ℓ} be the vertex of $\operatorname{Span}\left(z^{\ell}\right) \cap C_{*}^{2}$ which is closest to $\operatorname{Span}(z) \cap C_{*}^{2}$ and let v_{r} be the vertex of $\operatorname{Span}\left(z^{r}\right) \cap C_{*}^{2}$ which is closest to $\operatorname{Span}(z) \cap C_{*}^{2}$ on the path $C_{*}^{2} \backslash \mathbf{P}_{*}^{1}$.

Let M be the unique subpath of $C_{*}^{2} \backslash \stackrel{\circ}{\mathbf{P}}_{*}^{1}$ with endpoints v_{ℓ}, v_{r}. As $\operatorname{Pin}(z)$ is a subpath of M, let x_{ℓ}, x_{r} be the endpoints of this subpath, where the sequence $p_{\text {right }}, v_{r}, x_{r}, x_{\ell}, v_{\ell}, p_{\text {left }}$ indicates the ordering of these vertices on the path $C_{*}^{2} \backslash \stackrel{\circ}{\mathbf{P}}_{*}^{1}$. Possibly $x_{r}=x_{\ell}$, but, in any case, by definition of \otimes, each of x_{r}, x_{ℓ} has distance at least $\frac{\beta}{4}-12$ from $\left\{v_{r}, v_{\ell}\right\}$, as each of x_{r}, x_{ℓ} has distance two from z.

Claim 11.2.27. $C^{\ell} \neq C^{r}$

Proof: Suppose toward a contradiction that there is a $C^{\dagger} \in \mathcal{C} \backslash\left\{C_{*}, C\right\}$ such that $C^{r}=C^{\ell}=C^{\dagger}$. Thus, each of P^{r}, P^{ℓ} is a $\left(C^{\dagger}, D_{3}\left(C_{*}^{2}\right)\right)$-path. Now, there exists a $\left(z^{\ell}, C_{*} \backslash \mathbf{P}_{*}\right)$-path T^{ℓ} of length four, where $v_{\ell} \in V\left(T^{\ell}\right)$. Likewise, there exists a ($z^{r}, C_{*} \backslash \mathbf{P}_{*}$)-path T^{r} of length four, where $v_{r} \in V\left(T_{r}\right)$. Let K be the subgraph of G induced
by $V\left(C^{\dagger} \cup P^{\ell} \cup P^{r}\right) \cup V\left(T^{\ell} \cup T^{r}\right)$. Now, K is a connected subgraph of G, since z^{ℓ} has a neighbor in P^{ℓ} and z^{r} has a neighbor in P^{r}. Since each of $\left(C^{\dagger}, P^{\ell}, H^{\ell}\right)$ and $\left(C^{\dagger}, P^{r}, H^{r}\right)$ lies in \mathcal{S}°, we have $K \cap \mathbf{P}_{*}=\varnothing$, and K separates $\operatorname{Pin}(z)$ from \mathbf{P}_{*}. Since $(C, P, H) \in \mathcal{S} \backslash \mathcal{S}^{\circ}$, there is a $\left(z, \mathbf{P}_{*}\right)$-path of length at most 22 , so we have $d(z, K) \leq 20$. By Observation 2.1.8, we have $d\left(z, C^{\dagger}\right) \geq \frac{\beta}{3}-3$, so z has distance at most 26 from $V\left(P^{\ell} \cup P^{r}\right) \cup V\left(T^{\ell} \cup T^{r}\right)$. By definition of \otimes, z has distance at least $\frac{\beta}{4}-1$ from $P^{\ell} \cup P^{r}$ and thus has distance at least $\frac{\beta}{4}-5$ from $P^{\ell} \cup P^{r} \cup T^{\ell} \cup T^{r}$, so we have a contradiction.

We now have the following.
Claim 11.2.28. There is no proper generalized chord of $C_{*}^{2} \operatorname{in} \operatorname{Int}\left(C_{*}^{2}\right)$ which has length at most $\frac{N_{\mathrm{mo}}}{3}-3$ and which satisfies both of the following conditions.

1) $d(q, R) \leq \frac{\beta}{5}$; AND
2) R has one endpoint in $\stackrel{\circ}{M}$ and one endpoint in $C_{*}^{2} \backslash M$

Proof: Suppose toward a contradiction that such a proper generalized chord R of C_{*}^{2} exists. Firstly, since q has distance at least $\frac{\beta}{4}$ from each of P^{ℓ} and P^{r} and $q \in D_{3} * C_{*}^{2}$), it follows from Observation 2.1.8 that q has distance at least $\frac{\beta}{4}$ from each of $P^{\ell} \cup C^{\ell}$ and $P^{r} \cup C^{r}$. Consider the following cases:

Case 1: Each endpoint of R lies in $C_{*}^{2} \backslash \stackrel{\circ}{\mathbf{P}}_{*}^{1}$
In this case, there exists a graph R^{\prime} with $R \subseteq R^{\prime}$, where R^{\prime} is either a cycle of length at most $\frac{N_{\mathrm{mo}}}{3}+1$ or a proper generalized chord of C_{*} of length at most $\frac{N_{\mathrm{mo}}}{3}+1$ which has both endpoints in $C_{*} \backslash \stackrel{\circ}{\mathbf{P}}_{*}$. If R^{\prime} is a proper generalized chord of C_{*}, then, since q has distance at least $\frac{\beta}{4}$ from each of $P^{\ell} \cup C^{\ell}$ and $P^{r} \cup C^{r}$, it follows that R^{\prime} separates at least one of C^{r}, C^{ℓ} from \mathbf{P}_{*}, contradicting 3) of Theorem 2.2.4. If R^{\prime} is a cycle, then at least one of C^{r}, C^{ℓ} lies in $\operatorname{Int}\left(R^{\prime}\right)$, which is again a consequence of the fact that q has distance at least $\frac{\beta}{4}$ from each of $P^{\ell} \cup C^{\ell}$ and $P^{r} \cup C^{r}$. Since $d\left(R^{\prime}, w_{\mathcal{T}}\left(C_{*}\right)\right) \leq 2$, this contradicts Corollary 2.1.30.

Case 2: The $C_{*}^{2} \backslash M$-endpoint of R lies in $\stackrel{\circ}{\mathbf{P}}_{*}^{1}$
In this case, there exists a proper generalized chord R^{\prime} of C_{*} with $R \subseteq R^{\prime}$, where R^{\prime} has length at most $\frac{N_{\text {mo }}}{3}$, one endpoint of R lies in $D_{2}(\stackrel{\circ}{M}) \cap\left(C_{*} \backslash \mathbf{P}_{*}\right)$, and the other endpoint of R^{\prime} lies in \mathbf{P}_{*}. Since q has distance at least $\frac{\beta}{4}$ from each of $P^{\ell} \cup C^{\ell}$ and $P^{r} \cup C^{r}$, it follows that R^{\prime} separates C^{ℓ} from C^{r}. Since $\left|E\left(\mathbf{P}_{*}\right)\right| \leq \frac{2 N_{\mathrm{mo}}}{3}$ and $E\left(R^{\prime}\right) \left\lvert\, \leq \frac{N_{\mathrm{mo}}}{3}\right.$, this contradicts 4) of Theorem 2.2.4.

Now we enough to finish the proof of Theorem 11.2.3. Recall that $d\left(q, \mathbf{P}_{*}\right)<22$. Thus, there exists a $\left(\left\{x_{\ell}, x_{r}\right\}, \mathbf{P}_{*}\right)-$ path R in G of length at most 24 . Since $\frac{N_{\text {mo }}}{3}-3 \geq 24$ and each vertex of R has distance at most 24 from q, it follows from Claim 11.2.28 that no subpath of R is a proper generalized chord of $C_{*}^{2} \operatorname{in} \operatorname{Int}\left(C_{*}^{2}\right)$ which has one endpoint in $\stackrel{\circ}{M}$ and one endpoint in $C_{*}^{2} \backslash M$. Since $\left\{v_{\ell}, v_{r}\right\}$ has distance at least $\frac{\beta}{4}-12$ from $\left\{x_{\ell}, x_{r}\right\}$, it follows that there is a subpath R^{\prime} of R such that $R^{\prime} \subseteq \operatorname{Ext}\left(C_{*}^{2}\right)$, where R^{\prime} has an one endpoint in M 응 ane endpoint in $B_{2}\left(C_{*}^{2} \backslash M\right)$. Now, in $\operatorname{Ext}\left(C_{*}^{2}\right)$, the set $B_{2}\left(\left\{v_{\ell}, v_{r}\right\}\right)$ separates $\stackrel{\circ}{M}$ from $C_{*}^{2} \backslash M$, so $d\left(R,\left\{v_{r}, v_{\ell}\right\}\right) \leq 2$, contradicting the fact that $\left\{v_{\ell}, v_{r}\right\}$ has distance at least $\frac{\beta}{4}-12$ from $\left\{x_{\ell}, x_{r}\right\}$. This completes the proof of Theorem 11.2.3.

11.3 A Path-Rerouting Result

In the previous two sections, we showed how to construct a deletion set in a critical mosaic by deleting a path between the outer face and an internal ring in such a way that the resulting outer face is sufficiently far away from the remaining
internal rings. The path we construct possibly requires some slight modification in a region away from the outer face in order for this path to admit a coloring with desirable properties. The lone result of this short section shows that this is always possible.

Definition 11.3.1. Let $\mathcal{T}=\left(G, \mathcal{C}, L, C_{*}\right)$ be a critical mosaic. Let $C \in \mathcal{C}$ and let A, A_{*} be the respective collars of C, C_{*}. A path P is called an ideal C-route if it is a $\left(D_{2}(A), D_{2}\left(A_{*}\right)\right)$-path such that the following hold.

1) $\left|V(P) \cap D_{3}(A)\right|=1$ and $\left|V\left(P_{*}\right) \cap D_{3}(A)\right|=1$; AND
2) P is a quasi-shortest path; $A N D$
3) $|E(P)| \leq d\left(D_{2}(A), D_{2}\left(A_{*}\right)\right)+\frac{2 N_{\text {mo }}}{3}$.

We now have the following, which is the lone result of this section.
Lemma 11.3.2. Let \mathcal{T} be a critical mosaic, let $C \in \mathcal{C} \backslash\{C\}$ and let A, A_{*} be the respective collars of C, C_{*}. Let P be an ideal C-route. Let $x y, x_{*} y_{*}$ be the two terminal edges of P and let σ be an L-coloring of $\left\{x, y, x_{*}, y_{*}\right\}$. Then there exists a $\left(D_{2}(A), D_{2}\left(A_{*}\right)\right)$-path P^{\prime} which also has terminal edges $x y, x_{*} y_{*}$, a $v \in D_{1}\left(P^{\prime}\right)$, and a $\tau \in \Phi_{G, L}\left(\sigma, V\left(P^{\prime}\right)\right)$ such that the following hold.

1) $|N(v)| \cap V\left(\dot{P}^{\prime}\right) \mid \geq 2$; AND
2) P^{\prime} is also an ideal C-route, and $V\left(P^{\prime}\right) \backslash V(P) \subseteq B_{20 N_{\mathrm{mo}}}(A)$; AND
3) $\left|L_{\tau}(v)\right| \geq 2$ and, for every $w \in D_{1}\left(P^{\prime}\right) \backslash\{v\}$, we have $\left|L_{\tau}(w)\right| \geq 3$.

Proof. Let $\mathcal{P}_{\text {ideal }}$ be the set of ideal C-routes with terminal edges $x y, x_{*} y_{*}$, where $x \in D_{2}(A)$ and $y \in D_{3}(A)$, and likewise, $x_{*} \in D_{2}\left(A_{*}\right)$ and $y_{*} \in D_{2}\left(A_{*}\right)$. Given a $P^{\prime} \in \mathcal{P}_{\text {ideal }}$, a $v \in D_{1}\left(P^{\prime}\right)$ with $\left|N(v) \cap V\left(\circ^{\prime}\right)\right| \geq 2$, and a $\tau \in \Phi_{L}\left(\sigma, V\left(P^{\prime}\right)\right)$, we say that $\langle v, \tau\rangle$ is a P^{\prime}-target if $\left|L_{\tau}(v)\right| \geq 2$ and every vertex of $D_{1}\left(P^{\prime}\right) \backslash\{v\}$ has an L_{τ}-list of size at least three. By our distance conditions and by Condition 3) of Definition 11.3.1, we immediately have the following.

Claim 11.3.3. For every $P^{\prime} \in \mathcal{P}_{\text {ideal }}$, every vertex of $B_{2}\left(P^{\prime}\right)$ has an L-list of size at least five.

We show that either there exists a P-target, or there exists a $P^{\prime} \in \mathcal{P}_{\text {ideal }}$ such that there exists a P^{\prime}-target, where P^{\prime} differs from P by precisely one vertex, and this deviant vertex lies in $B_{20 N_{\mathrm{mo}}}(A)$. Recalling Definition 1.2.2, we first have the following.

Claim 11.3.4. For any $P^{\prime} \in \mathcal{P}_{\text {ideal }}$, if there exist two P^{\prime}-gap vertices of distance either precisely two or precisely four apart in P^{\prime}, then there exists a P^{\prime}-target.

Proof: We apply the work of Section 1.2. Let $P^{\prime}:=p_{1} \cdots p_{s}$, where $p_{1} \in D_{2}(A)$ and $p_{s} \in D_{2}\left(A_{*}\right)$. Note that $\left\{p_{1}, p_{2}, p_{s-1}, p_{s}\right\}=\left\{x, y, x_{*}, y_{*}\right\}$. Let $j \in\{2,4\}$ and suppose now that there is an $i \in\{2, \cdots, s-j\}$ such that each of p_{i} and p_{i+j} is a P^{\prime}-gap. Since p_{i}, p_{i+j} are internal vertices of P^{\prime}, we have $x y \in E\left(p_{1} P^{\prime} p_{i}\right)$ and $x_{*} y_{*} \in E\left(p_{i+j} P^{\prime} p_{s}\right)$.

Since no vertex of $B_{1}\left(P^{\prime}\right)$ lies in a ring of \mathcal{C}, and P^{\prime} is a quasi-shortest path, it follows from our triangulation conditions that, for every $w \in D_{1}(P)$, the graph $G\left[N(w) \cap V\left(P^{\prime}\right)\right]$ is a subpath of P^{\prime} of length at most two.

By Claim 11.3.3, every vertex of $B_{1}\left(p_{1} P^{\prime} p_{i}\right)$ has an L-list of size at least five. By Proposition 1.2.3, there exists an extension of $\left.\sigma\right|_{x y}$ to an L-coloring $\psi \in \operatorname{Avoid}\left(p_{1} P^{\prime} p_{i}\right)$. Likewise, there is an extension of $\left.\sigma\right|_{x_{*} y_{*}}$ to an L-coloring $\psi_{*} \in \operatorname{Avoid}\left(p_{i+j} P^{\prime} p_{s}\right)$ of $V\left(p_{i+j} P^{\prime} p_{s}\right)$.

Since P^{\prime} is an induced path, the union $\psi \cup \psi_{*}$ is a proper L-coloring of $V\left(p_{1} P^{\prime} p_{i}\right) \cup V\left(p_{i+j} P^{\prime} p_{s}\right)$. If $j=2$, then, since $\left|L_{\psi \cup \psi_{*}}\left(p_{i+1}\right)\right| \geq 3$ and each of p_{i}, p_{i+2} is a P^{\prime}-gap, there is an extension of $\psi \cup \psi^{*}$ to an element of Avoid ${ }^{\dagger}\left(P^{\prime}\right)$. Likewise, if $j=4$, then, applying Proposition 1.2 .4 , since P^{\prime} is a quasi-shortest path and each of p_{i}, p_{i+4} is a P^{\prime}-gap, it follows that there is an extension of $\psi \cup \psi^{*}$ to an element of Avoid $^{\dagger}\left(P^{\prime}\right)$. In either case, there exists an extension of σ to a $\tau \in \operatorname{Avoid}^{\dagger}\left(P^{\prime}\right)$ and a $v \in D_{1}\left(P^{\prime}\right)$ such that $N(v) \subseteq V\left(p_{i} P^{\prime} p_{i+j}\right)$ and such that $\langle v, \tau\rangle$ is a P^{\prime}-target, so we are done.

We now introduce one more piece of terminology. The idea here is that because of Condition 3) of Definition 11.3.1, there is a bound on how much an ideal C-route differs from a shortest $\left(D_{2}(A), D_{2}\left(A_{*}\right)\right)$-path, so there are regions near C in which an ideal C-route behaves like a shortest $\left(D_{2}(A), D_{2}\left(A_{*}\right)\right)$-path.

Definition 11.3.5. Let $P^{\prime} \in \mathcal{P}_{\text {ideal }}$. Given an integer $1 \leq t \leq 20$ and a subpath $Q \subseteq P^{\prime}$, we say that Q is a vertical P^{\prime}-strip of length t if Q is a path of length t and there exists an integer $3 \leq k \leq 7 N_{\text {mo }}$ such that, for each $i=0, \cdots, t$, we have $\left|V\left(P^{\prime}\right) \cap D_{k+i}(A)\right|=1$, and the lone vertex of $V\left(P^{\prime}\right) \cap D_{k+i}(A)$ lies in $V(Q)$.

We now have the following by a simple counting argument.

Claim 11.3.6. There exists a vertical P-strip Q of length 20.

Proof: For each integer $3 \leq r \leq 7 N_{\mathrm{mo}}$, let $J_{r}:=\{v \in V(P): r \leq d(v, A) \leq r+20\}$. The family $\left\{J_{3+21 t}: t \in\right.$ $\left.\left\{0,1, \cdots,\left\lceil\frac{2 N_{\mathrm{m}}}{3}\right\rceil+1\right\}\right\}$ is a collection of pairwise-disjoint sets. It immediately follows from our distance conditions on \mathcal{T} that $D_{k}(A) \cap V(P) \neq \varnothing$ for each $3 \leq k \leq 20 N_{\mathrm{mo}}$. In particular, for each $t=0,1, \cdots,\left\lceil\frac{2 N_{\mathrm{mo}}}{3}\right\rceil+1$, there exists a subpath P_{t} of P where P_{t} is a $\left(D_{3+21 t}(A), D_{23+21 t}(A)\right)$-path, so $V\left(P_{t}\right) \subseteq J_{3+21 t}$. Since there does not exist a vertical P-strip of length 20, each of pairwise-disjoint paths in $\left\{P_{t}: t \in\left\{0,1, \cdots,\left\lceil\frac{2 N_{\text {mo }}}{3}\right\rceil+1\right\}\right\}$ has a nonzero contribution to $|E(P)|-d\left(D_{2}(A), D_{2}\left(A_{*}\right)\right)$, so we have $|E(P)| \geq d\left(D_{2}(A), D_{2}\left(A_{*}\right)\right)+\frac{2 N_{\mathrm{mo}}}{3}+1$, contradicting Condition 3) of Definition 11.3.1.

Now suppose toward a contradiction that Lemma 11.3.2 does not hold. In particular, there does not exist a P-target. Applying Claim 11.3.6, let Q be a vertical P-strip of length 20. Let $Q:=q_{0} \cdots q_{20}$.

Claim 11.3.7. For any five consecutive vertices of Q, at least one of them is a P-gap.

Proof: Suppose not. Thus, there exists a $0 \leq i \leq 16$ such that no vertex of $v_{i} Q v_{i+4}$ is a P-gap. Let w be the unique vertex of $D_{1}(P)$ such that $G[N(w) \cap V(P)]=v_{i+1} v_{i+2} v_{i+3}$ and let P^{\prime} be the path obtained from P by replacing v_{i+2} with w. Since Q is a shortest path between its endpoints and a vertical P-strip, and since $v_{i+1}, v_{i+2}, v_{i+3} \in V(Q)$, we have $P^{\prime} \in \mathcal{P}_{\text {ideal }}$, and it follows from Proposition 1.2.7 that each of v_{i+1}, v_{i+3} is a P^{\prime}-gap. By Claim 11.3.4, there exists a P^{\prime}-target, contradicting our assumption that Lemma 11.3.2 does not hold.

Likewise, we have the following.

Claim 11.3.8. For any $0 \leq i \leq 15$, if v_{i} is a P-gap, then at least one v_{i+1}, v_{i+3} is not a P-gap.

Proof: Suppose there is an index $0 \leq i \leq 15$ such that v_{i} is a P-gap and neither of v_{i+1}, v_{i+3} is a P-gap.
Since Lemma 11.3.2 does not hold, it follows from Claim 11.3.4 that v_{i+2} is not a P-gap, and thus none of $v_{i+1}, v_{i+2}, v_{i+3}$ is a P-gap. In particular, there is a $w \in D_{1}(P)$ such that $G[N(w) \cap V(P)]=v_{i+2} v_{i+3} v_{i+4}$. Let P^{\prime} be the path obtained from P by replacing v_{i+3} with w. Since each of v_{i+1}, v_{i+3} is an internal vertex of Q and Q is a vertical P-strip, P^{\prime} is a quasi-shortest path, and $P^{\prime} \in \mathcal{P}_{\text {ideal }}$. Since Q is a vertical P-strip, it follows from Proposition 1.2.6 that v_{i+2} is a P^{\prime}-gap. Since v_{i} is also a P^{\prime}-gap, it follows from Claim 11.3 .4 there exists a P^{\prime}-target, contradicting our assumption that Lemma 11.3.2 does not hold.

By Claim 11.3.4, for any two vertices of Q which are of distance precisely two or four apart on Q, at least one of these two vertices is not a P-gap. Combining this with Claims 11.3 .7 and 11.3.8, we have the following.

Claim 11.3.9. There exists a subpath Q^{\prime} of Q of length six such that the midpoint of Q and each endpoint of Q^{\prime} is P-gap.

Let Q^{\prime} be as in Claim 11.3.9 and let $0 \leq i \leq 14$, where v_{i}, v_{i+6} are the endpoints of Q^{\prime}. Let $P_{x y}, P_{x_{*} y_{*}}$ be the two components of $P \backslash \circ^{\prime}$, where $x y \in E\left(P_{x y}\right)$ and $x_{*} y_{*} \in E\left(P_{x_{*} y_{*}}\right)$. Suppose without loss of generality that $v_{i} \in V\left(P_{x y}\right)$ and $v_{i+6} \in V\left(P_{x_{*} y_{*}}\right)$

By Proposition 1.2.3, there is an extension of $\left.\sigma\right|_{x y}$ to a $\psi \in \operatorname{Avoid}\left(P_{x y}\right)$ and an extension of $\left.\sigma\right|_{x_{*} y_{*}}$ to a $\psi_{*} \in$ $\operatorname{Avoid}\left(P_{x_{*} y_{*}}\right)$. Since P is a quasi-shortest path, $\psi \cup \psi_{*}$ is a proper L-coloring of its domain. By Proposition 1.2.5, there is a $\psi^{\prime} \in \operatorname{Avoid}^{\dagger}\left(Q^{\prime}\right)$ which colors v_{i}, v_{i+6} with the respective colors $\psi\left(v_{i}\right), \psi_{*}\left(v_{i+6}\right)$. Since P is a quasishortest path, the union $\psi \cup \psi_{*} \cup \psi^{\prime}$ is a proper L-coloring of its domain and lies in Avoid ${ }^{\dagger}(P)$. Thus, there exists a P-target, contradicting our assumption. This completes the proof of Lemma 11.3.2.

11.4 Completing the Proof of Theorem 2.1.7

In this short section, we bring together all the work of the previous chapters to complete the proof of Theorem 2.1.7, which we restate below.

Theorem 2.1.7. Let $\mathcal{T}=\left(G, \mathcal{C}, L, C_{*}\right)$ be a mosaic. Then G is L-colorable.

Proof. Suppose not, and let $\mathcal{T}:=\left(G, \mathcal{C}, L, C_{*}\right)$ be a critical mosaic. In Sections 11.1 and 11.2, we showed how to construct deletion sets which connect the outer face to an internal ring. In Section 11.3, we showed how to modify these deletion sets slightly away from the outer face in order to produce a desirable coloring. The modifications made in the previous section have no effect on the desired distance conditions, as the following simple result shows.

Claim 11.4.1. Let K be a connected subgraph of G with $V\left(K \cap C_{*}\right) \neq \varnothing$ and let $C \in \mathcal{C} \backslash\left\{C_{*}\right\}$, where every ring of \backslash $\left\{C, C_{*}\right\}$ is disjoint to $V(K)$. Let F be the outer face of $G \backslash K$ and suppose that $d\left(w_{\mathcal{T}}\left(C^{\prime}\right), F\right) \geq \frac{\beta}{3}+2 N_{\mathrm{mo}}+\operatorname{Rk}\left(\mathcal{T} \mid C^{\prime}\right)$ for all $C^{\prime} \in \mathcal{C} \backslash\left\{C, C_{*}\right\}$. Let K^{\dagger} be a connected subgraph of G such that $V\left(K^{\dagger}\right) \backslash V(K) \subseteq \operatorname{Ann}(C) \cup B_{20 N_{\mathrm{mo}}}(C)$. Letting F^{\dagger} be the outer face of $G \backslash K^{\dagger}$, we have $d\left(w_{\mathcal{T}}\left(C^{\prime}\right), F^{\dagger}\right) \geq \frac{\beta}{3}+2 N_{\mathrm{mo}}+\operatorname{Rk}\left(\mathcal{T} \mid C^{\prime}\right)$ for all $C^{\prime} \in \mathcal{C} \backslash\left\{C, C_{*}\right\}$.

Proof: Suppose toward a contradiction that there is a $C^{\dagger} \in \mathcal{C} \backslash\left\{C, C_{*}\right\}$ such that $d\left(F^{\dagger}, w_{\mathcal{T}}\left(C^{\dagger}\right)\right)<\frac{\beta}{3}+2 N_{\mathrm{mo}}+$ $\operatorname{Rk}\left(\mathcal{T} \mid C^{\prime}\right)$. It follows from Theorem 11.2.3 that there is a shortest $\left(F^{\dagger}, w_{\mathcal{T}}\left(C^{\dagger}\right)\right)$-path Q with an endpoint in $V\left(F^{\dagger}\right) \backslash$ $V(F)$. Let q be the F^{\dagger}-endpoint of Q and let q^{*} be the $w_{\mathcal{T}}\left(C^{\dagger}\right)$-endpoint of Q. Since $q \notin V(F)$, it follows from Theorem 1.3.2 that $q \notin V\left(C_{*} \backslash K\right) \cup D_{1}(K)$. We have $q \notin V\left(C^{\dagger}\right)$, or else, since $C, C^{\dagger} \in \mathcal{C} \backslash\left\{C_{*}\right\}$, we contradict 1)
of Observation 2.1.8. Possibly, K^{\dagger} has nonempty intersection with $V(C)$. In any case, applying Theorem 1.3.2 again, we have $q \in D_{1}\left(K^{\dagger} \backslash K\right) \cup V\left(C \backslash K^{\dagger}\right)$.

Now, we have $V\left(K^{\dagger} \backslash K\right) \cup V\left(C \backslash K^{\dagger}\right) \subseteq B_{20 N_{\mathrm{mo}}}(A)$. Furthermore, any generalized chord of A of length at most four has all of its vertices in $B_{4}(C)$, and $B_{4}(C) \subseteq B_{20 N_{\mathrm{mo}}}(A)$. By 1) of Observation 2.1.8, $V\left(C^{\dagger}\right) \cap(\operatorname{Ann}(C) \cup$ $\left.B_{8 N_{\mathrm{mo}}}(A)\right)=\varnothing$. Since $q^{*} \in w_{\mathcal{T}}\left(C^{\dagger}\right)$, there is a subpath of Q with q^{*} as an endpoint and the other endpoint in $B_{20 N_{\mathrm{mo}}}(A)$. Since $|E(P)|<\frac{\beta}{3}+4 N_{\mathrm{mo}}$, we again contradict 1) of Observation 2.1.8.

Note now that, applying the terminology introduced at the start of Chapter 11, we have the following combined form of 2) of Theorem 10.0.7 and 1) of Theorem 6.0.9.

Claim 11.4.2. Let $C \in \mathcal{C}$, let A be the collar of C, let G^{\prime} be the large side of A, and let z be a vertex of $V\left(G^{\prime}\right) \backslash$ $\operatorname{Sh}_{4, L}\left(A, G^{\prime}\right)$ which is of distance precisely two from A. Then there exists a (C, z)-opener. In particular, letting $[H, \psi]$ be a (C, z)-opener, H is a subgraph of G and ψ is a partial L-coloring of $V(H)$ such that the following hold.

1) H is connected, $\mathbf{P}_{\mathcal{T}}(C) \subseteq H$, and $V(K) \subseteq \operatorname{Ann}(A) \cup\{z\}$; AND
2) $z \in \operatorname{dom}(\psi)$ and, for all $v \in D_{1}(H),\left|L_{\psi}(v)\right| \geq 3$; AND
3) $V(H) \backslash \operatorname{dom}(\psi)$ is L_{ψ}-inert in $G \backslash \operatorname{dom}(\psi)$; AND
4) There is at most one vertex of $\left(\operatorname{dom}(\psi) \cap D_{1}\left(A, G^{\prime}\right)\right) \backslash \operatorname{Sh}_{4}\left(A, G^{\prime}\right)$ which does not lie in $\operatorname{Span}(z)$; AND
5) For any $v \in V(H) \cap \operatorname{Sh}_{4}\left(A, G^{\prime}\right)$, either $v \in \operatorname{Sh}_{3}\left(A, G^{\prime}\right)$, or $\operatorname{Span}(z)$ is a proper 4-chord of A which, in G^{\prime}, separates v from each element of $\mathcal{C} \backslash\{C\}$.

We also have the following simple facts.

Claim 11.4.3. Let $C \in \mathcal{C} \backslash\left\{C_{*}\right\}$ and let A, A_{*} be the respective collars of C, C_{*}. Let $Q:=z p_{1} \cdots p_{s} z_{*}$ be a $\left(D_{2}(A), D_{2}\left(A_{*}\right)\right)$-path. Then the following hold.

1) Q is disjoint to $\operatorname{Ann}(C) \cup \operatorname{Ann}\left(C_{*}\right)$ and no vertex of $p_{1} \cdots p_{s}$ has a neighbor in $\operatorname{Ann}(C) \cup \operatorname{Ann}\left(C_{*}\right)$; AND
2) Given a (C, z)-opener $[H, \psi]$ and $a\left(C_{*}, z_{*}\right)$-opener $\left[H_{*}, \psi_{*}\right]$, the subgraph of G induced by $V\left(H \cup H_{*} \cup Q\right)$ is connected.
3) If $p_{1} \cdots p_{s}$ is a $\left(D_{3}(A), D_{3}\left(A_{*}\right)\right)$-path, then there is no $v \in V(G)$ with a neighbor in $p_{2} Q p_{s-1}$ and a neighbor in $\operatorname{Ann}(C) \cup \operatorname{Ann}\left(C_{*}\right)$

Proof: Note that $\operatorname{Ext}(A)$ is the large side of A and $\operatorname{Int}\left(A_{*}\right)$ is the large side of A_{*}. For any generalized chord R of A in $\operatorname{Ext}(A)$ with $|E(R)| \leq 4$, each vertex of R lies in $B_{2}(A) \cap V(\operatorname{Ext}(A))$. Likewise, for any generalized chord R_{*} of A_{*} $\operatorname{in} \operatorname{Int}\left(A_{*}\right)$ with $\left|E\left(R_{*}\right)\right| \leq 4$, each vertex of R_{*} lies in $B_{2}\left(A_{*}\right) \cap V\left(\operatorname{Int}\left(A_{*}\right)\right)$. Since Q intersects with $D_{2}(A) \cup D_{2}\left(A_{*}\right)$ precisely on its endpoints, it immediately follows that Q is disjoint $\operatorname{Sh}_{4}(A, \operatorname{Ext}(A)) \cup \operatorname{Sh}_{4}\left(A_{*}, \operatorname{Int}\left(A_{*}\right)\right)$, and that no internal vertex of Q has a neighbor in $\operatorname{Sh}_{4}(A, \operatorname{Ext}(A)) \cup \operatorname{Sh}_{4}\left(A_{*}, \operatorname{Int}\left(A_{*}\right)\right)$. Likewise, Q is disjoint to $B_{1}(A) \cup B_{1}\left(A_{*}\right)$, and no internal vertex of Q is adjacent to any vertex of $B_{1}(A) \cup B_{1}\left(A_{*}\right)$ It immediately follows that Q is disjoint to $\operatorname{Ann}(C) \cup \operatorname{Ann}\left(C_{*}\right)$, and no internal vertex of Q is adjacent to a vertex of $\operatorname{Ann}(C) \cup \operatorname{Ann}\left(C_{*}\right)$. This proves 1).

By Claim 11.4.2, each of H, H_{*} is connected, and $z \in V(H)$ and $z_{*} \in V\left(H_{*}\right)$, so it immediately follows that the subgraph of G induced by $V\left(H \cup H_{*} \cup Q\right)$ is connected. Now we prove 3). Let $v \in V(G)$ with a neighbor $p \in\left\{p_{2}, \cdots, p_{s}\right\}$. Since $p_{1} Q p_{s}$ is a $\left(D_{3}(A), D_{3}\left(A_{*}\right)\right)$-path, we have $d\left(p, A \cup A_{*}\right) \geq 4$, so $d\left(v, A \cup A_{*}\right) \geq 3$. Suppose toward a contradiction that v has a neighbor $v^{\prime} \in \operatorname{Ann}(C) \cup \operatorname{Ann}\left(C_{*}\right)$. Suppose without loss of generality
that $v^{\prime} \in \operatorname{Ann}(C)$. Since $d(v, A) \geq 3$, there is a generalized chord R of A in $\operatorname{Ext}(A)$ of length at most four which separates v^{\prime} from $p_{1} \cdots p_{s}$. Since $V(R) \subseteq B_{2}(A)$ and $v v^{\prime} \in E(G)$, we have a contradiction.

Recalling Definition 1.2.8, we have the following.

Claim 11.4.4. Let $C \in \mathcal{C} \backslash\left\{C_{*}\right\}$ and let A, A_{*} be the respective collars of C, C_{*}. Let $z \in D_{2}(A) \backslash \operatorname{Sh}_{4}(A, \operatorname{Ext}(A))$ and let $z_{*} \in D_{2}\left(A_{*}\right) \backslash \operatorname{Sh}_{4}\left(A_{*}, \operatorname{Int}\left(A_{*}\right)\right)$. Let $[H, \psi]$ be a (C, z)-opener and let $\left[H_{*}, \psi_{*}\right]$ be a $\left(C_{*}, z_{*}\right)$-opener. Let $p \in\left(N(z) \cap D_{3}(A)\right) \backslash \operatorname{Sh}_{4}(A, \operatorname{Ext}(A))$ and let $p_{*} \in\left(N\left(z_{*}\right) \cap D_{3}\left(A_{*}\right)\right) \backslash \operatorname{Sh}_{4}\left(A_{*}, \operatorname{Int}\left(A_{*}\right)\right)$, where $\left|\operatorname{Bar}_{A}(p z)\right| \leq 1$ and $\left|\operatorname{Bar}_{A_{*}}\left(p_{*} z_{*}\right)\right| \leq 1$. Then there exists a $\varphi \in \Phi_{G, L}\left(\psi \cup \psi_{*},\left\{p, p_{*}\right\}\right)$ such that each vertex of $\operatorname{Bar}_{A}(p z) \cap D_{1}(H)$ and each vertex of $\operatorname{Bar}_{A_{*}}\left(p_{*} z_{*}\right) \cap D_{1}\left(H_{*}\right)$ has an L_{φ}-list of size at least three.

Proof: Firstly, for any $1 \leq k \leq 4$ and any k-chord R of A in $\operatorname{Ext}(A)$, we have $p \notin V(R)$, since $d(p, A)=3$. Since $p \notin \operatorname{Sh}_{4}(A, \operatorname{Ext}(A))$, it follows from Claim 11.4.3 that $N(p) \cap \operatorname{dom}(\psi)=\{z\}$. Likewise $N\left(p_{*}\right) \cap \operatorname{dom}\left(\psi_{*}\right)=\left\{z_{*}\right\}$, so it immediately follows from opur distance conditions that each of $N(p)$ and $N\left(p_{*}\right)$ intersect with $\operatorname{dom}\left(\psi \cup \psi_{*}\right)$ on a lone vertex, as $d\left(A, A_{*}\right) \geq \frac{\beta}{3}-4$, and thus each of p, p_{*} has an $L_{\psi \cup \psi_{*}}$-list of size at least four. By 2) of Claim 11.4.2, each vertex of $\operatorname{Bar}_{A}(p z) \cap D_{1}(H)$ and each vertex of $\operatorname{Bar}_{A_{*}}\left(p_{*} z_{*}\right) \cap D_{1}\left(H_{*}\right)$ has an $L_{\psi \cup \psi_{*}}$-list of size at least three. Since each of these vertex sets has size at most one, it immediately follows that there exists a $\varphi \in \Phi_{G, L}\left(\psi \cup \psi_{*},\left\{p, p_{*}\right\}\right)$ which satisfies the claim.

Claim 11.4.5. Let $C \in \mathcal{C} \backslash\left\{C_{*}\right\}$ and let A, A_{*} be the respective collars of C, C_{*}. Let $P:=p_{1} \cdots p_{s}$ be a $\left(D_{3}(A), D_{3}\left(A_{*}\right)\right)$-path, where $p_{1} \in D_{3}(A)$ and $p_{s} \in D_{3}\left(A_{*}\right)$. Suppose further that $B_{1}(P)$ contains no vertices of any ring of \mathcal{C}. Let $z \in D_{2}(A) \cap N\left(p_{1}\right)$ and let $z_{*} \in D_{2}\left(A_{*}\right) \cap N\left(p_{s}\right)$, where $\left|\operatorname{Bar}_{A}\left(p_{1} z\right)\right| \leq 1$ and $\left|\operatorname{Bar}_{A_{*}}\left(p_{s} z_{*}\right)\right| \leq 1$. Let $[H, \psi]$ be a (C, z)-opener and let $\left[H_{*}, \psi_{*}\right]$ be a $\left(C_{*}, z_{*}\right)$-opener. Let φ be a extension of $\psi \cup \psi_{*}$ to an L-coloring of $\operatorname{dom}\left(\psi \cup \psi_{*}\right) \cup\left\{p_{1}, p_{s}\right\}$ which satisfies Claim 11.4.4, and let F be the outer face of $G \backslash V\left(H \cup H_{*} \cup P\right)$. Then, for any $\varphi^{\dagger} \in \Phi_{G, L}\left(\psi \cup \psi_{*}, V(P)\right)$, if there is a $w \in V(F)$ with $\left|L_{\varphi^{\dagger}}(w)\right|<3$, then $N(w) \cap \operatorname{dom}\left(\varphi^{\dagger}\right) \subseteq V\left(z p_{1} P p_{s} z_{*}\right)$.

Proof: Let $w \in V(F)$ with $\left|L_{\varphi^{\dagger}}(w)\right|<3$. By 1) of Claim 11.4.2, we have $\mathbf{P}_{\mathcal{T}}(C) \cup \mathbf{P}_{\mathcal{T}}\left(C_{*}\right) \subseteq H \cup H_{*}$. Since $B_{1}(P)$ contains no vertices of any ring of \mathcal{C}, it follows from Theorem 1.3.2 that w has at least three neighbors in $\operatorname{dom}\left(\varphi^{\dagger}\right)$. Furthermore, $N(w) \cap \operatorname{dom}\left(\varphi^{\dagger}\right) \nsubseteq \operatorname{dom}(\psi)$ and $N(w) \cap \operatorname{dom}\left(\varphi^{\dagger}\right) \nsubseteq \operatorname{dom}\left(\psi_{*}\right)$. It immediately follows from our distance conditions that $N(w) \cap \operatorname{dom}\left(\varphi^{\dagger}\right) \nsubseteq \operatorname{dom}\left(\psi \cup \psi_{*}\right)$, so w has a neighbor in P.

Suppose toward a contradiction that $N(w) \cap \operatorname{dom}\left(\varphi^{\dagger}\right) \nsubseteq V\left(z p_{1} P p_{s} z_{*}\right)$. Thus, by 1$)$ of Claim 11.4.2, there is a neighbor of w in $\left.\operatorname{dom}\left(\varphi^{\dagger}\right)\right) \cap\left(\operatorname{Ann}(C) \cup \operatorname{Ann}\left(C_{*}\right)\right)$. Since $p_{1} \cdots p_{s}$ is a $\left(D_{3}(A), D_{3}\left(A_{*}\right)\right)$-path, it follows from 3) of Claim 11.4.3 that w has no neighbor in $V(\stackrel{\circ}{P})$. Thus, it immediately follows from our distance conditions that $N(w) \cap \operatorname{dom}\left(\varphi^{\dagger}\right)$ is contained in one of $\operatorname{dom}(\psi) \cup\left\{p_{1}\right\}$ or $\operatorname{dom}\left(\psi_{*}\right) \cup\left\{p_{s}\right\}$, so suppose without loss of generality that $N(w) \cap \operatorname{dom}\left(\varphi^{\dagger}\right) \subseteq \operatorname{dom}(\psi) \cup\left\{p_{1}\right\}$. Thus, p_{1} is the unique neighbor of w on P. Note that, since $p_{1} \in N(w)$ and $d\left(p_{1}, A\right)=3$, we have $N(w) \cap V(A)=\varnothing$.

Subclaim 11.4.6. w has no neighbor in $\operatorname{Span}(z)$.
Proof: We first show that $z \notin N(w)$. Suppose toward a contradiction that $z \in N(w)$. If w has a neighbor in $D_{1}(A)$, then $w \in \operatorname{Bar}_{A}\left(p_{s} z\right)$, and thus $\left|L_{\varphi^{\dagger}}(w)\right| \geq 3$ by our choice of φ, contradicting our assumption. Thus, w has no neighbor in $D_{1}(A)$, so $w \notin D_{2}(A)$. Since $w \in N\left(p_{1}\right) \cap N(z)$, we thus have $w \in D_{3}(A)$, as $p_{1} \in D_{3}(A)$ and $z \in D_{2}(A)$. Since $\left|L_{\varphi^{\dagger}}(w)\right|<3$, it follows that w has a neighbor in $\left.\operatorname{dom}(\psi) \cap D_{2}(A)\right) \backslash\{z\}$, so, by 1) of Claim 11.4.2, w has a neighbor v in $D_{2}(A) \cap \operatorname{Sh}_{4}(A, \operatorname{Ext}(A))$. But since $w \in D_{3}(A)$, there is no $1 \leq k \leq 4$ such that w lies on a k-chord of A, and since $V(P) \cap \operatorname{Ann}(C)=\varnothing$, this contradicts the fact that $w v \in E(G)$.

Now suppose toward a contradiction that w has a neighbor w^{\prime} in $\operatorname{Span}(z)$. Since $N(w) \cap V(A)=\varnothing$ and $z \notin N(w)$, we have $w^{\prime} \in D_{1}(A) \cap V(\operatorname{Span}(z))$, so $z w^{\prime} \in E(G)$ and G contains the 4-cycle $p_{1} z w^{\prime} w$. Since $w^{\prime} \in D_{1}(A)$, we have $p_{1} w^{\prime} \notin E(G)$, and since G is short-separation-free, it follows from our triangulation conditions that $w z \in E(G)$, which has been ruled out above. Thus, w has no neighbor in $\operatorname{Span}(z)$.

We now note the following:
Subclaim 11.4.7. $N(w) \cap \operatorname{dom}(\psi) \subseteq D_{1}(A) \backslash \operatorname{Sh}_{4}(A, \operatorname{Ext}(A))$.
Proof: Since $z \notin N(w)$ and $N(w) \cap A=\varnothing$, we have $N(w) \cap \operatorname{dom}(\psi) \subseteq D_{1}(A) \cup \operatorname{Sh}_{4}(A, \operatorname{Ext}(A))$ by 1) of Claim 11.4.2. We just need to show that no vertex of $N(w) \cap \operatorname{dom}(\psi))$ lies in $\operatorname{Sh}_{4}(A, \operatorname{Ext}(A))$. Suppose toward a contradiction that there is a $v \in N(w) \cap \operatorname{dom}(\psi))$ with $v \in \operatorname{Sh}_{4}(A, \operatorname{Ext}(A))$. Since w has no neighbors in $\operatorname{Span}(z)$, it follows from 5) of Claim 11.4.2 that, for some $1 \leq k \leq 3$, there is a k-chord R of A such that, in $\operatorname{Ext}(A), R$ separates v from each element of $\mathcal{C} \backslash\{C\}$. But since $w \in N\left(p_{1}\right)$, we have $w \notin V(R)$, so R separates v from w and $v w \notin E(G)$.

Now, since $\left|L_{\varphi^{\dagger}}(w)\right|<3$ and $N(w) \cap \operatorname{dom}\left(\varphi^{\dagger}\right) \subseteq\left\{p_{1}\right\} \cup \operatorname{dom}(\psi)$, it follows from Subclaim 11.4.7 that w has two neighbors $v, v^{\prime} \in\left(\operatorname{dom}(\psi) \cap D_{1}(A)\right) \backslash \operatorname{Sh}_{4}(A, \operatorname{Ext}(A))$, and, by Subclaim 11.4.6, $v, v^{\prime} \notin V(\operatorname{Span}(z))$, contradicting 4) of Claim 11.4.2. This completes the proof of Claim 11.4.5.

By 2) of Corollary 2.2.29, we have $\left|\mathcal{C} \backslash\left\{C_{*}\right\}\right|>1$. We now have the following.

Claim 11.4.8. C_{*} is an open \mathcal{T}-ring.

Proof: Suppose toward a contradiction that C_{*} is a closed \mathcal{T}-ring. Now we apply the work of Section 11.1. We now choose a ring which minimizes the quantity $d_{G}\left(w_{\mathcal{T}}(C), w_{\mathcal{T}}\left(C_{*}\right)\right)$ over all $C \in \mathcal{C} \backslash\left\{C_{*}\right\}$. Let C_{m} be this element of $\mathcal{C} \backslash\left\{C_{*}\right\}$. Let A_{m} be the collar of C_{m} and let A_{*} be the collar of C_{*}. Since C_{*} is a closed \mathcal{T}-ring, A_{*} is the 1-necklace of C_{*}.

Let $P:=p_{1} \cdots p_{s}$ be a shortest $\left(D_{3}\left(A_{m}\right), D_{3}\left(A_{*}\right)\right)$-path in G, where $p_{1} \in D_{3}\left(A_{m}\right)$ and $p_{s} \in D_{3}\left(A_{*}\right)$. By Observation 1.2.9, there exist $z \in D_{2}\left(A_{m}\right)$ and $z_{*} \in D_{2}\left(A_{*}\right)$ with $\left|\operatorname{Bar}_{A_{m}}\left(p_{1} z\right)\right| \leq 1$ and $\left|\operatorname{Bar}_{A_{*}}\left(p_{s} z_{*}\right)\right| \leq 1$. Furthermore $P^{\prime}:=z p_{1} \cdots p_{s} z_{*}$ is a shortest $\left(D_{2}\left(A_{m}\right), D_{2}\left(A_{*}\right)\right)$-path in G, as $d\left(D_{2}\left(A_{m}\right), D_{2}\left(A_{*}\right)\right)=d\left(D_{3}\left(A_{m}\right), D_{3}\left(A_{*}\right)\right)+2$.

By Claim 11.4.3, we have $z, p_{1} \notin \operatorname{Sh}_{4}\left(A, \operatorname{Ext}\left(A_{m}\right)\right)$ and $z_{*}, p_{s} \notin \operatorname{Sh}_{4}\left(A_{*}, \operatorname{Int}\left(A_{*}\right)\right)$. Thus, by Claim 11.4.2, there exists a $\left(C_{m}, z\right)$-opener $[H, \psi]$, and there exists a $\left(C_{*}, z_{*}\right)$-opener $\left[H_{*}, \psi_{*}\right]$. Furthermore, by Claim 11.4.4, there is an extension of $\psi \cup \psi_{*}$ to an L-coloring φ of $\operatorname{dom}\left(\psi \cup \psi_{*}\right) \cup\left\{p_{1}, p_{s}\right\}$ such that each vertex of $\operatorname{Bar}_{A}\left(p_{1} z\right) \cap D_{1}(H)$ and each vertex of $\operatorname{Bar}_{A_{*}}\left(p_{s} z_{*}\right) \cap D_{1}\left(H_{*}\right)$ has an L_{φ}-list of size at least three. Let f be the restriction of φ to $\left\{z, p_{1}, p_{s}, z_{*}\right\}$

Now, it follows from Theorem 11.1.1 that no vertex $B_{2}\left(P^{\prime}\right)$ lies in an element of \mathcal{C}, as each endpoint of P^{\prime} is of distance at least three from $C_{m} \cup C_{*}$. Since P^{\prime} is a shortest $\left(D_{2}\left(A_{m}\right), D_{2}\left(A_{*}\right)\right)$-path, it is an ideal C_{m}-route. By Lemma 11.3.2, there exists a $\left(D_{2}\left(A_{m}\right), D_{2}\left(A_{*}\right)\right)$-path P^{\dagger} with terminal edges $z p_{1}, z_{*} p_{s}$, a vertex $v \in D_{1}\left(P^{\dagger}\right)$, and a $\tau \in \Phi_{G, L}\left(f, V\left(P^{\dagger}\right)\right)$ such that the following hold.

1) P^{\dagger} is also an ideal C_{m}-route; $A N D$
2) $V\left(P^{\dagger} \backslash P^{\prime}\right) \subseteq B_{20 N_{\mathrm{mo}}}\left(C_{m}\right) ; A N D$
3) $\left|L_{\tau}(v)\right| \geq 2$ and $\left|N(v) \cap\left\{p_{1}, \cdots, p_{s}\right\}\right| \geq 2$.

Let K^{\dagger} be the subgraph of G induced by $V\left(H \cup H_{*} \cup P^{\dagger}\right)$ and let F^{\dagger} be the outer face of $G \backslash K^{\dagger}$.

Subclaim 11.4.9. For each $C \in \mathcal{C} \backslash\left\{C_{*}, C_{m}\right\}$, we have $d\left(w_{\mathcal{T}}(C), F^{\dagger}\right) \geq \frac{\beta}{3}+2 N_{\mathrm{mo}}+\operatorname{Rk}(\mathcal{T} \mid C)$.
Proof: Let $C \in \mathcal{C} \backslash\left\{C_{m}, C_{*}\right\}$ and let K be the subgraph of G induced by $V\left(H \cup H_{*} \cup P\right)$. By 2) of Claim 11.4.3, K is connected. Let F be the outer face of $G \backslash K$. By Theorem 11.1.1, we have $d(C, F) \geq \frac{\beta}{3}+2 N_{\mathrm{mo}}+\operatorname{Rk}(\mathcal{T} \mid C)$, and, by Claim 11.4.1, we have $d\left(C, F^{\dagger}\right) \geq \frac{\beta}{3}+2 N_{\mathrm{mo}}+\operatorname{Rk}(\mathcal{T} \mid C)$.

It follows from 1) of Claim 11.4.3 that $\varphi^{\dagger}:=\tau \cup \psi \cup \psi_{*}$ is a proper L-coloring its domain. It follows from Subclaim 11.4.9 that no vertex of $B_{1}\left(P^{\dagger}\right)$ lies in a ring of \mathcal{C}, as P^{\dagger} has distance at least three from each of C_{*}, C_{m}. Since P^{\dagger} is an ideal C_{m}-route it follows from Claim 11.4.5 that every vertex of $V\left(F^{\dagger}-v\right.$ has an $L_{\varphi^{\dagger}}$-list of size at least three, and furthermore, since $\left|N(v) \cap\left\{p_{1}, \cdots, p_{s}\right\}\right| \geq 2$, it follows from our distance conditions that v has a neighbor in $\left\{p_{2}, \cdots, p_{s-1}\right\}$, and, by 3) of Claim 11.4.3, we have $\left.N(v) \cap \operatorname{dom}\left(\varphi^{\dagger}\right)\right)=N\left(v^{\dagger}\right) \cap \operatorname{dom}(\tau)$, so $\left|L_{\varphi^{\dagger}}(v)\right| \geq 2$.

Let $\left.\mathcal{C}_{\text {red }}:=\mathcal{C} \backslash\left\{C_{m}, C_{*}\right\}\right)$ and let $\mathcal{T}_{\text {red }}:=\left(G \backslash K^{\dagger}, \mathcal{C}_{\text {red }} \cup\left\{F^{\dagger}\right\}, L_{\varphi^{\dagger}}, F^{\dagger}\right)$. Removing some colors from the $L_{\varphi^{\dagger}}$-list of v so that $\left|L_{\varphi^{\dagger}}(v)\right|=1$, we get that $\mathcal{T}_{\text {red }}$ is a tessellation in which the outer face is an open ring, and $\mathbf{P}_{\mathcal{T}_{\text {red }}}\left(F^{\dagger}\right)$ is the path v. We claim now that $\mathcal{T}_{\text {red }}$ is a mosaic. It immediately follows from Subclaim 11.4.9 that $\mathcal{T}_{\text {red }}$ satisfies the distance conditions of Definition 2.1.6, since every ring of $\mathcal{C} \backslash\left\{C_{m}, C_{*}\right\}$ has the same rank in \mathcal{T} and $\mathcal{T}_{\text {red }}$. Since F^{\dagger} is an open $\mathcal{T}_{\text {red }}$-ring, and $\mathbf{P}_{\mathcal{T}_{\text {red }}}(F)$ is a lone vertex, $\mathcal{T}_{\text {red }}$ trivially satisfies M0)-M2). Thus, $\mathcal{T}_{\text {red }}$ is indeed a tessellation. Since $\left|V\left(G \backslash K^{\dagger}\right)\right|<|V(G)|$, it follows from the minimality of \mathcal{T} that $G \backslash K^{\dagger}$ is $L_{\varphi^{\dagger}}$-colorable. Thus, there extension of φ^{\dagger} to an L-coloring σ of $V\left(G \backslash K^{\dagger}\right) \cup \operatorname{dom}\left(\varphi^{\dagger}\right)$. By 3) of Claim 11.4.2, σ extends to L-color $\left.V(H) \backslash \operatorname{dom}(\psi)\right) \cup$ $\left(V\left(H_{*}\right) \backslash \operatorname{dom}\left(\psi_{*}\right)\right)$ as well, so σ extends to an L-coloring of G, contradicting the fact that \mathcal{T} is critical.

Since C_{*} is an open \mathcal{T}-ring, there is a $C \in \mathcal{C} \backslash\{C\}$ and a C-monotone path P which satisfy Theorem 11.2.3. Let C_{*}^{2} be the 2-necklace of C_{*}. By definition, P is a $\left(w_{\mathcal{T}}(C), D_{3}\left(C_{*}^{2}\right)\right)$-path. By Observation 1.2.9, there is a $z_{*} \in D_{2}\left(C_{*}^{2}\right) \cap N\left(p_{s}\right)$ such that $\left|\operatorname{Bar}_{C_{*}^{2}}\left(p_{s} z_{*}\right)\right| \leq 1$. By our choice of P, there exists a C-seam K with tail P and join z_{*} such that the distance conditions in 2) of Theorem 11.2 .3 are satisfied. Thus, there is a $\left(C_{*}, z_{*}\right)$-opener $\left[H_{*}, \psi_{*}\right]$ such that H_{*} is the subgraph of G induced by $V(K) \cap\left(\operatorname{Ann}\left(C_{*}\right) \cup\left\{z_{*}\right\}\right)$. Let A be the collar of C.

Claim 11.4.10. There exist an integer $3 \leq k \leq 9$ and an index $j \in\{1, \cdots, s-2\}$ such that $D_{k}(A) \cap V(P)=\left\{p_{j}\right\}$ and $D_{k+1}(A) \cap V(P)=\left\{p_{j+1}\right\}$.

Proof: Firstly, since P is a $\left(w_{\mathcal{T}}(C), D_{3}\left(C_{*}^{2}\right)\right)$-path, it is immediate from our distance conditions that, for each $3 \leq$ $k \leq 9,\left\{p_{1}, \cdots, p_{s-2}\right\}$ has nonempty intersection with each of $D_{k}(A)$ and $D_{k+1}(A)$. Thus, if the claim does not hold, then $|E(P)| \geq d\left(w_{\mathcal{T}}(C), D_{3}\left(C_{*}^{2}\right)\right)+4$, contradicting the fact that P is a C-monotone path.

Let $3 \leq k \leq 9$ and $j \in\{1, \cdots, s-2\}$ be integers satisfying Claim 11.4.10. Let R be a shortest $\left(D_{3}(A)\right.$, $\left.p_{j}\right)$-path and let q be the $D_{3}(A)$-endpoint of R. By Observation 1.2.9, there is a $z \in D_{2}(A) \cap N(q)$ such that $\left|\operatorname{Bar}_{A}(q z)\right| \leq 1$. Let $R^{\prime}:=z q R p_{j} P p_{s} z_{*}$.

Claim 11.4.11. R^{\prime} is an ideal C-route.

Proof: Note that $p_{j} P p_{s} z_{*}$ intersects with $B_{k}(A)$ precisely on p_{j}, so R^{\prime} is a path. Since R is a shortest $\left(D_{3}(A), p_{j}\right)$ path and P is a C-monotone path, R^{\prime} intersects with $D_{2}(A)$ precisely on z and intersects with $D_{2}\left(C_{*}^{2}\right)$ precisely on z_{*}. Thus, R^{\prime} is a $\left.D_{2}(A), D_{2}\left(C_{*}^{2}\right)\right)$-path. Since P is a C-monotone path, we have $V\left(R^{\prime}\right) \cap D_{3}\left(C_{*}^{2}\right)=\left\{p_{s}\right\}$ and $V\left(R^{\prime \prime}\right) \cap D_{4}\left(C_{*}^{2}\right)=\left\{p_{s-1}\right\}$. Thus, there is no chord of R^{\prime} with z_{*} as an endpoint.

Since R is a shortest path between its endpoints and $V(R) \cap D_{3}(A)=\left\{p_{j}\right\}, z q R p_{j}$ is also a shortest path between its endpoints. Since $z q R p_{j}$ is a shortest path and $V(P) \cap D_{k+1}=\left\{p_{j+1}\right\}$, there is no chord of R^{\prime} incident to a vertex of $\{z\} \cup V(R)$. Since P is an induced path, it follows that R^{\prime} is also an induced path. Suppose toward a
contradiction that R^{\prime} is not a quasi-shortest path. Thus, there is a $v \in D_{1}\left(R^{\prime}\right)$ such that v has two neighbors which are of distance greater than two apart on R^{\prime}. Since P is a quasi-shortest path, v has a neighbor in $V\left(R \backslash\left\{p_{j}\right\}\right) \cup\left\{z, z_{*}\right\}$. Since $V\left(R^{\prime}\right) \cap=\left\{p_{j}\right\}$ and $V\left(R^{\prime \prime}\right) \cap D_{4}=\left\{p_{s-1}\right\}$, we have $z \notin N(v)$. Since $z q R p_{j}$ is a shortest path between its endpoints, v has a neighbor $w \in V\left(R \backslash\left\{p_{j}\right\}\right)$ and a neighbor $w^{\prime} \in V(P) \backslash\left\{p_{j}\right\}$, where w, w^{\prime} are of distance greater than two apart on $R^{\prime \prime}$, contradicting the fact that $D_{k}(A) \cap V(P)=\left\{p_{j}\right\}$ and $D_{k+1}(A) \cap V(P)=\left\{p_{j+1}\right\}$.

Thus, R^{\prime} is a quasi-shortest path and a $\left(D_{2}(A), D_{2}\left(C_{*}^{2}\right)\right)$-path. Since $R^{\prime} \backslash\left\{z, z_{*}\right\}$ is a $\left(D_{3}(A), D_{3}\left(C_{*}^{2}\right)\right)$-path, we just need to check the distance bound in Definition 11.3.1. Recall that $|E(P)| \leq d\left(w_{\mathcal{T}}(C), D_{3}\left(C_{*}^{2}\right)\right)+3$, as P is a C monotone path. Every vertex of $C \backslash w_{\mathcal{T}}(C)$ has distance at most $\frac{N_{\mathrm{mo}}}{3}$ from $w_{\mathcal{T}}(C)$, so $|E(P)| \leq d\left(V(C), D_{3}\left(C_{*}^{2}\right)\right)+$ $\frac{N_{\mathrm{mo}}}{3}+3$, so $\left|E\left(R^{\prime \prime}\right)\right| \leq d\left(D_{2}(A), D_{2}\left(C_{*}^{2}\right)\right)+\frac{N_{\mathrm{mo}}}{3}+3$. We conclude that R^{\prime} is indeed an ideal C-route.

It follows from our choice of P that $B_{2}(P)$ contains no vertices of any ring in $\mathcal{C} \backslash\left\{C, C_{*}\right\}$, so it follows from our distance conditions that $B_{2}\left(R^{\prime}\right)$ contains no vertices of any ring of \mathcal{C}. Since R^{\prime} is a $\left(D_{2}(A), D_{2}\left(C_{*}^{2}\right)\right)$-path, $B_{2}\left(R^{\prime}\right)$ contains no vertices of any ring of \mathcal{C}. By 1) of Claim 11.4.3, $z, q \notin \operatorname{Ann}(C)$ and $z_{*}, p_{s} \notin \operatorname{Ann}\left(C_{*}\right)$. By Claim 11.4.2, there exists a (C, z)-opener $[H, \psi]$, and, by Claim 11.4.4, there exists a $\varphi \in \Phi_{G, L}\left(\psi \cup \psi_{*},\left\{q, p_{s}\right\}\right)$ such that every vertex of $\operatorname{Bar}_{A}(z q) \cap D_{1}(H)$ and every vertex of $\operatorname{Bar}_{C_{*}^{2}}\left(z_{*} p_{s}\right) \cap D_{1}\left(H_{*}\right)$ has an $L_{\varphi^{\dagger}}$ list of size at least three. Let f be the restriction of φ to $\left\{z, q, p_{s}, z_{*}\right\}$. By Lemma 11.3.2, there exists an ideal C-route $R^{\prime \prime}$ with terminal edges $z q, z_{*} p_{s}$, a vertex $v \in D_{1}\left(R^{\prime \prime}\right)$, and a $\tau \in \Phi_{G, L}\left(f, V\left(R^{\prime \prime}\right)\right)$ such that the following hold.

1) $V\left(R^{\prime \prime} \backslash R^{\prime}\right) \subseteq B_{20 N_{\mathrm{mo}}}(C) ; A N D$
2) $\left|L_{\tau}(v)\right| \geq 2$ and $\left|N(v) \cap\left\{q, p_{j}, \cdots, p_{s}\right\}\right| \geq 2$.

Let $K^{\prime \prime}$ be the subgraph of G induced by $V\left(H \cup H_{*} \cup R^{\prime \prime}\right)$ and let $F^{\prime \prime}$ be the outer face of $G \backslash K^{\prime \prime}$.
Claim 11.4.12. For each $C^{\dagger} \in \mathcal{C} \backslash\left\{C, C_{*}\right\}$, we have $d\left(C, F^{\prime \prime}\right) \geq \frac{\beta}{3}+2 N_{\mathrm{mo}}+\operatorname{Rk}\left(\mathcal{T} \mid C^{\dagger}\right)$.
Proof: Let $C^{\dagger} \in \mathcal{C} \backslash\left\{C, C_{*}\right\}$. Let F be the outer face of $G \backslash K$ and let F^{\prime} be the outer face of $G \backslash\left(H_{*} \cup R^{\prime}\right)$. By our choice of P, K, it follows from Theorem 11.2.3 that $d\left(C^{\dagger}, F\right) \geq \frac{\beta}{3}+2 N_{\mathrm{mo}}+\operatorname{Rk}\left(\mathcal{T} \mid C^{\dagger}\right)$. By Claim 11.4.1, we have $d\left(C^{\dagger}, F^{\prime}\right) \geq \frac{\beta}{3}+2 N_{\mathrm{mo}}+\operatorname{Rk}\left(\mathcal{T} \mid C^{\dagger}\right)$, and, by a second application of Claim 11.4.1, we have $d\left(C^{\dagger}, F^{\prime \prime}\right) \geq$ $\frac{\beta}{3}+2 N_{\mathrm{mo}}+\operatorname{Rk}\left(\mathcal{T} \mid C^{\dagger}\right)$.
It follows from 1) of Claim 11.4.3 that $\varphi^{\dagger}:=\tau \cup \psi \cup \psi_{*}$ is a proper L-coloring its domain. It follows from Claim 11.4.12 that no vertex of $B_{1}\left(R^{\prime \prime}\right)$ lies in a ring of \mathcal{C}, as $R^{\prime \prime}$ has distance at least three from each of C_{*}, C. Since $R^{\prime \prime}$ is an ideal C-route it follows from Claim 11.4.5 that every vertex of $V\left(F^{\prime \prime}-v\right)$ has an $L_{\varphi^{+}}$-list of size at least three, and furthermore, since $\left|N(v) \cap\left\{q, p_{j}, \cdots, p_{s}\right\}\right| \geq 2$, it follows from our distance conditions that v has a neighbor in $\left\{p_{j}, \cdots, p_{s-1}\right\}$, and, by 3) of Claim 11.4.3, we have $N(v) \cap \operatorname{dom}\left(\varphi^{\dagger}\right)=N\left(v^{\dagger}\right) \cap \operatorname{dom}(\tau)$, so $\left|L_{\varphi^{\dagger}}(v)\right| \geq 2$.

Let $\mathcal{C}_{\text {red }}:=\mathcal{C} \backslash\left\{C, C_{*}\right\}$ and let $\mathcal{T}_{\text {red }}:=\left(G \backslash K^{\prime \prime}, \mathcal{C}_{\text {red }} \cup\left\{F^{\prime \prime}\right\}, L_{\varphi^{+}}, F^{\prime \prime}\right)$. Removing some colors from the $L_{\varphi^{\dagger}}$-list of v so that $\left|L_{\varphi^{\dagger}}(v)\right|=1$, we get that $\mathcal{T}_{\text {red }}$ is a tessellation in which the outer face is an open ring, and $\mathbf{P}_{\mathcal{T}_{\text {red }}}\left(F^{\prime \prime}\right)$ is the path v.

We claim now that $\mathcal{T}_{\text {red }}$ is a mosaic. It immediately follows from Claim 11.4.12 that $\mathcal{T}_{\text {red }}$ satisfies the distance conditions of Definition 2.1.6, as each element of $\mathcal{C} \backslash\left\{C, C_{*}\right\}$ has the same rank in \mathcal{T} and $\mathcal{T}_{\text {red }}$. Since $F^{\prime \prime}$ is an open $\mathcal{T}_{\text {red }}$-ring, and $\mathbf{P}_{\mathcal{T}_{\text {red }}}\left(F^{\prime \prime}\right)$ is a lone vertex, $\mathcal{T}_{\text {red }}$ trivially satisfies M0)-M2). Thus, $\mathcal{T}_{\text {red }}$ is indeed a tessellation. Since $\left|V\left(G \backslash K^{\prime \prime}\right)\right|<$ $|V(G)|$, it follows from the minimality of \mathcal{T} that $G \backslash K^{\prime \prime}$ is $L_{\varphi^{\dagger}}$-colorable. Thus, there extension of φ^{\dagger} to an L-coloring σ of $V\left(G \backslash K^{\prime \prime}\right) \cup \operatorname{dom}\left(\varphi^{\dagger}\right)$. By 3) of Claim 11.4.2, σ extends to L-color $(V(H) \backslash \operatorname{dom}(\psi)) \cup\left(V\left(H_{*}\right) \backslash \operatorname{dom}\left(\psi_{*}\right)\right)$ as
well, so σ extends to an L-coloring of G, contradicting the fact that \mathcal{T} is critical. This completes the proof of Theorem 2.1.7.

Chapter 12

Lenses and Roulette Wheels

12.1 Introduction

The goal of Chapters 12 and 13 is to complete the proof of Theorem 1.1.3 by reducing from charts to mosaics, i.e we show that Theorem 2.1.7 implies Theorem 1.1.3.

We now provide a brief overview of how this works. Let α be a sufficiently large constant (whose precise value is determined later), and suppose toward a contradiction that there is an $(\alpha, 1)$-chart (G, \mathcal{C}, L) which is not colorable, where this chart has chosen to be vertex-minimal with respect to this property. We show that G contains a family of short separating cycles B_{1}, \cdots, B_{t} such that the graph $H:=\bigcap_{i=1}^{t} \operatorname{Ext}\left(B_{i}\right)$ is short-separation-free, and the graph $K:=\bigcup_{i=1^{t}} \operatorname{Int}^{+}\left(B_{i}\right)$ is admits an L-coloring ϕ such that H is the underlying graph of a mosaic with respect to the list-assignment L_{ϕ}^{K}. It then follows that H is L_{ϕ}^{K}-colorable, and thus ϕ extends to an L-coloring of G, producing the desired contradiction.

The trickiest part of the argument above is dealing with a short-separation-free subgraph G^{*} of G obtained from G in the following way: Let D be a separating cycle in G of length at most four, and suppose that $\left\{D_{1}, \cdots, D_{s}\right\}$ is a collection of separating cycles in G of length at most four, with $\operatorname{Int}\left(D_{i}\right) \subsetneq \operatorname{Int}(D)$ for each $i=1, \cdots, s$, and the graphs of $\left\{D_{1}, \cdots, D_{s}\right\}$ are pairwise far apart. Let $G^{*}:=\operatorname{Int}(D) \cap\left(\bigcap_{i=1}^{s} \operatorname{Ext}\left(D_{i}\right)\right)$. Since the elements of $\left\{D_{1}, \cdots, D_{s}\right\}$ are pairwise far apart, there is at most element D^{*} of $\left\{D_{1}, \cdots, D_{s}\right\}$ which is close to D (for a definitition of "close" that is made precise later). The main difficulty which arises at the end of Chapter 13 is coloring and deleting a connected subgraph of $B_{k}\left(V\left(D^{*} \cup D\right), G^{*}\right)$, for some sufficiently small value of k, such that we obtain a graph containing a lone Thomassen facial subgraph which is sufficiently far away from the cycles of $\left\{D_{1}, \cdots, D_{s}\right\} \backslash\left\{D^{*}\right\}$.

In order to perform the steps above, we prove a sequence of general results about short-separation-free graphs which we need in Chapter 13. The purpose of Chapter 12 is to prove these general results. That is, the work of Chapter 12 is outside of the context of charts with pairwise far-apart rings. We only return to the context of charts with pairwise far-apart rings in Chapter 13

In Section 12.2, we show how, given a short-separation-free graph with a precolored outer cycle, we can color and delete some vertices to produce a Thomassen facial subgraph within a bounded distance of the outer cycle under specified conditions. In Sections 12.3, 12.4, and 12.5, we finally turn our attention to a short-separation-free annulus with two precolored cycles F_{0}, F_{1}, each of length at most four, and show that an analogous coloring and deletion can be performed. Finally, in Chapter 13, we apply the results of Chapter 12 to complete the reduction from charts to mosaics described above.

12.2 Precolored Cycles Which Create Many Lists of Size Two

We begin this section by introducing the following natural definition.
Definition 12.2.1. Given a 2 -connected planar graph H with outer cycle C, and a facial subgraph D of H, we say that D is inward-facing if one the following holds:

1) $H=D=C$; $O R$
2) $H \neq C$ and $D \neq C$.

We now provide a brief overview of this section. In Section 13.4, where we complete the proof of Theorem 1.1.3, there is a step where we need to deal with the following situation: Suppose we have a short-separation-free 2-connected planar graph G with a specified list-assignment L. Suppose further that G contains a 2-connected subgraph K such that $C \subseteq K$, where K is precolored by L, and each vertex of $H \backslash K$ sufficiently close to K has an L-list of size at least five. Suppose further that, for each inward-facing facial subgraph D of K, and each vertex v lying in the open disc bounded by D, the subgraph of K induced by $N(v) \cap V(D)$ is a subpath of D of length at most two. In this section, we show that, in this situation, under some specified additional conditions, we can perform some coloring and deletion of the vertices lying $\operatorname{Int}(D)$ which are of distance at most one from D , such that, within the closed disc bounded by D, we obtain a graph whose outer face is a Thomassen facial subgraph of the resulting graph, with respect to the resulting list-assignment. Intuitively, the graph K is a skeleton which partitions G into a collection of closed regions, where we can perform the described coloring and deletion within each of the given regions. We now define the main object of study for Section 12.2.

Definition 12.2.2. Let $k \geq 0$ be an integer. A 4-tuple $\mathcal{L}=(G, C, L, \psi)$ is called a k-lens if G is a connected, short-separation-free graph with cyclic outer face C, L is a list-assignment for $V(G)$, and the following conditions are satisfied.

1) ψ is an L-coloring of $V(C)$; AND
2) $B_{k}(C, G)$ is L-colorable, and, in particular, ψ extends to an L-coloring of $B_{k}(C, G)$; AND
3) $|L(v)| \geq 5$ for all $v \in B_{k+1}(C, G) \backslash V(C)$; AND
4) For every $v \in B_{k}(C, G)$, every facial subgraph of G containing v, except possibly C, is a triangle.

We call \mathcal{L} a lens if there exists a $k \geq 0$ such that \mathcal{L} is a k-lens.
Note that the definition of a lens does not require the vertices of G outside of the ball of distance k from C to have lists of size at least 5 . We begin by analyzing those vertices in the interior of C which have at least three neighbors on C. Thus, we introduce the following useful definition:

Definition 12.2.3. Given a short-separation-free graph G and a cycle C in G, we let $U^{\geq 3}(C):=\{u \in V(\operatorname{Int}(C)) \backslash$ $V(C):|N(v) \cap V(C)| \geq 3\}$ and we let $U^{2 p}(C)$ be the set of $u \in U^{\geq 3}(C)$ such that $C[N(v) \cap V(C)]$ is a subpath of C of length two. Given a vertex $w \in U^{2 p}(C)$, we set P_{C}^{w} to be the graph $G[N(w) \cap V(C)]$. Note that P_{C}^{w} is a path, unless $|V(C)|=3$.

We build up some more machinery for studying lenses, and then we state the main theorem for Section 12.2. We now introduce the following useful notation.

Definition 12.2.4. Let G be a graph with outer face C, and let $S \subseteq D_{1}(C, G)$. We let C^{S} denote the subgraph of G obtained from C by adding to C the vertices of S and all edges of G with one endpoint in S and the other in $V(C)$. If
$S=\{u\}$ is a single vertex, then we denote this graph as C^{u}.
We also use the following simple observation repeatedly:
Observation 12.2.5. Let G be a planar graph with outer cycle C and let $u \in U \geq 3(C)$. Let D_{1}, \cdots, D_{r} be the inward-facing facial subgraphs of C^{u}, where $\left|E\left(D_{1}\right)\right| \leq\left|E\left(D_{2}\right)\right| \leq \cdots \leq\left|E\left(D_{r}\right)\right|$. Then the following hold:

1) If $\left|E\left(D_{r}\right)\right|=|E(D)|$, then $u \in U^{2 p}(C)$; AND
2) If $\left|E\left(D_{r}\right)\right|=|E(C)|-1$, then one of the following holds.
i) $n=3,\left|E\left(D_{1}\right)\right|=3$, and $\left|E\left(D_{2}\right)\right|=4$; OR
ii) $n=4$ and $C[N(u)]$ is a subpath of C of length 3 .

Proof. This is an immediate consequence of the equality $\sum_{i=1}^{r}\left|E\left(D_{i}\right)\right|=|E(C)|+2 r$, which holds since the sum on the left counts each edge of $E(G) \backslash E(C)$ precisely twice.

Given a lens $\mathcal{L}=(G, C, L, \psi)$, there is a natural way to associate to \mathcal{L} an ascending sequence of subgraphs of G. We have the following by a simple induction argument:

Observation 12.2.6. Let $\mathcal{L}=(G, C, L, \psi)$ be a lens. Then there is a sequence of cycles $\left(C^{i}: i=0,1,2 \cdots\right)$ in G, and a sequence of subgraphs ($H^{i}: i=0,1,2, \cdots$) of G, such that $H^{0}=C, C^{0}=C, H^{0} \subseteq H^{1} \subseteq \cdots$, and, for each $i=0,1,2, \cdots$, the following hold.

1) H^{i} is 2-connected and $H^{i}=\operatorname{Ext}\left(C^{i}\right) ; A N D$
2) $\left|E\left(C^{i}\right)\right|=|E(C)|$ and every facial subgraph of H^{i}, except possibly C, C^{i}, is a triangle; AND
3) $H^{i+1}:=\left(C^{i}\right)^{T}$, where $T:=U^{2 p}\left(C^{i}\right) \cap B_{1}(C)$; AND
4) $V\left(C^{i} \backslash C\right) \subseteq V\left(C^{i+1} \backslash C\right)$.

Given a lens $\mathcal{L}:=(G, C, L, \psi)$, since G is a finite graph, there exists an index j such that $U^{2 p}\left(C^{j}\right) \cap B_{1}(C)=\varnothing$, and, in particular, $H^{r}=H^{j}$ for all $r \geq j$. We denote the minimal index with this property by $R(\mathcal{L})$ and we call this the breadth of \mathcal{L}. In some cases, we denote the elements of respective sequences as $C_{\mathcal{L}}^{0}, C_{\mathcal{L}}^{1}, \cdots$ and $H_{\mathcal{L}}^{0}, H_{\mathcal{L}}^{1}, \cdots$ respectively, where we write the subscript if we need to make clear what the underlying lens is. We are primarily interested in the case where the precolored cycle in a lens admits a subgraph which can be deleted to produce a Thomassen facial subgraph:

Definition 12.2.7. Let $\mathcal{L}=(G, C, L, \psi)$ be a lens. We then have the following definitions.

1) We say that \mathcal{L} is 0 -reducible if one of the following two statements holds:
i) ψ extends to an L-coloring of G; $O R$
ii) There exists a subpath $P \subseteq C$ of length at most one such that $G \backslash(C \backslash P)$ contains a Thomassen facial subgraph F with respect to the list-assignment L_{ψ}^{P}, where $V(F)=D_{1}(P, G)$.
2) If P is a subpath of C satisfying condition ii) above, then we call $C \backslash P$ a reducing path for \mathcal{L}.

Now we define the following.
Definition 12.2.8. Let $\mathcal{L}=(G, C, L, \psi)$ be a lens and let $k \geq 1$. We say that \mathcal{L} is k-reducible if there exists a 2-connected subgraph $H \subseteq G\left[B_{k}\left(F_{0} \cup F_{1}, G\right)\right]$, with $C \subseteq H$, and a $\psi^{\prime} \in \Phi(\psi, H)$ such that, for every inward-facing
facial subgraph D of H, the tuple $\left(\operatorname{Int}(D), D, L,\left.\psi^{\prime}\right|_{V(D)}\right)$ is a 0 -reducible lens. The pair $\left(H, \psi^{\prime}\right)$ is called a k-reducing pair for \mathcal{L}.

In general, given a k-lens $\mathcal{L}=(G, C, L, \psi)$, a 2-connected subgraph $H \subseteq G\left[B_{k}\left(F_{0} \cup F_{1}\right)\right]$, with $C \subseteq H$, and a $\psi^{\prime} \in \Phi(\psi, H)$, the primary obstacle preventing $\left(H, \psi^{\prime}\right)$ from being a k-reducing pair for \mathcal{L} is the existence of an inward-facing facial subgraph D of H such that $\operatorname{Int}(D)$ contains many vertices of $U^{2 p}(D)$. One way to deal with this obstacle is to partially $L_{\psi^{\prime}}$-color $B_{1}(\operatorname{Int}(D))$ in such a way that we obtain from $\operatorname{Int}(D)$ a graph whose outer face is a Thomassen facial subgraph with respect to the resulting list-assignment. We thus introduce the following useful notion analogous to k-reducibility.

