
University of Dayton University of Dayton

eCommons eCommons

Honors Theses University Honors Program

4-26-2020

Machine Learning for Cyberattack Detection Machine Learning for Cyberattack Detection

Kayla Chisholm
University of Dayton

Follow this and additional works at: https://ecommons.udayton.edu/uhp_theses

eCommons Citation eCommons Citation
Chisholm, Kayla, "Machine Learning for Cyberattack Detection" (2020). Honors Theses. 251.
https://ecommons.udayton.edu/uhp_theses/251

This Honors Thesis is brought to you for free and open access by the University Honors Program at eCommons. It
has been accepted for inclusion in Honors Theses by an authorized administrator of eCommons. For more
information, please contact frice1@udayton.edu, mschlangen1@udayton.edu.

https://ecommons.udayton.edu/
https://ecommons.udayton.edu/uhp_theses
https://ecommons.udayton.edu/uhp
https://ecommons.udayton.edu/uhp_theses?utm_source=ecommons.udayton.edu%2Fuhp_theses%2F251&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ecommons.udayton.edu/uhp_theses/251?utm_source=ecommons.udayton.edu%2Fuhp_theses%2F251&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:frice1@udayton.edu,%20mschlangen1@udayton.edu

Machine Learning for Cyberattack

Detection

Honors Thesis

Kayla Chisholm

Department: Electrical and Computer Engineering

Advisor: Chris Yakopcic, Ph.D.

April 2020

Machine Learning for Cyberattack

Detection

Honors Thesis

Kayla Chisholm

Department: Electrical and Computer Engineering

Advisor: Chris Yakopcic, Ph.D.

April 2020

Abstract

Machine learning has become rapidly utilized in cybersecurity, rising from almost non-existent to currently

over half of cybersecurity techniques utilized commercially. Machine learning is advancing at a rapid rate,

and the application of new learning techniques to cybersecurity have not been investigate yet. Current

technology trends have led to an abundance of household items containing microprocessors all connected

within a private network. Thus, network intrusion detection is essential for keeping these networks secure.

However, network intrusion detection can be extremely taxing on battery operated devices. The presented

work presents a cyberattack detection system based on a multilayer perceptron neural network algorithm.

To show that this system can operate at low power, the algorithm was executed on two commercially

available minicomputer systems including the Raspberry PI 3 and the Asus Tinkerboard. An analysis of

accuracy, power, energy, and timing was performed to study the tradeoffs necessary when executing these

algorithms at low power. Our results show that these low power implementations are feasible, and a scan

rate of more than 226,000 packets per second can be achieved from a system that requires approximately

5W to operate with greater than 99% accuracy.

Table of Contents

Abstract Title Page

List of Figures

List of Tables

Introduction 1

Background 3

Neural Network Algorithms 4

Perceptron Learning Algorithms 5

Cyberattack Dataset 7

MATLAB Software Results 10

TensorFlow Software Results 12

Low Power Hardware Results 15

Conclusion 21

References 22

List of Figures

Figure 1. Two different multilayer perceptron topologies presented in

this paper including (a) a topology with one hidden layer and (b)

a topology with two hidden layers.

5

Figure 2. Examples of packets contained in the NSL-KDD dataset

displaying (a) a normal packet, and (b) an attack.

9

Figure 3. The two example packets in Figure 2 after processing for

neural network displaying (a) a normal packet, and (b) an attack.

9

Figure 4. Root mean squared error minimization curve for training of

multilayer perceptron algorithm with two hidden layers using

MATLAB.

10

Figure 5. Plots displaying training error over the 100 training iterations

for an MLP with (a) two hidden layers using 100% of the data for

training, (b) a single hidden layer using 100% of the data for

training, (c) two hidden layers and 50% of the data for training,

and (d) one hidden layer and 50% of the data for training.

12

Figure 6. Photographs of (a) the Raspberry PI 3 and (b) the Asus

Tinkerboard.

15

Figure 7. Power consumption during training when executing the MLP

with 2 hidden layers on (a) the Raspberry PI and (b) the

Tinkerboard (20 epoch training interval).

16

List of Tables

Table I. Accuracies for various Neural Networks Studied in Previous

Work.

4

Table II. Breakdown of Different Attack Types within the NSL-KDD

Dataset.

8

Table III. Accuracies during testing of multilayer perceptron algorithm

with two hidden layers using MATLAB.

11

Table IV. Different Multilayer Perceptron Topologies Used in this Work. 12

Table V. Classification Accuracy when Using 100% of the Data for

Training.

