Machine Learning for Cyberattack Detection

Abstract

Machine learning has become rapidly utilized in cybersecurity, rising from almost non-existent to currently over half of cybersecurity techniques utilized commercially. Machine learning is advancing at a rapid rate, and the application of new learning techniques to cybersecurity have not been investigate yet. Current technology trends have led to an abundance of household items containing microprocessors all connected within a private network. Thus, network intrusion detection is essential for keeping these networks secure. However, network intrusion detection can be extremely taxing on battery operated devices. The presented work presents a cyberattack detection system based on a multilayer perceptron neural network algorithm. To show that this system can operate at low power, the algorithm was executed on two commercially available minicomputer systems including the Raspberry PI 3 and the Asus Tinkerboard. An analysis of accuracy, power, energy, and timing was performed to study the tradeoffs necessary when executing these algorithms at low power. Our results show that these low power implementations are feasible, and a scan rate of more than 226,000 packets per second can be achieved from a system that requires approximately 5W to operate with greater than 99% accuracy

    Similar works