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Abstract 

Machine learning has become rapidly utilized in cybersecurity, rising from almost non-existent to currently 

over half of cybersecurity techniques utilized commercially. Machine learning is advancing at a rapid rate, 

and the application of new learning techniques to cybersecurity have not been investigate yet. Current 

technology trends have led to an abundance of household items containing microprocessors all connected 

within a private network. Thus, network intrusion detection is essential for keeping these networks secure. 

However, network intrusion detection can be extremely taxing on battery operated devices. The presented 

work presents a cyberattack detection system based on a multilayer perceptron neural network algorithm. 

To show that this system can operate at low power, the algorithm was executed on two commercially 

available minicomputer systems including the Raspberry PI 3 and the Asus Tinkerboard. An analysis of 

accuracy, power, energy, and timing was performed to study the tradeoffs necessary when executing these 

algorithms at low power. Our results show that these low power implementations are feasible, and a scan 

rate of more than 226,000 packets per second can be achieved from a system that requires approximately 

5W to operate with greater than 99% accuracy. 
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Introduction 

Computer networks have steadily increased in size and complexity since their 

inception. As computer networks grow, it becomes more difficult to provide reliable 

network security [1], especially in low power portable systems. In current commercial 

technology, many electronic devices and systems possess both a microprocessor and a 

connection to a network. Unless each of these devices are equipped with up to date 

network security, users are exposing their networks to a substantial number of access 

points. Therefore, high speed energy efficient intrusion detection must be utilized to 

protect systems from the rapidly evolving cyberattack landscape. 

Intrusion detection systems that use neural networks and machine learning can be 

utilized as an efficient alternative to traditional security systems. Neural networks are 

extremely capable in the fields of image and pattern recognition [2,3]. These capabilities 

can be leveraged in intrusion detection applications as the networks are trained to 

recognize the difference between benign data and a cyberattack. Certain neural network 

algorithms have adaptive properties [4], thus they can self-optimize during normal 

operation. The ability to improve during while in use would be useful in an intrusion 

detection system because new cyberattacks are constantly being developed. Therefore, it 

would be possible for an adaptive system to catch new attacks without undergoing a 

costly retraining process. Many neural network algorithms are implemented using layers 

of vector-matrix multiplication [5]. This type of algorithm can be implemented in an 

extremely parallel design using specialized low power hardware [5-10]. Thus, neural 

network based intrusion detection could be performed at extreme low power. 

Before low power, energy efficient machine learning based intrusion detection 

systems are produced, different learning algorithms need to be examined to determine 

which are most appropriate for recognizing attacks within network data. Thus, this work 

presents a comparison of two perceptron topologies running on two different low power 

hardware systems. For training and testing this work uses the NSL-KDD dataset [11], an 

update to the Knowledge Discovery and Datamining dataset [12]. In this work we train 

two different multilayer perceptron algorithms, one with a single hidden layer, and one 

with two hidden layers. In addition to studying perceptron algorithm accuracy [1], in this 



P a g e  | 2 

work we study low power implementations of these algorithms on a Raspberry Pi 3 [13] 

and an Asus Tinkerboard [14]. These minicomputers are low power (<6W), handheld 

(<60g) computing systems with a high degree of flexibility. Our results present a design 

space analysis that discusses the tradeoff of using these systems in terms of accuracy, 

power, energy, and time. By using these systems, we show that network intrusion 

detection can be implemented on lower power systems with greater than 99% accuracy 

with a scanning rate of more than 226,000 packets / second. 

Related work in this area shows similar studies where neural network algorithms 

are used to carry out intrusion detection using similar training and testing datasets. Both 

convolutional [15] and deep learning [16] architectures have been applied to this 

problem, and these approaches achieve high accuracy, which is about 99% in some cases. 

Hebbian learning has also been applied to the cyber-attack detection problem, and 

significant detection improvement is observed when using a multiscale learning rule [17]. 