14

Table VI. Classification Accuracy when Using 50% of the Data for

Training.

14

Table VII. Power Consumption for Each of the MLP Systems During

Training.

17

Table VIII. Energy Per Training Epoch for Each of the Computing

Systems Executing Each of the Four MLP Cases.

18

Table IX. Energy Per Packet During Training for Each of the Computing

Systems Executing Each of the Four MLP Cases.

18

Table X. Energy Per Packet During Testing for Each of the Computing

Systems Executing Each of the Four MLP Cases.

18

Table XI. Execution Time Per Packet During Training for Each of the

Computing Systems Executing Each of the Four MLP Cases.

19

Table XII. Execution Time Per Packet During Testing for Each of the

Computing Systems Executing Each of the four MLP Cases.

20

Table XIII. Time Factors Showing How Much Speedup is Obtained for

Each System When in a Testing Mode.

20

P a g e | 1

Introduction

Computer networks have steadily increased in size and complexity since their

inception. As computer networks grow, it becomes more difficult to provide reliable

network security [1], especially in low power portable systems. In current commercial

technology, many electronic devices and systems possess both a microprocessor and a

connection to a network. Unless each of these devices are equipped with up to date

network security, users are exposing their networks to a substantial number of access

points. Therefore, high speed energy efficient intrusion detection must be utilized to

protect systems from the rapidly evolving cyberattack landscape.

Intrusion detection systems that use neural networks and machine learning can be

utilized as an efficient alternative to traditional security systems. Neural networks are

extremely capable in the fields of image and pattern recognition [2,3]. These capabilities

can be leveraged in intrusion detection applications as the networks are trained to

recognize the difference between benign data and a cyberattack. Certain neural network

algorithms have adaptive properties [4], thus they can self-optimize during normal

operation. The ability to improve during while in use would be useful in an intrusion

detection system because new cyberattacks are constantly being developed. Therefore, it

would be possible for an adaptive system to catch new attacks without undergoing a

costly retraining process. Many neural network algorithms are implemented using layers

of vector-matrix multiplication [5]. This type of algorithm can be implemented in an

extremely parallel design using specialized low power hardware [5-10]. Thus, neural

network based intrusion detection could be performed at extreme low power.

Before low power, energy efficient machine learning based intrusion detection

systems are produced, different learning algorithms need to be examined to determine

which are most appropriate for recognizing attacks within network data. Thus, this work

presents a comparison of two perceptron topologies running on two different low power

hardware systems. For training and testing this work uses the NSL-KDD dataset [11], an

update to the Knowledge Discovery and Datamining dataset [12]. In this work we train

two different multilayer perceptron algorithms, one with a single hidden layer, and one

with two hidden layers. In addition to studying perceptron algorithm accuracy [1], in this

P a g e | 2

work we study low power implementations of these algorithms on a Raspberry Pi 3 [13]

and an Asus Tinkerboard [14]. These minicomputers are low power (<6W), handheld

(<60g) computing systems with a high degree of flexibility. Our results present a design

space analysis that discusses the tradeoff of using these systems in terms of accuracy,

power, energy, and time. By using these systems, we show that network intrusion

detection can be implemented on lower power systems with greater than 99% accuracy

with a scanning rate of more than 226,000 packets / second.

Related work in this area shows similar studies where neural network algorithms

are used to carry out intrusion detection using similar training and testing datasets. Both

convolutional [15] and deep learning [16] architectures have been applied to this

problem, and these approaches achieve high accuracy, which is about 99% in some cases.

Hebbian learning has also been applied to the cyber-attack detection problem, and

significant detection improvement is observed when using a multiscale learning rule [17].

In our previous work, we compare perceptron algorithms that differ in size and

complexity in terms of attack detection accuracy [18]. Furthermore, our research group

has studied the implementation of network intrusion detection on more exotic hardware

architectures including the IBM True North spiking processor [19], as well as simulated

memristor hardware [20]. However, to the best of our knowledge, no published work has

carried out a power, energy, and timing comparison when moving these algorithms to

low size, weight, and power commercial off the shelf systems. The presented work

demonstrates the possibility efficiently implementing intrusion detection using low cost

components.

