86 research outputs found

    Machine Learning-Enabled IoT Security: Open Issues and Challenges Under Advanced Persistent Threats

    Full text link
    Despite its technological benefits, Internet of Things (IoT) has cyber weaknesses due to the vulnerabilities in the wireless medium. Machine learning (ML)-based methods are widely used against cyber threats in IoT networks with promising performance. Advanced persistent threat (APT) is prominent for cybercriminals to compromise networks, and it is crucial to long-term and harmful characteristics. However, it is difficult to apply ML-based approaches to identify APT attacks to obtain a promising detection performance due to an extremely small percentage among normal traffic. There are limited surveys to fully investigate APT attacks in IoT networks due to the lack of public datasets with all types of APT attacks. It is worth to bridge the state-of-the-art in network attack detection with APT attack detection in a comprehensive review article. This survey article reviews the security challenges in IoT networks and presents the well-known attacks, APT attacks, and threat models in IoT systems. Meanwhile, signature-based, anomaly-based, and hybrid intrusion detection systems are summarized for IoT networks. The article highlights statistical insights regarding frequently applied ML-based methods against network intrusion alongside the number of attacks types detected. Finally, open issues and challenges for common network intrusion and APT attacks are presented for future research.Comment: ACM Computing Surveys, 2022, 35 pages, 10 Figures, 8 Table

    Blockchain-based secure authentication with improved performance for fog computing

    Get PDF
    Advancement in the Internet of Things (IoT) and cloud computing has escalated the number of connected edge devices in a smart city environment. Having billions more devices has contributed to security concerns, and an attack-proof authentication mechanism is the need of the hour to sustain the IoT environment. Securing all devices could be a huge task and require lots of computational power, and can be a bottleneck for devices with fewer computational resources. To improve the authentication mechanism, many researchers have proposed decentralized applications such as blockchain technology for securing fog and IoT environments. Ethereum is considered a popular blockchain platform and is used by researchers to implement the authentication mechanism due to its programable smart contract. In this research, we proposed a secure authentication mechanism with improved performance. Neo blockchain is a platform that has properties that can provide improved security and faster execution. The research utilizes the intrinsic properties of Neo blockchain to develop a secure authentication mechanism. The proposed authentication mechanism is compared with the existing algorithms and shows that the proposed mechanism is 20 to 90 per cent faster in execution time and has over 30 to 70 per cent decrease in registration and authentication when compared to existing methods

    Botnet detection : a numerical and heuristic analysis

    Get PDF
    Dissertação de mestrado em Engenharia de InformáticaInternet security has been targeted in innumerous ways throughout the ages and Internet cyber criminality has been changing its ways since the old days where attacks were greatly motivated by recognition and glory. A new era of cyber criminals are on the move. Real armies of robots (bots) swarm the internet perpetrating precise, objective and coordinated attacks on individuals and organizations. Many of these bots are now coordinated by real cybercrime organizations in an almost open-source driven development resulting in the fast proliferation of many bot variants with refined capabilities and increased detection complexity. One example of such open-source development could be found during the year 2011 in the Russian criminal underground. The release of the Zeus botnet framework source-code led to the development of, at least, a new and improved botnet framework: Ice IX. Concerning attack tools, the combination of many well-known techniques has been making botnets an untraceable, effective, dynamic and powerful mean to perpetrate all kinds of malicious activities such as Distributed Denial of Service (DDoS) attacks, espionage, email spam, malware spreading, data theft, click and identity frauds, among others. Economical and reputation damages are difficult to quantify but the scale is widening. It’s up to one’s own imagination to figure out how much was lost in April of 2007 when Estonia suffered a well-known distributed attack on its internet country-wide infrastructure. Among the techniques available to mitigate the botnet threat, detection plays an important role. Despite recent year’s evolution in botnet detection technology, a definitive solution is far from being found. New constantly appearing bot and worm developments in areas such as host infection, deployment, maintenance, control and dissimulation of bots are permanently changing the detection vectors thought and developed. In that way, research and implementation of anomaly-based botnet detection systems are fundamental to pinpoint and track all the continuously changing polymorphic botnets variants, which are impossible to identify by simple signature-based systems