In our previous work, we compare perceptron algorithms that differ in size and 

complexity in terms of attack detection accuracy [18]. Furthermore, our research group 

has studied the implementation of network intrusion detection on more exotic hardware 

architectures including the IBM True North spiking processor [19], as well as simulated 

memristor hardware [20]. However, to the best of our knowledge, no published work has 

carried out a power, energy, and timing comparison when moving these algorithms to 

low size, weight, and power commercial off the shelf systems. The presented work 

demonstrates the possibility efficiently implementing intrusion detection using low cost 

components. 

This work is organized as follows: Section II details the necessary background to 

understand the objectives of this work, Section III describes neural network algorithms, 

Section IV discusses the perceptron algorithms used in this work, and Section V 

describes the NSL-KDD dataset used in this work. Section VI shows the results obtained 

when training and testing one of the network topologies using MATLAB. Section VII 

discusses the results found when training and testing the network topologies using 

TensorFlow and low power hardware. Section VIII discusses the hardware evaluation 

results that compare these networks in terms of power, energy, and time. Finally, Section 

IX provides a brief conclusion. 
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Background 

Prior to implementing neural network layouts on a working knowledge of 

machine learning, neural networks, and intrusion detection was developed. Traditional 

network intrusion detection systems are general rule based (such as Snort). Because 

traditional systems follow rules based on attacks that were previously determined to be 

malicious, they are generally unable to recognize new attacks. New malicious attacks are 

continuously created. Given the goal of our work is to develop a low power efficient 

intrusion detection system, the traditional system would not be the most effective given 

that it generally is not good at recognized new attacks. Therefore, our approach to 

network intrusion detection is a neural network pattern based system that can potentially 

recognize patterns among malicious attacks in order to identify them.  

Neural networks have various practical applications including facial recognition, 

voice recognition, and medical image recognition. Ultimately, the task was to develop 

low power machine learning algorithms that can serve as efficient intrusion detection 

systems given the power constants of low power systems. In order to develop the low 

power intrusion detection system, we studied neural networks to determine which were 

the most promising for detecting cyberattacks, we tested the neural networks for 

efficiency using a portable computer, we then tested the neural networks for efficiency 

using low power hardware.   
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Neural Network Algorithms

Before determining which neural network algorithm to implement and test on low 

power systems, a survey of previous studies using neural networks was completed. Table 

I displays the previous work using neural networks for cyberattack detection and the 

corresponding accuracies as reported in the studies. As shown in Table I, Multilayer 

Perceptron Algorithms consistently have accuracies higher than 99% [15, 17, 18, 19]. 

Table I. Accuracies for Various Neural Networks Studied in Previous Work. 

 Network Algorithm Accuracy (%) 

Multiscale Hebbian 93.56 

Deep Convolutional Network 98.83 

Multilayer Perceptron – 1 hidden layer 99.85 

Multilayer Perceptron – 2 hidden layers 99.68 

Multilayer Perceptron – 3 hidden layers 99.78 

Convolutional Neural Network – 1 layer 99.9 

Convolutional Neural Network – 2 layers 99.8 

Convolutional Neural Network – 3 layers 80.1 

Deep Feed Forward – 1 layer 92.9 

Deep Feed Forward – 2 layers 92.9 

Deep Feed Forward – 3 layers 93.0 

Deep Feed Forward – 4 layers 93.0 

Deep Feed Forward – 5 layers 92.9 

Key differences between the work depicted in Table 1 and the work that we have 

done is that we will be testing the algorithms using low power systems.  
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Perceptron Learning Algorithms 

A neural network is a computing system inspired by human brain function. Neural 

networks “learn” to complete tasks by recognizing patterns rather than following a set of 

rules.  They generally operate in two stages: training and testing. During the training 

stage, the system is shown data which it then classifies. After the network makes a 

classification determination, an error calculation is determined. Depending on how 

accurate the system’s classifications were, weights will be updated accordingly. This 

process will continue in stages until the system processes the data for a predetermined 

number of stages. Once the process is complete the weights remain unchanged and the 

system moves on to the testing stage. During the testing stage, the system is again shown 

data to classify. After each data packet is classified, a final accuracy is determined. This 

type of system could allow for real-time updates and feedback and could also prevent 

new attacks.  
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Figure 1. Two different multilayer perceptron topologies presented in this work including (a) a topology with one hidden layer 

and (b) a topology with two hidden layers. 

