
Universidade de Aveiro
Departamento de Eletrónica,
Telecomunicações e Informática

2018

Fábio Alexandre
Henriques da Silva

Deteção de Ataques de Negação de Serviços
Distribuídos na Origem

Detection of Distributed Denial of Service Attacks
at Source

Universidade de Aveiro
Departamento de Eletrónica,
Telecomunicações e Informática

2018

Fábio Alexandre
Henriques da Silva

Deteção de Ataques de Negação de Serviços
Distribuídos na Origem

Detection of Distributed Denial of Service Attacks
at Source

Dissertação apresentada à Universidade de Aveiro para cumprimento dos
requisitos necessários à obtenção do grau de Mestre em Engenharia de
Computadores e Telemática, realizada sob a orientação científica do Doutor
Paulo Jorge Salvador Serra Ferreira, Professor auxiliar do Departamento de
Eletrónica, Telecomunicações e Informática da Universidade de Aveiro.

o júri / the jury

presidente / president Prof. Doutor André Ventura da Cruz Marnoto Zúquete
Professor auxiliar da Universidade de Aveiro

vogais / examiners committee Prof. Doutor Mário João Gonçalves Antunes
Professor adjunto do Instituto Politécnico de Leiria (Arguente)

Prof. Doutor Paulo Jorge Salvador Serra Ferreira,
Professor auxiliar da Universidade de Aveiro (Orientador)

agradecimentos /
acknowledgements

À minha família, por toda a ajuda, carinho e motivação que me deram ao
longo deste curso, sem eles não teria conseguido. Ao meu orientador Doutor
Paulo Salvador, pelos ensinamentos, orientação, apoio e disponibilidade que
sempre demonstrou. A todos os amigos que me apoiaram, contribuindo as-
sim para a elaboração desta dissertação e finalização deste percurso. Um
agradecimento especial ao Miguel Oliveira, pelo encorajamento, partilha de
conhecimentos, e companheirismo.

Palavras Chave reconhecimento de padões, análise de dinâmicas, modelação de atividade na
rede, metodologias para deteção de anomalias, classificação de atividades na
rede.

Resumo De ano para ano são estabelecidos novos recordes de quantidade de tráfego
num ataque, que demonstram não só a presença constante de ataques de ne-
gação de serviço distribuídos, como também a sua evolução, demarcando-se
das outras ameaças de rede. A crescente importância da disponibilidade de
recursos a par do debate sobre a segurança nos dispositivos e infraestruturas
de rede é contínuo, dado o papel preponderante tanto no dominio domés-
tico como no corporativo. Face à constante ameaça, os sistemas de segu-
rança de rede mais recentes têm vindo a aplicar técnicas de reconhecimento
de padrões para inferir, detetar e reagir de forma mais rápida e assertiva.
Esta dissertação propõe metodologias para inferir padrões de atividades na
rede, tendo por base o seu tráfego: se segue um comportamento previa-
mente definido como normal, ou se existem desvios que levantam suspeitas
sobre normalidade da ação na rede. Tudo indica que o futuro dos sistemas
de defesa de rede continuará neste sentido, servindo-se não só do crescente
aumento da quantidade de tráfego, como também da diversidade de ações,
serviços e entidades que refletem padrões distintos contribuindo assim para a
deteção de atividades anómalas na rede. As metodologias propõem a recolha
de metadados, até á camada de transporte, que seguidamente serão pro-
cessados pelos algoritmos de aprendizagem automática com o objectivo de
classificar a ação subjacente. Pretendendo que o contributo fosse além dos
ataques de negação de serviço e do dominio de rede, as metodologias foram
descritas de forma tendencialmente genérica, de forma a serem aplicadas
noutros cenários de maior ou menos complexidade. No quarto capítulo é ap-
resentada uma prova de conceito com vetores de ataques que marcaram a
história e, algumas métricas de avaliação que permitem comparar os difer-
entes classificadores quanto à sua taxa de sucesso, face às várias atividades
na rede e inerentes dinâmicas. Os vários testes mostram flexibilidade, rapidez
e precisão dos vários algoritmos de classificação, estabelecendo a fasquia
entre os 90 e os 99 por cento.

Keywords patterns recognition, dynamics analyzes, network activity modeling, method-
ologies for anomalies detection, network activity classification.

Abstract From year to year new records of the amount of traffic in an attack are estab-
lished, which demonstrate not only the constant presence of distributed denial-
of-service attacks, but also its evolution, demarcating itself from the other net-
work threats. The increasing importance of resource availability alongside the
security debate on network devices and infrastructures is continuous, given
the preponderant role in both the home and corporate domains. In the face
of the constant threat, the latest network security systems have been apply-
ing pattern recognition techniques to infer, detect, and react more quickly and
assertively. This dissertation proposes methodologies to infer network activ-
ities patterns, based on their traffic: follows a behavior previously defined as
normal, or if there are deviations that raise suspicions about the normality of
the action in the network. It seems that the future of network defense systems
continues in this direction, not only by increasing amount of traffic, but also
by the diversity of actions, services and entities that reflect different patterns,
thus contributing to the detection of anomalous activities on the network. The
methodologies propose the collection of metadata, up to the transport layer
of the osi model, which will then be processed by the machien learning al-
gorithms in order to classify the underlying action. Intending to contribute
beyond denial-of-service attacks and the network domain, the methodologies
were described in a generic way, in order to be applied in other scenarios of
greater or less complexity. The third chapter presents a proof of concept with
attack vectors that marked the history and a few evaluation metrics that allows
to compare the different classifiers as to their success rate, given the various
activities in the network and inherent dynamics. The various tests show flex-
ibility, speed and accuracy of the various classification algorithms, setting the
bar between 90 and 99 percent.

Contents

Contents i

List of Figures v

List of Tables ix

Glossary xiii

1 Introduction 1

2 Contextualization and State of Art 5

2.1 Business Dependence on the Internet . 5

2.2 Denial-of-Service . 7

2.3 Distributed Denial-of-Service (DDoS) attacks . 8

2.3.1 Attack Motivation . 10

2.3.2 Internet Characteristics . 11

2.3.3 DDoS Modus Operandi . 12

2.3.4 Botnet based DDoS attack architecture . 13

2.3.5 DDoS attacks categories and vectors . 15

2.3.6 DDoS attack dynamics . 24

2.4 A glance to the past of DoS and DDoS attacks . 26

2.5 DDoS Defense Challenges . 32

2.6 Taxonomy of DDoS Defense Mechanisms . 33

2.6.1 Based on Approach . 33

2.6.2 Based on Defense Infrastructure . 35

2.6.3 Based on Defense Location . 35

2.6.4 DDoS Defense Goals . 37

2.7 Source-End Defense . 38

2.8 Generic Modules of a DDoS Source-End Defense System 39

2.9 Machine Learning (ML) in Detection Methods . 43

i

2.9.1 Traditional vs Machine Learning Approach 44

2.9.2 Types of Machine Learning Systems . 46

2.9.3 Main Challenges of Machine Learning . 48

2.10 State of the Art . 51

2.10.1 Non-commercial solutions . 51

2.10.2 Commercial solutions . 52

3 Methodology for outbound anomalies detection 55

3.1 Network Data Collection . 55

3.2 Features Engineering . 57

3.2.1 Packet fields to features . 57

3.2.2 Generating network observations . 60

3.2.3 Network modeling . 63

3.2.4 Features that describe attack behavior . 64

3.2.5 Features completeness . 64

3.3 High Level Data Overview . 65

3.3.1 Dataset analysis . 65

3.3.2 Dataset correlations . 66

3.4 Data Pipeline and Knowledge Extraction . 67

3.4.1 Data splitting . 68

3.4.2 Features reduction . 69

3.4.3 Features scaling . 70

3.4.4 Labeling approaches . 71

3.4.5 Outbound anomaly classification . 73

3.5 Knowledge Process Evaluation . 78

3.5.1 Performance evaluation . 78

3.5.2 Zero-day tests . 81

4 Proof of Concept and Evaluation 83

4.1 Network Data Generation . 83

4.1.1 Normal Network Activity . 85

4.1.2 Abnormal Network Activity . 85

4.2 Parsing packets to metadata . 88

4.3 Feature Extraction . 89

4.4 Dataset Overview . 92

4.5 Classification Methods and Performance . 98

4.5.1 Neural Networks . 99

4.5.2 Decision Trees . 101

ii

4.5.3 Ensemble Methods . 103

5 Conclusion and Future Work 111

A Zero-day Extended Results 115

A.1 DYN-PW-3 . 117

A.1.1 DYN-PW-3 applied to ADA12 and GDB18 118

References 119

iii

List of Figures

2.1 Denial-of-service attack scenario [10] . 8

2.2 Distributed denial-of-service attack scenario [10] . 9

2.3 DDoS attacks motivation [23] . 10

2.4 Agent-Handler Model . 14

2.5 IRC-Based Model . 15

2.6 Domain Name System (DNS)-based volumetric reflection attack 17

2.7 OSI Model . 18

2.8 TCP three-way handshake . 19

2.9 TCP SYN flood attack . 19

2.10 DNS query flood . 23

2.11 Representation of previously described attack common dynamics. 25

2.12 Direct cabling vs Terminal Access Point (TAP) operation mode. 42

2.13 Traditional approach [129] . 44

2.14 Machine Learning approach [129] . 45

2.15 Autonomous Machine Learning approach [129] . 45

3.1 Metadata collected from the network traffic and how packets fields from different protocols

are stacked. 56

3.2 Partitioning in smaller sampling windows that contain statistical metrics obtained from

the metadata during a ∆t time frame. The total number of sampling windows is defined

by N = X ÷ ∆t, X ≥∆t. 58

3.3 Low-level structure of a sampling window. 59

3.4 Second and a proposed third stage, aiming to produce network observations based on the

host behavior over a week. The observation windows, at this third stage, have ∆t value of

1 day. 60

3.5 Observation window horizontal movement throughout the various sampling windows. The

shift time is equal to sampling window’s length. 62

3.6 Representation of sliding window paradigm, where at each iteration shifts one minute(i.e.,

duration of sampling windows), overlapping two windows after the first iteration. 63

v

3.7 Representation in the form of histograms of some features obtained from network observa-

tions referring to a Generic Routing Encapsulation (GRE) flood attack. X-axis: observed

values, Y-axis: count of occurrences. 66

3.8 Scatter matrix for a ack flood dataset composed by three features. Each graph represents

the linear correlation between each pair of features . 67

3.9 General representation of the data pipeline. The data are transformed along the pipeline

to be suitable for each ML algorithm. Depending on the nature of these, some steps may

be omitted. 68

3.10 Data splitting applied on two distinct phases. Although split percentages are flexible, in

the first split were defined by the Pareto principle. 68

3.11 Representation of explained variance according to the number of dimensions [129]. 70

3.12 Demonstration of Principal Component Analysis (PCA) reduction using Kernel PCA

method, and inverse transformation from the resultant projection, maintaining all the

relevant information and correlations [156]. 70

3.13 Representation of the One-versus-All (OvA) strategy, where the classifier responsible for

normal traffic produces the highest score, being the new instance classified as normal. . . 72

3.14 Representation of the impact of Support Vector Machine (SVM)’s C parameter separation

margin . 73

3.15 Neural Networks (NN) with an input layer, two hidden layers and a final output layer.

When a NN has two or more hidden layers, it is called deep NN 74

3.16 Decision tree structure example, with five leaf nodes and three decision nodes. 75

3.17 Representation of how the bagging ensemble methods operate on the training set, dividing

it into several that feed the same number of predictors that ultimately unify, through a

voting process. 76

3.18 Representation of the boosting ensemble methods iterative process, intending to adjust the

weight of an observation based on the last classification. 77

3.19 Confusion matrix for a binary classifier. The paradigm can be transposed to a multiclass

classifier, where the matrix grows proportionally either in rows and columns, maintaining

the correct classified instances on the diagonal from top left to bottom right. 79

3.20 Receiver Operating Characteristic (ROC) curve for SVM multi-classification using Wine

dataset [162]. 80

4.1 Enterprise hierarchical network layers . 84

4.2 Representation of both dynamics. 86

4.3 The three equal parts represents the 12 means, medians and variances that result from

the application of each statistical operation to each attribute. The last two relate to the

number of periods of silence and their average duration. Thus, each observation window

contemplates this set of 44 features. 92

vi

4.4 Number of captured packets per attack vector including also normal network activities. . 93

4.5 Number of generated network observations per attack vector, including also normal network

activities . 94

4.6 Histograms of some features present on observations obtained from an ACK flood scenario. 96

4.7 Representation of explained variance, the smaller the number of features the smaller the

variance ratio and therefore the greater the difference between what the pattern expresses

in relation to the original. 97

4.8 Representation of explained variance in function to the number of features, for each dataset. 98

4.9 Learning curve for ANN4, showing how learning improves with samples number. 100

4.10 Normalized confusion matrix for models 10 and 11 over the test set(i.e., 20 % of dataset

DT-4 and DT-5 respectively). 102

4.11 Learning curve for DTC11 . 103

4.12 On the left Adaboost learning curve after cross-validation over the DT-1 80 % while on the

left there is represented the ROC curve computed from the classification on the test set. . 104

4.13 Distribution example of the duration of each period of silence resulting from the exponential

distribution with scalar equal to 0.1. 105

4.14 Example of the scale parameter variation over the resultant silence periods duration, being

high stealth when assumes lower values. 107

vii

List of Tables

3.1 Relation between observation window’s length and number of observations generated. It

follows the previous example, where sampling windows assumed a ∆t of one minute and

the capture total length is one week indexed on 10080 sampling windows. 61

3.2 Number of observations produced from varying observation window’s size and sliding

window shift time. Values are also based on the previous example. 62

3.3 Pulse-wave dynamics that vary the maximum number of packets as well as the periods

of silences, which after observation for two minutes result in the total number of packets

represented in the third column. For the sake of simplicity, it was assumed that the packet

throughput is instantaneous. 81

4.1 Dynamics used during the acquisition of attack data, the first being more intrusive and

completely immutable, while the others assume some parameters in order to vary the

degree of intrusiveness. 87

4.2 Pool of attack vectors and respective alias . 87

4.3 Summarizing the contents of each dataset, considering the various dynamics and simultaneity

with normal services, as described in Section 4.1.2. The presence of network observation

from normal activities is common in all datasets. 89

4.4 Low level description of the attributes present on every sampling window. 90

4.5 View of a random portion of samples that make up the total dataset. Each column

represents a feature while each row is a sample. Should be noted that the first column is a

simple identifier, and all the features present in the table relate to outgoing traffic. 95

4.6 Number of components to kept for each dataset. 98

4.7 Overall NN classification performance over 10 validation sets, for each dataset with respec-

tive optimal features number for each one. 99

4.8 Zero-day test performance for each model with respective ideal number of components.

Since this is a one-time classification, it is not possible to provide a confidence interval. . 101

4.9 Decision tree classification performance for each dataset, with respective optimal number

of features. 101

ix

4.10 Adaboost, on the left, and Gradient-boost, on the right, classification performances, main-

taining the dataset and PCA for both algorithms. 104

4.11 Adaboost and Gradient-boost classification performance for two attack vector, both with

same dynamic. Extensive results available in Table A.1 and A.2. 106

4.12 Adaboost classification performance including dissociation of patterns in Youtube traffic,

for two attack vectors. Extended results are present in Table A.4 and A.5. 106

4.13 Gradient-boost and Adaboost performances comparison, from left to the right, maintaining

the zero-day samples per row. Extended results are provided in Section A.1. 107

4.14 Comparison between the results obtained using the same zero-day tests over two different

ML algorithms, on the left Gradient-boost and on the right Adaboost. Extended results

available in Section A.1.1. 108

4.15 Adaboost model ADA12 results for low-rate ACK flood. 108

4.16 Gradient-boost model GDB18 results for low-rate DNS-query flood. 109

A.1 Gradient-boost(i.e., GDB19) and Adaboost(i.e., ADA13) classification performances over

the same samples obtained from the AV-1 (i.e., Transmission Control Protocol (TCP)-SYN

flood) action following DYN-PW-1, which have a peak of 300 packets intervals with silences

according to Equation 4.1, with a scalar parameter of 0.1. 115

A.2 Gradient-boost(i.e., GDB22) and Adaboost(i.e., ADA16) classification performances over

the same samples obtained from the AV-4 (i.e., DNS-query flood) action following DYN-

PW-1, which have a peak of 300 packets intervals with silences according to Equation 4.1,

with a scalar parameter of 0.1. 115

A.3 Gradient-boost(i.e., GDB19) and Adaboost(i.e., ADA13) classification performances over

the same samples obtained from the AV-1 (i.e., TCP-SYN flood) action following a dynamic

with a peak of 200 packets intervals with silences according to Equation 4.1, with a scalar

parameter of 0.1. 116

A.4 Adaboost(i.e., ADA13) classification performances over samples obtained from the AV-

1 (i.e., TCP-SYN flood) action following DYN-PW-1, which have a peak of 200 packets

intervals with silences according to Equation 4.1, with a scalar parameter of 0.02. The

action of the attack vector was initially captured simultaneously with Youtube activity,

and later in isolation. 116

A.5 Gradient-boost(i.e., GDB19) classification performances over samples obtained from the

AV-3 (i.e., GRE flood) action following DYN-PW-1, which have a peak of 200 packets

intervals with silences according to Equation 4.1, with a scalar parameter of 0.02. The

action of the attack vector was initially captured simultaneously with Youtube activity,

and later in isolation. 116

x

A.6 Gradient-boost(i.e., GDB19) and Adaboost(i.e., ADA13) classification performances over

the same samples obtained from the AV-1 (i.e., TCP-SYN flood) action following DYN-

PW-3, which have a peak of 100 packets intervals with silences according to Equation 4.1,

with a scalar parameter of 0.02. 117

A.7 Gradient-boost(i.e., GDB20) and Adaboost(i.e., ADA14) classification performances over

the same samples obtained from the AV-2 (i.e., TCP-ACK flood) action following DYN-

PW-3, which have a peak of 100 packets intervals with silences according to Equation 4.1,

with a scalar parameter of 0.02. 117

A.8 Gradient-boost(i.e., GDB21) and Adaboost(i.e., ADA15) classification performances over

the same samples obtained from the AV-3 (i.e., GRE flood) action following DYN-PW-3,

which have a peak of 100 packets intervals with silences according to Equation 4.1, with a

scalar parameter of 0.02. 117

A.9 Gradient-boost(i.e., GDB22) and Adaboost(i.e., ADA16) classification performances over

the same samples obtained from the AV-4 (i.e., DNS-query flood) action following DYN-

PW-3, which have a peak of 100 packets intervals with silences according to Equation 4.1,

with a scalar parameter of 0.02. 117

A.10 Gradient-boost(i.e., GDB18) and Adaboost(i.e., ADA12) classification performances over

the same samples obtained from the AV-1 (i.e., TCP-SYN flood) action following DYN-

PW-3, which have a peak of 100 packets intervals with silences according to Equation 4.1,

with a scalar parameter of 0.02. 118

A.11 Gradient-boost(i.e., GDB18) and Adaboost(i.e., ADA12) classification performances over

the same samples obtained from the AV-2 (i.e., TCP-ACK flood) action following DYN-

PW-3, which have a peak of 100 packets intervals with silences according to Equation 4.1,

with a scalar parameter of 0.02. 118

A.12 Gradient-boost(i.e., GDB18) and Adaboost(i.e., ADA12) classification performances over

the same samples obtained from the AV-3 (i.e., GRE flood) action following DYN-PW-3,

which have a peak of 100 packets intervals with silences according to Equation 4.1, with a

scalar parameter of 0.02. 118

A.13 Gradient-boost(i.e., GDB18) and Adaboost(i.e., ADA12) classification performances over

the same samples obtained from the AV-4 (i.e., DNS-query flood) action following DYN-

PW-3, which have a peak of 100 packets intervals with silences according to Equation 4.1,

with a scalar parameter of 0.02. 118

xi

Glossary

ABIDS Anomaly-based Intrusion Detection
System

API Application Programming Interface
AUC Area under the curve
AI Artifficial Intelligence
CPU Central Process Unit
CEO Chief Executive Officer
C&C Command and Control
CERT/CC Computer Emergency Response Team

Coordination Center
DM Data Mining
DPI Deep Packet Inspection
DoS Denial-of-Service
DDoS Distributed Denial-of-Service
DNS Domain Name System
FPR False Positive Rate
FTP File Transfer Protocol
GMM Gaussian Mixture Model
GRE Generic Routing Encapsulation
GUI Graphical User Interface
HMM Hidden Markov Model
HTTP Hypertext Transfer Protocol
HTTPS Secure Hypertext Transfer

Protocol (HTTP)
ICO Initial Coin Offering
ICMP Internet Control Message Protocol
IoT Internet of Things
IP Internet Protocol
IRC Internet Relay Chat
ISP Internet Service Providers
IPX Internetwork Packet Exchange
IDS Intrusion Detection System

IPS Intrusion Prevention System
ML Machine Learning
MLP Multi-Layer Perceptron
NMS Network Management System
NN Neural Networks
OvA One-versus-All
OvO One-versus-One
OSN Online Social Network
OSI Open Systems Interconnection
OS Operating System
OCR Optical Character Recognition
PBFS Packet-Based per Flow State
PCA Principal Component Analysis
POC Proof of Concept
QoS Quality of Service
RAM Random-access memory
ROC Receiver Operating Characteristic
SPI Shallow Packet Inspection
SPoF Single Point of Failure
SMTP Simple Mail Transfer Protocol
SNMP Simple Network Management Protocol
STOMP Simple (or Streaming) Text Oriented

Message Protocol
SaaS Software as a service
SVM Support Vector Machine
SPAN Switch Port Analyzer
TAP Terminal Access Point
TTL Time to live
TCP Transmission Control Protocol
TPR True Positive Rate
UDP User Datagram Protocol

xiii

CHAPTER 1
Introduction

When one thinks about a typical corporate organization structure, the physical layer, involving
not only the network topology but also the surrounding built environment, and social domain
comes quickly to mind. Usually, both physical and social domains follow an explicit hierarchy,
where each layer or constituent, respectively, has a set of well defined objectives. Those
when aggregated, allow the enterprise to reach their goals, ensuring the correct execution
of the internal operations, allowing to maximize the availability of services that it exposes.
Following the pyramid hierarchy of the social stratum, the greater the distance to the peak is,
the fewer responsibilities are associated with the elements that characterize it, and the more
unpredictable and susceptible to failure are. On the contrary, at the physical level, including
constructions and equipment of the various sectors, they are highly inflexible, and arranged
according to a set of rigorous criteria and policies. These aim to make the most of it without
compromising the safety and conscience of all the subdivisions of the physical hierarchy.
Typically, with the increased business scale the greater the exposure of the corporation and
invariably more rules need to be applied in both social and physical domain. However, it is
increasingly difficult to manage the broad base of the social domain pyramid, not only at the
access control level but also at secrecy and activities within the corporate environment.

Transversal to all industries in the tertiary sector of the economy, and independently of
the protocols and management of policies that are typically empowered in the physical layer
to fill the gaps inherent in the conjugation of the human with the machine, the social domain
continues to be the most conducive to subversion. Appealing to cognitive bias through notable
techniques of social engineering, the presence of anomalies, sooner or later will be reflected in
the orchestration of physical resources. Tipically this leads to the divergence from the general
workflow of the company and subsequent scope and propensity to capitalize. Human behavior
represents the most exploited point of failure and also constitutes the access layer for a set of
threatening attack vectors which compromise part of the corporation’s physical structure and
sustainability. Different companies are characterized by distinct risks and threats inherent in
either market competition, poor planning and management of physical domains, or even by

1

adapting to current technologies that provide long-term support. These digital assets have
evolved so fast that they now represent a preponderant role in any company. Since they
simplify the work in such a way that allows its execution in a faster, intelligent and more
secure way providing tangible and intangible benefits. Nonetheless, technology is heavily
reliant on the internet to deliver all of its features to the fullest, which is also very prevalent
in corporate environments. Many businesses trust in these two areas their scope subsequent
income. Nowadays with cloud advent, it is very difficult to imagine how any business can
operate and thrive without the use of the Internet. The digital interconnection of the world is
discussed in Section 2.1, along with the dominance of the Internet in the business circle, also
highlighting the influence of the resources availability.

Given the constant growth of the power of digital devices and their preponderance mainly in
the labor environment, technological advance means changes and opportunities, which always
assume a dubious result. Such changes may reflect improvements in well-being in general, or
highly abused against the availability of some service or infrastructure, as discussed in Section
2.3. This type of offensive is generally punished by justice, because the motivations are mostly
driven by bad faith and the intention to cause damage. However in some cases, despite the
inherent consequences of these incidents, are used as a form of protest and expression of public
opinion, as detailed in Section 2.3.1. Furthermore, is described the categories and implicit
attack vectors that make this topic so current and frequent sustained by the history and most
important milestones in Section 2.4.

Highlighting the importance of such threats, it is mandatory to report the set of re-
quirements and modules present in any defense system, that broadly aims at increasing the
security, integrity and availability of a network. With this in mind, the focus is shifted to the
topic of machine learning, discussed in Section 2.9. It is excessively dissected these days [1],
largely because of the large amount of data present in any sector, which has contributed to
the remarkable advances. These are particularly great in image and language recognition,
which in general allow them to surpass human levels of comprehension. This area, when
integrated in scope of detection, has the margin to raise the bar of detectability and awareness
to traditionally unreachable levels.

The work developed on this dissertation proposes a source-end solution, based on a set of
methodologies, strategies and requirements, which tries to detect corporate network anomalies.
The advantages of machine learning techniques strongly encourage its use, allowing to infer
subtle patterns of activities and services present in the business environment, identifying
their normality or abnormality, according to typical behavior. By evaluating activities in the
past, allows to identify patterns in the future. Based on this paradigm, it is possible to raise
the level of awareness of the internal security of the corporate network, and maintain the
normal workflow. This approach prevents the channeling resources and operations to areas
that do not aim at productivity and revenue. The work developed in this dissertation includes
variations of the stealth degree of several attack vectors used in the recent past. Analyzing
in depth the flexibility of the solution, as mentioned in Section 3.5.2, allows to delineate a
detectability range of anomalous behaviors.

2

This dissertation was developed at IT - Institute of Telecommunications at University de
Aveiro, where the workspace and all the necessary conditions were kindly provided.

3

CHAPTER 2
Contextualization and State of Art

Corporations have increasingly relied on the Internet to provide the one set of services. This
dependency creates an opportunity on a crucial point of any business as it typically holds the
largest source of income. Usually, current corporate environments focus excessively on defense
against external threats, devaluing the awareness of the internal network, which in the presence
of anomalies drives the resources inherent to the business against the availability of the services
of another corporate entity. In this chapter, an overview of the currently distributed denial of
service attacks is presented, along with the consequences on the economy and reputation of all
the stakeholders. It also reviews some requirements on the development of defense solutions,
as well as the use of machine learning techniques given the increasing amounts of monitoring
data, extends the margin of progression of these systems, providing levels of reliability and
detectability hitherto unattainable.

2.1 Business Dependence on the Internet

The new era of the 21st century is dominated by exponential growth of connectivity in the world.
Following a bottom-up approach, everything is connected to the Internet, from the pocket,
through homes, to corporations. Mobile as 7th mass media, nowadays, guarantees access to
applications, services and multimedia content, mainly through an Internet connection. The
dependence on network operators no longer prevails, and currently mobile devices represent
only a means of access to the Internet, and to all the services that it makes available. Shifting
the focus to the home environment, there is a step growth of Internet of Things (IoT) devices,
such as televisions, home cameras, sensors, which, in order to provide all of their functionality,
also depend on an internet connection. Owing to this advance of the technology and Internet
improvements, corporations felt the need to keep up with the era and create dependence on
the Internet as a way to provide their core business operations and to reach every corner
of the world economy. Yet, despite the openness of the network, connectivity, and the ease
of providing services over the internet, it can also be a double-edged sword creating new
and unfamiliar vulnerabilities to enterprise business processes. Increasingly, companies are

5

aware of the risks and threats inherent in the increasing reliance on the Internet. In addition
to tackling the gaps in Internet design and protecting the operations of various adversities,
most companies tend to implement security policies at a variety of levels, from security to
physical level, to the personal level, to the level of communication and network up to the level
of information. To ensure business continuity, these last two layers are the most important.
Security at the network level is a process designed to protect the usability and integrity of the
corporate network and data. On the other hand, information security1 is a set of practices that
aim at a balance between a triangulation consisting of three fundamental security concepts:
confidentiality, integrity and availability(CIA)2. Most of the organizations follow these to
guide policies for information and services security within them. The confidentiality relies
on the principle of "least privilege" which states that only the minimum access necessary
should be granted for the least possible amount of time to perform an operation [2]. Thus,
confidentiality is a component of privacy which can be implemented by limiting the access
to a critical service or sensitive information allowing only the access by authorized entities.
Integrity is concerned with the maintaining of consistency and trustworthiness of data over
its entire lifecycle. This concept ensures that the data must not be changed whenever is in
transit or stored [3]. It also prevents unauthorized users from making intentional pr accidental
improper changes compromising the information integrity along with subsequently value and
veracity. The last face of the triangle - availability - ensures that information and resources
must be accessible to those who are authorized and need them.

This crucial concept is the most comprehensive of all, and can be transposed to another
layer. More than ever, companies are converging to a point of total dependence between the
availability of their resources and the ability to monetize, protect revenue, ensure employee
productivity, and provide an excellent end-user experience. With the advent of cloud computing
there is a worldwide influence to shift services to the cloud, supported by the various benefits
it offers to organizations, mostly economic. For instance, Google Docs is one of the Software
as a service (SaaS) that Google provides, where there is a total reliance on the software’s
availability in the cloud and the internet infrastructure’s availability. Similarly to a landlord
who rents an apartment, tenants depend on the elevator’s availability and stairs to access
the apartment, illustrating the service provided, but also the availability of access to the
building in general, exemplifying the internet. Thus, providing solid and uninterrupted services
strengthens customer relationships, while in addition to increasing trust and loyalty to them,
it increases its satisfaction and therefore the good name’s proliferation and corporation’s
reputation. Hereupon, companies that rely on these availability-sensitive services are constantly
threatened by cyber criminals executing availability targeted attacks [4]. Such attacks are
often named Denial-of-Service (DoS).

1Also known as InfoSec
2Also referred as AIC triad

6

2.2 Denial-of-Service

Usually, the concepts of denial-of-service and denial-of-service attacks are wrongly considered
as equal. They are two completely different concepts where the first one refers to an event
or situation and the second refers to an intent-driven illicit act. However, this intent may
be the denial-of-service and, following this way, they share a causal relationship, where the
former comes as an effect caused by the latter. According to [5], a "Denial-of-Service (DoS) is
an event or a situation, in which a legitimate client cannot access the requested service to
which the client is entitled to and which should be available". In its turn, a DoS attack is a
malicious attempt by an attacker to disrupt online services of a service provider (server) and
to make it unavailable to its legitimate users (clients), as reported by [6]. In addition to the
relationship, this is actually, an availability problem in a client/server environment, where the
number of targets or attackers are irrelevant once the single purpose of te attack must be to
cause a denial-of-service. However, there are other attacks that may cause DoS situations
as a side effect which we can’t conclude about its intentionality, hence, characterize what
can be or not a DoS attack. For instance, due to the explosive growth of the cryptocurrency,
bitcoin and everything associated with it has hit peak commercial popularity which led to the
emergence of countless cryptocurrency mining virus [7].

These malwares(e.g., WannaMine [8]) are designed to mine a specific cryptocurrency adding
the respective currency to a digital wallet belonging to their creators. The underlying mining
process is carried out by trying to make maximum use of the Central Process Unit (CPU)
and Random-access memory (RAM) placing the computer under great strain as well as trying
to spread across the network which can cause a DoS situation. Thus, these attacks cannot be
characterized as DoS attack once the primary functions of cryptocurrency malwares are to
mine and propagate. It is entirely plausible to assume that this kind of malicious software
may led to DoS incidents, but there must be a clear conceptual separation between true DoS
attacks and side effects of other attacks.

A deliberate DoS attack occurs when the victim receives a malicious stream of packets,
sent by an attacker which has as objective to exhaust some key resource, denying its service
to the victim’s legitimate clients [9]. Figure 2.1 depicts a typical denial-of-service attack
scenario in which a single attacking machine A sends a set of consecutive packets to victim
V, preventing them from providing their service to legitimate clients C1 and C2. Usually,
attacker don’t use their own machines to perform attacks, increasing the difficulty to traceback
and avoiding being discovered. So machine A is, in this scenario, an agent machine, a device
compromised by the attacker who involuntarily participates in these attacks.

7

C1

C2

A

Internet

V

Figure 2.1: Denial-of-service attack scenario [10]

The victim resource could be exhausted performing an attack by exploiting some vulnera-
bility in the software running on the victim side(vulnerability attacks) or by simply sending
a huge amount of unexpected traffic which victim cant handle(flooding attacks). No matter
the attack vector and its exhaust method, the effect will be the same, and in the absence of
effective defense mechanism, it lasts for the entire duration of the attack. Once the attack
is aborted, if there is no hardware constraints as result of the attack, the resource should
be able to recover, coming back to be available for those who need it. However, depending
on the attack vector, the denial-of-service effects can range from slight increases in service
response time to complete inaccessibility which commonly provoke financial implications on
the organizations that are heavily reliant on the availability of their service. For example,
Amazon [11] calculated that a page load slowdown of just one second could cost it $1.6 billion
in sales each year [12]. So, if a minimal slowdown can cause a loss of revenue with this
dimension, we can infer a direct and exponential relationship between availability and impact
in the financial sector of corporations and that’s why DoS incidents are a major concern to
enterprises nowadays.

2.3 Distributed Denial-of-Service (DDoS) attacks

Mirkovic et al. [9] defined a DDoS attack as an association of multiple machines, each one
deploying a DoS attack towards one or more targets. However, this definition fails to include
the aspect of coordination between the attacking hosts, which is one of the three fundamental
characteristics of a DDoS attack. The second feature is a requirement in that must exist
more than one source serving as attack platform, to perform it. Likewise, this platform is
composed of a set of agents machines which are compromised devices that unwitting provide
its resources. Otherwise, without this platform, it would not be categorized as a DDoS attack
but rather as a DoS that refers to the third characteristic: DDoS attacks are a subset of
DoS attacks. It inherits the motivation, some features and amplifies the effectiveness of DoS
significantly, increasing also the complexity of defense problems [13]. Briefly, a distributed
denial-of-service attack is large-scale, coordinated attack on the availability of services of a
victim system or network resource, launched indirectly through many compromised devices
on the Internet, as stated in [14], [15].

8

It is important to notice that, rather than the concept of denial-of-service there is no
notion of distributed denial-of-service, once the service, as a whole, can be denied and therefore
cannot be distributively denied, unless it follows a distributed architecture. There must only
exist the concept of distributed denial-of-dervice attack.

Figure 2.2 shows the most frequently used scenario where the attack platform is constituted
by two machines, A and B, which simultaneously starts generating a set of consecutive packets
to victim V, preventing them from providing their service to legitimate clients C1 and C2.

C1

C2

A

Internet

V

B

Figure 2.2: Distributed denial-of-service attack scenario [10]

Despite the different scenarios, there are three important features that characterize attack
of this nature:
• Use of Internet Protocol (IP) source spoofing

Generally, attackers use source address spoofing during the attack by forging the
information in IP source address field in attack packet headers. This is a common
practice that is cross-sectional to DoS and DDoS attacks with a set of advantages
associated with each. One of the benefits that attackers receive from IP spoofing is that
it makes extremely difficult to trace the agent machines. Thus, since there is a very
low risk of being traced, stored information(i.e., access logs) cannot help to locate the
attacker himself or even facilitates this process. This is a major fact that encourages
substantially the occurrence of denial-of-service incidents once enables the attacking
party to avoid accountability for the attack [16]. Besides that, hiding the identity of agent
machines enables the attacker to reuse them for further offenses. Furthermore, in DDoS
scenarios, once there are a significant number of devices each one producing packets with
respective fake source IP address they appear as if they come from disparate sources.
Thus, straight-forward solution to resource overloading problems such as fair-sharing
techniques is ineffective against DDoS attacks, given the vast number of IP addresses.
The other benefit that IP spoofing allows to the attackers use attack vectors even more
sophisticated(i.e., reflector attacks).
• Similarity of attack to legitimate traffic

Attackers tend to obscure the malicious flow within legitimate traffic by generating
legitimate-like packets. Besides that, they also use the patterns of flash crowds3 causing

3Legitimate user’s traffics

9

attack traffic to be perceived as legitimate user’s traffic [17]. Thus, since malicious
packets do not stand out from legitimate ones, it is extremely hard to sieve legitimate
from attack traffic based purely on examination of individual packets. In order to
differentiate traffic, a profile of the legitimate one must be created through inferred
patterns(e.g.,statistical patterns) that when intersected with attack traffic allows finding
deviations and correlations which demarcate DDoS attacks from flash crowds [18].

• Wide number of agent machines Typically, the effectiveness of an attack can be
predicted according to its number of agent machines, since there is a direct proportionality
between the two variables. There is a steady increase in the ability for attackers to easily
deploy large DDoS attack networks, which nowadays, continue to outpace available
bandwidth in most cases[19], allowing the victim’s resources to be overloaded, making
the attack effective. In addition, with a large number of agents, even if traceback could
be successfully performed in the face of IP spoofing, it is difficult to take a decision
against thousands of agents. Thus, a large number prevents any automated responses
aimed at stopping attack flows between the source and target, since even if a agent
machine is disabled there are hundreds or thousands, that can proceed with the attack.

