24 research outputs found

    Advertisement billboard detection and geotagging system with inductive transfer learning in deep convolutional neural network

    Get PDF
    In this paper, we propose an approach to detect and geotag advertisement billboard in real-time condition. Our approach is using AlexNet’s Deep Convolutional Neural Network (DCNN) as a pre-trained neural network with 1000 categories for image classification. To improve the performance of the pre-trained neural network, we retrain the network by adding more advertisement billboard images using inductive transfer learning approach. Then, we fine-tuned the output layer into advertisement billboard related categories. Furthermore, the detected advertisement billboard images will be geotagged by inserting Exif metadata into the image file. Experimental results show that the approach achieves 92.7% training accuracy for advertisement billboard detection, while for overall testing results it will give 71,86% testing accuracy

    A Passenger Flow Risk Forecasting Algorithm for High-Speed Railway Transport Hub Based on Surveillance Sensor Networks

    Get PDF
    Passenger flow risk forecasting is a vital task for safety management in high-speed railway transport hub. In this paper, we considered the passenger flow risk forecasting problem in high-speed railway transport hub. Based on the surveillance sensor networks, a passenger flow risk forecasting algorithm was developed based on spatial correlation. Computational results showed that the proposed forecasting approach was effective and significant for the high-speed railway transport hub

    An Investigation of a Convolution Neural Network Architecture for Detecting Distracted Pedestrians

    Get PDF
    The risk of pedestrian accidents has increased due to the distracted walking increase. The research in the autonomous vehicles industry aims to minimize this risk by enhancing the route planning to produce safer routes. Detecting distracted pedestrians plays a significant role in identifying safer routes and hence decreases pedestrian accident risk. Thus, this research aims to investigate how to use the convolutional neural networks for building an algorithm that significantly improves the accuracy of detecting distracted pedestrians based on gathered cues. Particularly, this research involves the analysis of pedestrian’ images to identify distracted pedestrians who are not paying attention when crossing the road. This work tested three different architectures of convolutional neural networks. These architectures are Basic, Deep, and AlexNet. The performance of the three architectures was evaluated based on two datasets. The first is a new training dataset called SCIT and created by this work based on recorded videos of volunteers from Sheridan College Institute of Technology. The second is a public dataset called PETA, which was made up of images with various resolutions. The ConvNet model with the Deep architecture outperformed the Basic and AlexNet architectures in detecting distracted pedestrian

    Slum image detection and localization using transfer learning: a case study in Northern Morocco

    Get PDF
    Developing countries are faced with social and economic challenges, including the emergence and proliferation of slums. Slum detection and localization methods typically rely on regular topographic surveys or on visual identification of high-resolution spatial satellite images, as well as socio-environmental surveys from land surveys and general population censuses. Yet, they consume so much time and effort. To overcome these problems, this paper exploits well-known seven pretrained models using transfer learning approaches such as MobileNets, InceptionV3, NASNetMobile, Xception, VGG16, EfficientNet, and ResNet50, consecutively, on a smaller dataset of medium-resolution satellite imagery. The accuracies obtained from these experiments, respectively, demonstrate that the top three pretrained models achieve 98.78%, 97.9%, and 97.56%. Besides, MobileNets have the smallest memory sizes of 9.1 Mo and the shortest latency of 17.01 s, which can be implemented as needed. The results show the good performance of the top three pretrained models to be used for detecting and localizing slum housing in northern Morocco

    THE STUDY OF ACTIVATION FUNCTIONS IN DEEP LEARNING FOR PEDESTRIAN DETECTION AND TRACKING

    Get PDF
    Pedestrian detection and tracking remains a highlight research topic due to its paramount importance in the fields of video surveillance, human-machine interaction, and tracking analysis. At present time, pedestrian detection is still an open problem because of many challenges of image representation in the outdoor and indoor scenes. In recent years, deep learning, in particular Convolutional Neural Networks (CNNs) became the state-of-the-art in terms of accuracy in many computer vision tasks. The unsupervised learning of CNNs is still an open issue. In this paper, we study a matter of feature extraction using a special activation function. Most of CNNs share the same architecture, when each convolutional layer is followed by a nonlinear activation layer. The activation function Rectified Linear Unit (ReLU) is the most widely used as a fast alternative to sigmoid function. We propose a bounded randomized leaky ReLU working in such manner that the angle of linear part with the highest input values is tuned during learning stage, and this linear part can be directed not only upward but also downward using a variable bias for its starting point. The bounded randomized leaky ReLU was tested on Caltech Pedestrian Dataset with promising results

    Detection of Distracted Pedestrians using Convolutional Neural Networks

    Get PDF
    The risk of pedestrian accidents has increased due to the distracted walking increase. The research in the autonomous vehicles industry aims to minimize this risk by enhancing the route planning to produce safer routes. Detecting distracted pedestrians plays a significant role in identifying safer routes and hence decreases pedestrian accident risk. Thus, this research aims to investigate how to use the convolutional neural networks for building an algorithm that significantly improves the accuracy of detecting distracted pedestrians based on gathered cues. Particularly, this research involves the analysis of pedestrian’ images to identify distracted pedestrians who are not paying attention when crossing the road. This work tested three different architectures of convolutional neural networks. These architectures are Basic, Deep, and AlexNet. The performance of the three architectures was evaluated based on two datasets. The first is a new training dataset called SCIT and created by this work based on recorded videos of volunteers from Sheridan College Institute of Technology. The second is a public dataset called PETA, which was made up of images with various resolutions. The ConvNet model with the Deep architecture outperformed the Basic and AlexNet architectures in detecting distracted pedestrians

    Existing and Potential Statistical and Computational Approaches for the Analysis of 3D CT Images of Plant Roots

    Get PDF
    Scanning technologies based on X-ray Computed Tomography (CT) have been widely used in many scientific fields including medicine, nanosciences and materials research. Considerable progress in recent years has been made in agronomic and plant science research thanks to X-ray CT technology. X-ray CT image-based phenotyping methods enable high-throughput and non-destructive measuring and inference of root systems, which makes downstream studies of complex mechanisms of plants during growth feasible. An impressive amount of plant CT scanning data has been collected, but how to analyze these data efficiently and accurately remains a challenge. We review statistical and computational approaches that have been or may be effective for the analysis of 3D CT images of plant roots. We describe and comment on different approaches to aspects of the analysis of plant roots based on images, namely, (1) root segmentation, i.e., the isolation of root from non-root matter; (2) root-system reconstruction; and (3) extraction of higher-level phenotypes. As many of these approaches are novel and have yet to be applied to this context, we limit ourselves to brief descriptions of the methodologies. With the rapid development and growing use of X-ray CT scanning technologies to generate large volumes of data relevant to root structure, it is timely to review existing and potential quantitative and computational approaches to the analysis of such data. Summaries of several computational tools are included in the Appendix
    corecore