After surveying various types of neural network algorithms and other network 

intrusion detection studies [19], the multilayer perceptron was determined to be the first 

neural network type to examine on both a computer system and low power hardware. 

Two layouts of the multilayer perceptron were tests, one with a single hidden layer and 

one with two hidden layers (see Fig. 1). Perceptron algorithms possess two different 

modes of operation, as discussed above, testing and training. During the training phase, 

an iterative algorithm updates the weights w with the goal of minimizing error over time. 

Once training is finished, the resulting network should provide strong classification 

accuracy when presented with data like the training data. In this work, we utilize the 

standard back-propagation training algorithm [22]. Corresponding to Fig. 1, the 

intermediate output… 

The multilayer perceptron in Figure 1 (a) contains one layer of neurons between 

weight matrices wa and wb. The input pattern must traverse each of these layers before a 

classification result is produced. Increasing the number of neurons layers in a perceptron 

typically produces a system with a higher classification accuracy. With more layers, more 

complex distinctions can be made as flexibility in feature classification is increased. Fig. 

1 (b) shows multilayer perceptron with two hidden neuron layers. In the following 

section, we analyze the differences between these two network layouts in terms of 

accuracy, energy, and timing.  
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Cyberattack Dataset 

To train and evaluate the intrusion detection networks, we make use of an 

improvement to the Knowledge Discovery and Datamining (KDD) data set which is 

known to make the data more appropriate for examining the effectiveness of artificial 

neural networks. This dataset is known as NSL-KDD [11]. NSL-KDD removes all 

repeated identical data points from the KDD dataset [12] and provides more balance to 

the different classes within the data.  

More specifically, for the experiments in this work, the entirety of the data found 

in the “KDDtrain+.txt” file was used and can be found at [11]. This dataset contains 

several different types of cyberattacks and are detailed in Table II. Twenty-two different 

attacks are present in this data, and a large amount of benign data is also present in this 

data, and a large amount of benign data is also present. The systems presented in this 

work must learn to distinguish between the normal data and the attack data with the 

highest accuracy possible.  

The differences between a normal packed (see Figure 2 (a)) and an attack packet 

(see Figure 2 (b)) in the NSL-KDD dataset are not easily recognizable, but patterns in the 

features are likely to emerge when scanning a large number of samples. To take 

advantage of each of the features in this data during training and classification, some 

minor preprocessing was performed. Each packet contains 43 values, and the 42nd value 

(displayed as either normal or Neptune in Figure 2) was sued as a label during training. 

The 43rd entry is a number related to classification difficulty which was removed and not 

used in this experiment. Additionally, the twentieth entry has a value of 0 for all packets 

in the dataset, so this value was removed from all packets since it would not affect 

training accuracy. The features (displayed as tcp, http, and SF in Figure 2 (a)) were non-

numerical, so they were converted to integer values. For example, the fourth feature from 

the left 9SF in Figure 2 (a)) is a label capable of storing one of eleven possible strings, 

thus the string contained in this feature is now represented by a number 1 through 11 

(depending on the string present). The data was also normalized (across samples) so that 

the largest value in any feature column was 1. Figure 3 shows the same example packets 

in Figure 2 after processing has been applied.  
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Table II. Breakdown of Different Attack Types within the NSL-KDD Dataset. 