2.3.1 Attack Motivation

DDoS attackers are usually motivated by various reasons. Historically, ideological hack-
tivism [20] has commonly been the top motivation, however, things have changed. Actually,
according to Arbor Reports [21]–[23] for two consecutive years, gaming is the leading impetus.
With a slight difference of 1.4% arises the criminals which demonstrate its attacks capabilities
and its attack vectors pool followed by criminal extortion attempts rounding out the top three
motivations, as illustrated in Figure 2.3.

Figure 2.3: DDoS attacks motivation [23]

However, despite the smaller percentage are also important attacks motivated by ni-
hilism/vandalism that according to the same source has been at the top for the last 5
years [24]. It is also important to note that some DDoS attacks are being used as a distraction,
acting like a smokescreen [25], for either malware infiltration or data exfiltration and that this

10

method has been growing significantly. The fact that one of the main motivation is related to
the intellectual challenge is worrisome in that it is an indicator of the ease with which DDoS
attacks can be acquired and executed increasing the seriousness of the availability’s problem
of Booters/Stressers4 services [26].

2.3.2 Internet Characteristics

Typically, the attacking machines are geographically-distributed connected by the Internet
which is the mainly reason that makes the DDoS attacks so powerful. They take advantage
of the Internet architecture, which it rests on a principle that aims at functionality at the
expense of security. It provides fast, simple and cheap mechanisms enforced with various
higher-level protocols that ensure reliable timely delivery of messages with certain level of
Quality of Service (QoS).

Internet design follows two principles: best-effort service and end-to-end paradigm. The
first one enable the conception of numerous transport protocols on top of the IP to provide
various performance guarantees(e.g., Transmission Control Protocol (TCP) for reliable deliv-
ery) [27]. The last one enables end users to manage their communication according to their’s
desired service guarantees, allowing to add complexity and functionalities on the Internet
edges, by using new protocols while the intermediate network remains simple and efficient and
it only needs to deliver IP packets without needing to understand services above the network
layer. In this context, problems arise when one of the endpoints becomes malicious and acts
to damage the others endpoints violating the end-to-end protocols and providing no more
guarantees. The end-to-end paradigm allows to passively continue forward packets to the
destinations, overwhelming the victim’s resources, once it prevents the intermediary network
from policing or taking action on traffic from the malicious endpoint. The Internet design
opens several security issues and creates opportunities for denial-of-service incidents [15], [28]:
• Internet security is highly interdependent

DDoS attacks are commonly launched from several points on the Internet that are
external to the victim’s own system or network which were subverted through security-
related compromises. Regardless of victim’s security system, it is always susceptible to
DDoS attacks as it depends on the state of security in the rest of the global Internet[29].
• Internet resources are limited and the power of many is greater than the
power of few

Each Internet entity (e.g., host, network, service) has limited resources(e.g., band-
width, processing power, storage capacities) that can be consumed by too many users.
Thus, in the absence of defense mechanisms, every DDoS attack with a sufficiently large
pool of agents will always be detrimental if its resources are greater than victim’s those.
• Intelligence and resources asymmetry

As a consequence of the end-to-end communication paradigm, all logic and complexity
are located at endpoints allowing to limit the amount of processing in the intermediate

4Also known as DDoS-for-hire services

11

network so that packets could be forwarded quickly and at minimal cost. To accomplish
that, intermediate network needs high bandwidth pathways while edge networks, once it
provides services to fewer customers, only invest in bandwidth according to its necessities.
Thus, malicious clients can misuse the bountiful resources on the intermediate network
to delivery a huge amount of messages to a victim.

• Accountability is not enforced
As stated in 2.3, it is erroneous assume that the source address field in an IP packet

is the IP address of the machine that originates the packet. This gives attackers a
powerful mechanism to escape accountability for their actions[30].

• Decentralized Internet Management
As described in [31], the Internet is an aggregation of numerous networks which

are interconnected and assumes a behavior according to its local policies by its owners.
Due to the lack of central control, there is no way to enforce global deployment of
a particular security mechanism or policy, and due to privacy and other commercial
concerns network service providers generally are reticent to provide detailed information
about the traffic patterns within their networks.

2.3.3 DDoS Modus Operandi

A distributed denial-of-service is carried out in several phases. These stages follow a pipeline
architecture, having a high dependency between the phases. Regardless of the agent machines’s
architecture, it is possible to enumerate 4 generic phases:

1. Selection of agents
The attacker looks for machines that it can compromise. To maximize the yield,

there are some requirements that play an important role in the process of choosing
machines. Usually, the attackers tend to victimize devices which have good connectivity,
abundant resources and are poorly maintained, so that a powerful attack stream can
be generated. Typically, in the early years, the attempt to acquire control of agents
machines were a manually process, however, with the development of advanced scanning
tools this process has become automatic, easier and immediate [31].

2. Compromise
To compromise the selected agents, the attacker exploits security holes and vul-

nerabilities of the selected agents and deploy the attack code. Nowadays, often this
stage is merged with the above one, where a single program5 assume 3 distinct primary
functions [32]: scanning, exploitation and deployment, executed by the respective order.
Firstly the program needs to look for vulnerable devices on a specific network. After
identifying them, you must commit them and establish a connection with a Command
and Control (C&C) server reporting the acquisition of a new agent. Finally, the program
must deploy the malicious code.

Despite this life cycle, these sophisticated types of software contain also automated
tools for covering tracks, preventing the identification and deactivation by erasing all

5Also known as worm

12

the logs which show malicious activity and destroying any others evidence that could
incriminate the attacker.

3. Communication
In order to initiate the attack, the attacker needs to communicate with each agent to

conclude about its availability to be active part of the attack. This communication can
be via various protocols such as Internet Control Message Protocol (ICMP), TCP, User
Datagram Protocol (UDP) or Hypertext Transfer Protocol (HTTP)/Secure Hypertext
Transfer Protocol (HTTP) (HTTPS).

4. Attack
In the absence of a schedule on the attack source code, the attacker needs to

communicate with each agent in order to initiate the malicious action by setting up the
last details such as the selected attack vector, IP’s, port numbers, Time to live (TTL),
etc.

The scope of this dissertation focuses only on the last phase. The scenario is at the organiza-
tional level, but it is assumed that the internal device is already infected, compromised, and
carries a set of attack vectors prepared to overthrow an outside entity.

2.3.4 Botnet based DDoS attack architecture

Often, the agents machines6 presented on every DDoS attack share a relation between
them once they are controlled, directly or indirectly, by an attacker, making use of agent’s
modest capabilities to overload the victim’s resources thus contributing to their goal. This
operation mode gave rise to the concept of botnet, which compromises a network of machines
with malicious programs, implement under a Command and Control (C&C) management
infrastructure and carry out the attack. Similarly, botnets derive their power by scale, both in
their bandwidth, reach and in their ability to cause disruption [33]. Botnets are not exclusive
to distributed denial-of-service attacks, they can carry other types of attack, or simply make
use of participants resources to perform malicious activities such as cryptocurrency mining as
recently reported by [34]. These collections of bots spread over the Internet are getting larger
at a high rate, and according to the logic associated with each slave, it can assume different
functions on the botnet architecture. Botnet based DDoS attacks are generally launched using
three basic models:
• Agent-Handler Model

In this model, as shown in Figure 2.4, there are four participants: (i) the master
or the attacker, (ii) the handlers, (iii) the agents and the (iv) victim. The first entity,
i.e., the attacker initially attempt to compromises some devices in a network to bring
them under his control. The handlers, in turn, include some malicious software residing
on remote machines that are used by the attacker providing an indirect means of
communication to command and control the agents . As stated before, it is common for
an attacker to launch a DDoS attack from the handlers creating one or more abstraction

6Also known as bots, zombies, slaves, agents, demons

13

layers which prevents to trace the attack back to the attacker. The agents are a set
of compromised machines that are responsible for performing the attack. Finally, the
victim is the final endpoint or it may be a group of target machines [35]. The operating
mode is similar to that described in Section 2.3.3 where the attacker communicates with
any of the handlers to identify operational agents and schedule the attack. Depending on
the configuration of the DDoS attack network, agents can be instructed to communicate
with one or multiple handlers in order to facilitates the commands proliferation process
also preventing the existence of Single Point of Failure (SPoF).

Figure 2.4: Agent-Handler Model

• Internet Relay Chat (IRC)-Based Model
The architectures of the IRC-based DDoS attack as shown in Figure 2.5 and of

the agent–handler model are almost similar. However, instead of the communication
between the attacker/master and the agents being mediated through a layer of handlers,
it is carried out through an IRC communication channel. The internet relay chat is a
text-based chat system that organizes communication in public channels allowing users
to communicate without performing any authentication. Thus, once installed in the
agents, the bot will automatically join a specific IRC channel on an IRC server, and
wait for further instructions [36]. Although it is a simple process, with low latency and
provide communication advantages as well as the identification speed of available agents
and the usage of legitimate ports, it is not a scalable architecture and creates a SPoF
since it has a centralized C&C model [37].

14

Figure 2.5: IRC-Based Model

• Web-Based Model
In the past years, web-based models have emerged and rapidly were adopted as

preferred platform for botnet command and control. A web-based botnet is a botnet
whose C&C server and bots use the most universal and supported network protocol i.e.,
HTTP, to communicate with each other. The C&C procedure is simple, requiring only
the existence of a web server, where each agent acts as a web client, making mostly GET
and POST requests. Due to HTTP offers many advantages since, nowadays, the HTTP
traffic is the most popular Internet traffic so that botnet traffic can be easily concealed
within normal HTTP traffic, making these botnets more difficult to be discovered in
relation to the ones that use other protocols less used today. Generally, most network
firewalls/proxies allow hosts behind them to access Internet via the HTTP and HTTP
over SSL/TLS7 using legitimate ports: 80 and 443 respectively [38]. Thus, web-based
botnets can easily provide stable, qualified and scalable client-to-server communication
model(e.g., Spyeye [39], Zeus [40]). Despite all the advantages, with the abrupt growth
of Online Social Network (OSN) [41] and the ease of creating fake profiles without an
associated cost, attackers tend to use these platforms as a means of communication to
command and control agents which usually, just need to visit periodically a specific
profile on a social network(e.g., Facebook, Twitter, Tumblr), parse the HTML page and
process the posted commands [42], [43].

2.3.5 DDoS attacks categories and vectors

DDoS attack vectors vary significantly, and cybercriminals are constantly using a number of
different techniques, evolving their methodologies to implement DDoS attacks that disable or
overload the target business’s IT infrastructure by evading the recent defense mechanisms.
Despite the various taxonomies of DDoS attacks [9], [28], [44] and its inherit metrics like
the degree of automation, exploited vulnerability, source address validation, possibility of
characterization, attack rate dynamics, impact on victim, victim type, etc, it is possible to
classify DDoS attacks based on the type and quantity of traffic used for the attack and the
exploited target’s vulnerability. Keeping present that all the categories are botnet-based, it is

7Also known as HTTPS

15

possible to obtain 3 groups that are already widely profiled and accepted as standard [21],
[45]–[47]:
• Volume-Based Attacks

In volume-based (or volumetric) DDoS attacks, the attackers send a high amount of
traffic, or request packets, to a targeted corporate network in an effort to overwhelm
its bandwidth capabilities. This type of attacks does not exploit any vulnerability8, it
just floods the victim with a sheer quantity of traffic that victim can not flow, blocking
completely the access to the end-resource(e.g., website, service). According to Arbor
Networks [23], volumetric attacks are by far the most common type of DDoS attacks,
dominating with 75.7%. The most common attacks for this category are:
– UDP Flood

UDP is a connectionless protocol that uses datagrams embedded in IP pack-
ets for communication without needing prior packet switching in order to setup
communication channels between two hosts [48]. An UDP flood attack, abuses
normal behavior at a high enough level to cause congestion for a targeted network.
It consists of sending highly-spoofed UDP small packets at a high rate to random
ports on the victim’s system using a large range of sources IP’s. This causes
the host to repeatedly check for the application listening at that port, and when
no application is found reply with an ICMP ‘Destination Unreachable’ packet
consuming all of its bandwidth. This process exhausts host resources, which can
ultimately lead to its inaccessibility [46].

– ICMP Flood
The ICMP, analogously to UDP is a connectionless protocol, based on the IP

protocol and is used to diagnose network status (like when a datagram cannot
reach its destination) [49]. In a ICMP Flood attack, attackers send highly-spoofed
ICMP echo requests9 at large enough volumes to flood a network [50]. Most devices
on a network will, by default, attempt to respond with ICMP Echo Reply packets
and the combination of traffic will saturate both outgoing and incoming bandwidth,
resulting in a significant overall system slowdown.

– Domain Name System (DNS) Amplification
According to the giant of the Internet(i.e., Cloudflare) [51], in a reflection-based

volumetric DDoS attack, attackers leverage the functionality of open DNS recursive
servers in order to overwhelm a target or network with an amplified amount of
traffic. It exploits vulnerabilities in DNS servers to turn initially small queries into
much larger payloads i.e., a small amount of traffic can be used to generate gigabits
of traffic, rendering the server and its surrounding infrastructure inaccessible. In
this type of attack, traffic is generated indirectly, making use of open DNS servers
and the IP spoofing feature causing the victim to be inundated with packets from
these servers.

8Also known as non-vulnerability based attacks
9Also known as "pings"

16

As illustrated in Figure 2.6, the attackers identified by the IP A and B spoof
target server IP address and send DNS requests to open DNS resolvers on the
Internet. Each request is an UDP packet, often sent along with the “ANY” argument
in order to receive the largest response possible. After receiving the requests, the
DNS resolvers, which are trying to be helpful by responding, sends a large response
to the spoofed IP address. These responses are reflected and amplified by a large
factor as compared to the requests.

Figure 2.6: DNS-based volumetric reflection attack

For example, if a DNS server receives a 60 bytes EDNS10 query, the response
may be approximately 4350 bytes, resulting in an amplification factor of 73 [13].
It is easy to see that with the increase of the botnet’s size, it is easy to generate
several gigabits of traffic per second (Gbps), which ultimately will clogging the
target network causing a denial-of-service.

– UDP-based memcached
Memcached is a system meant to cache data and reduce the strain caused by

memory intensive services(i.e., disk or databases). Memchached can have both
UDP and TCP listeners, with the particularity that these servers expose their
UDP port (i.e., 11211) to external connections by default, meaning that any of
these servers are not behind any firewall. Due to this and the fact that requires
no authentication, when merged these conditions with the facility of falsifying
UDP, it makes this service vulnerable to be used as a reflector. Furthermore,
this vulnerability in the UDP protocol implementation of memcached servers, it
also allows amplifying incoming packets with a factor of over 50,000, according to
Cloudflare [52]. For example, as the enterprise cited, they were targeted for an
attack of this type, where attackers sent 15 byte packets and memcached servers
responded with 750000 byte packets in return. Recently, the world’s first search

10EDNS stands for Extended DNS

17

engine for internet-connected devices(i.e. Shodan) [53] exposed to the internet
more than 105,000 memcached servers, which can be abused for this type of DDoS
attack.

• Protocol Attacks
In protocol DDoS attacks11, the attackers exploit weaknesses in the Layer 3 and 4

of the Open Systems Interconnection (OSI) conceptual model, present in Figure 2.7:

Application

Presentation

Session

Transport

Network

Data Link

Layer 7

Layer 6

Layer 5

Layer 4

Layer 3

Layer 2

Layer 1 Physical

Figure 2.7: OSI Model

Protocol attacks consume all the processing capacity and memory of the attacked-
target or intermediate critical resources like routers, firewalls, Intrusion Prevention
System (IPS), Intrusion Detection System (IDS), load balancers, application servers
causing service disruption [54]. Compared to the previous category differs in operating
mode: instead of consuming the available bandwidth and congesting the network, it
consumes the available resources. It also contrasts in how the target is crippled, i.e., the
idea of a brute-force straightforward implementation is abandoned, where the target is
flooded with several gigabytes of traffic, passing to an implementation that is based on
the flaws that exist in some protocols allowing the consumption of resources available in
the target host as well as the connection state tables. Finally, it differs by magnitude
from bits per second to a higher level, packets per second(Pps). According to Arbor
Networks [23], 11.8 % of the attacks belong to this category, where the most common
examples of a protocol-based DDoS attack are:
– TCP SYN Flood

TCP SYN attacks exploit the inherent weakness of the three-way handshake
involved in the TCP connection setup. Under normal conditions, as shown in
Figure 2.8, there must be accomplished three distinct processes to establish a TCP
connection:

11Also known as TCP State-Exhaustion Attacks

18

Figure 2.8: TCP three-way handshake

1. SYN - The application A sens a "SYN"(synchronize/start) packet to the
application B in order to initiate the connection

2. SYN/ACK - The application B than responds to that initial packet wih a
"SYN/ACK" packet, in order to acknowledge the communication

3. ACK - Finnaly, the application A returns an "ACK" packet to acknowledge
the receipt of the packet from the application B.

After the three packet’s sequence concluded successfully, the TCP connection is
open and the application A and B are able to send and receive data. To create
denial-of-service, an attacker exploits the fact that after an initial SYN packet has
been received, the other application will responds back with one or more SYN/ACK
packets regardless of the first SYN packet authenticity [55]. During the SYN flood
attacks, represented in Figure 2.9, the attacker sends a high volume of SYN packets
to the targeted application, often, depending on the botnet size, with spoofed
source IP addresses. The targeted system, in turn, responds to each SYN packet
and leaves an open port ready to receive the response in order to establish the
TCP connection. While the target waits for the final ACK packet, which never
arrives, the attacker sends continuously more SYN packets, causing the server to
temporarily maintain a new open port connection for a certain length of time,
considered as half-open, and once all the available ports have been utilized the
target will be unable to proceed with its normal operation [56].

Figure 2.9: TCP SYN flood attack

According to Cisco [57], there are three variants of this attack vector: direct
attack, spoofing attack and distributed direct attack. However, given the growth

19

of Internet of Things (IoT) devices12, this kind of attacks are often carried out by
a botnet, acting in a distributed way, making use of the inherent advantages and
therefore increasing the complexity of mitigation.

– TCP ACK Flood
TCP ACK flood 13 is another protocol attack that misuse the TCP. In a

TCP packet, the ACK flag acknowledges received data. However the attackers
send continuously spoofed TCP packets, with the flag ACK set to true, at very
high packet rates without the pre-establishment of a TCP session. Thus, there is
impossible to correlate the received packet with any session within the firewall’s
state-table or server’s connection list. By forcing state-tables to look up and trying
to link these incoming packets to an existent TCP session, it depletes the victim’s
firewall and server resources.

– TCP STOMP flood
Simple (or Streaming) Text Oriented Message Protocol (STOMP) is a simple

application layer, text-based protocol that allows clients communicate with others
message brokers14. Similar to HTTP, STOMP works over TCP, allowing to create
TCP sessions between two parties. TCP STOMP flood attack is a variation of
the ACK flood attack since it is also based on the sending of highly-spoofed TCP
packets with ACK flag set to true [58]. However it has two nuances: in addition
to these packets also switches with packets with the PUSH flag set true, and, the
respective packets are only sent if the pre-establishment of a TCP session exists.
This requirement arose, since after some attacks were developed simple rules, such
as block regular ACK floods, that are accomplished without completing the TCP
connection process. Thus, attackers improved their attack vector, by implementing
an evasion technique, that from obtaining a legitimate sequence number allows
bypassing some of the network security solutions.

– Ping of Death and Smurf attack
Besides belonging to the same category and shares inherent properties, both

attack vectors are classified as historic [59], [60]. Although they have played an
important role in the past, nowadays are considered as solved vulnerabilities and
so no longer prevails. A ping of death attack is characterized by sending packets
larger than the maximum allowable size, causing the targeted machine to crash or
freeze. While correctly-formed ping packets are very small(typically 56 or 64 bytes
in size), IPv415 ping packets may be as large as 65,535 octets [61]. In the near past,
systems were not designed to handle packets larger than this limit, making them
vulnerable to packets above that size. Thus, when a packet is maliciously larger
traverses one or more networks towards a target, the packet is fragmented into
segments, each with a size smaller than the 65,535-byte limit. When the target

12Mostly routers and ip home cameras
13Also known as ACK-PUSH flood
14Program module that translate communication between different protocols
15Stands for IP version 4

20

system attempts to reassemble the fragments into a whole packet, the total size
of its exceeds the size limit and may occur a buffer overflow which can freeze or
crash the target system, preventing it from serving legitimate customers. Although
this attack was mostly carried out through the ICMP protocol, using ICMP echo
requests, there is no dependency between the ping of death and ICMP, and in
fact, any protocol that sends IP datagrams can be exploited as well(e.g., TCP,
UDP, Internetwork Packet Exchange (IPX)). Conversely, in smurf attacks there is
a dependency on ICMP. However, it differs once it is an amplification attack vector
that increases the damage according to the number of devices in the network, by
exploiting characteristics of broadcast networks. Using a simple analogy to clarify
how the attack works, it is possible to define a smurf attack as an employee who in
bad faith due to problems with the Chief Executive Officer (CEO) of the company,
sends an email to all his colleagues, posing as the CEO, asking explicitly to respond
with the personal information to the respective email. In this way, every employee
due to the obligation reflected by the company hierarchy, responds promptly with
their personal information to the CEO’s email, flooding him with unwanted emails.
Transposing to use context, the attack is carried out with the packets falsification
where the source IP address is set to the real IP of the targeted system. These
packets are sent to an IP broadcast address, reaching every host device inside the
broadcasting network, amplifying the attack through a scalar directly related to
the number of networked devices on the network. Each of it receives a request
and responds to the spoofed source address with an ICMP Echo Reply packet
overwhelming the target system, resulting in denial-of-service to legitimate traffic.

– Generic Routing Encapsulation (GRE) Flood
According to Cisco [62], the largest network company in the world which devel-

oped the GRE, specified it as tunneling type protocol that allows the encapsulation
of data packets, from a wide variety of network layer protocol, and routes them
through a tunnel to a destination network over an IP network. On the right side
of the virtual point-to-point, the packet is de-encapsulated by removing the GRE
header previously added, and the payload is parsed. GRE flood [63] attacks are
carried out by sending many GRE packets with a large amount of encapsulated
random data which may lead to computational problems at the target system when
it tries to de-encapsulate them and deal with the payload. This will never happen
once they have no defined rules to handle these chunk of random data, exhausting
the system resources [64].

• Application-Layer Attacks
In Application-Layer attacks, the attackers exploit weaknesses in the layer 7 of

the protocol stack. They target not only the well-known HTTP, but also HTTPS,
DNS, Simple Mail Transfer Protocol (SMTP), File Transfer Protocol (FTP) and other
application protocols, exploiting their flaws. Typically, L716attacks start by establishing

16Stands for layer 7

21

a legitimate connection with the target application server and then exhausts its resources
(e.g., sockets, CPU, RAM, disk/database bandwidth). This process is executed through
requests within this connection, making misuse of inner requests. That misuse can
be concurrent connections, input parameters, session or injections of commands which
trigger several back-end processes and transactions, such as database queries and
Application Programming Interface (API) calls, that due to the resource consumption
disparity between the client making a request and the server responding to the requests
allows without much effort force a denial-of-service situation. Thus, attack vectors
belonging to this category are the most sophisticated and stealthy [23] once they can be
very effective with few machines generating traffic at a low rate sharing properties with
flash crowd events17. It also differs from the other two categories since, with the rise in
the OSI model, the attacks’ magnitude becomes to be measured in requests per second
(Rps). According to Arbor Networks [23], this attack category poses 12.4 % of the all
DDoS attacks, which is mainly characterized by the following attack vectors:
– HTTP Flood The HTTP is the most widely used application protocol on the

Internet [66], being, therefore, an attractive target for attackers. There are two
varieties of HTTP flood attacks, based on the two main methods of it protocol:
1. HTTP GET attack - in this form of attack, as the HTTP method indicates,

multiple coordinated devices send numerous requests to the targeted server,
which usually solicit large assets, that require more computational processing,
such images, and files. When the target server is flooded with incoming requests
and, considering that they have a legitimate HTTP payload, the server is
unable to distinguish normal HTTP GET requests and malicious requests [67].
Thus, the server has to respond generically to all requests, triggering multiple
underlying processes which exhaust server’s resources, making it impossible to
respond to additional requests from legitimate traffic sources.

2. HTTP POST attack - antagonistically, this attack is characterized by sending
multiple POST requests, which carry several data types such as images or form
parameters, which, in order to be drained from the server-side, need to trigger
complex processes such as pushing the data to a persistence layer, most often
to a database. With the arrival of requests and the execution of the required
database commands, the capacity of the target service becomes saturated and
a denial-of-service occurs.

– DNS Flood
Based on the same paradigm as other flooding attacks, a DNS flood attack

target the DNS application protocol by sending a high volume of lookup requests
to a particular domain’s DNS servers, attempting to disrupt address resolution
for that domain. Usually, these multiple requests involve querying for real records
on the domain, mimicking legitimate traffic preventing any implementation of a
priori rules to filter out malicious requests. In this way, DNS servers are easily

17Situation when a very large number of legitimate users simultaneously accesses a popular Website [65]

22

overwhelmed by the high volume of requests, and in the case of corporations that
rely on others for the provision of DNS services, they are indirectly affected by
the attack being compromised the availability of their resources, such as websites,
API’s or web applications, on a particular zone.

– DNS Query Floods
The operating methodology of a DNS query flood attack18 can be explained

using the snowball effect’s analogy. It takes advantage, subtly, the resources of
each agent machine, sending few requests, ultimately the snowballing number of
queries will relentlessly torture and collapse the targeted server. Typically, these
queries contain nonexistent randomly generated prefixed subdomain in order to
pass straight through to the authoritative servers, which are, in fact, the target
of DNS water torture attacks. These attacks, as shows Figure 2.10, exploit the
improperly configured open-access recursive servers which when it receives a query
for which it does not have cached data, like a randomized unique subdomain, relay
the query to the appropriate authoritative server, acting as a transport layer, which
makes malicious requests to reach their destination. Once the traffic that each
bot generates is not intense, and each query appears normal, it makes difficult
to filter spiteful from legitimate queries. Although these queries are small and,
initially, insignificant, with the process advancement, the aggregate number of
queries towards the targeted server becomes a tremendous flood, overloading the
server by wasting resources looking up to nonexistent subdomains [68], until it
becomes unresponsive.

Figure 2.10: DNS query flood

According to Akamai [69], there is also a detail that could lead to a considerable
disaster for many Internet users. Once the attack is based on intermediate local
Internet Service Providers (ISP), to reach the targeted authoritative server, when
it gets exhausted and the attack network keeps sending malicious queries, it leads
to a domino effect on relaying recursive servers, which, repeatably, try to obtain
a response from their upstream resolvers. However, this attack collateral effect
leads to a major concern, since with the temporal advancement and non-existence

18Also known as Pseudo Random Subdomain, or water torture attack

23

of an authoritative server to respond, the intermediaries see their resources being
gradually consumed until exhaustion, also leading to a denial-of-service situation
for local users [70].

Despite the differences between categories such as the OSI operating layer, the focus on
network or server resources, some attacks can be a combination of some categories taking
advantage of the characteristics of each, that when aggregated provide an unpredictable
multi-attack vector, where some of them are used as smoke-screen and the others carry out,
effectively, the attack.

2.3.6 DDoS attack dynamics

Independently of attack categories, it’s rates poses also a major threat that increases its output
and take advantage of soft spots in mitigation solutions. There are several attack dynamics,
which define its intrusive character that is related, not only with the agents number that
constitute the attack platform, but also with attack frequency domain, including its activity
and sleeping times. Typically, attack traffic flow-rate is inversely proportional to the number
of bots. For example, given an offensive platform composed by five hundred agents, in order
to generate five thousand packets it is necessary that each one produce ten. However, with a
more extensive platform consisting of one thousand bot, each need only to produce 5 packets.
Bellow, is presented a list containing some distinct attack dynamics [71], which precedes a
groups Figures 2.11 that exemplifies each of dynamics, considering a max bandwidth of 500
KBps:
• Constant rate attack: it is a dynamics where there are no peak, the maximum rate is

reach immediately and maintained until the master stops the attack. It is characterized
by its highly intrusive nature.

• Increasing rate attack: similarly to the previous one, only differs in the maximum’s
reach rate, being later, following a linear growth.

• Pulse-wave attack: Also known as hit-and-run attack, is differentiated by its constant
oscillation between the maximum rate and zero, resulting in square pulses. Typically,
the uptime and inactivity is equal, making the attack periodic. Nevertheless the active
and inactive periods can be parameterizable, allowing the master to control vector’s
intrusion degree.

• Gradual pulse-wave attack: as the name implies, the difference lies in the necessary time
to reach maximum rate or zero, being gradual in both, but not necessarily the same.

24

Figure 2.11: Representation of previously described attack common dynamics.

According to Imperva’s white paper [72], hit-and-run attacks are the new emergence
threat. This new attack sophistication allows to leverage botnet’s resources, doubling its
output and exploiting multi-targets. However, there is no consensus on what happens between
peaks. Imperva analysts, affirm that during pulse-wave downtime period, the botnet doesn’t
shut down and used the interval between each pulse to mount a new attack on a different
target. The downtime is maintained, but every pulse is directed to a different target. Instead,
other experts, say that in the gaps, the botnet switches to another target directing similar
short attack bursts, avoiding sleeping times [73]. Despite the divergent opinions of the other
corporations, including Akamai and Arbor [74], several occurrences were recorded during the
second quarter of 2017 that used this technique regularly. Besides the resources portioning
advantage to launch multi-target attacks, Imperva proves that this kind of initiatives can
cause problems and ultimately disrupt hybrid mitigation solutions. These are distinguished
by its mixture between on-premise hardware and off-premises cloud-based scrubbing. The
on-location hardware is the first line of defense. It is configured to trigger an alarm, when
faces an attack exceeding its capacity limits, which activates the cloud-based DDoS protection.
Its main objective is to scrub incoming traffic applying diversion processes. However, this step
never initiate, once pulse-wave attack hit fastest and furiously the first barrier, congesting the
network pipe, cutting off the communication between on and off-premise components. Even
if the cloud is configured to activate automatically, it still has to analyses the traffic from
scratch, without any indication about its signature due to the lack of communication, before
filtering it.

Despite the different dynamics, their frequency of use and intrusion degrees, which are high
result of maximum rate’s allowed by the devices’s network card, it is possible to reverse this
suspicious posture, making it more intelligent and similar to a human behavior, by reducing
the coordinate axis. Instead of using the maximum rate, should be limited by packet’s number,

25

or ideally the bot must learn from device’s behavior on the network, including external
communications. Based on the normal behavior, the bot should be able to include malicious
traffic during connections out of the network, making it imperceptible tk differentiate traffics.
Nowadays, this approach was not achieved, and its not necessary once there are plenty of
devices across all the Internet which are not properly patched and maintained, being easily
subverted, avoiding the need to implement more complex solutions and concern with the
intrusion degree and exposure. The attack with the dynamics that most equals the ideal is
designated: low-rate DDoS attacks. These are identified by its long and quietly operation
mode. The main purpose of these attacks is to degrade the victim’s resources gradually, by
creating a couple of connections over a period of time, leaving them open on the target for as
long as possible. For example, Slowloris is an attack tool that is available on the Internet [75],
which follows this approach to disrupt web servers, with minimal bandwidth. After opening
the connections, the tool keep sending small packets or keep alives in order to prevent session
from going to idle timeout. Often, these attack vector are intermingled with volume-based
attacks, that due to its stealth character are not only tough to detect but also to block.

2.4 A glance to the past of DoS and DDoS attacks

For the past 25 years, the DDoS attacks have received increasing attention from both network
operators and general media while the basic vulnerabilities that make attacks possible have
been recognized. Computer Emergency Response Team Coordination Center (CERT/CC)
published the first advisory regarding a UDP port DoS attack (CERT CA-1996-01 [76]),
in February 1996, a beginning of a year that would be a landmark in the history of DoS
attacks. Seven months later, New York City’s original ISP, Panix, was hit by a SYN flood
denial-of-service attack that took it offline for several days. The attack started on September
19 and immediately CERT published another advisory alerting of a TCP SYN flooding DoS
attack using spoofed source IP addresses (CERT CA-1996-21 [76]). It would not take 3
months to publish the last DoS attack advisory of the year (CERT CA-1996-26 [76]). This
time the advisory dealt oversized ICMP echo request packets that when received by some
operational systems could lead them to crash, freeze, or reboot, resulting in denial-of-service.
This particular attack is often referred as the Ping of Death. The year 1998 began with
two major publications differentiated by its scope, the first one related to the discovery of a
new vulnerability and another related to defense measures that defeated the current attack
vectors. On January, CERT issued another advisory, detailing a so-called Smurf DoS attack
(CERT CA-1998-01 [77]). It is important to note that, although the attack is launched from a
single machine, as explained in Section 2.3.5, it might result in multiple nodes sending traffic
to the target and therefore should not be categorized as a DDoS attack. Days later it was
released the RFC [78] which detailed how network administrators could defeat DDoS attacks
via anti-spoofing measures.

This would eventually become the best current practice adopted by many networking
vendors. A year later, on August 17, 1999, it marked the year with the first large-scale DDoS

26

attack when a DDoS tool called "Trinoo" was deployed in at least 227 systems, according
to Bhuyan et al. [15], to flood a single system at the University of Minnesota, swamping
the target network and rendering it unusable for over two days [79]. However, despite this
important reference, it would quickly be forgotten due to a sequence of attacks that occurred
in the beginning of the year 2000, and surprisingly disrupted the services of large corporations,
something never seen in the history of the Internet. As reported by BBC News [80], in
February 2000 a denial-of-service attack took down "Yahoo!" for approximately three hours.
However, just one day later, websites like eBay, Buy.com, CNN.com, Amazon.com, and other
eCommerce19 sites, suffered also a heavy attack which was similar to the previous, either in
duration either in magnitude. For instance, in some cases, the overall amount of incoming
data exceeded 1 gigabit per second [81], a magnitude completely unexpected compared to
current server processing capacity. Thus, it was quickly inferred that in order to obtain an
attack of this size, multiple computers would have to be used, making this the first major
DDoS attack, that had a financial overall damage estimated at 1.7 billion dollars [82]. From
this incident, denial-of-service took on new visibility and importance, once if the company
who had probably the greatest web resources could be taken down then anything can be
brought down. After this milestone, many devastating DDoS attacks have kept occurring on
the Internet, although its attack vectors along with the defense mechanisms haven’t evolved
much.

In October 2002, the thirteen DNS root servers operated by U.S. government agencies,
universities, nonprofit organizations, and companies were simultaneously under attack for
about an hour, of which nine of them become unavailable for regular Internet traffic [83]. The
remaining root servers supported the attack and ensured that the holes generated by the loss
of more than half of the servers would not significantly affect Internet performance. Which
was successfully accomplished, allowing end users to continue with their normal operations
without noticing any change, despite having been the most serious attack ever attempted on a
key piece of the internet structure. At this time, there was evidence that DDoS attacks were
an emerging threat that had the ability to overthrow both the servers of the large corporations
as well as the infrastructure of the internet. Subsequently, since 2004, attacks motivation has
been shifted to the sensitive field of economic crime harming the victims’ reputation in the
eyes of the public, which are gaining awareness of the actual security, and due to this, incidents
of denial-of-service began to be overshadowed by the mainstream media [81]. In addition to
the economic motivations, a trend also started towards gaming companies. In February 2007,
more than 10.000 online games servers belonging to games like "Halo" and "Counter-Strike"
were attacked by "RUS" hacker group, which took advantage of more than a thousand of
computers located in the republics of the former Soviet Union [84]. Furthermore, as stated
in [85] , this year would also be noticeable by the occurrence of attacks of a political nature,
due to a series of diplomatic tensions between the former Soviet Republic of Estonia and
Russia. The cyber attacks escalated after the Estonian government decided to relocate a Soviet
World War II memorial statue, leading to a start of a spree of denial-of-service attacks against

19Stands for electronic commerce

27

the Estonian organization’s websites, including the parliament, banks, ministries, newspapers,
and broadcasters. The year 2008 would also go down in history with the beginning of a legacy
that still prevails today, with the appearance of a group characterized mainly by its ethics,
aiming at freedom of expression, human rights and freedom of information. This hacktivist
group is widely known as, Anonymous.

The attack known as "Project Chanology", was it’s first appearance, which knocked the
official Scientology website20 offline. It was a response to the church’s attempt to remove a
highly-publicized Tom Cruise interview video from the Internet [86]. It would take 2 years for
a new appearance, this time with a new campaign titled as "Operation Avenge Assange"21

once again characterized by the claim of the group’s ideals, namely freedom of information and
government transparency. The operation came as support to Wikileaks22 since it was under
intense pressure to stop publishing secret United States diplomatic documents. According
to [87], many companies around the world have adopted anti-wikileaks behavior, prompting
the group to take retaliatory action against these companies. For instance, many financial
organizations, such as MasterCard, Visa, and Paypal, which blocked payments to Wikileaks
were one target of these attacks, along with EveryDNS.com due the deleting of the WikiLeaks
DNS record and so on.

The infamous group’s journey continued with a new operation against Sony’s websites,
announcing it’s intent to defend the hacker who jailbreaks23 the PlayStation 3, and got sued
days later by the company which took offensive actions against free speech and internet
freedom by gaining access to the IP addresses of all the people who visited the hacker blog
where was published a detailed instructions of the respective jailbreak, according to [88], [89].
However, days later, another group of hackers, break into PlayStation Network (PSN) and
Sony Online Entertainment exfiltrating millions of customers records. Immediately, Sony
camouflaged the huge data breach by shutting down the PSN claiming that it was suffering
from technical issues. Nevertheless, it was a time-bound measure given the sheer size of the
data exposed, and the length of time the PSN was unavailable, Sony executives were forced
to admit [90], apologize and ask for help from the FBI24 and external security companies.