Definition 12.2.9. Let $\mathcal{L}=(G, C, L, \psi)$ be a lens and let $k \geq 1$. We say that \mathcal{L} is k-partionable if there exists a 2-connected subgraph $K \subseteq G\left[B_{k-1}(C)\right]$, with $C \subseteq K$, and a $\psi^{\prime} \in \Phi(\psi, K)$, such that, for every inward-facing facial subgraph D of K, conditions 1) and 2) below are satisfied. We call the pair $\left(K, \psi^{\prime}\right)$ a k-partitioning pair for \mathcal{L}.

1) $\mathcal{L}_{D}:=\left(\operatorname{Int}(D), D, L,\left.\psi^{\prime}\right|_{V(D)}\right)$ is a lens; $A N D$
2) There exist a $j \in\left\{0, \cdots, R\left(\mathcal{L}_{D}\right)\right\}$, a subset $Z \subseteq V\left(C_{\mathcal{L}_{D}}^{j}\right) \backslash V(D)$, a subpath A of $C_{\mathcal{L}_{D}}^{j} \backslash Z$ of length at most one, and a partial $L_{\psi^{\prime}}$-coloring ϕ of $V\left(C_{\mathcal{L}_{D}}^{j}\right) \backslash(V(D) \cup Z)$, such that conditions i)-iii) below hold. We call the tuple (j, Z, A, ϕ) a $\left(K, \psi^{\prime}\right)$-boundary cutter for D.
i) $V(A) \subseteq V\left(C_{\mathcal{L}_{D}}^{j}\right) \backslash(Z \cup \operatorname{dom}(\phi))$; AND
ii) Z is $\left(L, \psi^{\prime} \cup \phi\right)$-inert in G; AND
iii) The outer face of $\operatorname{Int}(D) \backslash\left(\left(\operatorname{dom}\left(\psi^{\prime} \cup \phi\right) \cup Z\right) \backslash V(A)\right)$ is a Thomassen facial subgraph with respect to the list-assignment $L_{\psi^{\prime} \cup \phi}^{A}$.
Note that if $k \geq 1$ and \mathcal{L} is k-reducible, then \mathcal{L} is k-partitionable. To see this, suppose that \mathcal{L} is k-reducible, and let $\left(H, \psi^{\prime}\right)$ be a k-reducing pair for \mathcal{L}. Let D be an inward-facing facial subgraph of H. Then $\left(\operatorname{Int}(D), D, L,\left.\psi^{\prime}\right|_{V(D)}\right)$ is a 0 -reducible lens. Thus, $\left(0, \varnothing, \varnothing, \psi^{\prime}\right)$ is a $\left(H, \psi^{\prime}\right)$-boundary cutter for D. Thus, $\left(H, \psi^{\prime}\right)$ is also a 1-partitioning pair for \mathcal{L}. With the above machinery in hand, we are finally ready to state our main result for Section 12.2.

Theorem 12.2.10. Let $\mathcal{L}=(G, C, L, \psi)$ be an 11-lens with $|V(C)| \leq 11$. Then \mathcal{L} is 11-partitionable.
The majority of the proof of Theorem 12.2 .10 consists of an intermediate result which we state below. To state this result, we first introduce the following two definitions:

Definition 12.2.11. Let $\mathcal{L}:=(G, C, L, \psi)$ be a lens of breadth r.

1) We say that \mathcal{L} is non-split if it satisfies i) and ii) below.
i) C^{r} is a chordless cycle and $U^{\geq 3}\left(C^{r}\right)=U^{2 \mathrm{p}}\left(C^{r}\right)$; AND
ii) For any $\phi \in \Phi\left(\psi, V\left(C^{r}\right)\right)$, the tuple $\left(\operatorname{Int}\left(C^{r}\right), C^{r}, L,\left.\phi\right|_{V\left(C^{r}\right)}\right)$ is a lens.
2) We say that \mathcal{L} is split if it not non-split.

One particular property of non-split lens that we use is the following simple observation.
Observation 12.2.12. Let $\mathcal{L}=(G, C, L, \psi)$ be a non-split lens of breadth r. Then any two vertices of $U^{2 p}(C)$ are nonadjacent in G.

Proof. By definition of the sequence $C^{0}, C^{1}, \cdots, C^{r}$, for each $i \in\{0, \cdots, r\}$, there is no edge $w w^{\prime}$ in $E\left(C_{i}\right)$ such that each of w, w^{\prime} lies in $C^{i} \backslash C$ and is adjacent to a subpath of C of length two. Since C^{r} is an induced subgraph of
G, any two vertices of $U^{2 p}(C)$ are nonadjacent in G.

We now introduce the following notation:
Definition 12.2.13. Let $\mathcal{L}=(G, C, L, \psi)$ be a lens. Given a subgraph H of G, we let $\operatorname{Part}(H)$ denote the graph $\bigcup\left(P_{C}^{w}: w \in V(H) \cap U^{2 p}(C)\right)$.

We now state our intermediate result, the proof of which takes up the majority of Section 12.2.
Proposition 12.2.14. Let $\mathcal{L}=(G, C, L, \psi)$ be a non-split lens of breadth r such that either:

1) $\operatorname{Part}\left(C^{r}\right)$ has at most two connected components; $O R$
2) $\operatorname{Part}\left(C^{r}\right)$ has precisely three connected components, at least one of which is a subpath of C of length two.

Then \mathcal{L} is 1-partitionable, and, in particular, (C, ψ) is a 1-partitioning pair for \mathcal{L}.
The proof of Proposition 12.2.14 consists of a sequence of four lemmas, which we state and prove below. We begin by introducing the following notation.

Definition 12.2.15. Given a non-split lens $\mathcal{L}=(G, C, L, \psi)$ of breath r and a subgraph Q of $C^{r} \backslash C$, we have the following notation.

1) Let $V^{\geq 1 p}(Q):=\{v \in V(Q):|N(v) \cap V(C)| \geq 2\}$.
2) Let $\operatorname{Mid}(Q)$ be the set of vertices $v \in V(Q)$ such that there exists a $w \in U^{2 p}\left(C^{r}\right)$ with $P_{C^{r}}^{w} \subseteq Q$ and v is the middle vertex of $P_{C^{r}}^{w}$.
3) If Q is a path, let $\mathcal{E}(Q)$ denote the set of pairs (Z, ϕ) satisfying the following conditions.
i) ϕ is a partial L_{ψ}-coloring of Q, and $Z \subseteq V(Q) \backslash \operatorname{dom}(\phi)$; AND
ii) Each endpoint of Q lies in $\operatorname{dom}(\phi)$; AND
iii) For each $w \in U^{2 p}\left(C^{r}\right)$ with $P_{C^{r}}^{w} \subseteq Q$, we have $\left|L_{\psi \cup \phi}(w)\right| \geq 3$. Furthermore, for each $v \in V(Q) \backslash$ $(\operatorname{dom}(\phi) \cup Z)$, we have $\left|L_{\psi \cup \phi}(v)\right| \geq 3$; AND
iv) $Z \subseteq \operatorname{Mid}(Q)$, and furthermore, for any $y \in Z$, if w is the unique vertex of $U^{2 p}\left(C^{r}\right)$ such that y is the midpoint of $P_{C^{r}}^{w}$, then the endpoints of $P_{C^{r}}^{w}$ lie in $\operatorname{dom}(\phi)$, and $\left|L_{\psi \cup \phi}(w)\right| \geq 2$.
4) If Q is a path, then let $\mathcal{E}_{\text {col }}(Q)$ be the set of partial L_{ψ}-colorings ϕ of Q such that there exists a $Z \subseteq V(Q) \backslash$ $\operatorname{dom}(\phi)$ with $(Z, \phi) \in \mathcal{E}(Q)$.

Given a pair (Z, ϕ), if Z is a singleton $\{a\}$, then we generally write (a, ϕ) to mean $(\{a\}, \phi)$. Note that, for any $(Z, \phi) \in \mathcal{E}(Q), Z$ is L_{ψ}-inert.

Given a non-split lens $\mathcal{L}=(G, C, L, \psi)$ of breath r, the majority of the work needed to prove Proposition 12.2.14 consists of finding partial L_{ψ}-colorings of subpaths of $C^{r} \backslash C$. Possibly, the entire set $D_{1}(C)$ consists of vertices of C^{r}, so a path Q in C^{r} possibly differs from all of C^{r} by precisely an edge and induces all of C^{r}. Much of the analysis below deals with the case of subpaths Q of $C^{r} \backslash C$ for which this does not happen and thus, in particular, it is permissible to construct partial colorings of Q in which the endpoints share a color. This is the motivation for the definition below:

Definition 12.2.16. Let $\mathcal{L}=(G, C, L, \psi)$ be a non-split lens of breadth r. A subpath Q of $C^{r} \backslash C$ is called endseparated if $V(Q) \neq V\left(C^{r}\right)$ and furthermore, either $|V(Q)| \leq 3$, or the endpoints of Q do not have a common neighbor in C.

We also note the following:
Observation 12.2.17. Let $\mathcal{L}=(G, C, L, \psi)$ be a non-split lens of breadth r. For any end-separated subpath Q of $C^{r} \backslash C$, we have $\operatorname{Mid}(Q) \subseteq V^{\geq 1 p}(Q)$.

Proof. If this does not hold, then there is a vertex w with three consecutive neighbors $x_{1} x_{2} x_{3}$ on Q, such that x_{2} has only one neighbor on C. Thus, by our triangulation conditions, x_{1}, x_{2}, x_{3} have a common neighbor in C, and G contains a copy of $K_{2,3}$, contradicting the fact that G is short-separation-free.

We now prove the first of four lemmas that we need for Proposition 12.2.14:
Lemma 12.2.18. Let $\mathcal{L}=(G, C, L, \psi)$ be a non-split lens of breadth r and let Q be an end-separated subpath of $C^{r} \backslash C$. Then the following facts hold.

1) Let w be an endpoint of Q, and, for each $v \in V(Q) \backslash\{w\}$, let $B_{v} \subseteq L_{\psi}(v)$ be a set of colors with $\left|B_{v}\right| \geq 3$. Then $\operatorname{Col}\left(w, \mathcal{E}_{\mathrm{col}}(Q)\right)=L_{\psi}(w)$ and, in particular, for each $c \in L_{\psi}(w)$, there exists a pair $(Z, \phi) \in \mathcal{E}(Q)$ such that $\psi(w)=c, Z \cup \operatorname{dom}(\phi)=V(Q)$, and $\phi(v) \in B_{v}$ for each $v \in \operatorname{dom}(\phi) \backslash\{w\} ;$ AND
2) Let $x_{1} x_{2} x_{3}$ be a subpath of Q and suppose that at least one of x_{2}, x_{3} lies in $V(Q) \backslash V{ }^{\geq 1 p}(Q)$. Let $A \subseteq L_{\psi}\left(x_{1}\right)$ with $|A| \geq 2$. Then there is $a(Z, \phi) \in \mathcal{E}\left(x_{1} x_{2} x_{3}\right)$ with $\phi\left(x_{1}\right) \in A$.

Proof. We first prove the following intermediate result.

Claim 12.2.19. Let $x_{1} x_{2} x_{3}$ be a subpath of $C^{r} \backslash C$ and suppose that $x_{2} \in \operatorname{Mid}(Q)$. Suppose further that both x_{2}, x_{3} have L_{ψ}-lists of size at least three, and let $B \subseteq L_{\psi}\left(x_{3}\right)$ with $|B| \geq 3$. Then $\operatorname{Col}\left(x_{1}, \mathcal{E}_{\mathrm{col}}\left(P_{C^{r}}^{w}\right)\right)=L_{\psi}\left(x_{1}\right)$ and, in particular, for each $c \in L_{\psi}\left(x_{1}\right)$, there is a pair $(Z, \phi) \in \mathcal{E}\left(P_{C^{r}}^{w}\right)$ with $\phi\left(x_{1}\right)=c, Z=\left\{x_{2}\right\}$, and $\phi\left(x_{3}\right) \in B$.

Proof: Let $c \in L_{\psi}\left(x_{1}\right)$. We show there is a pair $(Z, \phi) \in \mathcal{E}\left(x_{1} x_{2} x_{3}\right)$ with $\phi\left(x_{1}\right)=c, Z=\left\{x_{2}\right\}$, and $\phi\left(x_{3}\right) \in B$. If either $c \notin L_{\psi}\left(x_{2}\right)$ or $\left|L_{\psi}\left(x_{2}\right)\right| \geq 4$, then, for each $d \in B$, there is a pair $\left(x_{2}, \phi\right) \in \mathcal{E}\left(x_{1} x_{2} x_{3}\right)$ such that $\phi\left(x_{1}\right)=c$ and $\phi\left(x_{3}\right)=d$, so we are done in that case. Now suppose that $c \in L_{\psi}\left(x_{2}\right)$ and $\left|L_{\psi}\left(x_{2}\right)\right|=3$. If there is a color $d \in B \backslash L_{\psi}\left(x_{2}\right)$, then, again, there is a pair $\left(x_{2}, \phi\right) \in \mathcal{E}\left(x_{1} x_{2} x_{3}\right)$ with $\phi\left(x_{1}\right)=c$ and $\phi\left(x_{3}\right)=d$, so we are done in that case. So now suppose that $B \subseteq L_{\psi}\left(x_{2}\right)$. Since $|B| \geq 3$ and $\left|L_{\psi}\left(x_{2}\right)\right|=3$, we have $L_{\psi}\left(x_{2}\right)=B$. Thus, there is a pair $\left(x_{2}, \phi\right) \in \mathcal{E}\left(x_{1} x_{2} x_{3}\right)$ with $\phi\left(x_{1}\right)=\phi\left(x_{3}\right)=c$, and $c \in B$.

Let $Q:=v_{1} \cdots v_{k}$ and let $c \in L\left(v_{1}\right)$. We show by induction on the length of k that there is a pair $(Z, \phi) \in \mathcal{E}(Q)$ such that $\phi\left(v_{1}\right)=c, \operatorname{dom}(\phi) \cup Z=V(Q)$, and $\phi(v) \in B_{v}$ for all $v \in \operatorname{dom}(\phi) \backslash\left\{v_{1}\right\}$. If $k=1$, then the claim is trivial. Now let $1 \leq i<k$, and let $(Z, \phi) \in \mathcal{E}\left(Q v_{i}\right)$ such that $\phi\left(v_{1}\right)=c, Z \cup \operatorname{dom}(\phi)=V\left(Q v_{i}\right)$, and $\phi(v) \in B_{v}$ for each $v \in \operatorname{dom}(\phi) \backslash\{v\}$.

It suffices to show that there exists a pair $\left(Z^{\dagger}, \phi^{\dagger}\right) \in \mathcal{E}\left(Q v_{i+1}\right)$, such that $\phi^{\dagger}\left(v_{i+1}\right)=c, Z^{\dagger} \cup \operatorname{dom}\left(\phi^{\dagger}\right)=V\left(Q v_{i+1}\right)$, and $\phi^{\dagger}(v) \in B_{v}$ for all $v \in \operatorname{dom}(\phi) \backslash\{v\}$. If $v_{i} \notin \operatorname{Mid}(Q)$, then any extension of ϕ to $v_{1} Q v_{i+1}$ lies in $\mathcal{E}_{\text {col }}\left(Q^{\prime} v_{i+1}\right)$, so we are done in that case.

Now suppose that $v_{i} \in \operatorname{Mid}(Q)$. We then have $v_{i-1} \notin Z$, since $v_{i-1} \notin \operatorname{Mid}(Q)$. Thus, $v_{i-1} \in \operatorname{dom}(\phi)$. Let ϕ^{\prime} be the restriction of ϕ to $Q v_{i-1}$. By Claim 12.2.19, there is a pair $\left(v_{i}, \phi^{*}\right) \in \mathcal{E}\left(v_{i-1} v_{i} v_{i+1}\right)$ with $\phi^{*}\left(v_{i-1}\right)=\phi^{\prime}\left(v_{i-1}\right)$, and $\phi^{*}\left(v_{i+1}\right) \in B_{v_{i+1}}$.

Since $V(Q) \neq V\left(C^{r}\right)$ and C^{r} is a chordless cycle, $\phi^{\prime} \cup \phi^{*}$ is a proper L_{ψ}-coloring of its domain, and the pair $\left(Z \cup Z^{*}, \phi \cup \phi^{*}\right)$ lies in $\mathcal{E}_{\text {col }}\left(Q v_{i+1}\right)$. Furthermore, $\left(Z \cup Z^{*}\right) \cup \operatorname{dom}\left(\phi^{\prime} \cup \phi^{*}\right)=V\left(Q v_{i+1}\right)$, and $\left(\phi^{\prime} \cup \phi^{*}\right)(v) \in B_{v}$ for each $v \in \operatorname{dom}\left(\phi^{\prime} \cup \phi^{*}\right) \backslash\left\{v_{1}\right\}$. This completes the proof of Fact 1.

Now we prove Fact 2. Suppose toward a contradiction that no element of $\mathcal{E}_{\text {col }}\left(x_{1} x_{2} x_{3}\right)$ colors x_{1} with a color from A. If $x_{2} \notin \operatorname{Mid}(Q)$, then any L_{ψ}-coloring of $x_{1} x_{2} x_{3}$ lies in $\mathcal{E}_{\text {col }}\left(x_{1} x_{2} x_{3}\right)$, contradicting our assumption. Thus, we have $x_{2} \in \operatorname{Mid}(Q)$. By Observation 12.2.17, we then have $x_{2} \in V^{\geq 1 p}(Q)$ and thus $x_{3} \in V(Q) \backslash V^{\geq 1 p}(Q)$.

Since $x_{2} \in \operatorname{Mid}(Q)$, let $w \in U^{2 p}\left(C^{r}\right)$ with $P_{C^{r}}^{w}=x_{1} x_{2} x_{3}$. If $|L(w)|>5$, then any L_{ψ}-coloring of $x_{1} x_{2} x_{3}$ lies in $\mathcal{E}_{\text {col }}(Q)$, contradicting our assumption. Thus, we get $|L(w)|=5$. Since $|A| \geq 2$, let $c_{1}, c_{2} \in A$. If there is a $c \in L_{\psi}\left(x_{2}\right)$ with $c \notin L_{\psi}(w)$, then, taking $i \in\{1,2\}$ with $c_{i} \neq c$, and letting $d \in L_{\psi}\left(x_{3}\right) \backslash\{c\}$, the coloring $\left(c_{i}, c, d\right)$ of Q lies in $\mathcal{E}_{\text {col }}\left(x_{1} x_{2} x_{3}\right)$, contradicting our assumption. Since c_{1}, c_{2} are distinct and $\left|L_{\psi}\left(x_{3}\right)\right| \geq 4$, there is an $i \in\{1,2\}$ and a $q \in L_{\psi}\left(x_{3}\right)$ with $\left|L(w) \backslash\left\{c_{i}, q\right\}\right| \geq 4$. Since $L_{\psi}\left(x_{2}\right) \subseteq L(w)$ and $|L(w)|=5$, we have $L_{\psi}\left(x_{2}\right) \neq\left\{c_{i}, q\right\}$. Thus, there is an L_{ψ}-coloring ϕ of $x_{1} x_{2} x_{3}$ with $\phi\left(x_{1}\right)=c_{i}$ and $\phi\left(x_{3}\right)=q$, contradicting our assumption. This completes the proof of Fact 2.

The second lemma we need is the following.
Lemma 12.2.20. Let $\mathcal{L}=(G, C, L, \psi)$ be a non-split lens of breadth r and let Q be an end-separated subpath of $C^{r} \backslash C$. Let $Q:=v_{1} \cdots v_{k}$ and let $A \subseteq L_{\psi}\left(v_{1}\right)$ with $|A| \geq 2$. Suppose that $V^{\geq 1 p}(Q) \subseteq U^{2 p}(C)$, and suppose further that there is an internal vertex v^{\prime} of Q such that $V(\AA) \backslash V{ }^{\geq 1 p}(Q)=\left\{v^{\prime}\right\}$. Let $B^{\prime} \subseteq L_{\psi}\left(v^{\prime}\right)$ and $B^{\prime \prime} \subseteq L_{\psi}\left(v_{k}\right)$, where $\left|B^{\prime}\right| \geq 3$ and $\left|B^{\prime \prime}\right| \geq 3$. Then at least one of the following two statements holds.

1) There exists a pair $(Z, \phi) \in \mathcal{E}\left(v_{1} Q v^{\prime}\right)$ such that $\phi\left(v_{1}\right) \in A$ and $\phi\left(v^{\prime}\right) \in B^{\prime} ; O R$
2) There exists a pair $(Z, \phi) \in \mathcal{E}\left(v_{1} Q v_{k}\right)$ such that $\phi\left(v_{1}\right) \in A$ and $\phi\left(v_{k}\right) \in B^{\prime \prime}$.

Proof. By Observation 12.2.12, no two vertices of $U^{2 p}(C)$ are adjacent in G. Since $V^{\geq 1 p}\left(Q-v_{1}\right) \subseteq U^{2 p}(C)$, and $V\left(Q-v_{1}\right) \backslash V^{\geq 1 p}(Q)=\left\{v^{\prime}, v_{k}\right\}$, it follows that $|V(Q)| \leq 5$, or else there are two vertices of $V(Q) \cap U^{2 p}(C)$ which are consecutive in Q. Now suppose toward a contradiction that the lemma does not hold.

Claim 12.2.21. $k=5, v^{\prime}=v_{3}$, and $v_{2}, v_{4} \in \operatorname{Mid}(Q)$.

Proof: We first show that $|V(Q)|=5$. We have $|V(Q)| \geq 3$, since v^{\prime} is an internal vertex of Q. If $|V(Q)|=3$, then we have $v^{\prime}=v_{2}$. But then, since $\left|L_{\psi}\left(v^{\prime}\right)\right| \geq 4$, there exists a pair $(Z, \phi) \in \mathcal{E}\left(v_{1} Q v_{3}\right)$ with $\phi\left(v_{1}\right) \in A$ and $\phi\left(v_{3}\right) \in B^{\prime \prime}$ by Fact 1 of Lemma 12.2 .18, so 2) is satisfied, contradicting our assumption. Suppose now that $|V(Q)|=4$. Thus, at least one of v_{2}, v_{3} lies in $V(Q) \backslash V^{\geq 1 p}(Q)$. On the other hand, at least one of v_{2}, v_{3} lies in $\operatorname{Mid}(Q)$, or else every L_{ψ}-coloring of Q lies in $\mathcal{E}_{\text {col }}(Q)$, contradicting our assumption.

Suppose that $v_{2} \in V(Q) \backslash V^{\geq 1 p}(Q)$. Thus $v_{3} \in \operatorname{Mid}(Q)$ by Observation 12.2.17. Since $v_{2} \notin V^{\geq 1 p}(Q)$, we apply Fact 2 of Lemma 12.2.18 to obtain a pair $(Z, \phi) \in \mathcal{E}\left(v_{2} v_{3} v_{4}\right)$ with $\phi\left(v_{4}\right) \in B^{\prime \prime}$. Since $|A| \geq 2$, let $c \in A \backslash\left\{\phi\left(v_{2}\right)\right\}$. Recalling Definition 1.1.9, we have the following. Since $v_{2} \notin \operatorname{Mid}(Q)$, the pair $\left(Z, \phi\left\langle v_{1}: c\right\rangle\right)$ lies in $\mathcal{E}(Q)$, and colors v_{1} with a color of A, and v_{4} with a color of $B^{\prime \prime}$, contradicting our assumption.

Now suppose that $v_{2} \in \operatorname{Mid}(Q)$ and $v_{3} \in V(Q) \backslash V \geq 1 p(Q)$. By Fact 2 of Lemma 12.2.18, there is a pair $\phi \in$ $\mathcal{E}_{\text {col }}\left(v_{1} Q v_{3}\right)$ with $\phi\left(v_{1}\right) \in A$. For any $b \in B^{\prime \prime} \backslash\left\{\phi\left(v_{3}\right)\right\}$, we then have $\phi\left\langle v_{k}: b\right\rangle \in \mathcal{E}_{\text {col }}(Q)$, which again contradicts our assumption. We conclude that $|V(Q)|>4$. Since $|V(Q)| \leq 5$, we have $|V(Q)|=5$.

We now rule out the possibility that $v_{3} \in \operatorname{Mid}(Q)$. Suppose toward a contradiction that $v_{3} \in \operatorname{Mid}(Q)$. Since $|V(Q)|=$ 5 , we then have $\left\{v_{3}\right\}=\operatorname{Mid}(Q)$. Since $V{ }^{\geq 1 p}(Q) \backslash\left\{v_{1}, v_{5}\right\} \subseteq U^{2 p}(C)$, we have $v_{3} \in U^{2 p}(C)$ by Observation 12.2.17, and thus $v_{2}, v_{4} \in V(Q) \backslash V \geq 1 p(Q)$, contradicting our assumption that $\left|V\left(Q \backslash\left\{v_{1}, v_{5}\right\}\right) \backslash V \geq 1 p(Q)\right|=1$. Thus, we have $v_{3} \notin \operatorname{Mid}(Q)$, so $\operatorname{Mid}(Q) \subseteq\left\{v_{2}, v_{4}\right\}$. We claim now that $\operatorname{Mid}(Q)=\left\{v_{2}, v_{4}\right\}$.

Suppose toward a contradiction that $v_{2} \notin \operatorname{Mid}(Q)$. Thus, every L_{ψ}-coloring of $v_{1} v_{2} v_{3}$ lies in $\mathcal{E}_{\text {col }}\left(v_{1} v_{2} v_{3}\right)$, contradicting our assumption, so we have $v_{2} \in \operatorname{Mid}(Q)$. Now suppose toward a contradiction that $v_{4} \notin \operatorname{Mid}(Q)$.

Subclaim 12.2.22. $v_{3} \notin V^{\geq 1 p}(Q)$.
Proof: If $v_{3} \in V^{\geq 1 p}(Q)$, then, by assumption, we have $v_{3} \in U^{2 p}(C)$, since $v_{3} \in V(Q \circ)$ and $V^{\geq 1 p}(Q) \subseteq U^{2 p}(C)$. Since $v_{2} \in \operatorname{Mid}(Q)$, we have $v_{2} \in V^{\geq 1 p}(Q)$ by Observation 12.2.17, and thus, since $v_{2} \in V(Q)$ as well, we have $v_{2} \in U^{2 p}(C)$, contradicting Observation 12.2.12.

Since $v_{3} \notin V^{\geq 1 p}(Q)$, there is a pair $(Z, \phi) \in \mathcal{E}\left(v_{1} v_{2} v_{3}\right)$ with $\phi\left(v_{1}\right) \in A$, by Fact 2 of Lemma 12.2.18. Since $v_{4} \notin \operatorname{Mid}(Q)$, every extension of ϕ to $\operatorname{dom}(\phi) \cup\left\{v_{4}, v_{5}\right\}$ lies in $\mathcal{E}_{\text {col }}(Q)$, so there is a $\phi^{\prime} \in \mathcal{E}_{\text {col }}(Q)$ with $\phi^{\prime}\left(v_{1}\right) \in A$ and $\phi^{\prime}\left(v_{5}\right) \in B^{\prime \prime}$, contradicting our assumption. Thus, we have $v_{2}, v_{4} \in \operatorname{Mid}(Q)$. By Observation 12.2.17, we thus have $v_{2}, v_{4} \notin V(Q) \backslash V^{\geq 1 p}(Q)$, so we have $v^{\prime}=v_{3}$. This completes the proof of Claim 12.2.21.

Now we have the following:

Claim 12.2.23.

1) $\left|L_{\psi}\left(v_{2}\right)\right|=\left|L_{\psi}\left(v_{4}\right)\right|=2$; AND
2) $L_{\psi}\left(v_{3}\right)$ is the disjoint union of $L_{\psi}\left(v_{2}\right)$ and $L_{\psi}\left(v_{4}\right)$; AND
3) $A \cap L_{\psi}\left(v_{2}\right)=\varnothing$.

Proof: Suppose toward a contradiction that there exists a pair $\left(q, q^{\prime}\right) \in L_{\psi}\left(v_{2}\right) \times L_{\psi}\left(v_{4}\right)$ such that $\left|L_{\psi}\left(v_{3}\right) \backslash\left\{q, q^{\prime}\right\}\right| \geq$ 3. Since $|A| \geq 2$, let $a \in A \backslash\{q\}$, and likewise, since $\left|B^{\prime \prime}\right| \geq 3$, let $b \in B^{\prime \prime} \backslash\left\{q^{\prime}\right\}$. Now let ϕ be an $L_{\psi^{\prime}}$-coloring of $\left\{v_{1}, v_{2}, v_{4}, v_{5}\right\}$ with $\phi\left(v_{1}\right)=a, \phi\left(v_{2}\right)=q, \phi\left(v_{4}\right)=q^{\prime}$, and $\phi\left(v_{5}\right)=b$. Then $(\varnothing, \phi) \in \mathcal{E}(Q)$, with $\phi\left(v_{1}\right) \in A$ and $\phi\left(v_{5}\right) \in B^{\prime \prime}$, contradicting our assumption. Thus, there does not exists such a pair of colors $\left(q, q^{\prime}\right) \in L_{\psi}\left(v_{2}\right) \times L_{\psi}\left(v_{4}\right)$.
Since $v_{3} \notin V^{\geq 1 p}(Q)$, we have $\left|L_{\psi}\left(v_{3}\right)\right| \geq 4$, and thus, since no pair of colors $\left(q, q^{\prime}\right)$ satisfying the conditions above exists, $L_{\psi}\left(v_{3}\right)$ is the disjoint union of $L_{\psi}\left(v_{2}\right)$ and $L_{\psi}\left(v_{4}\right)$, and furthermore, $\left|L_{\psi}\left(v_{3}\right)\right|=4$ and $\left|L_{\psi}\left(v_{2}\right)\right|=\left|L_{\psi}\left(v_{4}\right)\right|=$ 2. This proves 1) and 2).

Now we prove 3). Suppose toward a contradiction that there is a color $c \in A \cap L_{\psi}\left(v_{2}\right)$. By 2), we have $c \in L_{\psi}\left(v_{3}\right)$ and $c \notin L_{\psi}\left(v_{4}\right)$. Since $\left|B^{\prime \prime}\right| \geq 3$ and $\left|L_{\psi}\left(v_{4}\right)\right|=2$, there is a $b \in B^{\prime \prime} \backslash L_{\psi}\left(v_{4}\right)$. Let $d \in L_{\psi}\left(v_{2}\right) \backslash\{c\}$, and let ϕ be an L_{ψ}-coloring of $\left\{v_{1}, v_{2}, v_{3}, v_{5}\right\}$ obtained by setting $\phi\left(v_{1}\right)=\phi\left(v_{3}\right)=c, \phi\left(v_{2}\right)=d$, and $\phi\left(v_{5}\right)=b$. Then the pair $\left(v_{4}, \phi\right)$ lies in $\mathcal{E}(Q)$. Yet $\phi\left(v_{1}\right) \in A$ and $\phi\left(v_{5}\right) \in B^{\prime \prime}$, so this contradicts our assumption. This completes the proof of Claim 12.2.23.

Now we return to the main proof of Lemma 12.2.20. By 2) of Claim 12.2.23, $\left|L_{\psi}\left(v_{2}\right)\right|=2$. Since $\left|B^{\prime}\right| \geq 3$, there is a $b \in B^{\prime}$ such that $b \notin L_{\psi}\left(v_{2}\right)$. Let $a \in A$ and let ϕ be an L_{ψ}-coloring of $\left\{v_{1}, v_{3}\right\}$ obtained by setting $\phi\left(v_{1}\right)=a$
and $\phi\left(v_{3}\right)=b$. By 3) of Claim 12.2.23, we have $a \notin L_{\psi}\left(v_{2}\right)$, and thus the pair $\left(v_{2}, \phi\right)$ lies in $\mathcal{E}\left(v_{1} v_{2} v_{3}\right)$. Yet since $\phi\left(v_{1}\right) \in A$ and $\phi\left(v_{3}\right) \in B^{\prime}$, this contradicts our assumption. This completes the proof of Lemma 12.2.20.

We now combine the two lemmas above in the third lemma in our sequence of four lemmas in the proof of Proposition 12.2.14. We begin by introducing the following definition.

Definition 12.2.24. Let $\mathcal{L}=(G, C, L, \psi)$ be a non-split lens of breadth r. For any subpath Q of $C^{r} \backslash C$, let $\mathcal{E}^{\text {end }}(Q)$ denote the set of pairs (Z, ϕ) obtained by dropping from $\mathcal{E}(Q)$ the condition that the endpoints of Q lie in dom (ϕ). That is, $\mathcal{E}^{\text {end }}(Q)$ is the superset of $\mathcal{E}(Q)$ consisting of pairs (Z, ϕ) satisfying the following conditions:

1) ϕ is a partial L_{ψ}-coloring of Q, and $Z \subseteq V(Q) \backslash \operatorname{dom}(\phi)$; AND
2) For each $w \in U^{2 p}\left(C^{r}\right)$ with $P_{C^{r}}^{w} \subseteq Q$, we have $\left|L_{\psi \cup \phi}(w)\right| \geq 3$. Furthermore, for each $v \in V(Q) \backslash(\operatorname{dom}(\phi) \cup$ $Z)$, we have $\left|L_{\psi \cup \phi}(v)\right| \geq 3$; AND
3) $Z \subseteq \operatorname{Mid}(Q)$, and furthermore, for any $y \in Z$ and $w \in U^{2 p}\left(C^{r}\right)$ such that y is the midpoint of $P_{C^{r}}^{w}$, the endpoints of $P_{C^{r}}^{w}$ lie in $\operatorname{dom}(\phi)$ and $\left|L_{\psi \cup \phi}(y)\right| \geq 2$.

Let $\mathcal{E}_{\text {col }}^{\mathrm{end}}(Q)$ be the set of partial L_{ψ}-colorings ϕ of Q such that there exists a $Z \subseteq V(Q) \backslash \operatorname{dom}(\phi)$ with $(Z, \phi) \in$ $\mathcal{E}^{\text {end }}(Q)$.

The third lemma we need for Proposition 12.2 .14 is the following. This lemma is the lengthiest of the four lemmas.

Lemma 12.2.25. Let $\mathcal{L}=(G, C, L, \psi)$ be a non-split lens of breadth r. Let Q be an end-separated subpath of $C^{r} \backslash C$, with $Q=v_{1} \cdots v_{k}$. Let $f: V\left(C^{r} \backslash C\right) \rightarrow \mathbb{N}$ be a function defined as follows:

$$
f(v):= \begin{cases}\left|L_{\psi}(v)\right| & \text { if } v \in U^{2 p}(C) \\ \left|L_{\psi}(v)\right|-1 & \text { otherwise }\end{cases}
$$

Then the following facts hold.

1) If $V^{\geq 1 p}(Q) \subseteq U^{2 p}(C)$ and w is an endpoint of Q, then $\left|\operatorname{Col}\left(w, \mathcal{E}_{\mathrm{col}}(Q)\right)\right| \geq f(w)$; AND
2) If $\operatorname{Part}(Q)$ has at most one connected component, then, for each $w \in V(Q)$, we have $\left|\operatorname{Col}\left(w, \mathcal{E}_{\mathrm{col}}^{\mathrm{end}}(Q w)\right)\right| \geq$ $f(w)$ and $\left|\operatorname{Col}\left(w, \mathcal{E}_{\mathrm{col}}^{\mathrm{end}}(w Q)\right)\right| \geq f(w)$.

Proof. Note that, for each $v \in V\left(C^{r} \backslash C\right)$, we have $f(v) \geq 2$. We now have the following simple fact.

Claim 12.2.26. Let $Q=v_{1} \cdots v_{k}$ be an end-separated subpath of $C^{r} \backslash C$, and let $j \in\{1, \cdots, k\}$ with $v_{j+1} \notin \operatorname{Mid}(Q)$. Then the following hold.

1) If $\left|\operatorname{Col}\left(v_{i}, \mathcal{E}_{\mathrm{col}}\left(v_{i} Q\right)\right)\right| \geq 2$ for all $i \in\{j+1, \cdots, k\}$, then $\operatorname{Col}\left(v_{j}, \mathcal{E}_{\mathrm{col}}\left(v_{j} Q\right)\right)=L_{\psi}\left(v_{j}\right)$; AND
2) If $\left|\operatorname{Col}\left(v_{i}, \mathcal{E}_{\mathrm{col}}^{\mathrm{end}}\left(v_{i} Q\right)\right)\right| \geq 2$ for all $i \in\{j+1, \cdots, k\}$, then $\operatorname{Col}\left(v_{j}, \mathcal{E}_{\mathrm{col}}^{\mathrm{end}}\left(v_{j} Q\right)\right)=L_{\psi}\left(v_{j}\right)$.

Proof: Let $c \in L_{\psi}\left(v_{j}\right)$. Since $\left|\operatorname{Col}\left(v_{j}, \mathcal{E}_{\text {col }}\left(v_{j+1} Q\right)\right)\right| \geq 2$, let $(Z, \phi) \in \mathcal{E}\left(v_{j+1} Q\right)$ with $\phi\left(v_{j+1}\right) \neq c$. Since $v_{j+1} \notin$ $\operatorname{Mid}(Q)$, the pair $\left(Z, \phi\left\langle v_{j}: c\right\rangle\right)$ lies in $\mathcal{E}_{\text {col }}\left(v_{j} Q\right)$, and thus $\operatorname{Col}\left(v_{j}, \mathcal{E}_{\text {col }}\left(v_{j} Q\right)\right)=L_{\psi}\left(v_{j}\right)$. An identical argument shows the analogous statement with $\mathcal{E}_{\text {col }}$ replaced by $\mathcal{E}_{\text {col }}^{\text {end }}$.

Now we prove Fact 1. We first have the following:

Claim 12.2.27. Let Q be an end-separated subpath of $C^{r} \backslash C$ with $V^{\geq 1 p}(Q) \subseteq U^{2 p}(C)$ and $|V(Q)| \leq 3$. Then $\left|\operatorname{Col}\left(w, \mathcal{E}_{\mathrm{col}}(Q)\right)\right| \geq f(w)$ for each $w \in V(Q)$.

Proof: If $|V(Q)| \leq 2$, for each $w \in V(Q)$ and each $c \in L_{\psi}(w)$, there is an element of $\mathcal{E}_{\text {col }}(w Q)$ using c on w, as any remaining vertex w^{\prime} of Q has at least one color left in $\mid L_{\psi}\left(w^{\prime}\right) \backslash\{c\}$. Thus, in that case, we have $\left|\operatorname{Col}\left(w, \mathcal{E}_{\text {col }}(Q)\right)\right| \geq$ $f(w)$.

Now suppose that $k=3$, so that $Q=v_{1} v_{2} v_{3}$. If the claim does not hold, then there is an endpoint w of Q such that $\left|\operatorname{Col}\left(w, \mathcal{E}_{\text {col }}(Q)\right)\right|<f(w)$. Suppose toward a contradiction that such a w exists, and suppose without loss of generality that $w=v_{1}$. Note then that $v_{2} \in \operatorname{Mid}(Q)$, or else every L_{ψ}-coloring of Q lies in $\mathcal{E}_{\text {col }}(Q)$, contradicting our assumption. Thus, by Observation 12.2.17, we have $v_{2} \in U^{2 p}(C)$, and thus $v_{1}, v_{3} \notin V^{\geq 1 p}(Q)$. Thus, since $\mid \operatorname{Col}\left(v_{1}, \mathcal{E}_{\text {col }}(Q) \mid<f\left(v_{1}\right) \leq 3\right.$, there is a set $A \subseteq L_{\psi}\left(v_{1}\right)$ with $A \cap \operatorname{Col}\left(v_{1}, \mathcal{E}_{\text {col }}(Q)\right)=\varnothing$. Yet, by Fact 2 of Lemma 12.2.18, there is a $(Z, \phi) \in \mathcal{E}(Q)$ with $\phi\left(v_{1}\right) \in A$, so we have a contradiction.

Now let $Q:=v_{1} \cdots v_{k}$ be an end-separated subpath of C^{r} with $V^{\geq 1 p}(Q) \subseteq U^{2 p}(C)$. By Claim 12.2.27, we have $\left|\operatorname{Col}\left(v_{j}, \mathcal{E}_{\mathrm{col}}\left(v_{j} Q\right)\right)\right| \geq f\left(v_{j}\right)$ for all $j \geq k-2$. If $|V(Q)| \leq 3$, then we are done, so suppose that $|V(Q)|>3$. Let $j \in\{1, \cdots, k-3\}$, and suppose that, for each index $i \in\{j, \cdots, k\}$, we have $\left|\operatorname{Col}\left(v_{i}, \mathcal{E}_{\text {col }}\left(v_{i} Q\right)\right)\right| \geq f\left(v_{i}\right)$. It suffices to show now that $\left|\operatorname{Col}\left(v_{j}, \mathcal{E}_{\text {col }}\left(v_{j} Q\right)\right)\right| \geq f\left(v_{j}\right)$.

If $v_{j+1} \notin \operatorname{Mid}(Q)$, then we are immediately done by Claim 12.2.26, so suppose now that $v_{j+1} \in \operatorname{Mid}(Q)$. By Observation 12.2.17, we have $v_{j+1} \in U^{2 p}(C)$, and thus $v_{j} \in V(Q) \backslash V \geq 1 p(Q)$ and $v_{j+2} \in V(Q) \backslash V \geq 1 p(Q)$. Suppose that $j=k-4$. Applying Claim 12.2.27, we have $\left|\operatorname{Col}\left(v_{j}, \mathcal{E}_{\text {col }}\left(v_{j} Q v_{k-1}\right)\right)\right| \geq f\left(v_{j}\right)$. Let $(Z, \phi) \in \mathcal{E}_{\text {col }}\left(v_{j} Q v_{k-1}\right)$. Since $\left|L_{\psi}\left(v_{k}\right)\right| \geq 2$, let $a \in L_{\psi}\left(v_{k}\right) \backslash\left\{\phi\left(v_{k-1}\right)\right\}$. Then $\left(Z, \phi_{v_{k}}^{a}\right) \in \mathcal{E}\left(v_{j} Q\right)$, since $v_{k-1} \notin \operatorname{Mid}(Q)$. Thus, in that case, we have $\operatorname{Col}\left(v_{j}, \mathcal{E}_{\mathrm{col}}\left(v_{j} Q v_{k-1}\right)\right) \subseteq \operatorname{Col}\left(v_{j}, \mathcal{E}_{\mathrm{col}}\left(v_{j} Q\right)\right)$, and thus $\left|\operatorname{Col}\left(v_{j}, \mathcal{E}_{\mathrm{col}}\left(v_{j} Q\right)\right)\right| \geq f\left(v_{j}\right)$, so we are done.

Now suppose that $|V(Q)|>4$ and that $j \leq k-4$. By Observation 12.2.12, no two vertices of $U^{2 p}(C)$ are adjacent in G. Thus, since $j \leq k-4$, there is a minimal index $t \in\{j+3, \cdots, k\}$ such that $v_{t} \notin U^{2 p}(C)$. Suppose toward a contradiction that $\operatorname{Col}\left(v_{j}, \mathcal{E}_{\text {col }}\left(v_{j} Q\right)\right)\left|<f\left(v_{j}\right)=\left|L_{\psi}\left(v_{j}\right)\right|-1\right.$. Now we apply Lemma 12.2.20 to the path $v_{j} Q v_{t}$. In the statement of Lemma 12.2.20, we set $v^{\prime}:=v_{j+2}$, and we set

$$
\begin{aligned}
& A:=L_{\psi}\left(v_{j}\right) \backslash \operatorname{Col}\left(v_{j}, \mathcal{E}_{\mathrm{col}}\left(v_{j} Q\right)\right) \\
& B^{\prime}:=\operatorname{Col}\left(v_{j+2}, \mathcal{E}_{\mathrm{col}}\left(v_{j+2} Q\right)\right) \\
& B^{\prime \prime}:=\operatorname{Col}\left(v_{t}, \mathcal{E}_{\mathrm{col}}\left(v_{t} Q\right)\right)
\end{aligned}
$$

Note that v_{j+2} is an internal vertex of $v_{j} Q v_{t}$, and $v_{j+2} \notin U^{2 p}(C)$. By definition of t, we have $V\left(v_{j} Q v_{t} \backslash\left\{v_{j}, v_{t}\right\}\right) \backslash$ $V \geq 1 p(Q)=\left\{v_{j+2}\right\}$, and by assumption, we have $V \geq 1 p\left(Q-\left\{v_{j}, v_{t}\right\}\right) \subseteq U^{2 p}(C)$. Furthermore, since $v_{j+2}, v_{t} \notin$ $V^{\geq 1 p}(Q)$, we have $f\left(v_{j+2}\right) \geq 3$ and $f\left(v_{t}\right) \geq 3$, and thus $\left|B^{\prime}\right| \geq 3$ and $\left|B^{\prime \prime}\right| \geq 3$. By assumption, we have $\left|\operatorname{Col}\left(v_{j}, \mathcal{E}_{\text {col }}\left(v_{j} Q\right)\right)\right|<f\left(v_{j}\right)$, so $|A| \geq 2$. Thus, either Statement 1 or Statement 2 of Lemma 12.2 .20 applies to the given sets $A, B^{\prime}, B^{\prime \prime}$ above.

Suppose first that Statement 1 holds. Thus, there is a pair $(Z, \phi) \in \mathcal{E}_{\text {col }}\left(v_{j} Q v_{j+2}\right)$ with $\phi\left(v_{j}\right) \in A$ and $\phi\left(v_{j+2}\right) \in B^{\prime}$. In that case, there is a pair $\left(Z *, \phi^{*}\right) \in \mathcal{E}_{\text {col }}\left(v_{j+2} Q\right)$ with $\phi^{*}\left(v_{j+2}\right)=\phi\left(v_{j+2}\right)$. But then, since $v_{j+2} \notin \operatorname{Mid}(Q)$, we have $\left(Z \cup Z^{*}, \phi \cup \phi^{*}\right) \in \mathcal{E}_{\text {col }}\left(v_{j} Q\right)$, contradicting the fact that $\phi\left(v_{j}\right) \in A$. Thus, since no such pair (Z, ϕ) exists, Statement 2 of Lemma 12.2.20 holds, and there exists a pair $\left(Z^{\prime}, \phi^{\prime}\right) \in \mathcal{E}_{\text {col }}\left(v_{j} Q v_{t}\right)$ with $\phi^{\prime}\left(v_{j}\right) \in A$ and $\phi^{\prime}\left(v_{t}\right) \in B^{\prime \prime}$. Thus, there is a pair $\left(Z^{*}, \phi^{*}\right) \in \mathcal{E}\left(v_{t} Q\right)$ with $\phi^{*}\left(v_{t}\right)=\phi^{\prime}\left(v_{t}\right)$. But then, since $v_{t} \notin \operatorname{Mid}(Q)$, the pair $\left(Z^{\prime} \cup Z^{*}, \phi^{\prime} \cup \phi^{*}\right)$ lies in $\mathcal{E}\left(v_{j} Q\right)$, contradicting the fact that $\phi\left(v_{j}\right) \in A$. This completes the proof of Fact 1 of Lemma 12.2.25.

In order to prove Fact 2, we first prove the following intermediate result:
Claim 12.2.28. If there is an index $m \in\{1, \cdots, k\}$ such that $U^{2 p}(C) \subseteq V\left(Q v_{m}\right)$ and $V^{\geq 1 p}(Q) \backslash U^{2 p}(C) \subseteq$ $V\left(v_{m+1} Q\right)$, then, for each $w \in V\left(Q v_{m}\right)$, we have $\left|\operatorname{Col}\left(w, \mathcal{E}_{\mathrm{col}}^{\mathrm{end}}(w Q)\right)\right| \geq f(w)$, and furthermore, for each $w \in$ $V\left(v_{m+1} Q\right)$, we have $\left|\operatorname{Col}\left(w, \mathcal{E}_{\text {col }}(Q w)\right)\right| \geq f(w)$.

Proof: We first deal with the possibility that v_{m} is an endpoint of Q. If $m=k$, then the claim immediately follows from Fact 1, so we are done in that case. If $m=1$, then we have $\left|L_{\psi}(v)\right| \geq 3$ for all $v \in V(Q) \backslash\left\{v_{1}\right\}$, and thus the claim follows from Fact 1 of Lemma 12.2.18, so we suppose for the remainder of the proof of Claim 12.2.28 that $1<m<k$.

Subclaim 12.2.29. For each $j \in\{m-1, m\}$, we have $\left|\operatorname{Col}\left(v_{j}, \mathcal{E}_{\mathrm{col}}^{\mathrm{end}}\left(v_{j} Q\right)\right)\right| \geq f\left(v_{j}\right)$.
Proof: Firstly, for each $j \in\{m, \cdots, k\}$, we have $\left|\operatorname{Col}\left(v_{j}, \mathcal{E}_{\text {col }}^{\text {end }}\left(v_{j} Q\right)\right)\right| \geq f\left(v_{j}\right)$ by Fact 1 of Claim 12.2.18. Suppose toward a contradiction that $\left|\operatorname{Col}\left(v_{m-1}, \mathcal{E}_{\text {col }}^{\mathrm{end}}\left(v_{m-1} Q\right)\right)\right|<f\left(v_{m-1}\right)$. In that case, by Claim 12.2.26, we have $v_{m} \in \operatorname{Mid}(Q)$. Furthermore, we have $L_{\psi}\left(v_{m}\right) \subseteq L_{\psi}\left(v_{m+1}\right)$. To see this, suppose there is a $c \in$ $L_{\psi}\left(v_{m}\right)$ with $c \notin L_{\psi}\left(v_{m+1}\right)$. Then, for each color $d \in L_{\psi}\left(v_{m-1}\right) \backslash\{c\}$, the coloring (c, d) of $v_{m-1} v_{m}$ lies in $\mathcal{E}_{\mathrm{col}}^{\text {end }}\left(v_{m-1} Q\right)$, and thus $\left|\operatorname{Col}\left(v_{m-1}, \mathcal{E}_{\mathrm{col}}^{\mathrm{end}}\left(v_{m-1} Q\right)\right)\right| \geq\left|L_{\psi}\left(v_{m-1}\right)\right|-1=f\left(v_{m-1}\right)$, contradicting our assumption, so we indeed have $L_{\psi}\left(v_{m}\right) \subseteq L_{\psi}\left(v_{m+1}\right)$.

Furthermore, if $c \in L_{\psi}\left(v_{m-1}\right) \backslash L_{\psi}\left(v_{m}\right)$, then $c \in \operatorname{Col}\left(v_{m-1}, \mathcal{E}_{\mathrm{col}}^{\text {end }}\left(v_{m-1} Q\right)\right)$. To see this, note that, since $\left|L_{\psi}\left(v_{m+1}\right)\right| \geq 3$, there is a $d \in L_{\psi}\left(v_{m+1}\right)$ such that $\left|L_{\psi}\left(v_{m}\right) \backslash\{d\}\right| \geq 2$, and, by Fact 1 of Lemma 12.2.18, there is a pair $(Z, \phi) \in \mathcal{E}\left(v_{m+1} Q\right)$ with $\phi\left(v_{m+1}\right)=d$. Then the pair $\left(Z \cup\left\{v_{m}\right\}, \phi_{v_{m-1}}^{c}\right)$ lies in $\mathcal{E}\left(v_{m-1} Q\right)$, so we indeed have $L_{\psi}\left(v_{m-1}\right) \backslash L_{\psi}\left(v_{m}\right) \subseteq \operatorname{Col}\left(v_{m-1}, \mathcal{E}_{\mathrm{col}}^{\text {end }}\left(v_{m-1} Q\right)\right)$.

We also have $L_{\psi}\left(v_{m-1}\right) \cap L_{\psi}\left(v_{m}\right) \subseteq \operatorname{Col}\left(v_{m-1}, \mathcal{E}_{\text {col }}^{\mathrm{end}}\left(v_{m-1} Q\right)\right)$. To see this, let $c \in L_{\psi}\left(v_{m-1}\right) \cap L_{\psi}\left(v_{m}\right)$. Since $L_{\psi}\left(v_{m}\right) \subseteq L_{\psi}\left(v_{m+1}\right)$, we have $c \in L_{\psi}\left(v_{m+1}\right)$. Let $d \in L_{\psi}\left(v_{m}\right) \backslash\{c\}$ and let ϕ be the coloring (c, d, c) of $v_{m-1} v_{m} v_{m+1}$. Then $(\varnothing, \phi) \in \mathcal{E}\left(v_{m-1} v_{m} v_{m+1}\right)$. Furthermore, by Fact 1 of Lemma 12.2.18, there is a pair $\left(Z^{\prime}, \phi^{\prime}\right) \in \mathcal{E}\left(v_{m+1} Q\right)$ with $\phi^{\prime}\left(v_{m+1}\right)=c$. Since $v_{m+1} \notin \operatorname{Mid}(Q)$, the pair $\left(Z \cup Z^{\prime}, \phi \cup \phi^{\prime}\right)$ lies in $\mathcal{E}\left(v_{m-1} Q\right)$, so we indeed have $L_{\psi}\left(v_{m-1}\right) \cap L_{\psi}\left(v_{m}\right) \subseteq \operatorname{Col}\left(v_{m-1}, \mathcal{E}_{\text {col }}^{\text {end }}\left(v_{m-1} Q\right)\right)$.

Combining the facts above, we have $\operatorname{Col}\left(v_{m-1}, \mathcal{E}_{\text {col }}^{\text {end }}\left(v_{m-1} Q\right)\right)=L_{\psi}\left(v_{m-1}\right)$, contradicting our assumption that $\left|\operatorname{Col}\left(v_{m-1}, \mathcal{E}_{\mathrm{col}}^{\mathrm{end}}\left(v_{m-1} Q\right)\right)\right|<\mid f\left(v_{m-1}\right)$. This completes the proof of Subclaim 12.2.29.

Now we return to the proof of Claim 12.2.28. We first show that $\left|\operatorname{Col}\left(v_{i}, \mathcal{E}_{\mathrm{col}}^{\mathrm{end}}\left(v_{i} Q\right)\right)\right| \geq f\left(v_{i}\right)$ for all $i \in\{1, \cdots, m\}$. If $m \leq 2$, then we are done by applying Subclaim 12.2.29, so suppose now that $m \geq 3$. Let $i \in\{1, \cdots, m\}$. If $i \in\{m-1, m\}$, then we are again done by Subclaim 12.2.29, so suppose that $i \leq m-2$ and that, for each index $j \in\{i+1, \cdots, m\}$, we have $\left|\operatorname{Col}\left(v_{j}, \mathcal{E}_{\text {col }}^{\mathrm{end}}\left(v_{j} Q\right)\right)\right| \geq f\left(v_{j}\right)$. It suffices to show that $\left|\operatorname{Col}\left(v_{i}, \mathcal{E}_{\mathrm{col}}^{\mathrm{end}}\left(v_{i} Q\right)\right)\right| \geq f\left(v_{i}\right)$.

Suppose toward a contradiction that $\left|\operatorname{Col}\left(v_{i}, \mathcal{E}_{\text {col }}^{\text {end }}\left(v_{i} Q\right)\right)\right|<\left|f\left(v_{i}\right)\right|$. By Claim 12.2.26, we have $v_{i+1} \in \operatorname{Mid}(Q)$. Since $i+1 \leq m$, and $v_{i+1} \in V^{\geq 1 p}(Q)$ by Observation 12.2.17, we have $v_{i} \in U^{2 p}(C)$, and thus, since $i+2 \leq m$, we have $v_{i+2} \notin V^{\geq 1 p}(Q)$.

Let p be the minimal index among $\{i+3, \cdots, k\}$ such that $v_{p} \notin U^{2 p}(C)$. By Observation 12.2.12, no two vertices of $U^{2 p}(C)$ are adjacent in G, so we have $\left|V\left(v_{i} Q v_{p}\right)\right| \leq 5$, and $p \in\{i+3, i+4\}$. Now consider the following cases:

Case 1: $v_{p} \in \operatorname{Mid}(Q)$
In this case, we have $v_{p} \in V^{\geq 1 p}(Q) \backslash U^{2 p}(C)$ by Observation 12.2.17, and thus $m=p-1$. Note that $\mid \operatorname{Col}\left(v_{i}, \mathcal{E}_{\text {col }}\left(v_{i} Q v_{p-1}\right) \mid \geq\right.$ $f\left(v_{i}\right)$ by Fact 1 , so there exists a $(Z, \phi) \in \mathcal{E}_{\text {col }}\left(v_{i} Q v_{p-1}\right)$ such that $\phi\left(v_{i}\right) \notin \operatorname{Col}\left(v_{i}, \mathcal{E}_{\text {col }}^{\text {end }}\left(v_{i} Q\right)\right)$. Since $\left|L_{\psi}\left(v_{p}\right)\right| \geq 3$
and $\left|L_{\psi}\left(v_{p+1}\right)\right| \geq 3$, there is a $c \in L_{\psi}\left(v_{p+1}\right)$ such that $\left|L_{\psi}\left(v_{p}\right) \backslash\left\{c, \phi\left(v_{p-1}\right)\right\}\right| \geq 2$. By Fact 1 of Lemma 12.2.18, there is a pair $\left(Z^{\prime}, \phi^{\prime}\right) \in \mathcal{E}_{\text {col }}\left(v_{p+1} Q\right)$ with $\phi^{\prime}\left(v_{p+1}\right)=c$, and thus the pair $\left(Z \cup\left\{v_{p}\right\} \cup Z^{\prime}, \phi \cup \phi^{\prime}\right)$ lies in $\mathcal{E}\left(v_{i} Q\right)$, contradicting the fact that $\phi\left(v_{i}\right) \notin \operatorname{Col}\left(v_{i}, \mathcal{E}_{\text {col }}^{\mathrm{end}}\left(v_{i} Q\right)\right)$. This completes Case 1 .

Case 2: $v_{p} \notin \operatorname{Mid}(Q)$
In this case, we apply Lemma 12.2.20. We have $V\left(v_{i} Q v_{p} \backslash\left\{v_{i}, v_{p}\right\}\right) \backslash V{ }^{\geq 1 p}(Q)=\left\{v_{i+2}\right\}$ by the choice of p, and we have $V^{\geq 1 p}\left(v_{i} Q v_{p}-\left\{v_{i}, v_{p}\right\}\right) \subseteq U^{2 p}(C)$, again, by the definition of p. In the statement of Lemma 12.2.20, we set $v^{\prime}:=v_{i+2}$ and we set

$$
\begin{aligned}
& A:=L_{\psi}\left(v_{i}\right) \backslash \operatorname{Col}\left(v_{i}, \mathcal{E}_{\mathrm{col}}^{\mathrm{end}}\left(v_{i} Q\right)\right) \\
& B^{\prime}:=\operatorname{Col}\left(v_{i+2}, \mathcal{E}_{\mathrm{col}}^{\mathrm{end}}\left(v_{i+2} Q\right)\right) \\
& B^{\prime \prime}:=\operatorname{Col}\left(v_{p}, \mathcal{E}_{\mathrm{col}}^{\mathrm{end}}\left(v_{p} Q\right)\right)
\end{aligned}
$$

Since $v_{i} \notin U^{2 p}(C)$ and $\left|\operatorname{Col}\left(v_{i}, \mathcal{E}_{\text {col }}^{\text {end }}\left(v_{i} Q\right)\right)\right|<f\left(v_{i}\right)$, we have $|A| \geq 2$. By induction, we have $\left|B^{\prime}\right| \geq f\left(v_{i+2}\right)$. Since $v_{i+2} \notin V^{\geq 1 p}(Q)$, we have $\left|B^{\prime}\right| \geq 3$. Thus, we just need to check that $\left|B^{\prime \prime}\right| \geq 3$. If $v_{p} \notin V^{\geq 1 p}(Q)$, then this immediately follows by induction, since $\left|B^{\prime \prime}\right| \geq f\left(v_{p}\right)$ and, if $v_{p} \notin V \geq 1 p(Q)$ then $f\left(v_{p}\right) \geq 3$. Now suppose that $v_{p} \in V^{\geq 1 p}(Q)$. In that case, we have $m=p-1$, and $\left|L_{\psi}\left(v_{j}\right)\right| \geq 3$ for all $j \in\{m, \cdots, k\}$. Thus, by Fact 1 of Lemma 12.2.18, we have $\operatorname{Col}\left(v_{p}, \mathcal{E}_{\text {col }}\left(v_{p} Q\right)\right)=L_{\psi}\left(v_{p}\right)$, and thus $\operatorname{Col}\left(v_{p}, \mathcal{E}_{\text {col }}^{\text {end }}\left(v_{p} Q\right)\right)=L_{\psi}\left(v_{p}\right)$, so again, we have $\left|B^{\prime \prime}\right| \geq 3$.

Thus Lemma 12.2.20 applies to the sets $A, B^{\prime}, B^{\prime \prime}$, so there is either a pair $\left(Z^{\prime}, \phi^{\prime}\right) \in \mathcal{E}_{\text {col }}\left(v_{i} Q v_{i+2}\right)$ with $\phi^{\prime}\left(v_{i}\right) \in A$ and $\phi^{\prime}\left(v_{i+2}\right) \in B^{\prime}$, or there is a pair $\left(Z^{\prime}, \phi^{\prime}\right) \in \mathcal{E}_{\text {col }}\left(v_{i} Q v_{p}\right)$ with $\phi^{\prime}\left(v_{i}\right) \in A$ and $\phi^{\prime}\left(v_{p}\right) \in B^{\prime \prime}$. In either case, since $v_{i+2}, v_{p} \notin \operatorname{Mid}(Q)$, the pair $\left(Z^{\prime}, \phi^{\prime}\right)$ can be combined with a pair $\left(Z^{*}, \phi^{*}\right) \in \mathcal{E}_{\text {col }}^{\text {end }}\left(v_{i+2} Q\right) \cup \mathcal{E}_{\text {col }}^{\text {end }}\left(v_{p} Q\right)$, where the right endpoint of $\operatorname{dom}\left(\phi^{\prime}\right)$ coincides with the left endpoint of $\operatorname{dom}\left(\phi^{*}\right)$, and the two colorings agree on this vertex. In both cases, we produce an element $\phi^{\prime} \cup \phi^{*}$ of $\mathcal{E}_{\text {col }}^{\text {end }}\left(v_{i} Q\right)$ which colors v_{i} with an element of A, a contradiction. This completes Case 2, and thus completes the proof of the first statement of Claim 12.2.28.

Now we prove the second part of Claim 12.2.28 using an indiction argument similar to the one above, but proceeding in the other direction along the path. The base case in this induction argument deals with the vertex v_{m+1}.

Subclaim 12.2.30. $\left|\operatorname{Col}\left(v_{m+1}, \mathcal{E}_{\text {col }}\left(Q v_{m+1}\right)\right)\right| \geq f\left(v_{m+1}\right)$.
Proof: Let $A:=L_{\psi}\left(v_{m+1}\right) \backslash \operatorname{Col}\left(v_{m+1}, \mathcal{E}_{\text {col }}\left(Q v_{m+1}\right)\right)$. Suppose toward a contradiction that $|A| \geq 2$. By Fact 1 , we have $\left|\operatorname{Col}\left(v_{j}, \mathcal{E}_{\text {col }}\left(Q v_{j}\right)\right)\right| \geq f\left(v_{j}\right)$ for each $j \in\{1, \cdots, m\}$. Thus, by Claim 12.2.26, we have $v_{m} \in \operatorname{Mid}(Q)$, and furthermore, by definition of m, we have $v_{m} \in U^{2 p}(C)$, or else we contradict Observation 12.2.17. Since $v_{m} \in \operatorname{Mid}(Q)$, we have $m \geq 2$. Now consider the following cases:

Case 1: $m=2$
In this case, we have $v_{1} \notin V^{\geq 1 p}(Q)$. Thus, we simply apply Fact 2 of Lemma 12.2.18 to obtain a pair $(Z, \phi) \in$ $\mathcal{E}_{\text {col }}\left(v_{1} v_{2} v_{3}\right)$ with $\phi\left(v_{3}\right) \in A$, contradicting the definition of A.

Case 2: $m=3$
In this case, we have $v_{2} \notin V^{\geq 1 p}(Q)$. Thus, we simply apply Fact 2 of Lemma 12.2.18 to obtain a pair $(Z, \phi) \in$ $\mathcal{E}_{\text {col }}\left(v_{2} v_{3} v_{4}\right)$ with $\phi\left(v_{4}\right) \in A$. Since $\left|L_{\psi}\left(v_{1}\right)\right| \geq 2$, let $c \in L_{\psi}\left(v_{1}\right) \backslash\left\{\phi\left(v_{2}\right)\right\}$. Since $v_{3} \in \operatorname{Mid}(Q)$, we have $v_{2} \notin \operatorname{Mid}(Q)$, and thus the pair $\left(Z, \phi_{v_{1}}^{c}\right)$ lies in $\mathcal{E}_{\text {col }}\left(Q v_{4}\right)$, contradicting the fact that $\phi_{v_{1}}^{c}\left(v_{4}\right) \in A$.

Case 3: $m>3$
In this case, let p be the maximal index among $\{1, \cdots, m-2\}$ such that $v_{p} \notin V^{\geq 1 p}(Q)$. Such a p exists, since
$m-2 \geq 2$ and no two vertices of $U^{2 p}(C)$ are adjacent in G. Now we set $B^{\prime}:=\operatorname{Col}\left(v_{m-1}, \mathcal{E}_{\text {col }}\left(Q v_{m-1}\right)\right)$ and $B^{\prime \prime}:=\operatorname{Col}\left(v_{p}, \mathcal{E}_{\text {col }}\left(Q v_{p}\right)\right)$. Since $v_{m-1}, v_{p} \notin V^{\geq 1 p}(Q)$, we have $\left|B^{\prime}\right| \geq 3$ and $\left|B^{\prime \prime}\right| \geq 3$ by Fact 1 , so at least one of Statement 1 or Statement 2 of Lemma 12.2.20 applies to the sets $A, B^{\prime}, B^{\prime \prime}$.

Thus, there is either a pair $\left(Z^{\prime}, \phi^{\prime}\right) \in \mathcal{E}_{\text {col }}\left(v_{m-1} Q v_{m+1}\right)$ with $\phi^{\prime}\left(v_{m-1}\right) \in A$ and $\phi^{\prime}\left(v_{m-1}\right) \in B^{\prime}$, or there is a pair $\left(Z^{\prime}, \phi^{\prime}\right) \in \mathcal{E}_{\text {col }}\left(v_{p} Q v_{m+1}\right)$ with $\phi^{\prime}\left(v_{m+1}\right) \in A$ and $\phi^{\prime}\left(v_{p}\right) \in B^{\prime \prime}$. In either case, since $v_{m-1}, v_{p} \notin \operatorname{Mid}(Q)$, the pair $\left(Z^{\prime}, \phi^{\prime}\right)$ can be combined with a pair $\left(Z^{*}, \phi^{*}\right) \in \mathcal{E}_{\text {col }}\left(Q v_{m-1}\right) \cup \mathcal{E}_{\text {col }}\left(Q v_{p}\right)$, where the right endpoint of $\operatorname{dom}\left(\phi^{\prime}\right)$ coincides with the left endpoint of $\operatorname{dom}\left(\phi^{*}\right)$, and the two colorings agree on this vertex. In both cases, we produce an element $\phi^{\prime} \cup \phi^{*}$ of $\mathcal{E}_{\text {col }}\left(Q v_{m+1}\right)$ which colors v_{m+1} with an element of A, contradicting the definition of A.

Thus, our assumption that $|A| \geq 2$ is false. Since $L_{\psi}\left(v_{m+1}\right) \notin U^{2 p}(C)$, we have $f\left(v_{m+1}\right)=\left|L_{\psi}\left(v_{m+1}\right)\right|-1$, and thus $\left|\operatorname{Col}\left(v_{m+1}, \mathcal{E}_{\text {col }}\left(Q v_{m+1}\right)\right)\right| \geq f\left(v_{m+1}\right)$. This completes the proof of Subclaim 12.2.30.

Combining Subclaim 12.2 .30 with Fact 1 , we have $\left|\operatorname{Col}\left(v_{i}, \mathcal{E}_{\text {col }}\left(Q v_{i}\right)\right)\right| \geq f\left(v_{i}\right)$ for each $i \in\{1, \cdots, m+1\}$. We now finish the proof of Claim 12.2.28 by induction. If $k=m+1$, then we are done, so suppose now that $k>m+1$. Let $j \in\{m+2, \cdots, k-1\}$ and suppose that, for each index $i \in\{1, \cdots, j-1\}$, we have $\left|\operatorname{Col}\left(v_{i}, \mathcal{E}_{\text {col }}\left(Q v_{i}\right)\right)\right| \geq f\left(v_{i}\right)$. It suffices to show that $\left|\operatorname{Col}\left(v_{j}, \mathcal{E}_{\text {col }}\left(Q v_{j}\right)\right)\right| \geq f\left(v_{j}\right)$.

Suppose toward a contradiction that $\left|\operatorname{Col}\left(v_{j}, \mathcal{E}_{\text {col }}\left(Q v_{j}\right)\right)\right|<f\left(v_{j}\right)$. Thus, by Claim 12.2.26, we have $v_{j-1} \in \operatorname{Mid}(Q)$. Let $A:=L_{\psi}\left(v_{j}\right) \backslash \operatorname{Col}\left(v_{j}, \mathcal{E}_{\text {col }}\left(Q v_{j}\right)\right)$. Since $\left|L_{\psi}\left(v_{j}\right)\right| \geq 3$, we have $|A| \geq 2$. Yet, by induction, we have $\left|\operatorname{Col}\left(v_{j-2}, \mathcal{E}_{\text {col }}\left(Q v_{j-2}\right)\right)\right| \geq f\left(v_{j-2}\right) \geq 2$. Since $j-1 \geq m+1$, we have $\left|L_{\psi}\left(v_{j-1}\right)\right| \geq 3$. Thus, there is a pair of colors (c, d) with $c \in \operatorname{Col}\left(Q v_{j-2}, \mathcal{E}_{\text {col }}\left(v_{j-2}\right)\right)$ and $d \in A$ such that $\left|L_{\psi}\left(v_{j}\right) \backslash\{c, d\}\right| \geq 2$. Let $(Z, \phi) \in \mathcal{E}\left(Q v_{j-2}\right)$ with $\phi\left(v_{j-2}\right)=c$. Then the pair $\left(Z \cup\left\{v_{j-1}\right\}, \phi\left\langle v_{j}: d\right\rangle\right)$ lies in $\mathcal{E}_{\text {col }}\left(Q v_{j}\right)$, contradicting the fact that $d \in A$. This completes the proof of Claim 12.2.28.

With the intermediate result above in hand, we prove Fact 2 of Lemma 12.2.25.
Claim 12.2.31. Let Q be an end-separated subpath of $C^{r} \backslash C$ such that $\operatorname{Part}(Q)$ has one connected component. If $w \in V^{\geq 1 p}(Q) \backslash U^{2 p}(C)$, then there exists a connected component Q^{\prime} of $Q \backslash\{w\}$ such that $V(Q) \cap U^{2 p}(C) \subseteq V\left(Q^{\prime}\right)$.

Proof: If w is an endpoint of Q, then there is nothing to prove, so suppose that $|V(Q)| \geq 3$ and w is an internal vertex of Q. Since $w \in V\left(C^{r}\right) \backslash U^{2 p}(C)$, there is an edge $x y \in E(C)$ such that $N(w) \cap V(C)=\{x, y\}$. Let P_{1}, P_{2} be the connected components of $Q \backslash\{w\}$, and suppose towards a contradiction that $V\left(P_{i}\right) \cap U^{2 p}(C) \neq \varnothing$ for each $i=1,2$. Since the endpoints of Q do not share a neighbor in $C, \operatorname{Part}(Q)$ is a subpath of C. It follows that the edge $x y$ lies in $E(\operatorname{Part}(Q))$, or else the deletion of $x y$ separates $\operatorname{Part}\left(P_{1}\right)$ from $\operatorname{Part}\left(P_{2}\right)$ in C. Thus, there is a $w^{\prime} \in U^{\geq 3}(C) \cap V(Q)$ such that $x y \in E\left(P_{C}^{w^{\prime}}\right)$. Since $w \neq w^{\prime}$, we contradict short-separation-freeness.

Now we return to the proof of Fact 2. Let $Q=v_{1} \cdots v_{k}$. It suffices to show that $\operatorname{Col}\left(v_{i}, \mathcal{E}_{\text {col }}^{\mathrm{end}}\left(v_{i} Q\right)\right) \mid \geq f\left(v_{i}\right)$ for each $i \in\{1, \cdots, k\}$. If $U^{2 p}(C)=\varnothing$, then we have $\left|L_{\psi}(v)\right| \geq 3$ for each $v \in V(Q)$. In that case, for each $i \in\{1, \cdots, k\}$, we have $\operatorname{Col}\left(v_{i}, \mathcal{E}_{\text {col }}\left(v_{i} Q\right)\right)=L_{\psi}\left(v_{i}\right)$ by Fact 1 of Lemma 12.2.18, so we are done in that case. So now suppose that $U^{2 p}(C) \cap V(Q) \neq \varnothing$.

We call a subpath Q^{\prime} of Q an alternating subpath of Q if $V^{\geq 1 p}\left(Q^{\prime}\right)$ is nonempty and $V^{\geq 1 p}\left(Q^{\prime}\right) \subseteq U^{2 p}(C)$. Let Q^{\prime} be a vertex-maximal alternating subpath of Q. Such a Q^{\prime} exists since $U^{2 p}(C) \cap V(Q) \neq \varnothing$. Let $s, t \in\{1, \cdots, k\}$ be indices such that $Q^{\prime}=v_{s} Q v_{t}$. Note that if either $s=1$ or $t=k$, then Fact 2 immediately follows from Claim 12.2.28, so we suppose now that $1<s \leq t<k$.

Claim 12.2.32. For each $i \in\{1, \cdots, s-1\}$, we have $v_{i} \notin U^{2 p}(C)$. Likewise, for each $j \in\{t+1, \cdots, k\}$, we have $v_{j} \notin U^{2 p}(C)$.

Proof: If $s=1$, then the first statement is vacuously true, so suppose that $1<s$. By the maximality of Q^{\prime}, we have $v_{s-1} \in V^{\geq 1 p}(Q) \backslash U^{2 p}(C)$. Thus, by Claim 12.2.31, we have $\left\{v_{1}, \cdots, v_{s-1}\right\} \cap U^{2 p}(C)=\varnothing$. An identical argument shows the analogous statement for $v_{t+1} Q v_{k}$.

Combining Claim 12.2.32 with Claim 12.2.28, we have $\operatorname{Col}\left(v_{j}, \mathcal{E}_{\text {col }}\left(v_{j} Q\right)\right) \mid \geq f\left(v_{j}\right)$ for each $j \in\{s, \cdots, k\}$. If $s=1$, then we are done, so suppose now that $s>1$. Now we have the following:

Claim 12.2.33. $\left|\operatorname{Col}\left(v_{s-1}, \mathcal{E}_{\mathrm{col}}^{\mathrm{end}}\left(v_{s-1} Q\right)\right)\right| \geq f\left(v_{s-1}\right)$.

Proof: Suppose toward a contradiction that $\left|\operatorname{Col}\left(v_{s-1}, \mathcal{E}_{\text {col }}^{\mathrm{end}}\left(v_{s-1} Q\right)\right)\right|<f\left(v_{s-1}\right)$. In that case, we have $v_{s} \in \operatorname{Mid}(Q)$ by Claim 12.2.26. Since $v_{s} \in V\left(Q^{\prime}\right)$, we have $v_{s} \notin V^{\geq 1 p}(Q) \backslash U^{2 p}(C)$, and thus $v_{s} \in U^{2 p}(C)$ by Observation 12.2.17.

To see that $L_{\psi}\left(v_{s}\right) \subseteq L_{\psi}\left(v_{s+1}\right)$, suppose there is a color $d \in L_{\psi}\left(v_{s}\right) \backslash L_{\psi}\left(v_{s+1}\right)$. Then, for each $c \in L_{\psi}\left(v_{s-1}\right) \backslash\{d\}$, the pair $(\varnothing,(c, d))$ lies in $\mathcal{E}^{\text {end }}\left(v_{s-1} Q\right)$, where (c, d) is a coloring of $v_{s-1} v_{s}$, and thus thus $\left|\operatorname{Col}\left(v_{s-1}, \mathcal{E}_{\text {col }}^{\text {end }}\left(v_{s-1} Q\right)\right)\right| \geq$ $\left|L_{\psi}\left(v_{s-1}\right)\right|-1=f\left(v_{s-1}\right)$, contradicting our assumption. Now consider the following cases:

Case 1: $v_{s+1} \in V^{\geq 1 p}(Q)$
In this case, since $v_{s+1} \notin U^{2 p}(C)$, we have $s=t$ and $s+1=k$ by Claim 12.2.32. Now, each color $c \in L_{\psi}\left(v_{s-1}\right) \cap$ $L_{\psi}\left(v_{s}\right)$ lies in $\operatorname{Col}\left(v_{s-1}, \mathcal{E}_{\text {col }}^{\text {end }}\left(v_{s-1} Q\right)\right)$. To see this, let $c \in L_{\psi}\left(v_{s-1}\right) \cap L_{\psi}\left(v_{s}\right)$. Then, as shown above, $c \in L_{\psi}\left(v_{s+1}\right)$. Let ϕ be an L_{ψ}-coloring of $v_{s-1} v_{s} v_{s+1}$ with $\phi\left(v_{s-1}\right)=\phi\left(v_{s+1}\right)=c$. Then $\phi \in \mathcal{E}_{\text {col }}\left(v_{s-1} Q\right)$, and thus $c \in$ $\operatorname{Col}\left(v_{s-1}, \mathcal{E}_{\mathrm{col}}^{\text {end }}\left(v_{s-1} Q\right)\right)$.

Now let $c \in L_{\psi}\left(v_{s-1}\right) \backslash L_{\psi}\left(v_{s}\right)$ and let $d \in L_{\psi}\left(v_{s+1}\right)$. Let ϕ be an L_{ψ}-coloring of $\left\{v_{s-1}, v_{s+1}\right\}$ with $\phi\left(v_{s-1}\right)=c$ and $\phi\left(v_{s+1}\right)=d$. Then $\left|L_{\psi}\left(v_{s}\right) \backslash\{c, d\}\right| \geq 2$, so $\left(\left\{v_{s}\right\}, \phi\right)$ lies in $\mathcal{E}\left(v_{s-1} Q\right)$, and thus $c \in \operatorname{Col}\left(v_{s-1}, \mathcal{E}_{\text {col }}^{\mathrm{end}}\left(v_{s-1} Q\right)\right)$. We conclude that $\operatorname{Col}\left(v_{s-1}, \mathcal{E}_{\mathrm{col}}^{\mathrm{end}}\left(v_{s-1} Q\right)\right)=L_{\psi}\left(v_{s-1}\right)$, contradicting our assumption. This completes Case 1 .

