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Passenger flow risk forecasting is a vital task for safetymanagement in high-speed railway transport hub. In this paper, we considered
the passenger flow risk forecasting problem in high-speed railway transport hub. Based on the surveillance sensor networks,
a passenger flow risk forecasting algorithm was developed based on spatial correlation. Computational results showed that the
proposed forecasting approach was effective and significant for the high-speed railway transport hub.

1. Introduction

In the 12th Five-Year Plan (2011–2015) period, high-speed
railway in China had a fast development. As of December 31,
2015, the high-speed railway lines amounting to a total length
of 19000 km were operated in mainland China, and most
cities with more than 50 million populations were covered
by the high-speed railway transport networks. With the
fast development of high-speed railway, high-speed railway
transport hub has become a vital node of passenger transport
networks and several transport modes, that is, civil aviation,
highway, urban rail transit, and public transport transferred
in high-speed railway transport hub. Massive passenger flow
collecting anddistributing brings several potential risks to the
safety management of high-speed railway transport hub.

At present, most of high-speed railway transport hubs
have emergency plans for different risks, especially passenger
flow risk.When risk valuesmeet the threshold, these plans are
activated immediately. But current approach only passively
responded for emergency and lacks actively detection and
forecasting of risks. With wide application of intelligent
video surveillance in high-speed railway transport hubs,
a comprehensive surveillance sensor networks is gradually
formed, which provides powerful supports for risk detecting
and forecasting. Based on real-time passenger flow status
obtained by surveillance sensor networks, passenger flow

risk forecasting can effectively prevent risks, reduce risks
value, and decrease the negative effects caused by risks.
So it is necessary for high-speed railway transport hubs to
study on passenger flow risk forecasting approach based on
surveillance sensor networks.

The rest of this paper is organized as follows: Sec-
tion 2 reviews the relevant literature. The passenger flow
risk forecasting frame is introduced in Section 3, and Sec-
tion 4 proposes a passenger flow risk forecasting algorithm
based on spatial correlation. Computational experiments
are conducted in Section 5 and finally Section 6 covers the
conclusion.

2. Literature Review

Currently, video surveillance is the key approach to detect
the potential risks in transport hubs. Several passenger
image processing and intelligent detecting algorithms were
developed for rapid and accurate detection of passenger
flow status [1–8]. A real-time system for detecting and
tracking multiple people when they appear in a group was
proposed. Several computationalmodels, that is, a silhouette-
based shape model, a motion model, and correlation-based
matching methods were employed to track multiple people
before, during, and after occlusion [1]. For automatically
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tracking pedestrian, a pedestrian tracking system was pro-
posed, consisting of three subsystems, which calculates the
image processing, object tracking, and traffic flow variables.
The first subsystem performs image processing analysis while
the second subsystem carries out the tracking of pedestrians
by matching the features and tracing the pedestrian numbers
frame by frame [2]. In order to accurately and promptly
detect potential safety hazard, a modified background model
based onDempster-Shafer theory and a passenger flow status
recognition algorithm based on features of image connected
domain were proposed to improve the accuracy and real-
time performance of passenger flowdetection [3]. To improve
detection accuracy in terms of feature extraction, a novel
feature of gradient self-similarity (GSS) was present, which
was computed from HOG and was applied to capture the
patterns of pairwise similarities of local gradient patches [4].
For the challenging of abrupt illumination, occlusions, out
of field of view, and cluttered backgrounds, a novel tracking
framework was developed, which consists of two steps: image
shadow removal and tracking by association [5]. A sparse
representation based approach is proposed for pedestrian
detection from thermal images. The approach first adopted
the histogram of sparse code to represent image features
and then detect pedestrian with the extracted features in a
unimodal and a multimodal framework, respectively [6]. In
order to accurately detect potential safety hazard hidden in
passenger flow, a hybrid forecasting approach was proposed
to obtain the passenger flow status [7]. By thoroughly ana-
lyzing and optimizing each step of the detection pipeline,
a pedestrian detection system was proposed based on deep
learning, adapting a general-purpose convolutional network
to the task at hand [8].