Attack Type 
Number in 

Dataset 
Attack Class 

back 956 DOS 

buffer_overflow 30 U2R 

ftp_write 8 R2L 

guess_passwd 53 R2L 

imap 11 R2L 

ipsweep 3599 PROBE 

land 18 DOS 

loadmodule 9 U2R 

multihop 7 R2L 

neptune 41214 DOS 

nmap 1493 PROBE 

normal 67343 NORMAL 

perl 3 U2R 

phf 4 R2L 

pod 201 DOS 

portsweep 2931 PROBE 

rootkit 10 U2R 

satan 3633 PROBE 

smurf 2646 DOS 

spy 2 R2L 

teardrop 892 DOS 

warezclient 890 R2L 

warezmaster  20 R2L 
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0,tcp,ftp_data,SF,491,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 

0,2,2,0.00,0.00,0.00,0.00,1.00,0.00,0.00,150,25,0.17, 

0.03,0.17,0.00,0.00,0.00,0.05,0.00,normal,20 

(a) 

0,tcp,private,S0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,

123,6,1.00,1.00,0.00,0.00,0.05,0.07,0.00,255,26,0.10,

0.05,0.00,0.00,1.00,1.00,0.00,0.00,neptune,19 

(b) 

Figure 2. Examples of packets contained in the NSL-KDD dataset displaying (a) a normal packet, and (b) an attack. 

 

12   
“normal” was removed from the pattern and correlated to an 

attack type category number (that can be any number 1 to 23). 

0,0.6667,0.300,0.9091,3.5581e-07,0,0,0,0,0,0,0,0, 

0,0,0,0,0,0,0,0,0.0039,0.0039,0,0,0,0,1,0,0,0.5882, 

0.0980,0.1700,0.0300,0.1700,0,0,0,0.0500,0 

(a) 

10   

“neptune” was removed from the pattern and 

correlated to an attack type category number (that can be 

any number 1 to 23). 

0,0.6667,0.7143,0.5455,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 

0,0,0.2407,0.0117,1,1,0,0,0.0500,0.0700,0,1,0.1020, 

0.1000,0.0500,0,0,1,1,0,0 

(b) 

Figure 3. The two example packets in Figure 2 after processing for neural network displaying (a) a normal packet, and (b) an 

attack. 
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MATLAB Software Results 

Prior to testing the chosen Multilayer Perceptron (MLP) algorithms for efficiency 

on low power systems, the MLP algorithm with two hidden layers was analyzed using 

MATLAB. Figure 4 shows the error minimization over several iterations of training. The y-

axis is root mean squared error and the x-axis shows iterations of training. As shown in 

the figure, as training progresses, error decreases.  

 

Figure 4. Root mean squared error minimization curve for training of multilayer perceptron 

algorithm with two hidden layers using MATLAB. 

 

 Following training, testing was completed. Table III shows the accuracy for 

various training data sizes and iterations of training. This chart shows that as the training 

data set size increases and as the number of iterations increases, accuracy generally 

increases. Generally, this increases in accuracy comes with an increase in time as well.  
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Table III. Accuracies during testing of multilayer perceptron algorithm with two hidden layers using 

MATLAB. 

 Iterations Training Data Set Size 

  1000 5000 10000 50000 100000 145586 

2 60.33 96.86 97.42 98.18 98.64 98.85 

5 60.33 97.32 97.6 98.63 98.78 99.18 

10 91.74 97.59 98.33 99.01 99.58 99.7 

20 97.22 98.42 98.67 99 99.6 99.67 

30 97.39 98.53 98.82 99.01 99.68 99.73 

50 97.4 98.49 98.36 99.66 99.71 99.76 

100 97.44 98.85 98.95 99.71 99.78 99.78 
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TensorFlow Software Results   

Training 

Table IV displays the two different perceptron topologies that were examined in 

this work. In each case, the network was trained for 100 epochs and the root mean 

squared error minimization curves are displayed in Figure 5.  

Table IV. Different Multilayer Perceptron Topologies Used in this Work.  