This work is organized as follows: Section II details the necessary background to

understand the objectives of this work, Section III describes neural network algorithms,

Section IV discusses the perceptron algorithms used in this work, and Section V

describes the NSL-KDD dataset used in this work. Section VI shows the results obtained

when training and testing one of the network topologies using MATLAB. Section VII

discusses the results found when training and testing the network topologies using

TensorFlow and low power hardware. Section VIII discusses the hardware evaluation

results that compare these networks in terms of power, energy, and time. Finally, Section

IX provides a brief conclusion.

P a g e | 3

Background

Prior to implementing neural network layouts on a working knowledge of

machine learning, neural networks, and intrusion detection was developed. Traditional

network intrusion detection systems are general rule based (such as Snort). Because

traditional systems follow rules based on attacks that were previously determined to be

malicious, they are generally unable to recognize new attacks. New malicious attacks are

continuously created. Given the goal of our work is to develop a low power efficient

intrusion detection system, the traditional system would not be the most effective given

that it generally is not good at recognized new attacks. Therefore, our approach to

network intrusion detection is a neural network pattern based system that can potentially

recognize patterns among malicious attacks in order to identify them.

Neural networks have various practical applications including facial recognition,

voice recognition, and medical image recognition. Ultimately, the task was to develop

low power machine learning algorithms that can serve as efficient intrusion detection

systems given the power constants of low power systems. In order to develop the low

power intrusion detection system, we studied neural networks to determine which were

the most promising for detecting cyberattacks, we tested the neural networks for

efficiency using a portable computer, we then tested the neural networks for efficiency

using low power hardware.

P a g e | 4

Neural Network Algorithms

Before determining which neural network algorithm to implement and test on low

power systems, a survey of previous studies using neural networks was completed. Table

I displays the previous work using neural networks for cyberattack detection and the

corresponding accuracies as reported in the studies. As shown in Table I, Multilayer

Perceptron Algorithms consistently have accuracies higher than 99% [15, 17, 18, 19].

Table I. Accuracies for Various Neural Networks Studied in Previous Work.

 Network Algorithm Accuracy (%)

Multiscale Hebbian 93.56

Deep Convolutional Network 98.83

Multilayer Perceptron – 1 hidden layer 99.85

Multilayer Perceptron – 2 hidden layers 99.68

Multilayer Perceptron – 3 hidden layers 99.78

Convolutional Neural Network – 1 layer 99.9

Convolutional Neural Network – 2 layers 99.8

Convolutional Neural Network – 3 layers 80.1

Deep Feed Forward – 1 layer 92.9

Deep Feed Forward – 2 layers 92.9

Deep Feed Forward – 3 layers 93.0

Deep Feed Forward – 4 layers 93.0

Deep Feed Forward – 5 layers 92.9

Key differences between the work depicted in Table 1 and the work that we have

done is that we will be testing the algorithms using low power systems.

P a g e | 5

Perceptron Learning Algorithms

A neural network is a computing system inspired by human brain function. Neural

networks “learn” to complete tasks by recognizing patterns rather than following a set of

rules. They generally operate in two stages: training and testing. During the training

stage, the system is shown data which it then classifies. After the network makes a

classification determination, an error calculation is determined. Depending on how

accurate the system’s classifications were, weights will be updated accordingly. This

process will continue in stages until the system processes the data for a predetermined

number of stages. Once the process is complete the weights remain unchanged and the

system moves on to the testing stage. During the testing stage, the system is again shown

data to classify. After each data packet is classified, a final accuracy is determined. This

type of system could allow for real-time updates and feedback and could also prevent

new attacks.

(1)

(2)





f(v1)

f(v2)

u1

u2

uL-1

uL

.
.

.
.

.
.

wb1,1

wb2,M

wbL,M

waN,L

x1

x2

x3

xi

xN-1

xN

.
.

.
.

.
.

wa1,1

y1

y2

(a)

P a g e | 6





f(v1)

f(v2)

ub1

ub2

ubL-1

ubL

.
.

.
.
.

.

wc1,1

wc2,M

wcL,M

wbK,L

.
.
.

.
.
.

wb1,1

waN,K

x1

x2

x3

xi

xN-1

xN

.
.
.

.
.
.

wa1,1

uaK-1

uaK

ua3

ua1

y1

y2

(b)

Figure 1. Two different multilayer perceptron topologies presented in this work including (a) a topology with one hidden layer

and (b) a topology with two hidden layers.

After surveying various types of neural network algorithms and other network

intrusion detection studies [19], the multilayer perceptron was determined to be the first

neural network type to examine on both a computer system and low power hardware.