At the beginning of 2012, another operation appeared that would also be for the story.
Once again executed by the Anonymous group, this time against the shutdown of file-hosting
service "Megaupload" by the U.S. Department of Justice which indicted the executives of
numerous illegalities, including criminal copyright infringement and conspiracy to commit
money laundering. The "Megaupload" operation was set up, which included about 6,000
people who supported the group’s punitive actions by using LOIC25 against the company
responsible for the "Megaupload" case as well as 10 other high-level government websites [91],

20https://www.scientology.org/
21Also known as Operation Payback
22Organization that publish secret information, leaks, and classified media provided by anonymous whistle-

blowers
23Privilege escalation for the process of removing software restrictions
24Stands for Federal Bureau of Investigation
25An open-source software tool that aims a massive flood a targeted site through junk TCP, UDP and

HTTP GET requests

28

such as US Department of Justice, US Copyright Office, and FBI.
The year 2013 arrived and with it 2 meaningful events, chronologically separated. The

first came in March and would be a turning point as the attacks escalated to a completely
unexpected level never seen before. Spamhaus, an international non-profit dedicated to
battling spam, saw his servers being flooded with packets at a 300 Gbps flow rate, as the target
of a DNS amplification attack. Thus began a trend of growing attacks in both magnitude and
number of occurrences.

The second important moment occurred three months later with the continuation of an
operation that had been created in 2012. This operation was a set of attacks targeting various
American financial institutions (e.g.,Wells Fargo, U.S. Bancorp, Bank of America) operated
by by a group calling itself the "Cyber Fighters of Izz Ad-Din al-Qassam". The operation
consisted of three phases, based on all of them, an ideological/religious motivation. The
attacks were carried out using a web version of LOIC, designated as JS LOIC26, that was
also used on operation "Avenge Assange", allowing volunteers to also be an active part in
the attack [92]. Subsequently, in 2014, has been created a black hat hacking group named
"Lizard Squad" which started disrupting online gaming services since the creation’s year with
the purpose of raising internet security awareness and for simple amusement. One of the
most charismatic was the attack on the PlayStation Network and Xbox Live on Christmas
day, with the particularity, that the attacks had been announced weeks earlier. The attack
was executed with the aid of a tool created by the group itself, called the Lizard Squad’s
Lizard Stresser27. This tool is a DDoS botnet [93], where each infected machine tries to
propagate via telnet brute forcing by trying to connect to random IP’s and then attempt
to log in via telnet using a list of hard-coded usernames and passwords. Successful logins
are reported back to a pre-defined command and control server, for later assimilation into
the botnet, and subsequently to receive commands from the master. In addition, it also
has attack vectors that aim to deplete the resources of the network (e.g., UDP flood, DNS
amplification), and the resources of the servers (e.g., TCP SYN flood). Besides the creation,
the group also conducted a marketing campaign for promoting their DDoS tool, allowing its
use by third-party users. Beyond Lizard squad attacks, a new group of computer criminals
arises entitled as "DD4BC"28and threatened targets, mainly financial institutions as stated by
CloudBric [94], with massive DDoS attacks unless they pay a ransom using bitcoins. Each
campaign launched by this group begins with an email that informs the victim of a low-level
DDoS attack currently underway against the victim’s website, and then, demanded a ransom
paid in Bitcoins in return for abstaining from launching a larger DDoS attack, tipically, a
DNS amplification or a TCP SYN flood. It was about to arrive in 2016, the year that would
be known as "The year of DDoS attacks". The most scourged year ever, with a dramatic
increase in peak attack size and frequencies. Of all the events, it is possible to highlight five
of the most important, ordered chronologically:

26Javascript version of LOIC
27Or simply Lizard Stresser
28Stands for DDoS for Bitcoin

29

• The US candidate’s campaign websites
On April 1, once again, the hacktivist collective sought to take down the Donald

Trump’s websites, relating to its hotel chain and presidential campaign, as well as its
email servers, trying to defuse Trump’s candidacy to the White House and damage his
brand. Not having effect, around the time of the Election Day, attackers made another
move by again targeting the political candidates. This time they leveraged a Mirai IoT
botnet to flood the campaign websites for both Hillary Clinton and Donald Trump,
mostly with HTTP requests.

• Rio Olympics
Three months later a campaign was launched against organizations affiliated with

the Rio Olympics, making use of the tool previously made public (i.e., Lizard Streeser).
Throughout the operation, in addition to this tool was also used several IoT botnets that
added firepower to Lizard Streeser, including requests targeting the IP protocol Generic
Routing Encapsulation. The attack ultimately peaked at 540 Gbps. It is also important
to notice that, given the magnitude and longevity, it was expected that the logistic and
media coverage would be disrupted, however, due to the mitigation measures provided
by Arbor, was possible to International Olympics Committee keep all the systems up
and running.

• Brian Krebs
On September, the blog of information security investigative reporter Brian Krebs29

experienced a DDoS attack. According to its post [63], the attack was unusually powerful,
placing the peak attack traffic at around 620 Gbps. In addition, Akamai, the company
that protects the website from such digital sieges, reported that the attack method
didn’t rely on amplification techniques, and instead followed the same method used
in the last instance during the campaign against Rio Olympics, by leveraging GRE
traffic along with SYN and HTTP floods. This was the second campaign based on Mirai
botnet that would mark the history of denial-of-service attacks in several indicators.

• The French cloud computing company OVH
It would not take a day for the Mirai botnet to further affirm its position, when

152,000 infected IoT devices, launch the largest DDoS attack campaign ever reported.
In this way, OVH, the third largest internet hosting company in the world, was hit with
two massive simultaneous DDoS attacks peaking, at least, 1.1 Tbps [95]. A few days
later, on 21 September, the source code of the Mirai botnet goes public, signing its
contribute on the denial-of-service history.

• DYN
Precisely, a month later, Dyn, a US-based DNS provider that serves many companies

(e.g., Twitter, Netflix, Reddit, CNN, Spotify PayPal, Pinterest), was attacked by the
Mirai Botnet which despite seeing its code available, had never been carried out an attack
using this vector, the "water torture" attack. According to the company’s summary [96],
it is estimated that the attack involved 100,000 malicious endpoints, majority IoT
devices, leading to an increase in the magnitude of the attacks, to 1.2 Tbps.

29Available at https://krebsonsecurity.com/

30

A year later, corroborated by the Arbor study [23], it is possible to conclude that 2017 was
dominated by three trends: politically motivated attacks, attempts to cash in on the soaring
price of Bitcoin and attacks targeting the entertainment and gaming sector. The last two
trends are directly related in that they share the same objective: to extort money. This
approach was dubbed "RDoS"30 and is based on the paradigm, "demonstrate force, demand a
ransom", previously introduced by "DD4BC". However, it gain notoriety in 2017, with several
groups making use of it by threatening companies which would suffer substantial losses if
their resources are unavailable such as banks, Initial Coin Offering (ICO) platforms, etc. For
instance, in June, Armada Collective, a similar group to DD4BC, demanded about $315,000
from seven South Korean banks in exchange for not disrupting their online services. The
pattern would be used again, two months later, by targeting the Americas Cardroom online
poker site. They refused to pay a ransom and as results of the attack were forced to delay a
poker championship that was already underway. In addition to the gaming and entertainment
companies, ICO platforms also suffered due to the commercial popularity of bitcoin and
everything associated with it. The broad availability of these platform guarantees reliable and
secure transactions, while DDoS attacks are aimed at breaking the operability of the service
and thus discrediting it. For instance, Bitfinex, the world’s largest US dollar-based Bitcoin
exchange, was a recurrent target, seeing it services paralyzed often, allowing attackers to
profit from Bitcoin price fluctuations due to denial-of-service. The two major attacks occurred
in June and October, when the platform launched two new cryptocurrencies, IOTA [97] and
Bitcoin Gold (BTG) [98] respectively.

Finally, in relation to politically motivated attacks, the main onslaught was pointed out
against the Spanish government, due to the issue of Catalonia. The Anonymous launched an
"Operation Free Catalonia" campaign which took down the website of Spain’s Constitutional
Court through 3 attack vectors: TCP SYN floods, UDP floods and HTTP floods, as stated
in [99]. Besides that, Ministry of Public Works and Transport’s website was defaced to protest
injured people in Catalunia, as Anonymous explicitly put in the content of the site. There
were others such as the attack during the parliamentary elections of the Czech Republic, but
the consequences were minimal, being cataloged as nuisances.

Most recently, in late February, Github suffered the second-largest attack in history, being
bombed with 1.35 Tbps due to a memcached-based attack. According to it incident report
[100], their services were unavailable during 10 minutes, an outstanding short time, completely
unexpected taking into account the magnitude of the attack, which not caused worst problems
thanks to the detection and mitigation mechanisms of Github and its partnership with Akamai.
Two days later, Akamai itself reported [101] that several customers were being targeted for
similar attacks with the nuance that this time was associated with another purpose, such as
attack payloads requiring 50 XMR (Monero coins), approximately $15,000. Once again, two
days later, on March 4, 2018, the same attack methodology would again be used, this time
aiming to an unnamed US service provider. Arbor Networks, the company responsible for
this service provider’s protection, confirmed a 1.7 Tbps [102] reflection/amplification attack

30Stands for Ransom DDoS

31

beating the previously established record, making it the biggest attack ever, at least to this
day.

In short, it is possible to recognize an evolution, over the last 25 years, in DDoS attacks.
Along with technology in general, also nature of the attacks evolved, having nowadays a clear
tendency towards the black side, allowing to obtain profit from incidents of denial-of-service,
or from the threatened to suffer one. At the same time, it is possible to verify a sophistication
in the methodologies of attack, aiming always to innovate in relation to the old ones and to
the present mechanisms of defense and protection. To make matters worse, in addition to
attack’s nature and the devastating attacks’ vectors, botnets have also evolved immensely
due to the lax password management practices and security vulnerabilities found in IoT
devices geographically distributed across the globe. With great motivations, unexpected
attack vectors and a large number of participants, great calamities arise, and there is a
direct relation between this association of conditions and the attack’s size. According to the
story it is possible to conclude that there is a clear pattern, which follows an increasingly
growing function of raising the peak of traffic recorded between attacks, being now at 1.7
Tbps. Due to this gradual growth, both in frequency and magnitude, DDoS attacks are no
longer a nuisance but a major threat against the availability of websites, online services and
applications. Currently represent one of the biggest cyber attacks [103], with proven evidences
and due to the convergence of its nature into the sensitive field of economic crime, the DoS
incidents were deliberately not widely publicized as they call into question the reputation of
the victim in the eyes of the public who is increasingly aware of security in general [104], [105].

2.5 DDoS Defense Challenges

Designing proper defense systems against DDoS attacks is not a trivial problem for network
administrators and network security developers. Due to the constant sophistication of the
DDoS attacks, cyber criminals are usually, one step ahead of the current defense mechanisms,
which are not able to handle all types of network attack vectors in near real time. Since
all DDoS attacks are based on a large number of compromised nodes, which are intended
to attack network, system, or service resources, it is imperative to detect in advance any
preparatory activity for an attack by mitigating it immediately. It is also necessary to maintain
a separation so that the mechanism does not suffer with the high collateral damages and in the
last instance, that is not the target of an attack. From a high level perspective the designing
process of any DDoS defense system fight against technical and social challenges, according
to [31]. From the technical point of view, the main challenge arise due to the distributed
nature of the DDoS attacks, that by using several geographically dispersed action points, both
for agent selection and target definition, and once the internet is administered in a distributed
way, the deployment of a defense solution covering all stages of the operation of an attack
can not always be carried out and guaranteed. Thus, it is unrealistic to assume that a single
point could reach the total defense goal, once several networks have different requirements
analyzes counting on their policies, preferences and budgets, making it impossible to establish

32

an ideal solution throughout the Internet. Hence, according to Mirkovic et al. [106], there
must be multiple defense systems, deployed in various networks that must have the ability
to constructively relate to grow and negotiate different policies. It is fundamental that each
solution is not designed as complete, on the contrary, it should be flexible as a set of distinct
units with an associated business value that together constitute the solution. In addition,
in this way, it promotes interoperability and continuous evolution and deployment leading
to social challenges. The DDoS defense systems should follow some patterns of deployment
to be effective, by working under partial deployment but also must be incrementally and
continuously deployable. Along with this, the wide deployment on networks that share the
same needs, must be guaranteed at a large scale, contributing to the system scalability whereas
it must also provide means for participants(e.g., hosts, routers, or networks in the Internet) to
dynamically join and leave the system without endangering the system’s operability. However,
in spite of the different principles there are some factors that determine the probability of
a wide deployment. Assuming the needs of a customer, the defense system have a good
economic model, providing a strong economic deployment incentive to each customer which
must have direct monetary benefits when using the system or at least reduce the risk of
economic losses. In addition, as the degree of implantation increases, the client experiences
an increase in benefits. Last, but not least, each defense system must meet the needs of each
organization/customer, however it should be clear that it is not a strict requirement, since
any product that improves the current state is enough.

2.6 Taxonomy of DDoS Defense Mechanisms

The defense systems that can be categorized according to a set of factors. Following the DDoS
classification of the defense mechanisms, reported by Bhattacharyya et al. [36], there is a
defense’s segmentation according to each attack features, that might be combined together to
effectively and completely solve a specific problem. Given the various phases of the generic
mode of operation of a DDoS attack, there are several approaches to confront these cyber
attacks.

2.6.1 Based on Approach

Based on the activity level, DDoS systems can be labeled into four types:
• DDoS detection

A DDoS detection solution is characterized by constantly monitoring the network
or system that detects unusual or malicious activities along with policy violations, and
which notifies the network administrator using email, paging or logging the occurrence.
It is a set of techniques to identify suspicious activity at the network or host level. For
instance, an Intrusion Detection System (IDS) like Suricata is a solution that fit with
this approach.
• DDoS prevention

33

A DDoS prevention system is nothing more than an improved version of detection
systems in that, in addition to monitoring network or system traffic and identifying
malicious activity, it also enables the blocking of detected intrusions. Intrusion Prevention
Systems (IPSs), like Snort or Check Point IPS, typically contain a set of actions that do
not exist in IDSs like discarding malicious packages, reset the connection in addition to
dynamically blocking traffic from offensive IP addresses by leveraging firewall capabilities,
which is also a defense system used in enterprises network architectures. It is a solution
that establishes a barrier between two networks, one that is normally secure, controlled
and trusted, and another external that is untrusted, for example, a company network and
the internet, respectively. Firewall solutions31 can monitor all the network traffic and
confront with defined policies and rules, and any attempt to bypass security regulations
activates alert mechanisms and adding rules to deny traffic. This actions are aided
of simple packet-filtering techniques such as Shallow Packet Inspection (SPI), which
is a type of data processing in which packet headers are parsed, operating up to the
layer 4, inclusive, of the OSI model. Usually, firewalls apply the Packet-Based per
Flow State (PBFS) method [107] by analyzing the first four layers creating a 5-tuple
containing the source address, destination address, source port, destination port and
the transport protocol. On the other hand, for more extensive inspections and analyzes
there is other data processing type designated as Deep Packet Inspection (DPI). Which
is a meticulous inspection up to Layer 7 of the OSI stack, being able to examine both the
headers and the payload, without any restriction. It is commonly used in organizations
with refined firewalls that have IDS/IPS components, such as Cisco PIX firewall [107],
and at the ISPs at level of IPSs. However, often this use by network operators generates
discomfort on the part of customers and employees related to privacy issues and legal
questions [108]. According to the directive 2002/58/EC [109], European citizens have
the right to privacy of communications, however, most of the times, the ISPs instead of
providing the sites visited to the partners of the advertisement, sell the users’ behavior
on the Internet when collecting and aggregating their web browsing activities raising
serious privacy concerns [110].

• DDoS response
A DDoS response system is an extension of detection solutions, as in addition to

sharing continuous monitoring processes of system health, each alert generated by the
detection system for the presence of malicious or unauthorized activities triggers a
process to react with countermeasures returning the system to healthy mode. There is a
direct dependence between the reaction capacity and the detection system, preventing a
reaction to be taken without the problem being noticed and understood. The faster the
attack is detected, the faster the countermeasures will be determined to deal with the
particular attack, reducing the effects of the attack while increasing the effectiveness of
the reactive measures [31].

• DDoS tolerance
31Can be hardware, software or both

34

A DDoS tolerance system takes a fault-tolerant posture to defend against DDoS
attacks. There should be mechanisms that prevent intrusions and attacks from leading
to complete disruption of the system, so that the system functions in a reduced manner,
but at a reasonable level.

2.6.2 Based on Defense Infrastructure

Defense systems can be developed based on the infrastructure, which can be host-based and
network-based [36].
• Host-Based DDoS Defense

The focus of this type of defense is the individual host, meaning that each of the
hosts on the network has housed a defense system. Thus, a host-based DDoS Detection
and Prevention System processes the data underlying the monitoring and all activities
on the computer, such as event and kernel logs. Typically, these systems can also
control computer’s resources in addition to continuously oversee its state ensuring that
all actions follow a normal pattern and otherwise flag anomalous use.
• Network-Based DDoS Defense

A network-based DDoS defense system operate at a higher-level, examining data
exchanged among computers. These systems are characterized by their ability to monitor
and audit in real-time, as well as on a scheduled basis, distributing CPU utilization by
providing a flexible means of security administration. To assist the monitoring process,
several sensors are distributed across the network by sniffing the packets, allowing a
complete map of the packet crossing in the network. The defense system compares packets
with expected signatures to encounter unusual or abnormal behaviors, which depending
on the system approach, described in Section 2.6.1, can lead to various responses and
actions, from alerts to the network administrator to appropriate countermeasures.

2.6.3 Based on Defense Location

The DDoS threat can be countered at different locations among the networks. The defense
mechanisms can be deployed in 3 different places [9]: victim end, intermediate-network, and
source end. Each possible location has its own advantages and disadvantages.
• Victim-End Defense

Generally, most DDoS defense systems are deployed at the end of the victim, on
the routers of its network(i.e., networks providing critical Web service) [15]. Since it
is the convergence’s point of traffic where the largest damage occurs and therefore,
what motivates the investment in a defense system. A victim DDoS defense system
significantly facilitates the detection of attacks, as it can closely study the victim, define
his behavior and report any anomaly. Due to the high arrival rate of packets and the
consumption of resources, the anomalies stand out abruptly through unexpected peaks
of traffic. However, the response’s spectrum is confined. Once the defense system is in
the path of full force attack, the target point can be quickly moved from the predefined

35

target to the defense mechanism. Another disadvantage of systems deployed in the
victim’s network is the limited amount of processing and storage that defense system has
available as consequence as the large volume of traffic. At this point the differentiation
of legitimate flows and attack is complex not only by the strong aggregation but also by
the unavailability of computational resources that are necessary to make a sophisticated
traffic profile, extracting statistics from each of the flows [10].

• Intermediate-Network Defense
As the distance to the target increases, it is possible to identify two relationships with

different proportions. The first is directly proportional to the bandwidth consumption,
which is expected, since by moving the defense upstream, increasing the distance to
the congestion point, the bandwidth as well as the resources available will increase. On
the other hand, there is a trade-off between the distance to the attack’s target and the
accuracy of detection of this. Often these intermediate network defense systems are
installed on the core routers and they are autonomous and independent in regard to
attack detection, since they neglect any collaboration with the surrounding routers, to
focus on themselves and only detect anomalies in a self-sufficient manner. However,
since these are the main Internet routers, they manipulate large volumes of traffic, highly
aggregated, causing the detection process to be difficult, and it is only possible to detect
large-scale attacks. On the other hand, if detected, the responsiveness to suppress is
high thanks to the abundant network resources. Nonetheless, it is necessary to keep in
mind that only traffic rate limitation is possible since the creation of traffic profiles is
computationally time consuming and these routers can not waste memory or processor
cycles for all the streams that pass through them. Despite these disadvantages, the main
difficulty of using a DDoS attack defense system in core routers is their deployment. In
order to maximize the detection accuracy of all attacks it is necessary for all Internet
routers to employ systems using this approach, however it is obvious that the practical
implementation of this phase is unattainable [36] because it requires the reconfiguration
of all core routers and many of them may not support the most current mechanisms.

• Source-End Defense
Source-end defense systems are deployed at the attack’s sources to prevent network

users from generating DDoS attacks. Following the proportionality relationships previ-
ously presented, the main difficulty with this approach is that, detecting DDoS attacks
at source end is not trivial [31], once sources are widely distributed and this devices
behaves almost similarly as in normal traffic . On the other hand, if the attack is
promptly detected, it is the point where the effectiveness of response and the availability
of resources is greater. Also due to this availability, systems deployed at the source end
are capable of using complex processes for profiling, facilitating detection and in turn
minimizing collateral damage [15].

36

2.6.4 DDoS Defense Goals

Apart from the architecture and strategy of the defense mechanisms, there are basic objectives
that are transversal to all DDoS defense systems and that must be achieved. The primary
goal of DDoS defense is to provide good service to legitimate clients in the presence of a
DDoS attack. Ideally, clients should not perceive any degradation in quality of service while
the attack is in progress. The defense mechanisms must effect a separation of flows, avoiding
that legitimate packets are dropped causing collateral damages. Since attackers often use
obfuscation techniques, while mimicking normal traffic, it is normal for legitimate traffic to
resemble attack traffic, as can be seen during flash events32 [111], thus making it difficult to
deal with collateral damage. The second objective is to alleviate the outcome of the attack
so that resources can be properly channeled to serve legitimate clients. In order to achieve
this preservation, it is necessary that the defense system be comprehensive in relation to the
ability to handle various attack vectors, and that it is effective in the ability to respond. Thus,
completeness is mandatory in detection but also in response [31]. If the detection module
does not recognize a pattern of attack it is presumed that it can not detect it and perhaps
the response will not be adequate or even non-existent and the attack will succeed. This
inability to detect makes the system ineffective in the same way that failure at the response
level allows the victim to suffer seriously from the attack, something to be avoided when
designing such a mechanism. Another aspect that should be avoided in conception a defense
system is the system’s resistance to attempts to bypass it or deactivate it. The system must
therefore be reliable and high security. Other imperative objective is the ease of deployment
and respective operating expenses33. There must be a direct proportionality between the
costs associated with defense systems and the direct benefits of their use. When it comes time
to buy a commercial solution it is obvious that there is an initial capital expense34 related to
the hardware and software needed. Subsequently, administration costs and ongoing support35

arrive, which depending on the approach of the defense mechanism may be more frequent
or not. Finally, from a lower level perspective, it is important that the false-positive rate is
low. According to [112], a false-positive occurs when the detection part of the defense system
reports a network event as a serious problem when it actually is not a problem. Thus, DDoS
defense mechanisms should target only true DDoS attacks. Otherwise, it may cause collateral
damage to victim network and legitimates clients, or even, in the case of being regular, may
indicate an incorrect pattern in the network administrator that when confirming that the
alerts are false, starts ignoring them or turning off the system [31].

32Drift from flash crowd, and refers to a condition when the rapid disclosure of news about an event leads
to simultaneous mass access, overloading the respective website servers

33Commonly known as opex
34Also Known as Capex
35patches for security enhancements, performance or even characterization of new attacks.

37

2.7 Source-End Defense

Ideally, DDoS attacks should be interrupted as close to the source as possible. This dissertation
is based on this resolution allowing to leverage the multiple advantages [113] over intermediate
network and victim-end defense approaches, as described in Section 2.6.3. By assuming a
defensive position close to the attacker and limiting the attack flows it generates, it prevents
the attack from proceeding and that the Internet as a highway from the target network attack
is overloaded with large volumes of traffic, avoiding the general congestion in addition to
increasing the resources available to legitimate users and services.

Another advantage deriving from the use of a defense system at source is the reduction
of collateral damages. The majority of DDoS defense systems respond to the attack with
traffic policing, using approaches such as filtering or rate limiting [31]. However, legitimate
traffic suffers collateral damages induced by these measures. Instead, if the filtering acts at
the source level, even partial blocking allows traffic from uncompromised networks to proceed,
not suffering any change due to possible impediments in the victim.

Another aspect that notably motivates the development of DDoS defense systems in source
is the possibility of implementing more complex and modern defense strategies. In an attack
scenario, the further away from the target, the less the traffic volume to which the routers
are subjected, and therefore, there is an abundance of computational resources at the source
that allows the use of more sophisticated detection mechanisms. In addition, many DDoS
defense systems have in their response module, traceback procedures that aid in terminal
identification and rule enforcement. At the source, for example in a corporation’s network, it
is the closest point and therefore facilitates traceback and investigation processes in order to
alert the network administrator that one of the devices is compromised and is participating
in an attack. Thus, the decision-making and enforcement process is accelerated, preventing
participation and hence possible damage to reputation and, in many cases, legal proceedings,
including the inherent monetary costs. Despite the debate over the legality of DDoS attacks
as a criminal deed or act of civil disobedience, each country has its jurisdiction [114]–[117] in
accordance with its view on DDoS incidents. For example, in United Kingdom each person
who is an active part, whether it is intentional or not, of a DDoS attack is at risk of being
charged with legal offenses at the legal system.

Corporations and universities are often exposed to association with activities of this nature.
In order to avoid affiliation and possible legal complications, many of them, not only in UK
but also in the USA, have been implementing a computer use policy [118], [119]. In this way,
any malicious activity performed by an institution computer is the current user’s responsibility.
But, should intent or effect be prioritized? It does not matter, since regardless of whether
the employee/student was persuaded through social engineering to perform malicious actions
within the organization, or if the network administrator forgot to patch a vulnerability and
the company negligently cooperated in an attack, a source-end defense system should cover
all cases, preserving reputation and revenue.

On the other hand, source-end defense also faces some difficulties, in terms of detection

38

and response selectiveness. Attack detection at the source-end has an elevated degree of
difficulty due to the highly distributed nature of the attacks as it allows only to observe a small
portion of the attack. Apart from that the small malicious activity can be conducted through
legitimate requests, obfuscating any suspected withdrawal from the network. Therefore, the
system is limited to the corporate network, and may only infer anomalous behavior based
on the attack’s partial traffic. Nevertheless, this is the main module and determines the
source-end defense’s success. The system in fullness must be aware of complexity of source-end
detection. Since the results may have several levels of confidence, it is important that the
response module be selective in that it must constrain outgoing traffic to the victim and
preferentially treat legitimate traffic by sending it promptly while maintaining the provision of
a first-class service. Thus, the source-end defense system should not only successfully detect
and restrain many attacks, but also ensure the cross-cutting objectives of any defense system
described in Section 2.6.4.

Finally, there is a dissent about the deployment of a source-end defense system. Corpora-
tions that deploy a source-end defense do not experience direct benefits since the system has
an altruistic character in that it aims to prevent the occurrence of attacks originated anywhere
from the organization’s network, Internet misuse, and the attack’s inherent consequences on
all points of defense. Putting all the advantages in the other plate of the scale, the greater
weight(i.e., main incentive) and motivation of this dissertation is to prevent the association
and mainly the participation in DDoS attacks.

2.8 Generic Modules of a DDoS Source-End Defense System

Given the above discussion, with high ease of detection the reaction options are very limited,
as in the victim side detection, where a simple load balancer health check is sufficient for
detection. However, it is probable that there is a downtime in the services that the corporation
exposes, resulting from the impossibility of applying more complex measures on the ongoing
attack. On the other hand, with a greater complexity of detection, there is a whole set of
options, with plenty of resources, to apply on the attacks in progress, easily preventing their
arrival at the destination, including all the advantages in the detailed section above. On
top of this, intending to make the most of all the advantages, it will be addressed the three
modules that should be present on DDoS source-end defense system: monitoring, detecting
and responding. The first module is important insofar as continuous network monitoring
allows collecting information about the network that can be used as a target but also to
initiate the attack through its nodes. In addition, constant traffic analysis enables the system
to identify the services being used on the network, and map a usage profile that can converge
to multiple levels(e.g., at user level, vlan, organization floor, ...). In this way it is possible to
identify unauthorized services within the network. In order to optimize the monitoring process
often instead of just one control point exiting the network, there is a segmentation within the
network, distributing the processing capacity through the various strategically defined points.
The main purpose of the detection module is to gather and analyze information from various

39

points within the network to identify possible security breaches, intrusion attempts, abuse of
services or misuse, network failures, etc. The response module consists of procedures that are
active to react according to previously detected failures and incidents, assuming the role of
defense system spokesperson generating system responses that can range from just displaying
an alert to messages to network administrator.

Network monitoring is a key point of every company, not only because it allows to manage
an environment and to be aware of what is happening in the network, but also by the fact
that, when acquiring data, it provides a work baseline for subsequent defense mechanisms.
Mainly due to the constant growth of network data volume that travels, either within the
enterprise and outside its borders, it is unpractical to a network sensor gather all the data.
This data concept is wide, being the scope of the information defined by the sensor domain,
presented bellow:
• Network

Network sensors collects information about network traffic. Examples of these sensors
include Netflow, most IDSs, raw data collected by tcpdump.

• Host
Resides on the host and can monitor not only its activity but also the one on

others(e.g., logins, logouts, file accesses, etc). Contrarily to network sensors, provide
information on the low-level operation of a host, but is not able to gather information
about the services that are running on a specific host. Host-based sensors are also
limited to known devices, it is not possible to monitor unauthorized hosts. However on
network domain, such communications are easily monitored.

• Service
Service sensors are responsible for monitoring a particular service process, such as

HTTP or SMTP server logs. There must be a previous study on the services running
on a host to fully monitors all of them, maintaining track of all interactions, legitimates
and malicious with such services.

There is always irrelevant information that can be avoided and, in order to obtain fully
meaningful information, filters must be applied in the network layer, completely discarding
the layers above, since trying to store all data referring to the header and payload of each
packet is far too resource-intensive. Typically, in corporate network environments, the filter is
applied on layer 4 of the OSI model, allowing to separate between the two transport protocols
most used: TCP and UDP. In addition, another very recurring protocol in an enterprise
domain is ICMP, which is often also taken into account when filtering information. Evidently,
without depreciating the others, the representativeness of these protocols allows a reliable
analysis based on extracted information such as:
• Packet’s size;
• Source and destination IP addresses;
• For TCP or UDP traffic, the source and destination ports;
• Only for ICMP traffic, identify block connection attempts based on the content of

Destination Unreachable;
• Only for TCP the sequence flags number.

40

2.8.0.1 Approaches to monitoring a network

According to [120], there are two leading techniques to acquire data from a network envi-
ronment: active and passive monitoring. The first mode, also called synthetic monitoring,
is characterized by its real-time nature, and the injection of packets in the network that
act as a probe to evaluate the network’s performance, the available services as well as the
network paths(e.g, packet delay, packet loss, routes, etc.). In contrast to the real-time, passive
monitoring analyses the existing traffic over a arbitrary period of time and reports the results.
Both modes have their strengths and weaknesses. Since the operation mode of synthetic
monitoring is based on the introduction of a probe into the network, it introduces more
traffic and therefore increases the load on the network hardware. On the other hand, allows
collecting small amounts of data in real-time, measure traffic both inside and outside the
network environment. Passive monitoring by not introducing any artificial traffic into the
network, relies on historical and reports data based on a long period of time, providing a
more holistic view of the network’s health. It is also far less resource-intensive than active
monitoring, albeit does not allow for measurements outside the corporate network, is limited
to the device to which it is connected [121]. Another difference between the techniques is its
scope: while synthetic monitoring manages to assure and test quality of service by generating
network traffic, emulating various scenarios, passive monitoring due to its observational nature,
and the fact that it uses large amounts of data allows predicting about bandwidth abusers
using a standard inferred from based on historical data.

2.8.0.2 Active Monitoring

According to [122], the most commonly used active monitoring techniques and tools to perform
network measurements are:
• Simple Network Management Protocol (SNMP): is a popular protocol to active
monitor network status. It follows an agent-manager architecture, with bidirectional
communication between the Network Management Systems (NMSs) and Agents. An
agent is a managed device which runs a software responsible to translates local man-
agement information data into a readable form for the NMSs(e.g., event and error
information or performance information such as CPU usage). In its turn, these execute
applications that monitor and control the managed devices(such as routers, switches,
IP video cameras, printers, ...) that represent all the network’s nodes from where the
administrator or other software intends to obtain specific variables.
• ICMP: This protocol allows to reliably control and diagnose network elements, de-
termining its availability and reachability besides estimating the delay and loss of
packets.
• Log data collection: is the process of making sense out of the records generated by

servers or devices in real-time, allowing to analyze its usage and respective performance,
or even, with gathered information, simulate offline the user’s activity in order to improve
network’s behavior.

41

2.8.0.3 Passive Monitoring

Alternatively, passive monitoring does not inject traffic into the network. It operates quietly
by collecting all the traffic that goes through a probe strategically placed in the network’s
topology. These probe solutions can be hardware-based, typically designated as Terminal
Access Points (TAPs) or software-based.

Hardware-based solutions
A network TAP is a hardware component that connects directly into the cabling infrastructure
in order to split or copy traffic for analysis and monitoring purposes. Due to its simplicity and
passive-nature, as illustrated in Figure 2.12, is widely adopted on a variety of applications. For
example, many organizations opt to tap all critical links for monitoring, security, or analytic
use besides to provide easy access during troubleshooting or security breaches.

Direct Cabling

TAP

Cabling with TAP

Network TAP

Figure 2.12: Direct cabling vs TAP operation mode.

There are two primary types of these solutions: passive and active TAPs. The main
differences are related to the lack of a proper power supply, the signal retransmission and the
device’s interaction with the other network’s nodes. Passive TAPs require no power source,
and assume a completely discreet behavior on the network. These are neutral solutions which
simply copy and retransmit the signal from one flow to a single switch port, using a built-in
splitter mechanism. On the other hand, active TAPs interact directly with the connected
components, by regenerating the signal which intercepts, for both destination retransmission
and monitoring ports, avoiding split ratios present on passive taps [123]. However it becomes
a point of failure due to possible power outages leaving it totally inoperative, creating a
disruption in the network connectivity.

Given the absence of complications and the reliability that devices produce, TAPs are
listed in most budgets related to the projection of a network architecture. Its usage constitutes
the first step towards not only to any visibility solution and security analysis, but also to
modern network-based IDSs [124].

Similar to the behavior of passive network TAPs, there is another solution that also mirrors
traffic, called Switch Port Analyzer (SPAN). Widely known as port mirroring is a function
of a switch or router that copies traffic from incoming or outgoing ports and forwards the

42

duplicated traffic to specific port - the mirror port. Comparatively to the previous solutions,
it fails to aggregate traffic, since the sum of multi-port bandwidth exceeds that of the mirror
port, contributing to the loss of packets and deteriorating the network element’s performance.

Software-based solutions
Software solutions to monitor a network are even simpler, cheaper and easier to setup than the
hardware ones. Usually, Operating Systems (OSs) come with CLI36 tools, such as tcpdump
which enables to capture, filter, display and save data about packets going in and out of
an wired or wireless interface. Such simplicity enabled to developed arrays of monitoring
software solutions on top of this packet analyzer. One acclaimed free and open-source example
is the Wireshark, which allows analyzing network packets with aid of a Graphical User
Interface (GUI) and a set integrated options(e.g., sorting and filtering), that allows network
administrators to become aware of what is happening on the network at a microscopic level.

2.9 Machine Learning (ML) in Detection Methods

Every DDoS Defense system has built-in a network anomaly detection module which are,
typically, based on a set of techniques that driven by the new attack vectors that have emerged
in the recent past, have been incorporating novel machine learning approaches to the traditional
measures. Statistical modeling is among the earliest methods used at level of Anomaly-based
Intrusion Detection Systems (ABIDSs). Generally, a model that uses this approach begins
by fitting a model for normal traffic so that it can then apply an inference test in order to
confirm if a new instance belongs to the previously calculated model. All instances that do
not conform to the learned model, based on applied statistical properties (e.g., mean and
variance), are classified as anomalies. In addition to this approach, intrusion detection systems
also rely on knowledge-based procedures. These are differentiated by the a priori necessary
knowledge about attack signatures or other metrics, which are typically representations and
general patterns of attack vectors formalized to identify subsequent occurrences. In this way,
events or actions in the network are evaluated according to pre-defined rules or attack patterns
to validate their legitimacy.

However, due to the paradigm shift, the detection of anomalies is aided by the machine
learning in that it provides a broader view of network state, built through models that
infer information from the network, such as normal and abnormal behavior along with other
patterns that can not be perceived by the human eye. Although it is a concept currently in
vogue due to the various areas where it provides help (i.e., image and speech recognition,
fraud detection, health diagnosis), it is mistakenly to think that it is new, when in fact it is a
concept already a few years old, and has been present, but with less regularity. For example,
around the 1990s, was developed an Optical Character Recognitions (OCRs) system based on
machine learning, which achieved a recognition ratio of close to 100% [125]. It is evident that
today it is much more proliferated and the tendency is to continue, both in lateral growth

36Stands for command-line interface

43

and in improving the quality of people’s life at various levels, from improvements in the area
of medicine with standardized predictive models that can help cardiologists with specific
guidelines for a particular patient [126], to improvements in traffic control in smart cities,
optimizing their flow through data collected by IoT sensors and predictive models [127], [128].
Finally, what does ML means? According to Arthur Samuel, 1959, Ml is the "field of study
that gives computers the ability to learn without being explicitly programmed" [129]. More
elaborately, Tom Mitchell in 1997, defined as follows:

"A computer program is said to learn from experience E with respect to some
class of tasks T and performance measure P, if its performance at tasks in T, as
measured by P, improves with experience E." [130]

However, it is important to define the separation limit between ML and Artifficial Intelligence
(AI) that are often confused being the same. AI is the broader concept that allows associating
intelligence with machines due to the tasks they perform. ML in turn, is a subset of AI and
its pillars are based on the idea of marrying algorithms and statistics and learning from the
data in order to reach that intelligence [131], [132].