Network Type Network Layout 

MLP with 2 Hidden Layers 40→14→9→2 

MLP with 1 Hidden Layer 40→14→2 

 

 

(a)

(b)

(c)

(d)

 

Figure. 5. Plots displaying training error over the 100 training iterations for a MLP with (a) two hidden layers using 100% of 

the data for training, (b) a single hidden layer using 100% of the data for training, (c) two hidden layers and 50% of the data 

for training, and (d) one hidden layer and 50% of the data for training. 
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The input layer had 40 entries in each case, because this is the number values that 

each data example contained after pre-processing the NSL-KDD dataset. Each of the 

MLP networks in Table IV were trained using two different data arrangements. 

First, to directly study the networks’ ability to train, all 125,973 packets in the 

dataset were used for training (see Figures 5 (a) and (b)). This same dataset is then used 

for testing. In the second data arrangement 50% of the packets were used for training and 

the other 50% were used for testing (see Figures 5(c) and (d)). This will test the networks 

ability to predict, as they will be tested on data that was not used during training. In each 

case in Figure 5, training correctly shows error minimization as the number of training 

epochs increases.  

 

Testing and Evaluation 

To judge each network layout in terms of how it can detect cyberattacks once 

training is complete, this section discusses testing accuracy. Tables V and VI show the 

testing results, and in each case these results represent an average of five identical 

training and testing executions. This provides a fairer measure as it accounts for the 

variation in the system, as weights will optimize differently with each run. Furthermore, 

in the case where 50% of the data was used for training, this 50% is randomly selected, 

and the testing and training datasets will differ for each run.  

For the case where 100% of the data was used for training, that same data set was 

applied to each of the network configurations for testing and these results are displayed in 

Table V. When comparing the two different MLP layouts, the total accuracy is nearly 

identical. When looking at the classification breakdown in Table V, it appears that the 

system with one hidden layer is better at classifying attacks, and the system with two 

hidden layers has fewer false positives.  

When comparing the data in Table V to that in Table VI, accuracy falls slightly 

when prediction is required to determine packet type, and this is to be expected. Again, 

the difference in accuracy between the MLP with one hidden layer and the MLP with two 

hidden layers is very small.  
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Table V. Classification Accuracy when Using 100% of the Data for Training. 

ANN Type Accuracy Hits Correct Rejections Misses False Positives 

Single Hidden Layer 99.458% 58226.6 67064.4 403.4 278.6 

Two Hidden Layers 99.441% 58119.6 67111.8 510.4 231.2 

 

 

Table VI. Classification Accuracy when Using 50% of the Data for Training. 

ANN Type Accuracy Hits Correct Rejections Misses False Positives 

Single Hidden Layer 99.190% 28828.6 33647.4 261.4 248.6 

Two Hidden Layers 99.195% 28838.8 33640.2 251.2 255.8 
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Low Power Hardware Results 

After the accuracy was analyzed for these networks, they were ported to two 

different minicomputer systems, the Raspberry PI 3 [13], and the Asus Tinkerboard [14]. 

Photos of each of these systems are displayed in Figure 6. The following subsections 

describe power, energy, and time analysis of these systems when executing the presented 

MLP networks.  

 

(a) 

 

(b) 

Figure 6. Photographs of (a) the Raspberry PI 3 and (b) the Asus Tinkerboard. 
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Power Analysis 

For each of the test cases described in Tables V and VI, the MLP networks were 

executed in Python scripts on each of these systems while a ‘watts up? PRO’ power 

analyzer logged power consumption at regular intervals during runtime. Figure 7 shows 

power consumption for each minicomputer when using the MLP with two hidden layers 

to train the entire dataset for a 20 epoch interval.  

 

(a)

(b)

Training Starts Training Stops

 

Figure 7. Power consumption during training when executing the MLP with 2 hidden layers on (a) 
the Raspberry PI and (b) the Tinkerboard (20 epoch training interval). 