Case 2: $v_{s+1} \notin V^{\geq 1 p}(Q)$
In this case, the edge $v_{s} v_{s+1}$ lies in $E\left(Q^{\prime}\right)$, and thus $s+1 \leq t<k$ (recall that $1<s \leq t<k$ by assumption). Set $A:=L_{\psi}\left(v_{s-1}\right) \backslash \operatorname{Col}\left(v_{s-1}, \mathcal{E}_{\mathrm{col}}^{\mathrm{end}}\left(v_{s-1} Q\right)\right)$. Since $\left|\operatorname{Col}\left(v_{s-1}, \mathcal{E}_{\mathrm{col}}^{\mathrm{end}}\left(v_{s-1} Q\right)\right)\right|<f\left(v_{s-1}\right)$ by assumption, we have $|A| \geq 2$. Now consider the following subcases.

Subcase 2.1: $v_{s+2} \notin \operatorname{Mid}(Q)$
Since $v_{s+1} \notin V^{\geq 1 p}(Q)$, we apply Fact 2 of Lemma 12.2.18: There is a pair $(Z, \phi) \in \mathcal{E}\left(v_{s-1} Q v_{s+1}\right)$ with $\phi\left(v_{s-1}\right) \in$ A. By our induction hypothesis, we have $\operatorname{Col}\left(v_{s+2}, \mathcal{E}_{\text {col }}^{\mathrm{end}}\left(v_{s+2} Q\right) \mid \geq f\left(v_{s+2}\right) \geq 2\right.$, and thus there is a pair $\left(Z^{\prime}, \phi^{\prime}\right) \in$ $\mathcal{E}^{\text {end }}\left(v_{s+2} Q\right)$ with $v_{s+2} \in \operatorname{dom}\left(\phi^{\prime}\right)$ and $\phi^{\prime}\left(v_{s+2}\right) \neq \phi\left(v_{s+1}\right)$. By Observation 12.2.17, $v_{s+1} \notin \operatorname{Mid}(Q)$, and since $v_{s+2} \notin \operatorname{Mid}(Q)$ by assumption, the pair $\left(Z \cup Z^{\prime}, \phi \cup \phi^{\prime}\right)$ lies in $\mathcal{E}^{\text {end }}\left(v_{s-1} Q\right)$, contradicting the fact that $\phi\left(v_{s-1}\right) \in A$. This completes Subcase 2.1.

Subcase 2.2: $v_{s+2} \in \operatorname{Mid}(Q) \backslash U^{2 p}(C)$
In this case, we have $v_{s+2} \in V^{\geq 1 p}(Q) \backslash U^{2 p}(C)$ by Observation 12.2.17. Thus, Q^{\prime} consists of the edge $v_{s} v_{s+1}$. Again applying Fact 2 of Lemma 12.2.18, there is a pair $(Z, \phi) \in \mathcal{E}\left(v_{s-1} Q v_{s+1}\right)$ with $\phi\left(v_{s-1}\right) \in A$. Since $Q^{\prime}=v_{s} v_{s+1}$, we have $\left|L_{\psi}\left(v_{i}\right)\right| \geq 3$ for all $i \in\{s+2, \cdots, k\}$ by Claim 12.2.32. Thus, by Fact 1 of Lemma 12.2.18, there is a pair
$\left(Z^{\prime}, \phi^{\prime}\right) \in \mathcal{E}\left(v_{s+1} Q\right)$ with $\phi^{\prime}\left(v_{s+1}\right)=\phi\left(v_{s+1}\right)$. Since $v_{s+1} \notin \operatorname{Mid}(Q)$, the pair $\left(Z \cup Z^{\prime}, \phi \cup \phi^{\prime}\right)$ lies in $\mathcal{E}\left(v_{s-1} Q\right)$, contradicting the fact that $\phi\left(v_{s-1}\right) \in A$. This completes Subcase 2.2.

Subcase 2.3: $v_{s+2} \in \operatorname{Mid}(Q) \cap U^{2 p}(C)$
In this case, we have $k \geq s+3$, and furthermore, $v_{s+1}, v_{s+3} \notin U^{2 p}(C) \cup \operatorname{Mid}(Q)$. We apply Lemma 12.2.20 directly to the path $v_{s-1} Q v_{s+3}$. Note that $V\left(v_{s} Q v_{s+3}\right) \backslash V{ }^{\geq 1 p}(Q) \subseteq\left\{v_{s+1}, v_{s+3}\right\}$, and that $V{ }^{\geq 1 p}\left(v_{s} Q v_{s+3}\right) \backslash\left\{v_{s}, v_{s+3}\right\} \subseteq$ $\left\{v_{s}, v_{s+2}\right\} \subseteq U^{2 p}(C)$.

In the statement of Lemma 12.2.20, we set $v^{\prime}:=v_{s+1}, B^{\prime}:=\operatorname{Col}\left(v_{s+1}, \mathcal{E}_{\text {col }}^{\mathrm{end}}\left(v_{s+1} Q\right)\right)$, and $B^{\prime \prime}:=\operatorname{Col}\left(v_{s+3}, \mathcal{E}_{\mathrm{col}}^{\mathrm{end}}\left(v_{s+3} Q\right)\right)$. We just need to check that $\left|B^{\prime}\right| \geq 3$ and $\left|B^{\prime \prime}\right| \geq 3$. By our induction hypothesis, we have $\operatorname{Col}\left(v_{s+1}, \mathcal{E}_{\text {col }}^{\mathrm{end}}\left(v_{s+1} Q\right)\right) \mid \geq$ $f\left(v_{s+1}\right)$. Since $v_{s+1} \notin V^{\geq 1 p}(Q)$, we have $f\left(v_{s+1}\right) \geq 3$, so we indeed have $\left|B^{\prime}\right| \geq 3$. If $v_{s+3} \notin V^{\geq 1 p}(Q)$, then we have $f\left(v_{s+3}\right) \geq 3$, and we have $\left|B^{\prime \prime}\right| \geq f\left(v_{s+3}\right)$ by our induction hpothesis, so we are done in that case. Now suppose that $v_{s+3} \in V^{\geq 1 p}(Q)$. In that case, we have $v_{s+3} \in V^{\geq 1 p}(Q) \backslash U^{2 p}(C)$, since $v_{s+2} \in U^{2 p}(C)$, so we have $Q^{\prime}=v_{s} v_{s+1} v_{s+2}$. By Claim 12.2.32, we have $\left|L_{\psi}\left(v_{i}\right)\right| \geq 3$ for all $i \geq s+3$, and thus, by Fact 1 of Lemma 12.2.18, we have $\operatorname{Col}\left(v_{s+3}, \mathcal{E}_{\mathrm{col}}\left(v_{s+3} Q\right)\right)=L_{\psi}\left(v_{s+3}\right)$, and thus $\operatorname{Col}\left(v_{s+3}, \mathcal{E}_{\mathrm{col}}^{\mathrm{end}}\left(v_{s+3} Q\right)\right)=L_{\psi}\left(v_{s+3}\right)$, so we again have $\left|B^{\prime \prime}\right| \geq 3$.

Thus, in any case, $\left|B^{\prime}\right| \geq 3$ and $\left|B^{\prime \prime}\right| \geq 3$, so Lemma 12.2 .20 applies to the sets $A, B^{\prime}, B^{\prime \prime}$. Thus, there is either a pair $\left(Z^{\prime}, \phi^{\prime}\right) \in \mathcal{E}_{\text {col }}\left(v_{s-1} Q v_{s+1}\right)$ with $\phi^{\prime}\left(v_{s-1}\right) \in A$ and $\phi^{\prime}\left(v_{s+1}\right) \in B^{\prime}$, or there is a pair $\left(Z^{\prime}, \phi^{\prime}\right) \in \mathcal{E}_{\text {col }}\left(v_{s-1} Q v_{s+3}\right)$ with $\phi^{\prime}\left(v_{s-1}\right) \in A$ and $\phi^{\prime}\left(v_{s+3}\right) \in B^{\prime \prime}$. In either case, since $v_{s+1}, v_{s+3} \notin \operatorname{Mid}(Q)$, the pair $\left(Z^{\prime}, \phi^{\prime}\right)$ can be combined with a pair $\left(Z^{*}, \phi^{*}\right) \in \mathcal{E}_{\mathrm{col}}^{\mathrm{end}}\left(v_{s+1} Q\right) \cup \mathcal{E}_{\mathrm{col}}^{\mathrm{end}}\left(v_{s+3} Q\right)$, where the right endpoint of $\operatorname{dom}\left(\phi^{\prime}\right)$ coincides with the left endpoint of $\operatorname{dom}\left(\phi^{*}\right)$, and the two colorings agree on this vertex. In both cases, we produce an element $\phi^{\prime} \cup \phi^{*}$ of $\mathcal{E}_{\text {col }}^{\mathrm{end}}\left(v_{s-1} Q\right)$ which colors v_{s-1} with an element of A, a contradiction. This completes the proof of Claim 12.2.33.

Now we return to the proof of Fact 2 of Lemma 12.2.25. If $s=2$, we are done, so suppose that $s \geq 3$. It suffices to show that $\left|\operatorname{Col}\left(v_{j}, \mathcal{E}_{\text {col }}^{\text {end }}\left(v_{j} Q\right)\right)\right| \geq f\left(v_{j}\right)$ for all $j \in\{1, \cdots, s-2\}$.

Let $j \in\{1, \cdots, s-2\}$, and suppose that $\left|\operatorname{Col}\left(v_{i}, \mathcal{E}_{\mathrm{col}}^{\mathrm{end}}\left(v_{i} Q\right)\right)\right| \geq f\left(v_{i}\right)$ for all $i \in\{j+1, \cdots, k\}$. It suffices to show that $\left|\operatorname{Col}\left(v_{j}, \mathcal{E}^{\mathrm{end}}\left(v_{j} Q\right)\right)\right| \geq f\left(v_{j}\right)$. If $v_{j+1} \notin \operatorname{Mid}(Q)$, then we are done by Claim 12.2 .26 , so now suppose that $v_{j+1} \in \operatorname{Mid}(Q)$. Now, since $j+1 \leq s-1$, we have $\left|L_{\psi}\left(v_{j+1}\right)\right| \geq 3$ by Claim 12.2.32. Suppose toward a contradiction that $\left|\operatorname{Col}\left(v_{j}, \mathcal{E}_{\mathrm{col}}^{\mathrm{end}}\left(v_{j} Q\right)\right)\right|<f\left(v_{j}\right)$. In that case, since $f\left(v_{j}\right)=\left|L_{\psi}\left(v_{j}\right)\right|-1$, there are two colors $c_{1}, c_{2} \in L_{\psi}\left(v_{j}\right)$ with $\left.c_{1}, c_{2} \notin \operatorname{Col}\left(v_{j}, \mathcal{E}_{\text {col }}^{\mathrm{end}}\left(v_{j} Q\right)\right)\right)$. Since $v_{j+1} \in \operatorname{Mid}(Q)$, we have $j+1<k$, and $\left|\operatorname{Col}\left(v_{j+2}, \mathcal{E}_{\text {col }}^{\text {end }}\left(v_{j+2} Q\right)\right)\right| \geq f\left(v_{j+2}\right) \geq$ 2 by induction.

Since $\left|L_{\psi}\left(v_{j+1}\right)\right| \geq 3$, there is a $q \in \operatorname{Col}\left(v_{j+2}, \mathcal{E}_{\text {col }}^{\text {end }}\left(v_{j+2} Q\right)\right)$ and an $n \in\{1,2\}$ such that $L_{\psi}\left(v_{j+1}\right) \backslash\left\{q, c_{n}\right\} \mid \geq 2$. Let $(Z, \phi) \in \mathcal{E}_{\mathrm{col}}^{\mathrm{end}}\left(v_{j+2} Q\right)$ with $\phi\left(v_{j+2}\right)=q$. But then, the pair $\left(Z \cup\left\{v_{j+1}\right\}, \phi\left\langle v_{j}: c_{n}\right\rangle\right)$ lies in $\mathcal{E}_{\text {col }}^{\text {end }}\left(v_{j} Q\right)$, contradicting the fact that $c_{n} \notin \operatorname{Col}\left(v_{j}, \mathcal{E}_{\mathrm{col}}^{\mathrm{end}}\left(v_{j} Q\right)\right)$). This completes the proof of Fact 2 and thus completes the proof of Lemma 12.2.25.

The fourth and final lemma we need for the proof of Proposition 12.2.14 is the following.
Lemma 12.2.34. Let $\mathcal{L}=(G, C, L, \psi)$ be a non-split lens of breadth r and let Q be an end-separated subpath of $C^{r} \backslash C$. If $\operatorname{Part}(Q)$ has at most two connected components, then $\mathcal{E}^{\mathrm{end}}(Q) \neq \varnothing$.

Proof. If Q has at most one connected component, then this immediately follows from Fact 2 of Lemma 12.2.25. Now suppose that $\operatorname{Part}(Q)$ has precisely two connected components. Let P_{1}, P_{2} be the connected components of
$\operatorname{Part}(Q)$. In that case, there exists an internal vertex v of Q with $v \in V(Q) \backslash U^{2 p}(C)$ such that $\operatorname{Part}(Q v)=P_{1}$ and $\operatorname{Part}(v Q)=P_{2}$. Let $Q=v_{1} \cdots v_{k}$ for some $k \geq 3$ and let $1<i<k$ with $v=v_{i}$. Now consider the following cases:

Case 1: $v_{i} \notin \operatorname{Mid}(Q)$
In this case, we apply Fact 2 of Lemma 12.2.25 to obtain $\left|\operatorname{Col}\left(v_{i}, \mathcal{E}^{\text {end }}\left(Q v_{i}\right)\right)\right| \geq\left|L_{\psi}\left(v_{i}\right)\right|-1$, and $\left|\operatorname{Col}\left(v_{i}, \mathcal{E}^{\text {end }}\left(v_{i} Q\right)\right)\right| \geq$ $\left|L_{\psi}\left(v_{i}\right)\right|-1$. Since $\left|L_{\psi}\left(v_{i}\right)\right| \geq 3$, there exists a pair $(Z, \phi) \in \mathcal{E}^{\text {end }}\left(Q v_{i}\right)$ and a pair $\left(Z^{\prime}, \phi^{\prime}\right) \in \mathcal{E}^{\text {end }}\left(v_{i} Q\right)$ such that $\phi\left(v_{i}\right)=\phi^{\prime}\left(v_{i}\right)$. Since $v_{i} \notin \operatorname{Mid}(Q)$, the pair $\left(Z \cup Z^{\prime}, \phi \cup \phi^{\prime}\right)$ lies in $\mathcal{E}^{\text {end }}(Q)$. This completes Case 1.

Case 2: $v \in \operatorname{Mid}(Q)$.
In this case, we again apply Fact 2 of Lemma 12.2.25 to obtain $\left|\operatorname{Col}\left(v_{i-1}, \mathcal{E}^{\text {end }}\left(Q v_{i-1}\right)\right)\right| \geq 2$ and $\left|\operatorname{Col}\left(v_{i+1}, \mathcal{E}^{\text {end }}\left(v_{i+1} Q\right)\right)\right| \geq$ 2. Since $\left|L_{\psi}\left(v_{i}\right)\right| \geq 3$, there exists a pair of colors $\left(q, q^{\prime}\right)$ with $q \in \operatorname{Col}\left(v_{i-1}, \mathcal{E}^{\mathrm{end}}\left(Q v_{i-1}\right)\right)$ and $q^{\prime} \in \operatorname{Col}\left(v_{i+1}, \mathcal{E}^{\text {end }}\left(v_{i+1} Q\right)\right)$ such that $\left|L_{\psi}\left(v_{i}\right) \backslash\left\{q, q^{\prime}\right\}\right| \geq 2$. Let $(Z, \phi) \in \mathcal{E}^{\text {end }}\left(Q v_{i-1}\right)$ and $\left(Z^{\prime}, \phi^{\prime}\right) \in \mathcal{E}^{\text {end }}\left(v_{i+1} Q\right)$ with $\phi\left(v_{i-1}\right)=q$ and $\phi^{\prime}\left(v_{i+1}\right)=q^{\prime}$. Then $\left(Z \cup\left\{v_{i}\right\} \cup Z^{\prime}, \phi \cup \phi^{\prime}\right)$ lies in $\mathcal{E}^{\text {end }}(Q)$. This completes the proof of Lemma 12.2.34.

With all of the above in hand, we are finally ready to prove Proposition 12.2.14, which we restate below.
Proposition 12.2.14. Let $\mathcal{L}=(G, C, L, \psi)$ be a non-split lens of breadth r such that either:

1) $\operatorname{Part}\left(C^{r}\right)$ has at most two connected components; $O R$
2) $\operatorname{Part}\left(C^{r}\right)$ has precisely three connected components, at least one of which is a subpath of C of length two.

Then \mathcal{L} is 1-partitionable, and, in particular, (C, ψ) is a 1-partitioning pair for \mathcal{L}.

Proof. We break the proof of this proposition into three intermediate results, the first of which is as follows:
Claim 12.2.35. If $C^{r} \cap C \neq \varnothing$ and, for each connected component Q of $C^{r} \backslash C, \operatorname{Part}(Q)$ has at most two connected components, then \mathcal{L} is 1-partitionable, and (C, ψ) is a 1-partitioning pair for \mathcal{L}.

Proof: If $C^{r}=C$, then, by the definition of C^{r}, we have $U^{\geq 3}\left(C^{r}\right)=\varnothing$, and thus any subpath of C of length $|V(C)|-3$ is a reducing path for \mathcal{L} (recall Definition 12.2.7). Thus, (C, ψ) is a 1-reducing path and thus a 1partitioning pair for \mathcal{L}. So now suppose that $C^{r} \neq C$. Note that, since $C^{r} \neq C$, we have $U^{2 p}(C) \neq \varnothing$. We also note that, for any end-separated subpath Q^{\prime} of $C^{r} \backslash C, \operatorname{Part}\left(Q^{\prime}\right)$ has at most two connected components.

Recalling Definition 12.2.9, it suffices to construct a (C, ψ)-boundary cutter for C. Since $C^{r} \neq C$ and $C^{r} \cap C \neq \varnothing$, each connected component of $C^{r} \backslash C$ is an induced path in G, as \mathcal{L} is nonsplit. Let P_{1}, \cdots, P_{ℓ} be the connected components of $C^{r} \backslash C$. Now, $\operatorname{Part}\left(P_{i}\right)$ has at most two connected components for each $i=1, \cdots, \ell$. Thus, applying Lemma 12.2.34, we have the following: For each $i=1, \cdots, \ell$, let $\left(Z_{i}, \phi_{i}\right) \in \mathcal{E}^{\text {end }}\left(P_{i}\right)$. Let $Z=\bigcup_{i=1}^{\ell} Z_{i}$ and let $\phi=\bigcup_{i=1}^{\ell} \phi_{i}$.

Since \mathcal{L} is nonsplit, C^{r} is a chordless cycle, so, for any $i, j \in\{1, \cdots, \ell\}$ with $i \neq j$, there is no edge of G with one endpoint in $\operatorname{dom}\left(\phi_{i}\right)$ and the other in $\operatorname{dom}\left(\phi_{j}\right)$. Thus, ϕ is a proper L_{ψ}-coloring of its domain. Furthermore, since Z_{i} is $L_{\psi \cup \phi_{i}}$-inert for each $i=1, \cdots, \ell, Z$ is $L_{\psi \cup \phi}$-inert.

Subclaim 12.2.36. $\left|L_{\psi \cup \phi}(w)\right| \geq 3$ for all $w \in B_{1}\left(C^{r}\right) \backslash(V(C) \cup Z \cup \operatorname{dom}(\phi))$.
Proof: Suppose toward a contradiction that there is a $w \in B_{1}\left(C^{r}\right) \backslash(V(C) \cup Z \cup \operatorname{dom}(\phi))$ such that $\left|L_{\psi \cup \phi}(w)\right|<$ 3. Suppose first that $w \in B_{1}(C, G)$. In that case, by the construction of $H_{\mathcal{L}}^{r}$, we have $w \in V\left(C^{r}\right) \cup V(C)$, and thus there is an $i \in\{1, \cdots, \ell\}$ with $w \in V\left(P_{i}\right)$. Since $C^{r} \backslash C$ is a chordless path, we have $N(w) \cap V\left(C^{r} \backslash C\right) \subseteq$
P_{i}, and thus $L_{\psi \cup \phi}(w)=L_{\psi \cup \phi_{i}}(w)$. But then, since $\left(Z_{i}, \phi_{i}\right) \in \mathcal{E}^{\text {end }}\left(P_{i}\right)$, and $\left.w \notin V(C) \cup Z \cup \operatorname{dom}(\phi)\right)$ we have $\left|L_{\psi \cup \phi_{i}}(w)\right| \geq 3$, contradicting our assumption.

Thus, we have $w \notin B_{1}(C)$, so we get that $\left.N(w) \cap \operatorname{dom}(\psi \cup \phi)\right) \subseteq V\left(C^{r}\right) \backslash V(C)$. Since $\left|L_{\psi \cup \phi}(w)\right|<3$, we have $w \in U^{\geq 3}\left(C^{r}\right)$, and thus, since \mathcal{L} is a non-split lens, we have $w \in U^{2 p}\left(C^{r}\right)$. But then, since $N(w) \cap V\left(C^{r} \backslash C\right)=$ \varnothing, there exists an $i \in\{1, \cdots, \ell\}$ such that $P_{C^{r}}^{w}$ is a subpath of P^{i}, and thus $L_{\psi \cup \phi}(w)=L_{\psi \cup \phi_{i}}(w)$. Since $\left(Z_{i}, \phi_{i}\right) \in \mathcal{E}^{\text {end }}\left(P_{i}\right)$, we have $\left|L_{\psi \cup \phi_{i}}(w)\right| \geq 3$, contradicting our assumption.

Since $\left|L_{\psi \cup \phi}(w)\right| \geq 3$ for all $w \in B_{1}\left(C^{r}\right) \backslash(V(C) \cup Z \cup \operatorname{dom}(\phi))$, it follows that $(r, Z, \varnothing, \phi)$ is a (C, ψ)-boundary cutter for C. Thus, (C, ψ) is indeed a 1-partitioning pair for \mathcal{L}. This completes the proof of Claim 12.2.35.

The second intermediate result we need for Proposition 12.2.14 is the following:

Claim 12.2.37. If $\operatorname{Part}\left(C^{r}\right)$ has at most two connected components, then \mathcal{L} is 1-partitionable, and (C, ψ) is a 1partitioning pair for \mathcal{L}.

Proof: If $C^{r} \cap C \neq \varnothing$, then each connected component of $C^{r} \backslash C$ is a path Q such that $\operatorname{Part}(Q)$ has at most two connected components, so in that case, we are done by Claim 12.2.35. Now suppose that $C^{r} \cap C=\varnothing$.

Subclaim 12.2.38. For any $v \in V^{\geq 1 p}\left(C^{r}\right), C^{r}-v$ is an end-separated subpath of $C^{r} \backslash C$.
Proof: Let $v^{\prime}, v^{\prime \prime}$ be the endpoints of $C^{r}-v$. Note that $\left|V\left(C^{r}-v\right)\right| \geq 3$, or else G contains a cycle of length 4 which separates C from a vertex of $U^{2 p}\left(C^{r}\right)$. Since $v \in V^{\geq 1 p}\left(C^{r}\right)$, there is a path $P \subseteq C$ of length at least one such that $P=C[N(v)]$. Each of $C\left[N\left(v^{\prime}\right)\right]$ and $C\left[N\left(v^{\prime \prime}\right)\right]$ is a subpath of C, neither of which contains an edge of P. Thus, if $v^{\prime}, v^{\prime \prime}$ share a neighbor u of C, then the deletion of the vertices u, v and the edges of $E(P)$ separates v^{\prime} from $v^{\prime \prime}$, contradicting the fact that $C^{r} \cap C=\varnothing$. Thus, the vertices $v^{\prime}, v^{\prime \prime}$ do not have a common neighbor in C, so $C^{r}-v$ is indeed an end-separated subpath of $C^{r} \backslash C$.

Now we return to the proof of Claim 12.2.37. We break this into two cases:
Case $1 V^{\geq 1 p}\left(C^{r}\right) \backslash U^{2 p}(C)=\varnothing$
In this case, let $v \in U^{2 p}(C)$. Note that $U^{2 p}(C) \neq \varnothing$, or else $C^{r}=C$. Applying Subclaim $12.2 .38, C^{r}-v$ is an end-separated subpath of C^{r}.

Let $v^{\prime}, v^{\prime \prime}$ be the endpoints of $C^{r}-v$. Since $V^{\geq 1 p}\left(C^{r}\right) \backslash U^{2 p}(C)=\varnothing$, we apply Fact 1 of Lemma 12.2.25. Since $v^{\prime} \notin V^{\geq 1 p}\left(C^{r}\right)$, we have $\left|\operatorname{Col}\left(v^{\prime}, \mathcal{E}_{\text {col }}\left(C^{r}-v\right)\right)\right| \geq f\left(v^{\prime}\right) \geq 3$. Thus, there is a pair $(Z, \phi) \in \mathcal{E}\left(C^{r}-v\right)$ such that $\left|L_{\psi}(v) \backslash\left\{\phi\left(v^{\prime}\right)\right\}\right| \geq 2$. Thus, we have $\left|L_{\psi \cup \phi}(v)\right| \geq 1$. We claim now that (r, Z, v, ϕ) is a (C, ψ)-boundary cutter for C. If we show this, then it follows that (C, ψ) is a 1-partitioning pair for \mathcal{L}, and then we are done. By definition, for any $w \in B_{1}\left(C^{r}, \operatorname{Int}\left(C^{r}\right)\right) \backslash(\operatorname{dom}(\psi \cup \phi) \cup Z \cup\{v\})$, we have $\left|L_{\psi \cup \phi}(w)\right| \geq 3$, since $(Z, \phi) \in \mathcal{E}\left(C^{r}\right)$. Furthermore, Z is $L_{\psi \cup \phi}$-inert, so (r, Z, v, ϕ) is a (C, ψ)-boundary cutter for C. This completes Case 1.

Case 2: $V^{\geq 1 p}\left(C^{r}\right) \backslash U^{2 p}(C) \neq \varnothing$
In this case, let $v \in V^{\geq 1 p}\left(C^{r}\right) \backslash U^{2 p}(C)$. Note then that $\operatorname{Part}\left(C^{r}-v\right)=\operatorname{Part}\left(C^{r}\right)$. Furthermore, again applying Subclaim 12.2.38, $C^{r}-v$ is an end-separated subpath of C^{r}. Applying Lemma 12.2.34, there is a pair $(Z, \phi) \in$ $\mathcal{E}^{\text {end }}\left(C^{r}-v\right)$. Since $(Z, \phi) \in \mathcal{E}^{\text {end }}\left(C^{r}-v\right)$, we have $\left|L_{\psi \cup \phi}(w)\right| \geq 3$ for all $w \in B_{1}\left(C^{r}, \operatorname{Int}\left(C^{r}\right)\right) \backslash(\operatorname{dom}(\phi) \cup Z \cup\{v\})$. Furthermore, since C^{r} is a chordless cycle, we have $\left|L_{\psi \cup \phi}(v)\right| \geq\left|L_{\psi}(v)\right|-2 \geq 1$, so $\{v\}$ is indeed $L_{\psi \cup \phi}$-colorable. Thus, (r, Z, v, ϕ) is a (C, ψ)-boundary cutter for C, so (C, ϕ) is indeed a 1-partitioning pair for \mathcal{L}. This completes the proof of Claim 12.2.37.

To complete the proof of Proposition 12.2.14, it suffice to prove the following:

Claim 12.2.39. If $\operatorname{Part}\left(C^{r}\right)$ has three connected components, at least one of which is a path of length two, then \mathcal{L} is 1-partitionable, and (C, ψ) is a 1-partitioning pair for \mathcal{L}.

Proof: Let P be a connected component of $\operatorname{Part}\left(C^{r}\right)$ of length two. Since P has length two, there is a lone vertex $w \in U^{2 p}(C)$ such that $P=P_{C}^{w}$. Now consider the following cases. In each case below, we show that (C, ψ) is a 1-partitioning pair for \mathcal{L}.

Case 1: $C^{r} \cap C \neq \varnothing$
In this case, let Q_{1}, \cdots, Q_{ℓ} be the connected components of $C^{r} \backslash C$. Since $C^{r} \cap C \neq \varnothing$, each of $Q_{1} \cdots Q_{\ell}$ is a proper subpath of C. If, for each $i=1, \cdots, \ell, \operatorname{Part}\left(Q_{i}\right)$ has at most two connected components, then we are done by Claim 12.2.35, so suppose without loss of generality that $\operatorname{Part}\left(Q_{1}\right)$ has three connected components. Thus, we have $w \in V\left(Q_{1}\right)$. Note that, for each $i>1, \operatorname{Part}\left(Q_{i}\right)$ has at most two connected components, since $w \notin V\left(Q_{i}\right)$. Thus, by Lemma 12.2 .34 we have $\mathcal{E}^{\text {end }}\left(Q_{i}\right) \neq \varnothing$ for each $i=2, \cdots, \ell$. For each $i=2, \cdots, \ell$, let $\left(Z_{i}, \phi_{i}\right) \in \mathcal{E}^{\text {end }}\left(Q_{i}\right)$. Now we have the following subcases.

Subcase $1.1 w$ is an endpoint of Q_{1}
In this case, since the path $\operatorname{Part}\left(Q_{1}-w\right)$ has two connected components, we have $\mathcal{E}^{\text {end }}\left(Q_{1}-w\right) \neq \varnothing$ by Lemma 12.2.34. Let $\left(Z_{1}, \phi_{1}\right) \in \mathcal{E}^{\text {end }}\left(Q_{1}-w\right)$. Let $Z:=\bigcup_{i=1}^{\ell} Z_{i}$ and let $\phi:=\bigcup_{i=1}^{\ell} \phi_{i}$. Note that ϕ is indeed a proper L_{ψ}-coloring of its domain. Furthermore, at most one element of $\operatorname{dom}(\phi)$ is adjacent to w, so $\{w\}$ is $L_{\psi \cup \phi}$-colorable, and, if $x \in B_{1}\left(C^{r}\right) \backslash(\operatorname{dom}(\psi \cup \phi) \cup Z \cup\{w\})$, then $\left|L_{\psi \cup \phi}(x)\right| \geq 3$. Thus, (r, Z, w, ϕ) is a (C, ψ)-boundary cutter for C, so (C, ψ) is indeed a 1-partitioning pair for \mathcal{L}.

Subcase $1.2 w$ is an internal vertex of Q_{1}
In this case, since $\operatorname{Part}\left(Q_{1}\right)$ has three connected components, there is a neighbor v of w in Q_{1} which is also an internal vertex of Q_{1}. Let $Q^{\prime}, Q^{\prime \prime}$ be the connected components of $Q \backslash\{w, v\}$. Each of $\operatorname{Part}\left(Q^{\prime}\right)$ and $\operatorname{Part}\left(Q^{\prime \prime}\right)$ has at most two connected components, so, by Lemma 12.2.34, let $\left(Z^{\prime}, \phi^{\prime}\right) \in \mathcal{E}^{\text {end }}\left(Q^{\prime}\right)$ and $\left(Z^{\prime \prime}, \phi^{\prime \prime}\right) \in \mathcal{E}^{\text {end }}\left(Q^{\prime \prime}\right)$. Now set $Z:=\left(Z^{\prime} \cup Z^{\prime \prime}\right)$ and set $\phi:=\left(\phi^{\prime} \cup \phi^{\prime \prime}\right)$. Each of w, v has at most one neighbor in $\operatorname{dom}(\phi)$, and $\left|L_{\psi}(v)\right| \geq 3$, so wv is $L_{\psi \cup \phi}$-colorable. As above, $\left|L_{\psi \cup \phi}(x)\right| \geq 3$ for all $x \in B_{1}\left(C^{r}\right) \backslash(\operatorname{dom}(\psi \cup \phi) \cup Z \cup\{w, v\})$, so $(r, Z, w v, \phi)$ is a (C, ψ)-boundary cutter for C. Thus, (C, ψ) is indeed a 1-partitioning pair for \mathcal{L}. This completes Case 1 .

Case 2: $C^{r} \cap C=\varnothing$
In this case, let v be one of the two neighbors of w in C^{r}. Note that $C^{r} \backslash\{w, v\}$ is an end-separated path, and $\operatorname{Part}\left(C^{r} \backslash\{w, v\}\right)$ has two connected components so we have $\mathcal{E}^{\mathrm{end}}\left(C^{r} \backslash\{w, v\}\right) \neq \varnothing$. Let $(Z, \phi) \in \mathcal{E}^{\mathrm{end}}\left(C^{r} \backslash\{w, v\}\right)$. Note that $w v$ is $L_{\psi \cup \phi}$-colorable, and $\left|L_{\psi \cup \phi}(x)\right| \geq 3$ for all $x \in B_{1}\left(C^{r}\right) \backslash(\operatorname{dom}(\psi \cup \phi) \cup Z \cup\{w, v\})$. Thus, $(r, Z, w v, \phi)$ is a (C, ψ)-boundary cutter for C, so (C, ψ) is indeed a 1-partitioning pair for \mathcal{L}. This completes the proof of Claim 12.2.39.

Combining Claim 12.2.37 and Claim 12.2.39, we complete the proof of Proposition 12.2.14.

We are now almost ready to prove Theorem 12.2.10. We first gather several additional useful facts.
Lemma 12.2.40. Let $\mathcal{L}=(G, C, L, \psi)$ be a non-split lens with $|V(C)| \leq 11$. Then \mathcal{L} is 1-partitionable, and, in particular, (C, ψ) is a 1-partitioning pair for \mathcal{L}.

Proof. Let r be the breadth of \mathcal{L}. If $\operatorname{Part}\left(C^{r}\right)$ has at least 4 connected components, then $|V(C)| \geq(4)(3)=12$, contradicting our assumption, so Part $\left(C^{r}\right)$ has at most 3 connected components. If $\operatorname{Part}\left(C^{r}\right)$ has at most two connected components, then we are done by Proposition 12.2.14. If $\operatorname{Part}\left(C^{r}\right)$ has three connected components, and Q is a connected component of $\operatorname{Part}\left(C^{r}\right)$ with $|V(Q)|>2$, then $|V(Q)| \geq 5$, since there exist at least two vertices $w, w^{\prime} \in$ $U^{2 p}(C)$ such that $P_{C}^{w} \cup P_{C}^{w^{\prime}} \subseteq Q$. Thus, if at least two connected components of $\operatorname{Part}\left(C^{r}\right)$ are paths of length greater than 2 , then $|V(C)| \geq 5+5+2=12$, contradicting our assumption. Thus, by Proposition 12.2.14, we are done.

We also have the following very useful fact, which is an immediate consequence of Theorem 1.3.5.

Lemma 12.2.41.

1) Let $\mathcal{L}=(G, C, L, \psi)$ be a 0 -lens with $|V(C)| \leq 4$. Then \mathcal{L} is 0 -reducible; AND
2) Let $\mathcal{L}=(G, C, L, \psi)$ be a 1 -lens with $5 \leq|V(C)| \leq 6$. Then \mathcal{L} is 0 -reducible.

With the above in hand, we now prove Theorem 12.2.10, which we restate below:
Theorem 12.2.10. Let $\mathcal{L}=(G, C, L, \psi)$ be an 11-lens with $|V(C)| \leq 11$. Then \mathcal{L} is 11-partitionable.

Proof. We first show the following:

Claim 12.2.42. Let $t \geq 3$ be an integer, and let $\mathcal{L}=(G, C, L, \psi)$ be an t-lens with $5<|V(C)| \leq 11$. Suppose further that, for every $(t-2)$-lens $\mathcal{L}^{\prime}=\left(G^{\prime}, C^{\prime}, L^{\prime}, \psi^{\prime}\right)$ with $\left|V\left(C^{\prime}\right)\right|<|V(C)|, \mathcal{L}^{\prime}$ is $(t-2)$-partitionable. Then \mathcal{L} is t-partitionable.

Proof: If \mathcal{L} is non-split, then, by Proposition $12.2 .14, \mathcal{L}$ is 1 -partitionable, and thus t-partitionable, so we are done in that case. Now suppose that \mathcal{L} is split, and let r be the breadth of \mathcal{L}. Note that, since $t \geq 3, \Phi\left(\psi, V\left(C^{r}\right)\right) \neq \varnothing$, and furthermore, for every $\phi \in \Phi\left(\psi, V\left(C^{r}\right)\right)$, the tuple $\left(\operatorname{Int}\left(C^{r}\right), C^{r}, L,\left.\phi\right|_{V\left(C^{r}\right)}\right)$ is a 1-lens. Thus, since \mathcal{L} is a split lens, there is either a chord of C^{r} in G, or $U^{\geq 3}\left(C^{r}\right) \backslash U^{2 p}\left(C^{r}\right) \neq \varnothing$. In either case, there is a 2-connected subgraph H of G, where $H^{r} \subseteq H$, and H is obtained from H^{r} by adding to H^{r} either a chord of C^{r} or a vertex $w \in U^{\geq 3}\left(C^{r}\right) \backslash U^{2 p}\left(C^{r}\right)$, together with all edges of $E\left(w, V\left(C^{r}\right)\right)$.

Let D_{1}, \cdots, D_{ℓ} be the facial subgraphs of H, other than C. Since \mathcal{L} is a split lens, we have $\left|V\left(D_{i}\right)\right|<\left|V\left(C^{r}\right)\right|=$ $|V(C)|$ for each $i=1, \cdots, \ell$. Since \mathcal{L} is a t-lens and $V(H) \subseteq B_{2}(C)$, there exists a $\phi \in \Phi(\psi, H)$. Furthermore, note that, for each $i=1, \cdots, \ell$, the tuple $\mathcal{L}_{i}:=\left(\operatorname{Int}\left(D_{i}\right), D_{i}, L,\left.\phi\right|_{V\left(D_{i}\right)}\right)$ is a $(t-2)$-lens, since each vertex of $V\left(D_{i}\right)$ lies in $B_{2}(C, G)$. By hypothesis, we get that, for each $i=1, \cdots, \ell$, there exists a $(t-2)$-partitioning pair $\left(K_{i}, \phi_{i}\right)$ for \mathcal{L}_{i}. For each $i=1, \cdots, \ell$, let r_{i} be the breadth of \mathcal{L}_{i}.

Now set $K^{*}:=\bigcup_{i=1}^{\ell} K_{i}$ and set $\phi^{*}:=\bigcup_{i=1}^{\ell} \phi_{i}$. Note that K^{*} is a 2-connected subgraph of G with $C \subseteq K^{*}$, and ϕ^{*} is a proper L-coloring of its domain. For each $i=1, \cdots, \ell$, we have $V\left(K_{i}\right) \subseteq B_{t-3}\left(D_{i}, \operatorname{Int}\left(D_{i}\right)\right)$ by defnition, and thus $V\left(K_{i}\right) \subseteq B_{t-1}(C, G)$, so $\left(V K^{*}\right) \subseteq B_{t-1}(C)$. Thus, $\left(K^{*}, \phi^{*}\right)$ is a t-partitioning pair for \mathcal{L}.

We are now ready to finish the proof of Theorem 12.2 .10 . We show something slightly stronger. For any lens \mathcal{L}, set $k(\mathcal{L}):=\max \{1,2|V(C)|-11\}$. We show that, if \mathcal{L} is a $k(\mathcal{L})$-lens bounded by an outer cycle of length at most 11, then \mathcal{L} is $k(\mathcal{L})$-partitionable. We show this by induction on $|V(C)|$. If $|V(C)| \leq 6$, then $k(\mathcal{L})=1$, so \mathcal{L} is a 1-lens. By Lemma 12.2.41, \mathcal{L} is 0 -reducible, and thus 1-partitionable, so we are done in that case.

Now suppose that $7 \leq|V(C)| \leq 11$ and suppose that, for all lenses $\mathcal{L}^{\prime}=\left(G^{\prime}, C^{\prime}, L^{\prime}, \psi^{\prime}\right)$, with $\left|V\left(C^{\prime}\right)\right|<|V(C)|$, if \mathcal{L}^{\prime} is a $k\left(\mathcal{L}^{\prime}\right)$-lens, then \mathcal{L}^{\prime} is $k\left(\mathcal{L}^{\prime}\right)$-partitionable. Note that, since $7 \leq|V(C)|$, we have $k(\mathcal{L}) \geq 3$, and for
any lens $\mathcal{L}^{\prime}=\left(G^{\prime}, C^{\prime}, L^{\prime}, \psi^{\prime}\right)$, with $\left|V\left(C^{\prime}\right)\right|<|V(C)|$, we have $k\left(\mathcal{L}^{\prime}\right) \leq k(\mathcal{L})-2$. Thus, for any $(k(\mathcal{L})-2)$ lens $\mathcal{L}^{\prime}=\left(G^{\prime}, C^{\prime}, L^{\prime}, \psi^{\prime}\right)$, with $\left|V\left(C^{\prime}\right)\right|<|V(C)|, \mathcal{L}^{\prime}$ is $(k(\mathcal{L})-2)$-partitionable. By Claim 12.2.42, \mathcal{L} is $k(\mathcal{L})$ partitionable, so we are done. This completes the proof of Theorem 12.2.10.

12.3 Roulette Wheels and Cycle Connectors: Preliminaries

In this section and the next section, we analyze short-separation-free planar graphs having two designated precolored facial cycles of length at most four. Our goal is to show that, under certain conditions, we can color and delete a path between the two precolored cycles to obtain a single Thomassen facial subgraph. We begin with the following definition.

Definition 12.3.1. Let $\beta:=\frac{17}{15} N_{\mathrm{mo}}^{2}$ and $\beta^{\prime}:=\beta+4_{\mathrm{mo}}$. A roulette wheel is a tuple $\mathcal{A}:=\left(G, F_{0}, F_{1}, L, \psi\right)$ such that the following hold:

Ro1: G is a connected, short-separation-free graph with distinct cyclic facial subgraphs F_{0}, F_{1}, each having length at most four; $A N D$

Ro2: $V(G) \neq V\left(F_{0} \cup F_{1}\right)$ and $d\left(F_{0}, F_{1}\right) \leq \beta^{\prime}+1$; AND
Ro3: L is a list-assignment for $V(G)$, and ψ is an L-coloring of $V\left(F_{0} \cup F_{1}\right)$, such that we have the following for all $v \in B_{\frac{\beta^{\prime}+3}{2}}\left(F_{0} \cup F_{1}\right):$
i) If $v \notin V\left(F_{0} \cup F_{1}\right)$, then $|L(v)| \geq 5$; AND
ii) Every facial subgraph of G containing v, except possibly F_{0}, F_{1}, is a triangle.

Ro4: If $d\left(F_{0}, F_{1}\right) \geq 2$, then, for each $i=0,1$ the following hold.
i) There is no generalized chord of F_{i} of length at most six which separates F_{1-i} from a vertex of $G \backslash F_{i}$ with an L-list of size less than five; AND
ii) $G\left[D_{1}\left(F_{i}\right)\right]$ is an induced cycle.

The cycles F_{0}, F_{1} are the boundary cycles of \mathcal{A}.
The following definition makes precise the idea of deleting a path connecting the two boundary cycles in a roulette wheel to produce a Thomassen facial subgraph.

Definition 12.3.2. Let $\mathcal{A}:=\left(G, F_{0}, F_{1}, L, \psi\right)$ be a roulette wheel, let $\beta:=\frac{17}{15} N_{\mathrm{mo}}^{2}$, and $\beta^{\prime}:=\beta+4 N_{\mathrm{mo}}$. A cycle connector for \mathcal{A} is a tuple $[K ; Q ; \phi ; Z]$ such that K is a subgraph of $\left.G\left[B_{\frac{\beta^{\prime}+1}{2}}\left(F_{0} \cup F_{1}\right)\right)\right], Q$ is either a subpath of $F_{0} \cup F_{1}$ of length at most one, or a lone vertex of $D_{1}(K), Z$ is a vertex set with $Z \subseteq V(K \backslash Q) \backslash V\left(F_{0} \cup F_{1}\right)$, and the following hold.
i) $G\left[V\left(F_{0} \cup F_{1} \cup K\right)\right] \backslash Q$ is connected; $A N D$
ii) $\phi \in \Phi(\psi, K \backslash Z)$ and Z is (L, ϕ)-inert; AND
iii) For all $w \in D_{1}(\operatorname{dom}(\phi)) \backslash V(Q),\left|L_{\phi}^{Q}(w)\right| \geq 3$. Furthermore, if Q is a lone vertex of $D_{1}(K)$, then Q is L_{ϕ}-colorable.

If K just consists of a single vertex z, then we write $[z ; Q ; \phi ; Z]$ in place of $[\{z\} ; Q ; \phi ; Z]$. In some cases in the analysis below, to avoid clutter, it is easier to specify the first coordinate of a cycle connector as a vertex-set rather than a graph. If $S \subseteq V(G)$ is a vertex set, then the notation $[S ; Q ; \phi, Z]$ is always understood to mean $[G[S] ; Q ; \phi, Z]$.

The goal of sections $12.3,12.4$, and 12.5 is to prove the following theorem.
Theorem 12.3.3. Let $\mathcal{A}:=\left(G, F_{0}, F_{1}, L, \psi\right)$ be a roulette wheel, let $\beta:=\frac{17}{15} N_{\mathrm{mo}}^{2}$ and let $\beta^{\prime}:=\beta+4 N_{\mathrm{mo}}$. Then one of the following two statements holds.

S1: There exists a 2-connected subgraph H of G with $F_{0} \cup F_{1} \subseteq H$ and $V(H) \subseteq B_{\frac{\beta^{\prime}}{3}}\left(F_{0} \cup F_{1}\right)$ such that, for every facial subgraph C of H, C is a cycle of length at most 11; OR

S2: There exists a cycle connector for \mathcal{A}.
In the remainder of Section 12.3, we gather the preliminary facts we need for the proof of Theorem 12.3.3. We begin with the following.

Lemma 12.3.4. Let $\mathcal{A}:=\left(G, F_{0}, F_{1}, L, \psi\right)$ be a roulette wheel. Then the following hold.

1) For each $i=0,1 F_{i}$ is an induced cycle in G and furthermore, if $x, y \in V\left(F_{i}\right)$ have a common neighbor in $D_{1}\left(F_{i}\right)$, then $x y \in E\left(F_{i}\right) ; A N D$
2) For any $i \in\{0,1\}$ and $w \in D_{1}\left(F_{i}\right), G\left[N(w) \cap V\left(F_{i}\right)\right]$ is a subpath of F_{i} of length at most one. In particular, no vertex of G has more than two neighbors in F_{i}.

Proof. 1) is an immediate consequence of our triangulation conditions, together with the fact that G is short-separationfree. Now let $i \in\{0,1\}$ and $w \in D_{1}\left(F_{i}\right)$. Suppose that w has at least three neighbors in F_{i}. If $\left|V\left(F_{i}\right)\right|=3$, then G contains a copy of K_{4}, and thus, by short-separation-freeness, we have $G=K^{4}$. Since $\left|V\left(F_{0}\right) \cap V\left(F_{1}\right)\right| \leq 2$, we have $V(G)=V\left(F_{0} \cup F_{1}\right)$, contradicting the definition of \mathcal{A}. If $\left|V\left(F_{i}\right)\right|=4$, then G contains a 2-chord of F_{i} of the form $x w x^{\prime}$, where x, x^{\prime} are not adjacent in F_{i}, contradicting 1). This proves 2).

In view of Ro4 of Definition 12.3.1, we introduce the following terminology.
Definition 12.3.5. Let $\mathcal{A}:=\left(G, F_{0}, F_{1}, L, \psi\right)$ be a roulette wheel with $d\left(F_{0}, F_{1}\right) \geq 2$. For each $i \in\{0,1\}$, the l-band of C^{i} is the unique cycle of G such that $V\left(C^{i}\right)=D_{1}\left(F_{i}\right)$.

We now have the following
Proposition 12.3.6. Let $\mathcal{A}:=\left(G, F_{0}, F_{1}, L, \psi\right)$ be a roulette wheel and suppose that $d\left(F_{0}, F_{1}\right) \geq 2$. For each $i \in\{0,1\}$, letting C^{i} be the 1-band of F_{i}, we have the following.

1) $|V(C)| \geq 5$; AND
2) For any $v, w \in V\left(C^{i}\right)$, if v, w have common neighbors in $V\left(F_{i}\right)$ and $D_{2}\left(F_{i}\right)$, then $v w \in E\left(C^{i}\right)$.

Proof. 1) is trivial, since, if $\left|V\left(C^{i}\right)\right| \leq 4$, then there is a 4-cycle separating F_{0} from F_{1}. Now let $v, w \in V\left(C^{i}\right)$ and suppose that x, x^{\prime} have a common neighbor $x \in V\left(F_{0}\right)$ and a common neighbor $z \in D_{2}\left(F_{0}\right)$. Then G contains the 4-cycle $x v z w$, and since $z \in D_{2}\left(F_{0}\right)$, we have $z x \notin E(G)$, and thus $v w \in E(G)$ by our triangulation conditions. By Ro4 of Definition 12.3.1, C^{i} has no chords, and since v, w share a neighbor in F_{0}, we have $v w \in E\left(C^{i}\right)$, as desired.

We now introduce the following notation, which we use both in this section and the next one:

Definition 12.3.7. For a roulette wheel $\mathcal{A}:=\left(G, F_{0}, F_{1}, L, \psi\right)$, we have the following notation.

1) For each $i \in\{0,1\}$, let $A^{i}:=\left\{v \in D_{1}\left(F_{i}\right) \backslash V\left(F_{1-i}\right):\left|V\left(F_{i}\right) \cap N(v)\right|=2\right\}$ and, for each $w \in D_{1}\left(F_{i}\right)$, let $A_{w}^{i}:=A^{i} \cap N(w)$.
2) For each $i \in\{0,1\}$ and $w \in D_{1}\left(F_{i}\right)$, let $R_{w}^{i}:=G\left[N(w) \cap V\left(F_{i}\right)\right]$.
3) For any subgraphs K, H of G, we set $T(K ; H)$ to be the set of $v \in V\left(G \backslash\left(F_{0} \cup F_{1} \cup K\right)\right)$ such that v has at least three neighbors in $V\left(\left(F_{0} \cup F_{1} \cup K\right) \backslash H\right)$.
4) For any $\phi \in \Phi(\psi, K)$, we let $T^{\prime}(K ; H ; \phi):=\left\{z \in T(K ; H):\left|L_{\phi}^{H}(z)\right|<3\right\}$.

In particular, note that $T(\varnothing ; \varnothing)$ is the set of vertices in $V(G) \backslash V\left(F_{0} \cup F_{1}\right)$ with at least three neighbors on $V\left(F_{0} \cup F_{1}\right)$. If either of the graphs K, H in the notation above consists of a lone vertex z, then we write this coordinate of $T(K: H)$ or $T(K ; H ; \psi)$ as just z.

By Lemma 12.3.4, R_{w}^{i} is a subpath of F_{i} of length at most one for each $i \in\{0,1\}$. The motivation for the notation above is as follows. Given a roulette wheel $\mathcal{A}:=\left(G, F_{0}, F_{1}, L, \psi\right)$ and a candidate $[K ; Q ; \phi ; Z]$ for a cycle connector for \mathcal{A}, we look for vertices of $G \backslash\left(V\left(F_{0} \cup F_{1} \cup K\right) \backslash Z\right)$ with at least three neighbors in $\operatorname{dom}(\phi) \backslash V(Q)$. If there is such a vertex w and $\left|L_{\phi}^{Q}(w)\right|<3$, then $[K ; Q ; \phi ; Z]$ is not a cycle connector, and we extend our coloring ϕ to include z and try again. We prove two more propositions, and then we proceed with the proof of Theorem 12.3.3. We use the following facts repeatedly in this section and in the next one. We state these without proof as all of them are immediate consequences of Ro4 of Definition 12.3.1

Lemma 12.3.8. Let $\mathcal{A}:=\left(G, F_{0}, F_{1}, L, \psi\right)$ be a roulette wheel with $d\left(F_{0}, F_{1}\right) \geq 2$. For each $i \in\{0,1\}$ and $w \in D_{1}\left(F_{i}\right)$, the following hold.

1) $\left|A_{w}^{i}\right| \leq 2$, and, for all $v \in A_{w}^{i}$, we have $R_{v}^{i} \cap R_{w}^{i} \neq \varnothing$; AND
2) If R_{w}^{i} is an edge and $v \in A_{w}^{i}$, then we have $\left|V\left(F_{i}\right)\right|=4$, and there is an endpoint of the edge $F_{i} \backslash R_{w}^{i}$ which is adjacent to v, and furthermore, $D_{1}\left(R_{w}^{i} \cap R_{v}^{i}\right) \subseteq V\left(F_{i}\right) \cup\{w, v\} ;$ AND
3) If R_{w}^{i} is a vertex x and $\left|A_{w}^{i}\right|=2$, then we have $N(x) \subseteq V\left(F_{i}\right) \cup\{w\} \cup A_{w}^{i}$.
4) Each connected component of $G\left[A^{i}\right]$ is an induced subpath of C^{i} of length at most $\left|V\left(F_{i}\right)\right|-1$

Applying 4) of Lemma 12.3.8, we introduce the following notation which we retain for the remainder of this section and the next.

Definition 12.3.9. Let $\mathcal{A}:=\left(G, F_{0}, F_{1}, L, \psi\right)$ be a roulette wheel with $d\left(F_{0}, F_{1}\right) \geq 2$. Let C^{i} be the 1-band of F_{i} for each $i=0,1$.

1) For each $v \in A^{i}, H_{v}^{i}$ is the connected component of $G\left[A^{i}\right]$ containing v; AND
2) For each $i \in\{0,1\}$ and each connected subgraph K of $C^{i}, \operatorname{Mid}^{i}(K)$ is a subset of of $V(K)$ where, for any $w \in V(K), w \in \operatorname{Mid}^{i}(K)$ if and only if there is a vertex $z \in D_{2}\left(F_{i}\right)$ such that $G\left[N(z) \cap V\left(C^{i}\right)\right]$ is a subpath of K and w is an internal vertex of this path.

Note that the notation Mid^{i} is analogous to that of Definition 12.2.15.

12.4 Roulette Wheels with Close Boundary Cycles

In this section, we prove Theorem 12.3.3 holds in the special case where the boundary cycles of the roulette wheels are close. This is trickier than the case where they boundary cycles are not close, which we deal with in Section 12.5, because in that case we apply 1) of Theorem 10.0.7. The lone result of this section is the following.

Theorem 12.4.1. Let $\mathcal{A}:=\left(G, F_{0}, F_{1}, L, \psi\right)$ be a roulette wheel and suppose that $d\left(F_{0}, F_{1}\right) \leq 2$. Then one of the following two statements holds.

S1: There exists a 2-connected subgraph H of G with $F_{0} \cup F_{1} \subseteq H$ and $V(H) \subseteq B_{2}\left(F_{0} \cup F_{1}\right)$ such that, for every facial subgraph C of H, C is a cycle of length at most 11; OR

S2: There exists a cycle connector for \mathcal{A}.
Given a roulette wheel \mathcal{A}, the result above states that \mathcal{A} either admits a cycle connector, or we can partition a small ball around $V\left(F_{0} \cup F_{1}\right)$ into regions bounded by cycles of of length at most 11 . The usefulness of the latter possibility lies in the fact that we can apply the work of Section 12.2 to color and delete some vertices in each of these regions to obtain a Thomassen facial subgraph near $V\left(F_{0} \cup F_{1}\right)$. In the last section of Chapter 13, when we prove complete the proof of Theorem 1.1.3, we use this work to produce a smaller counterexample from a critical chart.

Note that, if S 1 holds, there is no guarantee that ψ extends to an L-coloring of G. Indeed, it is easy to construct an example of a roulette wheel where $d\left(F_{0}, F_{1}\right) \leq 2$ and ψ does not extend to an L-coloring of G, but when we apply Theorem 12.3.3 to a critical chart in the last section of Chapter 13, we begin with an L-coloring of $V\left(F_{0} \cup F_{1}\right)$ which already extends to a small ball around in $F_{0} \cup F_{1}$ in G.

We break the proof of Theorem 12.4.1 into several propositions, which we then combine at the end of this section to prove Theorem 12.4.1. We now introduce the following definition:

Definition 12.4.2. A roulette wheel is defective if its boundary cycles are of distance at most two apart but it does not satisfy either S 1 or S 2 of Theorem 12.3.3.

The trickiest case is the case where the boundary cycles are of distance precisely two apart. We now gather some sufficient conditions for constructing a subgraph of G satisfying S1.

Proposition 12.4.3. Let $\mathcal{A}:=\left(G, F_{0}, F_{1}, L, \psi\right)$ be a roulette wheel with $d\left(F_{0}, F_{1}\right) \leq 2$. If there exist two disjoint $\left(F_{0}, F_{1}\right)$-paths P_{1}, P_{2} satisfying either of the following conditions, then there exists a subgraph H of G satisfying Sl.

1) $\left|V\left(P_{1}\right)\right|+\left|V\left(P_{2}\right)\right| \leq 7$; OR
2) $\left|V\left(P_{1}\right)\right|+\left|V\left(P_{2}\right)\right| \leq 8$ and, for some $i \in\{0,1\}$, either $\left|V\left(F_{i}\right)\right|=3$ or P_{1}, P_{2} have non-adjacent endpoints on F_{i}.

Proof. Let P_{1}, P_{2} be a pair of disjoint $\left(F_{0}, F_{1}\right)$-paths and let H be the subgraph of G induced by $V\left(F_{0} \cup F_{1}\right) \cup$ $V\left(P_{1} \cup P_{2}\right)$. Since P_{1}, P_{2} are vertex-disjoint, H is 2-connected. Let C be a facial subgraph of H. Since H is 2-connected, C is a cycle. Since $d\left(F_{0}, F_{1}\right) \geq 1$, we have $\left|V\left(P_{j}\right)\right| \geq 2$ for each $j=1,2$. Furthermore, $|V(H)|=$ $\left|V\left(F_{0}\right)\right|+\left|V\left(F_{1}\right)\right|+\left(\left|V\left(P_{1}\right)\right|-2\right)+\left(\left|V\left(P_{2}\right)\right|-2\right)$. Thus, if $\left|V\left(P_{1}\right)\right|+\left|V\left(P_{2}\right)\right| \leq 7$ then $|V(H)| \leq 11$ and thus $|V(C)| \leq 11$, so we are done in that case. Now let $\left|V\left(P_{1}\right)\right|+\left|V\left(P_{2}\right)\right|=8$. If $\left|V\left(F_{i}\right)\right|=3$ for some $i \in\{0,1\}$ then $|V(H)| \leq 7+(8-4)=11$, so again, we are done in that case. Now suppose that $\left|V\left(F_{0}\right)\right|=\left|V\left(F_{1}\right)\right|=4$ and that there exists an $i \in\{0,1\}$ such that P_{1}, P_{2} have non-adjacent-endpoints in F_{i}. Then $|V(H)|=12$, and H contains a
generalized chord of F_{i} whose endpoints are non-adjacent in F_{i}, so there does not exist a facial subgraph C of H such that $V(C)=V(H)$. Thus, for all facial subgraphs C of H, we have $|V(C)| \leq 11$, so again, we are done.

With the above in hand, we deal with the case where F_{0}, F_{1} are of distance at most one apart:
Proposition 12.4.4. Let $\mathcal{A}:=\left(G, F_{0}, F_{1}, L, \psi\right)$ be a roulette wheel and suppose that $d\left(F_{0}, F_{1}\right) \leq 1$. Then \mathcal{A} is not defective.

Proof. Suppose toward a contradiction that \mathcal{A} is defective. We first deal with the case where F_{0}, F_{1} share a vertex. Suppose there is a vertex $x \in V\left(F_{0}\right) \cap V\left(F_{1}\right)$. Firstly, $\left|V\left(F_{0}\right) \cap V\left(F_{1}\right)\right| \leq 2$, or else at least one of F_{0}, F_{1} has a chord, contradicting 1) of Lemma 12.3.4. Now suppose $\left|V\left(F_{0}\right) \cap V\left(F_{1}\right)\right|=2$. Then $F_{0} \cap F_{1}$ is a path of length one, or else, for some $i \in\{0,1\}$, we get that $\left|V\left(F_{i}\right)\right|=4$ and $V\left(F_{0}\right) \cap V\left(F_{1}\right)$ consists of two vertices x, y of F_{i} which are not adjacent in F_{i}. In that case, $\left.x y \notin E\left(F_{1-i}\right)\right)$, since F_{i} is induced, so $\left|V\left(F_{1-i}\right)\right|=4$ and x, y have a common neighbor in $V\left(F_{1-i}\right) \backslash V\left(F_{i}\right)$, contradicting 1) of Lemma 12.3.4. If $V\left(F_{0} \backslash F_{1}\right)$ and $V\left(F_{1} \backslash F_{0}\right)$ have a common neighbor, then there is an $\left(F_{0}, F_{1}\right)$-path of length at most two, disjoint to $\{x\}$, so \mathcal{A} satisfies S 1 by Proposition 12.4.3, contradicting our assumption that \mathcal{A} is defective.

Since $V\left(F_{0} \backslash F_{1}\right)$ and $V\left(F_{1} \backslash F_{0}\right)$ have no common neighbor, we set Q to be an edge of $F_{0} \backslash F_{1}$. Then the tuple $[\varnothing ; Q ; \psi ; \varnothing]$ is a cycle connector for \mathcal{A}, contradicting our assumption, so we have $d\left(F_{0}, F_{1}\right)=1$. Thus, let $x \in V\left(F_{0}\right)$ and $y \in V\left(F_{1}\right)$, where $x y \in E(G)$. Then $G\left[V\left(F_{0} \cup F_{1}\right)\right]$ is connected. By assumption, the tuple $[\varnothing ; \varnothing ; \varnothing, \psi]$ is not a cycle connector for \mathcal{A}, so there is a vertex $z \in V(G) \backslash V\left(F_{0} \cup F_{1}\right)$ with at least three neighbors on $V\left(F_{0} \cup F_{1}\right)$. Thus, $N(z)$ has nonempty intersection with each of $V\left(F_{0}\right), V\left(F_{1}\right)$, since $N(z)$ intersects each of F_{0}, F_{1} on at most an edge. We then have either $N(z) \cap V\left(F_{0}=\{x\}\right.$ or $N(z) \cap V\left(F_{1}\right)=\{y\}$, or else the conditions of Proposition 12.4.3 are satisfied, contradicting our assumption that \mathcal{A} is defective.

Thus, suppose without loss of generality that $N(z) \cap V\left(F_{0}\right)=\{x\}$. In that case, R_{z}^{1} is an edge of F_{1}, and thus, for each $w \in D_{1}\left(F_{0}\right) \cap D_{1}\left(F_{1}\right)$, we have $N(w) \cap V\left(F_{0}\right)=\left\{x_{1}\right\}$, or else, if there is a $w \in D_{1}\left(F_{0}\right) \cap D_{1}\left(F_{1}\right)$ with $N(w) \cap V\left(F_{0}\right) \neq\{x\}$, then $w \neq z$ and the conditions of Proposition 12.4.3 are satisfied, contradicting our assumption that \mathcal{A} is defective.

We claim now that, for each $z \in T(\varnothing ; \varnothing)$, the edge R_{z}^{1} has y as an endpoint. Suppose not. Then there is a $z \in T(\varnothing ; \varnothing)$ such that y is not an endpoint of R_{z}^{1}. Let $R_{z}^{1}=y^{\prime} y^{\prime \prime}$. At least one endpoint of R_{z}^{1} is adjacent to y in F_{1}, so suppose for the sake of definiteness that $y y^{\prime} \in E\left(F_{1}\right)$. Thus, G contains the 4 -cycle $x z y^{\prime} y$. Since $y \notin N(z)$ we have $x y^{\prime} \in E(G)$ by our triangulation conditions. Now let $Q:=F_{1} \backslash\left\{y, y^{\prime}\right\}$. By assumption, the tuple $[\varnothing ; Q ; \psi ; \varnothing]$ is not a cycle connector for \mathcal{A}. Since $G\left[V\left(F_{0} \cup F_{1}\right)\right] \backslash Q$ is connected, there exists a vertex $w \in T(\varnothing ; Q)$.

Note that $w \neq z$ since $N(z) \cap V\left(\left(F_{0} \cup F_{1}\right) \backslash Q\right)=\left\{x, y^{\prime}\right\}$. Since $w \in D_{1}\left(F_{0}\right) \cap D_{1}\left(F_{1}\right)$ we have $N(w) \cap V\left(F_{0}\right)=\{x\}$ as shown above. Since $\left|N(w) \cap V\left(\left(F_{0} \cup F_{1}\right) \backslash Q\right)\right| \geq 3$, we thus have $y, y^{\prime} \in N(w)$, and thus G contains a $K_{2,3}$ with bipartition $\left\{x, y^{\prime}\right\},\{z, w, y\}$, contradicting short-separation-freeness. Thus our assumption that there is $\mathbf{a} z \in T(\varnothing ; \varnothing)$ such that $y \notin V\left(R_{z}^{1}\right)$ is false.

Now, if $T(\varnothing ; \varnothing) \mid=1$, then we let z be the lone vertex of $T(\varnothing ; \varnothing)$ and let $\phi \in \Phi(\psi, z)$. Then the tuple $[z ; Q ; \phi ; \varnothing]$ is a cycle connector for \mathcal{A}, contradicting our assumption that \mathcal{A} is defective. Thus, we have $|T(\varnothing ; \varnothing)| \geq 2$. Let $y^{\prime}, y^{\prime \prime}$ be the two neighbors of y in F_{1}. Since $y \in V\left(R_{z}^{1}\right)$ for each $z \in T(\varnothing ; \varnothing)$, we thus have $|T(\varnothing ; \varnothing)|=2$, and, as shown above, there exist $z_{1}, z_{2} \in V(G)$ such that $\left\{z_{1}, z_{2}\right\}=T(\varnothing ; \varnothing)$, where $N\left(z_{1}\right) \cap V\left(F_{0} \cup F_{1}\right)=\left\{x, y, y^{\prime}\right\}$ and $N\left(z_{2}\right) \cap V\left(F_{0} \cup F_{1}\right)=\left\{x, y, y^{\prime \prime}\right\}$.

Note that $z_{1} z_{2} \notin E(G)$ or else the four vertices $\left\{x, z_{1}, z_{2}, y\right\}$ induce a K_{4} in G, contradicting short-separationfreeness. Now let $Q^{*}:=F_{1} \backslash\left\{y, y^{\prime \prime}\right\}$ and let $\psi^{*} \in \Phi\left(\psi, z_{2}\right)$. Consider the tuple $\left.\left[z_{2} ; Q^{*} ; \psi^{*} ; \varnothing\right)\right]$. Since \mathcal{A} is defective, $\left.\left[z_{2} ; Q^{*} ; \psi^{*} ; \varnothing\right)\right]$ is not a cycle connector for \mathcal{A}, so there exists a $w \in T\left(z_{2} ; Q^{*}\right)$. Note that $w \neq z_{1}$, since z_{1} has only two neighbors among $V\left(\left(F_{0} \cup F_{1}\right) \backslash Q^{*}\right) \cup\left\{z_{1}\right\}$.

Since $w \neq z_{1}$, we have $w \notin T\left(\varnothing ; Q^{*}\right)$, and thus $w z_{2} \in E(G)$ and $\left|N(w) \cap V\left(F_{0} \cup F_{1}\right) \backslash V(Q)\right|=2$. If w has a neighbor in $F_{0} \backslash\{x\}$ then G contains an $\left(F_{0}, F_{1}\right)$-path of length four which is disjoint to $x y$, and thus the conditions of Proposition 12.4.3 are satisfied, contradicting our assumption that \mathcal{A} is defective.

Thus, we have $N(w) \cap V\left(F_{0}\right) \subseteq\{x\}$. Yet we also have $N(w) \cap V\left(F_{1} \backslash Q^{*}\right) \subseteq\left\{y^{\prime \prime}\right\}$, since the 4-chord $y^{\prime} z_{1} x z_{2} y^{\prime \prime}$ of F_{1} separates y_{1} from $G \backslash\left(V\left(F_{1}\right) \cup\left\{z_{1}, z_{2}, x\right\}\right)$. Thus, we have $\left\{x, z_{2}, y^{\prime \prime}\right\} \subseteq N(w)$, so G contains a $K_{2,3}$ with bipartition $\left\{y, z_{2}, w\right\},\left\{x, y^{\prime \prime}\right\}$, contradicting short-separation-freeness. This completes the proof of Proposition 12.4.4.

Thus, for the remainder of Section 12.4, we deal with roulette wheels of the form $\mathcal{A}:=\left(G, F_{0}, F_{1}, L, \psi\right)$, where $d\left(F_{0}, F_{1}\right)=2$.

Given a roulette wheel $\mathcal{A}:=\left(G, F_{0}, F_{1}, L, \psi\right)$ and an $i \in\{0,1\}$, a vertex $x \in V\left(F_{i}\right)$ is called an anchor vertex if x has a neighbor in $D_{1}\left(F_{0}\right) \cap D_{1}\left(F_{1}\right)$. Since $D_{1}\left(F_{0}\right) \cap D_{1}\left(F_{1}\right) \neq \varnothing$, each of F_{0}, F_{1} contains at least one anchor vertex. We now prove the following.

Proposition 12.4.5. Let $\mathcal{A}:=\left(G, F_{0}, F_{1}, L, \psi\right)$ be a roulette wheel with $d\left(F_{0}, F_{1}\right)=2$. Suppose further that $\left|D_{1}\left(F_{0}\right) \cap D_{1}\left(F_{1}\right)\right| \geq 2$ and that there exists an $i \in\{0,1\}$ such that F_{i} has at least two anchor vertices. Then \mathcal{A} is not defective.

Proof. Suppose toward a contradiction that \mathcal{A} is defective. Suppose for the sake of definiteness that there are two anchor vertices in F_{1}. Then there exists a pair of distinct vertices $w, w^{\prime} \in D_{1}\left(F_{0}\right) \cap D_{1}\left(F_{1}\right)$ and a pair of distinct vertices $y, y^{\prime} \in V\left(F_{1}\right)$ with $y w, y^{\prime} w^{\prime} \in E(G)$. If G contains two disjoint $\left(F_{0}, F_{1}\right)$-paths of length two, then, by Proposition 12.4.3, \mathcal{A} is not defective, contradicting our assumption. Thus, no such pair of paths exists, so F_{0} has precisely one anchor vertex x. Let $\psi^{\prime} \in \Phi(\psi, w)$. We now note the following:

Claim 12.4.6.

1) $\left|V\left(F_{1}\right)\right|=4$ and, for any subpath Q of of $F_{1} \backslash\{u\}$ of length at most one, and any $z \in T(w ; Q)$, we have $N(z) \cap V\left(F_{0}\right) \subseteq\{x\} ; A N D$
2) There exists a subpath Q of $F_{1} \backslash\{y\}$ of length one such that $|T(w ; Q)|=1$.

Proof: Let Q be a subpath of $F_{1} \backslash\{y\}$ and let $z \in T(w ; Q)$. Suppose toward a contradiction that there is an $x^{\prime} \in$ $V\left(F_{0}-x\right)$ with $x^{\prime} \in N(z)$. Then we have $N(z) \cap V\left(F_{1}\right) \subseteq\{y\}$, or else G contains an $\left(F_{0}, F_{1}\right)$-path of length two disjoint to $x w y$, so S 1 is satisfied by Proposition 12.4.3, contradicting our assumption that \mathcal{A} is defective.

Since $N(z) \cap V\left(F_{1}\right) \subseteq\{y\}$, we have $z \neq w^{\prime}$. As z has at least three neighbors in $\left(V\left(F_{0} \cup F_{1}\right) \cup\{w\}\right) \backslash Q$, we have $y \in\left(V\left(F_{0} \cup F_{1}\right) \cup\{w\}\right) \backslash Q$ and z is adjacent to each of $\{x, w, u\}$. But then, the path $x^{\prime} z w y$ is disjoint to $x w^{\prime} y^{\prime}$, contradicting our assumption that \mathcal{A} is defective.

Now suppose toward a contradiction that $\left|V\left(F_{1}\right)\right|=3$. Then $Q=F_{1} \backslash\{y\}$. Since \mathcal{A} is defective, the tuple $\left[w ; Q ; \psi^{\prime} ; \varnothing\right]$ is not a cycle connector for \mathcal{A}, so there exists a $z \in T(w ; Q)$. Since $N(z) \cap V\left(F_{0}\right) \subseteq\{x\}$, we have $\left(V\left(F_{0} \cup F_{1}\right) \cup\{w\}\right) \cap(N(z) \backslash V(Q))=\{x, w, y\}$.

Let $\psi^{\prime \prime} \in \Phi(\psi,\{w, z\})$. Again, since \mathcal{A} is defective, the tuple $\left[\{w, z\} ; Q ; \psi^{\prime \prime} ; \varnothing\right]$ is not a cycle connector for \mathcal{A}, so there exists a $z^{\prime} \in T(\{w, z\} ; Q)$. Then z^{\prime} is not adjacent to both of $\{x, y\}$, or else G contains a $K_{2,3}$ with bipartition $\{x, y\},\left\{z, z^{\prime}, w\right\}$, contradicting short-separation-freeness. Thus, the set $\left(N\left(z^{\prime}\right) \backslash V(Q)\right) \cap\left(V\left(F_{0} \cup F_{1}\right) \cup\{w, z\}\right)$ is either $\{x, w, z\}$ or $\{y, w, z\}$. In either case, G contains a $K_{2,3}$ with bipartition $\{w, z\},\left\{x, y, z^{\prime}\right\}$, contradicting short-separation-freeness. Thus, we have $\left|V\left(F_{1}\right)\right|=4$, as desired. This completes the proof of 1).

Now we prove 2) of Claim 12.4.6. Since $\left|V\left(F_{1}\right)\right|=4$, let Q_{1}, Q_{2} be the two paths of length one in $F_{1} \backslash\{y\}$. For each $\left.j=1,2, G\left[V\left(F_{0} \cup F_{1}\right) \cup\{w\}\right)\right] \backslash Q_{j}$ is connected, since it contains the path $x w y$. Since \mathcal{A} is defective, it follows that, for each $j=1,2$, the tuple $\left[w ; Q_{j} ; \psi^{\prime} ; \varnothing\right]$ is not a cycle connector for \mathcal{A}. Thus, we have $T\left(w ; Q_{j}\right) \neq \varnothing$ for each $j=1,2$. To finish, it suffices to show that $\left|T\left(w ; Q_{j}\right)\right|=1$ for some $j \in\{1,2\}$. Suppose toward a contradiction that $T\left(w ; Q_{j}\right) \mid>1$ for each $j=1,2$. Let $F_{1}:=y_{1} y_{2} y_{3} y_{4}$, where $y=y_{1}$.

Subclaim 12.4.7.

1) There does not exist a $z \in V(G)$ such that $\left\{x, w, y_{1}, y_{4}\right\} \subseteq N(z)$. Likewise, there does not exist a $z \in V(G)$ such that $\left\{x, w, y_{1}, y_{2}\right\} \subseteq N(z) ; A N D$
2) There does not exist a pair of vertices $z, z^{\prime} \in D_{1}\left(F_{0} \cup F_{1}\right)$ such that $\left\{w, y_{1}, y_{4}\right\} \subseteq N(z)$ and $\left\{w, y_{1}, y_{2}\right\} \subseteq$ $N\left(z^{\prime}\right) ; A N D$
3) There does not exist a $z \in D_{1}\left(F_{0} \cup F_{1}\right)$ with $\left\{x, y_{1}, y_{2}\right\} \subseteq N(z)$. Likewise, there does not exist a $z \in D_{1}\left(F_{0} \cup F_{1}\right)$ with $\left\{x, y_{1}, y_{4}\right\} \subseteq N(z)$.

Proof: Suppose towards a contradiction that 1) does not hold. Then there exists a $z \in V(G)$ adjacent to each of x, w, y_{1} and one of y_{2}, y_{4}. Thus, there exists a $j \in\{1,2\}$ such that $z \in T\left(w ; Q_{j}\right)$ and, since $\left|T\left(w ; Q_{j}\right)\right|>1$, there is a $z^{\prime} \in T\left(w ; Q_{j}\right) \backslash\{z\}$. But then z, z^{\prime} have at least three common neighbors, so G contains a copy of $K_{2,3}$, contradicting short-separation-freeness. This proves 1$)$.

Now we prove 2). Suppose toward a contradiction that such a pair of vertices z, z^{\prime} exists. Then $z \in T\left(w ; Q_{1}\right)$ and $z^{\prime} \in T\left(w ; Q_{2}\right)$. Furthermore, we have $z \notin T\left(w ; Q_{2}\right)$, and $z^{\prime} \notin T\left(w ; Q_{1}\right)$ since, by 1), no vertex of $D_{1}\left(F_{1}\right)$ is adjacent to each of y_{2}, y_{4}. By 1) and 3) of Lemma 12.3.8, we have $\left\{z, z^{\prime}\right\}=A_{w}^{1}$, and $N\left(y_{1}\right) \subseteq$ $V\left(F_{1}\right) \cup\left\{z, z^{\prime}, w\right\}$. Since $z \notin T\left(w ; Q_{2}\right)$, and $\left|T\left(w ; Q_{2}\right)\right|>1$, there is a $z^{\prime \prime} \in T\left(w ; Q_{2}\right) \backslash\left\{z, z^{\prime}\right\}$. But then $z^{\prime \prime} \notin N\left(y_{1}\right)$, and thus $\left\{w, x, y_{2}\right\} \subseteq N\left(z^{\prime \prime}\right)$. Thus, G contains a $K_{2,3}$ with bipartition $\left\{z^{\prime \prime}, z^{\prime}, y_{1}\right\},\left\{w, y_{2}\right\}$, contradicting short-separation-freeness. This proves 2).

To prove 3), suppose there exists a $z \in D_{1}\left(F_{0} \cup F_{1}\right)$ with $\left\{x, y_{1}\right\} \subseteq N(z)$ and a vertex $y \in\left\{y_{2}, y_{4}\right\} \cap N(z)$. Then G contains the 4-cycle $x z y w$. Thus, by our triangulation conditions, G either contains the edge $x y_{1}$ or the edge $z w$. Since $d\left(F_{0}, F_{1}\right)=2$, we have $z w \in E(G)$, so $N(z)$ contains $\left\{x, w, y_{1}, y\right\}$, contradicting 1), so we have $x_{1} y_{1} \in E(G)$, contradicting the fact that $d\left(F_{0}, F_{1}\right)=2$. This completes the proof of Subclaim 12.4.7.

Now we combine the facts from this subclaim. Since $\left|T\left(w ; Q_{1}\right)\right|>1$, it follows from 3) of Subclaim 12.4.7 that $T\left(w, Q_{1}\right)$ consists of two vertices v, v^{\prime} with $\left(N(v) \backslash V\left(Q_{1}\right)\right) \cap\left(V\left(F_{0} \cup F_{1}\right) \cup\{w\}\right)=\left\{x, y_{1}, w\right\}$ and $N\left(v^{\prime}\right) \backslash$ $\left.V\left(Q_{1}\right)\right) \cap\left(V\left(F_{0} \cup F_{1}\right) \cup\{w\}\right)=\left\{x, y_{1}, w\right\}$. Thus, G contains the 4-cycle $x v^{\prime} y_{4} y_{1}$. By 1) of Subclaim 12.4.7, v^{\prime} is adjacent to at most three vertices in $\left\{x, w, y_{1}, y_{4}\right\}$ and thus, by our triangulation conditions, G contains the edge $w y_{4}$. Note that G contains the 5-cycle $x v y_{1} y_{4} v^{\prime}$, and since $w y_{4} \in E(G), w$ is adjacent to each vertex in the cycle $x v y_{1} y_{4} v^{\prime}$. Thus, since G is short-separation-free, we have $N(w)=\left\{x, v, y_{1}, y_{4}, v^{\prime}\right\}$.