Two layouts of the multilayer perceptron were tests, one with a single hidden layer and

one with two hidden layers (see Fig. 1). Perceptron algorithms possess two different

modes of operation, as discussed above, testing and training. During the training phase,

an iterative algorithm updates the weights w with the goal of minimizing error over time.

Once training is finished, the resulting network should provide strong classification

accuracy when presented with data like the training data. In this work, we utilize the

standard back-propagation training algorithm [22]. Corresponding to Fig. 1, the

intermediate output…

The multilayer perceptron in Figure 1 (a) contains one layer of neurons between

weight matrices wa and wb. The input pattern must traverse each of these layers before a

classification result is produced. Increasing the number of neurons layers in a perceptron

typically produces a system with a higher classification accuracy. With more layers, more

complex distinctions can be made as flexibility in feature classification is increased. Fig.

1 (b) shows multilayer perceptron with two hidden neuron layers. In the following

section, we analyze the differences between these two network layouts in terms of

accuracy, energy, and timing.

P a g e | 7

Cyberattack Dataset

To train and evaluate the intrusion detection networks, we make use of an

improvement to the Knowledge Discovery and Datamining (KDD) data set which is

known to make the data more appropriate for examining the effectiveness of artificial

neural networks. This dataset is known as NSL-KDD [11]. NSL-KDD removes all

repeated identical data points from the KDD dataset [12] and provides more balance to

the different classes within the data.

More specifically, for the experiments in this work, the entirety of the data found

in the “KDDtrain+.txt” file was used and can be found at [11]. This dataset contains

several different types of cyberattacks and are detailed in Table II. Twenty-two different

attacks are present in this data, and a large amount of benign data is also present in this

data, and a large amount of benign data is also present. The systems presented in this

work must learn to distinguish between the normal data and the attack data with the

highest accuracy possible.

The differences between a normal packed (see Figure 2 (a)) and an attack packet

(see Figure 2 (b)) in the NSL-KDD dataset are not easily recognizable, but patterns in the

features are likely to emerge when scanning a large number of samples. To take

advantage of each of the features in this data during training and classification, some

minor preprocessing was performed. Each packet contains 43 values, and the 42nd value

(displayed as either normal or Neptune in Figure 2) was sued as a label during training.

The 43rd entry is a number related to classification difficulty which was removed and not

used in this experiment. Additionally, the twentieth entry has a value of 0 for all packets

in the dataset, so this value was removed from all packets since it would not affect

training accuracy. The features (displayed as tcp, http, and SF in Figure 2 (a)) were non-

numerical, so they were converted to integer values. For example, the fourth feature from

the left 9SF in Figure 2 (a)) is a label capable of storing one of eleven possible strings,

thus the string contained in this feature is now represented by a number 1 through 11

(depending on the string present). The data was also normalized (across samples) so that

the largest value in any feature column was 1. Figure 3 shows the same example packets

in Figure 2 after processing has been applied.

P a g e | 8

Table II. Breakdown of Different Attack Types within the NSL-KDD Dataset.

Attack Type
Number in

Dataset
Attack Class

back 956 DOS

buffer_overflow 30 U2R

ftp_write 8 R2L

guess_passwd 53 R2L

imap 11 R2L

ipsweep 3599 PROBE

land 18 DOS

loadmodule 9 U2R

multihop 7 R2L

neptune 41214 DOS

nmap 1493 PROBE

normal 67343 NORMAL

perl 3 U2R

phf 4 R2L

pod 201 DOS

portsweep 2931 PROBE

rootkit 10 U2R

satan 3633 PROBE

smurf 2646 DOS

spy 2 R2L

teardrop 892 DOS

warezclient 890 R2L

warezmaster 20 R2L

P a g e | 9

0,tcp,ftp_data,SF,491,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,

0,2,2,0.00,0.00,0.00,0.00,1.00,0.00,0.00,150,25,0.17,

0.03,0.17,0.00,0.00,0.00,0.05,0.00,normal,20

(a)

0,tcp,private,S0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,

123,6,1.00,1.00,0.00,0.00,0.05,0.07,0.00,255,26,0.10,

0.05,0.00,0.00,1.00,1.00,0.00,0.00,neptune,19

(b)

Figure 2. Examples of packets contained in the NSL-KDD dataset displaying (a) a normal packet, and (b) an attack.

12 
“normal” was removed from the pattern and correlated to an

attack type category number (that can be any number 1 to 23).