 

Likewise, Figure 7 shows the power consumption of each system when in 

network packet evaluation mode. To generate a result with a higher resolution time 

interval, the system was tested using the entire dataset 100 times.  
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Similar results were obtained for each of the MLP cases and were used to 

generate the analysis presented in the following tables. As in Table VII, we can subtract 

the idle power present in each system to determine the dynamic power requirement when 

executing these MLP scripts. Static Power was determined measuring each system’s idle 

power for 300 seconds. The values and trends generated when testing these networks (as 

opposed to training them) are very similar so that data is not displayed. The differences 

between these systems in terms of energy is the more provocative result. Thus, the energy 

analysis of these systems is presented in Tables VIII through X.  

 

Table VII. Power Consumption for Each of the MLP Systems During Training. 

Power Measurement Raspberry PI Tinkerboard 

Idle Power 1.7429 W 2.7337 W 

Dynamic Power One Hidden Layer 0.9571 W 2.1292 W 

Total Power One Hidden Layer 2.7004 W 4.8629 W 

Dynamic Power Two Hidden Layers 1.1428 W 2.2366 W 

Total Power Two Hidden Layers 2.8857 W 4.9703 W 

 

Energy Analysis 

Using the power consumption and runtime data collected during execution, 

energy consumption can also be determined for each of the MLP cases. Table VIII shows 

energy consumption for an entire training epoch for each case, where HL denotes the 

number of hidden layers in the network. Note that even though the Tinkerboard requires 

slightly higher power, its energy consumption is lower due to its higher execution speed. 

Table IX and X consider the per packet energy for training and testing respectively. The 

energy per packet is essentially the same for each MLP architecture whether 50% or 

100% of the data is used for training because the networks are identical in each case. Due 

to the complexity of the training algorithm, an energy increase of nearly two orders of 

magnitude is present for a single packet when compared to testing.  

 

 



P a g e  | 18 

 
 

Table VIII. Energy Per Training Epoch for Each of the Computing Systems Executing Each of the 

Four MLP Cases.  

 Computing System 

Network Raspberry PI Tinkerboard 

2HL 100% 316.759 J 278.983 J 

2HL 50% 143.200 J 137.325 J 

1HL 100% 191.099 J 191.319 J 

1HL 50% 100.443 J 96.655 J 

 

 

Table IX. Energy Per Packet During Training for Each of the Computing Systems Executing Each of 

the Four MLP Cases. 

 Computing System 

Network Raspberry PI Tinkerboard 

2HL 100% 2.514 mJ 2.215 mJ 

2HL 50% 2.274 mJ 2.180 mJ 

1HL 100% 1.517 mJ 1.519 mJ 

1HL 50% 1.595 mJ 1.535 mJ 

 

 

Table X. Energy Per Packet During Testing for Each of the Computing Systems Executing Each of 

the Four MLP Cases.  

 Computing System 

Network Raspberry PI Tinkerboard 

2HL 100% 37.494 µJ 29.738 µJ 

2HL 50% 36.054 µJ 27.785 µJ 

1HL 100% 28.402 µJ 22.990 µJ 

1HL 50% 27.289 µJ 19.235 µJ 
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Time Analysis 

Lastly, computation time per packet was examined for each of the MLP cases. 

These values correlate closely to the energy numbers for each of the minicomputer 

systems. However, timing data was also collected for a notebook computer running 64-bit 

Windows 10 Pro with an Intel Core i7-6700HQ CPU @ 2.6 GHz with 16 GB RAM to 

provide a baseline time value. In the future, we will also determine a fair way to measure 

energy consumption for traditional full sized computing systems.  

 When comparing Tables XI and XII, a consistent speedup of two orders of 

magnitude is observed when testing as opposed to training. This correlates to the energy 

values presented as well. To determine the speedup gained from a higher power system, a 

summary is presented in Table XIII. Each of the minicomputers are significantly slower 

than the Core i7 system. Thus, a user’s hardware selection may be based on expected data 

throughput in addition to power requirements. For example, one of the low power 

systems could be more appropriate for a communication network that is used less 

frequently. The significant time and energy increases when moving from an MLP with a 

single hidden layer to one with two hidden layers should also be considered. These two 

systems did not provide a statistically significant difference in accuracy, but a 30% 

increase in cost (considering time and energy during testing) is required to add a second 

hidden layer to these networks.  