We claim now that $v^{\prime} \notin T\left(w ; Q_{2}\right)$. Suppose toward a contradiction that $v^{\prime} \in T\left(w, Q_{2}\right)$. Since no vertex of $D_{1}\left(F_{1}\right)$ is adjacent to each of y_{2}, y_{4}, we then we have $\left\{x, w, y_{1}\right\} \subseteq N\left(v^{\prime}\right)$, and thus G contains a $K_{2,3}$ with bipartition
$\left\{v, v^{\prime}\right\},\left\{x_{1}, w, y_{1}\right\}$, contradicting short-separation-freeness. Thus, since $\left|T\left(w, Q_{2}\right) \backslash\{v\}\right| \geq 1$ by assumption, let $v^{\prime \prime} \in T\left(w ; Q_{2}\right) \backslash\{v\}$. Then $v^{\prime \prime} \notin N(w)$ and $\left(N\left(v^{\prime \prime}\right) \backslash V\left(Q_{2}\right)\right) \cap\left(V\left(F_{0} \cup F_{1}\right) \cup\{w\}\right)=\left\{x, y_{1}, y_{2}\right\}$. But then G contains a $K_{2,3}$ with bipartition $\left\{w, v, v^{\prime \prime}\right\},\left\{x, y_{1}\right\}$, contradicting short-separation-freeness. This completes the proof of Claim 12.4.6.

Applying 2) of Claim 12.4.6, let Q be a subpath of $\left.F_{1}\right) \backslash\left\{y_{1}\right\}$ of length one such that $|T(w ; Q)|=1$. Let $T(w ; Q)=$ $\left\{q_{0}\right\}$. By 1) of Claim 12.4.6, we have $N\left(q_{0}\right) \cap V\left(F_{0}\right) \subseteq\left\{x_{1}\right\}$, so q_{0} has at least three neighbors among $\{x, w\} \cup$ $V\left(F_{1} \backslash Q\right)$. Suppose without loss of generality that $Q=y_{3} y_{4}$. Let $\psi^{\prime} \in \Phi\left(\psi,\left\{w, q_{0}\right\}\right)$.

Since \mathcal{A} is defective, the tuple $\left[\left\{w, q_{0}\right\} ; Q ; \psi^{\prime} ; \varnothing\right]$ is not a cycle connector for \mathcal{A}, so $T\left(\left\{w, q_{0}\right\} ; Q\right) \neq \varnothing$. Let $q_{1} \in$ $T\left(\left\{w, q_{0}\right\} ; Q\right)$ and let $\psi^{*} \in \Phi\left(\psi,\left\{w, q_{0}, q_{1}\right\}\right)$. As above, the tuple $\left[\left\{w, q_{0}, q_{1}\right\} ; Q ; \psi^{*} ; \varnothing\right]$ is not a cycle connector for \mathcal{A}. Since $\left.V\left(F_{0} \cup F_{1}\right) \cup\left\{w, q_{0}\right\}\right) \backslash V(Q)$ has precisely two vertices in $D_{1}\left(F_{0} \cup F_{1}\right)$, namely $\left\{w, q_{0}\right\}$, and q_{1} has at least three neighbors in $\left(V\left(F_{0} \cup F_{1}\right) \backslash V(Q)\right) \cup\left\{w, q_{0}\right\}$. Thus, since the tuple $\left[\left\{w, q_{0}, q_{1}\right\} ; Q ; \psi^{*} ; \varnothing\right]$ is not a cycle connector for \mathcal{A}, there exists a $q_{2} \in T\left(\left\{w, q_{0}, q_{1}\right\} ; Q\right)$.

Note that $q_{0} q_{1} \in E(G)$, or else $q_{1} \in T(w ; Q)$, contradicting the fact that $T(w ; Q)=\left\{q_{0}\right\}$. Furthermore, q_{2} is adjacent to at least one of $\left\{q_{0}, q_{1}\right\}$, or else, again, we have $q_{2} \in T(w ; Q)$, contradicting the fact that $T(w ; Q)=\left\{q_{0}\right\}$. Thus, G contains either the path $q_{0} q_{1} q_{2}$, or the path $q_{2} q_{0} q_{1}$.

Claim 12.4.8. For each $j=0,1,2$, we have $N\left(q_{j}\right) \cap V\left(F_{0}\right) \subseteq\{x\}$.

Proof: The case where $j=0$ is done above. Suppose toward a contradiction that there is an $x^{\prime} \in V\left(F_{0} \backslash\{x\}\right) \cap N\left(q_{1}\right)$. Since $q_{0} q_{1} \in E(G)$ and $w \neq q_{0}, q_{1}$, neither q_{0}, q_{1} have a neighbor in $\left\{y_{2}, y_{3}, y_{4}\right\}$, or else G contains an $\left(F_{0}, F_{1}\right)$ path of length at most three which is disjoint to $x w y_{1}$. Thus, $w^{\prime} \notin\left\{q_{0}, q_{1}\right\}$, and $\left\{x, w, y_{1}\right\} \subseteq N\left(q_{0}\right)$. But then the two disjoint $\left(F_{0}, F_{1}\right)$-paths $x w^{\prime} u^{\prime}$ and $x^{\prime} q_{1} q_{0} y_{1}$ satisfy Proposition 12.4.3, contradicting our assumption that \mathcal{A} is defective. We conclude that $N\left(q_{1}\right) \cap V\left(F_{0}\right) \subseteq\{x\}$, as desired.

Now suppose toward a contradiction that there is an $x^{\prime} \in V\left(F_{0} \backslash\{x\}\right) \cap N\left(q_{2}\right)$. Since q_{2} is adjacent to at least one of $\left\{q_{0}, q_{1}\right\}$, let $q^{\prime} \in\left\{q_{0}, q_{1}\right\}$ with $q^{\prime} q_{2} \in E(G)$. Then neither q^{\prime} nor q_{2} has a neighbor in $\left\{y_{2}, y_{3}, y_{4}\right\}$ or else G contains an $\left(F_{0}, F_{1}\right)$-path of length at most three which is disjoint to $x w y_{1}$. Applying Proposition 12.4.3, this contradicts our assumption that \mathcal{A} is defective. Thus, we have $w^{\prime} \notin\left\{q^{\prime}, q_{2}\right\}$, and $q^{\prime} \in\left\{q_{0}, q_{1}\right\}$.

If $q_{0} q_{2} \in E(G)$, then G contains the two disjoint $\left(F_{0}, F_{1}\right)$-paths $x w^{\prime} u^{\prime}$ and $x^{\prime} q_{2} q_{0} y_{1}$, again contradicting our assumption that \mathcal{A} is defective. Thus $q^{\prime}=q_{1}$, and furthermore, $y_{1} \notin N\left(q_{1}\right)$, or else G contains an $\left(F_{0}, F_{1}\right)$-path of length three disjoint to either $x w u$ or $x w^{\prime} u^{\prime}$. Applying Proposition 12.4.3, this contradicts our assumption that \mathcal{A} is defective. Thus $V\left(F_{1}\right) \cap N\left(q_{1}\right)=\varnothing$. Since $q_{1} \in T\left(\left\{w, q_{0}\right\} ; Q\right)$ and q_{1} has at most two neighbors on F_{0}, q_{1} is adjacent to w and an edge of F_{0}. But then G contains an $\left(F_{0}, F_{1}\right)$-path of length three disjoint to $x_{1} w^{\prime} u^{\prime}$. Again applying Proposition 12.4.3, this contradicts our assumption that \mathcal{A} is defective.

Set $P:=x w y_{1} y_{2}$. Then q_{0} is adjacent to at least one endpoint of P, since $\left|N\left(q_{0}\right) \cap V(P)\right| \geq 3$. To make the following claim easier to read, we label P as $P:=p_{1} p_{2} p_{3} p_{4}$, where $p_{1} \in N\left(q_{0}\right)$. Now we have the following:

Claim 12.4.9. Let H be the subgraph of G induced by the vertices $V(P) \cup\left\{q_{0}, q_{1}, q_{2}\right\}$. Then the following hold.

1) $N\left(q_{0}\right) \cap V(P)=\left\{p_{1}, p_{2}, p_{3}\right\}$; AND
2) $\left\{q_{0}, q_{1}, q_{2}\right\}$ induce a triangle in H; AND
3) $N\left(q_{2}\right) \cap V(P)=\left\{p_{1}\right\}$; AND
4) $N\left(q_{1}\right) \cap V(P)=\left\{p_{3}, p_{4}\right\}$.

Proof: As shown above, H either contains a path R that is either $q_{0} q_{1} q_{2}$ or the path $q_{2} q_{0} q_{1}$.
Subclaim 12.4.10. For any vertices $q, q^{\prime} \in V(R)$ and any distinct vertices $p, p^{\prime} \in N(q) \cap N\left(q^{\prime}\right)$, then $p p^{\prime} \notin$ $E(H)$ and p, p^{\prime} are the endpoints of P.

Proof: Suppose that $p p^{\prime} \in E(H)$. In that case, $q q^{\prime} \notin E(H)$, or else H contains a copy of K_{4}, contradicting short-separation-freeness, so q, q^{\prime} are the end vertices of R. Let q_{m} be the middle vertex of R. Thus, H contains the non-induced 4-cycles $q q_{m} q^{\prime} p$ and $q q_{m} q^{\prime} p^{\prime}$. Since $q q^{\prime} \notin E(G)$, we get that q_{m} is adjacent to p, p^{\prime}, so p, p^{\prime} are both adjacent to each vertex of R. Thus, H contains a copy of $K_{2,3}$, contradicting short-separation-freeness. Now suppose toward a contradiction that at least one of p, p^{\prime} is not an endpoint of P. Then, since p, p^{\prime} are not adjacent, they have a common neighbor $p^{\prime \prime} \in V(P)$. In that case, H contains the non-induced 4-cycles $p p^{\prime \prime} p^{\prime} q$ and $p p^{\prime \prime} p^{\prime} q^{\prime}$. Since $p p^{\prime} \notin E(H), p^{\prime \prime}$ is adjacent to each of q, q^{\prime}, so H contains a $K_{2,3}$ with bipartition $\left\{q, q^{\prime}\right\}$, $\left\{p, p^{\prime}, p^{\prime \prime}\right\}$, contradicting short-separation-freeness.

With the facts above in hand, we prove the following:
Subclaim 12.4.11. For any two vertices $q, q^{\prime} \in V(R)$, we have $\left|N(q) \cap N\left(q^{\prime}\right) \cap V(P)\right| \leq 1$.
Proof: Suppose toward a contradiction that this does not hold. Then there exist $q, q^{\prime} \in V(R)$ with $\mid N(q) \cap$ $N\left(q^{\prime}\right) \cap V(P) \mid \geq 2$. By Subclaim 12.4.10, we have $p_{1}, p_{4} \in N(q) \cap N\left(q^{\prime}\right)$. Since $p_{1} p_{4} \notin E(H)$ and H contains the non-induced 4-cycle $p_{1} q p_{4} q^{\prime}$, we have $q q^{\prime} \in E(H)$.

We claim now that $q_{0} \in\left\{q, q^{\prime}\right\}$. Suppose that $q_{0} \notin\left\{q, q^{\prime}\right\}$. Then at least one of q, q^{\prime} is adjacent to q_{0}, so, without loss of generality, let $q q_{0} \in E(G)$. By Subclaim 12.4.10, each of q, q^{\prime} is adjacent to p_{1}, p_{4}, so $\left\{p_{1}, p_{4}\right\}$ not \subseteq $N\left(q_{0}\right)$, or else H contains a copy of $K_{2,3}$, contradicting short-separation-freeness. Since $\left|N\left(q_{0}\right) \cap V(P)\right| \geq 3$, we then have $N\left(q_{0}\right) \cap V(P)=\left\{p_{1}, p_{2}, p_{3}\right\}$. Now, H contains the non-induced 4-cycle $q_{0} p_{3} p_{4} q$, and thus, as $q_{0} p_{4} \notin$ $E(H)$, we have $p_{3} q \in E(H)$. But then H contains a $K_{2,3}$ with bipartition $\left\{p_{1}, q_{0}, p_{3}\right\},\left\{p_{2}, q\right\}$, contradicting short-separation-freeness. Thus, $q_{0} \in\left\{q, q^{\prime}\right\}$, say $q_{0}=q$, and let $q^{\prime \prime}$ be the lone vertex of $R \backslash\left\{q_{0}, q^{\prime}\right\}$.

Since $\left|N\left(q_{0}\right) \cap V(P)\right| \geq 3$ and $p_{1}, p_{4} \in N\left(q_{0}\right)$, suppose without loss of generality that $p_{2} \in N\left(q_{0}\right)$. Since the 4-cycle $q_{0} p_{2} p_{3} p_{4}$ is not induced, we have either $p_{2} p_{4} \in E(H)$ or $q_{0} p_{3} \in E(H)$.

If $p_{2} p_{4} \in E(H)$, then $q_{0} q^{\prime} \notin E(G)$, or else H contains a $K_{2,3}$ with bipartition $\left\{q^{\prime}, p_{2}\right\},\left\{q_{0}, p_{1}, p_{4}\right\}$, contradicting short-separation-freeness. Thus, q_{0} is not the midpoint of R, so H contains the path $q_{0} q_{1} q_{2}$, and $q^{\prime}=q_{2}$. But then G contains a $K_{2,3}$ with bipartition $\left\{q_{0}, q_{2}\right\},\left\{p_{1}, p_{4}, q_{1}\right\}$, contradicting short-separation-freeness. It follows that $q_{0} p_{3} \in E(H)$, so q_{0} is adjacent to each vertex of P. Now let $q^{\prime \prime}$ be the lone vertex of $R \backslash\left\{q_{0}, q^{\prime}\right\}$.

We claim now that $q^{\prime \prime}$ has precisely one neighbor in P. Suppose that $\left|N\left(q^{\prime \prime}\right) \cap V(P)\right| \geq 2$. In that case, since q_{0} is adjacent to every vertex of P, we have $\left|N\left(q_{0}\right) \cap N\left(q^{\prime \prime}\right) \cap V(P)\right| \geq 2$, so, by Subclaim 12.4.10, we have $N\left(q^{\prime \prime}\right) \cap V(P)=\left\{p_{1}, p_{4}\right\}$. Yet by our assumption on q, q^{\prime}, we have $p_{1}, p_{4} \in N\left(q^{\prime}\right)$ as well, so H contains a $K_{2,3}$ with bipartition $\left\{p_{1}, p_{4}\right\},\left\{q_{0}, q_{1}, q_{2}\right\}$, contradicting short-separation-freeness. Thus, $q^{\prime \prime}$ has precisely one neighbor on P, so we have $q^{\prime \prime}=q_{2}, q^{\prime}=q_{1}$, and $\left\{q_{0}, q_{1}, q_{2}\right\}$ induces a triangle in H. But then H contains a $K_{2,3}$ with bipartition $\left\{q_{0}, q_{1}\right\},\left\{q_{2}, p_{1}, p_{4}\right\}$, contradicting short-separation-freeness. We conclude that our assumption that $\left|N(q) \cap N\left(q^{\prime}\right) \cap V(P)\right| \geq 2$ is false. This completes the proof of Subclaim 12.4.11.

With the above in hand, we prove the following:
Subclaim 12.4.12. $N\left(q_{0}\right)$ contains a subpath of P of length two in H.

Proof: Suppose not. In that case, since $\left|N\left(q_{0}\right) \cap V(P)\right| \geq 3$ and $p_{1} \in N\left(q_{0}\right)$, so, without loss of generality, we suppose that $N\left(q_{0}\right) \cap V(P)=\left\{p_{1}, p_{2}, p_{4}\right\}$ without loss of generality. Since H contains the non-induced 4-cycle $p_{2} p_{3} p_{4} q_{0}$ and $p_{3} q_{0} \notin E(H)$, we have $p_{2} p_{4} \in E(H)$. Furthermore, since $\left|N\left(q_{1}\right) \cap N\left(q_{0}\right) \cap V(P)\right| \leq 1$ by Subclaim 12.4.11, we have $p_{3} \in N\left(q_{1}\right)$.

Thus, we have $q_{0} q_{1} \notin E(H)$, or else H contains a $K_{2,3}$ with bipartition $\left\{q_{0}, p_{3}\right\},\left\{p_{2}, p_{4}, q_{1}\right\}$, so H contains the path $q_{2} q_{0} q_{1}$. In that case, q_{1} is adjacent to at most one of $\left\{p_{1}, p_{2}, p_{4}\right\}$, or else q_{0}, q_{1} are each adjacent to q_{2} and two vertices among $\left\{p_{1}, p_{2}, p_{4}\right\}$, contradicting short-separation-freeness.

Since $\left|N\left(q_{1}\right) \cap V(P)\right| \geq 2$, we have $q_{1} p_{3} \in E(H)$, so H contains the 4-cycle $p_{3} p_{4} q_{0} q_{1}$. Since $q_{0} p_{3} \notin E(H)$, we have $q_{1} p_{4} \in E(H)$, and thus H contains a $K_{2,3}$ with bipartition $\left\{p_{2}, q_{1}\right\},\left\{p_{3}, p_{4}, q_{0}\right\}$, contradicting short-separation-freeness. We conclude that our assumption that $N\left(q_{0}\right)$ does not contain a subpath of P of length two is false.

Since $p_{1} \in N\left(q_{0}\right)$, it follows from Subclaim 12.4.12 that $N\left(q_{0}\right) \cap V(P)$ contains $\left\{p_{1}, p_{2}, p_{3}\right\}$. By Subclaim 12.4.11, we have $\left|N\left(q_{1}\right) \cap N\left(q_{0}\right) \cap V(P)\right| \leq 1$. Since $\left|N\left(q_{1}\right) \cap V(P)\right| \geq 2$, we have $N\left(q_{0}\right) \cap V(P)=\left\{p_{1}, p_{2}, p_{3}\right\}$ and $N\left(q_{1}\right) \cap V(P)=\left\{p_{3}, p_{4}\right\}$.

Subclaim 12.4.13. q_{2} has precisely one neighbor in P.
Proof: Suppose that $\left|N\left(q_{2}\right) \cap V(P)\right| \geq 2$. By Subclaim 12.4.11, we have $\left|N\left(q_{2}\right) \cap N\left(q_{0}\right) \cap V(P)\right| \leq 1$ and $\left|N\left(q_{2}\right) \cap N\left(q_{1}\right) \cap V(P)\right| \leq 1 \mid$, so we have either $N\left(q_{2}\right) \cap V(P)=\left\{p_{1}, p_{4}\right\}$ or $N\left(q_{2}\right) \cap V(P)=\left\{p_{2}, p_{4}\right\}$. If $N\left(q_{2}\right) \cap V(P)=\left\{p_{2}, p_{4}\right\}$, then H contains the non-induced 4-cycle $q_{2} p_{2} p_{3} p_{4}$. Since $p_{3} \notin N\left(q_{2}\right)$, we then have $p_{2} p_{4} \in E(H)$, and thus H contains a $K_{2,3}$ with bipartition $\left\{p_{2}, q_{1}\right\},\left\{p_{3}, p_{4}, q_{0}\right\}$, contradicting short-separationfreeness.

Thus, we have $N\left(q_{2}\right) \cap V(P)=\left\{p_{1}, p_{4}\right\}$. Furthermore, we have $q_{0} q_{2} \notin E(H)$, or else H contains a $K_{2,3}$ with bipartition $\left\{q_{0}, p_{4}\right\},\left\{p_{3}, q_{1}, q_{2}\right\}$, contradicting short-separation-freeness. It follows that H contains the path $q_{0} q_{1} q_{2}$. But then H contains the non-induced 4-cycle $q_{0} q_{1} q_{2} p_{1}$, and $q_{0} q_{2} \notin E(H)$, we have $p_{1} q_{1} \in E(H)$, contradicting the fact that $N\left(q_{1}\right) \cap V(P)=\left\{p_{3}, p_{4}\right\}$. We conclude that q_{2} does indeed have precisely one neighbor on P.

Since q_{2} has precisely one neighbor on P, we get that $\left\{q_{0}, q_{1}, q_{2}\right\}$ induces a triangle in H, since $\left|N\left(q_{2}\right) \cap V(H)\right| \geq 3$ and q_{2} is an endpoint of R. To finish the proof of Claim 12.4.9, it suffices to show that $N\left(q_{2}\right) \cap V(P)=\left\{p_{1}\right\}$. We rule out the possibility that any of the other three vertices of P lie in $N\left(q_{2}\right)$:

- If $q_{2} p_{2} \in E(H)$, then H contains a $K_{2,3}$ with bipartition $\left\{q_{1}, p_{2}\right\},\left\{q_{0}, q_{2}, p_{3}\right\}$.
- If $q_{2} p_{3} \in E(H)$,then H contains a $K_{2,3}$ with bipartition $\left\{q_{0}, q_{2}, p_{4}\right\},\left\{q_{1}, p_{3}\right\}$.
- If $q_{2} p_{4} \in E(H)$, then H contains a $K_{2,3}$ with bipartition $\left\{q_{0}, p_{4}\right\},\left\{p_{3}, q_{1}, q_{2}\right\}$.

In any of the cases above, we contradict the fact that H is short-separation-free. This completes the proof of Claim 12.4.9.

Now we return to the proof of Proposition 12.4.5. By Claim 12.4.9, G contains the 5 -cycle $p_{1} p_{2} p_{3} q_{1} q_{2}$ and q_{0} is adjacent to each vertex of $\left\{p_{1}, p_{2}, p_{3}, q_{1}, q_{2}\right\}$. Thus, since G is short-separation-free, we get that $N\left(q_{0}\right)=\left\{p_{1}, p_{2}, p_{3}, q_{1}, q_{2}\right\}$. By Corollary 1.3.6, there is a $\phi \in \Phi\left(\psi,\left\{q_{1}, w\right\}\right)$ such that $\left\{q_{0}\right\}$ is L_{ϕ}-inert. Since \mathcal{A} is defective, the tuple $\left[\left\{q_{1}, w\right\} ; Q ; \phi ; q_{0}\right]$ is not a cycle connector for \mathcal{A}, so there is a $v \in V\left(G \backslash\left\{q_{0}, q_{1}, w\right\}\right)$ with at least three neighbors in $\left(V\left(F_{0} \cup F_{1}\right) \cup\right.$ $\left.\left\{q_{1}, w\right\}\right) \backslash V(Q)$. Since $T(w, Q)=\left\{q_{0}\right\}, v$ has at most two neighbors in $\left\{x_{1}, w, y_{1}, y_{2}\right\}$. Thus, $v q_{1} \in E(G)$ and v
has precisely two neighbors in $\left\{x, w, y_{1}, y_{2}\right\}$. By Claim 12.4.9, q_{2} has precisely one neighbor in $\left\{x, w, y_{1}, y_{2}\right\}$, so we have $v \neq q_{2}$.

Now, if $p_{4} \notin N(v)$, then v has two neighbors z, z^{\prime} in $\left\{p_{1}, p_{2}, p_{3}\right\}$. But then G contains a $K_{2,3}$ with bipartition $\left\{z, z^{\prime}, q_{1}\right\},\left\{q_{0}, v\right\}$, contradicting short-separation-freeness. Thus, we have $p_{4} \in N(v)$. Since $|N(v) \cap V(P)|=2$, there is a $j \in\{1,2,3\}$ with $p_{j} v \in E(G)$. We complete Proposition 12.4 .5 by producing a contradiction for each possible value of j :

- If $j=1$, then G contains a $K_{2,3}$ with bipartition $\left\{q_{0}, q_{2}, v\right\},\left\{p_{1}, q_{1}\right\}$.
- If $j=2$, then G contains a $K_{2,3}$ with bipartition $\left\{p_{2}, p_{4}, q_{1}\right\},\left\{p_{3}, v\right\}$.
- If $j=3$, then the four vertices $\left\{p_{3}, p_{4}, v, q_{1}\right\}$ induce a K_{4} in G.

In any case, we contradict short-separation-freeness. This completes the proof of Proposition 12.4.5.

We now prove the following:
Lemma 12.4.14. $\mathcal{A}:=\left(G, F_{0}, F_{1}, L, \psi\right)$ be a defective roulette wheel with $d\left(F_{0}, F_{1}\right)=2$. Suppose that there exists an $i \in\{0,1\}$ and a $w \in D_{1}\left(F_{0}\right) \cap D_{1}\left(F_{1}\right)$ such that $A_{w}^{i}=\varnothing$. Then the following hold.

1) $A_{w}^{1-i} \neq \varnothing$; AND
2) For any $w^{*} \in\left(D_{1}\left(F_{0}\right) \cap D_{1}\left(F_{1}\right)\right) \backslash\{w\}$, $A_{w^{*}}^{i}=\varnothing$.

Proof. For the sake of definiteness, let $i=0$, and suppose toward a contradiction that $A_{w}^{1}=\varnothing$. Let $\psi_{1} \in \Phi(\psi, w)$, let $y \in V\left(F_{1}\right) \cap N(w)$ and let e be an edge of $F_{1} \backslash\{y\}$. If $D_{1}\left(F_{0}\right) \cap D_{1}\left(F_{1}\right)=\{w\}$, then, since $A_{w}^{0} \cup A_{w}^{1}=\varnothing$, the tuple $\left[w ; e ; \psi_{1} ; \varnothing\right]$ is a cycle connector for \mathcal{A}, contradicting our assumption that \mathcal{A} is defective. Thus, $\left|D_{1}\left(F_{0}\right) \cap D_{1}\left(F_{1}\right)\right|=$ 2, so there exists a $w^{*} \in V(G)$ with $D_{1}\left(F_{0}\right) \cap D_{1}\left(F_{1}\right)=\left\{w, w^{*}\right\}$. In that case, we retain the vertex w^{*} and delete the vertex w. Since $\left|L_{\psi_{1}}\left(w^{*}\right)\right| \geq 2$ and $G\left[V\left(F_{0} \cup F_{1} \cup\{w\}\right]\right.$ is connected, the tuple $\left[\left\{w, w^{*}\right\} ; w^{*} ; \psi_{1} \varnothing\right]$ is a cycle connector for \mathcal{A}, contradicting our assumption that \mathcal{A} is defective. This proves 1).

Now we prove 2). Let $w^{*} \in\left(D_{1}\left(F_{0}\right) \cap D_{1}\left(F_{1}\right)\right) \backslash\{w\}$. Since \mathcal{A} is defective, it follows from Proposition 12.4.5 that there exist vertices x, y which are the unique anchor vertices of F_{0}, F_{1} respectively. Since G is $K_{2,3}$-free, we have $N(w) \cap N\left(w^{*}\right)=\{x, y\}$. By Lemma 12.3.8, each vertex of $A_{w}^{0} \cup A_{w^{*}}^{0}$ is adjacent to an edge of F_{0} with x as an endpoint, and each vertex of $A_{w}^{1} \cup A_{w^{*}}^{1}$ is adjacent to an edge of F_{0} with y as an endpoint. In particular, each of the four sets $A_{w}^{0}, A_{w^{*}}^{0}, A_{w}^{1}, A_{w^{*}}^{1}$ has size at most one, or else, for some $i \in\{0,1\}$, there is an edge of F_{i} whose endpoints have two common neighbors in $G \backslash F_{i}$, which is false, as G is short-separation-free. Thus, by 1), we have $\left|A_{w}^{1}\right|=1$ so let v be the unique vertex of A_{w}^{1}. Then R_{v}^{1} is an edge of F_{1} with y as an endpoint. Let y_{v} be the other endpoint of R_{v}^{1}. Now set Q_{1} to be the unique edge of $F_{1}-y$ with y_{v} as an endpoint. . Note that $T\left(\left\{w, w^{*}\right\} ; Q_{1}\right) \neq \varnothing$, or else, for any $\phi \in \Phi\left(\psi,\left\{w, w^{*}\right\}\right)$, the tuple $\left[\left\{w, w^{*}\right\} ; Q ; \phi ; \varnothing\right]$ is a cycle connector for \mathcal{A}, contradicting the fact that \mathcal{A} is defective.

Claim 12.4.15. For any $z \in T\left(\left\{w, w^{*}\right\} ; Q_{1}\right)$, $w^{*} \in N(z)$ and $w \notin N(z)$, and exactly one of the following holds.

1. $N(z) \cap V\left(F_{0} \cup F_{1}\right)$ consists of the unique edge of $F_{1} \backslash\left\{y_{v}\right\}$ with y as an endpoint; $O R$
2. $N(z) \cap V\left(F_{0} \cup F_{1}\right)$ consists of an edge of F_{0} with x as an endpoint.

Proof: Let $z \in T\left(\left\{w, w^{*}\right\} ; Q_{1}\right)$. Since $z \notin\left\{w, w^{*}\right\}$, we have $z \notin D_{1}\left(F_{0}\right) \cap D_{1}\left(F_{1}\right)$. Since G is $K_{2,3}$-free, z is adjacent to at most one of w, w^{*}. Thus, z has at least two neighbors among $V\left(F_{0} \cup F_{1}\right) \backslash V\left(Q_{1}\right)$.

Suppose toward a contradiction that $w \in N(z)$. Then $w^{*} \notin N(z)$ and $z \in A_{w}^{0} \cup A_{w}^{1}$. Since $A_{w}^{0}=\varnothing$, we have $z=v$. Yet by our choice of Q_{1}, we have $v \notin T\left(\left\{w, w^{*}\right\} ; Q_{1}\right)$, a contradiction. Thus, $w \notin N(z)$. Since $z \notin D_{1}\left(F_{0}\right) \cap D_{1}\left(F_{1}\right)$, it follows from Lemma 12.3.4 that $\left|N(z) \cap V\left(F_{0} \cup F_{1}\right)\right|=2$ and $z \in N\left(w^{*}\right)$. Thus, $z \in A_{w^{*}}^{0} \cup A_{w^{*}}^{1}$. If $z \in A_{w^{*}}^{0}$, then, by Lemma 12.3.8, $N(z) \cap V\left(F_{0} \cup F_{1}\right)$ consists of an edge of F_{0} with x as an endpoint. If $z \in A_{w^{*}}^{1}$ then, again by Lemma 12.3.8, $N(z) \cap V\left(F_{0} \cup F_{1}\right)$ consists of an edge of F_{1} with y as an endpoint, and this edge is not $y y_{v}$, or else we contradict the fact that G is short-separation-free. This completes the proof of Claim 12.4.15.

Now we return to the proof of 2) of Lemma 12.4.14. Note that by Claim 12.4.15, we have $\left|T\left(\left\{w, w^{*}\right\} ; Q_{1}\right)\right| \leq 2$, since each of $A_{w^{*}}^{0}$ and $A_{w^{*}}^{1}$ has size at most one. Suppose toward a contradiction that there exists a $z \in A_{w^{*}}^{0}$. Since $N(z) \cap V\left(F_{0}\right)$ consists of an edge of F_{0} with x as an endpoint, let $G\left[N(z) \cap V\left(F_{0}\right)\right]=x x_{z}$ for some x_{z}.

Recall that H_{v}^{1} is the connected component of $G\left[A^{1}\right]$ containing v and is a subpath of the 1-band C^{1} of F_{1}. Let $P:=H_{v}^{1}+v w$, and note that each vertex of P has an L_{ψ}-list of size at least three, since $N(w) \cap V\left(F_{0} \cup F_{1}\right)=\{x, y\}$. Since y is the unique anchor vertex of F_{0}, we have $w^{*} \notin H_{v}^{1}$. By Theorem 1.7.5, there is a $\phi \in \operatorname{Link}\left(P, C^{1}\right)$.

The graph $G\left[V(P) \cup V\left(F_{0} \cup F_{1}\right)\right] \backslash\left\{w^{*}\right\}$ is connected, since P has a neighbor in each of F_{0}, F_{1}. Since \mathcal{A} is not defective, the tuple $\left[P ; w^{*} ; \phi ; \operatorname{Mid}^{1}(P)\right]$ is not a cycle connector for \mathcal{A}. Thus, there exists a $u \in V(G) \backslash(\operatorname{dom}(\phi) \cup$ $\left.\operatorname{Mid}^{1}(P) \cup\left\{w^{*}\right\}\right)$ such that $\left|L_{\phi}(u)\right|<3$. Since $\phi \in \operatorname{Link}\left(P, C^{1}\right)$, we have either $u \in V\left(C^{1}\right)$, or u has a neighbor in F_{0}.

Now we claim that u has a neighbor in F_{0}. Suppose not. Then we have $u \in V\left(C^{1}\right)$, and $N(u) \cap \operatorname{dom}(\phi)$ consists of $N(u) \cap V\left(F_{1}\right)$ and at most the endpoints of P. Thus, u is adjacent to at least one endpoint of P, and, by definition of H_{v}^{1}, we have $u \notin A^{1}$, so u has a lone neighbor in F_{1} and is adjacent to both endpoints of P. As one endpoint of P lies in A^{1}, u is adjacent to the A^{1}-endpoint of P on the cycle C^{1}, since C^{1} is an induced subgraph of G.

If u is adjacent to w on C^{1}, then, since $u \neq v$, we have $u=w^{*}$, which is false. The only remaining possibility is that u is the endpoint of a chord of C^{1} whose other endpoint is w. In this case, we have $\left|V\left(F_{1}\right)\right|=4$ and $u \in N\left(y^{\prime}\right)$, where y^{\prime} is the unique vertex of F_{1} not adjacent to y. Thus, G contains the two disjoint $\left(F_{0}, F_{1}\right)$-paths $y w^{*} z x_{z}$ and $y^{\prime} u w x$. Applying 2) of Proposition 12.4.3, this contradicts our assumption that \mathcal{A} is defective. Thus, u has a neighbor in F_{0}, as desired.

Since u has a neighbor in F_{0}, and $u \notin\left\{w, w^{*}\right\}$, we have $N(u) \cap V\left(F_{1}\right)=\varnothing$. Since u has at most two neighbors in F_{0}, u also has at least one neighbor in $P \backslash \operatorname{Mid}^{1}(P)$. If w is the lone neighbor of u in $P \backslash \operatorname{Mid}^{1}(P)$, then, since u has at least three neighbors among $\operatorname{dom}(\phi), u$ has at least two neighbors in F_{0}, so $u \in A_{w}^{0}$, contradicting our assumption that $A_{w}^{0}=\varnothing$. Thus, there is at least one vertex of $H_{v}^{1} \backslash \operatorname{Mid}^{1}(P)$ in $N(u)$. Note now that $N(u) \cap V\left(F_{0}\right)=\{x\}$, or else, since $N(u) \cap V\left(F_{0}\right) \neq \varnothing$ and u is adjacent to a vertex of C^{1} with two neighbors in F_{1}, there exists an $\left(F_{0}, F_{1}\right)$-path of length at most three which is disjoint to $x w y$. Applying Proposition 12.4.3, this contradicts our assumption that \mathcal{A} is defective.

Claim 12.4.16. $N(u) \cap A^{1}=\{v\}$.

Proof: Suppose not. Since there is at least one vertex of $H_{v}^{1} \backslash \operatorname{Mid}^{1}(P)$ in $N(u)$, there exists a $u^{\prime} \in N(u) \cap A^{1}$ with $u^{\prime} \neq v$, so u^{\prime} has a neighbor $y^{\prime} \in V\left(F_{1} \backslash\{y\}\right)$. Since \mathcal{A} is defective, the two disjoint $\left(F_{0}, F_{1}\right)$-paths $y w^{*} z x_{z}$ and $y^{\prime} u w x$ do not satisfy 2) of Proposition 12.4.3, so $\left|V\left(F_{1}\right)\right|=4$ and $R_{u^{\prime}}^{1}=y y^{\prime}$ is an edge of F_{1} with y as an endpoint. Since $u^{\prime} \neq v, R_{u^{\prime}}^{1} \neq y y_{v}$, so y^{\prime} is the unique vertex of F_{1} opposite to y_{v}. Set K to be the subgraph of G induced by $V\left(F_{0} \cup F_{1}\right) \cup\left\{u^{\prime}, u, z, w, w^{*}\right\}$. This graph is 2-connected, since it contains the (F_{0}, F_{1})-paths $y w^{*} z x_{z}$ and $y^{\prime} u^{\prime} u x$. Since \mathcal{A} is not defective, there is a facial cycle $D \subseteq K$ of length at least 12 .

Now, K contains the 5 -chord $R:=y w^{*} x u u^{\prime} y^{\prime}$ of F_{1}. Let $K=K^{1} \cup K^{2}$ be the natural $y w^{*} x u u^{\prime} y^{\prime}$-partition of K. Note that D lies on one side of the partition, since D is a facial subgraph of K, so let $D \subseteq K^{1}$. Thus, we have $F_{0} \subseteq K^{1}$ as well, or else $\left|V\left(F_{0} \cap K^{1}\right)\right| \leq 1$, since $V\left(F_{0} \cap R\right) \mid=1$. If that holds, then $|V(D)| \leq 1+4+4$, contradicting our assumption. Thus, we indeed have $F_{0} \subseteq K^{1}$, and since z is adjacent to each of x_{1}, x_{z}, we have $z \in K^{1} \backslash R$, as $x_{z} \notin V(R)$. Since $z \in K^{1} \backslash R$, we have $w \in K^{2} \backslash R$, or else K^{1} has a facial subgraph containing an edge $w^{*} x$ adjacent to two vertices of K^{1}, which is false, as G is short-separation-free. Thus, we get $w \in V\left(K^{2}\right)$. Since w is adjacent to v, we have $v \in V\left(K^{2}\right)$ as well. But then, since $w, v \notin V(R)$ and $D \subseteq K^{1}$, we have $|V(D)| \leq|V(K)|-2$, so $|V(D)| \leq 11$, a contradiction.

Now we return to the proof of Lemma 12.4.14. Since $N(u) \cap V\left(F_{0}\right)=\{x\}$, we have $N(u) \cap \operatorname{dom}(\phi)=\{v, w, x\}$. Since G is $K_{2,3}$-free, u is the unique vertex of $T\left(P ; w^{*}\right) \backslash \operatorname{Mid}^{1}(P)$, and G contains the 5-cycle yvuxw* , each vertex of which is adjacent to w. Thus, since G is short-separation-free, we have $N(w)=\left\{y, v, u, x, w^{*}\right\}$.

Claim 12.4.17. $\left|L_{\psi}(w)\right|=3$ and $L_{\psi}(v)=L_{\psi}(w)$.

Proof: Suppose that at least one of these conditions does not hold. Then we choose a color $d \in L_{\psi}(v)$ such that $\left|L_{\psi}(w) \backslash\{d\}\right| \geq 3$. By Theorem 1.7.5, there exists a $\sigma \in \operatorname{Link}\left(H_{v}^{1}, C^{1}\right)$ with $\sigma(v)=d$. Since \mathcal{A} is defective, the tuple $\left[H_{v}^{1} ; w^{*}: \sigma ; \operatorname{Mid}^{1}\left(H_{v}^{1}\right) \cup\{w\}\right]$ is not a cycle connector for \mathcal{A}, so $T\left(H_{v}^{1} ; w^{*}\right) \backslash\left(\operatorname{Mid}^{1}\left(H_{v}^{1}\right) \cup\{w\}\right) \neq \varnothing$. Yet we have $T\left(H_{v}^{1} ; w^{*}\right) \backslash\left(\operatorname{Mid}^{1}\left(H_{v}^{1}\right) \cup\{w\}\right) \subseteq T\left(P ; w^{*}\right) \backslash \operatorname{Mid}^{1}(P)$, so u is the lone vertex of $T\left(H_{v}^{1} ; w^{*}\right) \backslash\left(\operatorname{Mid}^{1}\left(H_{v}^{1}\right) \cup\{w\}\right)$. Since $w \notin \operatorname{dom}(\sigma), u$ only has two neighbors in $\operatorname{dom}(\sigma)$, so we have a contradiction.

Since $\left|L_{\psi}(u)\right| \geq 4$, it follows from Claim 12.4 .17 there is a color $d \in L_{\psi}(u)$ such that $d \notin L_{\psi}(w) \cup L_{\psi}(v)$. Let $\psi^{\dagger} \in \Phi(\psi, u)$ with $\psi^{\dagger}(u)=d$. Now set Q_{0} to be an edge of $F_{0}-x$ which contains all the vertices of $F_{0} \backslash\left\{x, x_{z}\right\}$. Since \mathcal{A} is defective, the tuple $\left[\{u, w\} ; Q_{0} ; \psi^{\dagger} ; w\right]$. By our choice of ψ^{\dagger}, w is $L_{\psi^{\dagger}}$-inert. Since $G\left[V\left(F_{0} \cup F_{1}\right) \cup\{u, w\}\right] \backslash Q_{0}$ is connected, there exists a $u^{*} \in T\left(u ; Q_{0}\right) \backslash\{w\}$ with $\left|L_{\psi^{\dagger}}^{Q_{0}}\left(u^{*}\right)\right|<3$. Since $u w^{*} \notin E(G)$, w^{*} only has two neighbors among $\operatorname{dom}\left(\psi^{\dagger}\right) \backslash V\left(Q_{0}\right)$. Thus, $u^{*} \notin\left\{w, w^{*}\right\}$, so $\left(N\left(u^{*}\right) \backslash V\left(Q^{\dagger}\right)\right) \cap \operatorname{dom}\left(\psi^{\dagger}\right)$ consists of u and either two vertices of $F_{0} \backslash Q_{0}$ or two vertices of F_{1}. By our choice of $\psi^{\dagger}(u)$, we have $\left|L_{\psi^{\dagger}}(v)\right| \geq 3$, so $u^{*} \neq v$.

Suppose that u^{*} has a neighbor in $V\left(F_{0}\right)$. Then $\left|V\left(F_{0}\right)\right|=4$ and u^{*} is adjacent to each vertex of $F_{0} \backslash Q_{0}$. Yet then, by our choice of Q_{0}, u^{*} is adjacent to both endpoints of $x x_{z}$. Since z is also adjacent to both of these vertices, we contradict short-separation-freeness. Thus, u^{*} has a neighbor in $V\left(F_{1}\right)$, and $R_{u^{*}}^{1}$ is an edge of F_{1}. Since $u^{*} \neq v$ and $u^{*} \in N(u)$, this contradicts Claim 12.4.16. This completes the proof of Lemma 12.4.14.

With the above in hand, we prove the following:
Lemma 12.4.18. Let $\mathcal{A}:=\left(G, F_{0}, F_{1}, L, \psi\right)$ be a roulette wheel with $d\left(F_{0}, F_{1}\right)=2$ and suppose that \mathcal{A} is defective. Let $w \in D_{1}\left(F_{0}\right) \cap D_{1}\left(F_{1}\right)$. Then $A_{w}^{i} \neq \varnothing$ for each $i \in\{0,1\}$.

Proof. Suppose toward a contradiction that there is an $i \in\{0,1\}$ with $A_{w}^{i}=\varnothing$, say $i=0$ without loss of generality.

Claim 12.4.19. $\left|N(w) \cap V\left(F_{1}\right)\right|=1$.

Proof: Suppose not. Then, by 2) of Lemma 12.3.4, $G\left[N(w) \cap V\left(F_{1}\right)\right]$ is an edge of F_{1}. Since R_{w}^{1} is an edge, we have $\{w\}=D_{1}\left(F_{0}\right) \cap D_{1}\left(F_{1}\right)$, or else, if $\left|D_{1}\left(F_{0}\right) \cap D_{1}\left(F_{1}\right)\right| \geq 2$, then each vertex of R_{w}^{1} is an anchor vertex of F_{1} and thus, , applying Proposition $12.4 .5, \mathcal{A}$ is not defective. This contradicts our assumption.

Let Q be an edge of F_{1}, where Q is disjoint to R_{w}^{1} if $\left|V\left(F_{1}\right)\right|=4$, and otherwise Q contains at most one endpoint of R_{w}^{1}. Then, by our choice of Q, the graph $G\left[V\left(F_{0} \cup F_{1}\right) \cup\{w\} \backslash Q\right.$ is connected. Let $\psi_{1} \in \Phi(\psi, w)$. Since \mathcal{A} is defective, the tuple $\left[w ; Q ; \psi_{1} ; \varnothing\right]$ is not a cycle connector for \mathcal{A}, so there exists a $z \in T(w ; Q)$. Since $D_{1}\left(F_{0}\right) \cap D_{1}\left(F_{1}\right)=\{w\}$, there exists a $j \in\{0,1\}$ such that $N(z) \cap V\left(F_{0} \cup F_{1}\right) \subseteq V\left(F_{j}\right)$. Thus, $(N(z) \backslash V(Q)) \cap\left(V\left(F_{0} \cup F_{1}\right)\right.$ consists of w and a subpath of F_{j} of length one. Since $A_{w}^{0}=\varnothing, z$ is adjacent to w and, by 1) of Lemma 12.3.8, R_{z}^{1} intersects withg R_{w}^{0} on precisely one common endpoint of the edges. By 2) of Lemma 12.3.8, we have $\left|V\left(F_{1}\right)\right|=4$, and, by our choice of Q, R_{z}^{1} has at least one endpoint in Q, so $\operatorname{dom}(\phi) \cap(N(z) \backslash V(Q)) \mid=2$, contradicting the fact that $z \in T(w ; Q)$ Thus, our assumption that $\left|N(w) \cap V\left(F_{1}\right)\right| \neq 1$ is false.

Since $\left|N(w) \cap V\left(F_{1}\right)\right|=1$, we fix a $y \in V\left(F_{1}\right)$ and an $x \in V\left(F_{0}\right)$ such that $N(w) \cap V\left(F_{1}\right)=\{y\}$ and $x \in$ $N(w) \cap V\left(F_{0}\right)$. Applying 1) of Lemma 12.4.14, there exists a $v \in A_{w}^{1}$. By 1) of Lemma 12.3.8, R_{v}^{1} is an edge of F_{1} with y as an endpoint. Let y_{v} be the other endpoint of this edge.

Claim 12.4.20. $D_{1}\left(F_{0}\right) \cap D_{1}\left(F_{1}\right)=\{w\}$.
Proof: Suppose toward a contradiction that there is a $\left|D_{1}\left(F_{0}\right) \cap D_{1}\left(F_{1}\right)\right| \geq 2$, and let $w^{*} \in D_{1}\left(F_{0}\right) \cap D_{1}\left(F_{1}\right)$ with $w^{*} \neq w$. We then have $N\left(w^{*}\right) \cap V\left(F_{0} \cup F_{1}\right)=N(w) \cap V\left(F_{0} \cup F_{1}\right)=\{x, y\}$, or else there is an $i \in\{0,1\}$ such that F_{i} has more than one anchor vertex. Applying Proposition 12.4.5, this contradicts our assumption that \mathcal{A} is defective. Since G is $K_{2,3}$-free, w^{*} is the lone vertex of $\left(D\left(F_{0}\right) \cap D\left(F_{1}\right)\right) \backslash\{w\}$.

By 2) of Lemma 12.4.14, we have $A_{w^{*}}^{0}=\varnothing$. Furthermore, each of $A_{w}^{1}, A_{w^{*}}^{1}$ is of size at most one, or else, since $N(w) \cap V\left(F_{1}\right)=N\left(w^{*}\right) \cap V\left(F_{1}\right)=\{y\}$, it follows from of Lemma 12.3.8 that there is an edge of F_{1} which has y as an endpoint and which has at least two neighbors in $G \backslash V\left(F_{1}\right)$, contradicting short-separation-freeness. In particular, $A_{w}^{1}=\{v\}$.

Now set Q to be the unique edge of $F \backslash\{y\}$ with y_{v} as an endpoint and let $\psi^{\prime} \in \Phi\left(\psi,\left\{w, w^{*}\right\}\right)$. The graph $G\left[V\left(F_{0} \cup\right.\right.$ $\left.\left.F_{1}\right) \cup\{w\}\right] \backslash Q$ is connected, as it contains the path $x w y$. Since \mathcal{A} is defective, the tuple $\left[w ; Q ; \psi^{\prime} ; \varnothing\right]$ is not a cycle connector for \mathcal{A}, so $T\left(\left\{w, w^{*} ; Q\right) \neq \varnothing\right.$. By 2) of Lemma 12.4.14, we have $A_{w^{*}}^{0}=\varnothing$. Since w, w^{*} have no common neighbors other than x, y, it follows that any vertex of $T\left(\left\{w, w^{*}\right\} ; Q\right)$ lies in $A_{w}^{1} \cup A_{w^{*}}^{1}$. By our choice of Q, v only has two neighbors in $\left(V\left(F \cup F_{1}\right) \cup\left\{w, w^{*}\right\}\right) \backslash V(Q)$, so $A_{w^{*}}^{1} \neq \varnothing$ and $T\left(\left\{w, w^{*}\right\} ; Q\right)$ consists of the lone vertex of $A_{w^{*}}^{1}$. Let $\left.T\left\{w, w^{*}\right\} ; Q\right)=A_{w^{*}}^{1}=\{z\}$ for some vertex z. Since z has at least three neighbors in $\left(V\left(F_{0} \cup F_{1}\right) \cup\left\{w, w^{*}\right\}\right) \backslash V(Q)$, we have $\left|V\left(F_{1}\right)\right|=4$, and R_{z}^{1} consists of the two vertices of $F_{1} \backslash Q$. By our choice of Q, R_{z}^{1} is an edge with y as an endpoint. Let y_{z} be the other endpoint of this edge.

Subclaim 12.4.21. There exists a unique vertex z^{*} such that $\left\{z^{*}\right\}=T\left(\left\{w, w^{*}, z\right\} ; Q\right)$. Furthermore, $N\left(z^{*}\right) \cap$ $\left(V\left(F_{0} \cup F_{1}\right) \cup\left\{z, w^{*}, w\right\}=\left\{x, w^{*}, z\right\}\right.$.

Proof: Let $\psi^{\prime \prime} \in \Phi\left(\psi,\left\{w, w^{*}, z\right\}\right)$. Since \mathcal{A} is defective, the tuple $\left[\left\{w, w^{*}, z\right\} ; Q ; \psi^{\prime \prime} ; \varnothing\right]$ is not a cycle connector for \mathcal{A}, so there exists a $z^{*} \in T\left(\left\{w, w^{*}, z\right\} ; Q\right)$. Since z is the unique vertex of $T\left(\left\{w, w^{*}\right\} ; Q\right)$, and $z \neq z^{*}$, we have $z \in N\left(z^{*}\right)$, and z^{*} has precisely two neighbors in $V\left(\left(F_{0} \cup F_{1}\right) \backslash Q\right) \cup\left\{w, w^{*}\right\}$.

If z^{*} has a neighbor $x^{\prime} \in V\left(F_{0} \backslash\{x\}\right)$, then G contains the two disjoint $\left(F_{0}, F_{1}\right)$-paths $x^{\prime} z^{*} z y_{z}$ and $x_{1} w y_{1}$. Applying Proposition 12.4.3, this contradicts our assumption that \mathcal{A} is defective. Thus, we have $N\left(z^{*}\right) \cap V\left(F_{0} \backslash\right.$ $\left.\left\{x_{1}\right\}\right)=\varnothing$, and z^{*} has precisely two neighbors among $\left\{y, y_{z}, x, w^{*}, w\right\}$. Now, $z^{*} \neq v$, since $v z \notin E(G)$, and G contains the 5 -chord $y_{z} z w^{*} w v y_{v}$ of F_{1}, each vertex of which is adjacent to y. Thus, since G is short-separationfree, we have $N(y)=\left\{y_{z}, z, w^{*}, w, v, y_{v}\right\}$, and $z^{*} \notin N(y)$. We conclude that z^{*} has precisely two neighbors among $\left\{x, y_{z}, w^{*}, w\right\}$.

Now, if $w \in N\left(z^{*}\right)$, then G contains a $K_{2,3}$ with bipartition $\{w, z\},\left\{w^{*}, y, z^{*}\right\}$, contradicting short-separationfreeness, so $w \notin N\left(z^{*}\right)$ and z^{*} has precisely two neighbors among $\left\{x, y_{z}, w^{*}\right\}$. If $y_{z}, w^{*} \in N\left(z^{*}\right)$, then G contains a $K_{2,3}$ with bipartition $\left\{w^{*}, y_{z}\right\},\left\{z^{*}, z, y\right\}$, contradicting short-separation-freeness. If $x, y_{z} \in N\left(z^{*}\right)$, we contradict the fact that $D_{1}\left(F_{0}\right) \cap D_{1}\left(F_{1}\right)=\{w\}$. The only remaining possibility is that $N(z) \cap\left(V\left(F_{0} \cup\right.\right.$ $\left.\left.F_{1}\right) \cup\left\{w, w^{*}\right\}\right)=\left\{w^{*}, y, y_{z}\right\}$. Since G is $K_{2,3}$-free, z is the unique vertex of $T\left(\left\{w, w^{*}\right\} ; Q\right)$.

Now we are ready to finish the proof of Claim 12.4.20. Applying Subclaim 12.4.21, let z^{*} be the unique vertex of $\left\{z^{*}\right\}=T\left(\left\{w, w^{*}, z\right\} ; Q\right)$. Then G contains the 5 -cycle $x z^{*} z y w$, and w^{*} is adjacent to each vertex of this cycle. Since G is short-separation-free, we have $N\left(w^{*}\right)=\left\{x_{1}, z^{*}, z, y_{1}, w\right\}$. Applying Corollary 1.3.6, there is a $\psi^{\dagger} \in$ $\Phi(\psi,\{z, w\})$ such that w^{*} is $L_{\psi^{\dagger}-\text { inert. Since } \mathcal{A}}$ is defective, the tuple $\left[\left\{w^{*}, w, z\right\} ; Q ; \psi^{\dagger} ; w^{*}\right]$ is not a cycle connector for \mathcal{A}, so there exists a vertex $u \in T(\{w, z\} ; Q)$ with $\left|L_{\psi^{\dagger}}^{Q}(u)\right|<3$. But then $u=z^{*}$, since $\left\{z^{*}\right\}=T\left(\left\{w, w^{*}, z\right\} ; Q\right)$. Yet z^{*} only has two neighbors in $\operatorname{dom}\left(\psi^{\dagger}\right) \backslash V(Q)$, so we have a contradiction. This completes the proof of Claim 12.4.20.

Now we return to the proof of Lemma 12.4.18. We set $Q^{\prime}:=F_{1} \backslash\left\{y, y_{v}\right\}$ and let $\psi^{\prime} \in \Phi(\psi,\{w, v\})$. Since \mathcal{A} is defective, the tuple $\left[\{w, v\} ; Q^{\prime} ; \psi^{\prime} ; \varnothing\right]$ is not a cycle connector for \mathcal{A}. The graph $G\left[V\left(F_{0} \cup F_{1}\right) \cup\{w, v\}\right] \backslash Q^{\prime}$ is connected, so $T\left(\{w, v\}: Q^{\prime}\right) \neq \varnothing$.

Claim 12.4.22. There exists a unique vertex z such that $T\left(\{w, v\} ; Q^{\prime}\right)=\{z\}$. Furthermore, the following hold.

1) $N(z) \cap\left(V\left(F_{0} \cup F_{1}\right) \cup\{w, v\}\right)=\{x, w, v\}$; AND
2) $L_{\psi}(v)=L_{\psi}(w)$ and $\left|L_{\psi}(v)\right|=3$; AND
3) $\left|L_{\psi}(z)\right|=4$, and $L_{\psi}(v) \cup L_{\psi}(w) \subseteq L_{\psi}(z)$.

Proof: Since $T\left(\{w, v\} ; Q^{\prime}\right) \neq \varnothing$, there exists a $z \in T\left(\{w, v\} ; Q^{\prime}\right)$. Thus, z has at least three neighbors among $V\left(F_{0}\right) \cup\left\{w, v, y, y_{v}\right\}$. Suppose toward a contradiction that there is an $x^{\prime} \in V\left(F_{0} \backslash\{x\}\right)$ with $x^{\prime} \in N(z)$. Since $D_{1}\left(F_{0}\right) \cap D_{1}\left(F_{1}\right)=\{w\}$, we have $N(z) \cap V\left(F_{1}\right)=\varnothing$, so z has at least three neighbors among $V\left(F_{0}\right) \cup\{w, v\}$. If $v \in N(z)$, then G contains the two disjoint $\left(F_{0}, F_{1}\right)$-paths $x w y$ and $x^{\prime} z v y_{v}$. Applying Proposition 12.4.3, this contradicts our assumption that \mathcal{A} is defective. Thus, $v \notin N(z)$, and z contains at least three neighbors among $V\left(F_{0}\right) \cup\{w\}$. Since z has at most two neighbors in F_{0}, we have $z \in A_{w}^{0}$, contradicting our assumption that $A_{w}^{0}=\varnothing$.

We conclude that $N(z) \cap V\left(F_{0}\right) \subseteq\{x\}$, so z has at least three neighbors among $\left\{x, w, v, y, y_{v}\right\}$. Suppose that $y_{1} \in N(z)$. Then $v \notin N(z)$, or else G contains a $K_{2,3}$ with bipartition $\left\{w, y_{v}, z\right\},\{y, v\}$. Furthermore, $x \notin N(z)$, since $D_{1}\left(F_{0}\right) \cap D_{1}\left(F_{1}\right)=\{w\}$. But then z is adjacent to all three of w, y, y_{v}, and G contains a $K_{2,3}$ with bipartition $\left\{w, y, y_{v}\right\},\{v, z\}$, contradicting short-separation-freeness.

Thus, $y \notin N(z)$, and z has at least three neighbors among $\left\{x, w, v, y_{v}\right\}$. Since $x w v y_{v}$ is an induced path in G, and $N\left(y_{v}\right) \cap N(x)=\varnothing$, it follows from our triangulation conditions that $G\left[N(z) \cap\left\{x, w, v, y_{v}\right\}\right]$ is a subpath of $x w v y_{v}$ of length precisely two. This path is not $w v z$, or else G contains a copy of $K_{2,3}$, as w, v, z are all adjacent to y. Thus, this path is $x w v$, and $N(z) \cap\left(V\left(F_{0} \cup F_{1}\right) \cup\{w, v\}\right)=\{x, w, v\}$. Since G is $K_{2,3}$-free, z is unique and $T\left(\{w, v\} ; Q^{\prime}\right)=\{z\}$. This proves 1$)$.

Suppose now that 2) does not hold. Since each of w, v has an L_{ψ}-list of size at least three, there is a $d \in L_{\psi}(w)$ such that $\left|L_{\psi}(v) \backslash\{d\}\right| \geq 3$. Let $\phi \in \Phi(\psi, w)$ with $\psi(w)=d$. Since $T\left(\{w, v\} ; Q^{\prime}\right)=\{z\}$ and $L_{\phi}(v) \mid \geq 3$, the tuple $\left[w ; Q^{\prime} ; \phi ; \varnothing\right]$ is a cycle connector for \mathcal{A}, contradicting the fact that \mathcal{A} is defective.

If 3) does not hold, then ψ extends to an L-coloring $\psi^{\dagger} \in \Phi(\psi,\{w, v\})$ such that $\left|L_{\psi^{\dagger}}(z)\right| \geq 3$. Since z is the unique vertex of $T\left(\{w, v\} ; Q^{\prime}\right)$, we then get that $\left[\{w, v\} ; Q^{\prime} ; \psi^{\dagger} ; \varnothing\right]$ is a cycle connector for \mathcal{A}, contradicting our assumption that \mathcal{A} is defective.

Applying Claim 12.4.22, let z be the unique vertex in $T\left(\{w, v\} ; Q^{\prime}\right)$.

Claim 12.4.23. For any vertex $z^{*} \in T\left(\{w, v, z\} ; Q^{\prime}\right)$, z^{*} satisfies precisely one of the following.

1) $N\left(z^{*}\right) \cap\left(V\left(F_{0} \cup F_{1}\right) \cup\{w, v, z\}\right)$ consists of z and an edge of F_{0} with x as an endpoint, and $\left\{z^{*}\right\}=A_{z}^{0}$; OR
2) $N\left(z^{*}\right) \cap\left(V\left(F_{0} \cup F_{1}\right) \cup\{w, v, z\}\right)=\left\{z, v, y_{v}\right\}$.

Proof: Let $\psi^{\prime \prime} \in \Phi(\psi,\{w, v, z\})$. Since \mathcal{A} is defective, $\left[\{w, v, z\} ; Q^{\prime} ; \psi^{\prime \prime} ; \varnothing\right]$ is not a cycle connector for \mathcal{A}. Since $G\left[V\left(F_{0} \cup F_{1}\right) \cup\{w, v, z\}\right] \backslash Q^{\prime}$ is connected, we have $T\left(\{w, v, z\} ; Q^{\prime}\right) \neq \varnothing$ so there exists a $z^{*} \in T\left(\{w, v, z\} ; Q^{\prime}\right)$. Since $z \neq z^{*}$, it follows from Claim12.4.22 that z^{*} has precisely two neighbors in $V\left(\left(F_{0} \cup F_{1}\right) \backslash Q^{\prime}\right) \cup\{w, v\}$, and $z \in N\left(z^{*}\right)$. Note that $w \notin N\left(z^{*}\right)$, or else G contains a $K_{2,3}$ with bipartition $\left\{x, v, z^{*}\right\},\{z, w\}$, contradicting short-separation-freeness. Thus, z^{*} has precisely two neighbors among $V\left(\left(F_{0} \cup F_{1}\right) \backslash Q^{\prime}\right) \cup\{v\}$.

Suppose now that $x \in N\left(z^{*}\right)$. Since $z^{*} \notin D_{1}\left(F_{0}\right) \cap D_{1}\left(F_{1}\right)$, we have $N\left(z^{*}\right) \cap V\left(F_{1}\right)=\varnothing$, and, by 1) of Lemma 12.3.8, $N\left(z^{*}\right) \cap\left(V\left(F_{0} \cup F_{1}\right) \cup\{w, v, z\}\right)$ consists of z and an edge of F_{0} with x as an endpoint, so $z^{*} \in A_{z}^{0}$. Now suppose toward a contradiction that there is a $z^{\dagger} \in A_{z}^{0}$ with $z^{\dagger} \neq z$. By By Ro4 of Definition 12.3.1, each of $z z^{*}$, $z w$, and $z z^{\dagger}$ is an edge of the 1-band C^{1} of C, which is false since every vertex of $V\left(C^{1}\right)$ has degree two in C^{1}.

Thus, if $x \in N\left(z^{*}\right)$, then we are done. Suppose now that $x \notin N\left(z^{*}\right)$. We claim now that $z^{*} \cap V\left(F_{0}\right)=\varnothing$. Suppose not. Then z^{*} has a neighbor $x^{\prime} \in V\left(F_{0} \backslash\{x\}\right)$. We have $N(z) \cap V\left(F_{1}\right)=\varnothing$, since $z^{*} \notin D_{1}\left(F_{0}\right) \cap D_{1}\left(F_{1}\right)$. Thus, z^{*} has precisely two neighbors among $V\left(F_{0} \backslash\{x\}\right) \cup\{v\}$. Now, if x^{\prime} is adjacent to x, then G contains the 4-cycle $x z z^{*} x^{\prime}$. Since $x \notin N\left(z^{*}\right)$, we then have $x^{\prime} \in N(z)$ by our triangulation conditions. This contradicts Claim 12.4.22. Thus, $\left|V\left(F_{0}\right)\right|=4, x^{\prime}$ is opposite to x in F_{0}, and $\left\{x^{\prime}\right\}=N\left(z^{*}\right) \cap V\left(F_{0}\right)$. But then $v \in N\left(z^{*}\right)$ as well, since z^{*} has precisely two neighbors among $V\left(F_{0} \backslash\{x\}\right) \cup\{v\}$. Thus, G contains the $\left(F_{0}, F_{1}\right)$-paths $x w y$ and $x^{\prime} z^{*} v y_{v}$. Applying Proposition 12.4.3, this contradicts our assumption that \mathcal{A} is defective.

Thus, we have $N(z) \cap V\left(F_{0}\right)=\varnothing$, and so z^{*} has precisely two neighbors among $\left\{y, y_{v}, z\right\}$. If $y \in N\left(z^{*}\right)$, then G contains a $K_{2,3}$ with bipartition $\{y, z\},\left\{w, v, z^{*}\right\}$, contradicting short-separation-freeness. We conclude that $y \notin$ $N(z)$, and so $N(z) \cap\left(V\left(\left(F_{0} \cup F_{1}\right) \backslash Q^{\prime}\right) \cup\{w, v\}\right)=\left\{v, y_{v}\right\}$. This completes the proof of Claim 12.4.23.

We claim now that there is a $z^{*} \in T\left(\{w, v, z\} ; Q^{\prime}\right)$ such that $N\left(z^{*}\right) \cap\left(V\left(F_{0} \cup F_{1}\right) \cup\{w, v, z\}\right)=\left\{z, v, y_{v}\right\}$. Suppose toward a contradiction that no such z exists. Then, by Claim 12.4.22, there exists a z^{\dagger} such that $\left\{z^{\dagger}\right\}=A_{z}^{0}=$ $T\left(\{w, v\} ; Q^{\prime}\right)$, and $N\left(z^{\dagger}\right) \cap\left(V\left(F_{0} \cup F_{1}\right) \cup\{w, v, z\}\right)$ consists of z and an edge of F_{0}. Thus, we have $\left|L_{\psi}\left(z^{\dagger}\right)\right| \geq 3$. Since $\left|L_{\psi}(z)\right| \geq 4$ and $w, v \notin N\left(z^{\dagger}\right)$, there is a $\phi \in \Phi(\psi,\{w, v, z\})$ such that $\left|L_{\phi}\left(z^{\dagger}\right)\right| \geq 3$. But then, since z^{\dagger} is the unique vertex of $T\left(\{w, v, z\} ; Q^{\prime}\right)$, the tuple $\left[\{w, v, z\} ; Q^{\prime} ; \phi ; \varnothing\right]$ is a cycle connector for \mathcal{A}, contradicting the fact that \mathcal{A} is defective.

Thus, there is a $z^{*} \in T\left(\{w, v, z\} ; Q^{\prime}\right)$ such that $N\left(z^{*}\right) \cap\left(V\left(F_{0} \cup F_{1}\right) \cup\{w, v, z\}\right)=\left\{z, v, y_{v}\right\}$, and G contains the 5-cycle $z^{*} z w y_{1} y_{2}$, each vertex of which is adjacent to v. Since G is short-separation-free, we have $N(v)=$ $\left\{z^{*}, z, w, y, y_{v}\right\}$.

Claim 12.4.24. There is an L-coloring $\phi \in \Phi\left(\psi,\left\{w, z^{*}\right\}\right)$ such that v is L_{ϕ}-inert and $\left|L_{\phi}(z)\right| \geq 3$.

Proof: If $L_{\psi}(w) \cap L_{\psi}\left(z^{*}\right) \neq \varnothing$, then, since $w z^{*} \notin E(G)$, there is a $\phi \in \Phi\left(\psi,\left\{w, z^{*}\right\}\right)$ with $\phi(w)=\phi\left(z^{*}\right)=d$. Thus, v is L_{ϕ}-inert and $\left|L_{\phi}(v)\right| \geq 3$, so we are done in this case. So now suppose that $L_{\psi}(w) \cap L_{\psi}\left(v^{*}\right)=\varnothing$. Since $\left|L_{\psi}\left(z^{*}\right)\right| \geq 4$, it follows from 2) and 3) of Claim 12.4.22 that there exists a color $d^{*} \in L_{\psi}\left(z^{*}\right)$ such that $d^{*} \notin L_{\psi}(v)$ and $d^{*} \notin L_{\psi}(z)$. Then, for any $\phi \in \Phi\left(\psi,\left\{w, z^{*}\right\}\right)$ with $\phi\left(z^{*}\right)=d^{*}, \phi$ again satisfies the desired properties.

Let $\phi \in \Phi\left(\psi,\left\{w, z^{*}\right\}\right)$ be as in Claim 12.4.24. Since \mathcal{A} is defective, the tuple $\left[\left\{z^{*}, w\right\} ; Q^{\prime} ; \phi ; v\right]$ is not a cycle connector for \mathcal{A}, so there is a $u \in V(G) \backslash(\operatorname{dom}(\phi) \cup\{v\})$ with $\left|L_{\phi}^{Q^{\prime}}(u)\right|<3$, so $u \in T\left(\left\{w, z^{*}\right\} ; Q^{\prime}\right)$. By our choice of ϕ, we have $\left|L_{\phi}^{Q^{\prime}}(z)\right| \geq 3$. Thus, $u \neq z$. Since $u \neq z$, we have $z^{*} \in N(u)$ and u has precisely two neighbors in $T\left(\{w, v\} ; Q^{\prime}\right)$, or else we contradict Claim 12.4.22. Thus, u has precisely two neighbors among $\left.V\left(F_{0} \cup F_{1}\right) \backslash Q^{\prime}\right) \cup$ $\{w, v\}$.

If u has a neighbor $x^{\prime} \in V\left(F_{0} \backslash\{x\}\right)$, then G contains the two disjoint $\left(F_{0}, F_{1}\right)$-paths $x^{\prime} u z^{*} y_{v}$ and $x w y$. Applying Proposition 12.4.3, this contradicts our assumption that \mathcal{A} is defective. Thus, u has precisely two neighbors among $\{x, w, v\} \cup\left\{y, y_{v}\right\}$. We now rule out the following adjacencies by producing a $K_{2,3}$ in each case:

- If $v \in N(u)$, then G contains a $K_{2,3}$ with bipartition $\left\{v, z^{*}\right\},\left\{z, y_{v}, u\right\}$.
- If $y \in N(u)$, then G contains a $K_{2,3}$ with bipartition $\left\{y, z^{*}\right\},\left\{v, y_{v}, u\right\}$.
- If $w \in N(u)$, then G contains a $K_{2,3}$ with bipartition $\left\{w, z^{*}\right\},\{z, v, u\}$.

The only remaining possibility is that u is adjacent to each of x, y_{v}, contradicting the fact that $u \notin D_{1}\left(F_{0}\right) \cap D_{1}\left(F_{1}\right)$. This completes the proof of Lemma 12.4.18.

With the above in hand, we now prove the following:
Proposition 12.4.25. Let $\mathcal{A}:=\left(G, F_{0}, F_{1}, L, \psi\right)$ be a roulette wheel with $d\left(F_{0}, F_{1}\right)=2$ and suppose that, for each $i=0,1, F_{i}$ has two anchor vertices. Then \mathcal{A} is not defective.

Proof. Suppose toward a contradiction that \mathcal{A} is defective. By Proposition 12.4.5, there exists a $w \in V(G)$ such that $D_{1}\left(F_{0}\right) \cap D_{1}\left(F_{1}\right)=\{w\}$. For each $i=0,1$, since F_{i} has two anchor vertices, R_{w}^{i} is an edge. By Lemma 12.4.18, we have $\left|A_{w}^{i}\right| \geq 1$ for each $i=0,1$. Thus, we have $\left|V\left(F_{0}\right)\right|=\left|V\left(F_{1}\right)\right|=4$ by 2) of Lemma 12.3.8. Now we write $F_{0}:=x_{1} x_{2} x_{3} x_{4}$ and $F:=y_{1} y_{2} y_{3} y_{4}$, and, without loss of generality, let $R_{w}^{0}=x_{1} x_{2}$ and $R_{w}^{1}=y_{1} y_{2}$. Applying 2) of Lemma 12.3.8 again, $R_{u_{0}}^{0}$ intersects with R_{w}^{0} on a vertex, so, without loss of generality, let $R_{u_{0}}^{0}=x_{1} x_{4}$ and $R_{u_{1}}^{1}=y_{1} y_{4}$. By 2) of Lemma 12.3.8, we have $N\left(x_{1}\right) \subseteq\left\{w, u_{0}\right\} \cup V\left(F_{0}\right)$ and $N\left(y_{1}\right) \subseteq\left\{w, u_{1}\right\} \cup V\left(F_{1}\right)$. For each $i=0,1$, let C^{i} be the 1-band of F_{i}. Since w has precisely four neighbors in $V\left(F_{0} \cup F_{1}\right)$, we have $\left|L_{\psi}(w)\right| \geq 1$, so we fix a color $c \in L_{\psi}(w)$.

Claim 12.4.26. For each $i=0,1, w \notin \operatorname{Mid}^{i}\left(C^{i}\right)$, and there exists $a \phi \in \operatorname{Link}\left(H_{u_{i}}^{i}, C^{i}\right)$ with $\phi(w)=c$.
Proof: Suppose that $w \in \operatorname{Mid}^{i}\left(C^{i}\right)$. then there is a vertex $z \in D_{2}\left(F_{i}\right)$ such that w is an internal vertex of $G\left[V\left(H_{u_{i}}^{i}\right) \cap\right.$ $N(z)$]. But then $G \backslash F_{1}$ contains a wheel with central vertex w, and thus, since G is short-separation-free, we have $N(w) \cap V\left(F_{1}\right)=\varnothing$, which is false.

If w is an endpoint of $H_{u_{i}}^{i}$, then, applying Theorem 1.7.5, it immediately follows that there exists a $\phi \in \operatorname{Link}\left(H_{u_{i}}^{i}, C^{i}\right)$ with $\phi(w)=c$, since each vertex of $H_{u_{i}}^{i}$ other than w has an L_{ψ}-list of size at least three. Now suppose that w is not an endpoint of $H_{u_{i}}^{i}$, and let P_{1}, P_{2} be the two subpaths of $H_{u_{i}}^{i}$ intersecting on w.

For each $j=12$, there is a $\phi_{j} \in \operatorname{Link}\left(P_{j}, C^{i}\right)$ with $\phi_{j}(w)=c$ by Theorem 1.7.5. Since $w \notin \operatorname{Mid}^{i}\left(C^{i}\right)$, the union $\phi_{1} \cup \phi_{2}$ also lies in $\operatorname{Link}\left(H_{u_{i}}^{i}, C^{i}\right)$, so we are done.

By Claim 12.4.26, there is a $\phi \in \operatorname{Link}\left(H_{u_{0}}^{0}, C^{0}\right)$ with $\phi(w)=c$. Now let $Q:=y_{3} y_{4}$, and consider the tuple $\left[H_{u_{0}}^{0}, Q ; \phi ; \operatorname{Mid}^{0}\left(H_{u_{0}}^{0}\right)\right]$. Note that the subgraph of G induced by $V\left(F_{0} \cup F_{1}\right) \cup V\left(H_{u_{0}}^{0}\right)$ is connected, as it contains the path $x_{1} w y_{1}$. Since \mathcal{A} is defective, this tuple is not a cycle connector for \mathcal{A}, so there exists a $z \in T\left(H_{u_{0}}^{0} ; Q\right)$ with $\left|L_{\phi}^{Q}(z)\right|<3$. Since $\phi \in \operatorname{Link}\left(H_{u_{0}}^{0}, C^{0}\right)$, we have either $z \in D_{1}\left(F_{1}\right)$, or $z \in V\left(C^{0} \backslash H_{u_{0}}^{0}\right)$.

Suppose that $z \in D_{1}\left(F_{1}\right)$ and let $y \in N(z) \cap V\left(F_{1}\right)$. Since z has at most two neighbors in F_{1}, z also has a neighbor in $\operatorname{dom}(\phi) \backslash V\left(F_{1}\right)$. Since $\{w\}=D_{1}\left(F_{0}\right) \cap D_{1}\left(F_{1}\right), z$ has a neighbor in $H_{u_{0}}^{0}$. If z has a neighbor in $H_{u_{0}}^{0} \backslash\{w\}$, then, since each vertex of $H_{u_{0}}^{0}$ has at least two neighbors in F_{0}, it follows that G contains an $\left(F_{0}, F_{1}\right)$-path of length three which is disjoint to one of the four $\left(F_{0}, F_{1}\right)$-paths of length with midpoint w. Applying Proposition 12.4.3, this contradicts our assumption that \mathcal{A} is defective. Thus, w is the lone neighbor of z in $\operatorname{dom}(\phi) \backslash V\left(F_{1}\right)$, and since $\left|L_{\phi}^{Q}(z)\right|<3$, z is adjacent to each of y_{1}, y_{2}. Since w is also adjacent to each of y_{1}, y_{2}, we contradict short-separation-freeness. Thus, our assumption that $z \in D_{1}\left(F_{1}\right)$ is false.

Since $z \notin D_{1}\left(F_{1}\right)$, we have $\left.z \in V\left(C^{0} \backslash H_{u_{0}}^{0}\right)\right)$, and thus, by definition of $H_{u_{0}}^{0}, z$ has precisely one neighbor in F_{0} and two neigbhbors in $H_{u_{0}}^{0}$. Since C^{0} has no chords, $N(z) \cap V\left(H_{u_{0}}^{0}\right)$ consists of the endpoints of $H_{u_{0}}^{0}$, so $V\left(C^{0}\right)=V\left(H_{u_{0}}^{0}\right) \cup\{z\}$ and $\left|V\left(C^{0}\right)\right|=5$.

Claim 12.4.27. There exists $a \phi \in \operatorname{Link}\left(C^{0}\right)$ with $\phi(w)=c$.

Proof: We break the proof of the claim into two cases:
Case 1: w is an endpoint of $H_{u_{0}}^{0}$
Since $\mid V\left(C_{\mid}^{0}=5\right.$ and G is short-separation-free, we get that, for each $u \in D_{2}\left(F_{0}\right), G\left[N(u) \cap V\left(C^{0}\right)\right]$ is a subpath of C^{0} of length at two. Since $\left|L_{\psi}(z)\right| \geq 4$ and all the other vertices of the path $C^{0}-w z$ have L_{ϕ}-lists of size at least three, it follows from Theorem 1.7.5 that there exists a pair of elements $\phi_{1}, \phi_{2} \in \operatorname{Link}\left(C^{0}-w z, C^{0}\right)$ which use distinct colors on z, so say without loss of generality that $\phi_{1}(z) \neq c$. Then ϕ_{1} is a proper L-coloring of $C^{0} \backslash \operatorname{Mid}^{0}\left(C^{0}\right)$, and $\phi_{1} \in \operatorname{Link}^{0}\left(C^{0}\right)$.

Case 2: w is not an endpoint of $H_{u_{0}}^{0}$
In this case, let p, p^{*} be the endpoints of $H_{u_{0}}^{0}$, let P_{1} be the subpath of $H_{u_{0}}^{0}$ with endpoints p, w, and let P_{2} be the subpath of $H_{u_{0}}^{0}$ with endpoints w, p^{*}. Then one of P_{1}, P_{2} has length one and the other has length two, so suppose without loss of generality that $\left|E\left(P_{1}\right)\right|=1$ and $\left|E\left(P_{2}\right)\right|=2$. Note that $z \notin \operatorname{Mid}^{0}(P)$, or else G contains a copy of $K_{2,3}$, since z, p, p^{*} have a common neighbor in F_{0}.