Some studies focused on causing and handling of the
potential risks [9–15]. A pedestrian evacuation simulation
model based on the extended cellular automata was pro-
posed with the consideration of heterogeneous behavioral
tendencies in humans, and the model was applied to opti-
mize buildings to reduce evacuation times [9]. A more
comprehensive conceptual model was introduced for the
representation of the impact of fatigue on the performance
of evacuees during building stair evacuation. The model was
presented considering its conceptual formulation and the
issues associated with its implementation [10]. A multigrid
model was proposed to simulate evacuationwith guiders, and
the effects of guider type, guider number, guider distribution,
and guidance strategy on evacuation were discussed [11].
The selfish and selfless behaviors were considered as two
main factors in evacuation, and selfishness- and selflessness-
based model of pedestrian room evacuation was proposed
[12]. A new multiagent based congestion evacuation model
incorporating panic behavior was proposed for simulating
pedestrian evacuation in public places such as a stadium.
Pedestrians in this model were divided into four classes
and each pedestrian’s status can be either normal, over-
taken, or casualty [13]. The evacuation process from a room
without visibility was investigated by both experiment and
modeling. Some typical characteristics of blind evacuation,
including the preference of choosing left-hand side direction
and following behavior, were found from the experiment

[14]. A pedestrian evacuation modeling framework was
developed, which used volunteered geographical information
fromOpenStreetMap and simplified queuing-networkmodel
to estimate evacuation time, detect bottlenecks, and test
different evacuation strategies [15].

According to the literature review above, current stud-
ies only focused on the potential risks detection and risk
handling. For passenger flow forecasting, most of studies
concerned passenger flow demand, arriving, and departure
volume forecasting [16–19]. Specific literature on risk fore-
casting is scarce. The risk forecasting is an important con-
nection between potential risks detection and risk handling.
Based on the detection result, forecasting the passenger flow
risk can well master the variation trend of risk and adopt
suitable handling operations. So in this paper, we consider
the passenger flow risk forecasting in high-speed railway
transport hub. Based on surveillance sensor networks, a
spatial correlation forecasting algorithm is developed to
forecast the passenger flow risk of bottleneck areas.

3. Passenger Flow Risk Forecasting Frame

In this section, the passenger flow risk forecasting frame
is described in three aspects. Firstly, surveillance sensor
networks of high-speed railway transport hub are introduced.
Secondly, forecasting mechanism is described. Based on the
previous two parts, the forecasting procedure is designed in
the last part.

3.1. Surveillance Sensor Networks of High-Speed Railway
Transport Hub. According to the different surveillance pur-
poses and focuses, the sensors in surveillance sensor net-
works of high-speed railway transport hub can be classified
into three types [20], key area monitoring sensors, passenger
line monitoring sensors, and complete coverage monitoring
sensors, which are shown in Figure 1.

For the three types of sensors (Figure 1), our studymainly
focuses on the passenger flow risk forecasting of key area.The
forecasting not only use the passenger flow data detected by
key area monitoring sensors but also used the passenger flow
data obtained by passenger line monitoring sensors.

3.2. Passenger Flow Risk Forecasting Mechanism. The accu-
racy of passenger flow risk forecasting in key area is influ-
enced by several factors, that is, current risk status of key area,
risk status of correlated surveillance areas in passenger line,
and service capability of equipment in key area. So it is hard
to obtain an accurate risk forecasting value by only using the
risk status of key area.

In this paper, we consider the passenger flow risk fore-
casting of key area under the surveillance sensor networks
in high-speed railway transport hub. By analyzing the rela-
tionship between key area and correlated surveillance areas
in passenger line, a forecasting algorithm is developed based
on spatial correlation.