 

Table XI. Execution Time Per Packet During Training for Each of the Computing Systems Executing 

Each of the Four MLP Cases. 

 Computing System 

Network Raspberry PI Tinkerboard Core i7 

2HL 100% 871.365 µs 445.571 µs 69.389 µs 

2HL 50% 854.989 µs 450.356 µs 69.143 µs 

1HL 100% 561.846 µs 312.310 µs 49.678 µs 

1HL 50% 600.609 µs 314.719 µs 50.689 µs 
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Table XII. Execution Time Per Packet During Testing for Each of the Computing Systems Executing 

Each of the Four MLP Cases. 

 Computing System 

Network Raspberry PI Tinkerboard Core i7 

2HL 100% 14.564 µs 6.063 µs 0.817 µs 

2HL 50% 14.422 µs 6.157 µs 0.690 µs 

1HL 100% 11.067 µs 4.459 µs 0.798 µs 

1HL 50% 11.004 µs 4.413 µs 0.600 µs 

 

Table XIII. Time Factors Showing How Much Speedup is Obtained for Each System When in a 

Testing Mode. 

 Computing System 

Network Raspberry PI Tinkerboard Core i7 

2HL 17.83× 7.42× 1× 

1HL 13.87× 5.59× 1× 
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Conclusion 

This work examines operation of a perceptron based intrusion detection system 

implemented on low power hardware. A power, energy, timing, and accuracy design 

space analysis was performed to quantify the benefits of portable low power intrusion 

detection. Greater than 99% accuracy is achieved using the proposed multilayer 

perceptron algorithm. Using low power hardware, a scan rate of greater than 226,000 

packets per second can be achieved while consuming less than 5 Watts of power.  

We have several ideas for future work including a more complete power analysis 

that includes optimized desktop hardware. We would like to further examine the 

relationship between network complexity and accuracy for network intrusion detection in 

order to develop a relationship between network power consumption and accuracy. We 

would also like to implement alternative neural network algorithms that may be more 

suited to recognizing zero day attacks that utilize in-situ training.  

 

 

 

 

 

 

 

 

 

 

 

 

 



P a g e  | 22 

 
 

References 

[1] I. Ahmad, A. B. Abdullah, and A. S. Algamdi, “Application of Artificial Neural 

Network in Detection of Probing Attacks” IEEE Symposium on Industrial Electronics 

and Applications (ISIEA 2009), October 4-6, 2009, Kuala Lumpur, Malaysia. 

[2] D. Wu, L. Pigou, P.-J. Kindermans, N. D.-H. Le, L. Shao, J. Dambre, and J.-M. 

Odobez, “ Deep Dynamic Neural Networks for Multimodal Gesture Segmentation 

and Recognition,” IEEE Transactions on Pattern Analysis and Machine Intelligence, 

vol. 38, no. 8, pp. 1583-1597, Aug. 2016. 

[3] Z. Si, H. Yu, and Z. Ma, “Learning Deep Features for DNA Methylation Data 

Analysis,” IEEE Access, vol. 4, pp. 2732-2737, June, 2016. 

[4] P. K. Prajapati and M. Dixit, “Un-Supervised MRI Segmentation using Self 

Organised Maps,”  International Conference on Computational Intelligence and 

Communication Networks, pp. 471-474, Dec. 2016. 

[5] C. Yakopcic, M. Z. Alom, and T. M. Taha, “Memristor Crossbar Deep Network 

Implementation Based on a Convolutional Neural Network,” IEEE IJCNN, 2016. 

[6] S. Wang, W. Wang, C. Yakopcic, E. Shin, G. Subramanyam and T. M. Taha, 

“Reconfigurable Neuromorphic Crossbars Based on Titanium Oxide Memristors,” 

Electronics Letters (Accepted). 