    Deteção de ataques de negação de serviços distribuídos na origem

    Get PDF
    From year to year new records of the amount of traffic in an attack are established, which demonstrate not only the constant presence of distributed denialof-service attacks, but also its evolution, demarcating itself from the other network threats. The increasing importance of resource availability alongside the security debate on network devices and infrastructures is continuous, given the preponderant role in both the home and corporate domains. In the face of the constant threat, the latest network security systems have been applying pattern recognition techniques to infer, detect, and react more quickly and assertively. This dissertation proposes methodologies to infer network activities patterns, based on their traffic: follows a behavior previously defined as normal, or if there are deviations that raise suspicions about the normality of the action in the network. It seems that the future of network defense systems continues in this direction, not only by increasing amount of traffic, but also by the diversity of actions, services and entities that reflect different patterns, thus contributing to the detection of anomalous activities on the network. The methodologies propose the collection of metadata, up to the transport layer of the osi model, which will then be processed by the machien learning algorithms in order to classify the underlying action. Intending to contribute beyond denial-of-service attacks and the network domain, the methodologies were described in a generic way, in order to be applied in other scenarios of greater or less complexity. The third chapter presents a proof of concept with attack vectors that marked the history and a few evaluation metrics that allows to compare the different classifiers as to their success rate, given the various activities in the network and inherent dynamics. The various tests show flexibility, speed and accuracy of the various classification algorithms, setting the bar between 90 and 99 percent.De ano para ano são estabelecidos novos recordes de quantidade de tráfego num ataque, que demonstram não só a presença constante de ataques de negação de serviço distribuídos, como também a sua evolução, demarcando-se das outras ameaças de rede. A crescente importância da disponibilidade de recursos a par do debate sobre a segurança nos dispositivos e infraestruturas de rede é contínuo, dado o papel preponderante tanto no dominio doméstico como no corporativo. Face à constante ameaça, os sistemas de segurança de rede mais recentes têm vindo a aplicar técnicas de reconhecimento de padrões para inferir, detetar e reagir de forma mais rápida e assertiva. Esta dissertação propõe metodologias para inferir padrões de atividades na rede, tendo por base o seu tráfego: se segue um comportamento previamente definido como normal, ou se existem desvios que levantam suspeitas sobre normalidade da ação na rede. Tudo indica que o futuro dos sistemas de defesa de rede continuará neste sentido, servindo-se não só do crescente aumento da quantidade de tráfego, como também da diversidade de ações, serviços e entidades que refletem padrões distintos contribuindo assim para a deteção de atividades anómalas na rede. As metodologias propõem a recolha de metadados, até á camada de transporte, que seguidamente serão processados pelos algoritmos de aprendizagem automática com o objectivo de classificar a ação subjacente. Pretendendo que o contributo fosse além dos ataques de negação de serviço e do dominio de rede, as metodologias foram descritas de forma tendencialmente genérica, de forma a serem aplicadas noutros cenários de maior ou menos complexidade. No quarto capítulo é apresentada uma prova de conceito com vetores de ataques que marcaram a história e, algumas métricas de avaliação que permitem comparar os diferentes classificadores quanto à sua taxa de sucesso, face às várias atividades na rede e inerentes dinâmicas. Os vários testes mostram flexibilidade, rapidez e precisão dos vários algoritmos de classificação, estabelecendo a fasquia entre os 90 e os 99 por cento.Mestrado em Engenharia de Computadores e Telemátic

    A Survey on Intrusion Detection Systems for Fog and Cloud Computing

    Get PDF
    The rapid advancement of internet technologies has dramatically increased the number of connected devices. This has created a huge attack surface that requires the deployment of effective and practical countermeasures to protect network infrastructures from the harm that cyber-attacks can cause. Hence, there is an absolute need to differentiate boundaries in personal information and cloud and fog computing globally and the adoption of specific information security policies and regulations. The goal of the security policy and framework for cloud and fog computing is to protect the end-users and their information, reduce task-based operations, aid in compliance, and create standards for expected user actions, all of which are based on the use of established rules for cloud computing. Moreover, intrusion detection systems are widely adopted solutions to monitor and analyze network traffic and detect anomalies that can help identify ongoing adversarial activities, trigger alerts, and automatically block traffic from hostile sources. This survey paper analyzes factors, including the application of technologies and techniques, which can enable the deployment of security policy on fog and cloud computing successfully. The paper focuses on a Software-as-a-Service (SaaS) and intrusion detection, which provides an effective and resilient system structure for users and organizations. Our survey aims to provide a framework for a cloud and fog computing security policy, while addressing the required security tools, policies, and services, particularly for cloud and fog environments for organizational adoption. While developing the essential linkage between requirements, legal aspects, analyzing techniques and systems to reduce intrusion detection, we recommend the strategies for cloud and fog computing security policies. The paper develops structured guidelines for ways in which organizations can adopt and audit the security of their systems as security is an essential component of their systems and presents an agile current state-of-the-art review of intrusion detection systems and their principles. Functionalities and techniques for developing these defense mechanisms are considered, along with concrete products utilized in operational systems. Finally, we discuss evaluation criteria and open-ended challenges in this area

    Navigating the IoT landscape: Unraveling forensics, security issues, applications, research challenges, and future

    Full text link
    Given the exponential expansion of the internet, the possibilities of security attacks and cybercrimes have increased accordingly. However, poorly implemented security mechanisms in the Internet of Things (IoT) devices make them susceptible to cyberattacks, which can directly affect users. IoT forensics is thus needed for investigating and mitigating such attacks. While many works have examined IoT applications and challenges, only a few have focused on both the forensic and security issues in IoT. Therefore, this paper reviews forensic and security issues associated with IoT in different fields. Future prospects and challenges in IoT research and development are also highlighted. As demonstrated in the literature, most IoT devices are vulnerable to attacks due to a lack of standardized security measures. Unauthorized users could get access, compromise data, and even benefit from control of critical infrastructure. To fulfil the security-conscious needs of consumers, IoT can be used to develop a smart home system by designing a FLIP-based system that is highly scalable and adaptable. Utilizing a blockchain-based authentication mechanism with a multi-chain structure can provide additional security protection between different trust domains. Deep learning can be utilized to develop a network forensics framework with a high-performing system for detecting and tracking cyberattack incidents. Moreover, researchers should consider limiting the amount of data created and delivered when using big data to develop IoT-based smart systems. The findings of this review will stimulate academics to seek potential solutions for the identified issues, thereby advancing the IoT field.Comment: 77 pages, 5 figures, 5 table
    • …
    corecore