37 research outputs found

    Deep Dynamic Neural Networks for Multimodal Gesture Segmentation and Recognition

    Get PDF
    This paper describes a novel method called Deep Dynamic Neural Networks (DDNN) for multimodal gesture recognition. A semi-supervised hierarchical dynamic framework based on a Hidden Markov Model (HMM) is proposed for simultaneous gesture segmentation and recognition where skeleton joint information, depth and RGB images, are the multimodal input observations. Unlike most traditional approaches that rely on the construction of complex handcrafted features, our approach learns high-level spatiotemporal representations using deep neural networks suited to the input modality: a Gaussian-Bernouilli Deep Belief Network (DBN) to handle skeletal dynamics, and a 3D Convolutional Neural Network (3DCNN) to manage and fuse batches of depth and RGB images. This is achieved through the modeling and learning of the emission probabilities of the HMM required to infer the gesture sequence. This purely data driven approach achieves a Jaccard index score of 0.81 in the ChaLearn LAP gesture spotting challenge. The performance is on par with a variety of state-of-the-art hand-tuned feature-based approaches and other learning-based methods, therefore opening the door to the use of deep learning techniques in order to further explore multimodal time series data

    Hierarchical sensor fusion for micro-gestures recognition with pressure sensor array and radar

    Get PDF
    This paper presents a hierarchical sensor fusion approach for human micro-gesture recognition by combining an Ultra Wide Band (UWB) Doppler radar and wearable pressure sensors. First, the wrist-worn pressure sensor array (PSA) and Doppler radar are used to respectively identify static and dynamic gestures through a Quadratic-kernel SVM (Support Vector Machine) classifier. Then, a robust wrapper method is applied on the features from both sensors to search the optimal combination. Subsequently, two hierarchical approaches where one sensor acts as ‛enhancer‚ of the other are explored. In the first case, scores from Doppler radar related to the confidence level of its classifier and the prediction label corresponding to the posterior probabilities are utilized to maximize the static hand gestures classification performance by hierarchical combination with PSA data. In the second case, the PSA acts as an ‛Enhancer‚ for radar to improve the dynamic gesture recognition. In this regard, different weights of the ‛Enhancer‚ sensor in the fusion process have been evaluated and compared in terms of classification accuracy. A realistic cross-validation method is chosen to test one unknown participant with the model trained by data from others, demonstrating that this hierarchical fusion approach for static and dynamic gestures yields approximately 16.7% improvement in classification accuracy in the best cases

    Machine Learning for Cyberattack Detection

    Get PDF
    Machine learning has become rapidly utilized in cybersecurity, rising from almost non-existent to currently over half of cybersecurity techniques utilized commercially. Machine learning is advancing at a rapid rate, and the application of new learning techniques to cybersecurity have not been investigate yet. Current technology trends have led to an abundance of household items containing microprocessors all connected within a private network. Thus, network intrusion detection is essential for keeping these networks secure. However, network intrusion detection can be extremely taxing on battery operated devices. The presented work presents a cyberattack detection system based on a multilayer perceptron neural network algorithm. To show that this system can operate at low power, the algorithm was executed on two commercially available minicomputer systems including the Raspberry PI 3 and the Asus Tinkerboard. An analysis of accuracy, power, energy, and timing was performed to study the tradeoffs necessary when executing these algorithms at low power. Our results show that these low power implementations are feasible, and a scan rate of more than 226,000 packets per second can be achieved from a system that requires approximately 5W to operate with greater than 99% accuracy

    Innovation of Touchless Touchscreen Technology in Automotive User Interface

    Get PDF
    Inside a car environment music system plays a major role for entertaining people. In this paper, a music system with touchless and vision based GUI is granted. This menu-driven UI is offered by controlling actions of the fist. Both these algorithms can be brought by the deep learning technique. Convolutional Neural Network (CNN) is used in the hand posture recognition technique to make the user interface interactive to perform the actions initiated by the user. Long-Term Recurrent Convolutional Neural Network (LRCNN) algorithm is used to ignite the touchless interface by the gestures. When a fist movement is carried out, a sequence is captured in the form of multiple image frames. So this can be accomplished using the deep learning technique. Sampled images are taken from the video sequence that is captured during the gesture recognition. Key frame extraction technique is adopted to obtain finer images from the video sequence using sparse learning. Sparse dictionary learning is used as it is individually optimized for the video sequence but, is expensive computationally
    corecore