0,0.6667,0.300,0.9091,3.5581e-07,0,0,0,0,0,0,0,0,

0,0,0,0,0,0,0,0,0.0039,0.0039,0,0,0,0,1,0,0,0.5882,

0.0980,0.1700,0.0300,0.1700,0,0,0,0.0500,0

(a)

10 

“neptune” was removed from the pattern and

correlated to an attack type category number (that can be

any number 1 to 23).

0,0.6667,0.7143,0.5455,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,

0,0,0.2407,0.0117,1,1,0,0,0.0500,0.0700,0,1,0.1020,

0.1000,0.0500,0,0,1,1,0,0

(b)

Figure 3. The two example packets in Figure 2 after processing for neural network displaying (a) a normal packet, and (b) an

attack.

P a g e | 10

MATLAB Software Results

Prior to testing the chosen Multilayer Perceptron (MLP) algorithms for efficiency

on low power systems, the MLP algorithm with two hidden layers was analyzed using

MATLAB. Figure 4 shows the error minimization over several iterations of training. The y-

axis is root mean squared error and the x-axis shows iterations of training. As shown in

the figure, as training progresses, error decreases.

Figure 4. Root mean squared error minimization curve for training of multilayer perceptron

algorithm with two hidden layers using MATLAB.

 Following training, testing was completed. Table III shows the accuracy for

various training data sizes and iterations of training. This chart shows that as the training

data set size increases and as the number of iterations increases, accuracy generally

increases. Generally, this increases in accuracy comes with an increase in time as well.

P a g e | 11

Table III. Accuracies during testing of multilayer perceptron algorithm with two hidden layers using

MATLAB.

 Iterations Training Data Set Size

 1000 5000 10000 50000 100000 145586

2 60.33 96.86 97.42 98.18 98.64 98.85

5 60.33 97.32 97.6 98.63 98.78 99.18

10 91.74 97.59 98.33 99.01 99.58 99.7

20 97.22 98.42 98.67 99 99.6 99.67

30 97.39 98.53 98.82 99.01 99.68 99.73

50 97.4 98.49 98.36 99.66 99.71 99.76

100 97.44 98.85 98.95 99.71 99.78 99.78

P a g e | 12

TensorFlow Software Results

Training

Table IV displays the two different perceptron topologies that were examined in

this work. In each case, the network was trained for 100 epochs and the root mean

squared error minimization curves are displayed in Figure 5.

Table IV. Different Multilayer Perceptron Topologies Used in this Work.

Network Type Network Layout

MLP with 2 Hidden Layers 40→14→9→2

MLP with 1 Hidden Layer 40→14→2

(a)

(b)

(c)

(d)

Figure. 5. Plots displaying training error over the 100 training iterations for a MLP with (a) two hidden layers using 100% of

the data for training, (b) a single hidden layer using 100% of the data for training, (c) two hidden layers and 50% of the data

for training, and (d) one hidden layer and 50% of the data for training.

P a g e | 13

The input layer had 40 entries in each case, because this is the number values that

each data example contained after pre-processing the NSL-KDD dataset. Each of the

MLP networks in Table IV were trained using two different data arrangements.

First, to directly study the networks’ ability to train, all 125,973 packets in the

dataset were used for training (see Figures 5 (a) and (b)). This same dataset is then used

for testing. In the second data arrangement 50% of the packets were used for training and

the other 50% were used for testing (see Figures 5(c) and (d)). This will test the networks

ability to predict, as they will be tested on data that was not used during training. In each

case in Figure 5, training correctly shows error minimization as the number of training

epochs increases.

Testing and Evaluation

To judge each network layout in terms of how it can detect cyberattacks once

training is complete, this section discusses testing accuracy. Tables V and VI show the

testing results, and in each case these results represent an average of five identical

training and testing executions. This provides a fairer measure as it accounts for the

variation in the system, as weights will optimize differently with each run. Furthermore,

in the case where 50% of the data was used for training, this 50% is randomly selected,

and the testing and training datasets will differ for each run.

For the case where 100% of the data was used for training, that same data set was

applied to each of the network configurations for testing and these results are displayed in

Table V. When comparing the two different MLP layouts, the total accuracy is nearly

identical. When looking at the classification breakdown in Table V, it appears that the

system with one hidden layer is better at classifying attacks, and the system with two

hidden layers has fewer false positives.

When comparing the data in Table V to that in Table VI, accuracy falls slightly

when prediction is required to determine packet type, and this is to be expected. Again,

the difference in accuracy between the MLP with one hidden layer and the MLP with two

hidden layers is very small.