Since G is short-separation-free and $\left|V\left(C^{0}\right)\right|=5$, it follows from the above that, for each $u \in D_{2}\left(F_{0}\right)$, the graph $G\left[N(u) \cap V\left(C^{0}\right)\right]$ is either a subpath of $P_{1}+p z$ of length two, or a subpath of $P_{2}+p z$ of length two. Applying Theorem 1.7.5, there is a pair of colors $\psi_{1}, \psi_{2} \in \operatorname{Link}\left(P_{1}+p z, C^{0}\right)$ with $\psi_{1}(w)=\psi_{2}(w)=c$ and $\psi_{1}(z) \neq \psi_{2}(z)$, as $\left|L_{\psi}(z)\right| \geq 4$.

We first show that he claim holds if $p^{*} \notin \operatorname{Mid}^{0}\left(C^{0}\right)$. Suppose that $p^{*} \notin \operatorname{Mid}^{0}(P)$. Applying Theorem 1.7 .5 , there is a $\phi \in \operatorname{Link}\left(P_{2}, C^{0}\right)$ with $\phi(w)=c$. There exists a $j \in\{1,2\}$ such that $\psi_{j}(z) \neq \phi\left(p^{*}\right)$, and since $p^{*}, z \notin \operatorname{Mid}^{0}\left(C^{0}\right)$, the union $\phi \cup \psi_{i}$ lies in $\operatorname{Link}\left(C^{0}\right)$, and uses c on w, so we are done on that case.

Now suppose that $p^{*} \in \operatorname{Mid}^{0}\left(C^{0}\right)$. Let z be the unique vertex of $D_{2}\left(F_{0}\right)$ such that p^{*} is the midpoint of $G[N(z) \cap$ $\left.V\left(C^{0}\right)\right]$. Now let u be the midpoint of P_{2}. Recall that, since $\left|V\left(C^{0}\right)\right|=5, G\left[N(z) \cap V\left(C^{0}\right)\right]$ is a path of length two, so $G\left[N(z) \cap V\left(C^{0}\right)\right]=u p^{*} z$. Since $\left|L_{\psi}(u)\right| \geq 2$, there is a color $d \in L_{\psi}(u)$ and a $j \in\{1,2\}$ such that
$L_{\psi}\left(p^{*}\right) \backslash\left\{d, \psi_{j}(z)\right\} \mid \geq 2$. Let ψ_{j}^{\prime} be the resulting extension of ψ_{j} to $\operatorname{dom}\left(\psi_{j}\right) \cup\{u\}$. Then p^{*} is $L_{\psi_{j}^{\prime}}$ inert, and since neither u nor w lies in $\operatorname{Mid}^{0}\left(C^{0}\right)$, we have $\psi_{j}^{\prime} \in \operatorname{Link}\left(C^{0}\right)$, and ψ_{j}^{\prime} uses the color c on w.

Thus, let $\phi \in \operatorname{Link}\left(C^{0}\right)$ with $\phi(w)=c$. Now consider the tuple $\left[C^{0} ; Q ; \phi ; \operatorname{Mid}^{0}\left(C^{0}\right)\right]$. The graph $G\left[V\left(F_{0} \cup F_{1} \cup C^{0}\right)\right]$ is connected, and, since \mathcal{A} is defective, there exists a $z^{\prime} \in T\left(C^{0} ; Q\right)$ with $\left|L_{\phi^{*}}^{Q}\left(z^{\prime}\right)\right|<3$. Since $\phi^{*} \in \operatorname{Link}\left(C^{0}\right)$, z^{\prime} has a neighbor in F_{1}, and $N\left(z^{\prime}\right) \cap V\left(F_{0}\right)=\varnothing$, as $\{w\}=D_{1}\left(F_{0}\right) \cap D_{1}\left(F_{1}\right)$.

If z^{\prime} has a neighbor in $V\left(C^{0} \backslash\{w\}\right)$, then G contains an $\left(F_{0}, F_{1}\right)$-path of length three which is disjoint to one of the four $\left(F_{0}, F_{1}\right)$-paths of length two with midpoint w. Applying Proposition 12.4.3, this contradicts our assumption that \mathcal{A} is defective. Thus, $N\left(z^{\prime}\right) \cap\left(\operatorname{dom}\left(\phi^{*}\right) \backslash V\left(F_{1}\right)\right)=\{w\}$, so z^{\prime} is adjacent to each vertex of $F_{1} \backslash Q$. But then each of z^{\prime}, w is adjacent to y_{1}, y_{2}, contradicting short-separation-freeness. This completes the proof of Proposition 12.4.25.

We now prove the following lemma:
Lemma 12.4.28. Let $\mathcal{A}:=\left(G, F_{0}, F_{1}, L, \psi\right)$ be a defective roulette wheel with $d\left(F_{0}, F_{1}\right)=2$ and suppose that at least one of F_{0}, F_{1} has precisely one anchor vertex. Let $i \in\{0,1\}$ and let C^{i} be the 1-band of F_{i}. Then $V\left(C^{i} \backslash A^{i}\right) \mid>$ 1.

Proof. Without loss of generality, let $i=0$, and suppose toward a contradiction that $V\left(C^{i} \backslash A^{i}\right) \mid \leq 1$. By 1) of Proposition 12.3.6, we have $\left|V\left(C^{0}\right)\right| \geq 5$, so $\left|V\left(F_{0}\right)\right|=4, V\left(C^{0} \backslash A^{0}\right) \mid=1$, and $\left|V\left(C^{0}\right)\right|=5$. Let q be the lone vertex of $C^{0} \backslash A^{0}$. Let $w \in D_{1}\left(F_{0}\right) \cap D_{1}\left(F_{1}\right)$ (possibly $w=q$) and let $x \in N(w) \cap V\left(F_{0}\right)$.

Claim 12.4.29. $\{w\}=D_{1}\left(F_{0}\right) \cap D_{1}\left(F_{1}\right)$.

Proof: Suppose not, and let $w^{*} \in D_{1}\left(F_{0}\right) \cap D_{1}\left(F_{1}\right)$ with $w^{*} \neq w$. If F_{0} has only one anchor vertex, then $w^{*}=q$, since $w^{*} \notin A^{0}$. But then $w \in A^{0}$, contradicting our assumption that F_{0} has only one anchor vertex. Thus, F_{0} has more than one anchor vertex, and thus, by Proposition $12.4 .5, \mathcal{A}$ is not defective, contradicting our assumption.

Let C^{1} be the 1-band of F_{1}. Applying Lemma 12.4.18, we fix a vertex $v \in A_{w}^{1}$. Then R_{v}^{1} is an edge which intersects with R_{w}^{1} on an endpoint, so let $y \in V\left(F_{1}\right) \cap N(w)$ and let y_{v} be the neighbor of y in F_{1} such that $R_{v}^{1}=y y_{v}$.

Claim 12.4.30. Let $u_{1} \in V\left(C^{1}-w\right)$. Then the following hold.

1) $N\left(u_{1}\right) \cap A^{0} \subseteq\{w\}$; AND
2) If either $\left|N(w) \cap V\left(F_{1}\right)\right|>1$ or $N\left(u_{1}\right) \cap V\left(F_{1}\right) \nsubseteq N(w) \cap V\left(F_{1}\right)$, then
i) For any $u_{0} \in A^{0} \backslash\{w\}, N\left(u_{0}\right) \cap N\left(u_{1}\right) \subseteq\{w\}$; AND
ii) For any $z \in D_{1}\left(C^{0}\right) \backslash V\left(F_{0}\right)$ with $\left|N(z) \cap V\left(C^{0}\right)\right| \geq 3$, we have $N(z) \cap N\left(u_{1}\right) \subseteq\{w\}$.

Proof: Suppose toward a contradiction that there is a $u^{\prime} \in N\left(u_{1}\right) \cap A^{0}$ with $u^{\prime} \neq w$. Let K be the subgraph of G induced by $V\left(F_{0} \cup F_{1}\right) \cup V\left(C^{0}\right) \cup\left\{u_{1}, v\right\}$. Since u^{\prime} has two neighbors in F_{0}, K contains an $\left(F_{0}, F_{1}\right)$-path which has internal vertices $u^{\prime} u_{1}$ and which is disjoint to either $x w y$ or $x w v y_{v}$. Thus, K is 2 -connected. Let D be a facial subgraph of K. Since C^{0} separates $V\left(F_{0}\right)$ from $V\left(F_{1}\right) \cup\left\{u_{1}, v\right\}$, we have $V(D) \subseteq V\left(F_{0}\right) \cup V\left(C^{0}\right)$ or $V(D) \subseteq V\left(F_{1}\right) \cup V\left(C^{0}\right) \cup\{z, v\}$. In either case, since $\left|V\left(C^{0}\right)\right| \leq 5$, we have $|V(D)| \leq 11$, so \mathcal{A} satisfies S 1 , contradicting the fact that \mathcal{A} is defective. This proves 1$)$.

Now we prove 2). Suppose that either $\left|N(w) \cap V\left(F_{1}\right)\right|>1$ or $N\left(u_{1}\right) \cap V\left(F_{1}\right) \nsubseteq N(w) \cap V\left(F_{1}\right)$. Let $u_{0} \in A^{0} \backslash\{w\}$ and suppose toward a contradiction that u_{0}, u_{1} have a common neighbor z with $z \neq w$.

Since $\{w\}=D_{1}\left(F_{0}\right) \cap D_{1}\left(F_{1}\right)$ we have $z \notin V\left(F_{0} \cup F_{1}\right)$. Let K be the subgraph of G induced by $V\left(F_{0} \cup F_{1}\right) \cup V\left(C^{0}\right) \cup$ $\left\{u_{1}, z\right\}$. Since u_{0} has two neighbors in F_{0} and either $\left|N(w) \cap V\left(F_{1}\right)\right|>1$ or $N\left(u_{1}\right) \cap V\left(F_{1}\right) \nsubseteq \mid N(w) \cap V\left(F_{1}\right)$, there exists a vertex $y^{*} \in V\left(F_{1}\right) \cap N(w)$ such that K contains an $\left(F_{0}, F_{1}\right)$-path which has internal vertices $u_{0} z u_{1}$ and which is disjoint to $x w y^{*}$. Thus, K is 2-connected.

Let D be a facial subgraph of K. Since C^{0} separates $V\left(F_{0}\right)$ from $V\left(F_{1}\right) \cup\left\{u_{1}\right\}$, we have $V(D) \subseteq V\left(F_{0}\right) \cup V\left(C^{0}\right) \cup$ $\{z\}$ or $V(D) \subseteq V\left(F_{1}\right) \cup V\left(C^{0}\right) \cup\left\{z, u_{1}\right\}$. In either case, since $\left|V\left(C^{0}\right)\right| \leq 5$, we have $|V(D)| \leq 11$, so \mathcal{A} satisfies S 1 , contradicting the fact that \mathcal{A} is defective. This proves i$)$.

Now we prove ii). Suppose toward a contradiction that there is a $z \in D_{1}\left(C^{0}\right) \backslash V\left(F_{0}\right)$ such that $\left|N(z) \cap V\left(C^{0}\right)\right| \geq 3$ and $N(z) \cap N\left(u_{1}\right) \nsubseteq\{w\}$. Let $z^{\prime} \in N(z) \cap N\left(u_{1}\right)$ with $z^{\prime} \neq w$. Since $\left|V\left(C^{0}\right)\right|=5$ and G is short-separation-free, it follows that $G\left[N(z) \cap V\left(C^{0}\right)\right]$ is a subpath of C^{0}, so $G\left[N(z) \cap V\left(C^{0}\right)\right]$ is a path of length precisely two in this case. Let v^{m} be the middle vertex of this subpath. Let K_{*} be the subgraph of G induced by $V\left(F_{0} \cup F_{1}\right) \cup V\left(C^{0} \backslash\{q\}\right) \cup\left\{z, z^{\prime}\right\}$. Since z^{\prime} has a neighbor in $A^{0} \backslash\left\{v^{m}\right\}$ and either $\left|N(w) \cap V\left(F_{1}\right)\right|>1$ or $N\left(u_{1}\right) \cap V\left(F_{1}\right) \nsubseteq N(w) \cap V\left(F_{1}\right)$, there exists a vertex $y^{*} \in V\left(F_{1}\right) \cap N(w)$ such that K contains an $\left(F_{0}, F_{1}\right)$-path which has internal vertices $z z^{\prime} u_{1}$ and which is disjoint to $x w y^{*}$. Thus, K_{*} is 2-connected. Let C_{*}^{0} be the cycle of K_{*} obtained from C^{0} by replacing v^{m} with z.

Let D be a facial subgraph of K_{*}. Since C_{*}^{0} separates $V\left(F_{0}\right)$ from $V\left(F_{1}\right) \cup\left\{u_{1}\right\}$, we have $V(D) \subseteq V\left(F_{0}\right) \cup V\left(C_{*}^{0}\right) \cup$ $\left\{z^{\prime}\right\}$ or $V(D) \subseteq V\left(F_{1}\right) \cup V\left(C_{*}^{0}\right) \cup\left\{z^{\prime}, u_{1}\right\}$. In either case, since $\left|V\left(C_{*}^{0}\right)\right| \leq 5$, we have $|V(D)| \leq 11$, so \mathcal{A} satisfies S 1 , contradicting the fact that \mathcal{A} is defective. This proves ii) and thus completes the proof of 2).

Let Q be an edge of F_{1}, where Q intersects $y y_{v}$ precisely on y if $\left|V\left(F_{1}\right)\right|=3$, and Q is disjoint to $y y_{v}$ if $\left|V\left(F_{1}\right)\right|=4$. We now have the following:

Claim 12.4.31. $\operatorname{Link}^{0}\left(C^{0}\right)=\varnothing$.

Proof: Suppose toward a contradiction that there is a $\psi^{\prime} \in \operatorname{Link}\left(C^{0}\right)$. Then the subgraph of G induced by $\left(V\left(F_{0} \cup\right.\right.$ $\left.\left.F_{1} \cup C^{0}\right) \cup\{v\}\right) \backslash V(Q)$ is connected, since it contains the path $x w v y_{v}$. By 2) of Claim 12.4.30, v has no neighbors in $C^{0} \backslash\{w\}$, so $\left|L_{\psi^{\prime}}(w)\right| \geq 2$. Thus, let $\psi^{\prime \prime} \in \Phi\left(\psi^{\prime}, v\right)$. Since \mathcal{A} is defective, the tuple $\left[V\left(C^{0}\right) \cup\{v\} ; \psi^{\prime \prime} ; Q ; \operatorname{Mid}^{0}\left(C^{0}\right)\right]$ is a cycle connector for \mathcal{A}, so $T\left(V\left(C^{0}\right) \cup\{v\} ; Q ; \psi^{\prime \prime}\right) \backslash \operatorname{Mid}^{0}\left(C^{0}\right) \neq \varnothing$.

Let $z \in T^{\prime}\left(V\left(C^{0}\right) \cup\{v\} ; Q ; \psi^{\prime}\right) \backslash \operatorname{Mid}^{0}\left(C^{0}\right)$. We claim now that $z \in D_{1}\left(F_{1}\right)$. If z is adjacent to v, then, by 2) of Claim 12.4.30, v has no neighbors in $C_{0} \backslash\{w\}$, so $N(z) \cap \operatorname{dom}\left(\psi^{\prime \prime}\right) \subseteq B_{1}\left(F_{1}\right)$. Since $\operatorname{dom}\left(\psi^{\prime \prime}\right) \cap B_{1}\left(F_{1}\right)=V\left(F_{1}\right) \cup\{v, w\}$ and z has at least three neighbors in $\operatorname{dom}\left(\psi^{\prime \prime}\right), z$ has at least one neighbor in F_{1}, so $z \in B_{1}\left(F_{1}\right)$. Since $z \notin V\left(F_{1}\right)$, we have $z \in D_{1}\left(F_{1}\right)$. On the other hand, if z is not adjacent to v, then we have $\left|L_{\psi^{\prime}}(z)\right|<3$, and, by definition of $\operatorname{Link}\left(C^{0}\right)$, we have $z \in D_{1}\left(F_{1}\right)$.

In any case, we have $z \in D_{1}\left(F_{1}\right)$. By 1) of Claim 12.4.30, z has no neighbors in $A^{0} \backslash\{w\}$. Since $\left|L_{\psi^{\prime \prime}}^{Q}(z)\right|<3$, it follows that $(N(z) \backslash V(Q)) \cap \operatorname{dom}\left(\psi^{\prime \prime}\right)$ consists of w and an edge of $F_{1} \backslash Q$. Thus, $\left|V\left(F_{1}\right)\right|=4$, and, by our choice of Q, both of w, z are adjacent to both endpoints of $y y_{v}$, contradicting the fact that G is short-separation-free.

Now let U be the set of vertices of $D_{1}\left(C^{0}\right) \backslash V\left(F_{0}\right)$ with at least three neighbors in $V\left(C^{0}\right)$. Since G is short-separationfree, it follows from Ro4 that, for each $z \in U, G\left[N(z) \cap V\left(C^{0}\right)\right]$ is a subpath of C^{0} of length two. Since $\left|V\left(C^{0}\right)\right|=5$, we have $|U| \leq 2$.

Claim 12.4.32. $|U|=2$.

Proof: Suppose toward a contradiction that $|U|<2$ and there exists a $p \in V\left(C^{0} \backslash\{w\}\right)$ such that, for each $z \in U, p$ does not lie in $N(z)$. Let $p^{\prime}, p^{\prime \prime}$ be the two neighbors of p on C^{0}. Let P^{\prime} be the subpath of $C^{0}-p$ with endpoints p^{\prime}, w, and let $P^{\prime \prime}$ be the subpath of $C^{0}-p$ with endpoints $p^{\prime \prime}, w$. Since $\left|L_{\psi}(w)\right| \geq 2$, let $c \in L_{\psi}(w)$. By Theorem 1.7.5, there exist $\psi^{\prime} \in \operatorname{Link}\left(P^{\prime}, C^{0}\right)$ and $\psi^{\prime \prime} \in \operatorname{Link}\left(P^{\prime \prime}, C^{0}\right)$ such that $\psi^{\prime}(w)=\psi^{\prime \prime}(w)=c$. Since C^{0} is a chordless cycle, the union $\psi^{\prime} \cup \psi^{\prime \prime}$ is a proper L-coloring of its domain. Since $\left|L_{\psi}(d)\right| \geq 3$, we have $\left|L_{\psi}(p) \backslash\left\{\psi^{\prime}\left(p^{\prime}\right), \psi^{\prime \prime}\left(p^{\prime \prime}\right)\right\}\right| \geq 1$, so $\psi^{\prime} \cup \psi^{\prime \prime}$ extends to a proper L-coloring ψ^{*} of $\operatorname{dom}\left(\psi^{\prime}\right) \cup \operatorname{dom}\left(\psi^{\prime \prime}\right) \cup\{p\}$. Since $U \cap N(p)=\varnothing$, we have $\psi^{*} \in \operatorname{Link}\left(C^{0}\right)$, contradicting Claim 12.4.31.

Applying Claim 12.4.32, let $U=\left\{z_{0}, z_{1}\right\}$. For each $j=0,1$, we have the following. Set $P_{j}:=G\left[N\left(z_{j}\right) \cap V\left(C^{0}\right)\right]$. By Theorem 1.7.5, $\operatorname{Link}\left(P^{j}, C^{0}\right) \neq \varnothing$, so let $\psi_{j} \in \operatorname{Link}\left(P_{j}, C^{0}\right)$. Since $\left|L_{\psi}(w)\right| \geq 2$ and each vertex of $C^{0}-w$ has an L_{ψ}-list of size at least three, ψ_{j} extends to an L-coloring ψ_{j}^{\prime} of $V\left(C^{0} \backslash \operatorname{Mid}^{0}\left(P_{j}\right)\right) \cup\left\{z_{1-j}\right\}$. Since \mathcal{A} is defective, the tuple $\left[V\left(C^{0}\right) \cup\left\{z_{1-j}\right\} ; Q ; \psi_{j}^{\prime} ; \operatorname{Mid}^{0}\left(P_{j}\right)\right]$ is not a cycle connector for \mathcal{A}. Since $\operatorname{Mid}^{0}\left(P_{j}\right)$ is $L_{\psi_{j}^{\prime}}$-inert, there exists a $q_{j} \in T^{\prime}\left(V\left(C^{0}\right) \cup\left\{z_{1-j}\right\} ; Q ; \psi_{j}^{\prime}\right) \backslash \operatorname{Mid}^{0}\left(P_{j}\right)$.

Claim 12.4.33. $\left\{q_{0}, q_{1}\right\} \cap D_{1}\left(F_{1}\right) \neq \varnothing$.
Proof: Suppose toward a contradiction that $q_{0}, q_{1} \notin D_{1}\left(F_{1}\right)$. For each $j=0,1$, let $C_{z_{j}}^{0}$ be the 5-cycle obtained from C^{0} by replacing the middle vertex of $G\left[N\left(z_{j}\right) \cap V\left(C^{0}\right)\right]$ with z_{j}. Then $\operatorname{dom}\left(\psi_{j}^{\prime}\right) \cap N\left(q_{j}\right) \subseteq V\left(C_{z_{1-j}}^{0}\right)$, since $C_{z_{1-j}}^{0}$ separates q_{j} from F_{0}.
Since $\left|L_{\psi_{j}^{\prime}}^{Q}\left(q_{j}\right)\right|<3, q_{j}$ has at least three neighbors in $V\left(C_{z_{1-j}}^{0}\right)$. Since $C_{z_{1-j}}^{0}$ is a 5-cycle and G is short-separationfree, the graph $G\left[N\left(q_{j}\right) \cap V\left(C_{z_{1-j}}^{0}\right)\right]$ is a subpath of $C_{z_{1-j}}^{0}$ of length precisely two. We claim now that, for each $j=0,1, q_{j} \in N\left(z_{1-j}\right)$. Suppose there is a $j \in\{0,1\}$ with $q_{j} \notin N\left(z_{1-j}\right)$. Then $q_{j} \in U$ and thus $q_{j}=z_{j}$. Since $\psi_{j} \in \operatorname{Link}\left(P_{j}, C^{0}\right)$, we have $\left|L_{\psi_{j}}\left(z_{j}\right)\right| \geq 3$, and, since $\left|V\left(C^{0}\right)\right|=5$ and each of z_{0}, z_{1} is adjacent to a subpath of C^{0} of length precisely two, we have $z_{0} z_{1} \notin E(G)$, or else G contains a separating cycle of length at most 4 . Since $z_{0} z_{1} \notin E(G)$ and $\left|L_{\psi_{j}}\left(z_{j}\right)\right| \geq 3$, we have $\left|L_{\psi_{j}^{\prime}}\left(z_{j}\right)\right| \geq 3$ as well, so $z_{j} \neq q_{j}$. Thus, our assumption that $q_{j} \notin N\left(z_{1-j}\right)$ is false.

Thus, for each $j=0,1, G\left[N\left(q_{j}\right) \cap V\left(C_{z_{1-j}}^{0}\right]\right.$ is a subpath of $C_{z_{1-j}}^{0}$ containing z_{1-j}. Furthermore, z_{1-j} is also not the midpoint of $G\left[N\left(q_{j}\right) \cap V\left(C_{z_{1-j}}^{0}\right)\right]$, or else q_{j}, z_{1-j} and the midpoint of P_{1-j} are all adjacent to the endpoints of P_{1-j}, contradicting the fact that G is $K_{2,3}$-free. Likewise, w is not the midpoint of the path $G\left[N\left(q_{j}\right) \cap V\left(C_{z_{1-j}}^{0}\right)\right.$, or else the deletion of $V\left(C_{z_{1-j}}^{0} \backslash\{w\}\right)$ separates w from F_{1}, which is false since w has a neighbor in F_{1}.

Thus, for each $j=0,1$, the graph $G\left[N\left(q_{j}\right) \cap V\left(C_{z_{1-j}}^{0}\right)\right]$ is a subpath of $C_{z_{1-j}}^{0}-w$ with z_{1-j} as an endpoint, and the other two vertices of $G\left[N\left(q_{j}\right) \cap V\left(C_{z_{1-j}}^{0}\right)\right]$ are the endpoints of an edge of C^{0}. In particular, we have $q_{0} \neq q_{1}$. If each of z_{0}, z_{1} is adjacent to w, then, since $w \notin \operatorname{Mid}^{0}\left(C^{0}\right)$, each of q_{0}, q_{1} is adjacent to both vertices of the lone edge of $\left.C_{z_{0}}^{0} \cap C_{z_{1}}^{0}\right) \backslash\{w\}$. Since C^{0} is a facial subgraph of $G \backslash F_{0}$ and each of q_{0}, q_{1} is adjacent to both endpoints of an edge of C^{0}, which is false, as G is short-separation-free.

Thus, there is at least one $j \in\{0,1\}$ such that $w \notin V\left(P_{j}\right)$, say $j=1$ without loss of generality. Since $\left|V\left(C^{0}\right)\right|=5$ and $w \notin \operatorname{Mid}^{0}\left(C^{0}\right), w$ is an endpoint of P_{0}. Let p be the non- z_{0}-endpoint of $G\left[N\left(q_{1}\right) \cap V\left(C_{z_{0}}^{0}\right)\right]$. Since $w \notin V\left(P_{1}\right)$, the paths P_{0}, P_{1} intersect on a common endpoint which is not w, so p is also the midpoint of P_{1}, contradicting the fact that G contains a 2 -chord of C^{0} with midpoint z_{1} which separates q_{1} from the midpoint of P_{1}. This completes the proof of Claim 12.4.33.

Applying Claim 12.4.33, let $j \in\{0,1\}$ with $q_{j} \in D_{1}\left(F_{1}\right)$. Since $q_{j} \in D_{1}\left(F_{1}\right)$, it follows from 1) of Claim 12.4.30 that q_{j} has no neighbors in A^{0}. Since $\left|L_{\psi_{j}^{\prime}}^{Q}\left(q_{j}\right)\right|<3$, it follows that $\left(N\left(q_{j}\right) \backslash V(Q)\right) \cap \operatorname{dom}\left(\psi_{j}^{\prime}\right)$ consists of w and an
edge of $F_{1} \backslash Q$. Thus, $\left|V\left(F_{1}\right)\right|=4$, and, by our choice of Q, both of q_{j}, v are adjacent to both endpoints of the edge $y y_{v}$, which is false, as G is short-separation-free. This completes the proof of Lemma 12.4.28.

We use the following smple observation several times in the remainder of Section 12.4.
Observation 12.4.34. Let $\mathcal{A}:=\left(G, F_{0}, F_{1}, L, \psi\right)$ be a defective roulette wheel with $d\left(F_{0}, F_{1}\right)=2$ and suppose that, for some $i \in\{0,1\}, F_{i}$ has precisely one anchor vertex. Let C^{i} be the 1 -band of F_{i}. If there exists $a w^{*} \in$ $D_{1}\left(F_{0}\right) \cap D_{1}\left(F_{1}\right)$ with $w \neq w^{*}$, then $w w^{*}$ is an edge of C^{i} and there exists an $x \in V\left(F_{0}\right)$ and a $y \in V\left(F_{1}\right)$ with $N(w) \cap V\left(F_{1}\right)=N\left(w^{*}\right)=\{y\}$ and $N(w) \cap V\left(F_{0}\right) \cap N\left(w^{*}\right) \cap V\left(F_{0}\right)=\{x\}$. In particular, $N(w) \cap N\left(w^{*}\right)=\{x, y\}$.

Proof. Suppose without loss of generality that $i=0$ and let x be the lone ahcor vertex of F_{0}. Since $\mid D_{1}\left(F_{0}\right) \cap$ $D_{1}\left(F_{1}\right) \mid \geq 2$ and \mathcal{A} is defective, it follows from Proposition 12.4.5 that there is a lone anchor vertex in F_{1}, so let $y \in V\left(F_{1}\right)$ with $N(w) \cap V\left(F_{1}\right)=N\left(w^{*}\right) \cap V\left(F_{1}\right)=\{y\}$. Then G contains the 4-cycle $x w y w^{*}$. We have $x y \notin E(G)$ since $d\left(F_{0}, F_{1}\right)=2$. By our triangulation conditions, we have $w w^{*} \in E(G)$. By By Ro4 of Definition 12.3.1, $w w^{*}$ is not a chord of C^{0}, so $w w^{*} \in E\left(C^{0}\right)$. Since G is $K_{2,3}$-free, we have $N(w) \cap N\left(w^{*}\right)=\{x, y\}$.

With the above in hand, we prove the following lemma:
Lemma 12.4.35. Let $\mathcal{A}:=\left(G, F_{0}, F_{1}, L, \psi\right)$ be a defective roulette wheel with $d\left(F_{0}, F_{1}\right)=2$ and suppose that, for some $i \in\{0,1\}, F_{i}$ has precisely one anchor vertex. Let C^{i} be the 1 -band of F_{i} and let $S:=D_{1}\left(F_{0}\right) \cap D_{1}\left(F_{1}\right)$ and let H_{*} be the subgraph of G induced by the vertex set $S \cup \bigcup_{w \in S, u \in A_{w}^{i}} V\left(H_{w}^{i}\right)$. Then there exists a subpath R of C^{0} such that the following holds:
i) Either $V(R)=V\left(C^{0}\right)$ or $V(R)=V\left(H_{*}\right)$. In the former case, there is a $v \in V\left(C^{0} \backslash H_{*}\right)$ such that $V\left(C^{0}\right)=$ $V\left(H_{*}\right) \cup\{v\}$. In the latter case, R is a proper subpath of C^{0} whose endpoints do not have a common neighbor in C^{0}; AND
ii) There exists a $\phi \in \operatorname{Link}\left(R, C^{0}\right)$ such that $\left|L_{\phi}(v)\right| \geq 3$ for all $v \in V\left(C^{0}\right) \backslash\left(\operatorname{dom}(\phi) \cup \operatorname{Mid}^{0}(R)\right)$; AND
iii) For any $w \in S$ and $u \in A_{w}^{0}$, if there exists $a v \in A_{w}^{1-i}$ such that $N(v) \cap N(u) \nsubseteq\{w\}$, then, for all $c \in L_{\psi}(u)$, there exists $a \phi \in \operatorname{Link}\left(P, C^{0}\right)$ such that either $\phi(c)=c$ or $u \in \operatorname{Mid}^{0}(R)$, and furthermore, $\left|L_{\phi}(v)\right| \geq 3$ for all $v \in V\left(C^{0}\right) \backslash\left(\operatorname{dom}(\phi) \cup \operatorname{Mid}^{0}(R)\right) ; A N D$
iv) If $R \neq C^{0}$ then R is an induced subpath of C^{0}, and if $R=C^{0}$ then C^{0} is induced in in G.

Proof. Without loss of generality, let $i=0$. and we fix a lone anchor vertex $x \in V\left(F_{0}\right)$. We fix an element $w \in D_{1}\left(F_{0}\right) \cap D_{1}\left(F_{1}\right)$. Applying Applying Lemma 12.4.18, we also fix vertices $u_{0} \in A^{0}$ and $u_{1} \in A_{w}^{1}$. Applying Observation 12.4.34, we fix a vertex $y \in V\left(F_{1}\right)$ such that $y \in N\left(w^{\prime}\right) \cap V\left(F_{1}\right)$ for each $w^{\prime} \in D_{1}\left(F_{0}\right) \cap D_{1}\left(F_{1}\right)$. We now have the following:

Claim 12.4.36. $V\left(H_{*}\right) \neq V\left(C^{0}\right)$, and H_{*} is an induced subpath of C^{0} of length at most five.

Proof: Suppose toward a contradiction that H_{*} is a cycle. If $D_{1}\left(F_{0}\right) \cap D_{1}\left(F_{1}\right)=\{w\}$, then $H_{u_{0}}^{0}$ is a path of length $\left|V\left(F_{i}\right)\right|$ whose endpoints are both adjacent to w, contradicting Lemma 12.4.28, so there exists a $w^{*} \neq w$ such that $D_{1}\left(F_{0}\right) \cap D_{1}\left(F_{1}\right)=\left\{w, w^{*}\right\}$, and, for each $u \in A^{0}, H_{u}^{i}$ is a path of length $\left|V\left(F_{i}\right)\right|$ with one endpoint adjacent to w and the other endpoint adjacent to w^{*}. In particular, we have $\left|V\left(C^{0}\right)\right| \leq 6$.

Let K be the subgraph of G induced by $V\left(F_{0} \cup F_{1}\right) \cup V\left(C^{0}\right) \cup\left\{u_{1}\right\}$. Since u_{0} has two neighbors in F_{0} and u_{1} has two neighbors in F_{1}, K contains an $\left(F_{0}, F_{1}\right)$-path with internal vertices $u_{0} w u_{1}$ which is disjoint to $x w^{*} y$. Thus,
K is 2-connected. Let D be a facial subgraph of K. Since C^{0} separates $V\left(F_{0}\right)$ from $V\left(F_{1}\right) \cup\{v\}$, we have either $V(D) \subseteq V\left(F_{0}\right) \cup V\left(C^{0}\right)$ or $\left.V(D) \subseteq V\left(F_{1} \cup C^{0}\right)\right) \cup\left\{u_{1}\right\}$. In either case, since $\left|V\left(C^{0}\right)\right| \leq 6$, we have $|V(D)| \leq 11$, so our choice of K satisfies S 1 , contradicting the fact that \mathcal{A} is defective. We conclude that H_{*} is not a cycle. By By Ro4 of Definition 12.3.1, H_{*} is an induced subpath of C^{0}.

Now we return to the proof of Lemma 12.4.35. We have the following:

Claim 12.4.37.

1) $\operatorname{Link}\left(H_{*}, C^{0}\right) \neq \varnothing ; A N D$
2) For any $w^{\prime} \in D_{1}\left(F_{0}\right) \cap D_{1}\left(F_{1}\right)$ and $u \in A_{w^{\prime}}^{0}$, if Q is the unique subpath of $H_{*}-u$ with w^{\prime} as an endpoint, then, for each $c \in L_{\psi}\left(w^{\prime}\right)$, there is a $\phi \in \operatorname{Link}\left(Q, C^{0}\right)$ with $\phi\left(w^{\prime}\right)=d ;{ }^{\prime}$ AND
3) For any $w^{\prime} \in D_{1}\left(F_{0}\right) \cap D_{1}\left(F_{1}\right)$ and $u \in A_{w^{\prime}}^{0}$, if $u \in \operatorname{Mid}^{0}\left(C^{0}\right)$ and there exists a $u^{\prime} \in A_{w^{\prime}}^{1}$ such that u, u^{\prime} have a common neighbor z with $z \neq w$, then $G\left[N(z) \cap V\left(C^{0}\right]\right.$ is a subpath of C^{0} of length precisely two, with u as its midpoint and w^{\prime} as an endpoint; AND
4) For any $w^{\prime} \in D_{1}\left(F_{0}\right) \cap D_{1}\left(F_{1}\right)$, if there exists $a u \in A_{w}^{0}$ and a color $c \in L_{\psi}(u)$ such that no element of $\operatorname{Link}\left(H_{*}, C^{0}\right)$ uses the color c on u, then $u \in \operatorname{Mid}^{0}\left(H_{*}\right)$.

Proof: If each vertex of H_{*} has an L_{ψ}-list of size at least three, then, by Theorem 1.7.5, we immediately have $\operatorname{Link}\left(H_{*}, C^{0}\right) \neq \varnothing$ in that case. Now suppose there is a vertex of H_{*} with an L_{ψ}-list of size less than three. Then, by Observation 12.4.34, this vertex is the lone vertex of $D_{1}\left(F_{0}\right) \cap D_{1}\left(F_{1}\right)$, and $D_{1}\left(F_{0}\right) \cap D_{1}\left(F_{1}\right)=\{w\}$.

Let P, P^{\prime} be the two subpaths of H_{*} with endpoint w. Since w has at most four neighbors in $V\left(F_{0} \cup F_{1}\right)$, let $c \in L_{\psi}(w)$. By Theorem 1.7.5, there exist $\phi \in \operatorname{Link}\left(P, C^{0}\right)$ and $\phi^{\prime} \in \operatorname{Link}\left(P^{\prime}, C^{0}\right)$ with $\phi(w)=\phi^{\prime}(w)=c$. Since $w \notin \operatorname{Mid}^{0}\left(C^{0}\right)$, the union $\phi^{\prime} \cup \phi^{\prime \prime} \operatorname{lies}$ in $\operatorname{Link}\left(H_{*}, C^{0}\right)$. This proves 1).

Now we prove 2). Let $c \in L_{\psi}\left(w^{\prime}\right)$. If w^{\prime} is the oly vertex of $D_{1}\left(F_{0}\right) \cap D_{1}\left(F_{1}\right)$ lying in Q, then it immediate follows from Theorem 1.7.5 that there is a $\phi \in \operatorname{Link}\left(Q, C^{0}\right)$ with $\phi\left(w^{\prime}\right)=c$. Now suppose that there is a $w^{*} \in$ $D_{1}\left(F_{0}\right) \cap D_{1}\left(F_{1}\right)$ with $w^{*} \neq w^{\prime}$ and $w^{*} \in V(Q)$. By Observation 12.4.34, we have $\left\{w^{\prime}, w^{*}\right\}=D_{1}\left(F_{0}\right) \cap D_{1}\left(F_{1}\right)$, $w^{\prime} w^{*}$ is a terminal edge of Q, and each fo w^{\prime}, w^{*} has an L_{ψ}-list of size at least three. Let $d \in L_{\psi}\left(w^{*}\right)$ with $d \neq c$. Again applying Theorem 1.7.5, we get that that there is a $\phi \in \operatorname{Link}\left(Q-w^{\prime}, C^{0}\right)$ with $\phi\left(w^{*}\right)=d$. Let ϕ^{\prime} be the extension of ϕ to $\operatorname{dom}(\phi) \cup\left\{w^{\prime}\right\}$ obtained by coloring w^{\prime} with c. Since neither w^{*} nor w^{\prime} lies in $\operatorname{Mid}^{0}(Q)$, we have $\phi^{\prime} \in \operatorname{Link}\left(Q, C^{0}\right)$, so we are done.

Now we prove 3). Let z be a common neighbor of u, u^{\prime}. Since $u \in \operatorname{Mid}\left(C^{0}\right)$, we have $\operatorname{deg}_{G}(u)=5$, and z is the unique vertex of $D_{1}\left(C^{0}\right) \backslash V\left(F_{0}\right)$ such that $G\left[N(z) \cap V\left(C^{0}\right)\right]$ is a subpath of C^{0} with u as an internal vertex. Thus, $u^{\prime} \notin N(u)$. Furthermore, G contains the 4-cycle $z u u^{\prime} w^{\prime}$, and since $u u^{\prime} \notin E(G)$, we have $z w^{\prime} \in E(G)$ by our triangulation conditions. Let p be the unique neighbor of u on the path $C^{0}-w$, and let p^{\prime} be the other neighbor of p on the cycle C^{0}. Then the path $w^{\prime} z p$ lies in $N(u)$, and since $w \notin \operatorname{Mid}\left(C^{0}\right)$, the path $G\left[N(z) \cap V\left(C^{0}\right)\right]$ has w^{\prime} as an endpoint. We just need to show that $p^{\prime} \notin N(z)$.

Firstly, since $u^{\prime} \in A^{0}$, there is a $y^{\prime} \in N\left(u^{\prime}\right) \cap V\left(F_{0}\right)$ with $y^{\prime} \neq y$. Suppose that $p^{\prime} \in N(z)$. It follows that $p \in A^{0}$, or else we contradict short-separation-freeness. and, since p is adjacent to u, it follows that p has a neighbor $x^{\prime} \in V\left(F_{0}\right)$ such that either x^{\prime} is opposite to x in F_{0} or $\left|V\left(F_{0}\right)\right|=3$. In either case, since G contains the $\left(F_{0}, F_{1}\right)$-paths $x^{\prime} p z u^{\prime} y^{\prime}$ and $x w^{\prime} y$, it follows from Proposition 12.4.3 that \mathcal{A} is not defective, contradicting our assumption. This proves 2).

Now we prove 4). Let $u \in A_{w}^{0}$ and $c \in L_{\psi}(u)$. Suppose that $u \notin \operatorname{Mid}^{0}\left(H_{*}\right)$. We now construct an element of $\operatorname{Link}\left(H_{*}, C^{0}\right)$ using the color c on u. Let P, P^{\prime} be the two subpaths of H_{*} with w^{\prime} as an endpoint, where $u \in V(P)$. Applying Theorem 1.7.5, there is a $\phi \in \operatorname{Link}\left(P-w^{\prime}, C^{0}\right)$ with $\phi(u)=c$. Since $\left|L_{\psi}\left(w^{\prime}\right)\right| \geq 2$, let $d \in L_{\psi}(w) \backslash\left\{w^{\prime}\right\}$. Applying Fact 2), there is a $\phi^{\prime} \in \operatorname{Link}\left(P^{\prime}, C^{0}\right)$ with $\phi^{\prime}\left(w^{\prime}\right)=d$. Since H_{*} is an induced proper subpath of C^{0}, the union $\phi \cup \phi^{\prime}$ is a proper L-coloring of its domain. Since neither u nor w^{\prime} lies in $\operatorname{Mid}^{0}\left(H_{*}\right)$, we have $\phi \cup \phi^{\prime} \in$ $\operatorname{Link}\left(H_{*}, C^{0}\right)$, so we are done.

We now break Lemma 12.4.35. We deal with the easier case first:
Case 1 of Lemma 12.4.35: The endpoints of H_{*} do not have a common neighbor in C^{0}.
In this case, we claim that the choice of path $R:=H_{*}$ satisfies Lemma 12.4.35. By Claim 12.4.36, H_{*} is an induced subpath of C^{0}, so condition iv) of Lemma 12.4.35 is satisfied.

Let p, p^{\prime} be the endpoints of H_{*}. Let q be the unique neighbor of p on the path $C^{0} \backslash H_{*}$, and let q^{\prime} be the unique neighbor of p^{\prime} on the path $C^{0} \backslash H_{*}$. By assumption, we have $q \neq q^{\prime}$, and, by definition of H_{*}, each of q, q^{\prime} has precisely one neighbor in F_{0}. Since $q, q^{\prime} \notin D_{1}\left(F_{0}\right) \cap D_{1}\left(F_{1}\right)$, each of q, q^{\prime} has an L_{ψ}-list of size at least four.

By 1) of Claim 12.4.37, there exists a $\phi \in \operatorname{Link}\left(H_{*}, C^{0}\right)$. By By Ro4 of Definition 12.3.1, there is no chord of C^{0}, so each of q, q^{\prime} has an L_{ϕ}-list of size at least three, and each vertex of $C^{0} \backslash\left(V\left(H_{*}\right) \cup\left\{q, q^{\prime}\right\}\right)$ also has an L_{ϕ}-list of size at least three. Thus, R satisfies condition ii) of 12.4.35.

Now we show that iii) holds. Fix a color $c \in L_{\psi}\left(u_{0}\right)$. Suppose further that there exists a $u^{\prime} \in A_{w}^{1}$ such that $N\left(u_{0}\right) \cap N\left(u^{\prime}\right) \nsubseteq\{w\}$. Let $z \in N\left(u_{0}\right) \cap N\left(u^{\prime}\right)$ with $z \neq w$. Since the endpoints of H_{*} do not have a common neighbor, we just need to show that there is a $\phi \in \operatorname{Link}\left(H_{*}, C^{0}\right)$ such that either $\phi\left(u_{0}\right)=c$ or $u_{0} \in \operatorname{Mid}^{0}\left(H_{*}\right)$.This immediately follows from 4) of Claim 12.4.37, so we are done.

Case 2 of Lemma 12.4.35: The endpoints of H_{*} have a common neighbor in C^{0}.
Let p, p^{\prime} be the endpoints of H_{*} and let q be their common neighbor in C^{0}. Note that, by definition of H_{*}, we have $p, p^{\prime} \notin A^{0}$, so three vertices p, q, p^{\prime} have a common neighbor in F_{0}. In particular, since G is $K_{2,3}$-free, we have $q \notin \operatorname{Mid}^{0}\left(C^{0}\right)$.

We now show that our choice $R=C^{0}$ satisfies the requirements of Lemma 12.4.35. Since C^{0} is an induced subgraph of G, Condition iv) of Lemma 12.4 .35 is satisfied. We just need to check ii) and iii). Let $U \subseteq D_{1}\left(C^{0}\right) \backslash V\left(F_{0}\right)$ be the set of vertices with at least three neighbors in C^{0}.

Claim 12.4.38. $\left|L_{\psi}(w)\right|>2$.

Proof: Suppose toward a contradiction that $\left|L_{\psi}(w)\right| \leq 2$. Since F_{0} has precisely one anchor vertex, w is adjacent to an edge of F_{1}, and $\left|L_{\psi}(w)\right|=2$. Thus, $w \in A^{1}$.

Let $c \in L_{\psi}(w)$ and let P, P^{\prime} be the two subpaths of H_{w}^{1} with w as an endpoint. By Theorem 1.7.5, there is a $\phi \in \operatorname{Link}\left(P, C^{1}\right)$ and a $\phi^{\prime} \in \operatorname{Link}\left(P^{\prime}, C^{1}\right)$ with $\phi(w)=\phi^{\prime}(w)=c$. Since $w \notin \operatorname{Mid}^{1}\left(C^{1}\right)$, we have $\phi \cup \phi^{\prime} \in \mathrm{S}^{1}\left(H_{w}^{1}\right)$. Let v be the lone vertex of $C^{1} \backslash H_{w}^{1}$ adjacent to the non- w-endpoint of P, and let v^{\prime} be the lone vertex of $C^{1} \backslash H_{w}^{1}$ adjacent to the non-w-endpoint of P^{\prime}. By definition of H_{w}^{1}, each vertex of v, v^{\prime} has an L_{ψ}-list of size at least four, since C^{1} has no chord with an endpoint in A^{1}. Furthermore, if $v=v^{\prime}$, then we contradict Lemma 12.4.28. Thus, $v \neq v^{\prime}$, and each vertex of $C^{1} \backslash H_{w}^{1}$ has an $L_{\phi \cup \phi^{\prime}}$-list of size at least three.

Then there is a $\phi \in \operatorname{Link}\left(H_{w}^{1}, C^{1}\right)$ such that $L_{\phi}(v) \mid \geq 3$ for all $v \in V\left(C^{1} \backslash R^{1}\right)$. By Ro4 of Definition 12.3.1, H_{w}^{1} is chordless subpath of C^{1} so ϕ is a proper L-coloring of its domain in G. Now let P, P^{\prime} be the two subpaths of $C^{0}-q$ which intersect precisely on w and whose union is $C^{0}-q$. By Theorem 1.7.5, there is a $\sigma \in \operatorname{Link}\left(P, C^{0}\right)$ with $\sigma(w)=$ $\phi(w)$ and a $\sigma^{\prime}(w) \in \operatorname{Link}\left(P^{\prime}, C^{0}\right)$ with $\sigma^{\prime}(w)=\phi(w)$. Since $w \notin \operatorname{Mid}^{0}\left(C^{0}\right)$, we have $\sigma \cup \sigma^{\prime} \in \operatorname{Link}\left(C^{0}-w, C^{0}\right)$.

We claim now that $\sigma \cup \sigma^{\prime} \cup \phi$ is a proper L-coloring of its domain. If this does not hold, then there is an edge of G with one endpoint in $A^{0} \backslash\{w\}$ and one endpoint in $A^{1} \backslash\{w\}$. In that case, G contains an $\left(F_{0}, F_{1}\right)$-path of length three which is disjoint to $x w y$. Applying Proposition 12.4.3, this contradicts the fact that \mathcal{A} is defective. Thus, $\tau:=\sigma \cup \sigma^{\prime} \cup \phi$ is indeed a proper L-coloring of its domain. Now, if q has a neighbor q^{\prime} in $\operatorname{dom}(\tau) \backslash V\left(C^{0}\right)$, then, since $w \in A^{1}$ and $q \notin D_{1}\left(F_{1}\right), G$ contains two disjoint $\left(F_{0}, F_{1}\right)$-paths of length three which respective internal edges $q q^{\prime}$ and $w u_{0}$, where either $\left|V\left(F_{1}\right)\right|=3$ or the F_{1}-endpoints of these two paths are nonadjacent. In either case, applying 2) of Proposition 12.4.3, we contradict the fact that \mathcal{A} is defective. Thus, we have $\left|L_{\tau}(q)\right| \geq 1$.

Now, the tuple $\left[V\left(C^{0}-q\right) \cup V\left(H_{w}^{1}\right) ; q ; \tau ; \operatorname{Mid}^{0}\left(C^{0}\right) \cup \operatorname{Mid}^{1}\left(H_{w}^{1}\right)\right]$ is not a cycle connector for \mathcal{A}, so there is a vertex $z \notin V\left(C^{0}\right) \cup V\left(H_{w}^{1}\right)$ with at least three neighbors in $\operatorname{dom}(\tau)$ and $\left|L_{\tau}(z)\right|<3$. Since $\sigma \cup \sigma^{\prime} \in \operatorname{Link}\left(C^{0}-w, C^{0}\right)$ and $\phi \in \operatorname{Link}\left(H_{w}^{1}, C^{1}\right)$, and each vertex of $C^{1} \backslash H_{w}^{1}$ has an L_{ϕ}-list of size at least three, it follows that z has at least one neighbor in $\operatorname{dom}(\phi) \backslash\{w\}$ and at least one neighbor in $\operatorname{dom}\left(\sigma \cup \sigma^{\prime}\right) \backslash\{w\}$, or else $\left|L_{\tau}(z)\right| \geq 3$.

Let K be the subgraph of G induced by $V\left(F_{0} \cup F_{1} \cup C^{0}\right) \cup\{z\}$. Since z has a neighbor in A^{0} and a neighbor in $A^{1} \backslash\{w\}, K$ contains an $\left(F_{0}, F_{1}\right)$-path of length three which is disjoint to $x w y$, so K is 2-connected. By Observation 12.4.34, since w has two neighbors in F_{1}, we have $\{w\}=D_{1}\left(F_{0}\right) \cup D_{1}\left(F_{1}\right)$, and thus $\left|V\left(C^{0}\right)\right| \leq 6$. Since C^{0} separates F_{0} from $F 1$, any facial subgraph of K has length at most 11 , contradicting the fact that \mathcal{A} is defective.

Applying Claim 12.4.38, each vertex of C^{0} has an L_{ψ}-list of size at least three. Now we show that $\operatorname{Link}\left(C^{0}\right) \neq \varnothing$. Consider the following cases:

Case 1: $U \cap N(q)=\varnothing$
In this case, neither neighbor of q in C^{0} lies in $\operatorname{Mid}^{0}\left(C^{0}\right)$, and, by Theorem 1.7.5, since each vertex of $C^{0}-q$ has an L_{ψ}-list of size at least three, there is a $\phi \in \operatorname{Link}\left(C^{0}-q, C^{0}\right)$. Since $\left|L_{\psi}(q)\right| \geq 4$, there is a color left over for q, so we extend ϕ to q and let ϕ^{\prime} be the resulting coloring. Then $\phi^{\prime} \in \operatorname{Link}\left(C^{0}\right)$, and we are done.

Case 2: $U \cap N(q) \neq \varnothing$
In this case, let P, P^{\prime} be the two subpaths of C^{0} with endpoints w, q and let $z \in U \cap N(q)$. Since $q \notin \operatorname{Mid}^{0}\left(C^{0}\right)$, $G\left[N(z) \cap V\left(C^{0}\right)\right]$ is a subpath of C^{0} with q as an endpoint, so suppose for the sake of definiteness that $G[N(z) \cap$ $\left.V\left(C^{0}\right)\right]$ is a subpath of P^{\prime}. Let v^{m} be the lone vertex of $G\left[N(z) \cap V\left(C^{0}\right)\right]$ adjacent to q. Since $\left|L_{\psi}(q)\right| \geq 4$, let $d \in L_{\psi}(q)$ be such that $L_{\psi}\left(v^{m}\right) \backslash\{d\} \mid \geq 3$. Now, by Theorem 1.7.5, since $\left|L_{\psi}(w)\right| \geq 3$, there is a $\phi \in \operatorname{Link}\left(P^{\prime}, C^{0}\right)$ such that $\phi(q)=d$. Let v be the non- q-endpoint of $G\left[N(z) \cap V\left(C^{0}\right)\right]$. Again by Theorem 1.7.5, there is a $\phi^{*} \in$ $\operatorname{Link}\left(w P v, C^{0}\right)$ such that $\phi(w)=\phi^{*}(w)$. Thus, $\phi \cup \phi^{*}$ is a proper L-coloring of its domain, and, by our choice of d, the path $G\left[N(z) \cap V\left(C^{0}\right)\right] \backslash\{q, v\}$ is $L_{\phi \cup \phi^{*}}$-inert, so $\phi \cup \phi^{*} \in \operatorname{Link}\left(C^{0}\right)$.

Thus, our choice of R satisfies ii) of our Lemma. Now suppose that $u_{0} \notin \operatorname{Mid}^{0}\left(C^{)}\right)$and fix a $c \in L_{\psi}\left(u_{0}\right)$. To finish, it suffices to show that there is a $\phi \in \operatorname{Link}\left(C^{0}\right)$ using c on u_{0}. Let P be the subpath of $C^{0}-u_{0} w$ with endpoints u_{0}, q, and let P^{\prime} be the subpath of $C^{0}-u_{0} w$ with endpoints q, w. By Theorem 1.7.5, since $\left|L_{\psi}(q)\right| \geq 4$, there is a pair of elements $\phi, \phi^{\prime} \in \operatorname{Link}\left(P, C^{0}\right)$ which both use c on u_{0} and which use distinct colors on q. By Claim 12.4.38, we have $L_{\psi}(w) \backslash\{c\} \mid \geq 2$. Thus, by Theorem 1.7.5, there is a $\sigma \in \operatorname{Link}\left(P^{\prime}, C^{0}\right)$ using one of $\left\{\phi(q), \phi^{\prime}(q)\right\}$ on q and a color of $L_{\psi}(w) \backslash\{c\}$ on w, say $\sigma(q)=\phi(q)$ without loss of generality. The union $\sigma \cup \phi$ is a proper L-coloring of its domain. Since $w, u_{0}, q \notin \operatorname{Mid}^{0}\left(C^{0}\right)$, we have $\sigma \cup \phi \in \operatorname{Link}\left(C^{0}\right)$. This completes the proof of Lemma 12.4.35.

We now come to the final proposition we need in order to prove Theorem 12.4.1.
Proposition 12.4.39. Let $\mathcal{A}:=\left(G, F_{0}, F_{1}, L, \psi\right)$ be a roulette wheel with $d\left(F_{0}, F_{1}\right)=2$ and suppose that, for some $i \in\{0,1\}, F_{i}$ has precisely one anchor vertex. Then \mathcal{A} is not defective.

Proof. Suppose without loss of generality that F_{0} has precisely one anchor vertex x. By Proposition 12.4.5, either $\left|D_{1}\left(F_{0}\right) \cap D_{1}\left(F_{1}\right)\right|=1$ or there exists a $y \in V\left(F_{1}\right)$ such that $N(w) \cap V\left(F_{1}\right)=\{y\}$ for all $w \in D_{1}\left(F_{0}\right) \cap D_{1}\left(F_{1}\right)$. In the latter case, $\left.\mid D_{1}\left(F_{0}\right)\right) \cap D_{1}\left(F_{1}\right) \mid \leq 2$, since G is $K_{2,3}$-free. Thus, in any case, we fix a vertex $y \in V\left(F_{1}\right)$ such that $y \in N(w)$ for all $w \in D_{1}\left(F_{0}\right) \cap D_{1}\left(F_{1}\right)$. We also fix a vertex $w \in D_{1}\left(F_{0}\right) \cap D_{1}\left(F_{1}\right)$.

Let H_{*} be the subgraph of G induced by $\bigcup\left(\left\{w^{\prime}\right\} \cup A_{w^{\prime}}^{0}: w^{\prime} \in D_{1}\left(F_{0}\right) \cap D_{1}\left(F_{1}\right)\right)$, and let R be a subgraph of C^{0} satisfying Lemma 12.4.35, where either $R=C^{0}$ or $R=H_{*}$, and in the latter case, R is a subpath of C^{0} consisting of all but one vertex of C^{0}, and $R=H_{*}$. Let P be the set of vertices of $C^{1} \backslash\left(D_{1}\left(F_{0}\right) \cap D_{1}\left(F_{1}\right)\right)$ with at least two neighbors in R.

Claim 12.4.40. Let $u_{0} \in A_{w}^{0}$ and $u_{1} \in A_{w}^{1}$. Then the following hold.

1) For any $z \in N\left(u_{1}\right) \cap V\left(C^{0}\right)$, we have $N(z) \cap V\left(F_{0}\right)=\{x\}$. In particular, $N\left(u_{1}\right) \cap A^{0}=\varnothing$, and $N\left(u_{1}\right) \cap$ $V(R) \mid \leq 2 ; A N D$
2) If there is a $p \in P$, then $D_{1}\left(F_{0}\right) \cap D_{1}\left(F_{1}\right)=\{w\}, N(p) \cap V\left(F_{1}\right)=N(w) \cap V\left(F_{1}\right)=\{y\}$, and $G[N(p) \cap V(R)]$ is an edge with w as an endpoint. In particular, $P=\{p\} ;$ AND
3) There is at most one vertex lying in $N\left(u_{1}\right) \cap\left(B_{1}\left(C^{0}\right) \backslash R\right)$, and, if z is such a vertex, then $N(z) \cap V(R)$ consists of at most w and one vertex of A_{w}^{0}.

Proof: Let z be a neighbor of u_{1} in $V\left(C^{0}\right)$ and suppose that there is an $x^{\prime} \neq x$ with $x^{\prime} \in N(z)$. Then G contains the $\left(F_{0}, F_{1}\right)$-path $x^{\prime} z u_{1}$. Ssince u_{1} has a neighbor in $F_{1} \backslash\{y\}$ and G contains the path $x w y$, it follows from 1) of Proposition 12.4.3 that \mathcal{A} is not defective, contradicting our assumption. Thus, $N(z) \cap V\left(F_{0}\right)=\{x\}$, so we have $N\left(u_{1}\right) \cap A^{0}=\varnothing$. By definition of R from Lemma 12.4.35, $R \backslash A^{0}$ consists of $D_{1}\left(F_{0}\right) \cap D_{1}\left(F_{1}\right)$ and at most one other vertex. By Observation 12.4.34, u_{1} has at most one neighbor in $D_{1}\left(F_{0}\right) \cap D_{1}\left(F_{1}\right)$, so we indeed have $\left|N\left(u_{1}\right) \cap V(R)\right| \leq 2$. This proves 1$)$.

Now we prove 2). Let $p \in V\left(C^{1}\right) \backslash\left(D_{1}\left(F_{0}\right) \cap D_{1}\left(F_{1}\right)\right)$ and suppose that $N(p) \cap V(R) \mid>1$.
Subclaim 12.4.41. $N(p) \cap V\left(F_{1}\right)=\{y\}$.
Proof: Suppose that there is a $y^{\prime} \in N(p) \cap V\left(F_{1}\right)$ with $y \neq y^{\prime}$. In that case, for any $u \in N(p) \cap V\left(C^{0}\right)$, we have $N(u) \cap V\left(F_{0}\right)=\{x\}$, or else G contains an $\left(F_{0}, F_{1}\right)$-path of length at most three which is disjoint to $x w y$. Applying Proposition 12.4.3, this contradicts the fact that \mathcal{A} is defective. Since each neighbor of p in C^{0} is adjacent to x, the graph $G\left[N(p) \cap V\left(C^{0}\right)\right]$ is a subpath of C^{0} of length at most one, or else G contains a separating cycle of length at most four. Thus, since $N(p) \cap V(R) \mid>1$, the graph $G\left[N(p) \cap V\left(C^{0}\right)\right]$ is an edge of $R \backslash \operatorname{Mid}^{0}(R)$, each vertex of which lies outside of A^{0}. By Observation 12.4.35, z is adjacent to at most one vertex of $D_{1}\left(F_{0}\right) \cap D_{1}\left(F_{1}\right)$. Thus, by definition of R, there exists a $w^{\prime} \in D_{1}\left(F_{0}\right) \cap D_{1}\left(F_{1}\right)$ and a neighbor v of w^{\prime} such that $G\left[N(p) \cap V\left(C^{0}\right)\right]=w^{\prime} v$, and $R=C^{0}=H_{*}+v$.

Now let K be the subgraph of G induced by $V\left(F_{0} \cup F_{1} \cup C^{0}\right) \cup\{p\}$. Note that K is 2-connected, since K contains the paths $x v p y^{\prime}$ and $u_{0} w y$, where u_{0} has two neighbors in F_{0}. Since \mathcal{A} is defective, there is a facial subgraph D of K with $|V(D)|>11$. Since C^{0} separates F_{0} from $V\left(F_{1}\right) \cup\{p\}$, we have either $V(D) \subseteq V\left(F_{0}\right) \cup V\left(C^{0}\right)$ or
$V(D) \subseteq V\left(F_{1} \cup C^{0}\right) \cup\{p\}$. Since $R=H_{*}+v$, we have $\left|V\left(C^{0}\right)\right| \leq 7$, so $\left.V(D)=V\left(F_{1} \cup C^{0}\right) \cup\{p\}\right)$ and $\left|V\left(C^{0}\right)\right|=7$. In particular, $\left|D_{1}\left(F_{0}\right) \cap D_{1}\left(F_{1}\right)\right|=2$, or else, since $C^{0}=H_{*}+v$, we have $\left|V\left(C^{0}\right)\right| \leq 6$. THus, let $D_{1}\left(F_{0}\right) \cap D_{1}\left(F_{1}\right)=\left\{w, w^{*}\right\}$.

Since D is a facial subgraph of K and $\left.V(D)=V\left(F_{1} \cup C^{0}\right) \cup\{p\}\right), y^{\prime}$ is adjacent to y, since K does not contain a generalized chord of F_{1} whose endpoints are notadjacent in F_{1}. Thus, G contains the 4-cycle $y y^{\prime} p w^{\prime}$. By Observation 12.4.34, we have $y^{\prime} \notin N\left(w^{\prime}\right)$, so $y \in N(p)$ by our triangulation conditions. Furthermore, the two neighbors of w^{\prime} on the cycle C^{0} are v and the lone element of $\left(D_{1}\left(F_{0}\right) \cap D_{1}\left(F_{1}\right)\right) \backslash\left\{w^{\prime}\right\}$, so K contains a 5-cycle, each vertex of which is adjacent to w^{\prime}. But then, since $|V(D)|>11$, we have $w^{\prime} \notin V(D)$, contradicting the fact that $\left.V(D)=V\left(F_{1} \cup C^{0}\right) \cup\{p\}\right)$.

Subclaim 12.4.41 implies that $\left|D_{1}\left(F_{0}\right) \cap D_{1}\left(F_{1}\right)\right|=1$. If thius does not hold, then, by Observation 12.4.34, there exists a $w^{*} \neq w$ such that $N(w) \cap N\left(w^{*}\right)=\{x, y\}$. By Lemma 12.4.18, there is a $u_{1}^{*} \in A_{w^{*}}^{1}$, and since $N(w) \cap N\left(w^{*}\right)=$ $\{x, y\}$, we have $u_{1}^{*} \neq u_{1}$. Let y_{1} be the non- y-endpoint of the edge R_{y}^{1} and let y_{1}^{*} be the non- y-endpoint of the edge $R_{u_{1}^{*}}^{1}$. Then G contains the 4-chord $y_{1} u_{1} w u_{1}^{*} y_{1}^{*}$, each vertex of which is adjacent to y. Since G is short-separation-free, we have $N(y)=\left\{y_{1}, u_{1}, w, u_{1}^{*}, y_{1}^{*}\right\}$. Since $\left|N(p) \cap V\left(F_{1}\right)\right|=1$ and $p \notin D_{1}\left(F_{0}\right) \cap D_{1}\left(F_{1}\right)$, this contradicts the fact that $p \in N(y)$. Thus, we have $D_{1}\left(F_{0}\right) \cap D_{1}\left(F_{1}\right) \mid=1$. In particular, $D_{1}\left(F_{0}\right) \cap D_{1}\left(F_{1}\right)=\{w\}$.

Subclaim 12.4.42. For each $u \in N(p) \cap V(R)$, either $u \in A_{w}^{0}$ or $N(u) \cap V\left(F_{0}\right)=\{x\}$.
Proof: We first note that for any $u \in N(p)$, each vertex of $N(p) \cap V\left(F_{0}\right)$ is either x or adjacent to x. If this does not hold, then there is a $u \in N(p)$ and an $x^{\prime} \in V\left(F_{0}\right) \cap N(u)$ nonadjacent to x. In that case, since $N(p) \cap V\left(F_{1}\right)=\{y\}, G$ contains the disjoint paths $x w u_{1}$ and $x^{\prime} u p y$. Since $u_{1} \in A^{1}$, u_{1} has a neighbor in $F_{1} \backslash\{y\}$. Applying 2) of Proposition 12.4.3, we contradict the fact that \mathcal{A} is defective.

Thus, if the subclaim does not hold, then there is an edge $x x^{*}$ of F_{0} incident to x and a $v^{*} \in N(p) \cap V(R)$ with $N\left(v^{*}\right) \cap V\left(F_{0}\right)=\left\{x^{*}\right\}$. Since $v^{*} \in V(R)$ and $v^{*} \notin A^{0}$, it then follows by definition of H_{*}, R that $R=H_{*}+v^{*}$. Let K be the subgraph of G induced by $V\left(F_{0} \cup F_{1}\right) \cup V\left(C^{0}\right) \cup\left\{p, u_{1}\right\}$. Since G contains the paths $x w u_{1}$ and $x^{*} v^{*} p y$, and u_{1} has a neighbor in $F_{1} \backslash\{y\}, K$ is 2-connected. Since \mathcal{A} is defective, let D be a facial subgraph of K with $|V(D)|>11$. Since C^{0} separates $V\left(F_{1}\right)$ from $V\left(F_{1}\right) \cup\left\{p, u_{1}\right\}$, we have either $V(D) \subseteq V\left(F_{0} \cup C^{0}\right)$ or $V(D) \subseteq V\left(F_{1} \cup C^{0}\right) \cup\left\{p, u_{1}\right\}$. Since $\left|D_{1}\left(F_{0}\right) \cap D_{1}\left(F_{0}\right)\right|=1$ and $R=H_{*}+v_{*}$, we have $\left|V\left(C^{0}\right)\right| \leq 6$, so $V(D) \subseteq V\left(F_{1} \cup C^{0}\right) \cup\left\{p, u_{1}\right\}$. Since K contains the 5-chord $x^{*} v^{*} p y w x$ of F_{0}, D does not contain all of the vertices of C^{0}, so $\left|V\left(C^{0} \cap D\right)\right| \leq 5$, and thus $|V(D)| \leq 11$, which is false.

Applying Subclaim 12.4.42, each neighbor of p in $V(R)$ is adjacent to x. By 2) of Proposition 12.3.6, $G[N(p) \cap V(R)]$ is an edge of C^{0}, and, by definition of R, this edge has w as an endpoint. If $|P| \geq 2$, then w, y have two common neighbors in P. Since w, y are both adjacent to u_{1} and $A^{1} \cap P=\varnothing$, this contradicts the fact that G is $K_{2,3}$-free. Thus, $|P| \leq 1$. To finish the proof of 2), it just suffices to check that, if $P \neq \varnothing$, then $N(w) \cap V\left(F_{1}\right)=\{y\}$. Suppose there is a $y^{\prime} \in N(w)$ with $y^{\prime} \neq y$. By 2) of Lemma 12.3.8, we then have $N(y) \subseteq V\left(F_{1}\right) \cup\left\{w, u_{1}\right\}$, contradicting the fact that $p \in N(y)$. This proves 2) of Claim 12.4.40. Now we prove 3). Let $z \in N\left(u_{1}\right) \cap\left(B_{1}\left(C^{0}\right) \backslash R\right)$.

Subclaim 12.4.43. $z \notin V\left(C^{0} \backslash R\right)$.
Proof: Suppose that $z \in V\left(C^{0} \backslash R\right)$. By 1), we have $N(z) \cap V\left(F_{0}\right)=\{x\}$. Thus, G contains the 4-cycle $x w u_{1} z$. Since $u_{1} \notin N(x)$, we have $w z \in E(G)$, and, by Ro4 of Definition 12.3.1, we have $w z \in E\left(C^{0}\right)$. Since u_{0} is the other neighbor of w in the cyclic order, it follows from Observation 12.4.34 that $\left.D_{(} F_{0}\right) \cap D_{1}\left(F_{1}\right)=\{w\}$.

By Lemma 12.4.35, there is no chord of C^{0} with an endpoint in R. Furthermore, since $z \notin V(R)$, we have $R=H_{*}$ by definition of R, so the neighbors of z in R consist of w and the lone endpoint of $H_{u_{0}}^{0}$ which is not
adjacent to w. Thus $\left|V\left(C^{0}\right)\right|=6$. Let K be the subgraph of G induced by $V\left(F_{0} \cup F_{1} \cup C^{0}\right) \cup\left\{u_{1}\right\}$. Since z has a neighbor in A^{0} and a neighbor in A^{1}, K contains an $\left(F_{0}, F_{1}\right)$-path disjoint to $x w y$, so K is 2-connected. Since C^{0} separates $V\left(F_{0}\right)$ from $V\left(F_{1}\right) \cup\left\{u_{1}\right\}$, every facial subgraph of K has length at most 11, contradicting the fact that \mathcal{A} is defective.

Thus we have $z \in D_{1}\left(C^{0}\right)$. Now we claim that $N(z) \cap A^{0} \subseteq A_{w}^{0}$. Suppose not. Let $u \in N(z)$ with $u \in A^{0} \backslash A_{w}^{0}$. Since $u \in A^{0} \backslash A_{w}^{0}$, we have either $\left|V\left(F_{0}\right)\right|=3$, or u has a neighbor in F_{0} which is not adjacent to x. Thus, since G contains the paths $x w y$ and $u z u_{1}$, it follows from 2) of Proposition 12.4.3 that \mathcal{A} satisfies S 1 , contradicting the fact that \mathcal{A} is defective. Thus, we have $N(z) \cap A^{0} \subseteq A_{w}^{0}$. If $\left|N(z) \cap A_{w}^{0}\right|>1$, then, by 2) of Proposition 12.3.6, there is an edge of C^{0} with both endpoints in A_{w}^{0}, which is false, so $N(z) \cap A^{0}$ consists of at most one vertex of A_{w}^{0}.

Subclaim 12.4.44. $N(z) \cap V\left(R \backslash A^{0}\right) \subseteq\{w\}$.
Proof: Suppose not, and let $v \in N(z) \cap V\left(R \backslash A^{0}\right)$ with $v \neq w$. If $x \in N(v)$, then G contains the 4-cycle $x v z u_{0}$, and since $v \in D_{1}\left(C^{0}\right) \backslash F_{0}$, we have $x v \notin E(G)$, so $v u_{0} \in E(G)$. Letting x^{*} be the other endpoint of $G\left[N\left(u_{0}\right) \cap V\left(F_{0}\right)\right]$, each of x^{*}, v, w is adjacent to each of x, u_{0}, contradicting the fact that G is $K_{2,3}$-free. Thus, $x \notin N(z)$, so $v \notin D_{1}\left(F_{0}\right) \cap D_{1}\left(F_{1}\right)$.

By definition of R, C^{0} is a cycle with $R=C^{0}=H_{*}+v$. Let K be the subgraph of G induced by $V\left(F_{0} \cup\right.$ $\left.F_{1} \cup C^{0}\right) \cup\left\{z, u_{1}\right\}$. Then K is 2-connected, since there is an $\left(F_{0}, F_{1}\right)$-path in K with internal vertices $v z u_{1}$ which is disjoint to $x w y$. Since \mathcal{A} is defective, let D be a facial subgraph of K with $|V(D)|>11$. Since C^{0} separates F_{0} from $V\left(F_{1}\right) \cup\left\{z, u_{1}\right\}$, we have either $V(D) \subseteq V\left(F_{0} \cup C^{0}\right)$ or $V(D) \subseteq V F_{1} \cup\left(C^{0}\right) \cup\left\{z, u_{1}\right\}$. Since $R=C^{0}=H_{*}+v$, we have $\left|V\left(C^{0}\right)\right| \leq 7$, so $V(D) \subseteq V\left(F_{1} \cup C^{0}\right) \cup\left\{z, u_{1}\right\}$. Now, K contains the 3-chord $w u_{1} z v$ of C^{0} with internal vertices, and since $x \notin N(v)$, the vertices w, v are not adjacent in the cyclic order of C^{0}, so $\left|V\left(D \cap C^{0}\right)\right|<\left|V\left(C^{0}\right)\right|$. Since $|V(D)|>11$, we then have $\left.\left|V\left(C^{0}\right)\right|=7, \mid V C^{0} \cap D\right) \mid=6$, and $D_{1}\left(F_{0}\right) \cap D_{1}\left(F_{1}\right)$ consists of two vertices, so let $w^{*} \in\left(D_{1}\left(F_{0}\right) \cap D_{1}\left(F_{1}\right)\right) \backslash\{w\}$.

By Observation 12.4.34, $w w^{*}$ is an edge of G and $y \in N\left(w^{*}\right)$. Since $V\left(C^{0} \cap D\right) \mid=6, w, v$ have a common neighbor in R, and, by iv) or Lemma 12.4.35, $R=C^{0}$ is an induced cycle, so this lone neighbor is next to w in the cyclic order. Since $w^{*} \notin N(v)$, this common neighbor is u_{0}. But then G contains the 5 -chord $v z u_{1} y w^{*}$ of C^{0}. Since $\left|V\left(C^{0}\right)\right| \geq 7$ and C^{0} contains the path $u_{0} w w^{*} v$, we then have $\left|V\left(C^{0} \cap D\right)\right| \leq \mid V\left(C^{0} \mid-2\right.$, contradicting the fact that $\left|V\left(C^{0} \cap D\right)\right|=6$.

To finish, we just need to check that z is unique. Suppose not. Then there is a $z^{\prime} \in N\left(u_{1}\right) \cap D_{1}\left(C^{0}\right)$ with $z^{\prime} \neq z$, and each of z, z^{\prime} has at least one neighbor among $\{w\} \cup A_{w}^{0}$. If each of z, z^{\prime} are adjacent to w, then each of z, z^{\prime}, y is adjacent to each of w, u_{1}, contradicting the fact that G is $K_{2,3}$-free. Thus, we suppose without loss of generality that $z \notin N(w)$, so z has a neighbor $u \in A_{w}^{0}$, and G contains the 4-cycle $w u z u_{1}$. Since $N\left(u_{1}\right) \cap A^{0}=\varnothing$, it then follows from our triangulation conditions that $w z \in E(G) i$ which is false. This completes the proof of Claim 12.4.40.

We claim now that it suffices to prove that Proposition 12.4 .39 in the case where $P=\varnothing$. Suppose that $P \neq \varnothing$. By 2) of Claim 12.4.40, there is a lone vertex p such that $P=\{p\}$, and $D_{1}\left(F_{0}\right) \cap D_{1}\left(F_{1}\right)=\{w\}$, where $N(w) \cap V\left(F_{1}\right)=\{y\}$. In particular, by the symmtery of F_{0}, F_{1}, we define a subgraph R^{\prime} of C^{1} satisfying Lemma 12.4.35, and we let P^{\prime} be the set of vertices of $C^{0} \backslash\{w\}$ with at least two neighbors in R^{\prime}. We just need to show that $P^{\prime}=\varnothing$.

Claim 12.4.45. $P^{\prime}=\varnothing$.

Proof: Suppose that $P^{\prime} \neq \varnothing$. By 2) of Claim 12.4.40, it follows from the symmetry of F_{0}, F_{1} in this case that there is a unique vertex p^{\prime} such that $P^{\prime}=\left\{p^{\prime}\right\}$, where $N\left(p^{\prime}\right) \cap V\left(F_{0}\right)=\{x\}$ and $G\left[N\left(p^{\prime}\right) \cap V\left(R^{\prime}\right)\right]$ is an edge of R^{\prime}
with w as an endpoint. Let $G\left[N\left(p^{\prime}\right) \cap V\left(R^{\prime}\right)\right]=w v$ and $G\left[N\left(p^{\prime}\right) \cap V\left(R^{\prime}\right)\right]=w v^{\prime}$ for some $v \in V(R-w)$ and $v^{\prime} \in V\left(R^{\prime}-w\right)$. If $p=v^{\prime}$, then each of p^{\prime}, v is adjacent to each of x, w, p, contradicting the fact that G is $K_{2,3}$-free, so $p \neq v^{\prime}$. Likewise, we have $p^{\prime} \neq v$. Consider the following cases.

Case 1: $v \notin A^{0}$ and $v^{\prime} \notin A^{1}$
In this case, by definition of R, R^{\prime}, since $D_{1}\left(F_{0}\right) \cap D_{1}\left(F_{1}\right)=\{w\}$, we have $V\left(C^{0}\right)=V\left(H_{u_{0}}^{0}\right) \cup\{w, v\}$ and $V\left(C^{1}\right)=$ $V\left(H_{u_{1}}^{1}\right) \cup\left\{w, v^{\prime}\right\}$, and each of C^{0}, C^{1} is a cycle of length at most six. Let $K:=G\left[V\left(F_{0} \cup F_{1}\right) \cup V\left(C^{0} \cup C^{1}\right)\right]$. Then K is 2 -connected, since it contains the paths $u_{0} p y$ and $x w u_{1}$, where u_{0} has a neighbor in $F_{0}-x$ and u_{1} has a neighbor in $F_{1}-y$. Since C^{0}, C^{1} each have length six and intersect on w, every facial subgraph of K has length at most 11 , contradicting the fact that \mathcal{A} is defective.

Case 2: Either $v \in A^{0}$ or $v^{\prime} \in A^{1}$.
In this case, suppose without loss of generality that $v \in A^{0}$. If $v^{\prime} \notin A^{1}$, then, since p, v^{\prime} are the two vertices adjacent to w in the cyclic order of C^{0} and $A_{w}^{0} \neq \varnothing$, we have $p \in A_{w}^{1}$. But then $p v$ is an edge of G with one endpoint in A^{0} and one endpoint in A^{1}, so there is an $\left(F_{0}, F_{1}\right)$-path in G of length three which is disjoint to $x w y$. Applying 1) of Proposition 12.4.3, this contradicts the fact that \mathcal{A} is defective. Thus, we have $v^{\prime} \in A^{1}$, so let $x x_{v}$ be the neighborhood of v in F_{0} and let $y y_{v^{\prime}}$ be the neighborhood of v^{\prime} in F_{1}.

Note that G contains a 6-cycle $x p^{\prime} v^{\prime} y p v$, each vertex of which is adjacent to w, so $N(w)=\left\{x, p^{\prime}, v^{\prime}, y, p, v\right\}$, as G is short-separation-free. Furthermore, we have $\left|V\left(F_{0}\right)\right|=\left|V\left(F_{1}\right)\right|=4$, or else, since G contains the paths $x p^{\prime} u_{1}$ and $u_{0} p y$, with $u_{1} \in A^{1}$ and $u_{0} \in A^{1}$, it follows from 2) of Proposition 12.4.3 that \mathcal{A} is not defective. Now, let Q be the lone edge of $F_{0} \backslash N(v)$.