2.9.1 Traditional vs Machine Learning Approach

One of the most common ML usage examples are spam filters that aim to learn to flag spam
given a set of spam emails (e.g., marked as spam by users) and examples of regular emails37.
Using a traditional approach, statistical or knowledge-based, the detection module of the
spam filter must follow the next steps:

1. Study the problem and recognize the most common spam patterns, such as the recurrence
of words like "free", "amazing", "for you", etc.

2. Develop a detection algorithm containing rules for each of the studied patterns, which
should flag emails as spam if verified

3. Test extensively, and add rules by repeating steps 1 and 2.
Figure 2.13 represents the conventional procedure to develop algorithms:

Figure 2.13: Traditional approach [129]

It is easy to conclude that the completeness of the system has flaws as well as the ability to
scale and the flexibility to adapt to the new changes. In order to bypass this rules, spammers
can easily replace common keywords, by unusual ones or simple acronyms of web culture, such

37Also refereed as nonspam or "ham"

44

as abbreviate "for you" to "4you" or even "4u". Each replication influences the spam patterns,
which in turn need to be updated in order to keep up with the techniques’s sophistication,
resulting in an unending cycle and an increase in complexity proportional to the number of
rules, reaching a point of maintenance impossibility. In a paradox depicted in the Figure
2.14, spam filters using a ML approach are more flexible, allowing for constant adaptation(i.e.,
progressive learning), recognizing new segments of sentences and words that represent new
spam patterns, maintaining accuracy by flagging mails as spam or nonspam. In addition
the complexity of maintaining the system is reduced, just as the general while the ratio of
correctly38 increases.

Figure 2.14: Machine Learning approach [129]

In these resolution, the system is able to learn from data examples called training set, so
that it can later test with the next emails, each being a training instance. Another additional
benefit is that the learning process from the training set and subsequent test with training
instances can be automated, as illustrated in Figure 2.15, designing a quasi-automated system,
requiring only monitoring.

Figure 2.15: Autonomous Machine Learning approach [129]

Often, in complex problems requiring long lists of rules, handling a large volume of data,
a continuous hand-tuning due to changes of general impetus or due to fluctuations of the
environment, approaches based ML outperform traditional solutions such as Hidden Markov
Models (HMMs) and Gaussian Mixture Models (GMMs) [133], [134].

38Also known as accuracy

45

2.9.2 Types of Machine Learning Systems

Since the learning domain in general is broad, there are several subfields from branches of
the machine learning field that relate to specific characteristics of learning type. According
to [129], it is possible to specify a taxonomy of learning paradigms:
• Supervised/Unsupervised Learning

ML systems can be cataloged into four major categories according to the amount
and type of human supervision required during the training phase: Supervised learning,
Unsupervised learning, Semi-supervised learning, and Reinforcement learning.

An exemplary task of supervised learning is classification. In these applications,
in the training phase, each sample present in the training set is attached with a label,
indicating the class belonging. Regarding network anomalies, the problem can be reduced
to a classification issue, in order to distinguish legitimate from malicious traffic. Another
common example includes the prediction of numerical values, such as the prediction of
the value of a car given an associated feature set (mileage, make, model, engine size,
interior style), also called predictors. In this context, the training phase of the supervised
learning system includes data with predictors and respective labels, allowing to learn
from the past, through a regression, to predict new values for new instances(i.e., new
cars) [135]. Another important application of some regression algorithms concerns their
use to classify, since their output indicates the probability of belonging to a class(e.g.,
20% chance of a received packet to belong to the class of anomalies). The list of most
important supervised learning algorithms includes [129], [136]:
– K-Nearest Neighbors
– Linear Regression
– Logistic Regression
– Support Vector Machine (SVM)
– Decision Trees and Random Forests
– Neural Networks (NN)39

– Gradient Boosting algorithms
Antagonistically, in systems with unsupervised learning the training phase is equal

to the nuance that each training instance is unlabeled, and the system attempts to learn
in an autodidact manner, performing data clustering.

Having as a frame of reference the banking institutions, through clustering it is
possible to detect groups of similar transactions and conjecture about patterns. The
result of this analysis may, for example, reveal fraudulent transactions, or in early stages
may be able to remove these outliers preventing the occurrence of these anomalous
incidents. Applications where data visualization is central also benefit from unsupervised
learning. When the algorithms of these applications are faced with large volumes of
data, complex and unlabeled, their representation in 2D or 3D and respective structuring
and definition of limits can be aided by algorithms of unsupervised learning [129], [137].

39Some nn architectures can be unsupervised(e.g., restricted Boltzmann machines and autoencoders)

46

Semi-supervised learning occupies the middle ground, between the two extremes
and represents the algorithms that deal with partially labeled data. Image recognition
functions present in photo-sharing and hosting services like Google Photos are one of
the use cases of algorithms of this nature. First, the unsupervised part is performed
when grouping data possibly belonging to the same class(i.e., group the photos where a
specific person shows). Then, a human labeling is required to identify each person and
confirm the clustering process in order to determine everyone in subsequent photos [129].
Reinforcement Learning, on the other hand, is based on an entirely different paradigm.
This approach is characterized by the presence of an agent that from observation of the
environment and policies to perform actions will build and progressively improving their
capabilities according to the reward or penalty of each action. It operates according to
a paradigm of trial and error where the agent initially takes actions explicitly through
policies to build a grounded base of actions with the respective rewards and, after
executing all of them in an environment, begins to make decisions according to the most
rewarding behaviors. Recently, a Japanese company Fanuc made an unusually clever
industrial robot which just has to pick widgets out of one box and put them into another
container. It is able to perform this task with any type of object, requiring only 8 hours40,
typically nocturnal, to reach an accuracy of 90%. It tries to pick objects while capturing
images from the process, and each time it succeeds it remembers how the object looked,
building its knowledge from these frames, to apply in the next morning [138].
• Batch and Online Learning

Another principle that discerns ML systems is the ability to learn incrementally from
new incoming data streams. Using a batch learning approach, the system is unable to
learn incrementally and is therefore timely. Firstly, the system is subjected to a training
phase in which it uses the whole training set, typically executed offline due to the need
of computational resources, and after completion it transits to the production phase,
where it applies the knowledge resulting from the previous phase. The limitation for
the system to adapt to the new training sets implies that the system is replicated by
another system that once learned from the new data, which is often unpractical and
impossible to maintain the result of the slow learning phase and the need for resources
for processing and storage.

In contrast, Online Learning systems have the capacity to train incrementally, from
the provision of new data present in the training set to the respective algorithms, in
single instances or in small partitions called mini-batches. In relation to the batch
approach it immediately provides advantages in the ease of training because it allows
systems that do not fit into huge data sets to learn at their own pace by segmenting the
training set into smaller sets that feed the algorithms. Another important advantage
is related to time learning, since instead of being fully replicated the system has the
ability to process the new training instances added to the training set, adapting quickly

40Eight robots working together for one hour can perform the same learning as one machine going for eight
hours

47

to the fluctuations of the environment. However, one must pay attention to the learning
rate parameter present approach, which as the name refers, indicates how quickly the
system accommodates the changes. When this parameter assumes high values, the
system adapts instantly to the changes, quickly forgetting the first data learned. This
immediately raises a problem of gradual decline of accuracy, because in cases where
the data that feed the algorithms are incorrect, the ML system will tend to lower its
performance. In contrast, systems with a low learning rate will be more tolerant to
faulty data yet will be less adaptable to environmental transformations at the same
time.

Thusly, online learning draws attention to keep the system’s performance from time
to time, mainly monitoring the changes in the training set, since when improperly altered
it can indicate an incorrect rhumb in the system, being necessary the revertion for the
state previous [129].

• Instance-Based Versus Model-Based Learning
As the main objective of many ML systems is the ability to predict, they are divided

by how the prediction is grounded since it directly influences the prediction’s accuracy
and how the system can generalize to new data. Conforming to [129], there are two
main approaches to generalization: instance-based learning41 and model-based learning.
The first technique follows the form of learning more trivial: learn by heart. The system
is able to predict by comparing new instances with those memorized during training.
Although the complexity of classifying a single instance is directly related to the size of
the training data [139], the system has the ability to generalize its model to previously
unseen data through measures of similarity42 between instances. On the other hand,
the model-based system based on the training set creates a model which is used later
in order to make predictions through a regression. On top of this, the system provides
performance measures, such as fitness and cost functions [129], which define how well
and poorly the new instances fit the model, allowing a quantitative evaluation between
the prediction and the current result.

2.9.3 Main Challenges of Machine Learning

From a high perspective, a typical machine learning problem includes the agreement of an
algorithm and its training with a set of data. Thus, only two aspects can become objections
to the problem: the algorithm or the data.

2.9.3.1 Insufficient Quantity of Training Data

A famous study by two Microsoft researchers, Michele Banko and Eric Brill in 2001 revealed
a direct proportionality between the volume of data and the efficacy of the natural language

41Also known as memory-based learning
42Typically context-related statistical metrics

48

disambiguation problem43. The author emphasizes this dependence suggesting that the
trade-off between spending time and money on algorithm development or spending it on
corpus development should be rethought [140].

So, given a specific context and an algorithm how many samples are needed? The answer
is: it depends. There is no strict rule, it depends on the problem’s complexity and the learning
algorithm’s complexity. In order to evaluate the algorithm’s performance as the number of
training instances increases, there is a heuristic called learning curve that refers to the relation
prediction accuracy/error versus training set size [141].

2.9.3.2 Non-representative Training Data

Generalization is a key part of machine learning algorithms since it directly influences
performance. Thus, it is crucial that the training set samples represent the cases to be
generalized. This requirement applies to both instance-based and model-based systems. A
famous example of sampling bias occurred during preparation for the 1936 presidential election,
which placed Franklin Delano Roosevelt against Alfred Landon. As always, a number of
polls were conducted, including a very peculiar one belonging to Literary Digest magazine,
which stated that more than 2.4 million respondents had intended to vote for Alfred Landon.
However Roosevelt won 46 of 48 states, which completely disproved the poll that Landon
would win by a landslide. Subsequently it was discovered that the magazine probed its
readership which were skewed in a subgroup that supported Landon. Thus, despite the large
sample size, the data were not representative at all, preventing subsequent generalization from
being correct [142].

When it comes to training it is important to understand that large sample volumes do
not mean that training instances can not be biased. Particularly now with the trends of
"Big Data" and Data Mining (DM), the training instances must be filtered so that they are
representative for the data that is intended to generalize.

2.9.3.3 Poor-Quality Data

Similarly to non-representative data, it is also possible to infer a relationship between the
number of errors, outliers and noise, and the system’s probability being unsuccessful along with
the subsequent difficulty of detecting reliable patterns. In order to reverse the relationship, the
training set should be cleaned, discarding all samples with clear outliers or noise. The result
will be a smaller training set, but more valuable at the expense of noise. Another important
aspect is the samples’s completeness in the training set. When some features are faulty, it is
necessary to choose wisely if it is possible to discard the instance or if the missing features
are to be filled, being aware of the influence on the model. Thus, it is preferable to spend
time once on the pre-training algorithms by cleaning the input data instead of continuously
expending in the post-training trying to calibrate and adjust the algorithm behavior [129].

43For instance, confusion sets include: ("principle, principal"), ("to,two,too"), ("weather,whether"), depending
on the context

49

2.9.3.4 Irrelevant Features

Feature engineering is a key process in ML algorithms, since it is the algorithm book, and
they can only learn if the book is appropriate. If the features present in the training set
can not model the problem(i.e., lack of relevant features), it is clear that the result will not
be as expected, it is impossible to learn mathematics by reading geography books. Feature
engineering is a process which encapsulates another three [129]:
• Feature Selection: Select the most useful and significant features
• Feature Extraction: Process that aims to produce more beneficial and relevant features

from those previously selected
• Gather new data progressively so as to continuously produce new features capable of

generalizing the problem.

2.9.3.5 Over-fitting and Under-fitting the Training Data

Regarding the choice of algorithm, it is vital to understand how the algorithm learns by
analyzing the fitness function, predicting that the system falls into the overgeneralize trap.
This happens when the system fits perfectly in the training data, but then to fail roundly
for new predictions, falling into over-fitting [143], [144]. Paradoxically there is the concept of
under-fitting: it occurs when the ML algorithm cannot cannot capture the underlying trend
of the data(i.e., the model is too simple). Both over-fitting and under-fitting lead to poor
predictions on new samples. In order to prevent the occurrence of these phenomena, the first
step is to select a powerful model with more parameters. Subsequently, at the level of features
engineering, measures should be adopted to improve features and reduce regularization [129].

2.9.3.6 Testing and Validating

In order to evaluate how the model generalizes, it is necessary to submit it not only with
training set samples but also new test instances. Typically, the training set is branched into 2
sets: training set and test set44.

When it comes to testing the system with test set samples, the resulting evaluation of
system performance that indicates how well the system responds to instances never seen
before is mapped into the generalization error45. This also provides relevant information when
comparing two models with a similar behavior, thus acting as a selection factor alongside
that can also be used as a parameter calibrator [145]. For instance, when the generalization
error assumes high values, it means that the model has fallen into over-fitting. To avoid this
incident, it is common to use the cross-validation technique: the training set is partitioned
into complementary subsets that combined differently to allow for generalization. Nonetheless,
at each iteration, the remaining portion of data that is not used for training is used for
validation(i.e., called validation set), providing an accurate generalization error. Afterwards,
the final model is submitted to a final validation, facing a full set of new instances from

44Commonly 80% for training and hold out 20% for testing
45Also known as "out-of-sample error"

50

the test set, allowing an evaluation of the model’s generalization [129]. Finally, given a set
of data which model best fits? No Free Lunch Theorem [146] is often used as an example.
Since a model is a simplified version of observations, without superfluous details, when no
assumption is made of the data, there is no reason to prefer one model over any other. There
is no guarantee à priori that a model works best for a given data set and therefore is chosen
over another in future cases. The only way to know which one is best for a particular case is
to evaluate them all46.

2.10 State of the Art

Over the years, awareness has gone hand in hand with the development of new solutions to
combat and mitigate DDoS attacks. Today, these are present on every security mechanisms
implemented at corporate network level, being a major component when it comes to detect
and react to egress DDoS attacks. The described solutions to detect abnormal behaviors are
divided into non-commercial (i.e., implementations presented on conference papers and articles)
and commercial systems, products sold to the business sector, abstracting implementation
details for the general public.

2.10.1 Non-commercial solutions

Initially, the first resolutions to detect and prevent DDoS attacks at the source, appeared in
publications of academic and research dissertations and articles. Chronologically, in 2001 Gil
et al. [147] proposed a solution, designated as MULTOPS47, that monitor traffic characteristics
of network devices, such as routers, which maintain a data-structure containing packet rate
statistics for subnet prefixes at different aggregation levels. In order to detect bandwidth
attacks, the solution was based on the assumption, between two distinct networks, that the
incoming packet rate is equal to the packet rate that exits during normal conditions. Thus, a
network device using MULTOPS it would detect bandwidth attacks when there is a significant
unbalanced in the packet rate to and from a target. However, the detection system has some
limitations mentioned by the authors. In order to bypass the detection system, the attack
vector just needs to randomized the IP source of malicious traffic. Besides, the large number
of agents results in small traffic rate for each one, which make the flow proportional affecting
the system’s ability to detect low-rate attack traffic. Furthermore, MULTOPS suffer from
a high positive rate when faces streaming services once its flows are disproportional. Two
years later, Mirkovic presented his PhD dissertation [10] and lately a white paper [148], where
he developed a system comparing inbound and outbound traffic on the source side to detect
DDoS attacks. The system, calledD-WARD, followed a statistical approach, which based on
statistics extracted from bidirectional traffic in periodic deviation analyzes with normal flow
patterns allowed the detection and significant reduction of attack traffic. In order to bypass
this detection method, attackers just have to adjust their traffic dynamics according to the

46It is possible to make some assumptions to restrict the set of algorithms to be tested
47Stands for MUlti-Level Tree for Online Packet Statistics

51

normal profile. In 2006, Sekar et al. [149] proposed a triggered, multistage approach designated
as LADS(Large-scale Automated DDoS detection System), which were mainly characterized
by its scalability and accuracy. The system was modulated to be deployed at the ISP level,
acquiring data through protocols such as SNMP and Netflow48. In a first phase the SNMP
data is analyzed and if metrics of interest are found, such as bytes or packets per second, is
triggered an alarm that collects data through Netflow in the router and specific interface for a
more granulated analysis. On this phase, is applied a unidirectional clustering based on a set of
thresholds for each metric, as described in. Six years later, another solution, deployed at ISP
level, was proposed by François [149]. Known as FireCol, relies on a distributed architecture
composed of multiple ISPs forming overlay networks of protection rings. This barrier is created
around the host/network that needs protection, when each surrounding ISP installs the IPS,
which is provided by FireCol, allowing the system to communicate horizontally and pass an
alarm or some statistics related to packet rate and overall bandwidth. Four years ago, an
interesting approach was proposed by Ivo et al. [150]. Although the detection model depends
on the periodicity inherent in the attack traffic, it would detect and quantify DDoS attacks at
the source, even when performed using encrypted channels or obfuscated in legit traffic. The
detection method uses multiscaling traffic analysis based on wavelet decomposition through
the Continuous Wavelet Transform (CWT).

Although these methods are particularly designed to be implemented at the source, there
are others implementations with interesting features that can be moved away from the target.
Due to the growth not only of the cloud environment but also of the areas related to machine
learning, quite a few solutions have been emerging recently based on automatic learning
for these scenarios. In the last year, a DDoS detection system [151] was designed for these
scenarios, aiding both signature detection techniques(i.e. Snort) and ML algorithms, including
decision trees generated form the C4.5 algorithm [152], K-means and Naive Bayesian. The
dataset was acquired from a implemented setup, where the normal traffic was generated
through simple scripts while attack one was obtained from hping3, a command-line oriented
TCP/IP packet generator mainly present on Kali Linux [153]. The focus was on flooding-based
attack targeting layer 3 and 4 in the OSI model. Despite the good results and the possible
transaction from a cloud to a corporate environment to detect attacks coming from the internal
network, the solution sins in the number of attacks that it is prepared to detect, being in an
unfavorable position to detect attacks of the other two categories or even zero-day attacks.

2.10.2 Commercial solutions

Although none of the previous solutions have been commercialized, it has helped to conserve
the constant threat of cyber crime and the development of new solutions. Now, with constant
and powerful threats comes respect and with it prevention. A major difference from the non-
commercial solutions are the implementations details. So the only way to gain a comprehensive
view of each solution is based on reviews from other companies or through classifications

48Is a protocol developed by Cisco to collect and monitor network traffic

52

based on use cases.
Actually, each Internet’s giant provides solutions for corporate environments, ensuring its

security, whether for internal attacks or for external attacks, providing reliable and resilient
mechanisms to keep all the core services up, as long as possible. Although it is not a limited
solution to detect DoS attacks coming from the internal network, it contains several features
that allow companies to obtain direct benefits of their use, mainly guaranteeing protection
against external attacks or data exfiltration. Of note the top five, according to [154], which is
composed of:
• Imperva Incapsula
• Cloudflare
• Arbor DDoS
• Sucuri
• Radware DefensePro

Cisco also provides a similar system known as Cisco Stealthwatch, which comes in 17th on the
ranking, and like the previous commercial solutions include features scalable visibility, security
analytics, advanced threat detection, accelerated threat response and simplified network
segmentation [155]. The system is able to trigger an alarm based on suspicious events, such
as:
• Source or target of malicious behavior : scanning, abusive network activity such as file

copying or transfer, policy violation, etc.
• Reconnaissance : port scanning for vulnerabilities or abnormal running services
• C&C : Communication back to a master server through malware
• DDoS activity : send or receive data floods
• Insider threats : data exfiltration

This system uses cognitive analysis, a cloud-based threat detection and analytics capability,
where a baseline profile is assembled, from Netflow, IPFIX and other types of network telemetry,
allowing to apply context-aware analysis to automatically detect anomalous behaviors. In
addition, switching core processing to cloud computing is a huge advantage, allowing to
achieve a holistic view of network traffic and general packet analysis(i.e., local and global).
Thus, ML algorithms are applied over data collected, including encrypted traffic, enabling a
continuous monitoring, analysis, and responses in time.

In conclusion, DDoS attacks have attracted a lot of attention in research and commercial
communities, and today’s corporations look to the these as a major threat. History proves
the growth of attacks, not only in scale but also in frequency. It is easy to conclude that
even the modern corporate networks can be easily a target, and it is extremely difficult, on
the victim side, to react quickly and effectively, ensuring that there is no downtime for the
services that the company exposes. Although this is the typical scenario, it is possible to
be changed in the future by adopting source-based detection solutions. Despite the greater
difficulty of detection, it is possible to avoid this scenario being repeated, by adopting the
previously detailed requirements, and to include the use of machine learning, making use of
the increasing amount of traffic currently circulating in companies, to achieve reliable results
and times decisions.

53

CHAPTER 3
Methodology for outbound

anomalies detection

In this chapter is discussed the methodologies to infer network attack patterns. The whole
process is iterative, resembling an assembly line, where the raw data from the network is the
input, whereas the output contains the decision about the normality of a network observation
that reflects a behavior. The chapter is organized sequentially according to the assembly line,
where the first section details the chain of how data must be acquired, processed and stored
according to a data structure that aims at easy manipulation and, ultimately, the generation
of observations that map a set of actions. It also included a generic approach to the overview
and analysis of the various network observations, and finally the classification and evaluation
process. Overall, it describes the process from the data preparation to the use of ML to detect
patterns.

3.1 Network Data Collection

As discussed in Chapter 2 the prime concept is to infer attack patterns supported by a set of
observations that generalize network activity. In the absence of monitoring protocols, such
as SNMP or Netflow, and independently of the network environment, its control is solely
based on raw traffic analysis. However, the network environment concept is wide besides
the diversity of entities that are present, specially at organization domain. As explained
in Section 2.8 this dissertation is confined to network domain, however when it comes to
collect data at this level, there must be a balancing between completeness and redundancy.
For example, monitoring communication between two hosts belonging to different VLANs1,
should be accomplished by inserting a network TAP between the access and distribution
layer, among switch and router respectively. By moving network TAP to lower level, at a
switch interface, besides the inter-communications also internal one between same VLANs,

1Stands for Virtual Local Area Network

55

would be collected, resulting much useless data. The implementation of both approaches
result in redundant data, since same traffic would be gathered in different points replicating
information about an event. Furthermore, increased cost and maintenance should also be
addressed when placing the sensor in higher layers. There is a greater complexity to monitor
the greater the distance to the access layer, where normally all users are present. Shifting the
purpose to a malware propagation context, adopting a SPAN solution at access layer level
would be the best approach, since such malwares tend to spread horizontally by compromising
nearby devices, typically on same VLAN or subnet. Therefore, place the sensor at higher
layers on the network’s topology, for example at core-level, result in a higher host’s abstraction
due to the distance and impossibility to closely analyses their actions, since many of these
does not reach higher layers.

Concerning the requirements, when the problem’s scope focuses on anomaly detection
generated from inside to outside, the ideal sensor location is in the edge, at core layer separating
the corporate network and Internet. Every connection to outside the company’s network are
necessarily intersected by this layer. Since intra-communications does not represent useful
information, only a single hardware or software-based approach is required to gather all gross
outbound traffic.

Due to packet’s stack nature, its examination yields more detailed information the larger
the boundary layer. However, this should not be arbitrary and in order to prevent legal
consequences from possible privacy invasion claims, the analysis must be limited by the OSI’s
model fourth layer. Storing only four layers per packet represents a significantly optimization,
nevertheless, it is necessary to disseminate those. There are a lot of control fields which does
not represent any meaningful information and should be discarded, leading to quasi optimal
approach in which only the data obtained from a chosen model are saved. Generally, up to
the fourth layer, the relevant information is portrayed in Figure 3.1.

B

TCP Flags:

SYN
ACK
FIN
PSH
RST

TCP

UDP

Timestamp
Length
IP:

Source
Destination

Port
Source
Destination

Figure 3.1: Metadata collected from the network traffic and how packets fields from different protocols
are stacked.

Each packet field contains the following information:

56

• Present in TCP, UDP:
– Timestamp: packet’s UNIX epoch time,
– IPSs: source and destination IP addresses,
– Length: packet’s size,
– Ports: source and destination ports;

• Only present in TCP packets:
– TCP Flags:
∗ SYN: If synchronize flag is set,
∗ ACK: If acknowledge flag is set,
∗ FIN: If fin flag is set,
∗ PSH: If push flag is set,
∗ RST: If reset flag is set;

3.2 Features Engineering

3.2.1 Packet fields to features

The metadata acquired by the passive monitoring module per se does not represent any
information that describes a pattern or behavior. However, this agglomeration of fields
represent the necessary foundations to obtain features, some simpler and more direct than
others, that map a set of actions on the network. From a high level, the variation of network
activity is defined not only by the entities’s behavior that compose it, but also by their number.
These may assume divergent behaviors, which vary not only in frequency but also in scale.

In this way, the approach of mapping packet data over time instantly emerges. For instance,
based on a day periodic scale, and considering the context of a banking agency, the volume of
traffic between an ordinary employee who is only present during daytime is different from a
compromised device running 24 hours a day, which attacks multiple targets. On the other
hand, assuming a smaller scale, at the minute level and considering the use case of watching a
Youtube video, its beginning is characterized by a series of bursts until all the video is loaded,
and then a long silent period. At this level, recurring events produce periodic packet rates
which allows to identify the underlying services. However, this is not always straightforward.
In addition to the fluctuation along time, there is also no rigor as to the frequency and
nature of the events, thus are defined as pseudo-periodical, but not vehemently. These events
variations reflect, what is happening on the network, and once it is a low-level representation
of it, there must be right balance between detect such events and tolerate these variations.

Thus, not only for temporal dependence, but also to facilitate pattern recognition, packet
data must be indexed over time. Considering a simple capture that occurred during a certain
period of time X, in a network interface, a possible approach to represent its events over the
time is illustrated in Figure 3.2. In an anomaly detection context, instead of contemplating the
capture as a whole, by analyzing it from the left side to the right, it is preferable to continuously

57

analyze several time-equally periods2, which contain statistical descriptors obtained during
that smaller period.

Total Capture Metadata

X

Δt

...
0 1 2 3 4 N

Figure 3.2: Partitioning in smaller sampling windows that contain statistical metrics obtained from
the metadata during a ∆t time frame. The total number of sampling windows is defined
by N = X ÷ ∆t, X ≥∆t.

There is a direct relationship between the capture’s length and the sampling windows
number. For instance, considering a one-day capture, a single sampling window should be
adopted when it is intended to detect and infer patterns that occur and alternate at a 24-hour
scale(e.g., weekdays pattern, weekend, public holidays, holidays, etc.). In its turn, 24 sampling
windows, resultant from a division by one-hour, would allow to deduce employees’ work hours
and respective breaks. These variations on the window sizes pose a major factor because allow
the detection of patterns at various scales and scopes.

Each sampling window with ∆t length, contains a set of metric statistics that are purely
metadata sums over a time frame. This statistical processing operation is abstracted from the
packets nature and represents the first step to modeling a pattern using several time-dependent
attributes:
• Statistical packets counts

Metrics based on packet counts and their attributes formalize the first step in defining
the action pattern of each attack(e.g,. bytes sent and received).

• Network protocols usage
Packet counts per protocol, and inherent percent utilization, represent a pattern

allowing, for example, to infer its position in the network topology.
• Data streams aggregation

Communications between entities is represented by data streams, which allow to
detail its duration, edge entities, total bytes and so on. For instance, in a typical syn
flood scenario, aggregating traffic by data streams allows to demonstrate a huge amount
of syn flags in one stream over the others, as well as the ratios discrepancy between
streams.

Since a service is mainly characterized by an exposed port, it is also possible to
analyze the number of sessions and the host that uses a particular service more often.

When the scope focus on modeling an attack, these are the direct attributes, however,
depending on the context and inherent patterns that should be modeled, the list could be
extended. At this point, one must understand the relation between the sampling window’s

2Also known as sampling window

58

duration and the abstraction it represents through the various attributes that constitute
it. Lower ∆t means less data is aggregated and therefore high-frequency events are easily
detected, such as host-to-host communications due to its occurrence on small time scales. On
the other hand, larger time frames (∆t), allow to combine more metadata and thus detect
patterns occurring at temporal scales similar to human actions.

This process constitutes the second node in the network observations production chain,
being the first represented by data acquisition and packet’s data filtering. Thus, statistical
descriptors will be later used to produce features and these ultimately, will generate network
observations. However, in the absence of subsequent nodes, it is possible to make decisions
based on these metrics and thresholds obtained based on historic of such statistics. In systems
that follow this approach, these decisions represent another constraint in choosing ∆t value
of each sampling window. The decision is taken after each ∆t, however, lower time frames
may not allow finding deviations once gathered metadata may not be representative although
allow acting quickly. Contrarily, higher values of ∆t allows to summarize metrics for a longer
period of time, however the action is taken later, and in some scenarios it may be too late, as
in data exfiltration contexts. Thus, it is necessary to find a balance between the response
time and the representativeness according to the scope of the anomalies.

This prototype structure ensures not only the simplification and aggregation of data but
also its safeguarding in a simple arrangement of storing and iterating over it. Nonetheless,
the inherent statistical processing operation requires computational resources, and ideally,
at production environments, should be performed right after the metadata filtering, storing
only a simplistic structure, as illustrate Figure 3.3. On the other hand, at development
environments, these two stages should be decoupled enabling data analyzing and manipulation
on both levels.

Δt

...
0 1 2 3 4 N

Sampling Window 4

packets_out: 4
packets_in: 2
src_ports_out: 4
dst_ports_out: 0
syn_flags_out: 0

ack_flags_out: 3
fin_flags_out: 0
psh_flags_out: 1
rst_flags_out: 0
download_bytes: 492

Figure 3.3: Low-level structure of a sampling window.

Another import concept is the structure’s organization and its growth. Considering an
initial sampling window with a duration of one day, its division in 1-minute windows(1440) in
which each reserve 10 attributes, results in a bidimensional array of (1440, 10)3. Its replication
over a whole week generates a tridimensional array of (7, 1440, 10) producing a total of 100800
values which represent the host’s activity on the network for a week. Generically, when each

3Also known as matrix.

59

sampling window’s length is lesser than one day, the tridimensional array is defined by the
following tuple: (days, sampling windows number, total attributes per window).

3.2.2 Generating network observations

Although chain’s second stage is fundamental, the result of statistical processing operation
does not necessarily model entities activity at such level that could be inferred patterns. It is
a low-level computation that simply aggregates and sums metadata, retrieved from the first
stage, following a criterion defined by the detection’s scope. Thus, these statistical metrics
needs to be processed and transformed into something that actually model an attack behavior,
allowing to perceive patterns changes. This represents the last stage of the chain whose
objective is the production of network observations, serving as input to the data pipeline,
which contains at the last stage ML algorithms responsible to detect patterns and produce
answers.

The sequential sampling window paradigm can be transposed to a possible third stage.
At this one, there is a sequential iterative process, where at each iteration results a new
observation window with features computed from the various attribute sets. Therefore, each
new observation window is a macro-view over the second stage resultant windows. As Figure
3.4 shows, this initial third stage approach is extended to previous described example’s
visualization.

...
1 2 3 1440

x 7 daysObservation windows per
day

... ...
1 2 1440 1441 1442 10080

Observation windows per
week

...
2880

1 2

Second Stage
Statistical processing

Third Stage
Features computation

Decision Decision

Figure 3.4: Second and a proposed third stage, aiming to produce network observations based on
the host behavior over a week. The observation windows, at this third stage, have ∆t
value of 1 day.

Based on the example’s context it is possible to describe three correlations due to the
subsequent architecture, between the third stage and the data pipeline:
• Modeling process and ML algorithm’s results

The first correlation concerns the system’s ability to produce better responses.
Thus, improvements in the third stage, particularly in the ability to generate network
observations that effectively model and have an explanatory character, are reflected in
relevant and easy-to-obtain results.

60

• Observation window’s duration and response time
There is a high dependency degree between network observations time’s duration and

the response time, since defining one determines the other. According to the example,
assuming a ∆t value of 1 day, implies obtaining the representation of a whole day data,
in order to confirm its normality or abnormality, and solely after day ends is possible to
fetch a response. On the other hand, faster response times can be adopted, however,
it must be kept in mind that low ∆t values may mean non-representative data, since
the patterns may be dissolved throughout the various observations. These contain very
similar data that do not allow the perception of pattern changes.
• Observation window’s length and network observations number

The number of network’s observations can be defined through a function that varies
the output with respect to the duration of each window, as shown in the following Table
3.1:

Table 3.1: Relation between observation window’s length and number of observations generated. It
follows the previous example, where sampling windows assumed a ∆t of one minute and
the capture total length is one week indexed on 10080 sampling windows.

Observation’s length Windows aggregated Observations number
5 minutes 5 2016
10 minutes 10 1008
30 minutes 30 336
1 hour 60 168
5 hours 300 33
15 hours 900 11
24 hours 1440 7

The granularity of each observation window is defined by the system’s objective. For example,
analyses a whole day in hourly sequences may be right decision to infer consecutive low-
level DDoS threats or large deviations in the average amount of bytes leaving the network,
indicating the leakage of information.

Thus, the resulting number of network observations may be a constraint to the ML
algorithms, since some need a minimum of observations to produce reliable results. Therefore,
it is important to find a balance the system’s response time and number of observations
needed, defining this way the observation window’s length.

With these premises in mind, a new approach emerges, shifting from a sequential and
strict paradigm to a slider. As Figure 3.5 illustrates, an observation window is superimposed
over the resulting second stage sampling windows, which slides to the end. In each iteration
computes features based on the metrics present in the sampling windows it covers.

61

...
0 1 2 3 4 N

Obs. Window 0
Obs. Window 1

Obs. Window 2

Shift

Decision
Decision

Decision

Figure 3.5: Observation window horizontal movement throughout the various sampling windows.
The shift time is equal to sampling window’s length.

The sliding window iteration strategy has various advantages. The resulting number of
observations increases immediately due to the sliding character. On the previous approach, a
set of aggregated windows were exclusive to a network observation, which is not verified on
this one, since consecutive iterations coverage a portion of equal sampling windows. Thus,
behaviors that slide through the day, such as compensating hours at an unusual time, are
deliberate as normal, rather than the previous solution that due to the deep connection of
the action with the day’s period, would consider as abnormal. Another important advantage
is the significant reduction in response time. This is defined by the window’s step time, in
detail: the response time in the first iteration assumes the observation window’s duration, as
in the previous solution, and in subsequent iterations it decreases to the shift time.

Thus, as shown in the Table 3.2, different window sizes generate different number of
observations and therefore, as in the previous solution, the right balance between the various
free parameters must be found, in order to detect events and patterns that occur in a long or
short period of time.

Table 3.2: Number of observations produced from varying observation window’s size and sliding
window shift time. Values are also based on the previous example.

Observation’s duration Shift time Observations number
5 minutes 20 seconds 30226
10 minutes 40 seconds 15106
30 minutes 5 minutes 2011
1 hour 10 minutes 1003
5 hours 20 minutes 490
15 hours 1 hour 154
24 hours 6 hours 25

Likewise, the sliding window’s decision size is taken depending on the system’s scope. For
example, sliding windows smaller than a minute wouldn’t be able to detect Youtube activity
due to its pseudo-periodicity that occurs in the order of few minutes. At the other extreme, a
hourly periodic event(e.g., such as backups in a production environment) would be detected

62

considering a sliding window’s size of 24 hours.

3.2.3 Network modeling

After making the decision about the sliding window’s size it is necessary to transform the
various attributes, present in the aggregated sampling windows, in features and consequently,
network observations. In each iteration, it is possible to construct an bidimensional array,
represented in Figure 3.6, with the various values of each attribute present in the aggregated
windows. Therefore, the number of columns is equal to the number of attributes and the lines
number is defined by the sampling windows combined, which is always equal in all iterations.

...
0 1 2 3 4 N

Obs. Window 0
Obs. Window 1

Obs. Window 2

Decision
Decision

Decision

Packets Out Packets In

...

Download BytesSrc Ports Out

Number of
aggregated

windows

Figure 3.6: Representation of sliding window paradigm, where at each iteration shifts one minute(i.e.,
duration of sampling windows), overlapping two windows after the first iteration.

A possible approach to compute resources arises from the interpretation of the various
matrix’s values so that several time-independent descriptive statistics(e.g., such as mean,
variance, median, quantiles, etc.) are produced from the same attribute. In addition to these
features, it is possible to select the zeros of an attribute, deriving new features, being these
ones time-dependent. For instance, considering the packets number, the zeros, along the
column represent passivity in the network and from these it is possible to define the average
time of a silence period. Usually, as in the purpose of the example, this method is applicable
to attributes that are related with network’s silences periods being also possible to extend the
method’s scope to a whole window, where are counted all the zeros from all columns, resulting
a new features which gives an insight about the window’s completeness.

Thus, the chain cycle ends resulting in a set of network observations with descriptive
statistics that discern patterns, and since the algorithms are particularly optimal in this area,
these observations represent the various data pipeline’s input samples.