P a g e | 14

Table V. Classification Accuracy when Using 100% of the Data for Training.

ANN Type Accuracy Hits Correct Rejections Misses False Positives

Single Hidden Layer 99.458% 58226.6 67064.4 403.4 278.6

Two Hidden Layers 99.441% 58119.6 67111.8 510.4 231.2

Table VI. Classification Accuracy when Using 50% of the Data for Training.

ANN Type Accuracy Hits Correct Rejections Misses False Positives

Single Hidden Layer 99.190% 28828.6 33647.4 261.4 248.6

Two Hidden Layers 99.195% 28838.8 33640.2 251.2 255.8

P a g e | 15

Low Power Hardware Results

After the accuracy was analyzed for these networks, they were ported to two

different minicomputer systems, the Raspberry PI 3 [13], and the Asus Tinkerboard [14].

Photos of each of these systems are displayed in Figure 6. The following subsections

describe power, energy, and time analysis of these systems when executing the presented

MLP networks.

(a)

(b)

Figure 6. Photographs of (a) the Raspberry PI 3 and (b) the Asus Tinkerboard.

P a g e | 16

Power Analysis

For each of the test cases described in Tables V and VI, the MLP networks were

executed in Python scripts on each of these systems while a ‘watts up? PRO’ power

analyzer logged power consumption at regular intervals during runtime. Figure 7 shows

power consumption for each minicomputer when using the MLP with two hidden layers

to train the entire dataset for a 20 epoch interval.

(a)

(b)

Training Starts Training Stops

Figure 7. Power consumption during training when executing the MLP with 2 hidden layers on (a)
the Raspberry PI and (b) the Tinkerboard (20 epoch training interval).

Likewise, Figure 7 shows the power consumption of each system when in

network packet evaluation mode. To generate a result with a higher resolution time

interval, the system was tested using the entire dataset 100 times.

P a g e | 17

Similar results were obtained for each of the MLP cases and were used to

generate the analysis presented in the following tables. As in Table VII, we can subtract

the idle power present in each system to determine the dynamic power requirement when

executing these MLP scripts. Static Power was determined measuring each system’s idle

power for 300 seconds. The values and trends generated when testing these networks (as

opposed to training them) are very similar so that data is not displayed. The differences

between these systems in terms of energy is the more provocative result. Thus, the energy

analysis of these systems is presented in Tables VIII through X.

Table VII. Power Consumption for Each of the MLP Systems During Training.

Power Measurement Raspberry PI Tinkerboard

Idle Power 1.7429 W 2.7337 W

Dynamic Power One Hidden Layer 0.9571 W 2.1292 W

Total Power One Hidden Layer 2.7004 W 4.8629 W

Dynamic Power Two Hidden Layers 1.1428 W 2.2366 W

Total Power Two Hidden Layers 2.8857 W 4.9703 W

Energy Analysis

Using the power consumption and runtime data collected during execution,

energy consumption can also be determined for each of the MLP cases. Table VIII shows

energy consumption for an entire training epoch for each case, where HL denotes the

number of hidden layers in the network. Note that even though the Tinkerboard requires

slightly higher power, its energy consumption is lower due to its higher execution speed.

Table IX and X consider the per packet energy for training and testing respectively. The

energy per packet is essentially the same for each MLP architecture whether 50% or

100% of the data is used for training because the networks are identical in each case. Due

to the complexity of the training algorithm, an energy increase of nearly two orders of

magnitude is present for a single packet when compared to testing.

P a g e | 18

Table VIII. Energy Per Training Epoch for Each of the Computing Systems Executing Each of the

Four MLP Cases.

 Computing System

Network Raspberry PI Tinkerboard

2HL 100% 316.759 J 278.983 J

2HL 50% 143.200 J 137.325 J

1HL 100% 191.099 J 191.319 J

1HL 50% 100.443 J 96.655 J

Table IX. Energy Per Packet During Training for Each of the Computing Systems Executing Each of

the Four MLP Cases.

 Computing System

Network Raspberry PI Tinkerboard

2HL 100% 2.514 mJ 2.215 mJ

2HL 50% 2.274 mJ 2.180 mJ

1HL 100% 1.517 mJ 1.519 mJ

1HL 50% 1.595 mJ 1.535 mJ

Table X. Energy Per Packet During Testing for Each of the Computing Systems Executing Each of

the Four MLP Cases.