The spatial correlation between key area and correlated
areas in passenger line can be defined as the impact on key
area risk caused by correlated areas. A sample of spatial
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Figure 1: Sensors in surveillance sensor networks.
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Figure 2: A sample of spatial correlation.

correlation is shown in Figure 2. In the figure, the red point
is the key area, blue points are correlated surveillance areas,
and the blue arrows are passenger line.The passengersmoved
from A to B and C to D and converge to E. The A, B, C, and
D have spatial correlation with E, and the spatial correlation
degrees of B and D are larger than the spatial correlation
degrees of A and C.

3.3. Passenger FlowRisk Forecasting Procedure. In the surveil-
lance sensor networks of high-speed railway transport hub,
based on the spatial correlation, there are three main steps
in the passenger flow risk forecasting procedure, which are
shown in Figure 3.

Step 1. Calculate the risk value 𝑟(𝑥) of correlated surveillance
areas by using the passenger flow status of the areas.

Step 2. Calculate spatial correlation degrees 𝑠(𝑥, 𝑦) between
key area and correlated surveillance areas based on the
surveillance sensor networks of high-speed railway transport
hub.

Step 3. Forecast the risk value 𝑅(𝑒) of key area based on the
current risk value 𝑟(𝑒) of key area, 𝑟(𝑥), and 𝑠(𝑥, 𝑦) obtained
by Steps 1 and 2.
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Figure 3: Main steps in the passenger flow risk forecasting proce-
dure.

4. A Passenger Flow Risk Forecasting
Algorithm Based on Spatial Correlation

According to passenger flow risk forecasting procedure men-
tioned in Section 3, the calculation method of passenger
flow risk value and forecasting algorithm based on spatial
correlation will be discussed in this section.

4.1. Passenger Flow Risk Value Calculation. In this paper, we
adopt passenger flow amount to calculate the risk value in
key area and correlated surveillance areas. And three types of
passenger flow status parameters are used, which are current
passenger flow amount of area 𝐴

1
, average passenger flow

amount of area in statistic period 𝐴
2
, and max passenger

flow amount of area in statistic period 𝐴
3
. Based on plenty

of data experiments for different areas in high-speed railway
transport hubs, the passenger flow risk values in key area and
correlated surveillance areas can be calculated as follows.
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(1) While current passenger flow amount is less than or
equal to average passenger flow amount in statistic period,
𝐴
1
≤ 𝐴
2
,

𝑟 (𝑥) = 3 − 10 (

𝐴
2
− 𝐴
1

𝐴
2

) . (1)

(2) While current passenger flow amount is larger than
average passenger flow amount in statistic period and less
than or equal tomaxpassenger flowamount of area in statistic
period, 𝐴

2
< 𝐴
1
≤ 𝐴
3
,

𝑟 (𝑥) =

4𝐴
1
+ 3𝐴
3
− 7𝐴
2

𝐴
3
− 𝐴
2

. (2)

(3) While current passenger flow amount is larger than
max passenger flow amount of area in statistic period, 𝐴

1
>

𝐴
3
,

𝑟 (𝑥) = 7 + 10 (

𝐴
1
− 𝐴
3

𝐴
3

) . (3)

4.2. Spatial Correlation Degree Calculation. The spatial cor-
relation reflects the risk correlation between key area and
correlated surveillance areas. And the spatial correlation
degree is an important indicator to represent the impact on
passenger flow risk of key area caused by the risk value of
correlated surveillance areas.
𝑟
𝑖
= {𝑟
𝑖
(𝑡) | 𝑡 = 1, 2, . . . , 𝑛} is a time series set,

representing risk values of one key area and 𝑖 correlated
surveillance areas at different time. 𝑟

0
(𝑡) is the risk values

of key area in 𝑡 period, and 𝑟
𝑖
(𝑡) is the risk values of

the 𝑖th correlated surveillance area in 𝑡 period. The spatial
correlation degree between the key area and 𝑖th correlated
surveillance area in 𝑡 period can be calculated as follows:

𝑠 (𝑟
0
(𝑡) , 𝑟
𝑖
(𝑡)) =

𝑚 + 𝜔𝑀

Δ (0, 𝑖) + 𝜔𝑀

, (4)

where Δ(0, 𝑖) = |𝑟
0
(𝑡) − 𝑟

𝑖
(𝑡)|, 𝑚 = min

𝑖
min
𝑡
Δ(0, 𝑖), 𝑀 =

max
𝑖
max
𝑡
Δ(0, 𝑖), and 𝜔 is the identification coefficient, 𝜔 ∈

(0, 1).
According to the incidence extent, each spatial correla-

tion between key area and one correlated surveillance area
has a correlation weight coefficient, which can be calculated
by

𝛼
𝑖
=

𝑠 (𝑟
0
(𝑡) , 𝑟
𝑖
(𝑡))

∑
𝑛

𝑗=1
𝑠 (𝑟
0
(𝑡) , 𝑟
𝑗
(𝑡))

. (5)

4.3. Forecasting Algorithm Based on Spatial Correlation. For
a key area 𝑘, it has 𝑛 correlated surveillance areas 𝑐𝑘

𝑖
, 𝑖 =

1, 2, . . . , 𝑛. Based on the passenger flow risk value of 𝑘 and
𝑐𝑘
𝑖
and the spatial correlation among their areas, the initial

passenger flow risk of 𝑘 in 𝑡 period can be forecasted as
follows:

𝑟


𝑘
(𝑡) =

𝑛

∑

𝑖=1

𝛼
𝑖
𝑟
𝑖
(𝑡 − 𝑡
𝑖
) , (6)
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Figure 4: Schematic representation of areas.

where 𝛼
𝑖
is the correlation weight coefficient between 𝑘 and

𝑐𝑘
𝑖
and 𝑡
𝑖
is the correlation time between 𝑘 and 𝑐𝑘

𝑖
.

In actual forecasting, for improving the accuracy, we
employ the initial forecasting value and actual passenger flow
risk values before 𝑡 period to forecast the passenger flow risk
of 𝑘 in 𝑡 period.The forecasting algorithm is shown as follows:

𝑟
𝑘
(𝑡) = 𝑟

𝑘
(𝑡 − 1) + Δ𝑟

𝑘
(𝑡)

= 𝑟
𝑘
(𝑡 − 2) + 𝑟

𝑘
(𝑡 − 1) + Δ𝑟

𝑘
(𝑡)

= 𝑟
𝑘
(0) + Δ𝑟

𝑘
(1) + Δ𝑟

𝑘
(2) + ⋅ ⋅ ⋅ + Δ𝑟

𝑘
(𝑡) .

(7)

Set Δ𝑟
𝑘
(𝑡) = Δ𝑟



𝑘
(𝑡), and Δ𝑟

𝑘
(𝑡) = 𝑟



𝑘
(𝑡) − 𝑟



𝑘
(𝑡 − 1). So the

forecasting algorithm can be transferred as follows:

𝑟
𝑘
(𝑡) = 𝑟



𝑘
(𝑡) − 𝑟



𝑘
(0) + 𝑟

𝑘
(0)

=

𝑛

∑

𝑖=1

𝛼
𝑖
𝑟
𝑖
(𝑡 − 𝑡
𝑖
) −

𝑛

∑

𝑖=1

𝛼
𝑖
𝑟
𝑖
(0) + 𝑟

𝑘
(0) ,

(8)

where 𝑟
𝑘
(0) is the actual passenger flow risk value of 𝑘 at the

initial forecasting period and 𝑟
𝑖
(0) is the actual passenger flow

risk value of 𝑐𝑘
𝑖
at the initial forecasting period.