63

3.2.4 Features that describe attack behavior

In order to model a attack vector behavior it is necessary to understand how is performed
along with the traffic that is generated. From these, and due attack vectors diversity, should
be selected unique sets of features that characterize each vector, since it is impossible to
address a single set that define all the patterns. For example, to model a TCP STOMP flood,
would be useful to determine features such as number of TCP session, number of ack and
push flags along with its ratio per TCP session. However, when performed in a file sharing
context, those may be not sufficient to model it, since in both cases these features assumes
similar values preventing patterns differentiation.

Another metric that potentially separates attack from human’s traffic is its rate and
periodicity. Attack vectors that assume human dynamics increases exponentially the difficulty
to distinguish patterns, unless the traffic generated highlights completely from the normal one.
For example, considering a network with several employees that just browse and listen Spotify,
even if a smurf attack follow employee’s dynamics, would be easily detected due to the abrupt
changes, once at normal conditions there are no ICMP traveling on the network. Relatively to
event’s periodicity, at a small temporal scale, humans tend to have higher behavioral variations
that are reflected in aperiodic actions. In its turn, actual attack’s dynamics, independently of
its rate, manifest a periodicity over the time, which contrast with human’s activities at same
scale.

Based on this assumptions, the feature selection to describe a behavior is an experimental
and iterative process from where should result statistical values enabling to discriminate
normal from abnormal activities. However, after its selection it may result poor-quality data
that needs to be analyzed/filtered in order to obtain a completeness set which will produce
better results.

3.2.5 Features completeness

Not always more features mean increase of performance, in fact, in most cases the result is not
the conjectured, lowering the accuracy and slowing the training phase due to computational
complexity inherent to excessive number of features. On the other hand there are no rules
to define the ideal features number in a generic classification problem. It is only possible to
address a dependency between the features number and the samples. The lower the features
number less samples are required for the model to generalize correctly. On the other hand,
the number of samples needed grows exponentially with increasing features. This problem
is often referred to as the curse of dimensionality. Transposing to a simple example, it is
easy to find a certain number in 101 numbers. However if the search space’s size is increased
to 102, the difficulty degree increases exponentially and so on. This exponential growth in
data causes high sparsity, and since it is impossible to achieve an infinite samples number
to combat the increase of feature dimensionality, it is important to understand that for N
number of features should be such that feature dimensionality � training samples.

Thus selecting the optimal network observations number for N dimensions is a major

64

concern on classification problems. In order to simplify this process there are two recurrent
ways: feature selection algorithms are the first approach, which employ heuristics(e.g., greedy
methods, best-first methods, etc.) to find the best combination and feature number. In its
turn, feature extraction methods are the second and most notable approach to find the optimal
a combination of original features, reducing the final problem’s dimensionality due to the
transformation from N original features to M, where M ≤ N . A well known dimensionality
reduction technique is Principal Component Analysis (PCA).

3.3 High Level Data Overview

3.3.1 Dataset analysis

So far the only view that can be drawn from the data is light because of the inherent low-level
process. As previously described in Section 3.2, from the transformation of the raw data into
sampling windows with metadata and from these to network observations that model the
pattern of an activity, allowing to infer about its normality, the general comprehensiveness of
the data type being treated is nil and, it is only possible to gain insights from the data by
analyzing network observations.

A good starting point starts with the analysis of the dataset following an approach that
must start from a higher level to the lowest one, where the dataset is initially interpreted as a
whole, segregating later for each label or component. Initially, the samples number present in
the dataset must be counted, allowing not only to understand the data dimension but also
to limit the ML algorithms, since many of them require a minimum number of samples to
achieve good results. Then, examining the number of network observations per label along
with the mean, minimum, maximum, standard deviation and percentiles allows a concrete
view of the dataset shape dataset and conclude on its balancing and completeness.

Another useful approach to gain insights about data nature comes from the plot histograms
which shows the number of instances in relation to a range of values according to statistical
measurements of specific features, as represented in the following Figure:

65

Figure 3.7: Representation in the form of histograms of some features obtained from network ob-
servations referring to a GRE flood attack. X-axis: observed values, Y-axis: count of
occurrences.

From the analysis of the various histograms it is possible to infer about the activity time
and therefore the periods of silence. For example, in a scenario with a highly intrusive bot
the analysis of packets over time allows to infer about their activity since, contrary to the
human actions that are usually paused, the actions of the less stealthy do not assume silence
periods. In addition to this analysis, it is still possible to infer about sample scales and data
distribution, which typically assume a preponderant position on one side of the histogram in
relation to the median, which may hamper the patterns detection by ML algorithms.

3.3.2 Dataset correlations

Often, to calculate the relationship between the data is computed standard correlation
coefficient, between every pair of features, that allows to uncover less intrusive patterns.
Nevertheless, besides this coefficient it is also important to compute and plot the scatter
matrix as illustrated in Figure 3.8, in order to evaluate about the positive or negative correlation
between features. The diagonal from top left to right bottom would be full of straight lines(i.e.,
each feature directly correlates with itself), so instead it is plotted the representation of a
histogram of each diagonal feature [129].

66

Figure 3.8: Scatter matrix for a ack flood dataset composed by three features. Each graph represents
the linear correlation between each pair of features

From the graphs analyzes it is possible to conclude a few things. Firstly, there is a high
correlation between the mean of outgoing packets and the mean of ack flags present also on
outbound traffic, represented by the density of overlapped points. In this context, almost all
of the outgoing packets carry an ack flag, assuming both features recurrently the same value,
which can mean redundant variables. This is a simple example, however with bigger datasets
the analyzes complexity growths exponentially, being impracticable the observation of all
pairs of features. This scatter matrix contains 9 graphs for a dataset with only 3 features. For
one with 30 would have to contemplate 302 graphics, being therefore a non-scalable approach.

3.4 Data Pipeline and Knowledge Extraction

At this point, data is almost ready to be loaded to the data pipeline. Generally, and
emphasizing that this work focuses on supervised learning, the network observations goes
through a data pipeline, in which it assumes a maximum of 6 stages., as shown in Figure 3.9.
However, this number is variable according to the algorithms, allowing to experiment and
combine multiple data processing. Each stage is detailed in the following sections, according
to the order defined in the Figure bellow.

67

Data Spliting

Data

Feature Reduction Feature Scaling Machine Learning

Classifications with
different approaches

Labels

Data

Feature reduction with
PCA

Removing the mean and
scaling to unit variance

Dataset split
Cross-validation

Results

Classifier
 Evaluation

Different metrics to
measure classifier

performance

Metrics

Figure 3.9: General representation of the data pipeline. The data are transformed along the pipeline
to be suitable for each ML algorithm. Depending on the nature of these, some steps may
be omitted.

3.4.1 Data splitting

Throughout the generic pipeline data division occurs twice, first at this stage, and then in
the training phase of the ML algorithm. Regardless of the division point, it is necessary to
guarantee the data representativeness of each subgroups in relation to the overall data. For
the first division, which typically follows the follow the Pareto principle, two sets of data
result: training set and test set, with ratios of 80 % and 20 % respectively. However, in
volatile contexts where the samples number has a high variance and the consequent dataset
size is small, it is necessary to ensure that the test set is data’s representative, allowing to
provide an unbiased evaluation of a model.

The cross-validation(i.e., the second data division) occurs in the model’s training phase,
resulting N training and validation sets, as illustrated in Figure 3.10. This strategy represents
the crucial point where data plays a major role, and its representativeness determines the
system’s performance.

Dataset

Train set Test set

80 % 20 %

Iteration 0

TrainValidation

Iteration 1

Iteration 2

...
Iteration N

Train set

Stage 1

Stage XXXX

Figure 3.10: Data splitting applied on two distinct phases. Although split percentages are flexible,
in the first split were defined by the Pareto principle.

Instead of shuffling the data and partitioning of the two sets in each iteration, leaving
the representativity to the burden of luck, this process must be controlled in order to avoid
biasing, and therefore, stratified sampling should be adopted. Stratified sampling ensures
that the resultant train and validation sets maintain the same samples percentage over the

68

splits, and mainly that each validation set is overall data’s representative. However, with the
subgroups number’s growth, it does not guarantee different subsets, and its repetition among
the various splits may occur. Typically the splits number, called folds, is ten, often designated
as magic number due to the excellent results it provides in general, resembling an axiom.

In addition to the first division, it is good practice to have one more set of data in order
to evaluate the model in order to understand how anomalous behavior is detectable. For
example, in a HTTP flood detection context, where normal activity is around 10 requests per
minute, and in an attack it becomes 100, it is important to realize in this 90’s failure how
far it is possible to detect. Thus, this zero-day tests are required, varying in frequency and
scales the various anomalous activities in order to provide a clear view on the generalization
and detectability of highly masked patterns. A deep dive over this topic is present on the
following Section 3.5.2

3.4.2 Features reduction

Feeding a ML algorithm with a set of features without being dissected is impractical, it increases
the complexity to find a good solution reflected in time processing and not satisfactory results.
This way, adjust feature dimensionality is mandatory on every ML problem. However, should
be present the concern with relevant information, since with features reduction, some of them
are discarded and the inherent information is lost. On the other hand, it filters noisy and
poor-quality data along with unnecessary one, aiding to reach high performances. Another
important vantage from features reduction is visual simplicity, once reducing the dimensions
to one, two or three allows project the data in order to gain even more insights about activity
patterns after the previous ones obtained from data’s overview on Section 3.3.

The most notable dimensionality reduction algorithm is PCA. This technique projects
the data onto a hyperplane preserving the maximum amount of variance, once it will most
likely lose less information than other projections with lower variance. This hyperplane is
previously identified by its approximation to the data.

Another important metric to is the mean square distance between the original dataset
and its projection on a specific axis, which should minimize this value [129].

But, how should be chosen the right number of dimensions? The process should not be
arbitrary and is important to choose a number that choosing the number of dimensions to
reduce down to, it is choose the number of dimensions that add up to a sufficiently large
portion of the variance(e.g., 95%). A descriptive approach is to plot the explained variance in
relation to the features number, as portrayed in Figure 3.11. Typically, there is an elbow in
the curve, where the variance ratio stops growing quickly.

69

Figure 3.11: Representation of explained variance according to the number of dimensions [129].

In this case, reducing the dimensionality to about 150 dimensions would not lose too much
explained variance and, therefore relevant information. It is possible to confirm that there are
no valuable information lost by inverting the reduction process and verify against the original
space that the data’s correlation are preserved along with its variance, as shown in Figure
3.12.

Figure 3.12: Demonstration of PCA reduction using Kernel PCA method, and inverse transfor-
mation from the resultant projection, maintaining all the relevant information and
correlations [156].

As the data pipeline shows, this process is applied right after the split, on both train and
test set. Despite the diverse advantages, the features reduction use is optional. However,
consistency must be maintained, and once used at this stage, it will have to be used in
subsequent tests, as in the zero-day test cases.

3.4.3 Features scaling

Often, a dataset is composed of several highly varied features not only in magnitude, but
also in units and range, which may be a limitation, so these discrepancies have associated a
greater weight to each feature, biasing the model. Thus, a relevant pre-processing technique,
designated as feature scaling, must be applied to the data before being loaded to the ML
algorithms.

Often, ML algorithms are invariant to the features scale, as will be detailed in Section 3.4.5.
With a few exceptions, like SVM or NN, there are algorithms that present better performances

70

when the inputs numbers assume the same scale. Typically labeling each network observation
is accomplished on forward stages, however in cases when are present on this one its values
should not be submitted to a scaling process.

There are two main approaches to scale a dataset:
• Normalization

Also known as Min-max scaling, this strategy is quite simple, each value is linearly
transformed into a new value which end up ranging from 0 to 1. The value is subtracted by
the min, and then divided by the max minus the min: x→ y = (x−min)/(max−min).
• Standardization Differently, each value is subtracted by the mean(so standardized values
have a zero mean), and then is divided by the variance, resulting a distribution with
a unit variance. Unlike, the standardization result does not bound values to a specific
range, being a constraint to some algorithms like NN that expect input numerical values
ranging from 0 to 1. Nevertheless, this is much less affected by outliers. Comparatively
to the previous strategy, and considering a dataset with outliers, the normalization scales
normal data to a tiny interval, leaving the rest to a longer one, while standardization is
not bounded and consequently does not lose important information.

As well as the previous, this process is optional albeit some ML algorithms benefits directly
from its usage. Therefore, its coherence also must be maintained on both train and test sets,
otherwise when applied solely on the train one, for example, when the algorithms faces test
instances, from the test set or zero-day test cases, it will produce worst results due to scale
variation.

3.4.4 Labeling approaches

Once the focus is on supervised learning, labeling each network observation is mandatory
before forward it to the ML algorithms. There are multiple strategies to categorize each
activity pattern. Considering an anomaly detection system, on a context where are three
attack sources, each one with a different attack vector: the first one perform an UDP-based
memcached, the second a DNS query flood and the third is exfiltrating data.

One prominent approach is to reduce to a binary classifier, where it only need to distinguish
between two classes. Thus, all the three attacks are classified with the label one meaning that
are all anomalies, being the label zero reserved for normal traffic. This is a basic approach,
which is available widely on every classification algorithm. However, not always group different
attack vector on a same groups is worth, once it may be useful to identify specifically which
attack vector is present on a given moment in order to apply particular defense methods.
Another limitation from the attack aggregation is the inherent difficult to generalize correctly
for all three vectors, once each attack has its characteristics and dynamics that can bias the
final classification.

Thus, since there are three different attack categories, a direct approach consists in
label each network observation with the respective label, adopting a multiclass classification.
Whereas binary classifiers distinguish between two classes, these ones can distinguish between
more than two classes. Following this strategy each attack vector is assigned a singular

71

label, for example, label one for memcached, two for DNS query flood, label three for data
exfiltration and finally the label zero, once again, is reserved for normal traffic. This way, the
classifier is able to learn from the different observations, from distinct patterns and when face a
new instance categorizes with a label from zero to three. At this point, the vectors segregation
allows to apply different counter measures to each one, however, the general performance of
the classifier may be affected by the similarity between attacks, introducing attack correlations
that skew the classification. Besides this limitation, there are plenty of algorithms that does
not support multiclass, which introduces the next approach that is a division of multiclass
classifiers into sequential classifiers, where its number is defined by the number of labels. Thus,
on this context, it would result three classifiers, where the first one identifies memcached
attacks, the second DNS query flood attacks, the last one is responsible for identifying data
exfiltration patterns and the last one manages normal network observations. Then, when a
new instance arises, each classifier provides a decision score for the specific instance, and is
selected the class whose classifier outputs the higher score, as illustrated in Figure 3.13. This
is designated as OvAs strategy4.

Memcached

Classifier 1

DNS Query
Flood

Classifier 2

Data
Exfiltration

Classifier 3

Normal
Traffic

Classifier 4

52 27 5 95

New Instance

Figure 3.13: Representation of the OvA strategy, where the classifier responsible for normal traffic
produces the highest score, being the new instance classified as normal.

Another possible strategy to combat the multiclass constraints, relies on the divide-and-
conquer paradigm, dividing multiclass classifier into several binary classifiers. However, in this
case each classifier needs to distinguish a par of attack vectors(i.e., between normal traffic and
memcached attacks, between normal traffic and data exfiltration, between memcached attacks
and data exfiltration, and so on.) This is called the One-versus-One (OvO) strategy. However,
there is a major limitation, the number binary classifier grows rapidly with the increasing
classes. For this example, it would result six different binary classifiers. Generalizing, for N
classes, it are necessary N× (N− 1)/2 classifiers. Thus, this approach is impracticable in most
contexts since training only a singular classifier is computationally time-consuming, with the
amount of data’s addition and the necessity to train multiple classifiers it becomes extremely
difficult to implement a OvO solution.

4Also known as one-versus-the-rest (OvR)

72

3.4.5 Outbound anomaly classification

As discussed in Section 3.2, the resultant features, try to express a network activity through
its inherent patterns which should be inferred and segregated at this stage in order to classify
news instances. At this point in the pipeline, regardless of the supervised learning algorithm
used, the data is fully ready to be loaded.

3.4.5.1 Support Vector Machine

SVM is a ML algorithm, where the main concept is to find boundaries between known samples,
defining a segregation hyperplane. Based on these boundaries the algorithms decide how to
classify a network observation, assigning to each observation the respective label. SVM is
hypersensitive to features scaling, meaning that a data pipeline with a SVM in the final stages,
must be preceded by a standardization stage. There are several SVM algorithms characterized
by different parameters which should be tuned.

LibLinear is a linear SVM algorithm implementation, which fully determines a decision
boundary based on the instances located at the edge, the support vectors. Often, this
hyperplane formed by the decision boundary and respective margins(i.e., distance between
decision boundary and respective support vectors) is designated as street. Ideally it should be
as large as possible limiting also the margin violations(i.e., instances that end in the middle
of the street or even in the wrong side) in order to maximize the classifier’s perform [129].
This directive entitled soft margin classification is balanced by the C parameter: it tells
the algorithm how much to avoid misclassifying each training sample. For example, large
C values produce narrow streets, and all training samples tend to be classified correctly,
avoiding violations. On the other hand, small values result in a hyperplane with wide margins,
which is more conducive to missclassify. However, the tunning process, particularly on this
penalty parameter C requires a previous dataset overview in order to perceive a possible
data’s separation according to a hyperplane, as well as the number of outliers in the training
samples. Figure 3.14 represents the C parameter variation in relation to the results bias.

High C parameter value Low C parameter value

Figure 3.14: Representation of the impact of SVM’s C parameter separation margin

Higher C values mean less margin and therefore high penalty for misclassification. In its

73

turn, on the right side, small C values, although many instances end up in the middle of the
road, optimizes the classifier, which tends to generalize better, avoiding data over-fitting.

Note that linear SVM algorithm supports binary and multiple classes, and when training
samples are labeled with more than two classes, it provides both strategies, OvA and OvO,
detailed in the Section above 3.4.4. By implementing both strategies, it carries the advantages
and disadvantages, emphasizing that the training process is extremely time consuming.

3.4.5.2 Neural Networks

Generally, network behaviors and patterns are underlying excessive amounts of data, which
reduce the SVM performance, thus representing a scalability problem. This limitation
represents for the NN, a surplus value, since they benefit from the amount of data. Due
to the constant growth of data and the application of ML methods in extremely complex
areas and tasks, NN as core of the Deep Learning, has gained enormous popularity, much
because of its versatility, scalability and power. Its application is in constant proliferation
being actually present in contexts such as classifying billions of images(e.g., Google Photos
and Google Images), speech recognition services(e.g., Apple’s Siri), recommending millions of
videos or music to users based on their history(e.g., Youtube and Spotify) and so on.

The NN structure can assume multiple implementations. Starting the simplest one,
the perceptron which have multiple inputs weighted that tap into a single output. Multi-
Layer Perceptrons (MLPs) implements a multi-layer structure, illustrated in Figure 3.15,
combining various perceptrons and its internal organization, which may include bias neurons
and backpropagation algorithms. This last one, works by analyzing output’s error of the NN,
the error is calculated by the input contribution of each neuron and its weight, and error
minimization is achieved by varying the weights approaching the result as close as possible to
the expected one. This process continues working its way backwards through the layers of the
NN. The training is implemented using Stochastic Gradient Descent which try to optimize
the weights according a specific solver [129].

Input Layer

Hidden Layer 1
Hidden Layer 2

Output Layer

Figure 3.15: NN with an input layer, two hidden layers and a final output layer. When a NN has
two or more hidden layers, it is called deep NN

74

Compared to SVM, the NN are also sensitive to feature scale, and therefore follow a
data pipeline with equal preprocessing. Due to the plethora of possible layers, in which
the size of each can vary, the hyperparameter tuning is too slow. In addition, since it is
always the objective to maximize the classifier’s performance, this process must be carried out
exhaustively. Moreover, with a high number of layers, several free parameters appear between
them that make the training process also slow.

3.4.5.3 Decision Trees

Tree based learning algorithm are also a solution for supervised learning problems, widely
present mainly due to its high accuracy, ease of interpretation, fading the concept of black
box highly present in NN. Decision trees follow a hierarchical structure, as shown in Figure
3.16, consisting mainly of four elements:
• root node: the highest tree’s point, it divides the samples into two or more homogeneous
subgroups;
• decision node: apply a test function to an attribute, where the outcome defines the next
branch;
• branch: determined by a subgroup of a entire tree;
• leaf node5: nodes do not split, forming localized regions where instances tend to fall,
representing a class label.

Root Node

Decision Node Decision Node

Leaf Node Decision Node

Leaf Node Leaf Node

Leaf Node Leaf Node

Branch

Figure 3.16: Decision tree structure example, with five leaf nodes and three decision nodes.

The tree’s operation mode is based on the design paradigm divide and conquer whereby a
terminal node is identified in a sequence of recursive splits in a typical small number of steps.
Each step is mapped to a decision node, where it decides which branch to follow according to
the outcome. This process starts at the root and recursively taper until hitting a leaf node,
meaning a final classification. However, it is necessary to keep in mind the quality of each split,
analyzing the impurity measure [157]. A split is pure when the route is only constituted by a
single label, that is, for all the branches, all the instances choosing a branch belong to a single
class. There are also other constraints that should be considered when tuning the predictor

5Also known as terminal node

75

parameters, for example, the tree’s depth poses a major concern once when it assumes high
values, the tree is able to learn very specific relationships incurring inover-fitting.

Due to its white box nature, these models are easily understood through its intuitive
graphical representations which demystifies the underlying operations, highly abstracted in
models such as NN. In addition to this advantage, decision trees are very useful for data
exploration since it is possible to quickly identify relations between two or more variables
allowing to gain more insights about the generalization process and the training set [158].

Comparatively to the NN, tree models require less data and are not influenced by outliers
or missing values. In contrast, these predictors are invariant for monotonic transformations
and therefore do not benefit from the feature scaling.

3.4.5.4 Ensemble Methods

An ensemble method is an algorithm which combines a group of predictors(called ensemble) into
a single one, maximizing its accuracy. Usually, these predictors are decision trees, which when
grouped together constitute a more stable model that incorporates the inherent advantages of
predictors and generally provides better predictions than an individual predictor. There are
two main ensemble methods:
• Bagging: is a voting method whereby each predictor is assigned with a different data
portion. The training set is divided along the predictors following a bootstrapping
technique, as illustrated in Figure 3.17, where the instances are randomly splitted with
replacement, in other words, it is possible for an instance to appear more often in
various training sets than others, which in the worst case do not appear. Although each
individual predictor has a higher bias than if it were trained with the original training
set, the aggregation of several reduces not only the bias but also the results variance.

Original training set - T

T1 T2 T3 TN...Create multiple
training sets

P1 P2 P3 PN
Build multiple

predictors

P*

...

Combine predictors

Figure 3.17: Representation of how the bagging ensemble methods operate on the training set, dividing
it into several that feed the same number of predictors that ultimately unify, through a
voting process.

The group of predictors when face a new instance, classify it individually, and through
a voting process comes the final classification. The most popular implementation is the
random-forest, which is based on a set of decision trees.

76

• Boosting: refers to a family of algorithms which combine several weak learners into a
strong learner. The general concept of most boosting is to sequentially train predictors,
each trying to correct its predecessor misclassifications, as represented in Figure 3.18.
Conversely to the strategy described above, where the predictors act and parallel, in
boosting methods the predictors assume a chain structure introducing dependency.

Iteration 2Iteration 1 Iteration 3

Final Classifier

Figure 3.18: Representation of the boosting ensemble methods iterative process, intending to adjust
the weight of an observation based on the last classification.

The most prominent algorithms that follow this method are Adaboost, Gradient-
boost, and Xgboost that have recently been consistently used to gain machine learning
competitions on Kaggle [159], [160].

Often these algorithms derive from decision trees which makes them invariant to features
scaling, being the data pipeline’s third stage omitted when empowered one of these ensemble
methods. In addition, the process of tuning parameters becomes more complex, since there
are the specific trees’s parameters as the depth or maximum number of leaf nodes, and also
the parameters of bagging or boosting. For instance, both Adaboost and Gradientboost need
parameters to manage the boosting and model’s robustness, such as the learning rate that
determines the impact of each tree on the final outcome or the estimators number that
represents the number of sequential trees to be modeled. Due to the complicity of these
parameters, the variation of one must be reflected in the other proportionately, but in a
different sense, specifically, the learning rate must be decreased, and consequently, the number
of estimators must increase in the same proportion, thus obtaining a more robust model.

3.4.5.5 Novelty and Outliers Detection

In an anomaly detection context, a straightforward approach involves the implementation
of outliers detection. Both aim to separate a core of regular observations from the outliers,
differing in the training process and consequent data. In novelty detection the training set is
cleared of outliers, and these are detected in new instances. For once, in outlier detection,
it is assumed that the dataset contains outliers which are contaminating it. Based on these
assertions, the objective is to cope with its presence in the modeling phase of the normal
pattern, adjusting one or more data cores, ignoring the divergent observations.

77

Usually, these detection methods are applied to datasets in which a huge number of normal
observations are available and where there are insufficient data to describe abnormalities.
Under these conditions the datasets is classified as unbalanced, once the examples number per
class is highly different. These data sets are consistently present in complex industrial systems
that aid in these methods to detect failures, as well as in electronic security systems, where
the goal is to detect intrusions such as credit card or mobile phone fraud detection [161].

On both methods, a normality description is learned by constructing a model from the
numerous positive instances(i.e., data that represent normal activities). Afterward, the model
faces previous unseen patterns which are compared with the normality model providing a
decision about its nature: inlier or outlier.

3.5 Knowledge Process Evaluation

3.5.1 Performance evaluation

Evaluating the performance of a classifier, regardless of its category, is often reduced to
the analysis of accuracy, however this process should be taken more emphatically due to
complexity and extensibility.

The first moment of evaluation should focus on cross-validation, detailed in Section 3.4.1.
This method not only avoid biasing, but also elucidates the learning process, allowing to
formalize an initial interpretation of the model. This perception comes from the analysis
of multiple accuracies obtained at the end of each fold. In other words, the model in each
iteration, trains with a training set’s percentage and validates with the rest obtaining an
accuracy per iteration, that when grouped demonstrate the model’s behavior for the training
data. The accuracy is a straightforward metric, calculated according to the following Equation
3.1.

Accuracy = Correctly classified instances

Total instances
(3.1)

From this process results the training accuracy, the average of all accuracies, which
represents the first base term to conclude on the overfitting of the model. The second term
is obtained at the end of the cross-validation, when the model faces the test set, where the
analysis is more refined in order to obtain an exhaustive evaluation of the model. At this
point, a new structure, called a confusion matrix and represented in Figure 3.19, is introduced,
from which it is also possible to obtain the classifier’s accuracy among other metrics.

78

Positive Negative

Predicted Classes

Positive

Negative

TP - True Positive

TN - True NegativeFP - False Positive

FN - False Negative

Figure 3.19: Confusion matrix for a binary classifier. The paradigm can be transposed to a multiclass
classifier, where the matrix grows proportionally either in rows and columns, maintaining
the correct classified instances on the diagonal from top left to bottom right.

Following an approach from the simplest confusion matrix, its first row concerns the actual
positive class, that is, true positive when the samples are classified as positive, or false negative
when misclassify, labeling as negative. In its turn, false positive is when negative samples are
classified as positive ones, and true negative when negative samples are classified correctly, as
negatives. For example, directly from the confusion matrix analysis, it is possible to calculate
the classifier accuracy, the number of correct classifications being given by the sum of all
diagonal values from the top left to bottom right(i.e., true positive and true negative), and
the number total is given by the sum of all confusion matrix fields.

This is the base process for analyzing a confusion matrix of a binary classifier, however it is
plausible to extend to a multiclass classifier with the nuance that analysis complexity increases
due to the greater number of classes. Regardless of the labels number, these simple statistics
present in the confusion matrix, are the foundations to calculate new concise metrics, which
allow, for example, to corroborate the accuracies of one class over another in an unbalanced
dataset, where the ruling class is more likely to have a higher precision. An interesting one to
look at is the accuracy of the positive predictions, designated as the precision and defined
according the following Equation 3.2:

Precision = True Positives

True Positives + False Positives
(3.2)

However, evaluating a classifier based solely on two metrics is a reckless approach that
does not translate the entire performance of the classifier. Another metric is often included is
the recall6, defined in Equation 3.3, which is the ratio of positive instances that are correctly
detected by the classifier.

Recall = True Positives

True Positives + False Negatives
(3.3)

There is an inverse proportionality relationship between these two last metrics, called
precision/recall tradeoff, that does not allow both to assume, simultaneously, high values. It
is important to adjust this trade-off according to the context of the problem, finding the ideal
point between the two extremes: low recall(i.e., some anomalies are not detected) and high
precision(i.e., detects anomalies that are effectively minimizing false positives). Thus, in an

6Also known as sensivity or True Positive Rate (TPR)

79

anomaly detection context it is preferred to have high accuracy, tolerating some anomalies
rather than having a high number of false positives.

Often, in order to find an optimal blend of precision and recall, both metrics are combined
into a new one called F1 score, defined by the following Equation 3.4:

F1 = 2 ∗ Recall ∗ Precision
Recall + Precision

= True Positives

True Positives+ False Negatives+ False Positives

2
(3.4)

The F1 score is the harmonic mean of precision and recall, which punishes extreme values
by giving more weight to low ones, whereas regular mean treats all values equally. For instance,
a classifier with full precision and a recall of 0.0 has a regular mean of 0.5 but a F1 score of 0,
prevailing the lowest value. Thus, in order to create a balanced classification model, the F1

score should be maximized, finding the optimal balance of precision and recall.
Beyond this trade-off, another popular designated as Receiver Operating Characteristic

(ROC) curve, plots the recall against the False Positive Rate (FPR). The FPR is the ratio
of negative instances that are misclassified as positive, and can be obtained from the true
negative rate7: FPR = 1− TNR. Hence, the ROC curve plots recall versus 1− specificity.

Comparing multiple ROC curves against different ML algorithms provides a straightforward
method to evaluate the classifiers performances on a anomalies detection context.

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

Receiver Operating Characteristic to multi-class

micro-average ROC curve (area = 0.90)
macro-average ROC curve (area = 0.89)
ROC curve of class 0 (area = 0.97)
ROC curve of class 1 (area = 0.89)
ROC curve of class 2 (area = 0.80)

Figure 3.20: ROC curve for SVM multi-classification using Wine dataset [162].

As Figure 3.20 illustrates, the higher the recall represented by the Y axis, the more false
positives the classifier produces. Ideally, good classifiers should be as far as possible from
the dotted line, which is the ROC curve of a purely random classifier, trying to reach the

7Also known as specificity, which is the ratio of negative instance that are correctly classified as negative

80

top left corner, achieving the optimal point, where the FPR is zero and the TPR is one.
Furthermore, another common way that allows comparing classifiers is measuring the Area
under the curve (AUC). Whereas a purely random classifier is characterized by a ROC AUC
of 0.5, a perfect classifier should have an ROC AUC equal to 1.

3.5.2 Zero-day tests

As the generic data pipeline in Figure 3.9 shows, this is the last stage and may even be omitted
in simple scenarios. However, on anomaly detection contexts makes sense to corroborate the
model’s ability to detect. The processing of data on this stage must be exactly the same as
those that fed the predictor, that is, from the acquisition process and subsequent operations,
described in Section 3.2, to the stage of exclusive ML, maintaining the coherence so that
the model can be evaluated correctly, partially simulating its application in a production
environment. The exhaustive evaluation of the behavior and flexibility of the predictor when
facing unseen instances is again performed with the help of the various metrics detailed in the
section above. In turn, the granularity of the evaluation is directly related to the data present
in the set of zero-day tests, which should preferably differ substantially from those used in the
machine learning stage. This divergence can be emphasized in the frequency domain of the
features, as well as in the scale, thus varying in a spectrum, where attack vectors belonging
to one extreme are highly intrusive, while attacks closer to the other are stealthy, almost
imperceptible.

Usually the attack vectors assume a unique and known attack dynamics, such as those
discussed in Section 2.3.6. Thus the fluctuations along the spectrum are the result of the
attack dynamic variation, differing mainly in the amplitude of the packet throughput and
inherent bandwidth as well as the intervals of silence. For example, considering a HTTP flood
scenario, where the classifier learned with a set of observations: web-browsing activity as
normal data, and a intrusive HTTP flood as abnormal one, where every 1.5 seconds 10 POST
requests were sent. At this point, it is important to note the flexibility of the classifier when
it comes to classify samples that slightly or extremely differ from these dynamics. By facing
lowering the intrusive degree it is possible to evaluate the classifier and establish a limit of
detectability. In this way, it is possible to address a set of highly stealth pulse-wave dynamics
that completely deviate from the 10 requests per 1.5 seconds, as shown in Table 3.3.

Max packets Silence duration Accounted packets
10 20 60
10 30 40
10 60 20
2 30 8
2 60 4

Table 3.3: Pulse-wave dynamics that vary the maximum number of packets as well as the periods
of silences, which after observation for two minutes result in the total number of packets
represented in the third column. For the sake of simplicity, it was assumed that the packet
throughput is instantaneous.

81

Based on this approach, by facing the classifier with unseen dynamics(i.e., dynamics that
were not present on the training phase, obtained from differing silences or mimicking on
legitimate traffic, being similar to the normal human behavior) it is possible conclude, with
more granularity, about the classifier performance.

In conclusion, following the premises discussed in the previous chapter, and given the
diversity of business areas and the services that that today’s corporations expose, the method-
ologies presented are transversal to all of them. The process must start with data acquisition,
followed by the extraction of features and finally their transformation into knowledge. Since
it is mainly focused on network anomaly detection and detecting unusual behaviors through
network continuous monitoring and application of machine learning algorithms, there should
be noted that different corporates have different profiles and distinct anomalies are described
by different features.

82

CHAPTER 4
Proof of Concept and Evaluation

In this chapter is described the proposed solution to detect anomalous dynamics on a corporate
network from its observation. The proof of concept is sustained by the procedure described in
the previous Chapter, also following its order, from the generation of normal and abnormal
traffic patterns using real attack vectors, composing the dataset, until the detection of anomalies
according to each network observation, aided by algorithms machine learning and suggested
metrics.

4.1 Network Data Generation

Concerning the requirements described at Section 2.8 and 3.1, the implemented monitoring
process includes a software-based solution probe belonging to the network domain, which
passively captures raw packets on a wireless interface, storing all the data in a well-formatted
document with pcap extension. The implemented sniffer requires read access to network
adapter, correct system time and date, and some parameters related to the capture time,
number of packets to be captured, or specific filters (e.g., TCP or UDP). Although all packet
information is obtained, the processing of the metadata is strongly constrained between layer
1 and 4 of the OSI model. It should be noted that due to the passive nature of the sniffer,
there is no perceptible impact at either the network level or the performance level of the
system, thus avoiding implementation problems, often related to the deterioration of the
overall performance due to the introduction of new features and services, which necessarily
require specific resources to perform the tasks in full.

Typically an enterprise network follows a set of architectural principles [112](i.e., resiliency,
redundancy, modularity and flexibility, ...) and a hierarchical topology composed of three
layers, as shown in Figure 4.1.

83

Access

Local and Remote Network Access

Distribution

Redundant routing and
Security Police Enforcement

Core

High performance and
Availability

Figure 4.1: Enterprise hierarchical network layers

In order to build a baseline model to simulate, at a low level, a corporate network domain,
the closest approach was obtained by using a home network, where the domestic private
subnet represents all the company network and three layers were reduced into one symbolized
by the home router. Due to hardware issues and in order to simplify the topology, despite the
various devices connected to the home router, only one of them was monitored(i.e., Fedora
27).

There is a high contraction of network complexity compared to the level practiced in
most of the organizations’s topologies since all the layers have been aggregated and all the
mandatory principles in physical scenarios do not matter in a simulated context because the
network is simple and its control has been fully assured, and thus does not represent, any
limitation to this Proof of Concept (POC).

From the establishment of this base network architecture, it is possible not only to
determine the sniffer deploy position but also to define and simulate its behavior. Since
the main purpose of this dissertation focuses on the detection of outbound attacks, in an
enterprise environment, it is assumed that a device connected to the company network is
already compromised, thus signifying the starting point for detection. Although the sniffer
has been deployed as close to the host as possible, it can be easily transposed into higher
layers, maintaining present the data representativeness and redundancy. In a real scenario, the
ideal position would be between the layers of access and distribution, allowing the detection
of egress attacks, in addition to enabling the use of traceback mechanisms or against more
specific and effective measures. Thus, in order to generate network observations from which
patterns will be inferred, and deviations between normality and abnormality, it is necessary
to segregate business activities considered as normal from a set of attack vectors that produce
abnormal network observations. These normal and abnormal behaviors fit into a classification
problem allowing the use of ML models that follow the paradigm of supervised learning, as
described in Section 3.4.5.

84

4.1.1 Normal Network Activity

The first step in resembling a corporate network begins with generating behaviors on the
network that identify a set of activities, all of which are present in a company’s everyday life.
Thus, intending to replicate the normal habits of a common employee of a company, four
practices often used in a corporate domain were selected [163], [164]:
• Youtube : reproducing videos at 720p;
• Spotify : reproducing random music;
• Twitch : watching a stream with source quality(i.e., between 480 and 720p60);
• Browsing : social networks and googling.
Obviously this list can be extended, there is a set of services inside the companies, many

of them exposed in a TCP port(e.g., SSH on port 22, HTTP on port 80, etc.), however to
keep the solution as generic as possible, were used services that are commonly available within
the company and therefore are not blocked by the firewall. Although it is known that most
corporations block the use of file-sharing services in peer-to-peer networks [165], such as
torrent, thus closing the door attempts to enter the network, it has been purposely included
in all normal services by reason that generates exaggerated amounts of traffic and allows the
obfuscation of other services or anomalies.