 Computing System

Network Raspberry PI Tinkerboard

2HL 100% 37.494 µJ 29.738 µJ

2HL 50% 36.054 µJ 27.785 µJ

1HL 100% 28.402 µJ 22.990 µJ

1HL 50% 27.289 µJ 19.235 µJ

P a g e | 19

Time Analysis

Lastly, computation time per packet was examined for each of the MLP cases.

These values correlate closely to the energy numbers for each of the minicomputer

systems. However, timing data was also collected for a notebook computer running 64-bit

Windows 10 Pro with an Intel Core i7-6700HQ CPU @ 2.6 GHz with 16 GB RAM to

provide a baseline time value. In the future, we will also determine a fair way to measure

energy consumption for traditional full sized computing systems.

 When comparing Tables XI and XII, a consistent speedup of two orders of

magnitude is observed when testing as opposed to training. This correlates to the energy

values presented as well. To determine the speedup gained from a higher power system, a

summary is presented in Table XIII. Each of the minicomputers are significantly slower

than the Core i7 system. Thus, a user’s hardware selection may be based on expected data

throughput in addition to power requirements. For example, one of the low power

systems could be more appropriate for a communication network that is used less

frequently. The significant time and energy increases when moving from an MLP with a

single hidden layer to one with two hidden layers should also be considered. These two

systems did not provide a statistically significant difference in accuracy, but a 30%

increase in cost (considering time and energy during testing) is required to add a second

hidden layer to these networks.

Table XI. Execution Time Per Packet During Training for Each of the Computing Systems Executing

Each of the Four MLP Cases.

 Computing System

Network Raspberry PI Tinkerboard Core i7

2HL 100% 871.365 µs 445.571 µs 69.389 µs

2HL 50% 854.989 µs 450.356 µs 69.143 µs

1HL 100% 561.846 µs 312.310 µs 49.678 µs

1HL 50% 600.609 µs 314.719 µs 50.689 µs

P a g e | 20

Table XII. Execution Time Per Packet During Testing for Each of the Computing Systems Executing

Each of the Four MLP Cases.

 Computing System

Network Raspberry PI Tinkerboard Core i7

2HL 100% 14.564 µs 6.063 µs 0.817 µs

2HL 50% 14.422 µs 6.157 µs 0.690 µs

1HL 100% 11.067 µs 4.459 µs 0.798 µs

1HL 50% 11.004 µs 4.413 µs 0.600 µs

Table XIII. Time Factors Showing How Much Speedup is Obtained for Each System When in a

Testing Mode.

 Computing System

Network Raspberry PI Tinkerboard Core i7

2HL 17.83× 7.42× 1×

1HL 13.87× 5.59× 1×

P a g e | 21

Conclusion

This work examines operation of a perceptron based intrusion detection system

implemented on low power hardware. A power, energy, timing, and accuracy design

space analysis was performed to quantify the benefits of portable low power intrusion

detection. Greater than 99% accuracy is achieved using the proposed multilayer

perceptron algorithm. Using low power hardware, a scan rate of greater than 226,000

packets per second can be achieved while consuming less than 5 Watts of power.

We have several ideas for future work including a more complete power analysis

that includes optimized desktop hardware. We would like to further examine the

relationship between network complexity and accuracy for network intrusion detection in

order to develop a relationship between network power consumption and accuracy. We

would also like to implement alternative neural network algorithms that may be more

suited to recognizing zero day attacks that utilize in-situ training.

P a g e | 22

References

[1] I. Ahmad, A. B. Abdullah, and A. S. Algamdi, “Application of Artificial Neural

Network in Detection of Probing Attacks” IEEE Symposium on Industrial Electronics

and Applications (ISIEA 2009), October 4-6, 2009, Kuala Lumpur, Malaysia.

[2] D. Wu, L. Pigou, P.-J. Kindermans, N. D.-H. Le, L. Shao, J. Dambre, and J.-M.

Odobez, “ Deep Dynamic Neural Networks for Multimodal Gesture Segmentation

and Recognition,” IEEE Transactions on Pattern Analysis and Machine Intelligence,

vol. 38, no. 8, pp. 1583-1597, Aug. 2016.

[3] Z. Si, H. Yu, and Z. Ma, “Learning Deep Features for DNA Methylation Data

Analysis,” IEEE Access, vol. 4, pp. 2732-2737, June, 2016.

[4] P. K. Prajapati and M. Dixit, “Un-Supervised MRI Segmentation using Self

Organised Maps,” International Conference on Computational Intelligence and

Communication Networks, pp. 471-474, Dec. 2016.