Since $L_{\psi}\left(p^{\prime}\right) \mid \geq 4$ and $\left|L_{\psi}(w)\right| \geq 3$, we fix a $d^{\prime} \in L_{\psi^{\prime}}\left(p^{\prime}\right)$ with $L_{\psi}(w) \backslash\left\{d^{\prime}\right\} \mid \geq 3$. Since neither p^{\prime} nor v^{\prime} is adjacent to v, there is an L_{ψ}-coloring ϕ of $\left\{p^{\prime}, v, v^{\prime}\right\}$ using d^{\prime} on p^{\prime} such that $\left|L_{\psi}(w) \backslash\left\{\phi\left(p^{\prime}\right), \phi(v), \phi\left(v^{\prime}\right)\right\}\right| \geq 2$. In particular, w is $L_{\psi \cup \phi}$-inert since it has only one uncolored neighbor.

By Theorem 1.7.5, there is a $\phi^{*} \in \operatorname{Link}\left(H_{v^{\prime}}^{1}, C^{1}\right)$ using $\phi\left(v^{\prime}\right)$ on v^{\prime}. Since $H_{v^{\prime}}^{1} \subseteq R^{\prime}$, p^{\prime} is not not adjacent to any vertex of $H_{v^{\prime}}^{1}$ except v^{\prime}, and, since G has no $\left(F_{0}, F_{1}\right)$-path of length three disjoint to $x w y, u_{0}$ has no neighbors in H_{v}^{1}. Thus, $\phi \cup \phi^{*}$ is a proper L-coloring of its domain. Let $\tau=\psi \cup \phi \cup \phi^{*}$ and consider the tuple [\{p $\left.\left.{ }^{\prime}, v\right\} \cup V\left(H_{v^{\prime}}^{1}\right) ; Q: \tau ; w\right]$. Since \mathcal{A} is defective, this is not a cycle connector for \mathcal{A}, so there exists a $z \in V(G) \backslash\left(\operatorname{dom}\left(\phi^{*}\right) \cup\{w\}\right)$ such that $\left|L_{\tau}^{Q}(z)\right|<3$. Since $z \notin D_{1}\left(F_{0}\right) \cap D_{1}\left(F_{1}\right), z$ has a neighbor in $\left\{p^{\prime}, v\right\} \cup V\left(H_{v^{\prime}}^{1}\right)$.

Subclaim 12.4.46. $N(z) \cap\left(\left\{p^{\prime}, v\right\} \cup V\left(H_{v^{\prime}}^{1}\right)\right.$ consists of either $\{v\}$ or a subset of $\left\{p^{\prime}, v^{\prime}\right\}$.
Proof: Suppose that z has a neighbor $\left.q \in V\left(H_{v^{\prime}}^{1}\right)-v^{\prime}\right)$. Since $\phi^{*} \in \operatorname{Link}\left(H_{v^{\prime}}^{1}, C^{1}\right)$ and $\left|L_{\tau}^{Q}(z)\right|<3$, we have $N(z) \cap \operatorname{dom}(\tau) \nsubseteq V\left(H_{v^{\prime}}^{1}\right)$, so z also has a neighbor in $V\left(F_{0} \cup F_{1}\right) \cup\left\{p^{\prime}, v\right\}$. If $z=p$, then, since there is no chord of C^{1} with q as an endpoint, C^{1} is a 6-cycle, and then $K:=G\left[V\left(F_{0} \cup F_{1} \cup C^{1}\right) \cup\{v\}\right]$ is a 2-connected graph in which every face has length at most 11 , since C^{1} separates F_{0} from F_{1} and K contains the two disjoint $\left(F_{0}, F_{1}\right)$-paths $x w v^{\prime} y_{v^{\prime}}$ and $x_{v} v p y$. This contradicts our assumption that \mathcal{A} is defective, so $z \neq p$. If $z \in V\left(C^{1}\right)$, then z has one neighbor in $H_{v^{\prime}}^{1}$, since there is no chord of C^{1} with an endpoint in $H_{v^{\prime}}^{1}$. But then, since z is also adjacent to one of p^{\prime}, v, since $\left|L_{\tau}^{Q}(z)\right|<3$. Thus, we have $N(z) \cap V\left(F_{1}\right)=\{y\}$.

Since $N(z) \cap V\left(F_{1}\right)=\{y\}$, we have $v \notin N(z)$, or else the three vertices w, p, z are each adjacent to both of y, v, contradicting the fact that G has no $K_{2,3}$-free. But then z is adjacent to each of y, p^{\prime}. Since y, p^{\prime} are each adjacent to w, v, this contradicts the fact that G is $K_{2,3}$-free. We conclude that $z \notin V\left(C^{1}\right)$, so z has a neighbor in $V\left(F_{0} \backslash Q\right) \cup\left\{v, p^{\prime}\right\}$. Since $q \in A^{1}, x_{v} \notin N(z)$, or else there is an $\left(F_{)}, F_{1}\right)$-path of length four disjoint to $x w y$,
contradicting the fact that \mathcal{A} is defective. Thus, z has a neighbor $q^{\prime} \in\left\{x, v, p^{\prime}\right\}$.
If $q^{\prime}=x$, then $y \in N(q)$, or else G contains two disjoint $\left(F_{0}, F_{1}\right)$-paths of length four with nonadjacent endpoints in F_{1}, contradicting the fact that \mathcal{A} is defective. In that cae, let K be the subgraph of G induced by $V\left(F_{0} \cup F_{1}\right) \cup\{q, z, p, v, w\}$. Then K is 2-connected since it contains the paths $x z q$ and $x_{v} v p$, and $q \in A^{1}$. Since \mathcal{A} is defective, let D be a facial subgraph of G with length $|V(D)|>11$. Then $w \notin V(D)$. Yet K also contains a generalized chord of F_{0} separating p from v^{\prime}, so $|V(D) \cap\{q, z, p, v, w\}|<5$, and thus $|V(D)| \leq 11$, a contradiction. A similar argument shows that $v, p^{\prime} \notin N(z)$.

Thus, $N(z) \cap\left(\left\{p^{\prime}, v\right\} \cup V\left(H_{v^{\prime}}^{1}\right) \subseteq\left\{v, p^{\prime}, v^{\prime}\right\}\right.$. Since p^{\prime}, v are adjacent to each of x, w and G is has no $K_{2,3}$, z is adjacent to at most one of p^{\prime}, v. If z is adjacent to each of v, v^{\prime}, then G contains the 4-cycle $w v z^{\prime} v^{\prime}$. But then, since $N(w)=\left\{x, p^{\prime}, v^{\prime}, y, p, v\right\}$, it follows from our triangulation conditions that $v v^{\prime} \in E(G)$, and thus G contains a $K_{2,3}$ with bipartiton $\left\{x, w, v^{\prime}\right\},\left\{p^{\prime}, v\right\}$, contradicting the fact that G is $K_{2,3}$-free.

Since z is not adjacent to all three of $\left\{p^{\prime}, v, v^{\prime}\right\}$, z has a neighbor in $V\left(F_{0} \backslash Q\right) \cup V\left(F_{1}\right)$. Suppose first that z has a neighbor in $x^{*} \in V\left(F_{0} \backslash Q\right)$. In that case, by our choice of Q, z has precisely one in neighbor in $F_{0} \backslash Q$, or else each of v, q is adjacent to both endpoints of $G\left[N(v) \cap V\left(F_{0}\right)\right]$, contradicting the fact that G is short-separation-free. Thus, since z has at least three neighbors in $\operatorname{dom}\left(\tau \backslash V(Q)\right.$, it follows from Subclaim 12.4.46 that $p^{\prime}, v^{\prime} \in N(z)$. If $x^{*}=x$, then G contains a $K_{2,3}$ with bipartition $\left\{w, p^{\prime}, z\right\},\left\{x, v^{\prime}\right\}$. Thus, $x^{*} \neq x$. But then, since $v^{\prime} \in N(z), G$ contains an $\left(F_{0}, F_{1}\right)$-path of length three disjoint to $x w y$, contradicting the fact that \mathcal{A} is defective.

We conclude that z does not have a neighbor in $F_{0} \backslash Q$, so z has a neighbor in F_{1}. If $v \in N(z)$, then, by Subclaim 12.4.46, we have $p^{\prime}, v^{\prime} \notin N(z)$, so z has a neighbor in $F_{1}-y$. But then G contains an $\left(F_{0}, F_{1}\right)$-path of length three disjoint to $x w y$, contradicting the fact that \mathcal{A} is defective. Thus, $v \notin N(z)$, and z has a neighbor among $\left\{p^{\prime}, v^{\prime}\right\}$. If $v^{\prime} \in N(z)$, then, by definition of $H_{v^{\prime}}^{1}$, we have $\left|N(z) \cap V\left(F_{1}\right)\right|=1$, so $p^{\prime} \in N(z)$ as well, and $N(z) \cap V\left(F_{1}\right)=\left\{y_{v^{\prime}}\right\}$ by 1) of Lemma 12.3.8.

Likewise, if $p^{\prime} \in N(z)$, then $y \notin N(z)$. Thus, z has a neighbor $y^{\prime} \in V\left(F_{1}-y\right)$, and this neighbor y^{\prime} is unique, or else, if $z \in A^{1}$, then z is adjacent to an edge of $F_{1}-y$, and G contains an $\left(F_{0}, F_{1}\right)$ of length four which is disjoint to $x_{v} v w y$ and whose F_{1}-endpoint is nonadjacent to y. Applying 2) of Proposition 12.4.3, this contradicts. Since $\left|N(z) \cap V\left(F_{1}\right)\right|=1$, we have $v^{\prime} \in N(z)$ as well, and $y^{\prime}=y_{v}$ by 1) of Lemma 12.3.8.

Thus, in any case, we conclude that $H_{v^{\prime}}^{1}=v^{\prime}$, and that $(N(z) \backslash V(Q)) \cap \operatorname{dom}\left(\phi^{*}\right)$ consists of $p^{\prime}, v^{\prime}, v_{v^{\prime}}$. Thus, z is the unique vertex of $T\left(\left\{p^{\prime}, v, v^{\prime}\right\} ; Q\right)$, and furthermore, G contains the 7 -cycle $p^{\prime} z y_{v^{\prime}} y p u_{0} x$. Note now that there is an L_{ψ}-coloring σ of $\left\{p^{\prime}, v\right\}$ such that the edge $w v^{\prime}$ is L_{σ}-inert. To construct σ, we choose $\sigma\left(p^{\prime}\right)=d^{\prime}$ as above, and let c, c^{\prime} be two colors in $L_{\psi}\left(v^{\prime}\right) \backslash\{d\}$. Then, since $\left|L_{\psi}(w) \backslash\left\{d^{\prime}\right\}\right| \geq 3$, there is a color $r \in L_{\psi}(w) \backslash\left\{c, c^{\prime}, d\right\}$, and we simply choose $\sigma(v)$ to be distinct from r, and then the edge $w v^{\prime}$ is L_{σ}-inert. Since $\{z\}=T\left(\left\{p^{\prime}, v, v^{\prime}\right\} ; Q\right)$ and $(N(z) \backslash V(Q)) \cap \operatorname{dom}(\phi)=\left\{p^{\prime}, v^{\prime}, y^{\prime}\right\}$, we have $T\left(\left\{p^{\prime}, v\right\} ; Q\right)=\varnothing$. Bu then $\left[\left\{p^{\prime}, v\right\} ; Q ; \sigma ;\left\{w, v^{\prime}\right\}\right]$ is a cycle connector for \mathcal{A}, contradicting the fact that \mathcal{A} is defective.

Thus, we suppose for the remainder of Proposition 12.4.39 that $P=\varnothing$. Applying Lemma 12.4.18, we fix a $u_{0} \in A_{w}^{0}$ and $u_{1} \in A_{w}^{1}$ for the remainder of the proof of Proposition 12.4.39.
et Q be an edge of F_{1}, where Q is the lone edge of $F_{1} \backslash N\left(u_{1}\right)$ if $\left|V\left(F_{1}\right)\right|=4$, and Q intersects with $N\left(u_{1}\right) \cap V\left(F_{1}\right)$ precisely on y if $\left|\left(F_{1}\right)\right|=3$. Applying ii) of Lemma 12.4.35, we let $\phi \in \operatorname{Link}\left(R, C^{0}\right)$ such that $\left|L_{\phi}(v)\right| \geq 3$ for all $v \in V\left(C^{0} \backslash R\right)$. By 1) of Claim 12.4.40, we have $\left|L_{\phi}\left(u_{1}\right)\right| \geq 1$. Thus, ϕ extends to an L-coloring ϕ^{\prime} of $\operatorname{dom}(\phi) \cup\left\{u_{1}\right\}$.

Now consider the tuple $\left[V\left(R+u_{1}\right) ; \phi^{\prime} ; Q ; \operatorname{Mid}^{0}(R)\right]$. Since \mathcal{A} is connected, this is not a cycle connector for \mathcal{A}. By our choice of Q, the graph $G\left[V\left(F_{0} \cup F_{1} \cup R\right) \cup\left\{u_{1}\right\}\right] \backslash V(Q)$ is connected, so there exists a $z \in V(G) \backslash\left(V(R) c u p\left\{u_{1}\right\}\right)$
with $\left|L_{\phi^{\prime}}^{Q}(z)\right|<3$.
Claim 12.4.47. For any $\sigma \in \operatorname{Link}\left(R, C^{0}\right)$ such that each vertex of $C^{0} \backslash R$ has an L_{σ}-list of size at least three, and any extension of σ to an L-coloring of σ^{\prime} of $\operatorname{dom}(\phi) \cup\left\{u_{1}\right\}, z$ is unique the unique vertex of $T^{\prime}\left(R+u_{1} ; Q: \sigma^{\prime}\right)$, and $N(z) \cap \operatorname{dom}\left(\sigma^{\prime}\right)$ consists of w, u_{1}, and one vertex of A_{w}^{0}.

Proof: Firstly, by our choice of Q, z has at most one neighbor in $F_{1} \backslash Q$, or else $F_{1} \backslash Q$ is an edge of F_{1} where each of u_{1}, z is adjacent to both endpoints of $F_{1} \backslash Q$, contradicting the fact that G is short-separation-free. Since $\left|L_{\sigma^{\prime}}^{Q}(z)\right|<3$, it follows that z has at least two neighbors among $V(R) \cup\left\{u_{1}\right\}$. If z is not adjacent to u_{1}, then we have $\left|L_{\sigma}^{Q}(z)\right|<3$, contradicting our choice of σ, since $\sigma \in \operatorname{Link}\left(R, C^{0}\right)$ and each vertex of $C^{0} \backslash R$ also has an L_{σ}-list of size at least three. Thus, $u_{1} \in N(z)$.

If $z \in V\left(C^{1} \backslash R\right)$, then, since $P=\varnothing$ by assumption, z has at most one neighbor in R. In that case, since $\left|L_{\phi^{\prime}}^{Q}(z)\right| \leq 3$, $N(z) \backslash V(Q)) \cap \operatorname{dom}\left(\phi^{\prime}\right)$ consists of u_{1}, one vertex of $F_{1} \backslash Q$, and one vertex of R, contradicting 3) of Claim 12.4.40. Thus, $z \notin V\left(C^{1} \backslash R\right)$, so, $(N(z) \backslash V(Q)) \cap \operatorname{dom}\left(\sigma^{\prime}\right)$ consists of u_{1} and at least two vertices of R. By 3) of Claim 12.4.40, z is unique, and $N(z) \cap \operatorname{dom}\left(\sigma^{\prime}\right)$ consists of w, u_{1}, and one vertex of A_{w}^{0}.

Applying Claim 12.4.47, z has precisely one neighbor in $A_{w}^{0} \cap\left(R \backslash \operatorname{Mid}^{0}(R)\right)$, so suppose without loss of generality that this neighbor is u_{0}. Applying iii) of Lemma 12.4.35, we have the following: For each $c \in L_{\psi}\left(u_{0}\right)$, there is an element $\phi^{c} \in \operatorname{Link}\left(R, C^{0}\right)$ such that $\phi^{c}\left(u_{0}\right)=c$ and $\left|L_{\phi^{c}}(v)\right| \geq 3$ for all $v \in V\left(C^{0} \backslash R\right)$. Note that w is in the domain of each coloring in $\operatorname{Link}\left(R, C^{0}\right)$, since $w \notin \operatorname{Mid}^{0}(R)$.

Claim 12.4.48. For each $c \in L_{\psi}\left(u_{0}\right)$ and $d \in L_{\psi}\left(u_{1}\right) \backslash\left\{\phi^{c}\left(u_{1}\right)\right\}$, we have $L(z) \backslash\left\{c, d, \phi^{c}\left(u_{1}\right)\right\} \mid=2$. In particular, $c \notin L_{\psi}\left(u_{1}\right)$.

Proof: If any of these conditions do not hold, then, since no vertex of P is adjacent to u_{1} or has a common neighbor with u_{1} outside of R, there is a $c \in L_{\psi}\left(u_{0}\right)$ and an extension of ϕ^{c} to an L-coloring ϕ_{*}^{c} of $\operatorname{dom}\left(\phi^{c}\right) \cup\left\{u_{1}\right\} \cup V(P)$ such that $\left|L_{\phi_{*}^{c}}(z)\right| \geq 3$. Possibly $\phi_{c}^{*}\left(u_{1}\right)=c$. This is permissible as $u_{0} u_{1} \notin E(G)$ by 1) of Claim 12.4.40. Yet by Claim 12.4.47, we have $\{z\}=T\left(R+u_{1} ; Q: \phi_{*}^{c}\right)$, so we have a contradiction.

We claim now that $L_{\psi}\left(u_{1}\right) \subseteq L(z)$. Suppose not, and let $d \in L_{\psi}\left(u_{1}\right)$ with $d \notin L(z)$. Thus, for all $c \in L_{\psi}\left(u_{0}\right)$, we have $\phi^{c}(w)=d$, otherwise we get $\left|L(z) \backslash\left\{c, d, \phi^{c}\left(u_{1}\right)\right\}\right| \geq 3$, contradicting Claim 12.4.48. In particular $\left\{\phi^{c}(w)\right.$: $\left.c \in L_{\psi}\left(u_{0}\right)\right\}$ is a constant color, and $d \notin L_{\psi}\left(u_{0}\right)$. Since each of u_{0}, u_{1} has an L_{ψ}-list of size at least three, there exist a $c \in L_{\psi}\left(u_{)}\right)$and $c^{\prime} \in L_{\psi}\left(u_{1}\right) \backslash\{d\}$ such that $\left|L(z) \backslash\left\{c, c^{\prime}\right\}\right| \geq 4$ (possibly $c=c^{\prime}$). Then $\left|L(w) \backslash\left\{c, d, c^{\prime}\right\}\right| \geq 3$, contradicting Claim 12.4.48. Thus, we indeed have $L_{\psi}\left(u_{1}\right) \subseteq L(z)$. By Claim 12.4.48, we have $L_{\psi}\left(u_{0}\right) \subseteq L(z)$ as well, and $L(z)=5$, so there is a color $c \in L_{\psi}\left(u_{0}\right) \cap L_{\psi}\left(u_{1}\right)$, contradicting Obsevation 12.4.48. This completes the proof of Proposition 12.4.39.

Combining Proposition 12.4.5, Proposition 12.4.25, and Proposition 12.4.39, we complete the proof of Theorem 12.4.1.

12.5 Roulette Wheels with Distant Boundary Cycles

In this section, we complete the proof of Theorem 12.3.3, which we restate below.

Theorem 12.3.3. Let $\mathcal{A}:=\left(G, F_{0}, F_{1}, L, \psi\right)$ be a roulette wheel, let $\beta:=\frac{17}{15} N_{\mathrm{mo}}^{2}$ and let $\beta^{\prime}:=\beta+4 N_{\mathrm{mo}}$. Then one of the following two statements holds.

S1: There exists a 2-connected subgraph H of G with $F_{0} \cup F_{1} \subseteq H$ and $V(H) \subseteq B_{\frac{\beta^{\prime}}{3}}\left(F_{0} \cup F_{1}\right)$ such that, for every facial subgraph C of H, C is a cycle of length at most 11; OR

S2: There exists a cycle connector for \mathcal{A}.

Proof. Let $\mathcal{A}:=\left(G, F_{0}, F_{1}, L, \psi\right)$ be a roulette wheel and suppose toward a contradiction that \mathcal{A} satisfies neither S 1 nor S 2 . Without loss of generality, we suppose that F_{0} is the outer face of G. By Theorem 12.4.1, we have $d\left(F_{0}, F_{1}\right) \geq 3$. Let C^{i} be the 1-band of F_{i} for each $i=0,1$.

Now we apply the work of Chapter 10. Since $d\left(F_{0}, F_{1}\right) \geq 3$, no vertex of $C_{0} \cup C_{1}$ has an L_{ψ}-list of size less than three. In particular, recalling Definition 10.0.1, we immediately have the following.

Claim 12.5.1. For each $i=0,1, F_{i}$ is an L-coil of G
Proof: Let $i \in\{0,1\}$. Note that we have $L_{\psi}^{F_{1-i}}(v)=\mathrm{Ł}_{\psi}(v)$ for each $v \in V\left(C^{i}\right)$. By Observation 2.1.2, F_{i} is a highly predictable, and thus L-predictable, cyclic facial subgraph of G. Since each F_{i} is an induced subgraph of G, Col of Definition 10.0.1 is satisfied. Since each of F_{0}, F_{1} is precolored and $d\left(F_{0}, F_{1}\right) \geq 3, \operatorname{Co} 3$ is also satisfied. Since no vertex of $D_{1}\left(F_{i}\right)$ has more than two neighbors in F_{i}, the rest just follows from the definition of a roulette wheel.

Recalling Definition 1.2.8, we now have the following.

Claim 12.5.2. $3 \leq d\left(F_{0}, F_{1}\right) \leq 15$.
Proof: Suppose toward a contradiction that $d\left(F_{0}, F_{1}\right)>15$ and let $P:=v_{1} \cdots v_{k}$ be a shortest $\left(D_{3}\left(C^{0}\right), D_{3}\left(C^{1}\right)\right)$ path, where $v_{1} \in D_{3}\left(C^{0}\right)$ and $v_{k} \in D_{3}\left(C^{1}\right)$. By Observation 1.2.9, there exists a $z \in D_{2}\left(C^{0}\right) \cap N\left(v_{1}\right)$ and a $z^{*} \in D_{2}\left(C^{1}\right) \cap N\left(v_{k}\right)$ such that each of $\operatorname{Bar}_{C^{0}}\left(v_{1} z\right)$ and $\operatorname{Bar}_{C^{1}}\left(v_{k} z^{*}\right)$ has size at most one.. Let $P^{\dagger}:=z v_{1} \cdots v_{k} z^{*}$. By Claim 12.5.1, each of F_{0}, F_{1} is an L-coil of G. Since $d\left(F_{0}, F_{1}\right)>15$, we get that, for each $i \in\{0,1\}$, every vertex of $D_{3}\left(F_{i}\right)$ is F_{i}-pentagonal. Now, applying Theorem 10.0.7, let $\left[H_{0}, \sigma_{0}\right]$ be an $\left(F_{i}, z\right)$-opener and let $\left[H_{1}, \sigma_{1}\right]$ be an $\left(F_{1}, z^{*}\right)$-opener. Since $d\left(F_{0}, F_{1}\right)>15$, the union $\tau:=\sigma_{0} \cup \sigma_{1}$ is a proper L-coloring of its domain, and furthermore, we have $v_{1} v_{k} \notin E(G)$ and each of v_{1}, v_{K} has an L_{τ}-list of size at least four. Since each vertex of $D_{1}\left(H_{0}\right) \cup D_{1}\left(H_{1}\right)$ has an L_{τ}-list of size at least three and $v_{1} v_{k} \notin E(G)$, there is an extension of τ to an L-coloring τ^{\prime} of $\operatorname{dom}(\tau) \cup\left\{v_{1}, v_{k}\right\}$ such that each vertex of $\operatorname{Bar}_{C^{0}}\left(v_{1} z\right) \cup \operatorname{Bar}_{C^{1}}\left(v_{k} z^{*}\right)$ has an $L_{\tau^{\prime}}$-list of size at least three.

Subclaim 12.5.3. There exists a shortest $\left(D_{2}\left(C^{0}\right), D_{2}\left(C^{1}\right)\right)$-path P^{*} such that the following hold.

1) P^{*} has terminal edges $z v_{1}, z^{*} v_{k}$; AND
2) There exists a $\varphi \in \operatorname{Avoid}^{\dagger}\left(P^{*}\right) \neq \varnothing$ such that φ and τ^{\prime} restrict to the same L-coloring of $\left\{z, v_{1}, v_{k}, z^{*}\right\}$ and $\varphi \cup \tau^{\prime}$ is a proper L-coloring of its domain

Proof: Given a shortest $\left(D_{2}\left(C^{0}\right), D_{2}\left(C^{1}\right)\right.$-path P^{*} and a subpath Q of $\stackrel{\circ}{P}^{*}$, we say that Q is a sectioned subpath of P^{*} if both endpoints of Q are P-gaps and one of the following holds.

1) Q has length either two or four; $O R$
2) Q has length six and the midpoint of Q is a P^{*}-gap.

Case 1: There is a sectioned subpath of $\stackrel{\circ}{P}$
Let Q be a sectioned subpath of $\stackrel{\circ}{P}$, where $Q:=v_{i} \cdots v_{j}$ for some $j \in\{i, i+2, i+4\}$. If $|E(Q)|=2$, then it immediately follows from Proposition 1.2.3 that $z v_{1} P v_{k} z_{*}$ satisfies 1) and 2), since we extend $\left.\tau^{\prime}\right|_{z v_{1}}$ to an element of $\operatorname{Avoid}\left(z v_{1} P v_{i}\right)$ and extend $\left.\tau^{\prime}\right|_{v_{k} z_{*}}$ to an element of $\operatorname{Avoid}\left(v_{i+2} P v_{k} z_{*}\right)$. The union of these two colorings leaves at least three colors for v_{i+1}. Likewise, if $|E(Q)|=4$, then it follows from Proposition 1.2.4 that $z v_{1} P v_{k} z_{*}$ satisfies 1) and 2) above. Finally, if $|E(Q)|=6$, then, applying Proposition 1.2.5, it follows that $z v_{1} P v_{k} z_{*}$ satisfies 1) and 2) above, so we are done in this case.

Case 2: There is no sectioned subpath of $\stackrel{\circ}{P}$
In this case, since $k \geq 7$, there either exists a P-gap vertex of $\stackrel{\circ}{P}$ followed by three consecutive vertices of $v_{2} \cdots v_{k-1}$ which are not P-gaps, or there exist five consecutive vertices of $v_{2} \cdots v_{k-1}$ which are not P-gaps. In either case, applying Proposition 1.2.6 or Proposition 1.2 .7 respectively, there is a shortest $\left(D_{2}\left(C^{0}\right), D_{2}\left(C^{1}\right)\right)$ path P^{*} which differs from P by one vertex, where P^{*} has terminal edges $z v_{1}, z^{*} v_{k}$, and \dot{P}^{*} contains two P^{*}-gap vertices of distance two apart, so we are back to Case 1 with the role of $z v_{1} P v_{k} z_{*}$ replaced by P^{*}.

Let P^{*}, φ be as in Subclaim 12.5.3 and let $K^{\dagger}:=\left(H_{0} \cup H_{1}\right) \backslash \operatorname{dom}\left(\sigma_{0} \cup \sigma_{1}\right)$. Since $\varphi \in$ and P^{*} is a shortest $\left(D_{2}, D_{2}\right)$-path, there exists a $v^{\dagger} \in D_{1}\left(P^{*}\right)$ such that $G\left[N\left(v^{\dagger}\right) \cap V\left(P^{*}\right)\right]$ is a subpath of P^{*} length at most two and such that, for each $v \in D_{1}\left(P^{*}\right) \backslash\left\{v^{\dagger}\right\}$, we have $\left|L_{\varphi}(v)\right| \geq 3$.
By our choice of z, z^{*} and our construction of τ^{\prime}, it then follows that, for each $v \in D_{1}\left(K^{\dagger}\right) \backslash B_{2}\left(C^{0} \cup C^{1}\right)$ with $v \neq v^{\dagger}$, we have $\left|L_{\varphi \cup \tau^{\prime}}(v)\right| \geq 3$. Likewise, for each $v \in D_{1}\left(K^{\dagger}\right) \cap B_{2}\left(C^{0} \cup C^{1}\right)$ with $v \neq v^{\dagger}$, we have $N(v) \cap \operatorname{dom}\left(\varphi \cup \tau^{\prime}\right) \subseteq$ $\operatorname{dom}\left(\tau^{\prime}\right)$ and $\left|L_{\varphi \cup \tau^{\prime}}(v)\right| \geq 3$.

Finally, if $v^{\dagger} \in B_{2}\left(C^{0} \cup C^{1}\right)$, then $\left|L_{\varphi \cup \tau^{\prime}}\left(v^{\dagger}\right)\right| \geq 3$, and if $v^{\dagger} \notin B_{2}\left(C^{0} \cup C^{1}\right)$, then $N\left(v^{\dagger}\right) \cap \operatorname{dom}\left(\varphi \cup \tau^{\prime}\right) \subseteq \operatorname{dom}(\varphi)$ and thus $\left|L_{\varphi \cup \tau^{\prime}}\left(v^{\dagger}\right)\right| \geq 2$. In any case, the tuple $\left[K ; v^{\dagger} ; \varphi \cup \tau^{\prime}, V\left(K^{\dagger}\right)\right]$ is a cycle connector, contradicting our assumption that S 2 of Theorem 12.3.3 is not satisfied.

We deal with the remaining distance cases via a similar argument, where we retain a precolored edge of one of the boundary cycles instead of reducing to a graph whose outer face has a lone 2-list.

Chapter 13

Reduction to Mosaics

In this chapter, we complete the proof of Theorem 1.1.3 by showing the following result.
Theorem 13.0.1. Let γ be as in Theorem 0.2 .6 and let $\beta:=\frac{17}{15} N_{\mathrm{mo}}$. Let $\alpha:=\frac{9}{2}\left(\beta+4 N_{\mathrm{mo}}\right)+3 \gamma+18$. Then every $(\alpha, 1)$-chart is colorable.

Chapter 13 consists of four sections. The first ingredient we need is a simple edge-maximality lemma which is proven in Section 13.1. In Section 13.2, we prove some basic properties of minimal counterexamples to Theorem 13.0.1. In Section 13.3, we show that, under certain circumstances, an annulus between two short separating cycles in a minimal counterexample to Theorem 13.0 .1 is a roulette wheel (so that we can apply the work of Chapter 12). Finally, in Section 13.4, we put all of these together to complete the proof of Theorem 13.0.1.

13.1 A Simple Edge-Maximality Lemma

In this short section, we prove the following simple lemma that we need for Theorem 13.0.1.
Lemma 13.1.1. Let $\alpha \geq 1$ be an integer, let G be a connected planar graph, and let C_{1}, \cdots, C_{m} be a collection of facial subgraphs of G such that $d_{G}\left(C_{i}, C_{j}\right) \geq \alpha$ for each $1 \leq i<j \leq m$. There exist a graph planar G^{\prime}, such that the following hold.

1) G^{\prime} is an embedding obtained from G by adding edges to G; AND
2) For each $i=1, \cdots, m, C_{i}$ is also a a facial subgraph of G^{\prime}; AND
3) with $d_{G^{\prime}}\left(C_{i}, C_{j}\right) \geq \alpha$ for each $1 \leq i<j \leq m$; AND
4) For every facial subgraph H of G^{\prime}, with $H \notin\left\{C_{1}, \cdots, C_{m}\right\}$, and every block H^{\prime} of H, every face of the induced graph $G\left[V\left(H^{\prime}\right)\right]$, except possibly H^{\prime}, is a triangle.

Proof. If every facial subgraph of G with $H \notin\left\{C_{1}, \cdots, C_{m}\right\}$ satisfies property 4) above, then we take $G^{\prime}=G$ and we are done. Now suppose there exists a facial subgraph H of G, with $H \notin\left\{C_{1}, \cdots, C_{m}\right\}$, and there exists a block H^{\prime} of H such that at least one facial subgraph of $G\left[V\left(H^{\prime}\right)\right]$ is not a triangle. Thus, there is a subset $S \subseteq V(H)$ with $|S|>3$ such that the induced graph $G[S]$ is a chordless cycle.

Since H is a facial subgraph of G, there is an open connected component U of $\mathbb{R}^{2} \backslash G$ with $H=\partial(U)$. Let $G[S]:=v_{1} \cdots v_{k}$. To prove Lemma 13.1.1, it suffices to show that there exists an index $j \in\{1, \cdots, k\}$ such that, reading the indices mod k and setting $G^{\dagger}:=G+v_{j} v_{j+2}$, we have $d_{G^{\dagger}}\left(C_{s}, C_{t}\right) \geq \alpha$ for any pair of distinct indices $s, t \in\{1, \cdots, m\}$, where $G+v_{i} v_{j}$ denotes an embedding obtained by drawing an arc $v_{i} v_{j}$ whose interior lies in U.

If we show that the above holds, then we simply iterate until we obtain a drawing from G which satisfies properties 1)-4) above. At each stage of the construction, each graph in the sequence satisfies properties 1)-3) of Lemma 13.1.1, and the sequence terminates in at most $3|V(G)|-6$ steps in an embedding which satisfies 1)-4). We first note that, for any distinct indices $s, t \in\{1, \cdots, m\}$ and any $j \in\{1, \cdots, k\}$, since $d_{G}\left(C_{s}, C_{t}\right) \geq \alpha$, we have $d_{G}\left(v_{j}, C_{s}\right)+$ $d_{G}\left(v_{j+2}, C_{t}\right) \geq \alpha-2$.
Suppose toward a contradiction that there does not exist an index $j \in\{1, \cdots, k\}$ satisfying the above. For the remainder of the proof of Lemma 13.1.1, a distance between two vertices of $V(G)$ without a subscript denotes a distance between these two vertices in the initial graph G. For each $j \in\{1, \cdots, k\}$, let B_{j} be the set of pairs $(s, t) \in\{1, \cdots, m\} \times\{1, \cdots, m\}$ such that $d\left(C_{s}, v_{j}\right)+d\left(C_{t}, v_{j+2}\right)=\alpha-2$. If there exists a $j \in\{1, \cdots, k\}$ such that $B_{j}=\varnothing$, then, setting $G^{\dagger}:=G+v_{j} v_{j+2}$, we have $d_{G^{\dagger}}\left(C_{s}, C_{t}\right) \geq \alpha$ for all $1 \leq s<t \leq m$, contradicting our assumption. Thus, we have $B_{j} \neq \varnothing$ for each $j \in\{1, \cdots, k\}$. Let $B:=\bigcup_{j=1}^{k} B_{j}$.

Claim 13.1.2. Let $j \in\{1, \cdots, k\}$ and let $(s, t) \in B_{j}$. Then the following distance conditions hold:

1) $d\left(C_{t}, v_{j}\right)=d\left(C_{t}, v_{j+2}\right)+2$; AND
2) $d\left(C_{s}, v_{j+2}\right)=d\left(C_{s}, v_{j}\right)+2$; AND
3) $d\left(C_{t}, v_{j+1}\right)=d\left(C_{t}, v_{j+2}\right)+1$; AND
4) $d\left(C_{s}, v_{j+1}\right)=d\left(C_{s}, v_{j}\right)+1$.

Proof: We have $d\left(C_{t}, v_{j}\right) \leq d\left(C_{t}, v_{j+2}\right)+2$, and if $d_{G}\left(C_{t}, v_{j}\right)<d_{G}\left(C_{t}, v_{j+2}\right)+2$ then $d\left(C_{t}, v_{j}\right)+d\left(C_{s}, v_{j}\right)<$ $d\left(C_{t}, v_{j+2}\right)+d\left(C_{s}, v_{j}\right)+2=\alpha$, and thus $d\left(C_{t}, C_{s}\right)<\alpha$, contradicting our distance conditions. The same argument shows 2). We have $d\left(C_{t}, v_{j+1}\right) \leq d\left(C_{t}, v_{j+2}\right)+1$, and if $d\left(C_{t}, v_{j+1}\right)<d\left(C_{t}, v_{j+2}\right)+1$, then we have $d\left(C_{s}, v_{j+1}\right)+$ $d\left(C_{t}, v_{j+1}\right)<d\left(C_{s}, v_{j+1}\right)+d\left(C_{t}, v_{j+2}\right)+1$. Since $d\left(C_{s}, v_{j}\right) \geq d\left(C_{s}, v_{j+1}\right)-1$, we then have $d\left(C_{s}, v_{j+1}\right)+$ $d\left(C_{t}, v_{j+1}\right)<d\left(C_{s}, v_{j}\right)+d\left(C_{t}, v_{j+2}\right)=\alpha$, contradicting our distance conditions. The same argument shows 4).

It immediately follows from Claim 13.1.2 that $d\left(C_{s}, v_{r}\right)+d\left(C_{t}, v_{r}\right)=\alpha$ for each $r \in\{j, j+1, j+2\}$.
Claim 13.1.3. Let $j \in\{1, \cdots, k\}$, let $(s, t) \in B_{j}$, and suppose that $d\left(C_{s}, v_{j}\right) \leq \frac{\alpha}{2}-1$. Then the following hold.

1) For every pair $(p, q) \in B_{j-1}$, either $p=s$ or $q=s$; AND
2) For every $(p, q) \in B_{j+1}$, either $p=s$ or $q=s$.

Proof: Since $B_{j-1} \neq \varnothing$, there is a pair $(p, q) \in B_{j-1}$. Suppose that $p \neq s$. Now, by Claim 13.1.2, we have $d\left(C_{p}, v_{j}\right)=d\left(C_{p}, v_{j-1}\right)+1$. Since $d\left(C_{s}, v_{j}\right) \leq \frac{\alpha}{2}-1$ and $s \neq q$, we have $d\left(C_{p}, v_{j}\right) \geq \frac{\alpha}{2}+1$, or else $d\left(C_{p}, C_{s}\right)<\alpha$. Thus, we have $d\left(C_{p}, v_{j-1}\right) \geq \frac{\alpha}{2}$. Since $d\left(C_{p}, v_{j-1}\right)+d\left(C_{q}, v_{j+1}\right)=\alpha-2$, we have $d\left(C_{q}, v_{j+1}\right) \leq \frac{\alpha}{2}-2$. Thus we have $d\left(C_{q}, v_{j}\right) \leq \frac{\alpha}{2}-1$, so $q=s$, or else we have distinct cycles C_{s}, C_{q} such that $d\left(C_{s}, C_{q}\right) \leq \alpha-2$, violating our distance conditions.

Now let $(p, q) \in B_{j+1}$ and suppose that $p \neq s$. As above, since $d\left(C_{s}, v_{j}\right) \leq \frac{\alpha}{2}-1$ and $p \neq s$, we have $d\left(C_{p}, v_{j}\right) \geq$ $\frac{\alpha}{2}+1$, or else $d\left(C_{p}, C_{s}\right)<\alpha$. Thus, we have $d\left(C_{p}, v_{j+1}\right) \geq \frac{\alpha}{2}$. Since $d\left(C_{p}, v_{j+1}\right)+d\left(C_{q}, v_{j+3}\right)=\alpha-2$, we have $d\left(C_{q}, v_{j+2}\right) \leq \frac{\alpha}{2}-2$. Now, since $d\left(C_{s}, v_{j}\right) \leq \frac{\alpha}{2}-1$, we have $d\left(C_{s}, v_{j+2}\right) \leq \frac{\alpha}{2}+1$. Thus, we have $q=s$, or else there are distinct cycles C_{s}, C_{q} such that $d\left(C_{s}, C_{q}\right) \leq \alpha-1$, contradicting our distance conditions.

Now we choose an index $j^{\star} \in\{1, \cdots, k\}$ and a pair $\left(s^{\star}, t^{\star}\right) \in B$ such that the quantity $\min \left\{d\left(C_{s^{\star}}, v_{j^{\star}}\right), d\left(C_{t^{\star}}, v_{j^{\star}+2}\right)\right\}$ is minimized. Consider the following cases:

Case 1: $\min \left\{d\left(C_{s^{\star}}, v_{j^{\star}}\right), d\left(C_{t^{\star}}, v_{j^{\star}+2}\right)\right\}=d\left(C_{t^{\star}}, v_{j^{\star}+2}\right)$.
In this case, since $d\left(C_{s^{\star}}, v_{j^{\star}}\right)+d\left(C_{t^{\star}}, v_{j^{\star}+2}\right)=\alpha-2$, we have $d\left(C_{s^{\star}}, v_{j^{\star}}\right) \leq \frac{\alpha}{2}-1$.
Claim 13.1.4. $d\left(C_{s^{\star}}, v_{j^{\star}-1}\right)=d\left(C_{s^{\star}}, v_{j^{\star}}\right)$.

Proof: Suppose not. Then we have $d\left(C_{s^{\star}}, v_{j^{\star}-1}\right)=d\left(C_{s^{\star}}, v_{j}\right) \pm 1$. If $d\left(C_{s^{\star}}, v_{j^{\star}-1}\right)=d\left(C_{s^{\star}}, v_{j^{\star}}\right)-1$, then applying Claim 13.1.3, $B_{j^{\star}-1}$ either contains a pair of the form $\left(s^{\star}, q\right)$, or a pair of the form $\left(p, s^{\star}\right)$. In either case, we contradict the minimality of $\left(s^{\star}, t^{\star}\right)$. Thus, we have $d\left(C_{s^{\star}}, v_{j^{\star}-1}\right)=d\left(C_{s^{\star}}, v_{j^{\star}}\right)+1$.

Applying Claim 13.1.2, we have $d\left(C_{s^{\star}}, v_{j^{\star}-1}\right)=d\left(C_{s^{\star}}, v_{j^{\star}+1}\right)=d_{G}\left(C_{s^{\star}}, v_{j^{\star}}\right)+1$. By Claim 13.1.3, $B_{j^{\star}-1}$ either contains a pair of the form (s, q) or a pair of the form (q, s). If $B_{j^{\star}-1}$ contains a pair of the form $\left(s^{\star}, q\right)$, then, by Claim 13.1.2, we have $d\left(C_{s^{\star}}, v_{j^{\star}+1}\right)=d\left(C_{s}, v_{j^{\star}-1}\right)$, contradicting the fact that $d\left(C_{s^{\star}}, v_{j^{\star}-1}\right)=d\left(C_{s^{\star}}, v_{j+1}\right)=$ $d\left(C_{s^{\star}}, v_{j^{\star}}\right)+1$. Thus, $B_{j^{\star}-1}$ contains a pair of the form $\left(q, s^{\star}\right)$ for some $q \in\{1, \cdots, m\}$. Thus, by Claim 13.1.2, we have $d\left(C_{s^{\star}}, v_{j^{\star}-1}\right)=d\left(C_{s^{\star}}, v_{j^{\star}+1}\right)+2$. But we also have $d\left(C_{s^{\star}}, v_{j^{\star}+1}\right)=d\left(C_{s^{\star}}, v_{j^{\star}}\right)+1$, applying Claim 13.1.2 to the pair $\left(s^{\star}, t^{\star}\right)$, so $d\left(C_{s^{\star}}, v_{j^{\star}-1}\right)=d\left(C_{s^{\star}}, v_{j^{\star}}\right)+3$, which is false since $v_{j^{\star}}, v_{j^{\star}-1}$ are adjacent.

Since $B_{j^{\star}-1} \neq \varnothing$ by assumption, there exists a $(p, q) \in B_{j^{\star}-1}$. Since $d\left(C_{s^{\star}}, v_{j^{\star}}\right) \leq \frac{\alpha}{2}-1$, it follows from Claim 13.1.3 that either $p=s^{\star}$ or $q=s^{\star}$. If $p=s^{\star}$ then we have $d\left(C_{s^{\star}}, v_{j^{\star}}\right)=d\left(C_{s^{\star}}, v_{j^{\star}-1}\right)+1$, contradicting the fact that $d\left(C_{s^{\star}}, v_{j^{\star}}\right)=d\left(C_{s^{\star}}, v_{j^{\star}-1}\right)$. Thus, we have $q=s^{\star}$, and it follows from Claim 13.1.2 applied to (p, s^{\star}) that $d\left(v_{j^{\star}}, C_{s^{\star}}\right)=d\left(v_{j^{\star}+2}, C_{s^{\star}}\right)+2$. Yet, by Claim 13.1.2 applied to $\left(s^{\star}, t^{\star}\right)$, we also have $d\left(v_{j^{\star}+2}, C_{s^{\star}}\right)=$ $d\left(v_{j^{\star}}, C_{s^{\star}}\right)+2$, a contradiction.

Case 2: $\min \left\{d\left(C_{s^{\star}}, v_{j^{\star}}\right), d\left(C_{t^{\star}}, v_{j^{\star}+2}\right)\right\}=d\left(C_{t^{\star}}, v_{j^{\star}+2}\right)$.
In this case, we simply reverse the orientation and apply the same argument as above. For each $j \in\{1, \cdots, k\}$, we set \hat{B}_{j} to be the set of pairs $(s, t) \in\{1, \cdots, m\} \times\{1, \cdots, m\}$ such that $d\left(C_{s}, v_{j}\right)+d\left(C_{s}, v_{j-2}\right)=\alpha-2$. Then we are back to Case 1 with B_{1}, \cdots, B_{k} replaced by $\hat{B}_{1}, \cdots, \hat{B}_{k}$. This completes the proof of Lemma 13.1.1.

13.2 Properties of Critical Charts

We now ready to return to the context of charts and prove our main theorem for Chapter 13, which we restate below.

Theorem 13.0.1. Let γ be as in Theorem 0.2 .6 and let $\beta:=\frac{17}{15} N_{\mathrm{mo}}$. Let $\alpha:=\frac{9}{2}\left(\beta+4 N_{\mathrm{mo}}\right)+3 \gamma+18$. Then every $(\alpha, 1)$-chart is colorable.
We now set $\alpha:=\frac{9}{2}\left(\beta+4 N_{\mathrm{mo}}\right)+3 \gamma+18$ and $\beta^{\prime}:=\beta+4 N_{\mathrm{mo}}$. To prove Theorem 13.0.1, we begin by introducing the following definition.

Definition 13.2.1. Given an oriented chart $\mathcal{T}=\left(G, \mathcal{C}, L, C_{*}\right)$, we say that \mathcal{T} is a critical chart if, letting α be as in the statement of Theorem 13.0.1, the following hold.

1) \mathcal{T} is an $(\alpha, 1)$-chart and G is not L-colorable; AND
2) For any $(\alpha, 1)$-chart $\left(G^{\prime}, \mathcal{C}^{\prime}, L^{\prime}\right)$, if $\left|V\left(G^{\prime}\right)\right|<|V(G)|$, then G^{\prime} is L^{\prime}-colorable; AND
3) For any $(\alpha, 1)$-chart $\left(G^{\prime}, \mathcal{C}^{\prime}, L^{\prime}\right)$, if $\left|V\left(G^{\prime}\right)\right|=|V(G)|$ and $\left|E\left(G^{\prime}\right)\right|>|E(G)|$, then G^{\prime} is L^{\prime}-colorable.

Over the course of Sections 13.2-13.4, we show that no critical charts exist. We prove a sequence of propositions in which we gather some facts about critical charts, and then, at the end of Section 13.4, we combine these results in a one-paragraph proof which shows that no critical charts exist. More precisely, given a critical chart $\mathcal{T}=\left(G, \mathcal{C}, L, C_{*}\right)$, we show that G contains a family of short separating cycles M_{1}, \cdots, M_{s} such that the graph $H:=\bigcap_{i=1}^{s} \operatorname{Ext}\left(M_{i}\right)$ is short-separation-free, and the graph $K:=\bigcup_{i=1}^{s} \operatorname{Int}^{+}\left(M_{i}\right)$ admits an L-coloring ϕ such that H is the underlying graph of a mosaic with respect to the list-assignment L_{ϕ}^{K}. It then follows from Theorem 2.1.7 that H is L_{ϕ}^{K}-colorable, and thus ϕ extends to an L-coloring of G, producing the desired contradiction.

For the proof of Theorem 13.0.1, we need some facts about intersections of short cycles. The motivation for this is as follows: When we deal with a critical chart $\mathcal{T}=\left(G, \mathcal{C}, L, C_{*}\right)$, one of the steps requires us to deal with two separating cycles D_{0}, D_{1} in G, each of length at most four, such that $D_{i} \nsubseteq \operatorname{Int}\left(D_{1-i}\right)$ for each $i \in\{0,1\}$, and such that $V\left(D_{0}\right) \cap V\left(D_{1}\right) \neq \varnothing$. The following fact is very simple and is stated without proof.

Proposition 13.2.2. Let G be graph, let C_{0}, C_{1} be cycles in G with $\left|V\left(C_{j}\right)\right| \leq 4$ for each $j \in\{0,1\}$, and suppose that there are edges $e, f \in E\left(C_{1}\right) \backslash E\left(C_{0}\right)$ such that $e \in E\left(\operatorname{Int}\left(C_{0}\right)\right)$ and $f \in E\left(\operatorname{Ext}\left(C_{0}\right)\right)$. Let $A_{i i}, A_{i e}, A_{e i}, A_{e e}$ be the four cycles contained in the graph $C_{0} \cup C_{1}$, such that

1) $\operatorname{Int}\left(A_{i i}\right)=\operatorname{Int}\left(C_{0}\right) \cap \operatorname{Int}\left(C_{1}\right)$ and $\operatorname{Int}\left(A_{i e}\right)=\operatorname{Int}\left(C_{0}\right) \cap \operatorname{Ext}\left(C_{1}\right)$; AND
2) $\operatorname{Int}\left(A_{e i}\right)=\operatorname{Ext}\left(C_{0}\right) \cap \operatorname{Ext}\left(C_{1}\right)$ and $\operatorname{Int}\left(A_{e e}\right)=\operatorname{Int}\left(A_{i e}\right) \cup \operatorname{Int}\left(A_{e i}\right) \cup \operatorname{Int}\left(A_{i e}\right) ;$ AND
3) $\operatorname{Ext}\left(A_{e e}\right)=\operatorname{Ext}\left(C_{0}\right) \cap \operatorname{Ext}\left(C_{1}\right)$.

Then the following hold.

1) If C_{0}, C_{1} are edge-disjoint then $\left|E\left(A_{e e}\right)\right|+\left|E\left(A_{i i}\right)\right|$ and $\left|E\left(A_{e i}\right)\right|+\left|E\left(A_{i e}\right)\right|$ are both equal to $\left|E\left(C_{0}\right)\right|+$ $\left|E\left(C_{1}\right)\right| ; A N D$
2) If C_{0}, C_{1} are not edge disjoint then $\left|E\left(A_{e e}\right)\right|+\left|E\left(A_{i i}\right)\right|=E\left(C_{0}\right)\left|+\left|E\left(C_{1}\right)\right|\right.$ and $| E\left(A_{e i}\right)\left|+\left|E\left(A_{\text {ie }}\right)\right|=\right.$ $\left|E\left(C_{0}\right)\right|+\left|E\left(C_{1}\right)\right|-2 ; A N D$
3) If $\left|E\left(C_{0}\right)\right|=\left|E\left(C_{1}\right)\right|=4$, then the lengths of the four cycles $A_{i i}, A_{i e}, A_{e i}$, $A_{e e}$ have the same parity.

We now have the following simple facts.
Lemma 13.2.3. Let $\mathcal{T}=\left(G, \mathcal{C}, L, C_{*}\right)$ be a critical chart. Then the following hold.

1) G is connected; AND
2) Each element of \mathcal{C} is a cyclic facial subgraph of G and has no chords; AND
3) Suppose P is a path in G with $1 \leq|V(P)| \leq 2$, and there is a partition $G=G_{0} \cup G_{1}$ with $G_{0} \cap G_{1}=P$ and $G_{i} \backslash P \neq \varnothing$ for each $i \in\{0,1\}$. Then $\mathcal{C} \subseteq G_{i} \neq \varnothing$ for each $i=0,1$, and $\mathcal{C}=\mathcal{C} \subseteq G_{0} \cup \mathcal{C} \subseteq G_{1}$.

Proof. It is an immediate consequence of the minimality of \mathcal{T} that G is connected. If there is a $C \in \mathcal{C}$ such that C is either not a cycle or G contains a chord of C, then G admits a partition $G=G_{0} \cup G_{1}$, where $G_{0} \cap G_{1}$ is a path in G of length at most one, $V\left(G_{0} \cap G_{1}\right) \subseteq V(C)$, and $V\left(G_{i}\right) \backslash V\left(G_{0} \cap G_{1}\right) \neq \varnothing$ for each $i=0,1$. Without loss of generality, let $\mathbf{P}_{\mathcal{T}}(C) \subseteq G_{0}$. By the minimality of \mathcal{T}, G_{0} is L-coloring, so let ϕ be an L-coloring of G_{0}. Let $P:=G_{0} \cap G_{1}$ and let $C^{*}:=\left(C \cap G_{1}\right)+P$. Then $\left(G_{1}, \mathcal{C} \subseteq G_{1} \cup\left\{C^{*}\right\}, L_{\phi}\right)$ is an $(\alpha, 1)$-chart, and thus G_{1} is L_{ϕ}-colorable, so G is L-colorable, contradicting our assumption. This proves 2).

Now we prove 3). Let P be a path in G with $1 \leq|V(P)| \leq 2$ and let $G=G_{0} \cup G_{1}$ with $G_{0} \cap G_{1}=P$ and $G_{i} \backslash P \neq \varnothing$ for each $i \in\{0,1\}$. For each $C \in \mathcal{C}$, since C is a chordless cyclic facial subgraph of G, we have either
$C \subseteq G_{0}$ or $C \subseteq G_{1}$. Suppose toward a contradiction that 3) does not hold, and suppose without loss of generality that $C \subseteq G_{0}$ for each $C \in \mathcal{C}$. Then $\left(G_{0}, \mathcal{C}, L\right)$ is an $(\alpha, 1)$-chart with $\left|V\left(G_{0}\right)\right|<|V(G)|$, so G_{0} is L-colorable. Let ψ be an L-coloring of G_{0}. Then G_{1} is L_{ψ}-colorable, as every vertex of G_{1} has an L_{ϕ}-list of size 5 , except for a properly precolored path of length at most one. Thus, G is L-colorable, contradicting our assumption.

We now introduce the following two pieces of notation, the second of which generalizes the notion of an annulus in a planar graph.

Definition 13.2.4. Given a planar graph H, we let $\operatorname{Sep}(H)$ denote the set of separating cycles of length at most four in H. Given a cycle C in H and a family \mathcal{D} of cycles in H, we set $A_{H}(C \mid \mathcal{D}):=\operatorname{Int}_{H}(C) \cap\left(\bigcap_{D \in \mathcal{D}} \operatorname{Ext}_{H}(D)\right)$. We call $A_{H}(C \mid \mathcal{D})$ the annulus of (C, \mathcal{D}).

Now we have the following.
Proposition 13.2.5. Let $\mathcal{T}=\left(G, \mathcal{C}, L, C_{*}\right)$ be a critical chart. Let F_{0} be a cycle in G, and let \mathcal{F} be a collection of cycles in G such that, for each $F \in \mathcal{F}, F \subseteq \operatorname{Int}\left(F_{0}\right)$. Let $A:=A_{G}\left(F_{0} \mid \mathcal{F}\right)$. Let $\mathcal{F}^{*}:=\left(\mathcal{F} \cup\left\{F_{0}\right\}\right) \backslash \mathcal{C} \subseteq A$ and suppose that the following conditions hold.

1) A is short-separation-free and $\mathcal{C} \subseteq A \subseteq \mathcal{F}$; AND
2) $3 \leq|V(F)| \leq 4$ for each $F \in \mathcal{F}^{*}$.

Then every face of A, except possibly those of $\left\{F_{0}\right\} \cup \mathcal{F}$, is bounded by a triangle. Furthermore, if $d\left(F, F^{\prime}\right) \geq \beta^{\prime}$ for all $F \in \mathcal{F}^{*}$ and $F^{\prime} \in \mathcal{F}^{*} \cup \mathcal{C} \subseteq A$, then any L-coloring of $\bigcup_{F \in \mathcal{F}^{*}} V(F)$ extends to an L-coloring of A.

Proof. We begin with the first part of the proposition:

Claim 13.2.6. Every face of A, except possibly those of $\left\{F_{0}\right\} \cup \mathcal{F}$, is bounded by a triangle, .

Proof: We first note the following:
Subclaim 13.2.7. Let $K \subseteq A$ be a cycle with $3 \leq|V(K)| \leq 4$ with $K \notin\left\{F_{0}\right\} \cup \mathcal{F}$. Then K is not a separating cycle in G.

Proof: Since A is short-separation-free, K is a facial subgraph of A. Since $K \notin\left\{F_{0}\right\} \cup \mathcal{F}$, this means that K is a facial subgraph of G as well, so K is not a separating cycle of G.

Since $\mathcal{C} \subseteq A \subseteq \mathcal{F}$, we apply Lemma 13.1.1 and the edge-maximality of G to obtain the following: For every facial subgraph K of G, with $K \notin\left\{F_{0}\right\} \cup \mathcal{F}$ and every induced cycle D of G with $V(D) \subseteq V(K), D$ is a triangle. Now, let K be a facial subgraph of A, with $K \notin\left\{F_{0}\right\} \cup \mathcal{F}$. In that case, K is also a facial subgraph of G. We claim that K is a cycle.

Suppose that K is not a cycle. Thus, there is a vertex $v \in V(K)$ which is a cut-vertex of G. Thus, by Lemma 13.2.3, let $G=G_{0} \cup G_{1}$, where $G_{0} \cap G_{1}=v$, and let $C, C^{\prime} \in \mathcal{C}$ with $C \subseteq G_{0}$, and $C^{\prime} \subseteq G_{1}$. Now, $K \cap G_{0}$ is a subgraph of K and a facial subgraph of G_{0}, and there exists a subgraph $H \subseteq G_{0}$ with $C \subseteq H$ such that $K \cap G_{0}$ contains a cycle which is a facial subgraph of H. Since every induced cycle in K is a triangle, K contains a cycle which, in G, separates C from C^{\prime}, contradicting Subclaim 13.2.7.

We conclude that K is a cycle, and thus every induced cycle in $G[V(K)]$ is a triangle. If K is not a triangle, then, applying Lemma 13.2.3, K has a chord U separating C from C^{\prime} in G, and thus, there is a triangle in G whose vertices
lie in $V(K)$ and which separates C from C^{\prime} in G, contradicting Subclaim 13.2.7. Thus, K is a triangle, so every face of A, except possibly those of $\left\{F_{0}\right\} \cup \mathcal{F}$, is bounded by a triangle.

Now we return to the proof of Proposition 13.2.5. Let $S:=\bigcup_{F \in \mathcal{F}^{*}} V(F)$ and ϕ be an L-coloring of S. Consider the tuple $\left(A, \mathcal{F} \cup\left\{F_{0}\right\}, L_{\phi}^{S}, F_{0}\right)$. Since every facial subgraph of A other than those of $\mathcal{F}_{0} \cup\left\{F_{0}\right\}$ is a triangle, it follows from Observation 2.1.2 that each cycle of \mathcal{F}^{*} is a highly predictable facial subgraph of A and thus an $L_{\phi^{-}}^{S}$ predictable facial subgraph of A. Since the elements of $\mathcal{C} \subseteq A$ are all Thomassen facial subgraphs of A with respect to the list-assignment L_{ϕ}^{S}, and are pairwise of distance at least α apart, it follows that $\left(A, \mathcal{F} \cup\left\{F_{0}\right\}, L_{\phi}^{S}, F_{0}\right)$ is a mosaic in which each element of \mathcal{F}^{*} is a closed ring and each element of $\mathcal{C} \subseteq A$ is an open ring. Thus, by Theorem 2.1.7, ϕ extends to an L-coloring of A.

We now have the following easy facts.
Lemma 13.2.8. Let $\mathcal{T}=\left(G, \mathcal{C}, L, C_{*}\right)$ be a critical chart. Then the following holds.

1) $\operatorname{Sep}(G) \neq \varnothing$; AND
2) For every $D \in \operatorname{Sep}(G)$, there exist cycles $C, C^{\prime} \in \mathcal{C}$ such that $C \subseteq \operatorname{Int}(D)$ and $C^{\prime} \subseteq \operatorname{Ext}(D)$, and furthermore, both of the graphs $\operatorname{Int}^{+}(D)$ and $\mathrm{Ext}^{+}(D)$ are L-colorable.

Proof. We first prove 1). Applying Proposition 13.2 .5 where we set $F_{0}:=C_{*}$ and $\mathcal{F}:=\mathcal{C}$, we get that each facial subgraph of G, except those among \mathcal{C}, is a triangle (the conditions of Proposition 13.2.5 are trivially satisfied since $\mathcal{F}=\mathcal{F} \cup\left\{F_{0}\right\}=\mathcal{C}$). Thus, \mathcal{T} is an $(\alpha, 1)$-tessellation, so \mathcal{T} is a $\left(\beta^{\prime}, 1\right)$-tessellation and thus mosaic. By Theorem 2.1.7, G is L-colorable, contradicting the fact that \mathcal{T} is a critical chart. Thus, $\operatorname{Sep}(G) \neq \varnothing$.

Let $D \in \operatorname{Sep}(G)$. Since D is a separating cycle in G, we have $\left|V\left(\operatorname{Int}^{+}(D)\right)\right|<|V(G)|$. Since $\left(\operatorname{Int}^{+}(D), \mathcal{C} \subseteq \operatorname{Int}^{+}(D), L\right)$ is also an $(\alpha, 1)$-chart, $\operatorname{Int}^{+}(D)$ is indeed L-colorable by the minimality of \mathcal{T}. The same argument shows that $\operatorname{Ext}^{+}(D)$ is L-colorable. Now suppose toward a contradiction that $C \subseteq \operatorname{Int}(D)$ for all $C \in \mathcal{C}$. Let ϕ be an L-coloring of $\operatorname{Int}^{+}(C)$. Then $\operatorname{Ext}(D)$ is L_{ϕ}^{D}-colorable, since $\operatorname{Ext}(D)$ has a properly precolored facial cycle of length at most 4, and every other vertex of $\operatorname{Ext}(D)$ has an L_{ϕ}^{D}-list of size at least 5. Thus, G is L-colorable, contradicting our assumption. The same argument shows that it is not the case that $C \subseteq \operatorname{Ext}(D)$ for all $C \in \mathcal{C}$.

We now introduce the following definitions and notations.
Definition 13.2.9. Let $\mathcal{T}:=(G, \mathcal{C}, L)$ be a chart.

1) Given a cycle $F \subseteq G$, we define the following.
a) A cycle $D \in \operatorname{Sep}(G)$ is called a descendant of F if $D \neq F$ and $D \subseteq \operatorname{Int}(F)$. We denote the set of descendants of F by $\mathcal{I}(F)$.
b) A cycle $D \in \mathcal{I}(F)$ is called an immediate descendant of F if, for any $D^{\prime} \in \mathcal{I}(F)$ such that $D \subseteq \operatorname{Int}\left(D^{\prime}\right)$, we have $D^{\prime}=D$. We denote the set of immediate descendants of F by $\mathcal{I}^{m}(F)$.
2) Give a cycle $D \in \operatorname{Sep}(G)$, we define the following.
a) We say that D is minimal if $\mathcal{I}(D)=\varnothing$. Likewise, we say that D is maximal if there does not exist a $D^{\prime} \in \operatorname{Sep}(G)$ such that $D \in \mathcal{I}\left(D^{\prime}\right)$.
b) We say that D is a blue cycle if, for every $C \in \mathcal{C} \subseteq \operatorname{Int}(D)$, there exists a $D^{\prime} \in \mathcal{I}(D)$ such that $C \subseteq \operatorname{Int}\left(D^{\prime}\right)$. Otherwise, we say that D is a red cycle.
c) We let $S e p_{r}(G)$ denote the set of red cycles in $\operatorname{Sep}(G)$, and we let $\operatorname{Sep}_{b}(G)$ denote the set of blue cycles of $\operatorname{Sep}(G)$.

We now have the following easy facts:
Lemma 13.2.10. Let $\mathcal{T}=\left(G, \mathcal{C}, L, C_{*}\right)$ be a critical chart. Then the following hold.

1) For any $D \in \operatorname{Sep}_{b}(G)$, there exists a $D^{\prime} \subseteq \operatorname{Int}(D)$ with $D^{\prime} \in \operatorname{Sep}_{r}(G)$; AND
2) For any minimal $D \in \operatorname{Sep}(G)$, there exists a $C \in \mathcal{C} \subseteq \operatorname{Int}(D)$ such that $d(C, D) \leq \beta^{\prime}$.

Proof. Let $D \in \operatorname{Sep}_{b}(G)$. Since D is blue, we have $\mathcal{I}(D) \neq \varnothing$ by definition. Since G is finite, let D^{\prime} be a minimal descendant of D. By the minimality of D^{\prime}, we have $\mathcal{I}\left(D^{\prime}\right)=\varnothing$, and thus $D^{\prime} \in S e p_{r}(G)$. This proves 1). Now we prove 2). Let $D \in \operatorname{Sep}(G)$ be minimal. Since $\mathcal{I}(D)=\varnothing$, we have $D \in S e p_{r}(G)$. Now, by Lemma 13.2.8, there is an L-coloring ϕ of $\operatorname{Ext}_{G}^{+}(D)$. Suppose toward a contradiction that $d(C, D)>\beta^{\prime}$ for all $C \in \mathcal{C} \subseteq \operatorname{Int}(D)$. Since D is minimal, we have $\mathcal{I}(D)=\varnothing$, and thus $A(D \mid \mathcal{I}(D))=\operatorname{Int}(D)$. By Proposition 13.2.5 applied to $A(D, \mathcal{I}(D)$), we get that ϕ extends to an L-coloring of $\operatorname{Int}(D)$, and thus G is L-colorable, which is false.

Recalling the fact that γ is the constant defined in Theorem 0.2.6, we now introduce the following definitions.
Definition 13.2.11. Let $\mathcal{T}:=\left(G, \mathcal{C}, L, C_{*}\right)$ be a chart.

1) We say that a cycle $D \in \operatorname{Sep}(G)$ is \mathcal{C}-close if one of the following holds.
a) $D \in \operatorname{Sep}_{r}(G)$ and there exists a $C \in \mathcal{C} \subseteq A\left(D \mid \mathcal{I}^{m}(D)\right)$ such that $d(D, C) \leq \beta^{\prime} ; O R$
b) $D \in \operatorname{Sep}_{b}(G)$ and there exists a red descendant D^{\prime} of D such that $d\left(D, D^{\prime}\right) \leq \gamma+1$.
2) We define a binary relation \sim on $\operatorname{Sep}(G)$ as follows: For $D_{1}, D_{2} \in \operatorname{Sep}(G)$, we say that $D_{1} \sim D_{2}$ if there is an element $C \in \mathcal{C}$ such that $C \subseteq \operatorname{Int}\left(D_{1}\right) \cap \operatorname{Int}\left(D_{2}\right)$ and $d\left(C, D_{i}\right) \leq \beta^{\prime}+\gamma+3$ for each $i \in\{1,2\}$.

Now we have the following observation:
Lemma 13.2.12. Let $\mathcal{T}=\left(G, \mathcal{C}, L, C_{*}\right)$ be a critical chart. Then the following hold.

1) If $D \in \operatorname{Sep}(G), H_{1}, H_{2}$ are two subgraphs of G, then $d\left(H_{1}, H_{2}\right) \leq d\left(H_{1}, D\right)+d\left(H_{2}, D\right)+2$; AND
2) For any $D \in \operatorname{Sep}(G)$ such that every cycle in $\{D\} \cup \mathcal{I}(D)$ is \mathcal{C}-close, there is a unique $C \in \mathcal{C}$ with $C \subseteq \operatorname{Int}(D)$ such that $d(C, D) \leq \beta^{\prime}+\gamma+3$.

Proof. 1) is trivial, since D is a cycle of length at most four. Now we prove 2). If $D \in \operatorname{Sep} p_{r}(G)$ then, since D is \mathcal{C}-close, there is a $C \in \mathcal{C} \subseteq A\left(D, \mathcal{I}^{m}(D)\right)$ such that $d(C, D) \leq \beta^{\prime}$, so we are done in that case. If $D \in S e p_{b}(G)$, then, since D is \mathcal{C}-close, there is a $D^{\prime} \in \operatorname{Sep}_{r}(G) \cap \mathcal{I}(D)$ such that $d\left(D, D^{\prime}\right) \leq \gamma+1$. Since D^{\prime} is \mathcal{C}-close, there is a $C \in \mathcal{C} \subseteq A\left(D^{\prime}, \mathcal{I}^{m}\left(D^{\prime}\right)\right)$ with $d\left(C, D^{\prime}\right) \leq \beta^{\prime}$. By 1), we have $d(C, D) \leq \beta^{\prime}+\gamma+3$. Now suppose there is another cycle $C^{\prime} \in \mathcal{C}^{\subseteq \operatorname{Int}(D)}$ with $d\left(C^{\prime}, D\right) \leq \beta^{\prime}+\gamma+3$. Applying 1) again, we have $d\left(C, C^{\prime}\right) \leq 2\left(\beta^{\prime}+\gamma+3\right)+2<\alpha$, contradicting the fact that (G, \mathcal{C}, L) is an $(\alpha, 1)$-chart. Thus, C is unique.

It immediately follows from 2) of Lemma 13.2 .12 that the relation \sim partitions the set of \mathcal{C}-close cycles of $S e p(G)$ into equivalence classes. We now have the following:

Proposition 13.2.13. Let $\mathcal{T}=\left(G, \mathcal{C}, L, C_{*}\right)$ be a critical chart and let $\mathcal{M} \subseteq \operatorname{Sep}(G)$ be a collection of short separating cycles in G such that the following hold.

1) For any distinct $D, D^{\prime} \in \mathcal{M}, D \notin \mathcal{I}\left(D^{\prime}\right)$; AND
2) For each $D \in \mathcal{M}$, every cycle of $\{D\} \cup \mathcal{I}(D)$ is \mathcal{C}-close.

Let $D_{1}, \cdots, D_{k} \in \mathcal{M}$ be a set of representatives of distinct equivalence classes of \mathcal{M}. For each $i=1, \cdots, k$, let $\left[D_{i}\right]=\left\{D \in \mathcal{M}: D \sim D_{i}\right\}$. Then the following hold.

1) For each $1 \leq i<j \leq k$, the graphs $\operatorname{Int}\left(D_{i}\right)$ and $\operatorname{Int}\left(D_{j}\right)$ are disjoint; AND
2) There exist k distinct element $C_{1}, \cdots, C_{k} \in \mathcal{C}$ such that, for each $j \in\{1, \cdots, k\}, C_{j} \subseteq \bigcap_{D^{*} \in\left[D_{j}\right]} \operatorname{Int}\left(D^{*}\right)$ and $d\left(C_{j}, D^{*}\right) \leq \beta^{\prime}+\gamma+3$ for each $D^{*} \in\left[D_{j}\right] ;$ AND
3) $\bigcup_{i=1}^{k} \operatorname{Int}^{+}\left(D_{i}\right)$ is L-colorable .

Proof. Applying 2) of Lemma 13.2.12, there exist k distinct element $C_{1}, \cdots, C_{k} \in \mathcal{C}$ such that, for each $j \in$ $\{1, \cdots, k\}, C_{j} \subseteq \bigcap_{D^{*} \in\left[D_{j}\right]} \operatorname{Int}\left(D^{*}\right)$ and $d\left(C_{j}, D^{*}\right) \leq \beta^{\prime}+\gamma+3$ for each $D^{*} \in\left[D_{j}\right]$. Suppose toward a contradiction that there exists a pair of indices $1 \leq i<j \leq k$ such that $\operatorname{Int}\left(D_{i}\right) \cap \operatorname{Int}\left(D_{j}\right) \neq \varnothing$. Then, since $D_{i} \notin \mathcal{I}\left(D_{j}\right)$ and $D_{j} \notin \mathcal{I}\left(D_{i}\right)$, we have $D_{i} \cap D_{j} \neq \varnothing$, and thus $d\left(C_{i}, C_{j}\right) \leq 2\left(\beta^{\prime}+\gamma+3\right)+2<\alpha$, contradicting the fact that (G, \mathcal{C}, L) is an $(\alpha, 1)$-chart.

To finish, it suffices to check that $\bigcup_{i=1}^{k} \operatorname{Int}^{+}\left(D_{i}\right)$ is L-colorable. For any distinct $i, j \in\{1, \cdots, k\}$, we have $d\left(D_{i}, C_{i}\right) \leq \beta^{\prime}+\gamma+3$ and $d\left(D_{j}, C_{j}\right) \leq \beta^{\prime}+\gamma+3$. Since \mathcal{T} is an $(\alpha, 1)$-chart, we have $d\left(C_{i}, C_{j}\right) \geq \alpha$. By two successive applications of 1) of Lemma 13.2.12, we have $d\left(C_{i}, D_{i}\right)+d\left(D_{i}, D_{j}\right)+d\left(D_{j}, C_{j}\right) \geq \alpha-4$, so $d\left(D_{i}, D_{j}\right) \geq(\alpha-4)-2\left(\beta^{\prime}+\gamma+3\right)$. Since $D_{i} \notin \mathcal{I}\left(D_{j}\right)$ and $\mathcal{I}\left(D_{j}\right)$, the graph $\bigcup_{i=1}^{k} \operatorname{Int}^{+}\left(D_{i}\right)$ is a union of k connected components, pairwise of distance at least $(\alpha-4)-2\left(\beta^{\prime}+\gamma+3\right)$ apart. For each $i=1, \cdots, k, \operatorname{Int}^{+}\left(D_{i}\right)$ is L-colorable by Lemma 13.2.8. Since $(\alpha-4)-2\left(\beta^{\prime}+\gamma+3\right)>1$, the union $\bigcup_{i=1}^{k} \operatorname{Int}^{+}\left(D_{i}\right)$ is also L-colorable.

Note that, by Proposition 13.2.13, it follows that, for any cycle $D \subseteq G$, the relation \sim partitions $\mathcal{I}^{m}(D)$ into equivalence classes, since no cycle of $\mathcal{I}^{m}(D)$ lies in the interior of another. Now we have the following:

Proposition 13.2.14. Let $\mathcal{T}=\left(G, \mathcal{C}, L, C_{*}\right)$ be a critical chart. Let D be a cycle in G and suppose that, for every cycle $D^{\prime} \in \mathcal{I}(D)$, every element of $\left\{D^{\prime}\right\} \cup \mathcal{I}\left(D^{\prime}\right)$ is \mathcal{C}-close. We then have the following.

1) Let $D_{1}, D_{2} \in \mathcal{I}_{m}(D)$, where D_{1}, D_{2} lie in different equivalence classes of $\mathcal{I}^{m}(D)$ under \sim. Let $\mathcal{R} \in\{0,1,2\}$ be the number of red cycles in $\left\{D_{1}, D_{2}\right\}$. Then $d\left(D_{1}, D_{2}\right) \geq \frac{5 \beta^{\prime}}{2}+\mathcal{R}(\gamma+3)+\gamma+8$.

Furthermore, for any $D^{\prime} \in \mathcal{I}^{m}(D)$ and $C \in \mathcal{C}$ with $C \subseteq G\left[A\left(D \mid \mathcal{I}^{m}(D)\right)\right]$, we have the following.
2) If $D^{\prime} \in \operatorname{Sep}_{r}(G)$, then $d\left(D^{\prime}, C\right) \geq \frac{7 \beta^{\prime}}{2}+3 \gamma+16$; AND
3) If $D^{\prime} \in \operatorname{Sep}_{b}(G)$, then $d\left(D^{\prime}, C\right) \geq \frac{7 \beta^{\prime}}{2}+2 \gamma+13$.

Proof. We first prove 1). We first note that $\operatorname{Int}\left(D_{1}\right) \cap \operatorname{Int}\left(D_{2}\right)=\varnothing$ by Proposition 13.2.13. Combining Definition 13.2.11 with 2) of Lemma 13.2.12, we have the following. For each $j \in\{1,2\}$, there exists an element $C_{j} \in \mathcal{C}$ with $C_{j} \subseteq \operatorname{Int}\left(D_{j}\right)$, where $d\left(C_{j}, D_{j}\right) \leq \beta^{\prime}+\gamma+3$, and, if D_{j} is red, then we have the stronger condition $d\left(C_{j}, D_{j}\right) \leq \beta^{\prime}$. Thus, we obtain $d\left(C_{1}, D_{1}\right)+d\left(C_{2}, D_{2}\right) \leq 2 \beta^{\prime}+(2-\mathcal{R})(\gamma+3)$. Since $\operatorname{Int}\left(D_{1}\right) \cap \operatorname{Int}\left(D_{2}\right)=\varnothing$ and each of C_{1}, C_{2} is a cycle, we have $C_{1} \neq C_{2}$, and thus $d\left(C_{1}, C_{2}\right) \geq \alpha$, as \mathcal{T} is an $(\alpha, 1)$-chart. By two successive applications of 1) of Lemma 13.2.12, we have $d\left(C_{1}, D_{1}\right)+d\left(D_{1}, D_{2}\right)+d\left(C_{2}, D_{2}\right) \geq \alpha-4$. Thus, we obtain $d\left(D_{1}, D_{2}\right) \geq$ $(\alpha-4)-2 \beta^{\prime}-(2-\mathcal{R})(\gamma+3)$, so $d\left(D_{1}, D_{2}\right) \geq \frac{5 \beta^{\prime}}{2}+\mathcal{R}(\gamma+3)+\gamma+8$, as desired.

Now we prove 2). Since $D^{\prime} \in \operatorname{Sep}_{r}(G)$, and D^{\prime} is \mathcal{C}-close by assumption, there exists a $C^{\prime} \in \mathcal{C}$ such that $C^{\prime} \subseteq \operatorname{Int}\left(D^{\prime}\right)$ and $d\left(C^{\prime}, D^{\prime}\right) \leq \beta$. Since $C^{\prime} \nsubseteq A\left(D \mid \mathcal{I}^{m}(D)\right.$, we have $C \neq C^{\prime}$. Thus, $d\left(C, C^{\prime}\right) \geq \alpha$. By 1) of Lemma 13.2.12, we then have $d\left(C, D^{\prime}\right)+d\left(D^{\prime}, C^{\prime}\right) \geq \alpha-2$, and thus $d\left(C, D^{\prime}\right) \geq(\alpha-2)-\beta^{\prime}=\frac{7 \beta^{\prime}}{2}+3 \gamma+16$. This proves 2).

Now suppose that $D^{\prime} \in \operatorname{Sep}_{b}(G)$ and let $C \in \mathcal{C}$ with $C \subseteq G\left[A\left(D \mid \mathcal{I}^{m}(D)\right)\right]$. Since $D^{\prime} \in \operatorname{Sep}_{b}(G)$ and each element of $\{D\} \cup \mathcal{I}(D)$ is \mathcal{C}-close, there is a $C^{\prime} \in \mathcal{C}$ with $C^{\prime} \subseteq \operatorname{Int}\left(D^{\prime}\right)$ and $d\left(C^{\prime}, D^{\prime}\right) \leq \beta^{\prime}+\gamma+3$ by 2) of Lemma 13.2.12. Since $C^{\prime} \subseteq \operatorname{Int}\left(D^{\prime}\right)$, we have $C \neq C^{\prime}$, and thus $d\left(C, C^{\prime}\right) \geq \alpha$. By 1) of Lemma 13.2.12, we have $d\left(C, D^{\prime}\right)+d\left(D^{\prime}, C^{\prime}\right) \geq \alpha-2$, so $d\left(C, D^{\prime}\right) \geq(\alpha-2)-\left(\beta^{\prime}+\gamma+3\right)=\frac{7 \beta^{\prime}}{2}+2 \gamma+13$. This proves 3), and completes the proof of Proposition 13.2.14.