Among the services presented, its network activity was registered for several periods of
time, with a minimum of 5 minutes to a maximum of 15.

4.1.2 Abnormal Network Activity

On the other hand, in order to generate network observations which identifies anomalous
patterns, it is necessary to create a set of attack vectors that define such behaviors. Conse-
quently, being the Mirai botnet an icon in the DDoS history, and once its source code was
made public on Github [166] for research and development purposes, was easily chosen as
support to generate abnormal traffic. Besides, it implements ten attack vector, covering all
three categories, which became famous by taking down many companies, as described in
Section 2.4. Due to the extensive number of vectors, four were chosen based on the criteria
that refers to frequency of use and bandwidth consumed:
• TCP SYN Flood - Protocol attack;
• TCP ACK Flood - Protocol attack;
• GRE Flood - Protocol attack;
• DNS Query Floods - Application-Layer attack.

Although Mirai’s attack vectors often assume random ports, which may be blocked at the
firewall, at the edge of the enterprise network, the most important features that are intended
with the use of such vectors, is the similarity with reality and the ability to serve as the
basis for generating abnormal dynamics, translated into abnormal network observations. By
default, Mirai’s attack vectors follow a constant flow rate, accentuating it intrusive character,
as explained in Section 2.3.6. Initially, the traffic flood ramps up abruptly, reach a peak and
maintain for a specific period of time. This sudden pattern immediately arouses the presence

85

of non-human behavior and as such allows one to more easily detect behaviors that follow
these dynamics. In this way, the dynamics of action and pause of each attack vector were
improved, obtaining vectors that follow pulse-wave as a possible way to perform the attack,
thus distancing themselves in the initial highly intrusive nature, to more stealthy actions that
resemble human behaviors, to a certain extent. In addition to this dynamics, three more were
introduced, two of which are characterized mainly by their gradual growth and low throughput
in the initial phases of the attack, as represented in the Figure 4.2.

(a) Exponential growth. (b) Linear growth.

Figure 4.2: Representation of both dynamics.

Both dynamics assume an iterative behavior, which is difficult to perceive if it is mapped
in time and that despite the iterations being indexed in time, the mapping of the behavior in
iterations highlights the increase of the packet throughput in relation to each iteration.

For the exponential dynamic, represented on the left, between each iteration there is
a fixed silence period of 5 seconds, and the number of packets sent follows an exponential
function with base 2. For the iteration N are sent: 2N packets. On the other hand, the
dynamic on the right contemplates several periods of silence variable, inversely proportional
to the number of packages sent. While the period of silence decreases by a factor of 0.25, the
packet throughput increases by the same factor. For iteration N :
• Period of silence(PoS): PoSN = PoSN−1 − (PoSN−1 ∗ 0.25)
• Packets sent(PS): PSN = PSN−1 + (PSN−1 ∗ 0.25)
The last dynamic is intended to replicate the human behavior, as realistic as possible,

by varying the periods of silence and number of packets sent according to an exponential
distribution, thus generating a profile of abnormal activity that is highly reliable. In order to
generate the distribution, the exponential quantile function was used, defined by the following
equation:

F−1(p;λ) = −ln(1− p)
λ

, where p is a random 0 ≤ p < 1 (4.1)

The λ is the scale parameter which was chosen by following a discrete distribution in order to
control the spread of the resultant exponential distribution. This distribution was used solely
to obtain values for the duration of the periods of silence, deciding to keep the packet rate
constant so as not to introduce too much abstraction and randomness in the observations of
the network, allowing the awareness and understanding of them in a spectrum of intrusiveness
of the attack.

86

Table 4.1 summarizes the previous detailed and implemented dynamics, suggesting a
nomenclature for each one.

Table 4.1: Dynamics used during the acquisition of attack data, the first being more intrusive and
completely immutable, while the others assume some parameters in order to vary the
degree of intrusiveness.

Dynamic Description
DYN-CR Constant rate - default
DYN-PW Pulse-wave
DYN-EG Exponential growth
DYN-LG Linear growth
DYN-ED Exponential distribuition

Additionally to previous described attack vectors, the UDP-based memcached vector
detailed in Section 2.3.5, which was used against Github recently and has the highest recorded
peak, was also added, culminating the deficit in the volume-based category. By synthesizing
and facilitating subsequent references, the nomenclature is established for each attack vector,
as shown in Table 4.2.

Attack Vector(AV) Description
AV-1 TCP SYN flood
AV-2 TCP ACK flood
AV-3 GRE flood
AV-4 DNS query flood
AV-5 UDP-based memcached

Table 4.2: Pool of attack vectors and respective alias

In this way, five notable attack vectors were assembled that allow to shorten the difference
between a real and a simulated scenario, creating attack profiles as close as possible to those
that occurred in the recent past. It should also be noted that, the effectiveness of the attack
vector is an irrelevant factor, the important thing to retain is the vector fingerprint and its
dynamics, making the period of activity and silence vary, both in scale and frequency.

In addition, it is equally important to note that, regardless the attack vector, its action
was captured either exclusively or simultaneously with the various services described in the
preceding section, masking the attack with normal traffic. Despite the presence of other
services, intrusive dynamics were tendentiously chosen.

With respect to the zero-day tests, the same process was adopted generating an extensive
set of captures that includes the variation of the dynamics of each attack vector on the
intrusiveness spectrum, particularly focusing on the stealth extreme. Despite the preference
for less perceptible actions, the simultaneity of the services considered was also introduced. In
this way it is possible to comprehensively analyze the behavior and flexibility of the system for
diverse scenarios, perceiving both the generalization degree and the detectability in contexts
with the presence of smarter attack vectors, that strongly resemble human actions.

87

4.2 Parsing packets to metadata

After data acquisition, it is necessary to start the iteration process on the network packets
available in the various PCAP files, retaining only metadata containing significant information.
These metadata are the result of the filtering process, as described in Section 3.1, where the
proposed solution only contemplated two main transport protocols (i.e.,UDP and TCP), and
the information produced is equal to the fourth exclusive layer of the OSI model:
• Layer 1 to 3:

– source and destination IP addresses;
– volume of bytes carried;
– arrival Unix epoch time.

• Layer 4:
– TCP:
∗ source and destination ports;
∗ sequence of flags: SYN, ACK, FIN, PSH, RST.

– UDP:
∗ source and destination ports.

Since this process is the initial phase of the solution, it must be done considering the overall
performance of the system since, given the growth of the number of packets circulating in
a corporate network, a bottleneck in preliminary phases questions the response time of the
system. Thus, in order to achieve faster processing, scalability and ambition for a near-real-
time system, this process was carried out with the help of a library, designated as kaitai struct,
whose objective is to allow a new way of developing parsers for binary structures, such as the
structure present in the PCAP files [167]. According to the benchmarks [168], Python version
3.5.1, it can parse 31.925 packets per second, whereas competing libraries are set at a level
below 5 000 per second. However, these values can increase considerably when using another
programming language, such as Java where the number of packets processed per second rises
to the order of 121,000.

In addition to this boost in the solution’s performance, it is also necessary to know à priori
the capture time (i.e., the timestamp of the last packet minus the first). A straightforward
solution would be to load all the packets into memory and then get the first and the last and
start the processing, however this process, besides being computationally time-consuming,
requires a lot of resources. Another solutions would be to iterate twice over the packets, in the
first would be solely to extract the total capture time. Thus, in order to reduce the number of
iterations to one, when capturing the raw data packets, a feature has been added to the sniffer
that appends to each PCAP file a configuration file with the start time of end of capture, for
later reading and indexing samples as described in the Section 4.3.

Since the nature of each observation is known à priori, as shows Table 4.3, 6 different
datasets were created, with the aim of applying only binary classifiers.

88

Datasets Data obtained from
DT-0 normal + all attack vectors
DT-1 normal activities + AV-1
DT-2 normal activities + AV-2
DT-3 normal activities + AV-3
DT-4 normal activities + AV-4
DT-5 normal activities + AV-5

Table 4.3: Summarizing the contents of each dataset, considering the various dynamics and simul-
taneity with normal services, as described in Section 4.1.2. The presence of network
observation from normal activities is common in all datasets.

Initially, it was only considered a single dataset(i.e.g, identified as DT-0) with all samples
belonging to all network activities, properly identified with binary labels, where label 0
represents all the normal network activities whereas label 1 identify anomalous behaviors.
However, the aggregation of all network observations in a single dataset could increase the
difficulty of pattern detection and hence the accuracy of the detection. Although all the
vectors of attack represent anomalous actions in the network, each one translates a different
pattern / fingerprint, which as a whole may preclude the correct generalization of a model.
Thus the dataset was segmented into five distinct ones, each of which consists of normal and
data from a single attack vector. It combines with the OvA strategy, as discussed in Section
3.4.4, where each dataset is assigned to a different ML algorithm, also a binary classifier,
responsible solely for the detection of a single attack vector and inherent dynamics. For the
five news datasets, the normal data is identified by label 0 while those belonging to each
attack vector are recognized by the label 1.

4.3 Feature Extraction

Despite the definition of each dataset, in this process the metadata remains raw does not
represent any kind of information, being necessary the advance to the chain’s second stage,
where a statistical processing is applied over the previously obtained metadata resulting the
attributes, present on the Table 4.4, which constitutes the body of the sampling windows,
being the first step to model the inherent patterns.

89

Attributes Description
packets_out Number of packets transmitted
packets_in Number of packets received
priv_src_ports_out Number of privileged source ports present on egress traffic
src_ports_out Number of non-privileged source ports present on egress traffic
priv_dst_ports_out Number of privileged destination ports present on egress traffic
dst_ports_out Number of non-privileged destination ports present on egress traffic
syn_flags_out Number of packets with SYN flag set on egress traffic
ack_flags_out Number of packets with ACK flag set on egress traffic
fin_flags_out Number of packets with FIN flag set on egress traffic
psh_flags_out Number of packets with PSH flag set on egress traffic
rst_flags_out Number of packets with RST flag set on egress traffic
upload_bytes Total number of uploaded bytes
download_bytes Total number of downloaded bytes
connected_ips Number of different IPs contacted

Table 4.4: Low level description of the attributes present on every sampling window.

Initially, both strategies were considered, controlling only the outgoing traffic or in both
directions, resulting in a number of attributes close to double the previous ones. However,
by comparing the two models, many attributes related to ingress traffic did not contribute
positively to the generalization of the model. On the contrary, it was introduced a lot of noise,
resulting less satisfactory, and therefore only 2 attributes were constituted referring to traffic
in this direction: packets_in and download_bytes.

In this way, for each packet is analyzed its direction by comparing its source and desti-
nation IP address with the internal corporate simulated network, being defined as external
communication when the source belongs to the private network and the destination IP does
not. Regarding the AV-5 where the source IP address does not belong to the considered
network, once it applies the ip spoofing technique, it is treated as egress traffic. No internal
communications were contemplated, since they do not fall within the scope of the solution.
Nevertheless, both egress and ingress traffic are analyzed, resulting several sampling windows,
which contains the previously listed attributes sustained below:
• Packets transmitted

The number of packets transmitted allows the distinguish between periodic automated
communications and the analyzis of silence periods.

• Packets received
The number of packets received allows to infer about the trend of communications

within the company, that is, it serves as a comparison term with the previous attribute
to analyze the ratio between packets sent and received, and to perceive the tendency of
the traffic direction.

• Privileged and non-privileged ports
Typically the services provided by the enterprises are exposed on privileged ports(e.g.,

web server on port 80 and 443) and the inherent data is generated from these ports. On
the other hand, many attack vectors use unprivileged ports at random, as these do not

90

require administrator privileges to perform communications, allowing network malicious
activities to be performed.
• TCP flags

The ratio between TCP flags may highlight unusual network traffic, in addition
to the unbalance counting of these is a strong indicator of malicious activity on the
network. For instance, under a ACK flood, independently of its intrusive degree, it is
expected that the count of ACK flags, is higher than the rest.
• Upload and download bytes

Usually endpoints generate more download than upload, that is mapped on the
download/upload ratio. For example, high intrusive DNS query floods are reflected into
higher upload total bytes, thus representing a change on the normal pattern.
• Connected IPs

Often corporate devices tend to communicate consecutively to the same IPs addresses,
resulting a low variance, whereas a compromised device tend to communicate with a
pool of unusual IPSs, therefore, increasing the variance.

It is important to point out that no specific attributes were adopted for each attack vector
since, in addition to introducing a limitation on the scalability of the solution that would
be confined to a small group of attack vectors, it also flees somewhat of the scope once that
these vectors were used in order to generate anomalous network dynamics, and not serve as a
baseline to detect only this group of attack vectors.

From the second stage of the network observation generation chain result multiple sampling
windows, each one containing 14 attributes. With regard to the size of each sampling window,
and taking into account the assumptions reported in Section 3.2.1, a small scale of only 0.1
seconds was adopted that, although each window contains few data, allows the detection of
periodic events, in addition to contribute to the rapid response of the system.

However, these set of windows need to be transformed into relevant network observations
that effectively represent a pattern of a network activity. Thus, as described in Section 3.2.2,
the sliding windows paradigm was applied to the sampling windows, in which the mean, median
and variance were calculated on each column, resulting in a set of 42 time-independent features
(i.e., 14 attributes * 3 statistical operations) that characterize each network observation. In
addition, the number of silent periods, represented by the sampling windows where the number
of packets belonging to outbound traffic is null, as well as the average duration of these periods,
prefers a total of 44 features. Both features are closely related to the periodicity of traffic
allowing to infer about human or non-human behavior, since, typically, autonomous actions
are periodic in time, maintaining strict silence periods, or in case of anomalous network
activities highly intrusive, do not contemplate any period of silence. In this way, for each
observation window, the features distribution is presented in the Figure 4.3.

91

Figure 4.3: The three equal parts represents the 12 means, medians and variances that result from
the application of each statistical operation to each attribute. The last two relate to the
number of periods of silence and their average duration. Thus, each observation window
contemplates this set of 44 features.

As in the sampling windows it is important to define the size of each sliding window in
addition to the shift time, as described in Section 3.2.2. In order to obtain a nearer real-time
response time without compromising the system’s detectability, adopted a size of 1 minute for
each sliding window with a shift time of 10 seconds. Thus, each sliding window consists of
a set of 600 sampling windows (i.e., sampling windows size/sliding window size = 0.1/60),
in which between consecutive iterations, 500 prevail, with only 100 being added (i.e., shift
time/sampling windows size = 0.1/10).

The data is ready to go to the data pipeline, as detailed in Section 3.4, responsible for
diverse operations, including applying ML algorithms to infer patterns, create a profile and
identify deviations on these, allowing to detect malicious network activities.

4.4 Dataset Overview

Before proceeding to the data pipeline it is important to analyze the data at a high level, as
demonstrated in Section 3.3, allowing to gain multiple perceptions, among them the data
shape. Thus, from the various network captures, 4.685.935 packets were obtained after filtering
by transport protocol (i.e., TCP or UDP), for a total of 470 minutes, distributed by the five
vectors of attack and normal activities as shown in Figure 4.4.

92

Figure 4.4: Number of captured packets per attack vector including also normal network activities.

The number of packets captured is strongly linked not only to the capture time and the
underlying services, but also to the dynamics of an attack vector. For example, considering the
action of two attack vectors, captured during the same period of time, without the presence
of other services, it is linear that the vector with a more intrusive behavior will debit more
packets than the stealth one (e.g., the number of packets resulting from a DYN-CR dynamic
is larger than a vector that assumes a DYN-PW dynamic). The same occurs for different
services, because two attack vectors with the same dynamics, captured during the same period
of time in the presence of two very different services (e.g., torrent and spotify), it is normal
that the number of packets obtained from the simultaneity of any vector of attack with the
torrent is eminently larger.

For the first 4 attack vectors, the various network captures resulted in duration of 55
minutes each, including not only the combination of the various dynamics but also the presence
of several services that define the set of normal network activities and that mix the normal
traffic with that of attack. Despite equal capture times, the variation of services, dynamics,
and attack vectors result in different packet numbers, as illustrates the Figure 4.4. Keeping
the same capture time, the memcached attack vector was safeguarded from these variations,
and its action was captured exclusively so that it was possible to obtain a model in which the
normal and abnormal data were widely different, thus evaluating the degree of generalization
as well as acting as a basis for comparison with the other models.

From these captures and inherent packets, were produced 2545 network observations which
reflect the patterns of the various activities in the network, in observation windows of 1 minute
containing a set of 44 features. The distribution of the various network observations is shown
in the Figure 4.5.

93

Figure 4.5: Number of generated network observations per attack vector, including also normal
network activities

These sets of observations compose the various datasets, for example, DT-0 is the aggrega-
tion of all 2545 observations, while the remaining five are made up of observations of normal
activities in the network and of a single attack vector. The huge discrepancy, represented in
the previous Figure 4.5, between network observation windows on normal and anomalous
network activities(e.g., in the presence of one of the attack vectors) translated into the body of
the datasets DT-1 to DT-5, where the percentage of normal network observations significantly
overlaps the anomalies, with around 78% against 22%, allow to characterize the five datasets
as unbalanced. This characteristic may represent a limitation on the number of network
observations required for a given model to generalize correctly, which will be further supported
in Section 4.5. On the other hand, in relation to the dataset DT-0, the sum of the network
observations of the various attacks ranging from 295 to 300 per each prefers a total of 1485
observation windows that when compared to the 1060 of normal activities allow to define the
dataset as balanced.

Regardless of datasets, it is fundamental to gain insight into the patterns inherent in a set
of network observation windows, a deeper analysis is needed of the various sliding windows
as well as the features that define each one. Table 4.5 shows a view of various network
observations from the DT-1 to DT-5.

94

id network activity silent_periods mean_packets ... mean_syn mean_ack ...
200 Normal 99.00 3.00 ... 0.00 3.00 ...
1071 AV-2 12.00 25.00 ... 0.00 25.00 ...
1344 AV-1 4.00 39.00 ... 39.00 0.00 ...
1354 AV-1 2.00 2.00 ... 2.00 0.00 ...
1090 AV-3 10.00 25.00 ... 0.00 25.00 ...
1100 AV-2 4.00 0.00 ... 0.00 0.00 ...
1351 AV-3 31.00 23.00 ... 0.00 23.00 ...
1210 AV-4 21.00 18.00 ... 0.00 0.00 ...
1211 AV-4 18.00 18.00 ... 0.00 0.00 ...
1215 AV-4 8.00 18.00 ... 0.00 0.00 ...
1266 AV-5 0.00 1.00 ... 0.00 0.00 ...
636 Normal 2.00 9.00 ... 0.00 9.00 ...

Table 4.5: View of a random portion of samples that make up the total dataset. Each column
represents a feature while each row is a sample. Should be noted that the first column is
a simple identifier, and all the features present in the table relate to outgoing traffic.

In the absence of knowledge about the underlying services, either for normal traffic data or
for abnormal traffic, including the abstraction of the attack dynamics, besides the perception
of the form of the data, it is possible to collect relevant information from its analysis and
comparison with others samples. Given the à priori knowledge about each attack vector, the
collected information must thus converge in an expected pattern. For example, in a AV-1 (i.e.,
sample 1344) it is likely that the average of SYN flags will outperform all others. Likewise, it
is also assumed that the use of normal services has more periods of silence than any other
automated malicious activity. From the analysis of the table 4.5, it is still possible to think of
a correlation between two or more features. Although, without the help of the scatter matrix,
as detailed in Section 2, by looking only to the packets count mean and the mean of SYN
flags for the AV-1 and ACK flags for the AV-2, it is possible to verify that both are related
because they assume the same value. For the AV-1 case(i.e., sample 1344 and 1354), both the
packet mean and the mean of SYN flags are equal, that is, on average each packet leaving the
network contains active the SYN flag, which may indicate the presence of a DYN-CR attack
dynamic.

Looking deeper, for sample 1100 in specific, it is interesting to see how during the time
period of a minute four periods of silence were recorded and on average 0 packets leaved the
network. Certainly, these periods of silence were relatively long and interrupted by sequences
of few packets, however, given the depth of the analysis, the represented small features number
and the inability to correlate with other samples, always considering that this is the result
of a sliding window process, all information inferred visually about the possible dynamics of
attack, or co-presence with a specific service is merely speculative.

As mentioned in Section 3.3.1, another way to analyze the datasets concerns representation
in the form of a histogram, mapping features to their occurrence. Similar to Figure 3.7, the
histograms in Figure 4.6 show the distribution of some features that reflect the exclusive
behavior of an intrusive ACK flood attack, which follow a DYN-PW with an amplitude of

95

one hundred packets, between periods of silence of ten seconds.

Figure 4.6: Histograms of some features present on observations obtained from an ACK flood scenario.

Due to the equality between the histogram that represents the average of packets and that
which represents the average of ACK flags, corroborated with the little dispersion existing
in the periods of silences, it means that there are short silence periods (i.e., predominant
silence periods duration(in sampling windows): 85 * 0.1 = 8,5 seconds), which matches the
10 seconds. In addition, it is also correct to mention that each outgoing packet contains
the ACK flag active, also matching the pattern of an ACK flood. This attack with such an
intrusive dynamic aggravated by the absence of the presence of legitimate traffic related to
other services becomes a simple case, where the correlations are explicitly and easily detected
with the naked eye, whereas in more stealthy dynamics, the recognition of such subtle patterns
can only be effective with the aid of ML algorithms.

In addition, due to the segregation of the datasets, it is important to gain insights on
each one by analyzing the PCA, intending to reduce the number of features of each one, as
discussed in Section 3.4.2. Starting with the larger dataset, which aggregates all network
observations, Figure 4.7 plots the variance ratio as a function to the number of feature.

96

Figure 4.7: Representation of explained variance, the smaller the number of features the smaller the
variance ratio and therefore the greater the difference between what the pattern expresses
in relation to the original.

According to the graph, the ideal number of feature for explained variance ratio of 95% is
12 features. Thus, 95% of the dataset variance prevails, reducing the number of features to
about one-third of the original 44 features. This possibly means that between these 12 the
correlation is high, being able to be observed through the scatter matrix as demonstrated in
Figure 3.8. However at this level and given the high number of features that would result in a
set of 12 ∗ 12 graphs, it becomes impossible to analyze such correlations.

As for the other five datasets, the same analysis was performed from the graphs aggregated
in Figure 4.8.

97

Figure 4.8: Representation of explained variance in function to the number of features, for each
dataset.

According to the analysis of both Figures 4.7 and 4.8, is kept about 95 percent of the
variance of each dataset with about 10 features. This reduction allows not only the decrease
in the number of dimensions of each dataset and inherent complexity, but also contributes to
reduce the processing time for the generalization of a model, as mentioned in Section 3.4.2.
Finalizing the analysis of the various iterations of PCA reduction, Table 4.6 is formalized
based on the previous figures, summarizing the optimal number of features that should be
used for each dataset, without compromise the overall solution performance.

Table 4.6: Number of components to kept for each dataset.

Datasets Features number
DT-0 12
DT-1 9
DT-2 11
DT-3 8
DT-4 10
DT-5 9

4.5 Classification Methods and Performance

Hereupon, each dataset was entered into a specific data pipeline, defined mainly by the
penultimate stage, where effectively the various ML algorithms are applied, which in turn

98

directly influence the previous phases, as discussed in Section 3.4. However, there are stages
and small processes that are transversal to all data pipelines, regardless of the classifier. The
first phase (e.g., data splitting) is common in all pipelines, where initially the data are divided
into two subsets, the training and the test, following the percentages defined by the Pareto
principle, ensuring the representativeness of the data. This is an important requirement which
has been kept in mind in applying the cross-validation process, by adopting the stratified
sampling method, as mentioned in Section 3.4.1. This process also prevails in all pipelines,
ensuring the same percentage of data for the various subsets of training and validation over
the ten folds considered. Having said this, it is important to realize that from each data set
one or more models are created to classify the test data of the respective dataset and other
unknown traffic.

4.5.1 Neural Networks

In the ML stage, the NN were applied as the first algorithm. Since it is sensitive to feature
scale, the feature scaling phase was introduced in all data pipelines just after the feature
reduction stage. Regarding the algorithm, in order to maximize the outcome, the hyper
parameters were obtained for each dataset, taking into account the optimal number of features
for each one. An important aspect is the simplicity of the models, which independently of the
datasets, are composed of a single layer, being designated as: single-layer NN. As mentioned
in Section 3.4.5.2, typically neural networks must be associated with large amounts of data,
and since the six datasets are not extensive, deep neural networks were not included in the
machine learning phase of the various pipelines.

Table 4.7 summarizes the accuracies of six simple binary models after the ten splits on
the cross-validation processes.

Model Dataset PCA Accuracy
ANN0 DT-0 12 0.985± 0.0146
ANN1 DT-1 9 0.999± 0.0037
ANN2 DT-2 11 0.996± 0.0087
ANN3 DT-3 8 0.938± 0.0351
ANN4 DT-4 10 0.995± 0.0101
ANN5 DT-5 9 0.979± 0.0124

Table 4.7: Overall NN classification performance over 10 validation sets, for each dataset with
respective optimal features number for each one.

The classification results are very good, always above the level of the nineties, which
immediately implies that all models are generalizing correctly, without going into an over-fitting
situation. Corroborating the idea, Figure 4.9 represents the learning curve of ANN4.

99

100 200 300 400 500 600 700 800 900
Training examples

0.5

0.6

0.7

0.8

0.9

1.0

Sc
or

e

Learning Curve - ANN - DT4

Training score
Cross-validation score

Figure 4.9: Learning curve for ANN4, showing how learning improves with samples number.

From the analysis of the graphical representation of the training score and cross-validation
due to the increase in the number of samples, it is quickly confirmed that the model is
generalizing correctly, even with few samples(e.g., 100), and that the increase in the number
of observations network will not make the model generalize better, because the training
score from the 700 samples overlap with the validation score. This simplicity of models that
contemplate a single layer with perceptrons varying between 1 and 9, depending on the dataset,
allows fast and correct convergence even with few data. With increasing complexity of models
and inherent robustness, the high number of free parameters between the layers and the
various perceptrons would require excessive amounts of data whereas the time for the model
to generalize would increase substantially.

Another conclusion that can be drawn from the analysis of the various accuracies, presented
on Table 4.7 is that the impact of DT-0 segregation on the remaining datasets is insignificant.
However, it is interesting to verify if the worst-accuracy model(i.e., ANN3) that generalizes
from the DT-3 dataset, when faced with new unseen data1 presents better results than the
model related to DT-0 (i.e., ANN0), since it included data related to other attack vectors, in
addition to the normal and specific data to the attack vector that is common. Thus, both
methods were subjected to three equal zero-day tests, composed of 25 samples obtained from
the exclusive observation of a GRE IP flood, following a DYN-PW dynamics, with a peak of
100 packets between periodic intervals of 30 seconds. This dynamic was chosen as an example
based on the set that characterizes the data set related to this attack, which is a majority of
attacks that follow a non-stealth dynamic(i.e., DYN-CR), which holds about 90% of the data
that identifies the vector in question. The results are presented on the following Table.

1Also known as zero-day tests

100

Zero-day Model PCA Accuracy
Test 0 ANN0 12 0.520
Test 0 ANN3 8 0.760
Test 1 ANN0 12 0.600
Test 1 ANN3 8 0.760
Test 2 ANN0 12 0.400
Test 2 ANN3 8 0.600

Table 4.8: Zero-day test performance for each model with respective ideal number of components.
Since this is a one-time classification, it is not possible to provide a confidence interval.

This distance to the normal attack pattern with which the model had contact in the
training phase allows to evaluate the model, as if it were in an environment in production
where it is subject to a vast set of dynamics. From the analysis of the table it is possible
to conclude that the ANN3, for this particular dynamic, performs slightly better than the
model fed with all the observations of attacks, making this good in general, able to detect
more anomalies, to the detriment of ANN3 which is very good in the specific case of AV-3.

4.5.2 Decision Trees

In comparison to all data pipelines with NN present in the stage of ML, those that assume
algorithms like decision tree and derivatives are invariant to monotonic transformations, as
mentioned in Section 3.4.5.3 and therefore the feature scaling stage is omitted. All other
stages prevail, thus constituting data pipelines with four phases.

Similar to the previous results generation process, this one also contemplated the hyper
parameterization for the respective datasets of the various models, which were later evaluated
not only on the cross-validation processes, also with 10 folds, but also over the test sets, being
these unitary sets does not allow the calculation of the confidence interval. Table 4.9 places
both metrics side by side for each of the models.

Model Dataset PCA Cross Val Accuracy Test Accuracy
DTC6 DT-0 12 0.915± 0.0309 0.923
DTC7 DT-1 9 0.972± 0.0311 0.974
DTC8 DT-2 11 0.968± 0.0143 0.959
DTC9 DT-3 8 0.914± 0.0485 0.882
DTC10 DT-4 10 0.953± 0.0635 0.981
DTC11 DT-5 9 0.906± 0.0496 0.875

Table 4.9: Decision tree classification performance for each dataset, with respective optimal number
of features.

Despite the exhaustive search and tuning of the hyper parameters, compared to the NN
there is a decrease of the accuracy common in all models that in the worst case scenario, for
the dataset DT-0 and DT-5, reaches a difference of 7%(e.g., ANN5 to DTC11). However, a
deeper interpretation of the model and its hyper parameters would be required to understand
such differences in accuracies. Nevertheless, it does not compromise the veracity of the models,

101

which, like those presented in Section 4.5.1, are not over-fitting, since the depth of each one
has been carefully selected, ranging from 6 to 15. Despite the lack of a standard for the depth
of decision trees, once it varies according to the problem, it is possible to confirm by comparing
the last two columns of the previous table. In general, 60 percent of the time, the accuracy
of the test is greater than that obtained after cross-validation, allowing to confirm that the
model generalizes correctly. Despite the 40 percent, the difference between the accuracies is
minimal, indicating that the models are not too adjusted to the training data, not over-fitting,
and have a very satisfactory behavior when faced with new test samples.

As discussed in Section 3.5.1, Figure 4.10 shows the normalized confusion matrix for both
best and worst-case scenario, according to the test accuracy.

Norm
al

Abn
orm

al

Predicted label

Normal

Abnormal

Tr
ue

 la
be

l

1.00 0.00

0.07 0.93

Confusion Matrix - DecisionTree - DT4

0.2

0.4

0.6

0.8

Norm
al

Abn
orm

al

Predicted label

Normal

Abnormal

Tr
ue

 la
be

l

0.96 0.04

0.40 0.60

Confusion Matrix - DecisionTree - DT5

0.2

0.4

0.6

0.8

Figure 4.10: Normalized confusion matrix for models 10 and 11 over the test set(i.e., 20 % of dataset
DT-4 and DT-5 respectively).

Although both models differ not in the parameters but also in the datasets, and therefore
are incomparable among them, it is interesting to understand the tendency to misclassification.
On the left side, for the best case scenario, with regard to the samples that express the action
of normal network activities, the model always correctly ranks, whereas in relation to the
samples that identify the action of AV-4 , in 7% of the times classified as normal, resulting in
the presence of four false negatives(i.e., 0.07 ∗ 58, where 58 is the number of abnormal samples
present on test set for ANN4). Regarding the worst case scenario, the trend remains in the
classification of abnormal samples in normal, resulting in a higher ratio of false negatives,
where the difference for true negatives is only 20%, among 36 correctly classified samples
for 25 misinterpreted, given the total 62 abnormal samples present on the 20% of the DT-5.
Compared to the ANN5 that shares the same dataset, presenting a better performance, it is
certain that the deficit is related to the algorithm used. Conversely, DTC11 does not have a
generalization degree as high as the previous model for the same amount of samples, as can
be confirmed by the learning curve, shown in Figure 4.11.

102

100 200 300 400 500 600 700 800 900
Training examples

0.5

0.6

0.7

0.8

0.9

1.0

Sc
or

e

Learning Curve - DecisionTree - DT5
Training score
Cross-validation score

Figure 4.11: Learning curve for DTC11

Not surprisingly, although both lines are close, there is room for improvement with the
introduction of more data corroborating the limitation of unbalanced dataset, raised in Section
4.4. Although this improvement has not been carried out, it is necessary to keep in mind
the generalization error when introducing new data, which may bias the model incurring in
over-fitting, as mentioned in Section 2.9.3.6.

4.5.3 Ensemble Methods

In both previous sections, in spite of the remarkable accuracies, it is possible to notice the
performance differences between the classifiers fed by the DT-3 and DT-5 datasets and the
other classifiers, ignoring those that based on the total set of observations. These differences can
be explained by the simultaneous presence of the attack vectors AV-3 and AV-5, respectively,
with services that generate high amounts of traffic, such as file sharing(e.g., torrent), that
allow the dissociation of the patterns inherent to the two attack vectors. While the NN as
the decision trees are error-prone algorithms, the optimization is performed at the level of
parameters and features, Adaboost and Gradient-boost in addition to this optimization, follow
the boosting method allowing self-correction and thus recognition of these obfuscated patterns.
Since both Adaboost and Gradient-boost are derived from decision trees, the requirements
during the tuning of the hyper parameters related to tree-specific ones were transposed from
the search process applied on the previous models. Moreover, both ensemble methods also
inherit the feature scaling invariant and thus the similarity between data pipelines.

As discussed in Section 3.4.5.4, there are parameters that affect the boosting operation of
the models(i.e., boosting parameters), which were also subject to a search process in order
to maximize the classifiers performance. The research focused mainly on the learning rate
and number of estimators, which effectively control the generalization and robustness of the
models along with the computational resources underlying the training process.

103

Table 4.10 compiles the accuracies of both algorithms, after the cross-validation process,
for all six datasets with respective number of ideal features for each one.

Models Dataset PCA Accuracy
ADA12 DT-0 12 0.989± 0.0066
ADA13 DT-1 9 0.995± 0.0115
ADA14 DT-2 11 0.999± 0.0042
ADA15 DT-3 8 0.973± 0.0187
ADA16 DT-4 10 0.990± 0.0115
ADA17 DT-5 9 0.975± 0.0170

Models Accuracy
GDB18 0.985± 0.0117
GDB19 0.997± 0.0074
GDB20 1.000± 0.0000
GDB21 0.977± 0.0248
GDB22 0.993± 0.0103
GDB23 0.978± 0.0194

Table 4.10: Adaboost, on the left, and Gradient-boost, on the right, classification performances,
maintaining the dataset and PCA for both algorithms.

According to the performance of both classifiers, it is notable that models based on
boosting operations outperform the models presented in the previous sections. Masked
patterns are easily detected with algorithms based on weak learners, which despite being
error-prone, perfectly adapt to the varied datasets, and underlying labeling strategies. For
example, focusing on the ADA13 analysis, the exceptional classification is reflected either
in the learning curve or in the ROC curve, which antagonistically to the definition, take the
form of a straight segment, as shown in Figure 4.12.

100 200 300 400 500 600 700 800 900
Training examples

0.5

0.6

0.7

0.8

0.9

1.0

Sc
or

e

Learning Curve - AdaBoost - DT1

Training score
Cross-validation score

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

Receiver operating characteristic

ROC curve (area = 0.99)

Figure 4.12: On the left Adaboost learning curve after cross-validation over the DT-1 80 % while
on the left there is represented the ROC curve computed from the classification on the
test set.

With respect to the learning curve, it assumes the ideal behavior avoiding altogether the
high variance or high bias between the two scores, where the model converges with only 300
samples, and subsequent do not influence the prediction performance.

On the right side, the non-resemblance to a curve means that the classifier has completely
distanced itself from the random reference represented by the dashed line, assuming a behavior
very close to perfection, where the number of false positives and negatives tends to be zero,
broadly classifying the new instances of the test set correctly.

A characteristic approach of these models to increase the robustness is the decrease of the
learning rate and increase in the number of estimators proportionally, however, due to the

104

outstanding classification performances, it was decided to shift focus on the zero-days tests,
which as mentioned in Section 3.5.2.

4.5.3.1 Zero-day tests

As discussed in Section 3.5.2, although it is an optional process, its implementation is an
added value to conclude about the overall solutions performance, forcing scenarios that are
dissociated from those that are reproduced in the set of network observations that fed the
models. Following an approach aimed at increasing the distance for highly intrusive dynamics,
a number of network captures were collected for the first four attack vectors presented in
Table 4.2, based on a DYN-PW dynamics, with several periods of silence, either periodic or
following the exponential distribution, as mentioned in Section 4.1.2, without ruling out the
simultaneity with other services. It is important to mention that all captures were carried
out over a period of five minutes, thus resulting in 3000 sampling windows and therefore 25
observation windows, with a ∆t of 1 minutes, as discussed in Section 4.3.

As discussed, the intrusiveness of an attack is largely defined by the combination of
two variables: packet throughput and the duration of silence periods. Looking first at the
dynamics with the highest packet throughput per activity period, the first(i.e., DYN-PW-1)
was implemented by setting the debt at 300, varying the duration of the silence periods
following Equation 4.1 with a scalar parameter of 0.1. The inherent behavior was reported
concurrently with YouTube(i.e., the only service considered for sake of simplicity), which as in
all subsequent dynamics have been commonly implemented and recorded for the respectively
four attack vectors.

Intending to elucidate the duration of silence periods, Figure 4.13 shows an example
of its distribution in relation to the number of periods. It should be noted that in all the
dynamics implemented, the maximum ceiling for the duration of the silence periods was 60
seconds, assuring the presence, even if minimal, of packets referring to attack vectors in the
observations windows.

Figure 4.13: Distribution example of the duration of each period of silence resulting from the
exponential distribution with scalar equal to 0.1.

Compared to the highly intrusive DYN-CR dynamic characterized by the throughput of
about 180 packets per second, the significant reduction in the total number of packets(i.e.,
typically 11000 packets per minute) and the insertion of periods of silence with reasonable
durations, allows for the decrease in the intrusivity spectrum also due to the obfuscation with

105

intrinsic Youtube traffic. Applied dynamics to the AV-1 and AV-4, Table 4.11 shows the
performance differences between Adaboost and Gradient-boost models.