[7] C. Yakopcic, R. Hasan, T. M. Taha, M. R. McLean, and D. Palmer, “Memristor-

based neuron circuit and method for applying learning algorithm in SPICE,” 

Electronics Letters, vol. 50, no. 7, pp. 492-494, 2014. 

[8] C. Yakopcic, R. Hasan, T. M. Taha, and D. Palmer, “SPICE Analysis of Dense 

Memristor Crossbars for Low Power Neuromorphic Processor Designs” IEEE 

National Aerospace and Electronics Conference, June, 2015. 

[9] C. Yakopcic, R. Hasan, and T. M. Taha, “Memristor Based Neuromorphic Circuit for 

Ex-Situ Training of Multi-Layer Neural Network Algorithms,” IEEE IJCNN, 2015. 

[10] T. M. Taha, R. Hasan, and C. Yakopcic, “Memristor Crossbar Based Multicore 

Neuromorphic Processors,” IEEE International SOC Conference, 2014. 

[11] https://www.unb.ca/cic/datasets/nsl.html, Canadian Institute for Cybersecurtiy, 

University of New Brunswick. 

[12] http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html, University of 

California, Irvine, Irvine, CA, Oct. 1999. 

[13] https://www.raspberrypi.org/products/raspberry-pi-3-model-b/ 

[14] https://www.asus.com/us/Single-Board-Computer/Tinker-Board/ 

[15] R. Vinayakumar, K. P. Soman, P. Poornachandran, “Applying Convolutional 

Neural Network for Network Intrusion Detection,”  IEEE International Conference on 

Advances in Computing, Communications and Informatics (ICACCI), pp. 1222-1228, 

Sept. 2017, Udupi, India. 

[16] R. Vinayakumar, M. Alazab, K. P. Soman, P. Poornachandran, A. Al-Nemrat, S. 

Venkatraman, “Deep Learning Approach for Intelligent Intrusion Detection System,” 

IEEE Access, vol. 7, pp. 41525-41550, April 2019. 



P a g e  | 23 

 
 

[17] S. Siddiqui, M. S. Khan, K. Ferens, “Multiscale Hebbian Neural Network for 

Cyber Threat Detection,” International Joint Conference on Neural Networks 

(IJCNN), pp. 1427-1434, May, 2017, Anchorage, AK, USA. 

[18] F. Palenzuela, M. Shaffer, M. Ennis, J. Gorski, D. McGrew, D. Yowler, D. White, 

L. Holbrook, C. Yakopcic, and T. M. Taha, “Multilayer Perceptron Algorithms for 

Cyberattack Detection,” IEEE National Aerospace and Electronics Conference 

(NAECON) and Ohio Innovation Summit (OIS), pp. 248-252, OH, July 2016. 

[19] M. Z. Alom and T. M. Taha, “Network Intrusion Detection for Cyber Security on 

Neuromorphic Computing System,” International Joint Conference on Neural 

Networks (IJCNN), pp. 3830-3837, May, 2017, Anchorage, AK, USA. 

[20] M. S. Alam, B. R. Fernando, Y. Jaoudi, C. Yakopcic, R. Hasan, T. M. Taha, and 

G. Subramanyam “Memristor Based Autoencoder for Unsupervised Real-Time 

Network Intrusion and Anomaly Detection,” International Conference on 

Neuromorphic Systems (ICONS), 2019 (Accepted). 

[21] J. Sklansky and L. Michelotti, “Locally Trained Piecewise Linear Classifiers,” 

IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 2, no. 2 pp. 

101-111, March, 1980. 

[22] Parallel back-propagation neural network training technique using CUDA on 

multiple GPUs,” IEEE MTT-S International Conference on Numerical 

Electromagnetic and Multiphysics Modeling and Optimization (NEMO), pp. 1-3, 

Aug. 2015. 


	Machine Learning for Cyberattack Detection
	eCommons Citation

	cover_Chisholm_20SP
	title_Chisholm_20SP
	toc_Chisholm_20SP.docx
	ThesisPages_Chisholm_20SP