Now we have the following key fact:
Proposition 13.2.15. Let $\mathcal{T}=\left(G, \mathcal{C}, L, C_{*}\right)$ be a critical chart. Let D be a cycle in G and suppose that, for each $D^{\prime} \in \mathcal{I}(D)$, every element of $\left\{D^{\prime}\right\} \cup \mathcal{I}\left(D^{\prime}\right)$ is \mathcal{C}-close. Then there exists a system \mathcal{D} of distinct representatives of the \sim-equivalence classes of $\mathcal{I}^{m}(D)$ under the relation \sim such that $A(D \mid \mathcal{D})$ is short-separation-free.

Proof. Let \mathcal{D} be a system of distinct representatives of distinct equivalence classes of $\mathcal{I}^{m}(D)$, and, among all choices of systems of distinct representatives of \sim-equivalence classes in $\mathcal{I}^{m}(D)$, we choose \mathcal{D} so as to minimize the quantity $|S e p(A(D \mid \mathcal{D}))|$. We claim now that $\operatorname{Sep}(A(D \mid \mathcal{D}))=\varnothing$.

Suppose toward a contradiction that $\operatorname{Sep}(A(D \mid \mathcal{D})) \neq \varnothing$, and let $T \in S e p(A(D \mid \mathcal{D}))$. Note that T is also a separating cycle of length at most 4 in G, and since $T \subseteq \operatorname{Int}(D)$, we have $T \in \mathcal{I}(D)$, so there exists a $D^{*} \in \mathcal{I}^{m}(D)$ such that $T \subseteq \operatorname{Int}\left(D^{*}\right)$. Now, for some unique $F \in \mathcal{D}$, we have $D^{*} \sim F$. Note that $D^{*} \neq F$, or else T is not a separating cycle of $A(D \mid \mathcal{D})$, since $\operatorname{Int}(F) \cap A(D \mid \mathcal{D})=F$, which is a facial subgraph of $A(D \mid \mathcal{D})$. By Proposition 13.2.13, there is a unique element $C^{*} \in \mathcal{C}$ such that $C^{*} \subseteq \bigcap\left(\operatorname{Int}\left(D^{\prime}\right): D^{\prime} \sim F\right.$ and $\left.D^{\prime} \in \mathcal{I}^{m}(D)\right)$, and each element of $\mathcal{I}^{m}(D)$ which is equivalent to D^{*} under \sim is of distance at most $\beta^{\prime}+\gamma+3$ from C^{*}.

Now, $C^{*} \subseteq \operatorname{Int}(F) \cap \operatorname{Int}\left(D^{*}\right)$, and, since both D^{*}, F lie in $\mathcal{I}^{m}(D)$, we have $D^{*} \notin \mathcal{I}(F)$ and $F \notin \mathcal{I}\left(D^{*}\right)$. Thus, we get $V\left(D^{*}\right) \cap V(F) \neq \varnothing$. so we apply Proposition 13.2.2. There exist four cycles $A_{i i}, A_{i e}, A_{e i}, A_{e e}$ in G, each of which is a subgraph of $D^{*} \cup F$, such that $\operatorname{Int}\left(A_{i i}\right)=\operatorname{Int}\left(D^{*}\right) \cap \operatorname{Int}(F)$ and $\operatorname{Int}\left(A_{i e}\right)=\operatorname{Int}\left(D^{*}\right) \cap \operatorname{Ext}(F)$, and, analogously, $\operatorname{Int}\left(A_{e i}\right)=\operatorname{Ext}\left(D^{*}\right) \cap \operatorname{Int}(F)$ and $\operatorname{Int}\left(A_{e e}\right)=\operatorname{Ext}\left(D^{*}\right) \cap \operatorname{Ext}(F)$. We now have the following.

Claim 13.2.16. $T \subseteq \operatorname{Ext}(F)$ and $\left|V\left(A_{i e}\right)\right| \geq$ 5. Furthermore, $\left|V\left(A_{e i}\right)\right| \leq 4$.

Proof: Since $T \subseteq A(D \mid \mathcal{D})$, we have $T \subseteq \operatorname{Ext}(F)$ and thus $T \subseteq \operatorname{Int}\left(A_{i e}\right)$. Suppose towards a contradiction that $\left|V\left(A_{i e}\right)\right| \leq 4$. Since $T \in \operatorname{Sep}(G)$, there is a $v \in V(\operatorname{Int}(T) \backslash V(T))$. Thus, $A_{i e} \in S e p(G)$, since A separates v from a point of $\operatorname{Ext}(F) \backslash V(F)$. Since $A_{i e} \in \operatorname{Sep}(G)$ we have $A_{i e} \in \mathcal{I}\left(D^{*}\right)$. Thus, since $A_{i e}$ is \mathcal{C}-close by assumption, there is a cycle $C^{\prime} \in \mathcal{C} \subseteq \operatorname{Int}\left(A_{i e}\right)$ with $d\left(C^{\prime}, A_{i e}\right) \leq \beta+\gamma+3$ by Lemma 13.2.12. Note that $C^{\prime} \neq C^{*}$ since $C^{*} \subseteq \operatorname{Int}(F)$. Since $A_{i e} \subseteq D^{*} \cup F$, we get $d\left(C^{\prime}, D^{*} \cup F\right) \leq \beta^{\prime}+\gamma+3$, and we have $d\left(C^{*}, D^{*}\right) \leq \beta^{\prime}+\gamma+3$ and $d\left(C^{*}, F\right) \leq \beta^{\prime}+\gamma+3$, so $d\left(C^{\prime}, C^{*}\right) \leq 2\left(\beta^{\prime}+\gamma+3\right)+2<\alpha$, contradicting the fact that \mathcal{T} is an $(\alpha, 1)$-chart. Thus, $\left|V\left(A_{i e}\right)\right| \geq 5$. By Proposition 13.2.2, at least one of $A_{i e}, A_{e i}$ has length at most 4, so $\left|V\left(A_{e i}\right)\right| \leq 4$.

Applying the above, we have the following.

Claim 13.2.17. $V\left(\operatorname{Int}\left(A_{e i}\right)\right)=V\left(A_{e i}\right)$.

Proof: Suppose toward a contradiction that $V\left(\operatorname{Int}\left(A_{e i}\right)\right) \neq V\left(A_{e i}\right)$. In that case, since $\left|V\left(A_{e i}\right)\right| \leq 4$, we have $A_{e i} \in \operatorname{Sep}(G)$. Since $A_{e i} \in \operatorname{Sep}(G)$ we get that $A_{e i}$ is \mathcal{C}-close by assumption, and so there is a cycle $C^{\dagger} \in \mathcal{C}^{\subseteq \operatorname{lnt}\left(A_{e i}\right)}$ with $d\left(C^{\dagger}, A_{e i}\right) \leq \beta^{\prime}+\gamma+3$ by Lemma 13.2.12. Note that $C^{\dagger} \neq C^{*}$, since $C^{\dagger} \subseteq \operatorname{Ext}\left(D^{*}\right)$ and $C^{*} \subseteq \operatorname{Int}\left(D^{*}\right)$ by definition. But since $A_{e i} \subseteq D^{*} \cup F$, we have $d\left(C^{\dagger}, D^{*} \cup F\right) \leq \beta^{\prime}+\gamma+3$, and we also have $d\left(C^{*}, D^{*}\right) \leq \beta+\gamma+3$ and $d\left(C^{*}, F\right) \leq \beta^{\prime}+\gamma+3$, so $d\left(C^{\dagger}, C^{*}\right) \leq 2\left(\beta^{\prime}+\gamma+3\right)+2$ by 1) of Lemma 13.2.12, contradicting the fact that $\left(G, \mathcal{C}, L, C_{*}\right)$ is an $(\alpha, 1)$-chart. Thus, our assumption that $V\left(\operatorname{Int}\left(A_{e i}\right)\right) \neq V\left(A_{e i}\right)$ is false.

Now consider the set $\mathcal{D}^{\dagger}:=\left(\mathcal{D} \cup\left\{D^{*}\right\}\right) \backslash\{F\}$. This is also a system of distinct representatives of the equivalence classes of $\mathcal{I}^{m}(D)$. Furthermore, $T \notin \operatorname{Sep}\left(A\left(D \mid \mathcal{D}^{\dagger}\right)\right)$, since $T \subseteq \operatorname{Int}\left(D^{*}\right)$ by assumption. If $\operatorname{Sep}\left(A\left(D \mid \mathcal{D}^{\dagger}\right)\right) \subseteq$ $\operatorname{Sep}(A(D \mid \mathcal{D}))$, then we have $\left|S e p\left(A\left(D \mid \mathcal{D}^{\dagger}\right)\right)\right|<|S e p(A(D \mid \mathcal{D}))|$, contradicting the minimality of $|S e p(A(D \mid \mathcal{D}))|$. Thus, there is a $T^{\dagger} \in \operatorname{Sep}\left(A\left(D \mid \mathcal{D}^{\dagger}\right)\right)$ with $T^{\dagger} \notin \operatorname{Sep}(A(D \mid \mathcal{D}))$.

Claim 13.2.18. $T^{\dagger} \subseteq \operatorname{Ext}\left(D^{*}\right) \cap \operatorname{Int}(F)$.

Proof: Firstly, since $T^{\dagger} \subseteq A\left(D \mid \mathcal{D}^{\dagger}\right)$, we have $T^{\dagger} \subseteq \operatorname{Ext}\left(D^{*}\right)$. Now suppose toward a contradiction that $T^{\dagger} \nsubseteq \operatorname{Int}(F)$. Note that T^{\dagger} is also an element of $\operatorname{Sep}(G)$, and $T^{\dagger} \subseteq \operatorname{Int}(D)$. Thus, there is a $D^{* *} \in \mathcal{I}^{m}(D)$ such that $T^{\dagger} \subseteq \operatorname{Int}\left(D^{* *}\right)$, and there is a unique $F^{* *} \in \mathcal{D}$ with $D^{* *} \sim F^{* *}$.

Subclaim 13.2.19. $F^{* *}=F$, and furthermore, $D^{* *} \neq D^{*}$, and $T^{\dagger} \neq D^{* *}$.
Proof: If $F^{* *} \neq F$, then T^{\dagger} is a separating cycle of $A(D \mid \mathcal{D})$ if and only if T^{\dagger} is a separating cycle of $A\left(D \mid \mathcal{D}^{\dagger}\right)$, contradicting our assumption. Thus, we indeed have $F^{* *}=F$, and $D^{* *} \sim D^{*} \sim F$. Since $T^{\dagger} \subseteq \operatorname{Int}\left(D^{* *}\right)$ and $T^{\dagger} \in \operatorname{Sep}\left(A\left(D \mid \mathcal{D}^{\dagger}\right)\right)$, it follows that $D^{* *}$ is not a facial subgraph of $A\left(D \mid \mathcal{D}^{\dagger}\right)$, and thus $D^{* *} \neq D^{*}$. Suppose now that $T^{\dagger}=D^{* *}$. Since $D^{* *} \sim D^{*}$ and $D^{* *} \neq D^{*}$, it follows that $E\left(T^{\dagger}\right)$ has nonempty intersection with $E\left(\operatorname{Int}\left(D^{*}\right)\right) \backslash E\left(D^{*}\right)$, contradicting the fact that $T^{\dagger} \subseteq A\left(D \mid \mathcal{D}^{\dagger}\right)$. Thus, we have $T^{\dagger} \neq D^{* *}$.

We claim now that $T^{\dagger} \subseteq \operatorname{Ext}(F)$. Suppose not. Then, since $T^{\dagger} \nsubseteq \operatorname{Int}(F)$ by assumption, T^{\dagger} has an edge in $\operatorname{Int}(F) \backslash E(F)$, and an edge in $\operatorname{Ext}(F) \backslash E(F)$, and thus, T^{\dagger} is also an immediate descentant of D, so we get $T^{\dagger}=D^{* *}$, contradicting Subclaim 13.2.19. Thus, we have $T^{\dagger} \subseteq \operatorname{Ext}(F)$. Since $T^{\dagger} \subseteq \operatorname{Int}(D) \cap \operatorname{Ext}(F)$ and $D^{* *} \sim D^{*}$, we have $\operatorname{Int}\left(T^{\dagger}\right) \subseteq A(D \mid \mathcal{D})$. Since $T^{\dagger} \in \operatorname{Sep}\left(A\left(D \mid \mathcal{D}^{\dagger}\right)\right)$, we have $V\left(\operatorname{Int}\left(T^{\dagger}\right) \backslash V\left(T^{\dagger}\right) \neq \varnothing\right.$. Since $T^{\dagger} \subseteq \operatorname{Int}\left(D^{* *}\right)$ and $T^{\dagger} \neq D^{* *}$, it follows that T^{\dagger} separates a vertex of $\operatorname{Int}\left(T^{\dagger}\right) \backslash T^{\dagger}$ from D, and thus T^{\dagger} is a separating cycle of $A(D \mid \mathcal{D})$, contradicting our assumption that $T^{\dagger} \notin \operatorname{Sep}(A(D \mid \mathcal{D}))$.

Applying Claim 13.2.18, we have $T^{\dagger} \subseteq \operatorname{Ext}\left(D^{*}\right) \cap \operatorname{Int}(F)$, and so $T^{\dagger} \subseteq \operatorname{Int}\left(A_{e i}\right)$. By Claim 13.2.17, we have $V\left(\operatorname{Int}\left(A_{e i}\right)\right)=V\left(A_{e i}\right)$. Since T^{\dagger} is a separating cycle in G, we have a contradiction. Thus, our assumption that $\operatorname{Sep}(A(D \mid \mathcal{D})) \neq \varnothing$ is false, and $\operatorname{Sep}(A(D \mid \mathcal{D}))$ is indeed empty, so $A(D \mid \mathcal{D})$ is short-separation-free, as desired. This completes the proof of Proposition 13.2.15.

13.3 Boundary Analysis for Critical Charts

In order to complete the proof of Theorem 13.0.1, we need to apply the work of Sections 12.2-12.5, and, in particular, we need a result that states that, under certain conditions, the annulus between two short separating cycles in a critical chart behaves like a roulette wheel. The key is to check that the "short side property" of Definition 12.3.1 is satisfied by this annulus. The lone result of Section 13.3 is the following.

Lemma 13.3.1. Let $\mathcal{T}=\left(G, \mathcal{C}, L, C_{*}\right)$ be a critical chart. Let $D_{0} \in \operatorname{Sep}(G)$, where, for each $F \in \mathcal{I}\left(F_{0}\right)$, every element of $\{F\} \cup \mathcal{I}(F)$ is \mathcal{C}-close. Let \mathcal{M}_{0} be a complete set of representatives of the \sim-equivalence classes of
$\mathcal{I}^{m}\left(F_{0}\right)$, where $A:=A\left(F_{0} \mid \mathcal{M}_{0}\right)$ is short-separation-free. Let $F_{1} \in \mathcal{M}_{0}$, suppose that $2 \leq d\left(F_{0}, F_{1}\right) \leq \beta^{\prime}+1$. For each $i \in\{0,1\}$, the following hold.

1) For each $i=0,1$ and any generalized chord P of D_{i} in A of length at most six, letting $A=A^{-} \cup A^{+}$be the natural P-partition of A, where $F_{1-i} \subseteq A^{+}$, every element of $\mathcal{C} \subseteq A \cup\left(\mathcal{M}_{0} \backslash\left\{F_{1}\right\}\right)$ also lies in A^{+}; AND
2) For each $i=0,1$, the subgraph of A induced by $D_{1}\left[V\left(F_{i}\right)\right]$ is a chordless cycle.

Proof. Firstly, by Proposition 13.2.5, every facial subgraph of A, except those of $\left\{\mathcal{M}_{0}\right\} \cup\left\{F_{0}\right\} \cup \mathcal{C} \subseteq A$, is a triangle. Since F_{1} is \mathcal{C}-close, we fix a $C^{\dagger} \in \mathcal{C}$ with $C^{\dagger} \subseteq \operatorname{Int}_{G}\left(F_{1}\right)$ such that $d\left(C^{\dagger}, F_{1}\right) \leq \beta^{\prime}+\gamma+3$. We now have the following.

Claim 13.3.2. Let $i \in\{0,1\}$ and $\mathcal{F}:=\mathcal{C} \subseteq A \cup\left(\mathcal{M}_{0} \backslash\left\{F_{1}\right\}\right)$. Then the following inequalities hold.

1) If $i=0$, then, for each $F \in \mathcal{F}$, we have $d\left(F, F_{i}\right) \geq \frac{\beta}{3}+4 N_{\mathrm{mo}}$; AND
2) If $i=1$, then, for each $F \in \mathcal{F}$, we have $d\left(F, F_{i}\right) \geq \beta^{\prime}$.

Proof: Consider the following cases.
Case 1: $i=0$
Note that $\frac{\beta}{3}+4 N_{\mathrm{mo}}=\frac{\beta^{\prime}+8 N_{\mathrm{mo}}}{3}$. Suppose toward a contradiction that there is an $F^{\dagger} \in \mathcal{F}$ with $d\left(F^{\dagger}, F_{0}\right)<\frac{\beta^{\prime}+8 N_{\mathrm{mo}}}{3}$. Since $C^{\dagger} \subseteq \operatorname{Int}_{G}\left(F_{1}\right)$, we have $C^{\dagger} \neq F^{\dagger}$. Since $D\left(F_{0}, F_{1}\right) \leq \beta^{\prime}+1$, it follows from two successive applications 1) of Lemma 13.2.12 that $d\left(C^{\dagger}, F^{\dagger}\right) \leq 2 \beta^{\prime}+\frac{\beta^{\prime}}{3}+\gamma+\frac{8 N_{\mathrm{mo}}}{3}+7$. If $F^{\dagger} \in \mathcal{C}$, then we contradict Proposition 13.2.14, so $F^{\dagger} \in \mathcal{M}_{0} \backslash\left\{F_{1}\right\}$. But, by assumption, each element of \mathcal{M}_{0} is \mathcal{C}-close, so we again contradict Proposition 13.2.14.

Case 2: $i=1$
Suppose toward a contradiction that there is an $F^{\dagger} \in \mathcal{F}$ with $d\left(F^{\dagger}, F_{1}\right)<\beta^{\prime}$. As above, since $C^{\dagger} \subseteq \operatorname{Int}_{G}\left(F_{1}\right)$, we have $D^{\dagger} \neq C^{\dagger}$. By 1) of Lemma 13.2.12, we have $d\left(F^{\dagger}, C^{\dagger}\right) \leq 2 \beta^{\prime}+\gamma+2$, which, as above, contradicts Proposition 13.2.14.

To prove 1) of Lemma 13.3.1, we prove something stronger in the form of the claim below. This is similar to the arguments of the main results of Section 2.1 but simpler because this argument takes place in a minimal chart, not a minimal mosaic.

Claim 13.3.3. Let $M \subseteq A$ be a cycle which does not separate F_{0} from F_{1} and suppose that $|V(M)| \leq 10$. Then at least one of the following holds.

1) For any $F^{\dagger} \in \mathcal{C} \subseteq A \cup\left(\mathcal{M}_{0} \backslash\left\{F_{1}\right\}\right)$, we have $F^{\dagger} \subseteq \operatorname{Ext}(M)$; OR
2) There exists an $F^{\dagger} \in \mathcal{C} \subseteq A \cup\left(\mathcal{M}_{0} \backslash\left\{F_{1}\right\}\right)$ such that $F^{\dagger} \subseteq \operatorname{Int}(D)$ and $\max \left\{d\left(v, F^{\dagger}\right): v \in V(M)\right\}<$ $\frac{\beta}{3}+\frac{3}{2}|V(M)|+2 N_{\mathrm{mo}}$.

Proof: Given a cycle $M \subseteq A$, we say that M is broken if $|V(M)| \leq 10$ and M separates F_{0} from F_{1}, but M satisfies neither 1) nor 2) above. Suppose toward a contradiction that there exists a broken cycle, and, among all broken cycles, we choose M to minimize the quantity $\left|V\left(\operatorname{Int}_{A}(M)\right)\right|$. Since M is a broken cycle, there exists at least one $F^{\dagger} \in \mathcal{C} \subseteq A \cup\left(\mathcal{M}_{0} \backslash\left\{F_{1}\right\}\right)$ with $F^{\dagger} \subseteq \operatorname{Int}_{A}(M)$, and, for any such F^{\dagger}, we have $\max \left\{d\left(v, F^{\dagger}\right): v \in V(M)\right\}<$ $\frac{\beta}{3}+\frac{3}{2}|V(M)|+2 N_{\mathrm{mo}}$. Let $\mathcal{F}:=\left\{F^{\dagger} \in \mathcal{C} \subseteq A \cup\left(\mathcal{M}_{0} \backslash\left\{F_{1}\right\}\right): F^{\dagger} \subseteq \operatorname{Int}_{A}(M)\right\}$. The minimality of $\left|V\left(\operatorname{Int}_{A}(M)\right)\right|$ immediately implies the following.

1) M has no chord in $\operatorname{Int}_{A}(M)$; AND
2) For any $v \in D_{1}(M) \cap V\left(\operatorname{Int}_{A}(M)\right)$, the graph $G[N(v) \cap V(M)]$ is a subpath of M of length at most one; AND
3) There is at most one vertex of $D_{1}(M) \cap V\left(\operatorname{Int}_{A}(M)\right)$ adjacent to a subpath of M of length precisely one.

In particular, M is a highly predictable cyclic facial subgraph of $\operatorname{Int}(M)$. Let $G^{\prime}:=G \backslash\left(V\left(\operatorname{Int}_{A}(M)\right) \backslash V(M)\right)$. Since M a broken cycle, we have $\left|V\left(G^{\prime}\right)\right|<|V(G)|$, and since $\left(G^{\prime}, \mathcal{C} \backslash \mathcal{F}, L, C_{*}\right)$ is an ($\alpha, 1$)-chart, it follows from the minimality of \mathcal{T} that G^{\prime} admits an L-coloring ϕ. Since M is an induced subgraph of $\operatorname{Int}_{A}(M), \phi$ restricts to a proper L-coloring of $V(M)$.
Now consider the tuple $\mathcal{T}^{M}:=\left(\operatorname{Int}_{A}(M), \mathcal{F} \cup\{M\} L_{\phi}^{V(M)}, M\right)$. We claim that \mathcal{T}^{M} is a mosaic in which M is a closed ring and each element of $\mathcal{F} \cap \mathcal{M}_{0}$ is also a closed ring. Each cycle in $\{M\} \cup\left(\mathcal{F} \cap \mathcal{M}_{0}\right)$ is precolored by ϕ. Since A is short-separation-free, no element of $\mathcal{M}_{0} \cap \mathcal{F}$ has a chord in A, so ϕ properly precolors each element of $\mathcal{M}_{0} \cap \mathcal{F}$.

By Observation 2.1.2, each element of $\mathcal{M}_{0} \cap \mathcal{F}$ is a highly predictable cyclic facial subgraph of $\operatorname{Int}_{A}(M)$ and thus an $L_{\phi}^{V(D)}$-predictable facial subgraph of $\operatorname{Int} A$. Since M is a highly predictable facial subgraph of $\operatorname{Int}_{A}(M)$, it is also $L_{\phi}^{V(M)}$-predictable, and we also have $|V(M)| \leq 10<N_{\mathrm{mo}}$, so M0) of Definition 2.1.6 is satisfied. In particular, \mathcal{T}^{M} is a tessellation, by the triangulation conditions satisfied by A. The only nontrivial part of Definition 2.1.6 to check is that the distance conditions are satisfied.

Since M is a broken cycle and any two vertices of M are of distance at most $\frac{|V(M)|}{2}$ apart, every element of \mathcal{F} has distance at least $\frac{\beta}{3}+2 N_{\text {mo }}+\operatorname{Rk}\left(\mathcal{T}^{M} \mid F^{\dagger}\right)$ from M. Since \mathcal{T} is an $(\alpha, 1)$-chart, all of the elements of $\mathcal{F} \cap \mathcal{C}$ have distance at least α from each other. Furthermore, since every element of \mathcal{M}_{0} is \mathcal{C}-close, it follows from Proposition 13.2.14 that all of the elements of \mathcal{F} have distance at least β^{\prime} from each other. Thus, \mathcal{T}^{M} does indeed satisfy all the conditions of 2.1.6, so \mathcal{T}^{M} is a mosaic. By Theorem 2.1.7, ϕ extends to an L-coloring of $\operatorname{Int}_{A}(M)$, so ϕ extends to an L-coloring of G, contradicting the fact that \mathcal{T} is a counterexample.

We now have enough to finish the proof of 1) of Lemma 13.3.1.

Claim 13.3.4. For each $i \in\{0,1\}$ and proper generalized chord P of F_{i} in A, if P has length at most six, then P does not separate F_{1-i} from any element of $\mathcal{C} \subseteq A \cup\left(\mathcal{M}_{0} \backslash\left\{F_{1}\right\}\right)$

Proof: Suppose toward a contradiction that there exists a generalized chord P of F_{i} of length at most six which separates F_{1-i} from an element F^{\dagger} of $\mathcal{C} \subseteq A \cup\left(\mathcal{M}_{0} \backslash\left\{F_{1}\right\}\right)$. Since each of F_{0}, F_{1} has length at most four, there is a cycle $M \subseteq A$ of length at most 10 , where M does not separate F_{0} from F_{1} and $V(M) \subseteq V\left(F_{0} \cup F_{1} \cup P\right)$, and $F^{\dagger} \subseteq \operatorname{Int}(M)$. By Claim 13.3.3, there exists an $F^{\dagger \dagger} \in \mathcal{C} \subseteq A \cup\left(\mathcal{M}_{0} \backslash\left\{F_{1}\right\}\right)$ such that $d\left(F^{\dagger \dagger}, D\right)<\frac{\beta}{3}+15+2 N_{\text {mo }}$ and since every vertex of P has distance at most 3 from $F_{0} \cup F_{1}$, we contradict Claim 13.3.2.

Given the result of Claim 13.3.4, we now introduce the following notation. For each $i \in\{0,1\}$ and proper generalized chord P of F_{i} of length at most six, we let $A=A_{i, P}^{-} \cup A_{i, P}^{+}$be the natural P-partition of A, where $F_{1-i} \subseteq A_{i, P}^{+}$, and, furthermore, each element of $\mathcal{C} \subseteq A \cup\left(\mathcal{M}_{0} \backslash\left\{F_{1}\right\}\right)$ also lies in $A_{i, P}^{+}$. We now prove 2) of Lemma 13.3.1.

Let $i \in\{0,1\}$. Since $d\left(F_{0}, F_{1}\right) \mid \geq 2$, it follows from our triangulation conditions, together with Observation 2.1.2, that there is a cycle C^{i} such that $V\left(C^{i}\right)=D_{1}\left(F_{i}, A\right)$, where, for each $v \in\left(C^{i}\right)$, the graph $A\left[N(v) \cap V\left(F_{i}\right)\right]$ is a subpath of F_{i} of length at most one. We just need to check that C^{i} is an induced subgraph of A. Suppose toward a contradiction that there is a chord $w w^{\prime}$ of C^{i} in A. Let $p \in N(w) \cap V\left(F_{i}\right)$ and $p^{\prime} \in N\left(w^{\prime}\right) \cap V\left(F_{i}\right)$. Since A is
short-separation-free, we have $\left|V\left(F_{i}\right)\right|=4$ and p, p^{\prime} are opposing vertices of F_{i}. Furthermore, $N(w) \cap V\left(F_{i}\right)=\{p\}$ and $N\left(w^{\prime}\right) \cap V\left(F_{i}\right)=\left\{p^{\prime}\right\}$. Let $S:=V\left(A_{i, P}^{i}\right) \backslash\left(V\left(F_{i}\right) \cup\left\{w, w^{\prime}\right\}\right)$. Since $w w^{\prime}$ is a chord of C^{i}, we have $S \neq \varnothing$.

Let $P:=p w w^{\prime} p^{\prime}$. Since $\left|V\left(F_{i}\right)\right|=4$ and p, p^{\prime} are nonadjacent vertices of F_{i}, let q be the midpoint of the 2-path $F_{i} \cap A_{i, P}^{-}$. Now, $D:=p w w^{\prime} p^{\prime} q$ is a cyclic facial subgraph of $A_{i, P}^{-}$. Since $S \neq \varnothing$, there is no chord of D in $A_{i, P}^{-}$, or else there is a cycle in A of length at most four which separates S from F_{1-i}, contradicting the fact that A is short-separation-free.

Let $G^{\prime}:=G \backslash S$. By Claim 13.3.4, each element of \mathcal{C} lies in G^{\prime}. Now, $\left(G^{\prime}, \mathcal{C}, L, C_{*}\right)$ is an $(\alpha, 1)$-chart. Since $S \neq \varnothing$, it follows from the minimality of G that G^{\prime} admits an L-coloring ϕ. Since D has no chords in $A_{i, P}^{-}, \phi$ restricts to a proper L-coloring of $V(D)$. Since G is a counterexample, ϕ does not extend to L-color the vertices of S. Since all the vertices of S have L-lists of size at least five, it follows from Theorem 1.3.5 that there is a lone vertex of S adjacent to all five vertices of D, so there is a vertex of S adjacent to all of p, q, p^{\prime}, so A contains a 4-cycle which separates q from F_{1-i}, contradicting the fact that A is short-separation-free. This completes the proof of Lemma 13.3.1.

13.4 Completing the proof of Theorem 1.1.3

We now prove the following key proposition, which is the last ingredient we need in order to complete the proof of Theorem 13.0.1, and thus the proof of Theorem 1.1.3 as well.

Proposition 13.4.1. Let $\mathcal{T}=\left(G, \mathcal{C}, L, C_{*}\right)$ be a critical chart. Then every $D \in \operatorname{Sep}(G)$ is \mathcal{C}-close.

Proof. Suppose toward a contradiction that there exists a $D^{\mathrm{mc}} \in \operatorname{Sep}(G)$ which is not \mathcal{C}-close, and furthermore, among all elements of $\operatorname{Sep}(G)$ which are not \mathcal{C}-close, we choose D^{mc} so as to minimize $\left|V\left(\operatorname{Int}\left(D^{\mathrm{mc}}\right)\right)\right|$. Note that $\mathcal{I}^{m}\left(D^{\mathrm{mc}}\right) \neq \varnothing$ or else D^{mc} is a minimal element of $\operatorname{Sep}(G)$ and is thus \mathcal{C}-close by 2) of Lemma 13.2.10. For each $D \in\left\{D^{\mathrm{mc}}\right\} \cup \mathcal{I}\left(D^{\mathrm{mc}}\right)$, every element of $\mathcal{I}^{m}(D)$ is \mathcal{C}-close by our choice of D^{mc}. By Proposition 13.2.15, there exists a system $\mathcal{M}_{D} \subseteq \mathcal{I}^{m}(D)$ of distinct representatives of the \sim-equivalence classes of $\mathcal{I}^{m}(D)$ such that $A\left(D \mid \mathcal{M}_{D}\right)$ is short-separation-free.

Given a $D \in\left\{D^{\mathrm{mc}}\right\} \cup \mathcal{I}\left(D^{\mathrm{mc}}\right)$, we say that D is an obstructing cycle if there exists a $D^{\prime} \in \mathcal{M}_{D}$ such that $d\left(D, D^{\prime}\right) \leq$ $\beta^{\prime}+1$. If there exist two distinct $D^{\prime}, D^{\prime \prime} \in \mathcal{M}_{D}$ such that $d\left(D, D^{\prime \prime}\right) \leq \beta^{\prime}+1$ and $d\left(D, D^{\prime}\right) \leq \beta^{\prime}+1$, then $d\left(D^{\prime}, D^{\prime \prime}\right) \leq 2\left(\beta^{\prime}+1\right)+2$ by 1) of Lemma 13.2.12, contradicting Proposition 13.2.14. Thus, if D is an obstructing cycle, the corresponding $D^{\prime} \in \mathcal{M}_{D}$ is unique.

Claim 13.4.2. D^{mc} is an obstructing cycle.

Proof: Suppose toward a contradiction that D^{mc} is not an obstructing cycle, and set $A^{*}:=A\left(D^{\mathrm{mc}} \mid \mathcal{M}_{D^{\mathrm{mc}}}\right)$.
Subclaim 13.4.3. For each $D \in\left\{D^{\mathrm{mc}}\right\} \cup \mathcal{M}_{D^{\mathrm{mc}}}$, the following hold.

1) For each $C \in \mathcal{C} \subseteq A^{*}$, we have $d(C, D) \geq \beta^{\prime}+1$; AND
2) For each $D^{\prime} \in\left\{D^{\mathrm{mc}}\right\} \cup \mathcal{M}_{D^{\mathrm{mc}}}$ with $D^{\prime} \neq D$, we have $d\left(D, D^{\prime}\right) \geq \beta^{\prime}+2$.

Proof: We break this into two cases.
Case 1: $D=D^{\mathrm{mc}}$.

Since D^{mc} is not an obstructing cycle, we have $d\left(D^{\mathrm{mc}}, D^{\prime}\right) \geq \beta^{\prime}+2$ for each $D^{\prime} \in \mathcal{M}_{D^{\mathrm{mc}}}$. This proves 2$)$. Now we check that $d\left(C, D^{\mathrm{mc}}\right) \geq \beta^{\prime}+1$ for all $C \in \mathcal{C} \subseteq A^{*}$. If D^{mc} is a blue cycle, then this immediately follows from the fact that D^{mc} is not an obstructing cycle, since each element of $\mathcal{C} \subseteq A^{*}$ is separated from D^{mc} by an element of $\mathcal{M}_{D^{\mathrm{mc}}}$. On the other hand, if D^{mc} is a red cycle, then this is true by our assumption that D^{mc} is not \mathcal{C}-close.

Case 2: $D \neq D^{\mathrm{mc}}$
In this case, for any $C \in \mathcal{C} \subseteq A^{*}$, we immediately have $d(C, D) \geq \beta^{\prime}+1$ by Proposition 13.2.14. This proves 1$)$. To finish, it suffices to prove that 2) holds for each $D^{\prime} \in \mathcal{M}_{D^{\mathrm{mc}}}$, since, if $D^{\prime}=D^{\mathrm{mc}}$, then we are back to Case 1 with the roles of D, D^{\prime} interchanged. Applying Proposition 13.2.14 again, it follows that, for any $D^{\prime} \in \mathcal{M}_{D^{\mathrm{mc}}}$, we have $d\left(D, D^{\prime}\right) \geq \beta^{\prime}+2$, so we are done.

By Proposition 13.2.13, there is an L-coloring ϕ of $\bigcup\left(\operatorname{Int}^{+}(D): D \in \mathcal{M}_{D^{m c}}\right)$. By Lemma 13.2.8, $\mathrm{Ext}^{+}\left(D^{\mathrm{mc}}\right)$ is L-colorable. By Subclaim 13.4.3, the graphs $\bigcup\left(\operatorname{Int}^{+}(D): D \in \mathcal{M}_{D \mathrm{mc}}\right)$ and $\operatorname{Ext}^{+}\left(D^{\mathrm{mc}}\right)$ are of distance at least $\beta^{\prime}+2$ apart in G, so $\phi \cup \psi$ is a proper L-coloring of its domain. Applying Subclaim 13.4.3, together with Proposition 13.2.5, $\phi \cup \psi$ extends to an L-coloring of A^{*}, and thus G is L-colorable, which is false.

We now break the remainder of the proof of Proposition 13.4.1 into two cases.
Case 1 of Proposition 13.4.1: There exists an obstructing cycle $D^{\dagger} \in\left\{D^{\mathrm{mc}}\right\} \cup \mathcal{I}\left(D^{\mathrm{mc}}\right)$ such that either D^{\dagger} is red or $\left|\mathcal{M}_{D^{\dagger}}\right|>1$.

In this case, since D^{\dagger} is an obstructing cycle, let D^{\prime} be the unique element of $\mathcal{M}_{D^{\dagger}}$ be such that $d\left(D^{\prime}, D^{\dagger}\right) \leq \beta^{\prime}+1$. Let $A^{\dagger}:=A\left(D^{\dagger} \mid \mathcal{M}_{D^{\dagger}}\right)$, and let R^{\dagger} be the subgraph of G induced by set $V\left(\operatorname{Ext}\left(D^{\dagger}\right)\right) \cup \bigcup\left(V(\operatorname{Int}(D)): D \in \mathcal{M}_{D^{\dagger}}\right)$. Note that R^{\dagger} consists of the family $\left\{D^{\dagger}\right\} \cup \mathcal{M}_{D^{\dagger}}$ of boundary cycles of A^{\dagger} and their chords, together with all of the edges and vertices of G that intersect with A^{\dagger} precisely on this family of boundary cycles. Let $R_{\text {aug }}^{\dagger}$ be the subgraph of G induced by the vertex set $V\left(R^{\dagger}\right) \cup B_{11+\left(\beta^{\prime} / 3\right)}\left(D^{\prime} \cup D^{\dagger}, A^{\dagger}\right)$. That is, we augment R^{\dagger} by a set of vertices within a small ball within A^{\dagger} around $D^{\prime} \cup D^{\dagger}$. The idea here is that we show that there is an L-coloring of R^{\dagger} which extends to a small ball in A^{\dagger} around $D^{\prime} \cup D^{\dagger}$, and then apply the results of Sections 12.2-12.5.

Claim 13.4.4. $\left|V\left(R_{\mathrm{aug}}^{\dagger}\right)\right|<|V(G)|$ and $R_{\mathrm{aug}}^{\dagger}$ is L-colorable.
Proof: We first show that $\left(R_{\text {aug }}^{\dagger}, \mathcal{C} \subseteq G \backslash A^{\dagger}, L\right)$ is an $(\alpha, 1)$-chart. To prove this, it suffices to show that, for any $C \in$ \mathcal{C}, if C has nonempty intersection with $R_{\text {aug }}^{\dagger}$, then $C \subseteq G \backslash A^{*}$. If this holds then it immediately follows that $\left(R_{\text {aug }}^{*}, \mathcal{C} \subseteq G \backslash A^{*}, L\right)$ is an $(\alpha, 1)$-chart., since (G, \mathcal{C}, L) is an $(\alpha, 1)$-chart.

Suppose toward a contradiction that there is a $C \in \mathcal{C}$ with nonempty intersection with $R_{\text {aug }}^{\dagger}$ such that $C \nsubseteq G \backslash A^{\dagger}$. In that case, since C is a facial subgraph of G, and each cycle in $\left\{D^{\dagger}\right\} \cup\left\{\mathcal{M}_{D^{\dagger}}\right\}$ is a separating cycle of G, we have $C \subseteq A^{\dagger}$. Since $V(C) \cap V\left(R_{\text {aug }}^{*}\right) \neq \varnothing$, we have $d\left(C, D^{\prime} \cup D^{\dagger}\right) \leq 11+\frac{\beta^{\prime}}{3}$. Since D^{\dagger} is not \mathcal{C}-close, we have $d\left(C, D^{\prime}\right) \leq 11+\frac{\beta^{\prime}}{3}$, contradicting Proposition 13.2.14. Thus, we conclude that the tuple $\left(R_{\text {aug }}^{\dagger}, \mathcal{C} \subseteq G \backslash A^{\dagger}, L\right)$ is indeed an $(\alpha, 1)$-chart. To finish the proof of Claim 13.4.4, it just suffices to check that $\left|V\left(R_{\text {aug }}^{\dagger}\right)\right|<|V(G)|$, and it then follows from the minimality of \mathcal{T} that $R_{\text {aug }}^{\dagger}$ is L-colorable.

We break this into two cases. Suppose first that D^{\dagger} is red. In this case, by definition, there exists a $C^{*} \in \mathcal{C}$ with $C^{*} \subseteq A^{\dagger}$. Furthermore, $d\left(C^{*}, D^{\prime}\right) \geq \frac{7 \beta^{\prime}}{2}+3 \gamma+16$ by Proposition 13.2 .14 , and thus, since $d\left(D^{\prime}, D^{\dagger}\right) \leq \beta^{\prime}+1, C^{*}$ is disjoint to $R_{\text {aug. }}^{\dagger}$. Thus, we indeed have $\left|V\left(R_{\text {aug }}^{\dagger}\right)\right|<|V(G)|$ in this case.

Now suppose that D^{\dagger} is blue. Thus, we have $\left|\mathcal{M}_{D^{\dagger}}\right|>1$ by the assumption of Case 1 , and by Proposition 13.2.14, there exists a $D^{\prime \prime} \in \mathcal{M}_{D^{\dagger}}$ such that $D^{\prime \prime}$ is of distance at least $\frac{5 \beta^{\prime}}{2}+8$ from D^{\prime}. Furthermore, since D^{\prime} is the
unique cycle of $\mathcal{I}^{m}\left(D^{\dagger}\right)$ of distance at most $\beta^{\prime}+1$ from D^{\dagger}, we have $d\left(D^{\prime \prime}, D^{\dagger}\right)>\beta^{\prime}+1$. Thus, again, we have $\left|V\left(R_{\text {aug }}^{\dagger}\right)\right|<|V(G)|$, as desired.

Since $R_{\text {aug }}^{\dagger}$ is L-colorable, let ϕ be an L-coloring of $R_{\text {aug }}^{\dagger}$ and let ϕ^{\dagger} be the restriction of ϕ to $V\left(D^{\dagger}\right) \cup\left(\bigcup V(D): D \in \mathcal{M}_{D^{\dagger}}\right)$, and let L^{\dagger} be a list-assignment for $V\left(A^{\dagger}\right)$ in which each vertex of $\operatorname{dom}\left(\phi^{\dagger}\right)$ is precolored by ϕ^{\dagger}, and otherwise $L^{\dagger}=L$. Recalling Definition 12.3.1, we now want apply the work of Sections 12.2-12.4. To do this, we need to check that the annulus between D^{\dagger} and D^{\prime} is a roulette wheel, i.e that the tuple $\left(A^{\dagger}, D^{\dagger}, D^{\prime}, L^{\dagger}, \phi^{\dagger}\right)$.

Claim 13.4.5. A^{\dagger} is not L^{\dagger}-colorable
Proof: if A^{\dagger} is L^{\dagger}-colorable, then, since ϕ^{\dagger} extends to an L-coloring of $R^{\dagger}, \phi^{\dagger}$ extends to an L-coloring of G, contradicting the fact that \mathcal{T} is a critical chart.

Now we can apply the work of Sections 12.2-12.4.

Claim 13.4.6. $\left(A^{\dagger}, D^{\dagger}, D^{\prime}, L^{\dagger}, \phi^{\dagger}\right)$ is a roulette wheel.
Proof: We first check that Ro1), Ro2), and Ro3) of Definition 12.3 .1 hold. By Claim 13.4.4, we have $\left|V\left(R_{\text {aug }}^{\dagger}\right)\right|<$ $|V(G)|$, and 2) follows immediately. By Claim 13.2.3, G is connected, so A^{\dagger} is also connected. By our choice of $\mathcal{M}_{D^{\dagger}}$, A^{\dagger} is short-separation-free, so we have 1) of Definition 12.3 .1 as well. Furthermore, it follows from Proposition 13.2.5 that each facial subgraph of A^{\dagger}, except those of $\mathcal{C} \subseteq A^{\dagger} \cup\left\{D^{\dagger}\right\} \cup \mathcal{M}_{D^{\dagger}}$, is a triangle. Since $d\left(D^{\prime}, D^{\dagger}\right) \leq \beta+1$, it follows from Proposition 13.2.14 that, for all $v \in B_{\frac{\beta^{\prime}+3}{2}}\left(D^{\dagger} \cup D^{\prime}, A^{\dagger}\right) \backslash V\left(D^{\dagger} \cup D^{\prime}\right)$, we have $|L(v)| \geq 5$ and thus $\left|L^{\dagger}(v)\right| \geq 5$. Since each facial subgraph of A^{\dagger}, except those of $\mathcal{C} \subseteq A^{\dagger} \cup\left\{D^{\dagger}\right\} \cup \mathcal{M}_{D^{\dagger}}$, is a triangle, it also follows from Proposition 13.2.14 that, for all $v \in B_{\frac{\beta^{\prime}+3}{2}}\left(D^{\dagger} \cup D^{\prime}, A^{\dagger}\right)$, every facial subgraph of A^{\dagger} containing v, except D^{\dagger}, D^{\prime}, is a triangle. Thus, $\left(A^{\dagger}, D^{\dagger}, D^{\prime}, L^{\dagger}, \phi^{\dagger}\right)$ satisfies Ro1)-Ro3) of Definition 12.3.1. By Lemma 13.3.1, $\left(A^{\dagger}, D^{\dagger}, D^{\prime}, L^{\dagger}, \phi^{\dagger}\right)$ also satisfies Ro4) of Definition 12.3.1, so we are done.

Claim 13.4.7. For each $D \in \mathcal{M}_{D^{\dagger}} \backslash\left\{D^{\prime}\right\}$ and $C \in \mathcal{C} \subseteq A^{\dagger}$, the following conditions hold.

1) $d\left(D, D^{\dagger} \cup D^{\prime}\right)>\frac{3 \beta^{\prime}}{2}+4$; AND
2) $d\left(C, D^{\dagger} \cup D^{\prime}\right)>\frac{5 \beta^{\prime}}{2}$.

Proof: Suppose toward a contradiction that there is a $D \in \mathcal{M}_{D^{\dagger}} \backslash\left\{D^{\prime}\right\}$ such that $d\left(D, D^{\dagger} \cup D^{\prime}\right) \leq \frac{3 \beta^{\prime}}{2}+4$. Since $d\left(D^{\prime}, D^{\dagger}\right) \leq \beta^{\prime}+1$, it follows from 1) of Lemma 13.2.12 that $d\left(D^{\prime}, D\right) \leq \frac{5}{2} \beta^{\prime}+7$, contradicting Proposition 13.2.14. Now suppose toward a contradiction that there is a $C \in \mathcal{C} \subseteq A^{\dagger}$ such that $d\left(C, D^{\dagger} \cup D^{\prime}\right) \leq \frac{5 \beta^{\prime}}{2}$. Again, since $d\left(D^{\dagger}, D^{\prime}\right) \leq \beta^{\prime}+1$, it follows from 1) of Lemma 13.2.12 that $d\left(D^{\prime}, C\right) \leq \frac{7 \beta^{\prime}}{2}+3$, which again contradicts Proposition 13.2.14. Thus, condition 2) holds.

Appplying Claim 13.4.6, since $\left(A^{\dagger}, D^{\dagger}, D^{\prime}, L^{\dagger}, \phi^{\dagger}\right)$ is a roulette wheel, it satisfies either S 1 or S 2 of Theorem 12.3.3, so we break Case 1 into two subcases.

Subcase 1.1: $\left(A^{\dagger}, D^{\dagger}, D^{\prime}, L^{\dagger}, \phi^{\dagger}\right)$ satisfies S 2 of Theorem 12.3.3.
In this case, let $[K ; Q ; \sigma ; Z]$ be a cycle connector for $\left(A^{\dagger}, D^{\dagger}, D^{\prime}, L^{\dagger}, \phi^{\dagger}\right)$. Consider the graph $A^{*}:=A^{\dagger} \backslash(V(K \backslash Q))$. Since $K \backslash Q$ is connected and has nonempty intersection with each of D^{\dagger}, D^{\prime}, it follows from Theorem 1.3.2 that graph A^{*} contains a facial subgraph F^{*} such that $V\left(F^{*}\right) \subseteq V\left(D^{\dagger} \cup D^{\prime}\right) \cup D_{1}\left(K \backslash Q, A^{*}\right)$ and $Q \subseteq F^{*}$. Furthermore, F^{*} is a Thomassen facial subgraph of A^{*} with respect to the list-assignment $\left(L^{\dagger}\right)_{\sigma}^{Q}$.

For each $D \in \mathcal{M}_{D^{\dagger}} \backslash\left\{D^{\prime}\right\}$, let P_{D} be a subpath of D of length $|V(D)|-3$ and let $P:=\bigcup\left(P_{D}: D \in \mathcal{M}_{D^{\dagger}} \backslash\right.$ $\left.\left\{D^{\prime}\right\}\right)$. Since the disjoint paths in P are pairwise far apart, we obtain the following by Theorem 1.3.2: For each $D \in \mathcal{M}_{D^{\dagger}} \backslash\left\{D^{\prime}\right\}$, there is a facial subgraph F_{D} of $A^{*} \backslash P$ such that $V\left(F_{D}\right)=V(D \backslash P) \cup D_{1}\left(P_{D}, A^{*}\right)$. Let $\mathcal{F}=\left\{F^{*}\right\} \cup\left\{F_{D}: D \in \mathcal{M}_{D^{\dagger}} \backslash\left\{D^{\prime}\right\}\right\}$. Let $P^{*}:=Q \cup \bigcup\left(D \backslash P_{D}: D \in \mathcal{M}_{D^{\dagger}} \backslash\left\{D^{\prime}\right\}\right)$. That is, P is the union of all the paths in A^{*} that we delete in order to produce our Thomassen facial subgraphs and P^{*} is the union of the precolored edges that we are retaining.

Claim 13.4.8. $\left(A^{*} \backslash P, \mathcal{C} \subseteq A^{*} \cup \mathcal{F},\left(L^{\dagger}\right)_{\phi^{\dagger} \cup \sigma}^{P^{*}}\right)$ is a $\left(\beta^{\prime}, 1\right)$-tessellation.
Proof: To show this, it suffices to check that the following distance conditions hold.

1) $d\left(F^{*}, F_{D}\right) \geq \beta^{\prime}$ for all $D \in \mathcal{M}_{D^{+}} \backslash\left\{D^{\prime}\right\} ;$ AND
2) $d\left(F^{*}, C\right) \geq \beta^{\prime}$ for all $C \in \mathcal{C} \subseteq A^{*} ; A N D$
3) $d\left(F_{D}, C\right) \geq \beta^{\prime}$ for all $C \in \mathcal{C} \subseteq A^{*}$ and $D \in \mathcal{M}_{D^{\dagger}} \backslash\left\{D^{\prime}\right\}$.

Let $r:=\left\lfloor\frac{\beta^{\prime}+1}{2}\right\rfloor$. Since $d\left(D^{\prime}, D^{\dagger}\right) \leq \beta^{\prime}+1$, it follows from the definition of $[K ; Q ; \sigma ; Z]$ that $V(K) \subseteq B_{r+1}\left(D^{\dagger} \cup\right.$ $\left.D^{\prime}, A^{*}\right)$. Recall that $V\left(F^{*}\right) \subseteq V\left(D^{\dagger} \cup D^{\prime}\right) \cup D_{1}\left(K \backslash Q, A^{*}\right)$. Thus, we have $V\left(F^{*}\right) \subseteq B_{r+2}\left(D^{\dagger} \cup D^{\prime}, A^{*}\right)$. Suppose toward a contradiction that there is a $D \in \mathcal{M}_{D^{\dagger}} \backslash\left\{D^{\prime}\right\}$ such that $d\left(F^{*}, F_{D}\right)<\beta^{\prime}$. Thus, we have $d\left(F^{*}, D\right)<\beta^{\prime}+1$, so D is of distance at most $\frac{3 \beta^{\prime}}{2}+4$ from $V\left(D^{\dagger} \cup D^{\prime}\right)$, contradicting 1) of Claim 13.4.7 Thus, condition 1) holds.

Now suppose toward a contradiction that there is a $C \in \mathcal{C} \subseteq A^{*}$ such that $d\left(F^{*}, C\right)<\beta^{\prime}$. In that case, we have $d\left(D^{\dagger} \cup D^{\prime}, C\right) \leq \frac{3}{2} \beta^{\prime}+2$, contradicting 2) of Claim 13.4.7. Likewise, if there exists a $C \in \mathcal{C} \subseteq A^{*}$ and a $D \in$ $\mathcal{M}_{D^{\dagger}} \backslash\left\{D^{\prime}\right\}$ such that $d\left(F_{D}, C\right)<\beta^{\prime}$, then $d(D, C) \leq \beta^{\prime}$, contradicting Proposition 13.2.14.

Since $\left(A^{*} \backslash P, \mathcal{C} \subseteq A^{*} \cup \mathcal{F},\left(L^{\dagger}\right)_{\phi^{\dagger} \cup \sigma}^{P^{*}}\right)$ is a $\left(\beta^{\prime}, 1\right)$-tessellation, it is a mosaic, and thus, by Theorem 2.1.7, $A^{*} \backslash P$ is $\left.\left(L^{\dagger}\right)_{\phi^{\dagger} \cup \sigma}^{P^{*}}\right)$-colorable, so A^{*} is $\left.\left(L^{\dagger}\right)_{\sigma}^{Q}\right)$-colorable. Let ψ be an $\left.\left(L^{\dagger}\right)_{\sigma}^{Q}\right)$-coloring of A^{*}. Since Z is $\left(L^{\dagger}, \sigma\right)$-inert, and σ is an L^{\dagger}-coloring of $K \backslash Z$, it follows that ψ extends to an L^{\dagger}-coloring of A^{\dagger}, contradicting Claim 13.4.5. This completes Subcase 1.1.

Subcase 1.2: $\left(A^{\dagger}, D^{\dagger}, D^{\prime}, L^{\dagger}, \phi^{\dagger}\right)$ satisfies S 1 of Theorem 12.3.3.
In this case, by Theorem 12.3.3, there exists a 2-connected subgraph H of A^{\dagger} such that $D^{\dagger} \cup D^{\prime} \subseteq H, V(H) \subseteq$ $B_{\beta^{\prime} / 3}\left(D^{\dagger} \cup D^{\prime}, A^{\dagger}\right)$ and each facial subgraph of H is a cycle of length at most 11 . Now we apply the work of Section 12.2. Since ϕ^{\dagger} extends to an L-coloring of $B_{\left(\beta^{\prime} / 3\right)+11}\left(D^{\dagger} \cup D^{\prime}, A^{\dagger}\right)$, there exists an L^{\dagger}-coloring τ of $V(H)$ such that, for each facial subgraph K of H, the tuple $\left(\operatorname{Int}_{A^{\dagger}}(K), K, L^{\dagger}, \tau\right)$ is an 11-lens.

Recalling Definition 12.2.1, there exists an inward-facing cyclic facial subgraph K of H such that τ does not extend to an L^{\dagger}-coloring of $\operatorname{Int}_{A^{\dagger}}(K)$, or else A^{\dagger} is L^{\dagger}-colorable, contradicting Claim 13.4.4. By Theorem 12.2.10 since $|V(K)| \leq 11$, the tuple $\mathcal{L}:=\left(\operatorname{Int}_{A^{\dagger}}(K), K, L^{\dagger}, \tau\right)$ is 11-partitionable. Let $\mathcal{L}:=\left(\operatorname{Int}_{A^{\dagger}}(K), K, L^{\dagger}, \tau\right)$. By Definition 12.2.9, there exists an 11-partitioning pair $\left(K^{*}, \tau^{*}\right)$ for \mathcal{L}. Since τ does not extend to an L^{\dagger}-coloring of $\operatorname{Int}_{A^{\dagger}}(K)$, there exists an inward-facing facial subgraph F of K^{*} such that τ^{*} does not extend to an L^{\dagger}-coloring of $\operatorname{Int}_{A^{\dagger}}(F)$.

By Definition 12.2.9, there exist a subset $Z \subseteq B_{1}(F) \cap V\left(\operatorname{Int}_{A^{\dagger}}\left(K^{*}\right)\right)$, a subpath Q of $F \backslash Z$ of length at most one, and a partial $L_{\tau^{*}}^{\dagger}$-coloring ψ of $B_{1}(F) \cap V\left(\operatorname{Int}_{A^{\dagger}}\left(K^{*}\right)\right)$ such that, letting $A^{*}:=\operatorname{Int}_{A^{\dagger}}(F) \backslash\left(\left(Z \cup \operatorname{dom}\left(\tau^{*} \cup \psi\right)\right) \backslash V(Q)\right)$, the following holds:

1. The outer face F^{*} of A^{*} is a Thomassen facial subgraph of A^{*} with respect to $\left(L^{\dagger}\right)_{\tau^{*} \cup \psi}^{Q} ; A N D$
2. Z is $\left(L^{\dagger}, \tau^{*} \cup \psi\right)$-inert in $\operatorname{Int}_{A^{\dagger}}(K)$.

Let $\mathcal{M}^{*}:=\left\{D \in \mathcal{M}_{D^{\dagger}}: D \subseteq \operatorname{Int}_{A^{\dagger}}(F)\right\}$. For each $D \in \mathcal{M}^{*}$, let P_{D} be a subpath of D of length $|V(D)|-3$ and let $P:=\bigcup\left(P_{D}: D \in \mathcal{M}^{*}\right)$. Since the disjoint paths in P are pairwise far apart, we obtain the following by Theorem 1.3.2: For each $D \in \mathcal{M}^{*}$, there is a facial subgraph F_{D} of $A^{*} \backslash P$ such that $V\left(F_{D}\right)=V(D \backslash P) \cup D_{1}\left(P_{D}, A^{*}\right)$. Let $\mathcal{F}:=\left\{F^{*}\right\} \cup\left\{F_{D}: D \in \mathcal{M}^{*}\right\}$ and let $\psi^{\dagger}:=\phi^{\dagger} \cup \tau^{*} \cup \psi$. Finally, let $P^{*}:=Q \cup \bigcup\left(D \backslash P_{D}: D \in \mathcal{M}^{*}\right)$. That is, as the previous subcase, P is the union of all the paths in A^{*} that we delete in order to produce our Thomassen facial subgraphs and P^{*} is the union of the precolored edges that we are retaining.

Claim 13.4.9. $\left(A^{*} \backslash P, \mathcal{C} \subseteq A^{*} \cup \mathcal{F},\left(L^{\dagger}\right)_{\psi^{\dagger}}^{P^{*}}\right)$ is a $\left(\beta^{\prime}, 1\right)$-tessellation.

Proof: As in the previous subcase, it suffices to check that the following distance conditions hold.

1) $d\left(F^{*}, F_{D}\right) \geq \beta^{\prime}$ for all $D \in \mathcal{M}^{*}$; AND
2) $d\left(F^{*}, C\right) \geq \beta^{\prime}$ for all $C \in \mathcal{C} \subseteq A^{*}$; AND
3) $d\left(F_{D}, C\right) \geq \beta^{\prime}$ for all $C \in \mathcal{C} \subseteq A^{*}$ and $D \in \mathcal{M}^{*}$.

Recall that $V(H) \subseteq B_{\beta / 3}\left(D^{\dagger} \cup D^{\prime}, A^{\dagger}\right), K$ is a facial subgraph of H, and, since $\left(K^{*}, \tau^{*}\right)$ is an 11-partitioning pair for \mathcal{L}, we have $V(F) \subseteq B_{10}(K)$, so $V(F) \subseteq B_{\left(\beta^{\prime} / 3\right)+10}\left(D^{\dagger} \cup D^{\prime}, A^{\dagger}\right)$. By definition of $\left(K^{*}, \tau^{*}\right)$, we have $V\left(F^{*}\right) \subseteq B_{2}\left(F, A^{*}\right)$, and thus $V\left(F^{*}\right) \subseteq B_{\left(\beta^{\prime} / 3\right)+12}\left(D^{\dagger} \cup D^{\prime}, A^{\dagger}\right)$.

Suppose toward a contradiction that there is a $D \in \mathcal{M}^{*}$ with $d\left(F^{*}, F_{D}\right)<\beta^{\prime}$. Thus, we have $d\left(F^{*}, D\right)<\beta^{\prime}+1$, so $d\left(D^{\dagger} \cup D^{\prime}, D\right)<\left(\beta^{\prime}+1\right)+\frac{\beta^{\prime}}{3}+12$, contradicting Claim 13.4.7. This proves 1$)$. Now suppose toward a contradiction that there is a $C \in \mathcal{C} \subseteq A^{*}$ with $d\left(F^{*}, C\right)<\beta^{\prime}$. Then we have $d\left(D \cup D^{\prime}, C\right)<\left(\beta^{\prime}+1\right)+\frac{\beta^{\prime}}{3}+12$, which again contradicts Claim 13.4.7. Finally, if there is a $D \in \mathcal{M}^{*}$. and a $C \in \mathcal{C} \subseteq A^{*}$ such that $d\left(F_{D}, C\right)<\beta^{\prime}$, then we have $d(D, C) \leq \beta^{\prime}$, contradicting Proposition 13.2.14.

Since $\left(A^{*} \backslash P, \mathcal{C} \subseteq A^{*} \cup \mathcal{F},\left(L^{\dagger}\right)_{\psi^{\dagger}}^{P^{*}}\right)$ is a $\left(\beta^{\prime}, 1\right)$-tesselllation, it is a mosaic, and thus, by Theorem 2.1.7, $A^{*} \backslash P$ is $\left(L^{\dagger}\right)_{\psi^{\dagger}}^{P^{*}}$-colorable, and thus ψ^{\dagger} extends to an L^{\dagger}-coloring of A^{*}. Since Z is $\left(L^{\dagger}, \tau^{*} \cup \psi\right)$-inert in $\operatorname{Int}_{A^{\dagger}}(K)$, it follows that $\tau^{*} \cup \psi$ extends to an L^{\dagger}-coloring of A^{*}, contradicting our choice of F. Thus, we have ruled out Case 1 of Proposition 13.4.1.

Case 2 of Proposition 13.4.1: For all obstructing cycles $D^{\dagger} \in\left\{D^{\mathrm{mc}}\right\} \cup \mathcal{I}\left(D^{\mathrm{mc}}\right)$, D^{\dagger} is blue and $\left|\mathcal{M}_{D^{\dagger}}\right|=1$.
In this case, since D^{mc} is an obstructing cycle by assumption, we have $D^{\mathrm{mc}} \in \operatorname{Sep}_{b}(G)$, and so $\operatorname{Sep}_{r}(G) \cap \mathcal{I}\left(D^{\mathrm{mc}}\right) \neq \varnothing$ by 1) of Lemma 13.2.10. Let D_{r} be a maximal element of $\operatorname{Sep}_{r}(G) \cap \mathcal{I}\left(D^{\mathrm{mc}}\right)$.

Claim 13.4.10. For each $D \in\left\{D^{\mathrm{mc}}\right\} \cup \mathcal{I}\left(D^{\mathrm{mc}}\right)$, if D is blue, then D is an obstructing cycle.

Proof: If $D=D^{\mathrm{mc}}$, then this holds by assumption. If $D \neq D^{\mathrm{mc}}$, then D is \mathcal{C}-close by assumption, and thus there exists a $D^{*} \in \mathcal{I}^{m}(D)$ such that $d\left(D, D^{*}\right) \leq \gamma+1$. Since $\gamma \leq \beta^{\prime}, D$ is indeed an obstructing cycle.

Now set $A^{*}:=\operatorname{Int}\left(D^{\mathrm{mc}}\right) \cap \operatorname{Ext}\left(D_{r}\right)$.

Claim 13.4.11. For every $v \in V\left(A^{*}\right) \backslash V\left(D^{\mathrm{mc}} \cup D_{r}\right),|L(v)| \geq 5$.

Proof: Since D_{r} is a red cycle and D_{r} is \mathcal{C}-close by assumption, there exists a $C^{*} \in \mathcal{C}$ with $C^{*} \subseteq \operatorname{Int}\left(D_{r}\right)$ and $d\left(C^{*}, D_{r}\right) \leq \beta^{\prime}$. To prove the claim, it suffices to show there does not exist a $C \in \mathcal{C}$ such that $C \subseteq A^{*}$. Suppose toward a contradiction that such a C exists. Since D^{mc} is a blue cycle, there exists a red cycle $D_{r}^{\prime} \in \mathcal{I}\left(D^{\mathrm{mc}}\right)$ such that $D_{r}^{\prime} \neq D_{r}, D_{r}^{\prime} \subseteq A^{*}$, and D_{r}^{\prime} separates C from D^{mc}. Since D_{r}^{\prime} is \mathcal{C}-close by assumption, there exists a cycle $C^{\dagger} \in \mathcal{C}$
with $C^{\dagger} \subseteq \operatorname{Int}\left(D_{r}^{\prime}\right)$ and $d\left(C^{\dagger}, D_{r}^{\prime}\right) \leq \beta$. Since $C^{\dagger} \neq C^{*}$, we have $d\left(C^{\dagger}, C^{*}\right) \geq \alpha$ and thus $d\left(D_{r}, D_{r}^{\prime}\right) \geq(\alpha-4)-2 \beta$ by 1) of Lemma 13.2.12. It follows that $D_{r} \nsim D_{r}^{\prime}$.

Let $U:=\left\{D \in \operatorname{Sep}(G): D_{r} \cup D_{r}^{\prime} \subseteq \operatorname{Int}(D)\right\}$. Note that $U \neq \varnothing$, since $D^{\mathrm{mc}} \in U$. Among all elements of U, choose $D^{u} \in U$ so as to minimize the quantity $\left|E\left(\operatorname{Int}_{G}\left(D^{u}\right)\right)\right|$. Since D_{r} is a maximal element of $\operatorname{Sep}_{r}(G) \cap \mathcal{I}\left(D^{\mathrm{mc}}\right)$ and $D_{r}^{\prime} \nsubseteq \operatorname{Int}\left(D_{r}\right)$, we have $D^{u} \in \operatorname{Sep}_{b}(G)$. By Claim 13.4.10, every blue cycle in $\left\{D^{\mathrm{mc}}\right\} \cup \mathcal{I}\left(D^{\mathrm{mc}}\right)$ is an obstructing cycle, so we have $\left|\mathcal{M}_{D^{u}}\right|=1$. If $D_{r} \in \mathcal{I}^{m}\left(D^{u}\right)$, then, since $\left|\mathcal{M}_{D^{u}}\right|=1$ and $D_{r} \nsim D_{r}^{\prime}$, it follows that D_{r}^{\prime} is a descendant of D_{r}, which is false. The same argument shows that $D_{r}^{\prime} \notin \mathcal{I}^{m}\left(D^{u}\right)$.

Let D^{\prime} be the lone element of $\mathcal{M}_{D^{u}}$. Note that $D_{r} \cup D_{r}^{\prime} \nsubseteq \operatorname{Int}\left(D^{\prime}\right)$, or else D^{\prime} contradicts the minimality of $\left|E\left(\operatorname{Int}_{G}\left(D^{u}\right)\right)\right|$. Since neither D_{r} nor D_{r}^{\prime} lies in $\mathcal{I}^{m}\left(D^{u}\right)$, we have $D_{r} \nsim D^{\prime}$ and $D_{r}^{\prime} \nsim D^{\prime}$. Thus, at least one of D_{r}, D_{r}^{\prime} is separated from D^{u} by the deletion of D^{\prime}, and $\mathcal{I}^{m}\left(D^{u}\right)$ contains at least one equivalence class distinct from that of D^{\prime}, contradicting the fact that $\left|\mathcal{M}_{D^{u}}\right|=1$.

Since $D^{\mathrm{mc}} \in \operatorname{Sep}_{b}(G)$ and D^{mc} is not \mathcal{C}-close, we have $d\left(D_{r}, D^{\mathrm{mc}}\right)>\gamma+1$. By Lemma 13.2.8, there is an L-coloring ϕ of $\operatorname{Int}^{+}\left(D_{r}\right)$ and an L-coloring ψ of $\operatorname{Ext}^{+}(C)$. Since D_{r}, D^{mc} are of distance at least $\gamma+2$ apart, $\phi \cup \psi$ a proper L-coloring of its domain. Since each vertex of $A^{*} \backslash\left(D^{\mathrm{mc}} \cup D_{r}\right)$ has an L-list of size at least five, it follows from Theorem 0.2.6 that $\phi \cup \psi$ extends to an L-coloring of A^{*}, so G is L-colorable, contradicting the fact that \mathcal{T} is a counterexample. This completes the proof of Proposition 13.4.1.

With the results above in hand, we are ready to finish the proof of Theorem 13.0.1.
Theorem 13.0.1. Let γ be as in Theorem 0.2 .6 and let $\beta:=\frac{17}{15} N_{\mathrm{mo}}$. Let $\alpha:=\frac{9}{2}\left(\beta+4 N_{\mathrm{mo}}\right)+3 \gamma+18$. Then every ($\alpha, 1$)-chart is colorable.

Proof. Suppose not. Thus, there exists a critical chart $\mathcal{T}=\left(G, \mathcal{C}, L, C_{*}\right)$. By Lemma 13.2.8, Sep $(G) \neq \varnothing$, so let \mathcal{M} be the set of maximal elements of $\operatorname{Sep}(G)$. By Proposition 13.4.1, for each $M \in \mathcal{M}$ and each $D \in\{M\} \cup \mathcal{I}(M), D$ is \mathcal{C}-close. Thus, \mathcal{M} admits a partition into equivalence classes under the relation \sim, and furthermore, by Proposition 13.2.15, there exists a system $\mathcal{M}^{*} \subseteq \mathcal{M}$ of distinct representatives of the \sim-equivalence classes of \mathcal{M} such that $A\left(C^{o} \mid \mathcal{M}^{*}\right)$ is short-separation-free. Note that $A\left(C_{*} \mid \mathcal{M}^{*}\right)=\bigcap_{M \in \mathcal{M}^{*}} \operatorname{Ext}(M)$. By Proposition 13.2.13, there is an L-coloring ϕ of $\bigcup_{M \in \mathcal{M}^{*}} \operatorname{Int}^{+}(M)$. By Proposition 13.2.14, the following distance conditions are satisfied.

1) For any $D \in \mathcal{M}^{*}$ and any $C \in \mathcal{C}$ with $C \subseteq A\left(C_{*} \mid \mathcal{M}^{*}\right)$, we have $d(C, D) \geq \beta^{\prime}+1$; AND
2) For any distinct $D, D^{\prime} \in \mathcal{M}^{*}$, we have $d\left(D, D^{\prime}\right) \geq \beta^{\prime}+2$.

Thus, by Proposition 13.2.5, ϕ extends to an L-coloring of G, contradicting the fact that \mathcal{T} is a critical chart. This completes the proof of Theorem 13.0.1.

With the above in hand, we finally complete the proof of Theorem 1.1.3, which we restate below.
Theorem 1.1.3. Every $(48749+3 \gamma, 1)$-chart is colorable, where γ is as in Theorem 0.2.6.

Proof. As indicated at the start of Chapter 2, the lower bound we need on $N_{\text {mo }}$ in order to ensure that all mosaics are colorable is $N_{\mathrm{mo}}=96$, so we obtain $\left\lceil\beta+4 N_{\mathrm{mo}}\right\rceil=10829$ and thus, by Theorem 13.0.1, all $(\alpha, 1)$-charts are colorable for $\alpha \geq 48749+3 \gamma$. This completes the proof of Theorem 1.1.3.

Chapter 14

Drawings with Pairwise Far-Apart Nonplanar Regions

In this section, we apply Theorem 1.1.3 to obtain a result about the 5 -choosability of graphs G which are not too far from being planar in the sense that there is a drawing of G in the plane such that the pairs of crossing edges can be partitioned into a collection of pairwise far-apart sets where each set in the partition satisfies some additional constraints. Theorem 0.2 .5 from [6] is an example of a result of this form where each set in the partition of pairs of crossing edges has size one. The lone result of this chapter is Theorem 0.3 .5 , which we restate below.

Theorem 0.3.5. There exists a constant α^{\prime} such that the following holds: Let G be a drawing on the sphere of a graph and let C_{1}, \cdots, C_{m} be a collection of cycles in G such that $d\left(C_{i}, C_{j}\right) \geq \alpha^{\prime}$ for each $1 \leq i<j \leq m$. Suppose that, for each $1 \leq i \leq m$, there is a connected component U_{i} of $\mathbb{S}^{2} \backslash C_{i}$ such that the following hold.

1) For each crossing point x of G, there is an $i \in\{1, \cdots, m\}$ such that $x \in U_{i}$; AND
2) For each $v \in V\left(C_{i}\right), V(G) \cap U_{i}=\varnothing$ and there is at most one chord of C lying in $\mathrm{Cl}\left(U_{i}\right)$ which is incident to v.

Then G is 5-choosable. In particular, letting γ be as in Theorem 0.2.6, the choice $\alpha^{\prime}=48751+3 \gamma$ suffices.
We begin by introducing the following definition.
Definition 14.0.1. Given a drawing G and a cycle $C \subseteq G$, we say that C is uncrossed in G, if no crossing point of G is an internal point of an edge in $E(C)$. C is called vertex-partitioning in G if, letting U_{0}, U_{1} be the two connected open components of $\mathbb{R}^{2} \backslash C$, there is an $i \in\{0,1\}$ such that $V(G) \subseteq \mathrm{Cl}\left(U_{i}\right)$. The set U_{1-i} is called a vertex-free side of C in G. Note that if $V(G)=V(C)$ then each of U_{0}, U_{1} is a vertex-free side of C in G.

Theorem 0.3.5 is a broad generalization of Theorem 0.2.5. A graph G satisfying the conditions of Theorem 0.3.5 has a collection of vertex-partitioning cycles such that, for each cycle C in the collection, the vertex-free side of of C contains arbitrarily many crossings, each of which is the intersection of two chords of C. In order to prove this, we prove something stronger. We allow our graph G to also contain some facial subgraphs with lists of less less than five and we also allow some of the cycles of G to contain some lists of size at least four and a precolored edge. The distance constant in Theorem 0.3 .5 is clearly a function of the distance constant obtained in Theorem 0.3.1, so, for the remainder of Chapter 14, we set α to be the distance constant obtained in Theorem 0.3.1. We introduce the following definition:

Definition 14.0.2. A tuple $(G, \mathcal{F}, \mathcal{T}, L)$ is called a tennis court if G be a drawing in the sphere of a graph, $\mathcal{F}=$ $\left\{F_{1}, \cdots, F_{k}\right\}$ is a collection of subgraphs of G, and $\mathcal{T}=\left\{C_{1}, \cdots, C_{m}\right\}$ is a collection of vertex-partitioning cycles in G such that the following hold.

1) For each $i=1, \cdots, k$, there is a facial subgraph F_{i}^{\prime} of G such that $F_{i} \subseteq F_{i}^{\prime}$; AND
2) $d\left(C_{i}, C_{j}\right) \geq \alpha+2$ for each $1 \leq i<j \leq m$ and $d\left(F_{i}, F_{j}\right) \geq \alpha$ for each $1 \leq i<j \leq k$; AND
3) For each $1 \leq i \leq m$ and each $1 \leq j \leq k$, we have $d\left(C_{i}, F_{j}\right) \geq \alpha+1$; AND
4) For each $v \in V(G)$, if $v \notin \bigcup_{i=1}^{m} V\left(C_{i}\right)$ and $v \notin \bigcup_{j=1}^{l} V\left(F_{i}\right)$, then $|L(v)| \geq 5$; AND
5) For each $1 \leq i \leq k$, there is a path $P_{i} \subseteq F_{i}$ of length one such that P_{i} is L-colorable and such that $|L(v)| \geq 3$ for all $v \in V\left(F_{i} \backslash P_{i}\right) ; A N D$
6) For each $1 \leq i \leq m$, there exists a path $P_{i} \subseteq C_{i}$ of length one such that P_{i} is L-colorable and such that, for each $v \in V\left(C_{i} \backslash P_{i}\right),|L(v)| \geq 4$ and furthermore, if v is incident to a chord of C_{i} lying in $E\left(\operatorname{Int}\left(C_{i}\right)\right)$, then $|L(v)| \geq 5 ; A N D$
7) For each $i \in\{1, \cdots, m\}$, there is a vertex-free side U_{i} of C_{i} in G such that the following hold.
i) For each $v \in V\left(C_{i}\right)$, there is at most one chord of C lying in $\mathrm{Cl}\left(U_{i}\right)$ which is incident to v; AND
ii) For each crossing point x of G, there is an $i \in\{1, \cdots, m\}$ such that $x \in U_{i}$.

Note that, given a tennis court $(G, \mathcal{F}, \mathcal{T}, L)$, where $\mathcal{F}=\left\{F_{1}, \cdots, F_{k}\right\}$, possibly G contains a facial subgraph F^{\prime} such that F^{\prime} contains more than one of the subgraphs F_{1}, \cdots, F_{k}. That is, we do not require F_{1}, \cdots, F_{k} to be a collection of pairwise far-apart facial subgraphs of G. Given $1 \leq i<j \leq k, F_{i}$ and F_{j} are far apart, but possibly there is a facial subgraph of G containing both of them.

We now introduce the following intuitive definition analogous to Definition 0.1.3.
Definition 14.0.3. Given a drawing G, an uncrossed cycle $C \subseteq G$, and a pair $\left\{G_{0}, G_{1}\right\}$ of subgraphs of G with $G=G_{0} \cup G_{1}$, we say that $\left\{G_{0}, G_{1}\right\}$ is the natural C-partition of G if $G_{0} \cap G_{1}=C$ and, for each $i \in\{0,1\}$, there exists a simply connected region U of $\mathbb{S}^{2} \backslash C$ such that G_{i} is the subgraph of G consisting of all the edges and vertices of G in $\mathrm{Cl}(U)$.

We also have the following.
Definition 14.0.4. Let G be a drawing and let $C \subseteq G$ be an uncrossed cycle.

1) We call C a cyclic facial subgraph of G if there exists a $U \subseteq \mathbb{R}^{2} \backslash G$ such that $C=\partial(U)$; AND
2) If C is a cyclic facial subgraph of G and Q is a proper generalized chord of C, then the natural (C, Q)-partition of G is a pair of subgraphs $\left\{G_{0}, G_{1}\right\}$ of G defined analogously to Definition 0.1.6.

We now have the following simple observation.
Proposition 14.0.5. If $(G, \mathcal{F}, \mathcal{T}, L)$ is a tennis court and G is not L-colorable, then $\mathcal{T} \neq \varnothing$

Proof. Suppose that $\mathcal{T}=\varnothing$ and suppose toward a contradiction that G is not L-colorable. Since $\mathcal{T}=\varnothing, G$ is a planar embedding, and thus $\mathcal{F} \neq \varnothing$, or else G is a planar embedding in which every vertex has an L-list of size at least five, contradicting our assumption that G is not L-colorable. Let $\mathcal{F}=\left\{F_{1}, \cdots, F_{k}\right\}$. For each $i=1, \cdots, k$, let $P_{i} \subseteq F_{i}$ be a path of one such that P_{i} is L-colorable and, for each $v \in V\left(F_{i} \backslash P_{i}\right),|L(v)| \geq 3$. We partition $\{1, \cdots, k\}$ into two sets as $\{1, \cdots, k\}=I \cup J$, where $I:=\left\{1 \leq i \leq k: V\left(F_{i}\right) \neq V\left(P_{i}\right)\right\}$.