Model Attack vector Dynamic PCA Accuracy
ADA13 AV-1 DYN-PW-1 9 1.00± 0.0000
GDB19 AV-1 DYN-PW-1 9 0.512± 0.1610
ADA16 AV-4 DYN-PW-1 10 0.360± 0.1700
GDB22 AV-4 DYN-PW-1 10 0.720± 0.1670

Table 4.11: Adaboost and Gradient-boost classification performance for two attack vector, both with
same dynamic. Extensive results available in Table A.1 and A.2.

Due to the inherent abstraction of the use of an exponential distribution it is not possible
to compare the results impartially between attack vectors, since in the AV-1 it can assume
periods of silence that are always high, increasing the stealth of the attack even more, in
detriment of the values obtained for the other. However, as for the classifiers, each pair is
confronted with the same data, being on an equal footing. According to the results it is clear
that there is no consensus, since for each attack vector with the same dynamics, there is a more
flexible model than the other, producing better results. However it is possible to state that the
dissociation of attack traffic on Youtube is still detectable. Increasing the distance from the
intrusive end, by reducing the packet throughput by a third of the previous dynamics(i.e., 300
- 300/3) and maintaining the scalar parameter of the exponential distribution, it is observed
that for the AV-1 attack vector, passing the same data to the two models, 13 and 19, the
results of GDB19 (0.912± 0.0520) are extremely better than that of model 13 (0.080± 0.0429),
concluding that for this attack vector, the model based on the Adaboost algorithm is more
extensive and produces better results in unseen dynamics. Extended results are present in
Table A.3.

In order to compare the effect of the patterns dissociation in legitimate traffic, another
dynamics was implemented(i.e., DYN-PW-2) resulting from the variation of the scale param-
eter present in the equation of the exponential distribution in question. The parameter was
set at 0.02, with a difference of 0.08 for the previous dynamics. From the various periods of
silence obtained, it is possible to conclude that the lower the scalar, the longer the periods
will be, and therefore the greater the stealth of the dynamic. Table 4.12 shows the results of
the influence of the presence of Youtube activity in the two attack vectors detectability, AV-1
and AV-3 namely.

Model Attack vector Dynamic PCA Youtube Accuracy
ADA13 AV-1 DYN-PW-2 9 Yes 0.136± 0.1390
ADA13 AV-1 DYN-PW-2 9 No 0.912± 0.1370
ADA15 AV-3 DYN-PW-2 8 Yes 0.256± 0.0807
ADA15 AV-3 DYN-PW-2 8 No 0.952± 0.0938

Table 4.12: Adaboost classification performance including dissociation of patterns in Youtube traffic,
for two attack vectors. Extended results are present in Table A.4 and A.5.

Not surprisingly, in spite of the exponential distribution introducing abstraction and

106

randomness, by correlation of the results of the two models, for the zero-day tests generated
with the dynamics DYN-PW-2 with simultaneity with Youtube, in half of the samples, it is
possible to confirm the fingerprints dissimilation of each attack vector in legitimate traffic.

Moving towards stealth, the ceiling of the maximum number of packets sent in each period
of activity was again reduced, to 100 keeping the same parameter scale at 0.02, constituting
the dynamic DYN-PW-3, characterized by the lowest scale parameter of all implemented. In
this way, allowing to compare the variation of the duration of the silence periods, Figure 4.14
represents the contrast of the silences duration in detriment of the scale parameter of the
exponential distribution obtained from Equation 4.1.

Figure 4.14: Example of the scale parameter variation over the resultant silence periods duration,
being high stealth when assumes lower values.

This dynamic given its sneaky character, was not co-captured with the presence of other
services. Thus, the results presented in the following table correspond to the 125 samples
captured for each attack vector with DYN-PW-3 dynamics.

Model Attack vector Accuracy
GDB19 AV-1 0.128± 0.1200
GDB20 AV-2 0.080± 0.1570
GDB21 AV-3 0.544± 0.1690
GDB22 AV-4 0.024± 0.0471

Models Accuracy
ADA13 0.824± 0.1230
ADA14 0.000± 0.0000
ADA15 1.000± 0.0000
ADA16 0.000± 0.0000

Table 4.13: Gradient-boost and Adaboost performances comparison, from left to the right, maintaining
the zero-day samples per row. Extended results are provided in Section A.1.

As mentioned, given the ambiguity resulting from the various network captures with
periods of inconsistent silences, it is possible to confirm the decreasing tendency of the
accuracies. As between the vectors of attack an unbiased comparison, as indicted, it is verified
that for the AV-1 the model based on the Adaboost is more flexible and maintains the bar of
high accuracies even for stealth dynamics. However, for the vectors of attack AV-2 and AV-4
the results are not satisfactory, reflecting the inflexibility for scenarios more distant from the
intrusive ones contemplated in the training. A possible solution to combat this high variability
of results is the training with more stealthy dynamics, allowing the acquisition of network
anomaly patterns from a range of larger and more diverse observations, thus contributing to
generalization in less intrusive dynamics.

Up to this point, only models characterized by a learning process based on data belonging
to a single attack vector have been confronted. Changing the focus to the models that were fed

107

with the 2545 network observations(i.e., model 12 and 18 respectively), Table 4.14 compiles
several results for the dynamic previously described.

Model Attack vector Dynamic Accuracy
GDB18 AV-1 DYN-PW-3 0.950± 0.0613
GDB18 AV-2 DYN-PW-3 0.920± 0.0990
GDB18 AV-3 DYN-PW-3 0.952± 0.0938
GDB18 AV-4 DYN-PW-3 0.360± 0.0990

Models Accuracy
ADA12 0.688± 0.1930
ADA12 0.616± 0.1520
ADA12 0.776± 0.1800
ADA12 0.544± 0.0877

Table 4.14: Comparison between the results obtained using the same zero-day tests over two different
ML algorithms, on the left Gradient-boost and on the right Adaboost. Extended results
available in Section A.1.1.

Challenging models with stealthy dynamics, similar to human behavior, are visible good
results, even for the data that the models discussed previously presented near zero accuracies.
Among models, it is also possible to conclude that Gradient-boost is the most robust model,
producing better results in three quarters of the time, even providing better results than
GDB19, until then the best classifier, with respect to the AV-1 attack vector. This contrast
of results between models fed with different datasets shows that models that based on larger
datasets, aggregating all the vectors of attacks in the label of anomalies, present a higher
degree of generalization.

Another approach to revalidate high flexibility and excellent generalization is the addition
of low throughput dynamics. These were implemented by setting the packet flow rate at 20
and 50 per activity period, intervals with periods of silence lasting 10 and 60 seconds. These
low-debt dynamics, contrast with the previous ones, not only by the decrease in the intrusivity
spectrum, but also by the introduction of periodicity. Since the low packet rate with duration
of the high silence periods for an observation window with a ∆t value of one minute, already
makes the dynamics highly stealthy, the increase of the randomness inherent to the use of the
exponential distribution as well as the simultaneity with other services would introduce too
much dispersion, making impossible the conscious analysis of the several results, ordered by
stealth in Table 4.15.

Model Attack vector Pulse wave peak Silences duration Accuracy
ADA12 AV-2 50 packets 10 seconds 1.000
ADA12 AV-2 20 packets 10 seconds 1.000
ADA12 AV-2 50 packets 60 seconds 0.760
ADA12 AV-2 20 packets 60 seconds 0.680

Table 4.15: Adaboost model ADA12 results for low-rate ACK flood.

Not surprisingly, the results follow what was expected, since in an observation window
with a ∆t of one minute, the greater the packets number the greater the accuracy. In contrast,
when the same test samples are applied to GDB18, which is based on the Gradient-boost
classifier, the results become inconsistent. Strangely it only detects when the silence period
assumes the duration of 60, when it was expected to present worse accuracies in this case due
to the smaller presence of packets in the observation window. In order to avoid any errors

108

inherent in the network captures in question, the same dynamics were applied to the AV-4.
As can be seen from Table 4.14, this attack vector presents, in general, better results when
the classifier is Adaboost. As shown in Table 4.16, the inconsistencies are also recurrent for
other test samples, making GDB18 less reliable for low-throughput packet dynamics.

Model Attack vector Pulse wave peak Silences duration Accuracy
GDB18 AV-4 50 packets 10 seconds 0.000
GDB18 AV-4 20 packets 10 seconds 0.000
GDB18 AV-4 50 packets 60 seconds 0.760
GDB18 AV-4 20 packets 60 seconds 0.760

Table 4.16: Gradient-boost model GDB18 results for low-rate DNS-query flood.

Based on the dynamics more distant from the intrusive end of the spectrum, corroborating
with the results for the dynamics previously discussed, it is concluded that the classifiers
that contemplated all network observations, despite the inherent complexity of the various
patterns and their aggregation tend to be more robust and flexible, even in dynamics were from
the comfort zone, corroborating the excellent generalization to detect the various anomalies.
However, the model based on Gradient-boost method, presents in general, a high overall
accuracy for all kinds of inherent anomalies or dynamics.

To conclude, by following the presented methodologies in the previous chapter, this
proof of concept is a corroboration of them, with good results and space to improve. The
resulting models demonstrated not only a correct selection of features but also a high degree
of generalization along with flexibility when confronted with behaviors that somehow diverge
from those present in the training phase. Despite this, it is important to note that all data
were obtained in a controlled environment, and in order to make the models more robust and
comprehensive.

109

CHAPTER 5
Conclusion and Future Work

As discussed in Chapter 2, being resource availability and network security two recurrent
topics, both are constantly being focused in the spotlight of Internet giants resulting in major
research investments. New botnets and attack vectors that exploit new vulnerabilities, misuse
new protocols and avoid actual detection techniques are constantly emerging, being network
activity the central point to such detection. Inferring behavioral patterns is to understand the
legitimacy of an action or use of a service in accordance with what is expected, constituting
only the first layer of awareness. Identifying the network threat and traceback to determine
the source of the threat in the network topology ensures the application of a whole new
level of countermeasures to mitigate an attack, such as automatic responses including traffic
segregation, or device isolation.

With regard to the network topology adopted, described in Section 4.1, due to the
limitation of resources during the dissertation, it was not possible to strictly replicate the
topology of an enterprise network. It would be highly advantageous to have a set of VLANs,
with distinct employee groups associated with different behaviors, a set of typical services
from a corporate scenario, with access to datacenters, cloud and internal services, without
ruling out the existence of all devices common to any larger network such as smart TV
providing IPTV content, surveillance cameras and other IoT devices. Inherently to these
services and users there are several standards that could not be accounted for, even if it was
highly desirable. As for the anomalies contemplated, their real character with past evidence
emphasizes the importance of them and the preponderant role they play in the development
of any defense solution. Although only five attack vectors with several associated dynamics
have been selected, it is possible and highly advisable to extend this set, covering a greater
number of anomalies with a view not only to the completeness of the solution but also to
the detection of zero-day attacks exploiting unknown faults, but which may resemble known
patterns contributing to detection in improbable scenarios. The number of services to operate
simultaneously with the attack vectors was limited, and in the future must be analyzed and
inherent pattern to each services and according to the similarity to the various vectors of

111

attack, tend to select those that best obfuscate anomalous traffic, thus increasing the detection
difficulty in order to enhance to the overall detection performance of the solution. This
criterion unfortunately was not considered, which may justify, even with a low percentage,
the detectability of the attack vectors simultaneously with Youtube, as shown in Table 4.12.
Of course, if it were simultaneously with file sharing traffic (i.e., torrent), the results would
be worse because of the similarity between the attack vector (i.e., AV-1) and the subsequent
traffic of service utilization, which tends to generate excessive amounts of traffic, contributing
to the patterns dissociation.

On data collection level described in 4.1, in spite of the topology simplicity and the lack
of requirements for the network sniffer placement, the concept of the module was thought
for scalability, assuming a generic nature that allows adaptation in future use cases, for
higher layers. However, there is a performance bottleneck, requiring storage resources directly
proportional to the amount of traffic on the network. Collecting all packet information and
storing it fits solely for study purposes, in order to contemplate methods for inferring network
patterns. Although packet processing has been accelerated, supported by current benchmarks,
it is important to couple the collection and processing processes, not only to avoid the use
of excessive storage, by adopting filtering techniques when collecting the data and storing
it in a simple metadata structure as suggested in Section 3.2.1, but also by saving time by
contributing to the real-time nature of the solution. Knowing that all processing requires
resources, another possible approach involves sending collected, pre-processed or raw network
data to a cloud for further processing and subsequent operations.

Regarding the features engineering discussed in Section 4.3, from the network, only statistic
data were designed, which proved sufficient to detect anomalies. Without distancing the
network domain, a direct approach to improving the patterns representation is the inclusion of
metrics associated with the use of protocols and the aggregation of metrics per data streams:
• Analyze the TCP flags ratio within a network stream (i.e., TCP session);
• Accounting for failed sessions, when there is no response after a session establishment

attempt;
• TCP sessions duration and byte transfer;
• Frequency of GRE headers, ratios with its volumes;
• Correlate volumes with services and IPs.
Other suggestions include the addition of metrics that allow you to define periodic and

non-periodic events (e.g., using wavelet analyzes), as well as attributes to detect traffic burst
and its duration, applying over them the considered statistical processing including counting,
means, medians, and variances. It would also be appropriate to measure the dispersion of
the durations of the periods of silence, since it provides information more valuable than the
simple mean as contemplated in the solution. Any inclusion of features must contemplate the
balancing between the overhead computational resources for the generation of features and
the real-time decision character of the solution. Regarding the duration of the observation
windows, it would be interesting to decrease it sequentially and compute the various results,
exhaustively, with a view to decreasing the response time without compromising the anomalies
detectability.

112

The two labeling strategies, and underlying datasets, detailed in Figure 4.3, bifurcate the
results showing that the same data can be viewed differently, with associated advantages and
disadvantages, without departing from the scope of the solution.

From the dataset overview to the deep analysis of features that compose the various network
observations, present in Section 4.4, the explicit differences between the footprints of each
attack vector considered on this dissertation, proves the existence of enough discriminators to
detect such anomalies. This perception is corroborated by the good generalization and results
provided by all ML algorithms, presented in Section 4.5. However, it is necessary to emphasize
the space to improve the parameterization of the NN, which climb exceptionally well being an
added value for adoption in a future scenario with larger amounts of data. Without obviously
discarding the ensemble methods, which due to their boosting operation mode, presented the
best performances for all datasets, available on Table 4.10). Regarding the zero-days, its use
allowed to evaluate the flexibility of each model in extremely stealth scenario and formalize
specific use cases on the applicability of each model. Widely the model that best balances
the commitment of detecting anomalies and producing false positives, on both intrusive and
stealth scenarios, is the model based on the Gradient-boost algorithm, which was fed with the
totality of network observations. However, it would be highly rewarding for the performance
and reliability of the models in scenarios with attack dynamics similar to human behaviors,
adding the various samples obtained in the zero day Section 4.5.3.1, to the respective datasets,
increasing the data pool and underlying distribution of dynamics.

Another approach to the final solution follows the order from general to specific, where
the models would initially be arranged according to a pipeline structure. The first layer would
correspond to the general detection of the anomaly, using the best model (i.e., is not able
to distinguish the type of anomaly). Later, the network anomaly would be identified in the
second layer by a set of models, each one in charge of the detection of a type of anomaly, like
the models that contemplated solely an attack vector, through a voting process, as it exists in
the OvA strategy, detailed in Section 3.4.4. Finally, the last layer would be responsible for
activating not only traceback mechanisms but also counteracting the compromised machine
and active attack.

On the whole, Chapter 4 confirmed that it is possible and highly reliable to correlate
anomalies with the network activity, and therefore contribute to the increase of network
awareness and security. Broadly the raw data is collected, refined into meaningful information
that is ultimately converted into knowledge, and in light of this, the dataset needs an exhaustive
evaluation with real-world testing, including for example flash-crowd events.

DDoS attacks require a stable and trustworthy defense solution. This dissertation has
presented a crucial building block of this solution, being the developed methodologies a
OS system architecture that provides a fast and reliable response. It can offer an excellent
performance, even for autonomous counteract operations, enhancing it when integrated and
deployed with other solutions improving the security and inherent resources availability of a
network.

113

APPENDIX A
Zero-day Extended Results

Sample Number Dynamic PCA GDB19 ADA13
1 DYN-PW-1 9 0.520 1.000
2 DYN-PW-1 9 0.680 1.000
3 DYN-PW-1 9 0.600 1.000
4 DYN-PW-1 9 0.560 1.000
5 DYN-PW-1 9 0.200 1.000

Table A.1: Gradient-boost(i.e., GDB19) and Adaboost(i.e., ADA13) classification performances over
the same samples obtained from the AV-1 (i.e., TCP-SYN flood) action following DYN-
PW-1, which have a peak of 300 packets intervals with silences according to Equation 4.1,
with a scalar parameter of 0.1.

Sample Number Dynamic PCA GDB22 ADA16
1 DYN-PW-1 10 0.920 0.520
2 DYN-PW-1 10 0.840 0.440
3 DYN-PW-1 10 0.560 0.320
4 DYN-PW-1 10 0.800 0.480
5 DYN-PW-1 10 0.480 0.040

Table A.2: Gradient-boost(i.e., GDB22) and Adaboost(i.e., ADA16) classification performances over
the same samples obtained from the AV-4 (i.e., DNS-query flood) action following DYN-
PW-1, which have a peak of 300 packets intervals with silences according to Equation 4.1,
with a scalar parameter of 0.1.

115

Sample Number Attack vector PCA GDB19 ADA13
1 AV-1 9 0.920 0.120
2 AV-1 9 1.000 0.120
3 AV-1 9 0.840 0.080
4 AV-1 9 0.880 0.080
5 AV-1 9 0.920 0.080

Table A.3: Gradient-boost(i.e., GDB19) and Adaboost(i.e., ADA13) classification performances over
the same samples obtained from the AV-1 (i.e., TCP-SYN flood) action following a
dynamic with a peak of 200 packets intervals with silences according to Equation 4.1,
with a scalar parameter of 0.1.

Sample Number Dynamic PCA ADA13 - Youtube ADA13
1 DYN-PW-2 9 0.360 1.000
2 DYN-PW-2 9 0.080 0.640
3 DYN-PW-2 9 0.000 1.000
4 DYN-PW-2 9 0.000 1.000
5 DYN-PW-2 9 0.240 0.920

Table A.4: Adaboost(i.e., ADA13) classification performances over samples obtained from the AV-
1 (i.e., TCP-SYN flood) action following DYN-PW-1, which have a peak of 200 packets
intervals with silences according to Equation 4.1, with a scalar parameter of 0.02. The
action of the attack vector was initially captured simultaneously with Youtube activity,
and later in isolation.

Sample Number Dynamic PCA GDB19 - Youtube GDB19
1 DYN-PW-2 8 0.200 1.000
2 DYN-PW-2 8 0.400 1.000
3 DYN-PW-2 8 0.240 1.000
4 DYN-PW-2 8 0.160 1.000
5 DYN-PW-2 8 0.280 0.760

Table A.5: Gradient-boost(i.e., GDB19) classification performances over samples obtained from the
AV-3 (i.e., GRE flood) action following DYN-PW-1, which have a peak of 200 packets
intervals with silences according to Equation 4.1, with a scalar parameter of 0.02. The
action of the attack vector was initially captured simultaneously with Youtube activity,
and later in isolation.

116

A.1 DYN-PW-3

Sample Number Dynamic PCA GDB19 ADA13
1 DYN-PW-3 9 0.000 0.760
2 DYN-PW-3 9 0.080 0.800
3 DYN-PW-3 9 0.360 1.000
4 DYN-PW-3 9 0.120 0.640
5 DYN-PW-3 9 0.080 0.920

Table A.6: Gradient-boost(i.e., GDB19) and Adaboost(i.e., ADA13) classification performances over
the same samples obtained from the AV-1 (i.e., TCP-SYN flood) action following DYN-
PW-3, which have a peak of 100 packets intervals with silences according to Equation 4.1,
with a scalar parameter of 0.02.

Sample Number Dynamic PCA GDB20 ADA14
1 DYN-PW-3 11 0.000 0.000
2 DYN-PW-3 11 0.000 0.800
3 DYN-PW-3 11 0.000 0.000
4 DYN-PW-3 11 0.000 0.000
5 DYN-PW-3 11 0.480 0.000

Table A.7: Gradient-boost(i.e., GDB20) and Adaboost(i.e., ADA14) classification performances over
the same samples obtained from the AV-2 (i.e., TCP-ACK flood) action following DYN-
PW-3, which have a peak of 100 packets intervals with silences according to Equation 4.1,
with a scalar parameter of 0.02.

Sample Number Dynamic PCA GDB21 ADA15
1 DYN-PW-3 8 0.400 1.000
2 DYN-PW-3 8 0.720 1.800
3 DYN-PW-3 8 0.600 1.000
4 DYN-PW-3 8 0.680 1.000
5 DYN-PW-3 8 0.240 1.000

Table A.8: Gradient-boost(i.e., GDB21) and Adaboost(i.e., ADA15) classification performances over
the same samples obtained from the AV-3 (i.e., GRE flood) action following DYN-PW-3,
which have a peak of 100 packets intervals with silences according to Equation 4.1, with
a scalar parameter of 0.02.

Sample Number Dynamic PCA GDB22 ADA16
1 DYN-PW-3 10 0.000 0.000
2 DYN-PW-3 10 0.000 0.800
3 DYN-PW-3 10 0.000 0.000
4 DYN-PW-3 10 0.000 0.000
5 DYN-PW-3 10 0.000 0.120

Table A.9: Gradient-boost(i.e., GDB22) and Adaboost(i.e., ADA16) classification performances over
the same samples obtained from the AV-4 (i.e., DNS-query flood) action following DYN-
PW-3, which have a peak of 100 packets intervals with silences according to Equation 4.1,
with a scalar parameter of 0.02.

117

A.1.1 DYN-PW-3 applied to ADA12 and GDB18

Sample Number Dynamic PCA GDB18 ADA12
1 DYN-PW-3 9 1.000 0.720
2 DYN-PW-3 9 1.080 0.360
3 DYN-PW-3 9 1.000 0.840
4 DYN-PW-3 9 0.920 0.600
5 DYN-PW-3 9 0.840 0.920

Table A.10: Gradient-boost(i.e., GDB18) and Adaboost(i.e., ADA12) classification performances
over the same samples obtained from the AV-1 (i.e., TCP-SYN flood) action following
DYN-PW-3, which have a peak of 100 packets intervals with silences according to
Equation 4.1, with a scalar parameter of 0.02.

Sample Number Dynamic PCA GDB18 ADA12
1 DYN-PW-3 11 1.000 0.640
2 DYN-PW-3 11 1.080 0.640
3 DYN-PW-3 11 1.000 0.760
4 DYN-PW-3 11 0.840 0.720
5 DYN-PW-3 11 0.760 0.320

Table A.11: Gradient-boost(i.e., GDB18) and Adaboost(i.e., ADA12) classification performances
over the same samples obtained from the AV-2 (i.e., TCP-ACK flood) action following
DYN-PW-3, which have a peak of 100 packets intervals with silences according to
Equation 4.1, with a scalar parameter of 0.02.

Sample Number Dynamic PCA GDB18 ADA12
1 DYN-PW-3 8 1.000 0.600
2 DYN-PW-3 8 1.000 1.000
3 DYN-PW-3 8 1.000 0.880
4 DYN-PW-3 8 1.000 0.880
5 DYN-PW-3 8 0.760 0.520

Table A.12: Gradient-boost(i.e., GDB18) and Adaboost(i.e., ADA12) classification performances over
the same samples obtained from the AV-3 (i.e., GRE flood) action following DYN-PW-3,
which have a peak of 100 packets intervals with silences according to Equation 4.1, with
a scalar parameter of 0.02.

Sample Number Dynamic PCA GDB18 ADA12
1 DYN-PW-3 10 0.400 0.960
2 DYN-PW-3 10 0.200 0.880
3 DYN-PW-3 10 0.480 1.000
4 DYN-PW-3 10 0.280 0.840
5 DYN-PW-3 10 0.600 0.920

Table A.13: Gradient-boost(i.e., GDB18) and Adaboost(i.e., ADA12) classification performances
over the same samples obtained from the AV-4 (i.e., DNS-query flood) action following
DYN-PW-3, which have a peak of 100 packets intervals with silences according to
Equation 4.1, with a scalar parameter of 0.02.

118

References

[1] RSA, Security and Privacy of Machine Learning | USA 2018 | RSA Conference, 2018. [Online].
Available: https://www.rsaconference.com/events/us18/agenda/sessions/11533-security-and-
privacy-of-machine-learning (visited on 09/13/2018).

[2] J. H. Saltzer and M. D. Schroeder, “The protection of information in computer systems (part I.A)”,
no. October, pp. 2–4, 2000.

[3] Infosec, CIA Triad, 2017. [Online]. Available: http : / / resources . infosecinstitute . com / cia -
triad/%7B%5C#%7Dgref%20http://resources.infosecinstitute.com/category/certifications-
training/cissp/domains/security-and-risk-management/the-security-cia-triad/%7B%5C#
%7Dgref (visited on 02/14/2018).

[4] L. Gallon and P. Owezarski, “Network Security and DoS Attacks 0.”, Tech. Rep. April, 2005, pp. 1–24.

[5] T. Penttinen, “Distributed Denial-of-Service Attacks in the Internet”, PhD thesis, 2005, p. 148. [Online].
Available: https://jyx.jyu.fi/dspace/bitstream/handle/123456789/12370/URN%7B%5C_%7DNBN%
7B%5C_%7Dfi%7B%5C_%7Djyu-200662.pdf?seque...

[6] V. A. Eds and D. Ferrari, Context-Aware Systems and Applications. 2015, vol. 128, isbn: 978-3-319-05938-
9. doi: 10.1007/978-3-319-05939-6. [Online]. Available: http://link.springer.com/10.1007/978-
3-319-05939-6.

[7] Karen Hao, A cryptocurrency-mining virus is spreading through Facebook messenger — Quartz, 2017.
[Online]. Available: https://qz.com/1168160/a-cryptocurrency-mining-virus-is-spreading-
through-facebook-messenger/ (visited on 02/13/2018).

[8] P. Paganini, WannaMine, the sophisticated crypto miner that spreads via NSA EternalBlue exploit-
Security Affairs, 2018. [Online]. Available: http://securityaffairs.co/wordpress/68518/malware/
wannamine-nsa-eternalblue.html (visited on 02/13/2018).

[9] J. Mirkovic and P. Reiher, “A taxonomy of DDoS attack and DDoS defense mechanisms”, ACM
SIGCOMM Computer Communication Review, vol. 34, no. 2, p. 39, 2004, issn: 01464833. doi: 10.
1145/997150.997156. arXiv: arXiv:1011.1669v3. [Online]. Available: http://portal.acm.org/
citation.cfm?doid=997150.997156.

[10] J. Mirkovic, “D-WARD: Source-End Defense Against Distributed Denial-of-Service Attacks”, PhD
thesis, University of California, 2003, p. 396.

[11] K. Eaton, How One Second Could Cost Amazon 1.6 Billion In Sales, 2012. [Online]. Available:
https://www.fastcompany.com/1825005/how- one- second- could- cost- amazon- 16- billion-
sales%20http://www.fastcompany.com/1825005/how- one- second- could- cost- amazon- 16-
billion-sales (visited on 02/14/2018).

[12] T. Bauer, The world got impatient; one second of slower load time can cost Amazon $1.6 billion across
a year | The Context Of Things, 2014. [Online]. Available: http://thecontextofthings.com/2014/
06/28/amazon-and-impatience/ (visited on 02/14/2018).

[13] T. Peng, C. Leckie, and K. Ramamohanarao, “Survey of network-based defense mechanisms countering
the DoS and DDoS problems”, ACM Computing Surveys, vol. 39, no. 1, 3–es, 2007, issn: 03600300.
doi: 10.1145/1216370.1216373. [Online]. Available: http://portal.acm.org/citation.cfm?doid=
1216370.1216373.

119

https://www.rsaconference.com/events/us18/agenda/sessions/11533-security-and-privacy-of-machine-learning
https://www.rsaconference.com/events/us18/agenda/sessions/11533-security-and-privacy-of-machine-learning
http://resources.infosecinstitute.com/cia-triad/%7B%5C#%7Dgref%20http://resources.infosecinstitute.com/category/certifications-training/cissp/domains/security-and-risk-management/the-security-cia-triad/%7B%5C#%7Dgref
http://resources.infosecinstitute.com/cia-triad/%7B%5C#%7Dgref%20http://resources.infosecinstitute.com/category/certifications-training/cissp/domains/security-and-risk-management/the-security-cia-triad/%7B%5C#%7Dgref
http://resources.infosecinstitute.com/cia-triad/%7B%5C#%7Dgref%20http://resources.infosecinstitute.com/category/certifications-training/cissp/domains/security-and-risk-management/the-security-cia-triad/%7B%5C#%7Dgref
http://resources.infosecinstitute.com/cia-triad/%7B%5C#%7Dgref%20http://resources.infosecinstitute.com/category/certifications-training/cissp/domains/security-and-risk-management/the-security-cia-triad/%7B%5C#%7Dgref
https://jyx.jyu.fi/dspace/bitstream/handle/123456789/12370/URN%7B%5C_%7DNBN%7B%5C_%7Dfi%7B%5C_%7Djyu-200662.pdf?seque..
https://jyx.jyu.fi/dspace/bitstream/handle/123456789/12370/URN%7B%5C_%7DNBN%7B%5C_%7Dfi%7B%5C_%7Djyu-200662.pdf?seque..
http://dx.doi.org/10.1007/978-3-319-05939-6
http://link.springer.com/10.1007/978-3-319-05939-6
http://link.springer.com/10.1007/978-3-319-05939-6
https://qz.com/1168160/a-cryptocurrency-mining-virus-is-spreading-through-facebook-messenger/
https://qz.com/1168160/a-cryptocurrency-mining-virus-is-spreading-through-facebook-messenger/
http://securityaffairs.co/wordpress/68518/malware/wannamine-nsa-eternalblue.html
http://securityaffairs.co/wordpress/68518/malware/wannamine-nsa-eternalblue.html
http://dx.doi.org/10.1145/997150.997156
http://dx.doi.org/10.1145/997150.997156
http://arxiv.org/abs/arXiv:1011.1669v3
http://portal.acm.org/citation.cfm?doid=997150.997156
http://portal.acm.org/citation.cfm?doid=997150.997156
https://www.fastcompany.com/1825005/how-one-second-could-cost-amazon-16-billion-sales%20http://www.fastcompany.com/1825005/how-one-second-could-cost-amazon-16-billion-sales
https://www.fastcompany.com/1825005/how-one-second-could-cost-amazon-16-billion-sales%20http://www.fastcompany.com/1825005/how-one-second-could-cost-amazon-16-billion-sales
https://www.fastcompany.com/1825005/how-one-second-could-cost-amazon-16-billion-sales%20http://www.fastcompany.com/1825005/how-one-second-could-cost-amazon-16-billion-sales
http://thecontextofthings.com/2014/06/28/amazon-and-impatience/
http://thecontextofthings.com/2014/06/28/amazon-and-impatience/
http://dx.doi.org/10.1145/1216370.1216373
http://portal.acm.org/citation.cfm?doid=1216370.1216373
http://portal.acm.org/citation.cfm?doid=1216370.1216373

[14] U. Akyazi, “Distributed Intrusion Detection using Mobile Agents against DDoS Attacks”, 2008 23rd
International Symposium on Computer and Information Sciences, 2008.

[15] M. H. Bhuyan, H. J. Kashyap, D. K. Bhattacharyya, and J. K. Kalita, “Detecting Distributed Denial
of Service Attacks: Methods, Tools and Future Directions”, The Computer Journal, Oxfordjournals, vol.
57, no. 4, pp. 537–556, 2014, issn: 0010-4620. doi: 10.1093/comjnl/bxt031. [Online]. Available: http:
//comjnl.oxfordjournals.org/content/early/2013/03/28/comjnl.bxt031%7B%5C%%7D5Cnhttp:
//comjnl.oxfordjournals.org/cgi/doi/10.1093/comjnl/bxt031.

[16] T. Gunasekhar, K. Rao, P. Saikiran, and P. Lakshmi, “A Survey on Solutions to Distributed Denial of
Service Attacks”, International Journal of Computer Science and Information Technologies (IJCSIT),
vol. 5, no. 2, pp. 2373–2376, 2014, issn: 03722112. doi: 10.1.1.77.1031. [Online]. Available: http:
//www.scopus.com/inward/record.url?eid=2-s2.0-69249150102%7B%5C&%7DpartnerID=40%7B%5C&
%7Dmd5=3aa1db7515b67a5b4b1cb6be59df8ea4.

[17] T. Thapngam, S. Yu, W. Zhou, and G. Beliakov, “Discriminating DDoS attack traffic from flash crowd
through packet arrival patterns”, 2011 IEEE Conference on Computer Communications Workshops,
INFOCOM WKSHPS 2011, pp. 952–957, 2011, issn: 10636692. doi: 10.1109/INFCOMW.2011.5928950.

[18] C. Science and S. Engineering, “Techniques to Differentiate DDOS Attacks from Flash Crowd”,
International Journal of Advanced Research in Computer Science and Software Engineering, vol. 3, no.
6, pp. 295–299, 2013. [Online]. Available: http://www.ijarcsse.com/docs/papers/Volume%7B%5C_
%7D3/6%7B%5C_%7DJune2013/V3I5-0442.pdf.

[19] S. Lin and T.-c. Chiueh, “A Survey on Solutions to Distributed Denial of Service Attacks”, RPE
report, vol. 37, no. 7, pp. 1562–1570, 2006, issn: 03722112. [Online]. Available: http://www.scopus.
com/inward/record.url?eid=2- s2.0- 69249150102%7B%5C&%7DpartnerID=40%7B%5C&%7Dmd5=
3aa1db7515b67a5b4b1cb6be59df8ea4.

[20] K. M. Prasad, A. R. M. Reddy, and K. V. Rao, “DoS and DDoS Attacks: Defense, Detection and
TracebackMechanisms -A Survey”, Global Journal of Computer Science and Technology: E Network,
Web & Security, vol. 14, no. 7, p. 19, 2014.

[21] Arbor Networks, “Worldwide Infrastructure Security Report”, Tech. Rep., 2016.

[22] D. Anstee, C. Chui, P. Bowen, and G. Sockrider, “Worldwide Infrastructure Security Report”, vol. XII,
no. 2017 Volume XII, 2017. [Online]. Available: https://www.arbornetworks.com/arbor-networks-
12th-annual-worldwide-infrastructure-security-report-finds-attacker-innovation-and-
iot-exploitation-fuel-ddos-attack-landscape.

[23] NETSCOUT SYSTEMS, “Insight Into The Global Threat Landscape”, Tech. Rep., 2018, p. 93.

[24] Arbor Networks, “Worldwide Infrastructure Security Report”, Tech. Rep., 2014.

[25] F. Y. Rashid, Sony Data Breach Was Camouflaged by Anonymous DDoS Attack, 2011. [Online].
Available: http://www.eweek.com/security/sony-data-breach-was-camouflaged-by-anonymous-
ddos-attack (visited on 02/23/2018).

[26] INCAPSULA, DDoS for Hire | Booter, Stresser and DDoSer | Incapsula. [Online]. Available: https:
//www.incapsula.com/ddos/booters-stressers-ddosers.html (visited on 07/10/2018).

[27] A. Mohiuddin, M. A. Uddin, and P. G. M. Someswar, “Design and Development of an effective DDoS
Shield to implement a well secured Defense System against vulnerable attacks”, International Journal
of Advancements in Research & Technology, vol. 3, no. 3, pp. 31–52, 2014.

[28] M. D. Donno, N. Dragoni, A. Giaretta, and A. Spognardi, “Analysis of DDoS-Capable IoT Malwares”,
Computer Science and Information Systems, vol. 11, pp. 807–816, 2017. doi: 10.15439/2017F288.

[29] K. J. Houle, G. M. Weaver, N. Long, and R. Thomas, “Trends in Denial of Service Attack Technology”,
October, vol. 2008, no. October, pp. 0–20, 2001. [Online]. Available: https://resources.sei.cmu.
edu/asset%7B%5C_%7Dfiles/WhitePaper/2001%7B%5C_%7D019%7B%5C_%7D001%7B%5C_%7D52491.pdf%
20http://www.cert.org/archive/pdf/DoS%7B%5C_%7Dtrends.pdf.