5. Computational Experiments

In this section, computational experiments are conducted
to verify passenger flow risk algorithm proposed above. A
specific key area in high-speed railway transport hub is taken
as an example. This area is an escalator connecting waiting
hall and entrances. The schematic representation of their
areas is shown in Figure 4.

The E is the escalator. A and B are two metro transfer
points; the passengers arriving by metro enter the hub from
these two points. C is an entrance; the passengers arriving
by public transport enter the hub from this entrance. D
is a park entrance; the passengers arriving by private car
enter the hub from this entrance. Both of these areas have
intelligent surveillance, which can automatically detect the
passenger flow amount and calculate the risk value. Based on
the real detection data from intelligent surveillance sensors,
the forecasting algorithm developed in Section 3 is employed
to forecast the passenger flow risk of area E.We set 10minutes
as a forecasting period, and firstly experiment on 6 hours
(12:00 am–6:00 pm) is conducted. The computational result
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Figure 6: Computational result of a festival day.

is shown in Table 1, and comparison between forecasting risk
value and actual risk value is shown in Figure 5.

As observed in Figure 5, the forecasting risk values
obtained by our approach are close to actual risk value;
the average gap between forecasting risk value and actual
risk value is 2.6%. And the variation trend of passenger
flow risk is well forecasted by our approach. For illustrating
the performance of our forecasting approach facing mass
passenger flow, a festival day (6:00 am–12:00 pm) is selected
as an example. The computational result is shown in Figures
6 and 7.

As observed in Figures 6 and 7, our forecasting approach
has a good performance for mass passenger flow in festival
days. It canwell forecast variation trend of passenger flow risk
in a whole day time (6:00 am–12:00 pm is a normal operation
time of hub) except some low risk periods. Generally, our
forecasting approach can meet the demands of safety man-
agement in high-speed railway transport hub.

6. Conclusion

In this paper, we considered the passenger flow risk forecast-
ing problem in high-speed railway transport hub. According
to the surveillance sensor network of hub, a spatial cor-
relation degree calculation between the key area and the
correlated surveillance area was proposed, and a passenger
flow risk forecasting algorithm based on spatial correlation
was developed. Computational experiments on a key area in

Table 1: Computational result of 6 hours (12:00 am–6:00 pm).

Hour Period Forecasting
risk value

Actual risk
value Gap

12:00 am

1 6.3 6.5 3.08%
2 6.7 6.7 0.00%
3 6.7 6.9 2.90%
4 6.5 6.9 5.80%
5 6.9 7.3 5.48%
6 7.2 7.1 1.41%

1:00 pm

7 6.8 6.5 4.62%
8 6.5 6.5 0.00%
9 6.7 6.2 8.06%
10 6.2 6.3 1.59%
11 6.7 6.4 4.69%
12 6.8 6.6 3.03%

2:00 pm

13 7.3 6.9 5.80%
14 7.3 7.2 1.39%
15 7.5 7.2 4.17%
16 7.2 7.1 1.41%
17 7.1 7.2 1.39%
18 6.9 7.0 1.43%

3:00 pm

19 6.6 6.8 2.94%
20 6.6 6.6 0.00%
21 6.3 6.2 1.61%
22 6.5 6.3 3.17%
23 6.4 6.5 1.54%
24 6.4 6.3 1.59%

4:00 pm

25 6.5 6.4 1.56%
26 6.2 6.2 0.00%
27 6.0 5.8 3.45%
28 6.1 5.9 3.39%
29 5.9 5.8 1.72%
30 6.0 5.8 3.45%

5:00 pm

31 6.5 6.3 3.17%
32 6.8 6.9 1.45%
33 7.0 6.9 1.45%
34 7.2 7.3 1.37%
35 7.5 7.3 2.74%
36 7.6 7.4 2.70%

high-speed railway transport hub showed that the proposed
forecasting approach is effective to forecast the passenger flow
risk of key area in hub. In future, considering several key areas
risk, forecasting the whole safety status of high-speed railway
transport hub is a possibility for further research.
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