By adding edges to G if necessary, we obtain a graph G^{\prime} such that, for each $i \in I, G^{\prime}$ contains a cyclic facial subgraph F_{i}^{*} such that $P_{i} \subseteq F_{i}^{*}$ and $V\left(F_{i}^{*}\right)=V\left(F_{i}\right)$. Let $G^{\prime \prime}$ be a planar embedding obtained from G^{\prime}, where, for each $j \in J$, we add a vertex of degree two to G^{\prime} to produce a cyclic facial subgraph F_{j}^{*} of length three with $P_{j} \subseteq F_{j}^{*}$. Then we
have $d_{G^{\prime \prime}}\left(F_{i}^{*}, F_{j}^{*}\right)=d_{G}\left(F_{i}, F_{j}\right)$, since, for each edge e of $E\left(G^{\prime \prime} \backslash G\right)$, there is either an $i \in I$ such that both endpoints of e lie in $V\left(F_{i}\right)$, or there is a $j \in J$ such that e has one endpoint in $V\left(P_{j}\right)$ and one endpoint in one of the degree two vertices of $V\left(G^{\prime \prime} \backslash G\right)$. Let $L^{\prime \prime}$ be a list-assignment for $G^{\prime \prime}$, where, for each $x \in V(G), L^{\prime \prime}(x)=L(x)$, and, for each new vertex y added to $G^{\prime \prime}, L^{\prime \prime}(y)$ is an arbitrary 3-list.

Thus, $G^{\prime \prime}$ is a planar embedding with a collection of cyclic facial subgraphs $F_{1}^{*}, \ldots, F_{k}^{*}$, each of which is a Thomassen facial subgraph of $G^{\prime \prime}$ with respect to the list-assignment $L^{\prime \prime}$, and each vertex of $V\left(G^{\prime \prime}\right) \backslash\left(\bigcup_{i=1}^{k} V\left(F_{k}^{*}\right)\right)$ has an $L^{\prime \prime}$ list of size at least 5. Since $d_{G^{\prime \prime}}\left(F_{i}^{*}, F_{j}^{*}\right) \geq \alpha$ for each $1 \leq i<j \leq k$, it follows from [reference tag for main result] that $G^{\prime \prime}$ is L-colorable, and thus G is L-colorable, contradicting our assumption.

To prove Theorem 0.3.5, it suffices to show that, for every tennis court $(G, \mathcal{F}, \mathcal{T}, L), G$ is L-colorable.
Definition 14.0.6. Let $(G, \mathcal{F}, \mathcal{T}, L)$ be a tennis court. For each $C \in \mathcal{T}$, letting $P \subseteq C$ be a subpath of C of length one such that P satisfies 6) of Definition 14.0.2, we call P the precolored subpath of C. We say that $(G, \mathcal{F}, \mathcal{T}, L)$ is a minimal counterexample if the following hold.

1) G is not L-colorable; AND
2) Subject to 1$),|E(G)|$ is minimized; $A N D$
3) Subject to 1) and 2), $\sum_{v \in V(G)}|L(v)|$ is minimized.

We now have the following:
Proposition 14.0.7. Let $(G, \mathcal{F}, \mathcal{T}, L)$ be a minimal counterexample. Then G is connected, and, for each $C \in \mathcal{T}$, $V(C) \neq V(G)$. In particular, there is a unique vertex-free side of $\mathbb{R}^{2} \backslash C$, and $G[V(C)]$ is L-colorable.

Proof. We obtain connectivity immediately from the minimality of $(G, \mathcal{F}, \mathcal{T}, L)$. Suppose toward a contradiction that there is a $C \in \mathcal{T}$ such that $V(C)=V(G)$. By assumption, there is an open connected component U of $\mathbb{R}^{2} \backslash C$ such that, for each $v \in V(C)$, there is at most one chord of C lying in $\mathrm{Cl}(U)$ with v as an endpoint. Furthermore, the drawing consisting of C and all chords of C lying in $\mathbb{R}^{2} \backslash U$ is a planar embedding. Let H be the embedding consisting of C and all chords of C lying in $\mathbb{R}^{2} \backslash U$, and let P be the precolored path of C.

We now note that there exists a $v \in V(C \backslash P)$ with degree at most 3 in G. If there is no chord of C in $\mathbb{R}^{2} \backslash U$, then every vertex of $G[V(C)]$ has degree at most three, so we are done in that case. Now suppose there is a chord of C in $\mathbb{R}^{2} \backslash U$. Since H is a planar embedding, it follows that, for each chord Q of C in $\mathbb{R}^{2} \backslash U, H$ admits a natural Q-partition $H=H_{Q}^{0} \cup H_{Q}^{1}$, where $H_{Q}^{0} \cap H_{Q}^{1}=Q$ and $P \subseteq H_{Q}^{0}$. Among all such chords, we choose Q so that $\left|V\left(H_{Q}^{1}\right)\right|$ is minimized. Since $\left|V\left(C \cap H_{Q}^{1}\right)\right| \geq 3$, let $v \in V\left(C \cap H_{Q}^{1}\right) \backslash V(Q)$. By the minimality of Q, there is no chord of C in $\mathbb{R}^{2} \backslash U$ which has v as an endpoint, so v has degree at most 3 in G.

Thus, in any case, let $v \in V(C)$ have degree at most three in G. If $|V(C)|=3$ then $G=C$, and G is trivially L-colorable, contradicting the fact that $(G, \mathcal{F}, \mathcal{T}, L)$ is a minimal counterexample. Thus, we have $|V(C)| \geq 4$. Let G^{\prime} be the graph obtained from G by deleting any chord of C in $\mathbb{R}^{2} \backslash U$ with v as an endpoint, if such a chord exists, and suppressing the resulting degree two vertex. Since $|V(C)| \geq 4$, let $C^{\prime} \subseteq G^{\prime}$ be the cycle obtained from C by this suppression. Then $\left(G^{\prime}, \varnothing,\left\{C^{\prime}\right\}, L\right)$ is also a tennis court, and $\left|E\left(G^{\prime}\right)\right|<|E(G)|$. Thus, by the minimality of $(G, \mathcal{F}, \mathcal{T}, L), G^{\prime}$ admits an L-coloring ϕ. Since $|L(v)| \geq 4$ and $\operatorname{deg}_{G}(v) \leq 3, \phi$ extends to an L-coloring of G, contradicting the fact that $(G, \mathcal{F}, \mathcal{T}, L)$ is a counterexample. Thus, our assumption that $V(C)=V(G)$ is false. Since G is connected, we have $|E(G[V(C)])|<|E(G)|$. Since $(G[V(C)], \varnothing,\{C\}, L)$ is also a tennis court, we get that
$V(C)$ is L-colorable by the minimality of $(G, \mathcal{F}, \mathcal{T}, L)$. Furthermore, there is a unique connected component U of $\mathbb{R}^{2} \backslash C$ such that $V(G) \cap U=\varnothing$.

We now gather the following facts:
Proposition 14.0.8. Let $(G, \mathcal{F}, \mathcal{T}, L)$ be a minimal counterexample, let $C \in \mathcal{T}$ and let $P \subseteq C$ be the precolored subpath of C. Let $U \subseteq \mathbb{R}^{2} \backslash C$ be the unique vertex-free side of C. Then, letting $C:=v_{1} \cdots v_{n}$, the following hold.

1) $|L(v)|=1$ for each $v \in V(P)$, and furthermore, there is no chord of C lying in $\mathrm{Cl}(U)$ with an endpoint in P; AND
2) $|V(C)| \geq 5$; AND
3) There is no chord of C lying in $\mathbb{R}^{2} \backslash U$; AND
4) For any $w \in D_{1}(C, G)$, if there is an index $a \in\{1, \cdots, n\}$ and an $j \in\{1,2\}$ such that w is adjacent to each of v_{a}, v_{a+j}, where the indices are read mod n, then the cycle $v_{a} v_{a+1} \cdots v_{a+j} w$ is uncrossed and not a separating cycle in G; AND
5) Let $w \in D_{1}(C, G)$ such that, for some $a \in\{1, \cdots, n\}$, we have $w \in N\left(v_{a}\right) \cap N\left(v_{a+2}\right)$, where the indices are read $\bmod n$. Then $v_{a+1} \in V(P)$.

Proof. By the minimality of $\sum_{v \in V(G)}|L(v)|$, we immediately have $|L(v)|=1$ for each $v \in V(P)$. Let $v \in V(P)$ and suppose toward a contradiction that there is a chord $u v$ of C lying in $\mathrm{Cl}(U)$ with v as an endpoint. Then $u \notin V(P)$ and, by definition, $u v$ is the unique chord of C lying in $\mathrm{Cl}(U)$ which has v as an endpoint. Let $|L(v)|=c$ and let L^{*} be a list-assignment for $V(G)$ where $L^{*}(u)=L(u) \backslash\{c\}$ and $L^{*}(x)=L(x)$ for all $x \in V(G) \backslash\{u\}$. Since $|L(u)| \geq 5$, and thus $\left|L^{*}(u)\right| \geq 4,\left(G-u v, \mathcal{F}, \mathcal{T}, L^{*}\right)$ is also a tennis court, and thus $G-u v$ admits an L^{*}-coloring ϕ by the edge-minimality of $(G, \mathcal{F}, \mathcal{T}, L)$. Since $L^{*}(v)=L(v)=\{c\}, \phi$ is also an L-coloring of G, contradicting the fact that $(G, \mathcal{F}, \mathcal{T}, L)$ is a counterexample.

Now we prove 2). Suppose toward a contradiction that $|V(C)| \leq 4$. In that case, since $C \backslash P$ is a path of length at most one, it follows from 1) that there is no chord of C lying in $\mathrm{Cl}(U)$. That is, C is a facial subgraph of G with $C=\partial(U)$. Let ϕ be an L-coloring of $V(C \backslash P)$ which extends to an L-coloring of $G[V(C)]$. Let $G^{\prime}:=G \backslash V(C \backslash P)$. Then G^{\prime} contains a facial subgraph F such that $P \subseteq F$ and $D_{1}(C \backslash P, G) \subseteq V(F)$. Let F^{*} be a subgraph of F containing P and containing each vertex of $D_{1}(C \backslash P, G)$.

Since $|V(C \backslash P)| \leq 2$, we have $\left|L_{\phi}(v)\right| \geq 3$ for all $v \in V\left(F^{*} \backslash P\right)$, and P is L_{ϕ}-colorable. Furthermore, since each vertex of F^{*} is of distance at most one from C, the tuple $\left(G^{\prime}, \mathcal{F} \cup\left\{F^{*}\right\}, \mathcal{T} \backslash\{C\}, L_{\phi}\right)$ satisfies the distance conditions of Definition 14.0.2. Thus, $\left(G^{\prime}, \mathcal{F} \cup\left\{F^{*}\right\}, \mathcal{T} \backslash\{C\}, L_{\phi}\right)$ is also a tennis court. Since $\left|E\left(G^{\prime}\right)\right|<|E(G)|$, G^{\prime} admits an L_{ϕ}-coloring, so ϕ extends to an L-coloring of G, contradicting the fact that $(G, \mathcal{F}, \mathcal{T}, L)$ is a minimal counterexample. This proves 2).

Now we prove 3). Let G^{*} be the graph obtained from G by deleting from G all chords of C lying in $\mathrm{Cl}(U)$. Suppose toward a contradiction that there is a chord Q of C lying in $\mathrm{Cl}(U)$. Note that C is a cyclic facial subgraph of G^{*}. Let $G^{*}=G_{0}^{*} \cup G_{1}^{*}$ be the natural (C, Q)-partition of G^{*}, where $G_{0}^{*} \cap G_{1}^{*}=Q$ and $P \subseteq G_{0}^{*}$.

Let $G_{0}^{* *}$ be the graph obtained from G_{0}^{*} by adding to G_{0}^{*} all the chords of C in $\mathrm{Cl}(U)$ with both endpoints in $V\left(C \cap G_{0}^{*}\right)$. For each $i=0,1$, let C_{i}^{*} be the cycle $C_{i}^{*}:=\left(C \cap G_{i}^{*}\right)+Q$. For each $i=0$, 1 , let $\mathcal{T}_{i}^{*}:=\left\{C^{\prime} \in \mathcal{T}: C^{\prime} \subseteq G_{i}^{*}\right\}$ and let $\mathcal{F}_{i}^{*}:=\left\{F \in \mathcal{F}: F \subseteq G_{i}^{*}\right\}$. Note that, since each cycle of \mathcal{T} is vertex-separating in G, we have by our distance conditions that $\mathcal{T} \backslash\{C\}=\mathcal{T}_{0}^{*} \cup \mathcal{T}_{1}^{*}$ as a disjoint union, and furthermore, since each element of \mathcal{F} is contained in a
facial subgraph of G, and thus contained in a facial subgraph of $G^{*}, \mathcal{F}=\mathcal{F}_{0}^{*} \cup \mathcal{F}_{1}^{*}$ as a disjoint union. In particular, $\left(G_{0}^{* *}, \mathcal{F}_{0}^{*}, \mathcal{T}_{0}^{*} \cup\left\{C_{0}^{*}\right\}, L\right)$ is also a tennis court, and since $\left|E\left(G_{0}^{* *}\right)\right|<|E(G)|, G_{0}^{* *}$ admits an L-coloring ϕ.

Let $G_{1}^{* *}$ be the graph obtained from G_{1}^{*} by adding to G_{1}^{*} all the chords of C in $\mathrm{Cl}(U)$ with both endpoints in $V\left(C \cap G_{1}^{*}\right)$. Consider the tuple $\left(G_{1}^{* *}, \mathcal{F}_{1}^{*}, \mathcal{T}_{1}^{*} \cup\left\{C_{1}^{*}\right\}, L_{\phi}^{Q}\right)$. Let U^{\prime} be the unique connected component of $\mathbb{R}^{2} \backslash C_{1}^{*}$ such that $U \subseteq U^{\prime}$. Then, in $G_{1}^{* *}$, for each $v \in V\left(C_{1}^{*}\right)$, there is at most one chord of C_{1}^{*} in $\mathrm{Cl}\left(U^{\prime}\right)$ with v as an endpoint.

Given $v \in V\left(C_{1}^{*} \backslash Q\right)$, if there does not exist a chord of C lying in $\mathrm{Cl}(U)$ with v as an endpoint and the other endpoint in $V\left(C_{0}^{*} \backslash Q\right)$, then we have $L_{\phi}^{Q}(v)=L(v)$. On the other hand, if there is a such a chord, then we have $|L(v)| \geq 5$ and $\left|L_{\phi}^{Q}(v)\right| \geq 4$, and furthermore, there is no chord of C in $\mathrm{Cl}\left(U^{\prime}\right) \cap E\left(G_{1}^{* *}\right)$ with v as an endpoint, so $\left(G_{1}^{* *}, \mathcal{F}_{1}^{*}, \mathcal{T}_{1}^{*} \cup\left\{C_{1}^{*}\right\}, L_{\phi}^{Q}\right)$ is a tennis court. Thus, since $\left|E\left(G_{1}^{* *}\right)\right|<|E(G)|, G_{1}^{* *}$ is L_{ϕ}^{Q}-colorable, so ϕ extends to an L-coloring of G, contradicting the fact that $(G, \mathcal{F}, \mathcal{T}, L)$ is a minimal counterexample.

Now we prove 4). Let $w \in D_{1}(C, G)$ and $j \in\{1,2\}$ with $v_{a}, v_{a+j} \in N(w)$. Since U is the vertex-free side of C, we have $w \in \mathbb{R}^{2} \backslash U$, and, by definition of $(G, \mathcal{F}, \mathcal{T}, L)$, the cycle $D:=v_{a} v_{a+1} \cdots v_{a+j} w$ is uncrossed. Thus, since $v_{a} v_{a+1} \cdots v_{a+j}$ is a subpath of C, let $G=G_{0} \cup G_{1}$ be the natural D-partition of G, where $C \subseteq G_{0}$. We claim now that $V\left(G_{1}\right)=V(D)$.

Suppose not. Let $G^{\prime}:=G \backslash\left(V\left(G_{1}\right) \backslash V(D)\right)$. Since G is connected, we have $\left|E\left(G^{\prime}\right)\right|<|E(G)|$. By our distance conditions on \mathcal{T}, each element of \mathcal{T} is either a subgraph of G_{0} or a subgraph of G_{1}, and likewise, each element of \mathcal{F} is either a subgraph of G_{0} or a subgraph of G_{1}, since each element of \mathcal{F} is contained in a facial subgraph of G. For each $i=0,1$, let $\mathcal{T}_{i}^{\prime}:=\left\{C^{*} \in \mathcal{T}: C^{*} \subseteq G_{i}\right\}$, and let $\mathcal{F}_{i}^{\prime}:=\left\{F \in \mathcal{F}: F \subseteq G_{i}\right\}$.

Now, the tuple $\left(G^{\prime}, \mathcal{T}_{0}^{\prime}, \mathcal{F}_{0}^{\prime}, L\right)$ is a tennis court, and since $\left|E\left(G^{\prime}\right)\right|<|E(G)|, G^{\prime}$ admits an L-coloring ϕ. Let $Q:=v_{a} w$. The graph $G_{1} \backslash V(D \backslash Q)$ contains a facial subgraph F^{\prime} such that F^{\prime} contains the edge $v_{a} w$ and F^{\prime} contains each vertex of $D_{1}\left(D \backslash Q, G_{1}\right) \backslash V(Q)$. Let $F^{\prime \prime}$ be a subgraph of F^{\prime} with $Q \subseteq F^{\prime \prime}$ and $V\left(F^{\prime \prime}\right)=V(Q) \cup D_{1}\left(D \backslash Q, G_{1}\right)$. Consider the tuple $\left(G_{1} \backslash V(D \backslash Q),\left\{F^{\prime \prime}\right\} \cup \mathcal{F}_{1}^{\prime}, \mathcal{T}_{1}^{\prime}, L_{\phi}^{Q}\right)$. By the distance conditions on $(G, \mathcal{F}, \mathcal{T}, L)$, we have $d\left(C, C^{\prime}\right) \geq \alpha+2$ for each $C^{\prime} \in \mathcal{T}_{1}^{\prime}$, and thus $d\left(F^{\prime \prime}, C^{\prime}\right) \geq \alpha+1$ for each $C^{\prime} \in \mathcal{T}_{1}$. Likewise, $d(C, F) \geq \alpha+1$ for each $F \in \mathcal{F}_{1}^{\prime}$, and thus $d\left(F^{\prime \prime}, F\right) \geq \alpha$ for each $F \in \mathcal{F}_{1}^{\prime}$. Thus, $\left(G_{1} \backslash V(D \backslash Q),\left\{F^{\prime \prime}\right\} \cup \mathcal{F}_{1}^{\prime}, \mathcal{T}_{1}^{\prime}, L_{\phi}^{Q}\right)$ is also a tennis court, and since $\left|E\left(G_{1} \backslash V(D \backslash Q)\right)\right|<|E(G)|, G_{1} \backslash V(D \backslash Q)$ admits an L_{ϕ}^{Q}-coloring, so ϕ extends to an L-coloring of G, contradicting the fact that $(G, \mathcal{F}, \mathcal{T}, L)$ is a minimal counterexample. Thus, $V\left(G_{1}\right)=V(D)$. This proves 4).

Now we prove 5). Let $w \in D_{1}(C, G)$ such that, for some $a \in\{1, \cdots, n\}$, we have $w \in N\left(v_{a}\right) \cap N\left(v_{a+2}\right)$, and suppose toward a contradiction that $v_{a+1} \notin V(P)$.. Let $D:=v_{a} v_{a+1} v_{a+2} w$. Since $V(G) \cap U=\varnothing$, we have $w \in \mathbb{R}^{2} \backslash U$, and, by definition of \mathcal{T}, D is an uncrossed cycle in G.

Let $G=G_{0} \cup G_{1}$ be the natural D-partition of G, where $C \subseteq G_{0}$. By 4), we have $V\left(G_{1}\right)=V(D)$. Let G^{\dagger} be the graph obtained from G by deleting from G any edge of $E(G) \backslash E(C)$ incident to v_{a+1} and then suppressing the resulting vertex of degree 2 . Let C^{\dagger} be the cycle $v_{1} \cdots v_{a-1} v_{a+1} \cdots v_{n}$ obtained from this suppression.

The tuple $\left(G^{\dagger}, L\right)$ is a tennis court with $\left|E\left(G^{\dagger}\right)\right|<|E(G)|$, so G^{\dagger} admits an L-coloring ϕ by the minimality of $(G, \mathcal{F}, \mathcal{T}, L)$. If v_{a+1} is not an endpoint of a chord of C lying in $\mathrm{Cl}(U)$, then, since $V\left(G_{1}\right)=V(D)$, we have $N\left(v_{a+1}\right) \subseteq\left\{v_{a}, v_{a+2}, w\right\}$. Thus, since $\left|L\left(v_{a+1}\right)\right| \geq 4$ in this case, ϕ extends to an L-coloring of G, contradicting the fact that $(G, \mathcal{F}, \mathcal{T}, L)$ is a minimal counterexample. Likewise, if v_{a+1} is the endpoint of a chord $u v_{a+1}$ of C lying in $\mathrm{Cl}(U)$, then, since $V\left(G_{1}\right)=V(D)$, we have $N\left(v_{a+1}\right) \subseteq\left\{u, v_{a}, v_{a+2}, w\right\}$. Since $\left|L\left(v_{a+1}\right)\right| \geq 5$ in this case, ϕ again extends to an L-coloring of G, contradicting the fact that $(G, \mathcal{F}, \mathcal{T}, L)$ is a minimal counterexample. This completes the proof of Proposition 14.0.8.

In order to continue, we need the following purely combinatorial fact.
Lemma 14.0.9. Let $m \geq 1$ and let \mathcal{P} be a partition of $\{1, \cdots, 2 m\}$ into a collection of m pairwise-disjoint sets of size 2. Then there exists an $S \subseteq\{1, \cdots, 2 m\}$ such that $|S|=m$, S contains precisely one element of each pair in \mathcal{P}, and for each odd integer $j \in\{1, \cdots, 2 m\},|S \cap\{j, j+1\}| \leq 1$.

Proof. Given an $m \geq 1$ and a partition \mathcal{P} of $\{1, \cdots, 2 m\}$ into m pairwise-disjoint sets of size two, we say that $S \subseteq\{1, \cdots, 2 m\}$ is a \mathcal{P}-sampling if S is a set of size m such that S contains precisely one element of each pair in \mathcal{P}, and for each odd integer $j \in\{1, \cdots, 2 m\},|S \cap\{j, j+1\}| \leq 1$. Thus, we claim that, for each $m \geq 1$ and each partition \mathcal{P} of $\{1, \cdots, 2 m\}$ into m pairwise-disjoint sets of size two, there exists a \mathcal{P}-sampling.

We show this by induction on m. If $m=1$ then the claim is trivially true since $|\mathcal{P}|=1$, so we just choose a single element from the lone set of \mathcal{P}. Now let $m>1$ and suppose that, for any $1 \leq m^{\prime}<m$ and any partition \mathcal{P}^{\prime} of $\left\{1, \cdots, 2 m^{\prime}\right\}$ into m^{\prime} pairwise-disjoint sets of size two, there exists a \mathcal{P}^{\prime}-sampling. Let \mathcal{P} be a partition of $\{1, \cdots, 2 m\}$ into m pairwise-disjoint sets of size 2 . For each $j \in\{1, \cdots, 2 m\}$. Now consider the following cases:

Case 1: $\{2 m-1,2 m\} \in \mathcal{P}$
In this case, let $\mathcal{P}^{*}:=\mathcal{P} \backslash\{\{2 m-1,2 m\}\}$. Applying our induction hypothesis to \mathcal{P}^{*}, there is a \mathcal{P}^{*}-sampling S^{*}. Then $S^{*} \cup\{2 m-1\}$ consists of precisely one element from each $A \in \mathcal{P}$, and, for each odd $j \in\{1, \cdots, 2 m\}$, we have $\left|S^{*} \cap\{j-1, j\}\right| \leq 1$. Thus, $S^{*} \cup\{2 m-1\}$ is a \mathcal{P}-sampling, so we are done in this case.

Case 2: $\{2 m-1,2 m\} \notin \mathcal{P}$
In this case, there exist distinct $a, b \in\{1, \cdots, 2 m-2\}$ such that $\{2 m-1, a\} \in \mathcal{P}$ and $\{2 m, b\} \in \mathcal{P}$. Let \mathcal{P}^{*} be a partition of $\{1, \cdots, 2 m-2\}$ into $m-1$ sets of size 2 , where \mathcal{P}^{*} is obtained from \mathcal{P} by removing $\{2 m-1, a\}$ and $\{2 m, b\}$, and replacing them with $\{a, b\}$. Applying our induction hypothesis to \mathcal{P}^{*}, there is a \mathcal{P}^{*}-sampling $S^{*} \subseteq\{1, \cdots, 2 m-2\}$, so S^{*} contains precisely one of $\{a, b\}$. If $a \in S^{*}$, then $S^{*} \cup\{2 m\}$ is a \mathcal{P}-sampling, and, if $b \in S^{*}$, then $S^{*} \cup\{2 m-1\}$ is a \mathcal{P}^{*}-sampling, so we are done. This completes the proof of Lemma 14.0.9.

The main result we need in order to prove Theorem 0.3.5 is the following.
Proposition 14.0.10. Let $(G, \mathcal{F}, \mathcal{T}, L)$ be a minimal counterexample, let $C \in \mathcal{T}$ and let $P \subseteq C$ be the precolored subpath of C. Then there exists a subset $S \subseteq V(C \backslash P)$ and an L-coloring ϕ of $G[S]$ such that the following hold.

1) For each $w \in D_{1}(S, G) \backslash V(P),\left|L_{\phi}(w)\right| \geq 3$; AND
2) $V(P)$ is L_{ϕ}-colorable; $A N D$
3) For each chord e of C_{i} with $e \in \operatorname{Cl}\left(U_{i}\right)$, at least one endpoint of e lies in S

Proof. Let $U \subseteq \mathbb{R}^{2} \backslash C$ be the unique vertex-free side of C. Given a subset $S \subseteq V(C)$, we say that S is a covering set if S consists of precisely one endpoint of each chord of C in $\mathrm{Cl}(U)$. It is clear that such a subset of $V(C)$ exists, since each vertex of C is incident to at most one chord of C in $\mathrm{Cl}(U)$. Furthermore, for any covering set S, we have $S \cap V(P)=\varnothing$ by 1) of Proposition 14.0.8.

Applying Lemma 14.0.9 to the path $C \backslash P$, there exists a covering set $S \subseteq V(C \backslash P)$ such that every connected component of $C[S]$ is a path of length at most one. Now set $T:=\left\{w \in D_{1}(C):|N(w) \cap S| \geq 3\right\}$. Let $C:=v_{1} \cdots v_{n}$. Without loss of generality, let $P:=v_{n-1} v_{n}$. For each vertex $v \in V(C)$, we say that v is matched if there is a chord of C with v as an endpoint. Otherwise we say v is unmatched. By 3) of Proposition 14.0.8, each matched vertex is the endpoint of precisely one chord of C, and this chord lies in $\mathrm{Cl}(U)$. In particular, every edge of G with both
endpoints in S lies in $E(C)$, since S consists of precisely one endpoint from each chord of C. Given a matched vertex $v \in V(C)$, if $u \in V(C)$ is the other endpoint of the unique chord of C incident to v, we say that u is matched to v.

Claim 14.0.11. If $T=\varnothing$, then there exists an L-coloring ϕ of S satisfying Proposition 14.0.10.

Proof: By Proposition 14.0.7, $G[V(C)]$ is L-colorable, so let ϕ be an L-coloring of S which extends to an L-coloring of $G[V(C)]$. Thus, $V(P)$ is L_{ϕ}-colorable, and, since $T=\varnothing$, we have $\left|L_{\phi}(w)\right| \geq 3$ for all $w \in D_{1}(S, G) \backslash V(P)$, so we are done.

Thus, for the remainder of the proof of Proposition 14.0.10, we suppose that $T \neq \varnothing$. For each element $w \in T$, we let Q_{w} be the unique subpath of $C \backslash P$ such that each endpoint of Q_{w} lies in $N(w) \cap S$ and $N(w) \cap S \subseteq V\left(Q_{w}\right)$. Since Q_{w} contains at least three vertices of S, it follows from Proposition 14.0 .8 that $\left|V\left(Q_{w}\right)\right| \geq 5$ for each $w \in T$. Furthermore, for each $w \in T$, and any two distinct $v, v^{\prime} \in V\left(Q_{w}\right)$, we define an open subset $A_{v w v^{\prime}}$ of \mathbb{R}^{2} as follows: $w v^{\prime} W_{w} v$ is a cycle, and we set A_{w} to be the unique open connected component of $\mathbb{R}^{2} \backslash\left(w v^{\prime} P_{w} v\right)$ which does is disjoint to $V(P)$. Furthermore, for each $w \in T$, we define an open subset $A_{w} \subseteq \mathbb{R}^{2}$ as follows: Let v, v^{\prime} be the endpoints of Q_{w}. Then we let $A_{w}:=A_{v w v^{\prime}}$.

We now define an ordering relation $<$ on T as follows. Given $w, w^{\prime} \in T$, we say that $w^{\prime}<w$ if $w^{\prime} \in A_{w}$. We say that $w^{\prime} \leq w$ if either $w^{\prime}=w$ or $w^{\prime}<w . \leq$ is clearly a well-defined partial order on T. We define a sequence T_{0}, T_{1}, \cdots of subsets of T inductively as follows. Let T_{0} be the set of \leq-maximal elements of T. For each $j \geq 0$, if T_{j} is well-defined and nonempty, then we set T_{j+1} be the set of $w \in T$ such that, for some $w^{\prime} \in T_{j}$ we have $w<w^{\prime}$, and there does not exist a $w^{\prime \prime} \in T$ such that $w<w^{\prime \prime}<w^{\prime}$. Since \leq is a well-defined partial order on T, the sets T_{0}, T_{1}, \cdots are pairwise-disjoint. Let ℓ be the minimal index such that $T_{\ell+1}=\varnothing$. Such an ℓ exists as T is finite.

Definition 14.0.12. For each $j \in\{0, \cdots, \ell\}$, we let S_{j} be the set of S-endpoints of the edges of G connecting $T_{0} \cup \cdots T_{j}$ to $V(C)$. Given a $j \in\{0, \cdots, \ell\}$, a subset $A \subseteq S_{j}$, and an L-coloring ϕ of A, we say that ϕ is a match-valid L-coloring of A if the following hold.

V1) $V(P)$ is L_{ϕ}-colorable; AND
V2) $|L(x)| \geq 3$ for all $v \in D_{1}(A, G) \backslash V(P)$; AND
V3) For any index $a \in\{1, \cdots, n\}$, if $v_{a}, v_{a+2} \in A$ and v_{a+1} is a matched vertex of C, then we have $\mid L\left(v_{a+1}\right) \backslash$ $\left\{\phi\left(v_{a}\right), \phi\left(v_{a+2}\right)\right\} \mid \geq 4$.

Note that Property V3) above is stronger than the condition that $\left|L_{\phi}\left(v_{a+1}\right)\right| \geq 3$, since, if v_{a+1} is matched to some vertex $u \in V(C)$, then we have $\left|L_{\phi}\left(v_{a+1}\right)\right| \geq 3$ for any choice of color used by ϕ on u. Since no three consecutive vertices of C lie in S, we have $v_{a+1} \notin \operatorname{dom}(\phi)$ if $v_{a}, v_{a+2} \in \operatorname{dom}(\phi)$. For each $j \in\{0, \cdots, \ell\}$, and two distinct vertices $v, v^{\prime} \in S_{j}$, we say that v, v^{\prime} are S_{j}-consecutive if no internal vertex of the unique subpath of $C \backslash P$ with endpoints v, v^{\prime} lies in S_{j}. The following facts are immediate:

Claim 14.0.13. For each $j \in\{0, \cdots, \ell\}$, the following hold.

1) For any two $w, w^{\prime} \in T_{j}, A_{w} \cap A_{w^{\prime}}=\varnothing$; $A N D$
2) For any two vertices $v, v^{\prime} \in S_{j}, v, v^{\prime}$ have at most one common neighbor in T_{j}; AND
3) For any $0<j \leq \ell$ and any $w \in T_{j}$, there is a unique $w^{\prime} \in T_{j-1}$ such that $w<w^{\prime}$. In particular, there is a unique pair of S_{j-1}-consecutive vertices $v, v^{\prime} \in V\left(Q_{w^{\prime}}\right)$ such that $w \in A_{v w^{\prime} v^{\prime}}$.

We now claim the following:

Claim 14.0.14. There exists a match-valid L-coloring of S_{0}.

Proof: Recall that $P:=v_{n-1} v_{n}$. Thus, let m_{1}, \cdots, m_{r} be a set of indices with $1 \leq m_{1}<m_{2}<\cdots<m_{r} \leq n-2$, where $S_{0}=\left\{v_{m_{1}}, \cdots, v_{m_{r}}\right\}$. It is clear that, for any L-coloring ϕ of $V(P) \cup\left\{v_{m_{1}}\right\}$, the coloring $\phi\left(v_{m-1}\right)$ is a match-valid L-coloring of $\left\{v_{m_{1}}\right\}$. Now let $i \in\{1, \cdots, r\}$ and suppose there is a match-valid L-coloring ϕ of $\left\{v_{m_{1}}, \cdots, v_{m_{i}}\right\}$. If $i=r$, then we have a match-valid L-coloring of S_{0}, so we are done. Now suppose that $1 \leq i<r$. We claim there exists a match-valid L-coloring of $\left\{v_{m_{1}}, \cdots, v_{m_{i}}, v_{m_{i+1}}\right\}$. We first note that, for any $v \in S_{0}$, either $\left|N(v) \cap T_{0}\right|=1$, or there exists a pair of vertices $w, w^{\prime} \in T_{0}$ such that $N(v) \cap T_{0}=\left\{w, w^{\prime}\right\}, v$ is the right endpoint of Q_{w}, and v is the left endpoint of $Q_{w^{\prime}}$.

Since every edge of G with both endpoints in S is an edge of C, we have $L_{\phi}\left(v_{m_{i+1}}\right)=L(v) \backslash\left\{\phi\left(v_{m_{i}}\right)\right\}$ if $m_{i+1}=$ $m_{i}+1$, and otherwise $L_{\phi}\left(v_{m_{i+1}}\right)=L\left(v_{m_{i+1}}\right)$. Now consider the following cases:

Case 1 of Claim 14.0.14: $v_{m_{i+1}}, v_{m_{i}}$ do not have a common neighbor in T_{0}
In this case, there is a $w \in T_{0}$ such that $v_{m_{i+1}}$ is the left endpoint of Q_{w}.
Subclaim 14.0.15. For any extension ϕ^{*} of ϕ to an L-coloring of $\left\{v_{m_{1}}, \cdots, v_{m_{i+1}}\right\}$, if ϕ^{*} is not a match-valid L-coloring of its domain, then $m_{i}=m_{i+1}-2$ and one of the following holds.

1) $v_{m_{i}+1}$ is a matched vertex of C, and $\left|L\left(v_{m_{i}+1}\right) \backslash\left\{\phi\left(v_{m_{i}}\right), \phi^{*}\left(v_{m_{i+1}}\right)\right\}\right|=3$; OR
2) $v_{m_{i}+1}$ is an unmatched vertex of C and $L\left(v_{m_{i}+1}\right) \backslash\left\{\phi\left(v_{m_{i}}\right), \phi^{*}\left(v_{m_{i+1}}\right)\right\} \mid=2$.

Proof: Let ϕ^{*} be an extension of ϕ to an L-coloring of $\left\{v_{m_{1}}, \cdots, v_{m_{i+1}}\right\}$ and suppose that ϕ^{*} is not a matchvalid L-coloring of its domain. Since $v_{m_{i+1}}$ is the left endpoint of Q_{w}, there are at least two vertices in $\left\{v_{m_{i+1}+1}, \cdots, v_{n-2}\right\}$ adjacent to w. Thus, since $m_{i}<m_{i+1}$ and there is no chord of C with an endpoint in $V(P), v_{m_{i+1}}$ is not adjacent to any vertex of $V(P)$, so, since ϕ extends to an L-coloring of $V(P) \cup \operatorname{dom}(\phi)$, ϕ^{*} extends to an L-coloring of $V(P) \cup \operatorname{dom}\left(\phi^{*}\right)$.

Thus, ϕ^{*} satisfies V1) of Definition 14.0.12. If ϕ^{*} does not satisfy V3) of Definition 14.0.12, then $m_{i+1}=m_{i}+2$, $v_{m_{i}+1}$ is the endpoint of a chord e of C with $e \in \mathrm{Cl}(U)$, and $L\left(v_{m_{i}+1}\right) \backslash\left\{\phi\left(v_{m_{i}}\right), \phi^{*}\left(v_{m_{i}+2}\right)\right\} \mid=3$. Note that $v_{m_{i}+1} \notin \operatorname{dom}(\phi)$ since S contains no three consecutive vertices of $C \backslash P$. Thus, if ϕ^{*} does not satisfy V3) of Definition 14.0.12, then we are done.

Suppose now that ϕ^{*} satisfies V1) and V3) of Definition 14.0.12, but not V2) of Definition 14.0.12. Then there is a vertex $z \in D_{1}(\operatorname{dom}(\phi), G) \backslash V(P)$ such that $\left|L_{\phi^{*}}(z)\right|<3$. Since there is no chord of C in $\mathbb{R}^{2} \backslash U$ and each vertex of $C \backslash P$ has an L-list of size at least four, we have $z=v_{m_{i}+1}$ and $m_{i+1}=m_{i}+2$. Since ϕ^{*} satisfies V3) of Definition 14.0.12, $v_{m_{i}+1}$ is unmatched, or else we have $\left|L_{\phi^{*}}\left(v_{m_{i}+1}\right)\right| \geq 3$. Since, we have $\left|L\left(v_{m_{i}+1}\right)\right| \geq 4$ and $L\left(v_{m_{i}+1}\right) \backslash\left\{\phi\left(v_{m_{i}}\right), \phi^{*}\left(v_{m_{i+1}}\right)\right\} \mid=2$, so we are done.

Now we finish Case 1 of of Claim 14.0.14. If $m_{i+1} \neq m_{i}+2$, then any extension of ϕ to $\left\{v_{m_{1}}, \cdots, v_{m_{i+1}}\right\}$ is a match-valid L-coloring of $\left\{v_{m_{1}}, \cdots, v_{m_{i+1}}\right\}$, so we are done in that case. Now suppose that $m_{i+1}=m_{i}+2$. Since every edge of G with both endpoints in S is an edge of C, we have $\left|L_{\phi}\left(v_{m_{i+1}}\right)\right| \geq 5$.

If $v_{m_{i}+1}$ is a matched vertex, then we have $\left|L\left(v_{m_{i}+1}\right) \backslash\left\{\phi\left(v_{m_{i}}\right)\right\}\right| \geq 4$, and since $\left|L_{\phi}\left(v_{m_{i+1}}\right)\right| \geq 5$, we choose a color $d \in \mid L_{\phi}\left(v_{m_{i+1}}\right)$ such that $\left|L\left(v_{m_{i}+1}\right) \backslash\left\{\phi\left(v_{m_{i}}\right), d\right\}\right| \geq 4$. By Subclaim 14.0.15, the resulting extension of ϕ to $\operatorname{dom}(\phi) \cup\left\{v_{m_{i+1}}\right)$ is then a match-valid L-coloring of its domain, so we are done in that case. Now suppose that
$v_{m_{i}+1}$ is unmatched. In that case, since $\left|L\left(v_{m_{i}+1}\right)\right| \geq 4$, we have $\left|L_{\phi}\left(v_{m_{i}+1}\right)\right| \geq 3$, so we simply choose a color $d \in L_{\phi}\left(v_{m_{i+1}}\right)$ such that $L_{\phi}\left(v_{m_{i}+1}\right) \backslash\{d\} \mid \geq 3$, and, again by Subclaim 14.0.15, the resulting extension of ϕ to $\operatorname{dom}(\phi) \cup\left\{v_{m_{i+1}}\right\}$ is a match-valid L-coloring of its domain. This completes Case 1 of Claim 14.0.14.

Case 2 of Claim 14.0.14: $v_{m_{i+1}}, v_{m_{i}}$ have a common neighbor in T_{0}
In this case, by Claim 14.0.13, let $w \in T_{0}$ be the unique common neighbor of $v_{m_{i}}, v_{m_{i+1}}$. Now consider the following subcases:

Subcase 2.1 Either $m_{i+1}<n-2$ or $\left|L_{\phi}\left(v_{m_{i+1}}\right)\right| \geq 5$
By 1) of Proposition 14.0.8, there is no chord of C with an endpoint in P. Thus, since $\left|L\left(v_{n-1}\right)\right|=1,\left|L_{\phi}(w)\right| \geq 3$, and $\left|L_{\phi}\left(v_{m_{i+1}}\right)\right| \geq 4$, there is a color $c \in L_{\phi}\left(v_{m_{i+1}}\right)$ such that $\left|L_{\phi}(w) \backslash\{c\}\right| \geq 3$, and such that either $v_{m_{i+1}}$ is not adjacent to a vertex of P or $N\left(v_{m_{i+1}}\right) \cap V(P)=\left\{v_{n-1}\right\}$ and $\{c\} \neq L\left(v_{n-1}\right)$. In either case, letting ϕ^{\prime} be the extension of ϕ obtained by coloring $v_{m_{i+1}}$ with c, ϕ^{\prime} extends to an L-coloring of $\operatorname{dom}\left(\phi^{\prime}\right) \cup V(P)$.

By definition of S, together with 1) of Proposition 14.0.8, there is a unique chord $v_{m_{i+1}} v_{\ell}$ of C lying in $\mathrm{Cl}(U)$, where $\ell \in\{1, \cdots, n-2\}$. Since $v_{m_{i+1}}$ is the other end of the unique chord of C in $\mathrm{Cl}(U)$ which is incident to v_{ℓ}, we have $\operatorname{dom}(\phi) \cap N\left(v_{\ell}\right) \subseteq\left\{v_{\ell-1}, v_{\ell+1}\right\}$, where the indices are read $\bmod n$. Thus, since ϕ is a match-valid L-coloring of $\left\{v_{m_{1}}, \cdots, v_{m_{i}}\right\}$, we have $\left|L_{\phi}\left(v_{\ell}\right)\right| \geq 4$, and thus $\left|L_{\phi^{\prime}}\left(v_{\ell}\right)\right| \geq 3$. Thus, ϕ^{\prime} satisfies conditions V1) and V2) of Definition 14.0.12. If V3) is not satisfied, then we have $v_{m_{i+1}-1} \notin \operatorname{dom}(\phi)$ and $v_{m_{i+1}-2} \in \operatorname{dom}(\phi)$, so w is adjacent to each of $v_{m_{i+1}-2}, v_{m_{i+1}}$. Since $v_{m_{i+1}-1} \notin V(P)$, this contradicts 5) of Proposition 14.0.8. Thus, ϕ^{\prime} is indeed a match-valid L-coloring of $\left\{v_{m_{1}}, \cdots, v_{m_{i+1}}\right\}$.

Subcase $2.2 m_{i+1}=n-2$ and $\left|L_{\phi}\left(v_{m_{i+1}}\right)\right|=4$
In this case, we have $N\left(v_{m_{i+1}}\right) \cap S=\left\{v_{m_{i}}\right\}$ and $m_{i+1}=m_{i}+1$. Furthermore, we have $S_{0}=\left\{m_{1}, \cdots, m_{i+1}\right\}$, and $v_{m_{i+1}}$ is the right endpoint of Q_{w}. Since w has at least three neighbors in $S_{0}, v_{m_{i}}$ is an internal vertex of Q_{w}. Let $L\left(v_{n-1}\right)=\{q\}$ and let ϕ^{\prime} be the restriction of ϕ to $\left\{v_{m_{1}}, \cdots, v_{m_{i-1}}\right\}$. Then we have the following:

Subclaim 14.0.16. Let $c \in L\left(v_{n-2}\right) \backslash\{q\}$ and let $d \in L_{\phi^{\prime}}\left(v_{m_{i}}\right)$, where $c \neq d$. Let ϕ^{*} be an extension of ϕ^{\prime} to $\operatorname{dom}\left(\phi^{\prime}\right) \cup\left\{v_{m_{i}}, v_{m_{i+1}}\right\}$ obtained by coloring $v_{m_{i+1}}$ with c and coloring $v_{m_{i}}$ with d. if ϕ^{*} is not a match-valid L-coloring of its domain, then $\left|L_{\phi^{*}}(w)\right|<3$.

Proof: Firstly, since $v_{m_{i}}$ is an internal vertex of Q_{w}, and there is no chord of C with an endpoint in $V(C)$, the L-coloring ϕ^{*} extends to an L-coloring of $\operatorname{dom}\left(\phi^{*}\right) \cup V(P)$, as $q \neq c$. Thus, if ϕ^{*} is not a match-valid L-coloring of $\left\{v_{m_{1}}, \cdots, v_{m_{i}}\right\}$, then either V2) or V3) of Definition 14.0.12 is not satisfied. If 3) is not satisfied, then, since $m_{i+1}=m_{i}+1$ and ϕ^{\prime} is a match-valid L-coloring of its domain, we have $m_{i}=m_{i-1}+2$ and $L\left(v_{m_{i}+1}\right) \backslash$ $\left\{\phi^{\prime}\left(v_{m_{i-1}}\right), d\right\} \mid=3$. But then, since $v_{m_{i}}$ is an internal vertex of Q_{w}, we contradict 5) of Proposition 14.0.8. Thus, ϕ^{*} satisfies 3) of Definition 14.0.12. Since ϕ^{*} satisfies V3) of Definition 14.0.12, we have $\left|L_{\phi^{*}}(v)\right| \geq 3$ for all $v \in V(C) \backslash\left(V(P) \cup \operatorname{dom}\left(\phi^{*}\right)\right)$. Thus, since ϕ^{\prime} is a match-valid L-coloring of $\left\{v_{1}, \cdots, v_{m_{i-1}}\right\}$, the only remaining possibility is that $\left|L_{\phi^{*}}(w)\right|<3$.

Since there is no chord of C with both endpoints in S, and no three consecutive vertices of C lie in S, we have $\left|L_{\phi^{\prime}}\left(v_{m_{i}}\right)\right| \geq 5$, as $v_{m_{i}}, v_{m_{i+1}}$ are consecutive in C. Likewise, $\left|L_{\phi^{\prime}}\left(v_{m_{i+1}}\right)\right| \geq 5$ and thus $\left|L_{\phi^{\prime}}\left(v_{m_{i+1}}\right) \backslash\{q\}\right| \geq 4$.

Now we extend ϕ^{\prime} to an L-coloring of $\operatorname{dom}\left(\phi^{\prime}\right) \cup\left\{v_{m_{i}}, v_{m_{i+1}}\right\}$ in the following way: Since ϕ^{\prime} is a match-valid L coloring of its domain, we have $\left|L_{\phi^{\prime}}(w)\right| \geq 3$, and since $\left|L_{\phi^{\prime}}\left(v_{m_{i+1}}\right) \backslash\{q\}\right| \geq 4$, we choose a color $c \in L_{\phi^{\prime}}\left(v_{m_{i+1}}\right) \backslash$ $\{q\}$ such that $\left|L_{\phi^{\prime}}(w) \backslash\{c\}\right| \geq 3$. Finally, since $\left|L_{\phi^{\prime}}\left(v_{m_{i}}\right) \backslash\{c\}\right| \geq 4$, we choose a color $d \in L_{\phi^{\prime}}\left(v_{m_{i}}\right) \backslash\{c\}$
such that $\left|L_{\phi^{\prime}}(w) \backslash\{c, d\}\right| \geq 3$. By Subclaim 14.0.16, the resulting extension of ϕ^{\prime} is a match-valid L-coloring of $\left\{v_{m_{1}}, \cdots, v_{m_{i+1}}\right\}$, so we are done. This completes the proof of Claim 14.0.14.

Claim 14.0.14 is the base case of an induction argument on the sequence of sets $S_{0}, S_{1}, \cdots, S_{\ell}$. We complete the argument with the following claim:

Claim 14.0.17. Let $j \in\{0, \cdots, \ell\}$ and suppose there is a match-valid L-coloring ϕ of S_{j}. Then ϕ extends to a match-valid L-coloring of S_{j+1}.

Proof: By Claim 14.0.13, for each $w \in T_{j+1}$, there is a unique $w^{\prime} \in T_{j}$ such that $w<w^{\prime}$, and, given this w^{\prime}, there is a unique pair v, v^{\prime} of S_{j}-consecutive vertices such that $w^{\prime} \in A_{v w^{\prime} v^{\prime}}$.

Subclaim 14.0.18.

1) For any extension of ϕ to an L-coloring ϕ^{*} of S_{j+1}, ϕ^{*} extends to an L-coloring of $S_{j+1} \cup V(P)$; AND
2) Suppose that, for each $w^{\prime} \in T_{j}$ and each pair v, v^{\prime} of S_{j}-consecutive vertices in $Q_{w^{\prime}}$, ϕ extends to a match-valid L-coloring of $S_{j} \cup\left(V\left(v Q_{w} v^{\prime}\right) \cap S_{j+1}\right)$. Then ϕ extends to a match-valid L-coloring of S_{j+1}.

Proof: We first prove 1). Since there is no chord of C with an endpoint in P, it follows that, for each $w^{\prime} \in T_{j}$, no internal vertex of $Q_{w^{\prime}}$ is adjacent to a vertex of P. Thus, since ϕ extends to an L-coloring of dom $(\phi) \cup V(P)$, ϕ^{*} also extends to an L-coloring of $\operatorname{dom}\left(\phi^{*}\right) \cup V(P)$.

Now we prove 2). For each $w^{\prime} \in T_{j}$ and each pair v, v^{\prime} of S_{j}-consecutive vertices in $Q_{w^{\prime}}$, let $\phi_{v w^{\prime} v^{\prime}}$ be an extension of ϕ to a match-valid L-coloring of $S_{j} \cup\left(V\left(v Q_{w^{\prime}} v^{\prime}\right) \cap S_{j+1}\right)$, and let ϕ^{*} be the union of these extensions, taken over each $w^{\prime} \in T_{j}$ and each pair v, v^{\prime} of S_{j}-consecutive vertices of $Q_{w^{\prime}}$. Since there is no chord of C with both endpoints in S, ϕ^{*} is a proper L-coloring of S_{j+1}. We claim now that ϕ^{*} is a match-valid L-coloring of S_{j+1}.

By 1), ϕ^{*} extends to an L-coloring of $S_{j+1} \cup V(P)$, so we just need to check V2) and V3) of Definition 14.0.12. Let $a \in\{1, \cdots, n-2\}$ with $v_{a}, v_{a+2} \in \operatorname{dom}\left(\phi^{*}\right)$, where v_{a+1} is a matched vertex of C. We claim that $\left|L\left(v_{a+1}\right) \backslash\left\{\phi^{*}\left(v_{a}\right), \phi^{*}\left(v_{a+2}\right)\right\}\right| \geq 4$. If $v_{a}, v_{a+2} \in \operatorname{dom}(\phi)$, then we are done, since ϕ is a match-valid L coloring of S_{j}. If not, then at least one of v_{a}, v_{a+2} lies in S_{j+1}, so suppose without loss of generality that $v_{a+2} \in S_{j+1} \backslash S_{j}$. In that case, there is a $w \in T_{j+1}$ adjacent to v_{a+2}, and, by Claim 14.0.13, there is a unique $w^{\prime} \in T_{j}$ with $w<w^{\prime}$ and a unique pair v, v^{\prime} of S_{j}-consecutive vertices of $Q_{w^{\prime}}$ such that $w \in A_{v w^{\prime} v^{\prime}}$. Since w is adjacent to v_{a+2}, v_{a+2} is an internal vertex of $v Q_{w^{\prime}} v^{\prime}$. If v_{a} also lies in the path $v Q_{w^{\prime}} v^{\prime}$, then we immediately have $\left|L\left(v_{a+1}\right) \backslash\left\{\phi^{*}\left(v_{a}\right), \phi^{*}\left(v_{a+2}\right)\right\}\right| \geq 4$, since $\phi_{v w^{\prime} v^{\prime}}$ is a match-valid L-coloring of its domain by assumption. If $v_{a} \notin V\left(v Q_{w^{\prime}} v^{\prime}\right)$, then $v_{a+1} \in\left\{v, v^{\prime}\right\}$, contradicting the fact that no three consecutive vertices of $C \backslash P$ lie in S. Thus, ϕ^{*} satisfies V3) of Dfinition 14.0.12.

Now we just check that ϕ^{*} satisfies V2) of Definition 14.0.12. Let $v_{a} \in V(C \backslash P) \backslash \operatorname{dom}\left(\phi^{*}\right)$, where $a \in$ $\{1, \cdots, n-2\}$. We claim that $\left|L_{\phi^{*}}\left(v_{a}\right)\right| \geq 3$. If v_{a} is a matched vertex of C, then, since ϕ^{*} satisfies V3) of Definition 14.0.12, we have $\left|L_{\phi^{*}}\left(v_{a}\right)\right| \geq 3$. Now suppose that v_{a} is not a matched vertex and suppose toward a contradiction that $\left|L_{\phi^{*}}\left(v_{a}\right)\right|<3$. Since $\left|L\left(v_{a}\right)\right| \geq 4$ and no chord of C is incident to v_{a}, we have $v_{a-1}, v_{a+1} \in \operatorname{dom}\left(\phi^{*}\right)$. If $v_{a-1}, v_{a+1} \in \operatorname{dom}(\phi)$, then, since ϕ is a match-valid L-coloring of its domain, we have $\left|L_{\phi^{*}}\left(v_{a}\right)\right| \geq 3$, contradicting our assumption.

Thus, suppose without loss of generality that $v_{a+1} \in S_{j+1} \backslash S_{j}$. As above, there is a $w \in T_{j+1}$ adjacent to v_{a+1}, and, by Claim 14.0.13, there is a unique $w^{\prime} \in T_{j}$ with $w<w^{\prime}$ and a unique pair v, v^{\prime} of S_{j}-consecutive
vertices of $Q_{w^{\prime}}$ such that $w \in A_{v w^{\prime} v^{\prime}}$, so v_{a+1} is an internal vertex of $v Q_{w^{\prime}} v^{\prime}$. If v_{a-1} lies in $v Q_{w^{\prime}} v^{\prime}$, then we immediately have $\left|L_{\phi^{*}}\left(v_{a}\right)\right| \geq 3$, since $\phi_{v w^{\prime} v^{\prime}}$ is a match-valid L-coloring of its domain. If v_{a-1} does not lie in $v Q_{w^{\prime}} v^{\prime}$, then v_{a} is an endpoint of $v Q_{w^{\prime}} v^{\prime}$, which is false, since $v_{a} \notin \operatorname{dom}\left(\phi^{*}\right)$.

Thus, we have $\left|L_{\phi^{*}}(v)\right| \geq 3$ for each $v \in V(C \backslash P) \backslash \operatorname{dom}\left(\phi^{*}\right)$. For each $w \in T_{0} \cup \cdots T_{j}$, we have $N(w) \cap$ $\operatorname{dom}\left(\phi^{*}\right) \subseteq S_{j}$, and thus $\left|L_{\phi^{*}}(w)\right| \geq 3$. For each $w \in T_{j+1}$, there exists a $w^{\prime} \in T_{j}$ and a pair v, v^{\prime} of $S_{j^{-}}$ consecutive vertices of Q_{w} such that $N(w) \cap \operatorname{dom}\left(\phi^{*}\right) \subseteq \operatorname{dom}\left(\phi_{v w^{\prime} v^{\prime}}\right)$, so we have $\left|L_{\phi^{*}}(w)\right| \geq 3$, since $\phi_{v w^{\prime} v^{\prime}}$ is a match-valid L-coloring of its domain. Thus, $\left|L_{\phi^{*}}(w)\right| \geq 3$ for all $w \in D_{1}\left(S_{j+1}, G\right) \backslash V(P)$. Thus, ϕ^{*} is indeed a match-valid L-coloring of its domain. This proves 2), and completes the proof of Subclaim 14.0.18.

Now we fix a $w^{\prime} \in T_{j}$ and a pair v_{a}, v_{b} of S_{j}-consecutive vertices of $Q_{w^{\prime}}$, where $1 \leq a<b \leq n-2$. Let $m_{0}, m_{1}, \cdots, m_{r}$ be a set of indices with $a=m_{0}, b=m_{r}$, and $m_{0}<m_{1}<\cdots<m_{r}$, where $S_{j+1} \cap V\left(v_{a} Q_{w^{\prime}} v_{b}\right)=$ $\left\{v_{m_{0}}, \cdots, v_{m_{r}}\right\}$. Applying Subclaim 14.0.18, we just need to show that ϕ extends to a match-valid L-coloring of $\operatorname{dom}(\phi) \cup\left\{v_{m_{1}}, \cdots, v_{m_{r-1}}\right\}$.

Let $i \in\{0, \cdots, r\}$ and suppose there is an extension of ϕ to a match-valid L-coloring of $\operatorname{dom}(\phi) \cup\left\{v_{m_{0}}, v_{m_{1}}, \cdots, v_{m_{i}}\right\}$. This holds for $i=0$, since $v_{m_{0}} \in \operatorname{dom}(\phi)$. We claim now that if $0 \leq i<r-1$ and this holds for i, then it also holds for $i+1$. If we show this, then there exists a match-valid L-coloring of $\operatorname{dom}(\phi) \cup\left\{v_{m_{1}}, \cdots, v_{m_{r-1}}\right\}$, so we are done. Fix an $i \in\{0, \cdots, r-2\}$ and an extension ϕ^{*} of ϕ to a match-valid L-coloring of $\operatorname{dom}(\phi) \cup\left\{v_{m_{0}}, \cdots, v_{m_{i}}\right\}$. Now we break the proof into the following cases.

Case 1 of Claim 14.0.17: $v_{m_{i}}, v_{m_{i+1}}$ do not have a common neighbor in T_{j+1}
In this case, there is a $w \in T_{j+1}$ such that $v_{m_{i+1}}$ is the left endpoint of Q_{w}.
Subclaim 14.0.19. For any extension $\phi^{* *}$ of ϕ^{*} to an L-coloring of $\operatorname{dom}\left(\phi^{*}\right) \cup\left\{v_{m_{i+1}}\right\}$, if $\phi^{* *}$ is not a matchvalid L-coloring of its domain, then $m_{i}=m_{i+1}-2$ and one of the following holds.

1) $v_{m_{i}+1}$ is a matched vertex of C, and $\left|L\left(v_{m_{i}+1}\right) \backslash\left\{\phi^{*}\left(v_{m_{i}}\right), \phi^{* *}\left(v_{m_{i+1}}\right)\right\}\right|=3$; OR
2) $v_{m_{i}+1}$ is an unmatched vertex of C and $L\left(v_{m_{i}+1}\right) \backslash\left\{\phi^{*}\left(v_{m_{i}}\right), \phi^{* *}\left(v_{m_{i+1}}\right)\right\} \mid=2$.

Proof: Suppose that $\phi^{* *}$ is not a match-valid L-coloring of its domain. By Subclaim $14.0 .18, \phi^{* *}$ satisfies V1) of Definition 14.0.12. If $\phi^{* *}$ does not satisfy V3) of Definition 14.0.12, then $m_{i+1}=m_{i}+2, v_{m_{i}+1}$ is the endpoint of a chord e of C with $e \in \mathrm{Cl}(U)$, and $L\left(v_{m_{i}+1}\right) \backslash\left\{\phi^{*}\left(v_{m_{i}}\right), \phi^{* *}\left(v_{m_{i}+2}\right)\right\} \mid=3$. Note that $v_{m_{i}+1} \notin \operatorname{dom}\left(\phi^{*}\right)$ since S contains no three consecutive vertices of $C \backslash P$. Thus, if $\phi^{* *}$ does not satisfy V3) of Definition 14.0.12, then we are done.

Suppose now that $\phi^{* *}$ satisfies V1) and V3) of Definition 14.0.12, but not V2). Then there is a vertex $z \in$ $D_{1}(\operatorname{dom}(\phi), G) \backslash V(P)$ such that $\left|L_{\phi^{* *}}(z)\right|<3$. Since there is no chord of C in $\mathbb{R}^{2} \backslash U$ and each vertex of $C \backslash P$ has an L-list of size at least four, we have $z=v_{m_{i}+1}$ and $m_{i+1}=m_{i}+2$. Since $\phi^{* *}$ satisfies V3), $v_{m_{i}+1}$ is unmatched, or else we have $\left|L_{\phi^{*}}\left(v_{m_{i}+1}\right)\right| \geq 3$. Since, we have $\left|L\left(v_{m_{i}+1}\right)\right| \geq 4$ and $L\left(v_{m_{i}+1}\right) \backslash$ $\left\{\phi\left(v_{m_{i}}\right), \phi^{*}\left(v_{m_{i+1}}\right)\right\} \mid=2$, so we are done.

Now we finish Case 1 of of Claim 14.0.17. If $m_{i+1} \neq m_{i}+2$, then any extension of ϕ^{*} to $\operatorname{dom}\left(\phi^{*}\right) \cup\left\{v_{m_{i+1}}\right\}$ is a match-valid L-coloring of its domain, so we are done in that case. Now suppose that $m_{i+1}=m_{i}+2$. Note that, since $v_{m_{i+1}}$ is the left endpoint of Q_{w}, and $w \in T_{j+1}$, there are at least two vertices of Q_{w} lying to the right of $v_{m_{i+1}}$ on the path $v_{a} \cdots v_{b}$. Thus, since every edge of G with both endpoints in S is an edge of C, we have $\left|L_{\phi^{*}}\left(v_{m_{i+1}}\right)\right| \geq 5$.

If $v_{m_{i}+1}$ is a matched vertex, then we have $\left|L\left(v_{m_{i}+1}\right) \backslash\left\{\phi^{*}\left(v_{m_{i}}\right)\right\}\right| \geq 4$, and since $\left|L_{\phi^{*}}\left(v_{m_{i+1}}\right)\right| \geq 5$, we choose a color $d \in \mid L_{\phi^{*}}\left(v_{m_{i+1}}\right)$ such that $\left|L\left(v_{m_{i}+1}\right) \backslash\left\{\phi\left(v_{m_{i}}\right), d\right\}\right| \geq 4$. By Subclaim 14.0.19, the resulting extension of ϕ
to $\operatorname{dom}\left(\phi^{*}\right) \cup\left\{v_{m_{i+1}}\right)$ is then a match-valid L-coloring of its domain, so we are done in that case. Now suppose that $v_{m_{i}+1}$ is unmatched. In that case, since $\left|L\left(v_{m_{i}+1}\right)\right| \geq 4$, we have $\left|L_{\phi^{*}}\left(v_{m_{i}+1}\right)\right| \geq 3$, so we simply choose a color $d \in L_{\phi^{*}}\left(v_{m_{i+1}}\right)$ such that $L_{\phi^{*}}\left(v_{m_{i}+1}\right) \backslash\{d\} \mid \geq 3$, and, again by Subclaim 14.0.19, the resulting extension of ϕ^{*} to $\operatorname{dom}\left(\phi^{*}\right) \cup\left\{v_{m_{i+1}}\right\}$ is a match-valid L-coloring of its domain. This completes Case 1 of Claim 14.0.17.

Case 2 of Claim 14.0.17: $v_{m_{i+1}}, v_{m_{i}}$ have a common neighbor in T_{j+1}
In this case, by Claim 14.0.13, let $w \in T_{j+1}$ be the unique common neighbor of $v_{m_{i}}, v_{m_{i+1}}$. Now consider the following subcases.

Subcase 2.1 Either $m_{i+1}<m_{r}-1$ or $\left|L_{\phi^{*}}\left(v_{m_{i+1}}\right)\right| \geq 5$
Since $\left|L_{\phi^{*}}(w)\right| \geq 3$, and $\left|L_{\phi^{*}}\left(v_{m_{i+1}}\right)\right| \geq 4$, there is a color $c \in L_{\phi^{*}}\left(v_{m_{i+1}}\right)$ such that $\left|L_{\phi^{*}}(w) \backslash\{c\}\right| \geq 3$, and such that either $v_{m_{i+1}}$ is not adjacent to $v_{m_{r}}$ or, if $v_{m_{i+1}}$ is adjacent to $v_{m_{r}}$, then $c \neq \phi\left(v_{m_{r}}\right)$. In either case, letting ϕ^{\prime} be the extension of ϕ^{*} obtained by coloring $v_{m_{i+1}}$ with c, we claim that ϕ^{\prime} is a match-valid L-coloring of its domain.

By definition of S, together with 1) of Proposition 14.0.8, there is a unique chord $v_{m_{i+1}} v_{\ell}$ of C lying in $\mathrm{Cl}(U)$, where $\ell \in\{1, \cdots, n-2\}$. Since $v_{m_{i+1}}$ is the other end of the unique chord of C in $\mathrm{Cl}(U)$ which is incident to v_{ℓ}, we have $\operatorname{dom}\left(\phi^{*}\right) \cap N\left(v_{\ell}\right) \subseteq\left\{v_{\ell-1}, v_{\ell+1}\right\}$, where the indices are read $\bmod n$. Thus, since ϕ^{*} is a match-valid L-coloring of its domain, we have $\left|L_{\phi^{*}}\left(v_{\ell}\right)\right| \geq 4$, and thus $\left|L_{\phi^{\prime}}\left(v_{\ell}\right)\right| \geq 3$. Thus, ϕ^{\prime} satisfies condition V2) of Definition 14.0.12. If V3) is not satisfied, then we have $v_{m_{i+1}-1} \notin \operatorname{dom}\left(\phi^{*}\right)$ and $v_{m_{i+1}-2} \in \operatorname{dom}\left(\phi^{*}\right)$, so w is adjacent to each of $v_{m_{i+1}-2}, v_{m_{i+1}}$. Since $v_{m_{i+1}-1} \notin V(P)$, this contradicts 5) of Proposition 14.0.8. Thus, ϕ^{\prime} is indeed a match-valid L-coloring of its domain, so we are done in this case.

Subcase $2.2 m_{i+1}=m_{r}-1$ and $\left|L_{\phi^{*}}\left(v_{m_{i+1}}\right)\right|=4$
In this case, we have $N\left(v_{m_{i+1}}\right) \cap S=\left\{v_{m_{i}}\right\}$ and $m_{i+1}=m_{i}+1$.
Subclaim 14.0.20. $m_{i}<m_{i+1}-2$.
Proof: Firstly, if w is adjacent to $v_{m_{r}}$, then, since $V(P) \cap\left\{v_{a}, v_{a+1}, \cdots, v_{b}\right\}=\varnothing$, and $v_{m_{i}}, v_{m_{i+1}}$ are adjacent to w, we immediately have $m_{i+1}<m_{i}-2$ by Proposition 14.0.8. Now suppose that w is not adjacent to $v_{m_{r}}$. In that case, since $N(w) \cap S \subseteq\left\{v_{m_{0}}, \cdots, v_{m_{r}}\right\}, v_{m_{i+1}}$ is the right endpoint of Q_{w}. Suppose toward a contradiction that $m_{i} \geq m_{i+1}-2$. In that case, again by Proposition 14.0 .8 , the only possibility is that $m_{i}=m_{i+1}-1$, and thus S contains $\left\{v_{m_{i}}, v_{m_{i+1}}, v_{m_{r}}\right\}$. As these are consecutive vertices of C, we have a contradiction.

Now, since $\left|L_{\phi^{*}}\left(v_{m_{i+1}}\right)\right| \geq 4$, we choose a color $c \in \mid L_{\phi^{*}}\left(v_{m_{i+1}}\right)$ such that $\left|L_{\phi^{*}}(w) \backslash\{c\}\right| \geq 3$. Let ϕ^{\prime} be the resulting extension of ϕ^{*} to $\operatorname{dom}\left(\phi^{*}\right) \cup\left\{v_{m_{i+1}}\right\}$. We claim that ϕ^{\prime} is a match-valid L-coloring of its domain. It just suffices to check V2) and V3) of Definition 14.0.12. Since $m_{i}<m_{i+1}-2$, it immediately follows that ϕ^{\prime} satisfies V3). Since $\left|L_{\phi^{\prime}}(w)\right| \geq 3$, to finish, it just suffices to check that $\left|L_{\phi^{\prime}}(v)\right| \geq 3$ for each $v \in V(C \backslash P) \backslash \operatorname{dom}\left(\phi^{\prime}\right)$. Suppose there is a $v \in V(C \backslash P) \backslash \operatorname{dom}\left(\phi^{\prime}\right)$ with $\left|L_{\phi^{\prime}}(v)\right|<3$. Since $\left|L_{\phi^{\prime}}\left(v^{*}\right)\right| \geq 3, v$ is adjacent to $v_{m_{i+1}}$.

If v is matched to $v_{m_{i+1}}$, then since ϕ^{\prime} satisfies V 2), we have $\left|L_{\phi^{\prime}}(v)\right| \geq 3$. Since $v_{m_{r}} \in \operatorname{dom}\left(\phi^{\prime}\right)$, the only remaining possibility is that $v=v_{m_{i+1}-1}$. Since $m_{i}<m_{i+1}-2$, if v is unmatched, then we have $\operatorname{dom}\left(\phi^{*}\right) \cap N(v)=\varnothing$, and thus $\left|L_{\phi^{*}}(v)\right|=|L(v)| \geq 4$, so $\left|L_{\phi^{\prime}}(v)\right| \geq 3$. On the other hand, if v is matched, then, since ϕ^{\prime} satisfies V2), we again have $\left|L_{\phi^{\prime}}(v)\right| \geq 3$. Thus ϕ^{\prime} satisfies V2), as desired. This completes the proof of Claim 14.0.14.

Now we finish the proof of Proposition 14.0.10. Combining Claim 14.0.14 and Claim 14.0.17, there is a match-valid L-coloring ϕ of S_{ℓ}. Since $S_{\ell}=S$, the set S and the L-coloring ϕ of S satisfy Proposition 14.0.10, so we are done. This completes the proof of Proposition 14.0.10.

Now we are ready to finish the proof of Theorem 0.3.5. Let $(G, \mathcal{F}, \mathcal{T}, L)$ be a minimal counterexample. Since G is not L-colorable, we have $\mathcal{T} \neq \varnothing$ by Proposition 14.0.5. Thus, let $C \in \mathcal{T}$ and let U be the unique vertex-free side of C and let P be the precolored path of C. Given this element $C \in \mathcal{T}$, let $S \subseteq V(C \backslash P)$ and let ϕ be an L-coloring of $G[S]$ such that Proposition 14.0.10 is satisfied. Let G^{*} be the graph obtained from G by deleting each chord of C in $\mathrm{Cl}(U)$. Then C is a cyclic facial subgraph of G^{*}. Applying Theorem 1.3.2, $G^{*} \backslash S$ contains a facial subgraph F such that $P \subseteq F, V(C \backslash S) \subseteq V(F)$, and $D_{1}(S, G) \subseteq V(F)$.

Since S has an endpoint from each chord of C in $\mathrm{Cl}(U)$, we have $G \backslash S=G^{*} \backslash S$, so F is also a facial subgraph of $G \backslash S$. Let F^{\prime} be a subgraph of F with $P \subseteq F^{\prime}$ and $V\left(F^{\prime}\right)=V(C \backslash S) \cup D_{1}(S, G)$. Now consider the tuple $\left(G \backslash S, \mathcal{F} \cup\left\{F^{\prime}\right\}, \mathcal{T} \backslash\{C\}, L_{\phi}\right)$. For each $F^{*} \in \mathcal{F}$, we have $d\left(C, F^{*}\right) \geq \alpha+1$ and thus $d\left(F^{\prime}, F^{*}\right) \geq \alpha$. Likewise, for each $C^{\prime} \in \mathcal{T} \backslash\{C\}$, we have $d\left(C, C^{\prime}\right) \geq \alpha+2$ and thus $d\left(F^{\prime}, C^{\prime}\right) \geq \alpha+1$. Furthermore, P is L_{ϕ}-colorable and $\left|L_{\phi}(v)\right| \geq 3$ for all $v \in V\left(F^{\prime} \backslash P\right)$. Thus, $\left(G \backslash S, \mathcal{F} \cup\left\{F^{\prime}\right\}, \mathcal{T} \backslash\{C\}, L_{\phi}\right)$ is also a tennis court, and since $|E(G \backslash S)|<|E(G)|$, it follows from the minimality of $(G, \mathcal{F}, \mathcal{T}, L)$ that $G \backslash S$ is L_{ϕ}-colorable. Thus, G is L colorable, contradicting our assumption. This completes the proof of Theorem 0.3.5.

We now briefly discuss some potential future work along the same lines as Theorem 0.3 .5 . The goal of this future work is to use Theorem 0.3 .1 to obtain more results about the 5 -choosability of drawings which differ from a planar embeddings by some pairwise far apart region. One such conjecture we have is the following.

Conjecture 14.0.21. There exists a constant d such that the following holds: Let G be a drawing on the sphere of a graph and let C_{1}, \cdots, C_{m} be a collection of cycles in G such that $d\left(C_{i}, C_{j}\right) \geq d$ for each $1 \leq i<j \leq m$. Suppose that, for each $1 \leq i \leq m$, there is a connected component U_{i} of $\mathbb{S}^{2} \backslash C_{i}$ such that the following hold.

1) For each crossing point x of G, there is an $i \in\{1, \cdots, m\}$ such that $x \in U_{i}$; AND
2) For each $i=1, \cdots, m$, the underlying graph $G \cap \mathrm{Cl}\left(U_{i}\right)$ has girth at least five and admits a planar embedding.

Then G is 5-choosable.
In the statement above, G does not necessarily admit a planar embedding, and, for each $1 \leq i \leq m$, the drawing of $G \cap \mathrm{Cl}\left(U_{i}\right)$ is not necessarily planar, or else the result would trivially follow from Theorem 0.2 .3 . Although $G \cap \mathrm{Cl}\left(U_{i}\right)$ admits a planar embedding, it does not necessarily admit a planar embedding in which C_{i} is a facial cycle, so the drawing G possibly has arbitrarily many crossings and the underlying abstract graph of G possibly has an arbitrarily large crossing number.

Bibliography

[1] M. Albertson, You Can't Paint Yourself into a Corner J. Combin. Theory Ser. B 73 (1998), 189-194
[2] T. Böhme, B. Mohar and M. Stiebitz, Dirac's map-color theorem for choosability J. Graph Theory Volume 32, Issue 4 (1999), 327-339
[3] V. Campos and F. Havet, 5-choosability of graphs with 2 crossings J. Combin. Theory Ser. B 97 (2007), 571-583
[4] M. DeVos, K. Kawarabayashi and B. Mohar, Locally planar graphs are 5-choosable, J. Combin. Theory Ser. B 98 (2008), 1215-1232
[5] R. Diestel, Graph Theory, Springer-Verlag Graduate Texts in Mathematics, vol. 173 (2000), New York
[6] Z. Dvořák, B. Lidický and B. Mohar, 5-choosability of graphs with crossings far apart, J. Combin. Theory Ser. B 123 (2017), 54-96
[7] Z. Dvořák, B. Lidický, B. Mohar and L. Postle, 5-list-coloring planar graphs with distant precolored vertices. J. Combin. Theory Ser. B 123 (2017), 311-352
[8] L. Postle, 5-List Colorings Graphs on Surfaces, Georgia Institute of Technology (2012), PhD Dissertation
[9] L. Postle and R. Thomas, Five-list-coloring graphs on surfaces I. Two lists of size two in planar graphs J. Combin. Theory Ser. B 111 (2015), 234-241
[10] L. Postle and R. Thomas, Five-list-coloring graphs on surfaces II. A linear bound for critical graphs in a disk J. Combin. Theory Ser. B 119 (2016), 42-65
[11] L. Postle and R. Thomas, Five-list-coloring graphs on surfaces III. One list of size one and one list of size two J. Combin. Theory Ser. B 128 (2018), 1-16
[12] L. Postle and R. Thomas, Five-list-coloring graphs on surfaces: The Many Faces Far-Apart Generalization of Thomassen's Theorem, arXiv:2108.12880
[13] L. Postle and R. Thomas, Hyperbolic families and coloring graphs on surfaces, Transactions of the American Mathematical Society Ser. B 5 (2018), 167-221
[14] R. Škrekovski, Choosability of K_{5}-minor-free graphs Discrete Math. 190 (1998) 223-226
[15] C. Thomassen, A short list color proof of Grötzsch's theorem J. Combin. Theory Ser. B 88 (2003), 189-192
[16] C. Thomassen, Color-Critical Graphs in a Fixed Surface, J. Combin. Theory Ser. A 70 (1997), 67-100
[17] C. Thomassen, Every Planar Graph is 5-Choosable J. Combin. Theory Ser. B 62 (1994), 180-181
[18] C. Thomassen, Exponentially many 5-list-colorings of planar graphs J. Combin. Theory Ser. B 97 (2007), 571583

Index

This index consists of non-symbolic terminology and definitions which are specific to this thesis. The pages referenced indicate where each piece of terminology is first defined.
(C, z)-opener
for L-coils, 234
for open rings, 159
head of a-, 159
C -
band, 62
short, 62
seam, 288
blocker of a-, 289
head of a-, 288
join of a-, 288
tail of a-, 288
wedge, 135
H-box, 196
L-
coil, 232
shield, 135
P-target, 300
Q-prism, 167
$\left\langle D, z, z^{*}, L\right\rangle$-corner coloring, 196
\mathcal{C}-shortcut, 68
\mathcal{P}-sampling, 384
e-enclosure, 253
k-bouquet, 139
stem, 139
z-bend, 166
anchor, 265
atom, 167
irreducible, 167
boundary cutter, 312
broken wheel, 16
channel, 167
(v, S)-avoiding, 167
chart, 8
critical, 363
near-triangulated, 13
oriented, 38
precolored subgraph of a-, 8
chord-closure, 163
collar, 286
large side of the-, 286
small side of the-, 286
color
(A, P)-matchable, 242
highly (A, P)-matchable, 242
coloring
match-valud, 385
coloring matrix, 216
covering set, 384
crown, 84
cycle
\mathcal{C}-close, 367
blue, 366
broken, 371
descendant of a-, 366
immediate descendant of a -, 366
obstructing, 373
red, 366
uncrossed, 379
vertex-free side of a-, 379
vertex-partitioning, 379
fulcrum, 163
generalized chord, 3
\mathcal{C}-splitting, 59
\mathcal{T}-non-separating, 49
\mathcal{T}-separating, 49
proper, 3
good z-direction, 164
graph
short-separation free, 9
hinge, 32
ideal C-route, 300
lens, 310
k-, 310
k-partitionable, 312
k-partitioning pair of a-, 312
k-reducible, 311
breadth of a-, 311
non-split, 312
split, 312
mosaic, 38
critical, 39
natural (C, Q)-partition, 3
natural C-partition, 2
-in a nonplanar drawing, 380
necklace
1-, 81
2-, 158
large side of the-, 158
small side of the-, 158
path
C-monotone, 288
divisible, 238
quasi-shortest, 11
reducing, 311
pointer, 97
rainbow, 167
irreducible, 167
ring, 8
closed, 9
open, 9
roulette wheel, 328
anchor vertex of a-, 333
boundary cycle of a-, 328
cycle connector of a-, 328
defective, 331
subgraph
(k, L)-short, 32
facial, 2
L-predictable, 37
highly predictable, 37
inward-facing, 310
Thomassen, 10
subpath
alternating, 321
touring, 296
tennis court, 379
tessellation, 13
vertex
P-gap, 11
S_{j}-consecutive, 385
matched, 384
obstruction, 251
maximal, 251
problematic, 253
pentagonal, 234
pivot, 203
unmatched, 384
vertex set
inert, 15
wall, 253
web
$K-, 42$
wheel, 16
wheel sequence, 83
apex path of a-, 83
wheel terminals of $\mathrm{a}-, 83$