[5] C. Yakopcic, M. Z. Alom, and T. M. Taha, “Memristor Crossbar Deep Network

Implementation Based on a Convolutional Neural Network,” IEEE IJCNN, 2016.

[6] S. Wang, W. Wang, C. Yakopcic, E. Shin, G. Subramanyam and T. M. Taha,

“Reconfigurable Neuromorphic Crossbars Based on Titanium Oxide Memristors,”

Electronics Letters (Accepted).

[7] C. Yakopcic, R. Hasan, T. M. Taha, M. R. McLean, and D. Palmer, “Memristor-

based neuron circuit and method for applying learning algorithm in SPICE,”

Electronics Letters, vol. 50, no. 7, pp. 492-494, 2014.

[8] C. Yakopcic, R. Hasan, T. M. Taha, and D. Palmer, “SPICE Analysis of Dense

Memristor Crossbars for Low Power Neuromorphic Processor Designs” IEEE

National Aerospace and Electronics Conference, June, 2015.

[9] C. Yakopcic, R. Hasan, and T. M. Taha, “Memristor Based Neuromorphic Circuit for

Ex-Situ Training of Multi-Layer Neural Network Algorithms,” IEEE IJCNN, 2015.

[10] T. M. Taha, R. Hasan, and C. Yakopcic, “Memristor Crossbar Based Multicore

Neuromorphic Processors,” IEEE International SOC Conference, 2014.

[11] https://www.unb.ca/cic/datasets/nsl.html, Canadian Institute for Cybersecurtiy,

University of New Brunswick.

[12] http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html, University of

California, Irvine, Irvine, CA, Oct. 1999.

[13] https://www.raspberrypi.org/products/raspberry-pi-3-model-b/

[14] https://www.asus.com/us/Single-Board-Computer/Tinker-Board/

[15] R. Vinayakumar, K. P. Soman, P. Poornachandran, “Applying Convolutional

Neural Network for Network Intrusion Detection,” IEEE International Conference on

Advances in Computing, Communications and Informatics (ICACCI), pp. 1222-1228,

Sept. 2017, Udupi, India.

[16] R. Vinayakumar, M. Alazab, K. P. Soman, P. Poornachandran, A. Al-Nemrat, S.

Venkatraman, “Deep Learning Approach for Intelligent Intrusion Detection System,”

IEEE Access, vol. 7, pp. 41525-41550, April 2019.

P a g e | 23

[17] S. Siddiqui, M. S. Khan, K. Ferens, “Multiscale Hebbian Neural Network for

Cyber Threat Detection,” International Joint Conference on Neural Networks

(IJCNN), pp. 1427-1434, May, 2017, Anchorage, AK, USA.

[18] F. Palenzuela, M. Shaffer, M. Ennis, J. Gorski, D. McGrew, D. Yowler, D. White,

L. Holbrook, C. Yakopcic, and T. M. Taha, “Multilayer Perceptron Algorithms for

Cyberattack Detection,” IEEE National Aerospace and Electronics Conference

(NAECON) and Ohio Innovation Summit (OIS), pp. 248-252, OH, July 2016.

[19] M. Z. Alom and T. M. Taha, “Network Intrusion Detection for Cyber Security on

Neuromorphic Computing System,” International Joint Conference on Neural

Networks (IJCNN), pp. 3830-3837, May, 2017, Anchorage, AK, USA.

[20] M. S. Alam, B. R. Fernando, Y. Jaoudi, C. Yakopcic, R. Hasan, T. M. Taha, and

G. Subramanyam “Memristor Based Autoencoder for Unsupervised Real-Time

Network Intrusion and Anomaly Detection,” International Conference on

Neuromorphic Systems (ICONS), 2019 (Accepted).

[21] J. Sklansky and L. Michelotti, “Locally Trained Piecewise Linear Classifiers,”

IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 2, no. 2 pp.

101-111, March, 1980.

[22] Parallel back-propagation neural network training technique using CUDA on

multiple GPUs,” IEEE MTT-S International Conference on Numerical

Electromagnetic and Multiphysics Modeling and Optimization (NEMO), pp. 1-3,

Aug. 2015.

	Machine Learning for Cyberattack Detection
	eCommons Citation

	cover_Chisholm_20SP
	title_Chisholm_20SP
	toc_Chisholm_20SP.docx
	ThesisPages_Chisholm_20SP