120

http://dx.doi.org/10.1093/comjnl/bxt031
http://comjnl.oxfordjournals.org/content/early/2013/03/28/comjnl.bxt031%7B%5C%%7D5Cnhttp://comjnl.oxfordjournals.org/cgi/doi/10.1093/comjnl/bxt031
http://comjnl.oxfordjournals.org/content/early/2013/03/28/comjnl.bxt031%7B%5C%%7D5Cnhttp://comjnl.oxfordjournals.org/cgi/doi/10.1093/comjnl/bxt031
http://comjnl.oxfordjournals.org/content/early/2013/03/28/comjnl.bxt031%7B%5C%%7D5Cnhttp://comjnl.oxfordjournals.org/cgi/doi/10.1093/comjnl/bxt031
http://dx.doi.org/10.1.1.77.1031
http://www.scopus.com/inward/record.url?eid=2-s2.0-69249150102%7B%5C&%7DpartnerID=40%7B%5C&%7Dmd5=3aa1db7515b67a5b4b1cb6be59df8ea4
http://www.scopus.com/inward/record.url?eid=2-s2.0-69249150102%7B%5C&%7DpartnerID=40%7B%5C&%7Dmd5=3aa1db7515b67a5b4b1cb6be59df8ea4
http://www.scopus.com/inward/record.url?eid=2-s2.0-69249150102%7B%5C&%7DpartnerID=40%7B%5C&%7Dmd5=3aa1db7515b67a5b4b1cb6be59df8ea4
http://dx.doi.org/10.1109/INFCOMW.2011.5928950
http://www.ijarcsse.com/docs/papers/Volume%7B%5C_%7D3/6%7B%5C_%7DJune2013/V3I5-0442.pdf
http://www.ijarcsse.com/docs/papers/Volume%7B%5C_%7D3/6%7B%5C_%7DJune2013/V3I5-0442.pdf
http://www.scopus.com/inward/record.url?eid=2-s2.0-69249150102%7B%5C&%7DpartnerID=40%7B%5C&%7Dmd5=3aa1db7515b67a5b4b1cb6be59df8ea4
http://www.scopus.com/inward/record.url?eid=2-s2.0-69249150102%7B%5C&%7DpartnerID=40%7B%5C&%7Dmd5=3aa1db7515b67a5b4b1cb6be59df8ea4
http://www.scopus.com/inward/record.url?eid=2-s2.0-69249150102%7B%5C&%7DpartnerID=40%7B%5C&%7Dmd5=3aa1db7515b67a5b4b1cb6be59df8ea4
https://www.arbornetworks.com/arbor-networks-12th-annual-worldwide-infrastructure-security-report-finds-attacker-innovation-and-iot-exploitation-fuel-ddos-attack-landscape
https://www.arbornetworks.com/arbor-networks-12th-annual-worldwide-infrastructure-security-report-finds-attacker-innovation-and-iot-exploitation-fuel-ddos-attack-landscape
https://www.arbornetworks.com/arbor-networks-12th-annual-worldwide-infrastructure-security-report-finds-attacker-innovation-and-iot-exploitation-fuel-ddos-attack-landscape
http://www.eweek.com/security/sony-data-breach-was-camouflaged-by-anonymous-ddos-attack
http://www.eweek.com/security/sony-data-breach-was-camouflaged-by-anonymous-ddos-attack
https://www.incapsula.com/ddos/booters-stressers-ddosers.html
https://www.incapsula.com/ddos/booters-stressers-ddosers.html
http://dx.doi.org/10.15439/2017F288
https://resources.sei.cmu.edu/asset%7B%5C_%7Dfiles/WhitePaper/2001%7B%5C_%7D019%7B%5C_%7D001%7B%5C_%7D52491.pdf%20http://www.cert.org/archive/pdf/DoS%7B%5C_%7Dtrends.pdf
https://resources.sei.cmu.edu/asset%7B%5C_%7Dfiles/WhitePaper/2001%7B%5C_%7D019%7B%5C_%7D001%7B%5C_%7D52491.pdf%20http://www.cert.org/archive/pdf/DoS%7B%5C_%7Dtrends.pdf
https://resources.sei.cmu.edu/asset%7B%5C_%7Dfiles/WhitePaper/2001%7B%5C_%7D019%7B%5C_%7D001%7B%5C_%7D52491.pdf%20http://www.cert.org/archive/pdf/DoS%7B%5C_%7Dtrends.pdf

[30] A. Bender, “An Accountability Architecture for the Internet Adam Bender , Doctor of Philosophy
, 2010 Bobby Bhattacharjee Department of Computer Science”, PhD thesis, 2010, p. 156. [Online].
Available: https://drum.lib.umd.edu/handle/1903/11194.

[31] J. Mirkovic, S. Dietrich, D. Dittrich, and P. Reiher, Internet denial of service : attack and defense
mechanisms. Prentice Hall, 2005, p. 372, isbn: 0131475738.

[32] D. M. Kienzle and M. C. Elder, “Recent worms: a survey and trends”, Proceedings of the 2003
ACM workshop on Rapid malcode, pp. 1–10, 2003. doi: 10.1145/948187.948189. [Online]. Available:
http://vx.org.ua/lib/pdf/Recent%20Worms:%20A%20Survey%20and%20Trends.pdf.

[33] W. T. Strayer, R. Walsh, C. Livadas, and D. Lapsley, “Detecting botnets with tight command and
control”, Proceedings - Conference on Local Computer Networks, LCN, no. December, pp. 195–202,
2006, issn: 0742-1303. doi: 10.1109/LCN.2006.322100.

[34] C. Cimpanu, Satori Botnet Is Now Attacking Ethereum Mining Rigs, 2018. [Online]. Available: https:
//www.bleepingcomputer.com/news/security/satori- botnet- is- now- attacking- ethereum-
mining-rigs/ (visited on 02/21/2018).

[35] N. Hoque, D. K. Bhattacharyya, and J. K. Kalita, “Botnet in DDoS Attacks: Trends and Challenges”,
IEEE Communications Surveys and Tutorials, vol. 17, no. 4, pp. 2242–2270, 2015, issn: 1553877X.
doi: 10.1109/COMST.2015.2457491.

[36] D. K. Bhattacharyya and J. K. Kalita, DDoS Attacks: Evolution, Detection, Prevention, Reaction,
and Tolerance. CRC Press, 2016, p. 311, isbn: 9781498729659.

[37] R. M. P. Silva, R. C. G. Pinto, and R. M. Salles, “Computer Networks”, Computer Networks, vol. 57,
pp. 378–403, 2013. doi: 10.1016/j.comnet.2012.07.021.

[38] F.-h. Hsu, C.-w. Ou, Y.-l. Hwang, Y.-c. Chang, and P.-c. Lin, “Detecting Web-Based Botnets Using
Bot Communication Traffic Features”, Security and Communication Networks, vol. 2017, 2017.

[39] A. K. Sood, R. J. Enbody, and R. Bansal, “Dissecting SpyEye-Understanding the design of third
generation botnets”, Computer Networks, vol. 57, no. 2, pp. 436–450, 2013, issn: 13891286. doi:
10.1016/j.comnet.2012.06.021. arXiv: 1005.3014. [Online]. Available: http://dx.doi.org/10.
1016/j.comnet.2012.06.021.

[40] H. Binsalleeh, T. Ormerod, A. Boukhtouta, P. Sinha, A. Youssef, M. Debbabi, and L. Wang, “On
the analysis of the Zeus botnet crimeware toolkit”, PST 2010: 2010 8th International Conference
on Privacy, Security and Trust, pp. 31–38, 2010, issn: 2274-2042. doi: 10.1109/PST.2010.5593240.
arXiv: 1512.08546.

[41] J. Zhang, R. Zhang, Y. Zhang, and G. Yan, “The Rise of Social Botnets: Attacks and Countermeasures”,
IEEE Transactions on Dependable and Secure Computing, vol. 15, no. 6, pp. 1–14, 2016, issn: 1545-5971.
doi: 10.1109/TDSC.2016.2641441. arXiv: 1603.02714. [Online]. Available: http://arxiv.org/abs/
1603.02714.

[42] J. Nazario, Twitter-based Botnet Command Channel, 2013. [Online]. Available: https : / / www .
arbornetworks . com / blog / asert / twitter - based - botnet - command - channel/ (visited on
02/22/2018).

[43] L. Zeltser, When Bots Use Social Media for Command and Control, 2015. [Online]. Available: https:
//zeltser.com/bots-command-and-control-via-social-media/ (visited on 02/22/2018).

[44] T. M. Americas, “DDoS Attacks, New DDoS Taxonomy and Mitigation Solutions – A Survey”, Interna-
tional conference on Signal Processing, Communication, Power and Embedded System (SCOPES)-2016,
no. 2014, pp. 793–798, 2016.

[45] Kaspersky Lab, “Kaspersky ddos protection”, p. 7, 2014.

[46] INCAPSULA, DDoS Attack Types & Mitigation Methods. [Online]. Available: https://www.incapsula.
com/ddos/ddos-attacks/ (visited on 02/23/2018).

[47] C. Patrikakis, M. Masikos, and O. Zouraraki, “Distributed Denial of Service Attacks - The Internet
Protocol Journal”, Cisco, vol. 7, no. 4, 2004. [Online]. Available: https://www.cisco.com/c/en/
us/about/press/internet-protocol-journal/back-issues/table-contents-30/dos-attacks.

121

https://drum.lib.umd.edu/handle/1903/11194
http://dx.doi.org/10.1145/948187.948189
http://vx.org.ua/lib/pdf/Recent%20Worms:%20A%20Survey%20and%20Trends.pdf
http://dx.doi.org/10.1109/LCN.2006.322100
https://www.bleepingcomputer.com/news/security/satori-botnet-is-now-attacking-ethereum-mining-rigs/
https://www.bleepingcomputer.com/news/security/satori-botnet-is-now-attacking-ethereum-mining-rigs/
https://www.bleepingcomputer.com/news/security/satori-botnet-is-now-attacking-ethereum-mining-rigs/
http://dx.doi.org/10.1109/COMST.2015.2457491
http://dx.doi.org/10.1016/j.comnet.2012.07.021
http://dx.doi.org/10.1016/j.comnet.2012.06.021
http://arxiv.org/abs/1005.3014
http://dx.doi.org/10.1016/j.comnet.2012.06.021
http://dx.doi.org/10.1016/j.comnet.2012.06.021
http://dx.doi.org/10.1109/PST.2010.5593240
http://arxiv.org/abs/1512.08546
http://dx.doi.org/10.1109/TDSC.2016.2641441
http://arxiv.org/abs/1603.02714
http://arxiv.org/abs/1603.02714
http://arxiv.org/abs/1603.02714
https://www.arbornetworks.com/blog/asert/twitter-based-botnet-command-channel/
https://www.arbornetworks.com/blog/asert/twitter-based-botnet-command-channel/
https://zeltser.com/bots-command-and-control-via-social-media/
https://zeltser.com/bots-command-and-control-via-social-media/
https://www.incapsula.com/ddos/ddos-attacks/
https://www.incapsula.com/ddos/ddos-attacks/
https://www.cisco.com/c/en/us/about/press/internet-protocol-journal/back-issues/table-contents-30/dos-attacks.html%20http://www.cisco.com/c/en/us/about/press/internet-protocol-journal/back-issues/table-contents-30/dos-attacks.html
https://www.cisco.com/c/en/us/about/press/internet-protocol-journal/back-issues/table-contents-30/dos-attacks.html%20http://www.cisco.com/c/en/us/about/press/internet-protocol-journal/back-issues/table-contents-30/dos-attacks.html
https://www.cisco.com/c/en/us/about/press/internet-protocol-journal/back-issues/table-contents-30/dos-attacks.html%20http://www.cisco.com/c/en/us/about/press/internet-protocol-journal/back-issues/table-contents-30/dos-attacks.html
https://www.cisco.com/c/en/us/about/press/internet-protocol-journal/back-issues/table-contents-30/dos-attacks.html%20http://www.cisco.com/c/en/us/about/press/internet-protocol-journal/back-issues/table-contents-30/dos-attacks.html

html%20http://www.cisco.com/c/en/us/about/press/internet- protocol- journal/back-
issues/table-contents-30/dos-attacks.html.

[48] J. Postel, “User Datagram Protocol”, Tech. Rep., 1980. [Online]. Available: https://tools.ietf.org/
html/rfc768.

[49] ——, “Internet Control Message Protocol”, Tech. Rep., 1981, p. 20. [Online]. Available: https :
//tools.ietf.org/html/rfc792.

[50] CORERO, Definition of DDoS, Attack Types & Characteristics Glossary | Corero. [Online]. Available:
https://www.corero.com/resources/glossary.html%7B%5C#%7DICMP%20Flood%20https://www.
corero.com/resources/glossary.html%7B%5C#%7DSlow%20Read%20Attack (visited on 02/26/2018).

[51] CloudFlare, DNS Amplification | DDoS Attack Glossary | Incapsula. [Online]. Available: https :
//www.cloudflare.com/learning/ddos/dns-amplification-ddos-attack/ (visited on 02/26/2018).

[52] M. Majkowski, Memcrashed - Major amplification attacks from UDP port 11211, 2018. [Online].
Available: https://blog.cloudflare.com/memcrashed-major-amplification-attacks-from-port-
11211/ (visited on 03/12/2018).

[53] Shodan, Public Memcached Servers - Shodan, 2018. [Online]. Available: https://www.shodan.io/
report/poJtt1i9 (visited on 03/12/2018).

[54] S. T. Zargar, J. Joshi, and D. Tipper, “A survey of defense mechanisms against distributed denial
of service (DDOS) flooding attacks”, IEEE Communications Surveys and Tutorials, vol. 15, no. 4,
pp. 2046–2069, 2013, issn: 1553877X. doi: 10.1109/SURV.2013.031413.00127.

[55] W. Eddy, “TCP SYN Flooding Attacks and Common Mitigations”, Tech. Rep., 2007, p. 19. doi:
10.17487/rfc4987. arXiv: arXiv:1011.1669v3. [Online]. Available: https://tools.ietf.org/html/
rfc4987%20https://www.rfc-editor.org/info/rfc4987.

[56] C. Douligeris and A. Mitrokotsa, “DDoS attacks and defense mechanisms: Classification and state-
of-the-art”, Computer Networks, vol. 44, no. 5, pp. 643–666, 2004, issn: 13891286. doi: 10.1016/j.
comnet.2003.10.003.

[57] W. M. Eddy, “Defenses Against TCP SYN Flooding Attacks”, The Internet Protocol Journal, vol.
9, no. 4, pp. 2–16, 2006, issn: 1554-6578. doi: 10.1097/NEN.0000000000000104. [Online]. Available:
http://www-kiv.zcu.cz/%7B~%7Dledvina/DHT/ipj%7B%5C_%7D9-4.pdf.

[58] D. Bekerman and D. Breslaw, How Mirai Uses STOMP Protocol to Launch DDoS Floods, 2016.
[Online]. Available: https://www.incapsula.com/blog/mirai-stomp-protocol-ddos.html (visited
on 03/05/2018).

[59] Cloudflare, Ping of Death DDoS attack | Cloudflare. [Online]. Available: https://www.cloudflare.
com/learning/ddos/ping-of-death-ddos-attack/ (visited on 02/27/2018).

[60] ——, Smurf DDoS Attack | Cloudflare. [Online]. Available: https://www.cloudflare.com/learning/
ddos/smurf-ddos-attack/ (visited on 02/27/2018).

[61] J. Postel, “Internet Protocol”, Tech. Rep., 1981, p. 45. [Online]. Available: https://tools.ietf.org/
html/rfc791.

[62] D. Farinacci, T. Li, S. Hanks, D. Meyer, and P. Traina, “Generic Routing Encapsulation (GRE)”,
Tech. Rep., 2000, pp. 1–8. doi: 10.17487/rfc2784. arXiv: arXiv:1011.1669v3. [Online]. Available:
https://www.rfc-editor.org/info/rfc2784.

[63] B. Krebs, KrebsOnSecurity hit with record DDoS, 2016. [Online]. Available: https://krebsonsecurity.
com/2016/09/krebsonsecurity-hit-with-record-ddos/ (visited on 02/28/2018).

[64] Radware, “ERT Threat Alert Reaper Botnet”, Tech. Rep., 2017, pp. 1–4.

[65] Y. Xie and S.-z. Yu, “Monitoring the Application-Layer DDoS Attacks for Popular Websites”,
IEEE/ACMTRANSACTIONS ON NETWORKING, vol. 17, no. 1, pp. 15–25, 2009. doi: 10.1109/
TNET.2008.925628.

[66] Radware, The ultimate guide to everything you need to know about DDoS attacks. 2015, p. 44.

122

https://www.cisco.com/c/en/us/about/press/internet-protocol-journal/back-issues/table-contents-30/dos-attacks.html%20http://www.cisco.com/c/en/us/about/press/internet-protocol-journal/back-issues/table-contents-30/dos-attacks.html
https://www.cisco.com/c/en/us/about/press/internet-protocol-journal/back-issues/table-contents-30/dos-attacks.html%20http://www.cisco.com/c/en/us/about/press/internet-protocol-journal/back-issues/table-contents-30/dos-attacks.html
https://www.cisco.com/c/en/us/about/press/internet-protocol-journal/back-issues/table-contents-30/dos-attacks.html%20http://www.cisco.com/c/en/us/about/press/internet-protocol-journal/back-issues/table-contents-30/dos-attacks.html
https://www.cisco.com/c/en/us/about/press/internet-protocol-journal/back-issues/table-contents-30/dos-attacks.html%20http://www.cisco.com/c/en/us/about/press/internet-protocol-journal/back-issues/table-contents-30/dos-attacks.html
https://tools.ietf.org/html/rfc768
https://tools.ietf.org/html/rfc768
https://tools.ietf.org/html/rfc792
https://tools.ietf.org/html/rfc792
https://www.corero.com/resources/glossary.html%7B%5C#%7DICMP%20Flood%20https://www.corero.com/resources/glossary.html%7B%5C#%7DSlow%20Read%20Attack
https://www.corero.com/resources/glossary.html%7B%5C#%7DICMP%20Flood%20https://www.corero.com/resources/glossary.html%7B%5C#%7DSlow%20Read%20Attack
https://www.cloudflare.com/learning/ddos/dns-amplification-ddos-attack/
https://www.cloudflare.com/learning/ddos/dns-amplification-ddos-attack/
https://blog.cloudflare.com/memcrashed-major-amplification-attacks-from-port-11211/
https://blog.cloudflare.com/memcrashed-major-amplification-attacks-from-port-11211/
https://www.shodan.io/report/poJtt1i9
https://www.shodan.io/report/poJtt1i9
http://dx.doi.org/10.1109/SURV.2013.031413.00127
http://dx.doi.org/10.17487/rfc4987
http://arxiv.org/abs/arXiv:1011.1669v3
https://tools.ietf.org/html/rfc4987%20https://www.rfc-editor.org/info/rfc4987
https://tools.ietf.org/html/rfc4987%20https://www.rfc-editor.org/info/rfc4987
http://dx.doi.org/10.1016/j.comnet.2003.10.003
http://dx.doi.org/10.1016/j.comnet.2003.10.003
http://dx.doi.org/10.1097/NEN.0000000000000104
http://www-kiv.zcu.cz/%7B~%7Dledvina/DHT/ipj%7B%5C_%7D9-4.pdf
https://www.incapsula.com/blog/mirai-stomp-protocol-ddos.html
https://www.cloudflare.com/learning/ddos/ping-of-death-ddos-attack/
https://www.cloudflare.com/learning/ddos/ping-of-death-ddos-attack/
https://www.cloudflare.com/learning/ddos/smurf-ddos-attack/
https://www.cloudflare.com/learning/ddos/smurf-ddos-attack/
https://tools.ietf.org/html/rfc791
https://tools.ietf.org/html/rfc791
http://dx.doi.org/10.17487/rfc2784
http://arxiv.org/abs/arXiv:1011.1669v3
https://www.rfc-editor.org/info/rfc2784
https://krebsonsecurity.com/2016/09/krebsonsecurity-hit-with-record-ddos/
https://krebsonsecurity.com/2016/09/krebsonsecurity-hit-with-record-ddos/
http://dx.doi.org/10.1109/TNET.2008.925628
http://dx.doi.org/10.1109/TNET.2008.925628

[67] T. Yatagai, T. Isohara, and I. Sasase, “Detection of HTTP-GET flood attack based on analysis of
page access behavior”, IEEE Pacific RIM Conference on Communications, Computers, and Signal
Processing - Proceedings, pp. 232–235, 2007. doi: 10.1109/PACRIM.2007.4313218.

[68] Akamai, “DNS Reflection, Amplification and DNS Water-torture”, 2017.

[69] ——, “akamai’s [state of the internet] / security Q1 2017 report”, Tech. Rep., 2017, p. 26.

[70] T. Yoshida, K. Kawakami, R. Kobayashi, M. Kato, M. Okada, and H. Kishimoto, “Detection and
Filtering System for DNS Water Torture Attacks Relying Only on Domain Name Information”, Journal
of Information Processing, vol. 25, pp. 854–865, 2017. doi: 10.2197/ipsjjip.25.854. [Online]. Available:
https://www.jstage.jst.go.jp/article/ipsjjip/25/0/25%7B%5C_%7D854/%7B%5C_%7Darticle.

[71] J. Mirkovic, G. Prier, and P. Reiher, “Attacking DDoS at the source”, Proceedings - International
Conference on Network Protocols, ICNP, pp. 312–321, 2008, issn: 10921648. doi: 10.1109/ICNP.2002.
1181418.

[72] Imperva, “Attackers Use DDoS Pulses to Pin Down Multiple Targets , Send Shock Waves Through
Hybrids”, 2018. [Online]. Available: https://lp.incapsula.com/rs/804-TEY-921/images/Pulse-
wave-attacks-and-their-impact-on-hybrid-mitigation-solutions.pdf.

[73] C. Cimpanu, Pulse Wave - New DDoS Assault Pattern Discovered, 2017. [Online]. Available: https:
/ / www . bleepingcomputer . com / news / security / pulse - wave - new - ddos - assault - pattern -
discovered/ (visited on 07/17/2018).

[74] J. Vijayan, ’Pulse Wave’ DDoS Attacks Emerge As New Threat, 2017. [Online]. Available: https:
//www.darkreading.com/attacks-breaches/pulse-wave-ddos-attacks-emerge-as-new-threat-
/d/d-id/1329657? (visited on 07/17/2018).

[75] G. Yaltirakli, Slowloris, 2018. [Online]. Available: https://github.com/gkbrk/slowloris.

[76] Division CERT, 1996 CERT Advisories. 2017, p. 170, isbn: 1565921240.

[77] ——, “1998 CERT Advisories”, Tech. Rep., 2017, p. 78.

[78] P. Ferguson and D. Senie, Network Ingress Filtering: Defeating Denial of Service Attacks which employ
IP Source Address Spoofing, 1998. [Online]. Available: https://tools.ietf.org/pdf/rfc2267.pdf.

[79] D. Dittrich, the Tribe Flood Network Distributed Denial of Service Attack Tool, 1999. [Online]. Available:
https://staff.washington.edu/dittrich/misc/trinoo.analysis.txt (visited on 03/06/2018).

[80] BBC News, BBC News | SCI/TECH | Yahoo brought to standstill, 2000. [Online]. Available: http:
//news.bbc.co.uk/2/hi/science/nature/635048.stm (visited on 03/06/2018).

[81] L. Garber, “Denial-of-Service Attacks Rip the Internet”, vol. 33, p. 6, 2000. doi: 10.1109/MC.2000.
839316.

[82] M. Eid, “Cyber-Terrorism and Ethical Journalism: A Need for Rationalism.”, in Ethical Impact of
Technological Advancements and Applications in Society, October 2010, Ottawa, 2016, p. 25. doi:
10.4018/jte.2010100101.

[83] R. Naraine, Massive DDoS Attack Hit DNS Root Servers, 2002. [Online]. Available: http://www.cs.
cornell.edu/people/egs/beehive/rootattack.html (visited on 03/06/2018).

[84] Y. Zhang, Y. Xiao, K. Ghaboosi, J. Zhang, and H. Deng, “A survey of cyber crimes”, Security and
Communication Networks, vol. 5, no. 4, pp. 422–437, Apr. 2012, issn: 19390114. doi: 10.1002/sec.331.
[Online]. Available: http://doi.wiley.com/10.1002/sec.331.

[85] M. Lesk, “The New Front Line: Estonia under Cyberassault”, IEEE Security and Privacy, vol. 5, no.
4, p. 4, 2007. doi: 10.1109/MSP.2007.98.

[86] C. Enterprises, Internet Group Anonymous Declares "War on Scientology", Clearwater, 2008. [Online].
Available: https://prlog.org/10046797.

[87] S. Mansfield-Devine, “Anonymous: Serious threat or mere annoyance?”, Network Security, vol. 2011,
no. 1, pp. 4–10, 2011, issn: 13534858. doi: 10.1016/S1353-4858(11)70004-6. [Online]. Available:
http://dx.doi.org/10.1016/S1353-4858(11)70004-6.

123

http://dx.doi.org/10.1109/PACRIM.2007.4313218
http://dx.doi.org/10.2197/ipsjjip.25.854
https://www.jstage.jst.go.jp/article/ipsjjip/25/0/25%7B%5C_%7D854/%7B%5C_%7Darticle
http://dx.doi.org/10.1109/ICNP.2002.1181418
http://dx.doi.org/10.1109/ICNP.2002.1181418
https://lp.incapsula.com/rs/804-TEY-921/images/Pulse-wave-attacks-and-their-impact-on-hybrid-mitigation-solutions.pdf
https://lp.incapsula.com/rs/804-TEY-921/images/Pulse-wave-attacks-and-their-impact-on-hybrid-mitigation-solutions.pdf
https://www.bleepingcomputer.com/news/security/pulse-wave-new-ddos-assault-pattern-discovered/
https://www.bleepingcomputer.com/news/security/pulse-wave-new-ddos-assault-pattern-discovered/
https://www.bleepingcomputer.com/news/security/pulse-wave-new-ddos-assault-pattern-discovered/
https://www.darkreading.com/attacks-breaches/pulse-wave-ddos-attacks-emerge-as-new-threat-/d/d-id/1329657?
https://www.darkreading.com/attacks-breaches/pulse-wave-ddos-attacks-emerge-as-new-threat-/d/d-id/1329657?
https://www.darkreading.com/attacks-breaches/pulse-wave-ddos-attacks-emerge-as-new-threat-/d/d-id/1329657?
https://github.com/gkbrk/slowloris
https://tools.ietf.org/pdf/rfc2267.pdf
https://staff.washington.edu/dittrich/misc/trinoo.analysis.txt
http://news.bbc.co.uk/2/hi/science/nature/635048.stm
http://news.bbc.co.uk/2/hi/science/nature/635048.stm
http://dx.doi.org/10.1109/MC.2000.839316
http://dx.doi.org/10.1109/MC.2000.839316
http://dx.doi.org/10.4018/jte.2010100101
http://www.cs.cornell.edu/people/egs/beehive/rootattack.html
http://www.cs.cornell.edu/people/egs/beehive/rootattack.html
http://dx.doi.org/10.1002/sec.331
http://doi.wiley.com/10.1002/sec.331
http://dx.doi.org/10.1109/MSP.2007.98
https://prlog.org/10046797
http://dx.doi.org/10.1016/S1353-4858(11)70004-6
http://dx.doi.org/10.1016/S1353-4858(11)70004-6

[88] DAILY MAIL REPORTER, ’Anonymous’ hackers hit Playstation and Sony websites in revenge for
lawsuit | Daily Mail Online, 2011. [Online]. Available: http://www.dailymail.co.uk/sciencetech/
article-1373621/Anonymous-hackers-hit-Playstation-Sony-websites-revenge-lawsuit.html?
ito=feeds-newsxml (visited on 03/08/2018).

[89] N. Anderson, "Anonymous" attacks Sony to protest PS3 hacker lawsuit, 2011. [Online]. Available:
https://arstechnica.com/tech-policy/2011/04/anonymous-attacks-sony-to-protest-ps3-
hacker-lawsuit/ (visited on 03/08/2018).

[90] DAILY MAIL REPORTER, Sony executives bow in apology to 77m PlayStation users over hacked
accounts | Daily Mail Online, 2011. [Online]. Available: http://www.dailymail.co.uk/sciencetech/
article- 1382388/Sony- executives- bow- apology- 77m- PlayStation- users- hacked- accounts.
html (visited on 03/08/2018).

[91] CNN, Anonymous strikes back after feds shut piracy hub Megaupload - CNN, 2012. [Online]. Available:
https://edition.cnn.com/2012/01/19/business/megaupload-shutdown/index.html (visited on
03/08/2018).

[92] M. Sauter, “"LOIC Will Tear Us Apart": The Impact of Tool Design and Media Portrayals in the
Success of Activist DDOS Attacks”, American Behavioral Scientist, vol. 57, no. 7, pp. 983–1007, 2013,
issn: 00027642. doi: 10.1177/0002764213479370.

[93] M. Bing, The Lizard Brain of LizardStresser, 2016. [Online]. Available: https://www.arbornetworks.
com/blog/asert/lizard-brain-lizardstresser/ (visited on 03/09/2018).

[94] Cloudbric, Who’s Behind DDoS Attacks and How Can You Protect Your Website?, 2015. [Online].
Available: https://www.cloudbric.com/blog/2015/09/whos- behind- ddos- attacks- and- how-
can-you-protect-your-website/%20http://blog.cloudbric.com/2015/09/whos-behind-ddos-
attacks-and-how-can.html (visited on 03/09/2018).

[95] U. CERT, Heightened DDoS Threat Poised by Mirai and Other Botnets, 2016. [Online]. Available:
https://www.us-cert.gov/ncas/alerts/TA16-288A (visited on 03/10/2018).

[96] S. Hilton, “Dyn Analysis Summary Of Friday October 21 Attack | Dyn Blog”, Dyn, pp. 20–22, 2016.
[Online]. Available: https://dyn.com/blog/dyn- analysis- summary- of- friday- october- 21-
attack/%20https://dyn.com/blog/dyn-analysis-summary-of-friday-october-21-attack/%7B%
5C%%7D0Ahttp://dyn.com/blog/dyn-analysis-summary-of-friday-october-21-attack/.

[97] A. Coggine, Bitfinex Undergoing DDOS Attack, IOTA Wallets Temporarily Unavailable, 2017. [Online].
Available: https://cointelegraph.com/news/bitfinex-undergoing-ddos-attack-iota-wallets-
temporarily-unavailable (visited on 03/12/2018).

[98] B. Akolkar, DDoS Attack Pulls Down Bitcoin Gold Website – CoinSpeaker, 2017. [Online]. Available:
https://www.coinspeaker.com/2017/10/24/ddos-attack-pulls-bitcoin-gold-website/ (visited
on 03/12/2018).

[99] Radware, OpCatalonia, 2017. [Online]. Available: https://security.radware.com/ddos-threats-
attacks/threat-advisories-attack-reports/opcatalonia/ (visited on 03/10/2018).

[100] Skottler, February 28th DDoS Incident Report | GitHub Engineering, 2018. [Online]. Available: https:
//githubengineering.com/ddos-incident-report/ (visited on 03/12/2018).

[101] Akamai SIRT Alerts, memcached, now with extortion! - The Akamai Blog, 2018. [Online]. Avail-
able: https://blogs.akamai.com/2018/03/memcached- now- with- extortion.html (visited on
03/12/2018).

[102] C. Morales, NETSCOUT Arbor Confirms 1.7 Tbps DDoS Attack; The Terabit Attack Era Is Upon Us,
2018. [Online]. Available: https://www.arbornetworks.com/blog/asert/netscout-arbor-confirms-
1-7-tbps-ddos-attack-terabit-attack-era-upon-us/ (visited on 03/12/2018).

[103] C. Herbeger, Z. Gadot, Y. Ben-Erza, and O. Ofer, “Global Application & Network Security Report
2014-2015”, Tech. Rep., 2015.

[104] G. Loukas and G. Oke, “Protection against Denial of Service Attacks: A Survey”, The Computer
Journal, p. 19, 2009. doi: 10.1093/comjnl/bxh000.

124

http://www.dailymail.co.uk/sciencetech/article-1373621/Anonymous-hackers-hit-Playstation-Sony-websites-revenge-lawsuit.html?ito=feeds-newsxml
http://www.dailymail.co.uk/sciencetech/article-1373621/Anonymous-hackers-hit-Playstation-Sony-websites-revenge-lawsuit.html?ito=feeds-newsxml
http://www.dailymail.co.uk/sciencetech/article-1373621/Anonymous-hackers-hit-Playstation-Sony-websites-revenge-lawsuit.html?ito=feeds-newsxml
https://arstechnica.com/tech-policy/2011/04/anonymous-attacks-sony-to-protest-ps3-hacker-lawsuit/
https://arstechnica.com/tech-policy/2011/04/anonymous-attacks-sony-to-protest-ps3-hacker-lawsuit/
http://www.dailymail.co.uk/sciencetech/article-1382388/Sony-executives-bow-apology-77m-PlayStation-users-hacked-accounts.html
http://www.dailymail.co.uk/sciencetech/article-1382388/Sony-executives-bow-apology-77m-PlayStation-users-hacked-accounts.html
http://www.dailymail.co.uk/sciencetech/article-1382388/Sony-executives-bow-apology-77m-PlayStation-users-hacked-accounts.html
https://edition.cnn.com/2012/01/19/business/megaupload-shutdown/index.html
http://dx.doi.org/10.1177/0002764213479370
https://www.arbornetworks.com/blog/asert/lizard-brain-lizardstresser/
https://www.arbornetworks.com/blog/asert/lizard-brain-lizardstresser/
https://www.cloudbric.com/blog/2015/09/whos-behind-ddos-attacks-and-how-can-you-protect-your-website/%20http://blog.cloudbric.com/2015/09/whos-behind-ddos-attacks-and-how-can.html
https://www.cloudbric.com/blog/2015/09/whos-behind-ddos-attacks-and-how-can-you-protect-your-website/%20http://blog.cloudbric.com/2015/09/whos-behind-ddos-attacks-and-how-can.html
https://www.cloudbric.com/blog/2015/09/whos-behind-ddos-attacks-and-how-can-you-protect-your-website/%20http://blog.cloudbric.com/2015/09/whos-behind-ddos-attacks-and-how-can.html
https://www.us-cert.gov/ncas/alerts/TA16-288A
https://dyn.com/blog/dyn-analysis-summary-of-friday-october-21-attack/%20https://dyn.com/blog/dyn-analysis-summary-of-friday-october-21-attack/%7B%5C%%7D0Ahttp://dyn.com/blog/dyn-analysis-summary-of-friday-october-21-attack/
https://dyn.com/blog/dyn-analysis-summary-of-friday-october-21-attack/%20https://dyn.com/blog/dyn-analysis-summary-of-friday-october-21-attack/%7B%5C%%7D0Ahttp://dyn.com/blog/dyn-analysis-summary-of-friday-october-21-attack/
https://dyn.com/blog/dyn-analysis-summary-of-friday-october-21-attack/%20https://dyn.com/blog/dyn-analysis-summary-of-friday-october-21-attack/%7B%5C%%7D0Ahttp://dyn.com/blog/dyn-analysis-summary-of-friday-october-21-attack/
https://cointelegraph.com/news/bitfinex-undergoing-ddos-attack-iota-wallets-temporarily-unavailable
https://cointelegraph.com/news/bitfinex-undergoing-ddos-attack-iota-wallets-temporarily-unavailable
https://www.coinspeaker.com/2017/10/24/ddos-attack-pulls-bitcoin-gold-website/
https://security.radware.com/ddos-threats-attacks/threat-advisories-attack-reports/opcatalonia/
https://security.radware.com/ddos-threats-attacks/threat-advisories-attack-reports/opcatalonia/
https://githubengineering.com/ddos-incident-report/
https://githubengineering.com/ddos-incident-report/
https://blogs.akamai.com/2018/03/memcached-now-with-extortion.html
https://www.arbornetworks.com/blog/asert/netscout-arbor-confirms-1-7-tbps-ddos-attack-terabit-attack-era-upon-us/
https://www.arbornetworks.com/blog/asert/netscout-arbor-confirms-1-7-tbps-ddos-attack-terabit-attack-era-upon-us/
http://dx.doi.org/10.1093/comjnl/bxh000

[105] Arbor Networks, “20 YEARS OF DDoS ATTACKS”, Tech. Rep., 2016, p. 700.

[106] M. Robinson, J. Mirkovic, M. Schnaider, S. Michel, and P. Reiher, “Challenges and Principles of DDoS
Defense”, no. 418, 2003.

[107] Cisco Systems, WAN and Application Optimization Solution Guide Cisco Validated Design, August.
2008, p. 238.

[108] M. Perry and T. Margoni, “Legal Consequences of Packet Inspection”, SSRN Electronic Journal, p. 4,
2012.

[109] European Union, EUR-Lex - 32002L0058 - EN, 2002. [Online]. Available: http://eur-lex.europa.
eu/LexUriServ/LexUriServ.do?uri=CELEX:32002L0058:en:HTML%20http://eur-lex.europa.eu/
LexUriServ/LexUriServ.do?uri=CELEX:32002L0058:EN:HTML (visited on 03/19/2018).

[110] A. Cooper, “What your broadband provider knows about your web use deep packet inspection and
communications laws and policies : hearing before the Subcommittee on Telecommunications and the
Internet of the Committee on Energy and Commerce, House of Representatives, O”, vol. 277, no. 1984,
1 online resource (v, 132 p.) ill. 2008. [Online]. Available: http://purl.fdlp.gov/GPO/gpo4088.

[111] D. Mahajan, “Distinguishing DDos Attack and Flash Event using Real- World Datasets with Entropy as
an Evaluation Metric”, Machine Intelligence and Research Advancement (ICMIRA), 2013 International
Conference on, p. 5, 2013. doi: 10.1109/ICMIRA.2013.24.

[112] P. Salvador and A. Nogueira, A Pratical Approach to Corporate Networks Engineering. River Publishers,
2013, p. 374, isbn: 9788792982094.

[113] J. Mirković, G. Prier, and P. Reiher, “Source-end DDoS defense”, Proceedings - 2nd IEEE International
Symposium on Network Computing and Applications, NCA 2003, pp. 171–178, 2003. doi: 10.1109/
NCA.2003.1201153.

[114] 18 U.S. Code § 1030, 18 U.S. Code § 1030 - Fraud and related activity in connection with computers |
US Law | LII / Legal Information Institute, 1986. [Online]. Available: https://www.law.cornell.edu/
uscode/text/18/1030 (visited on 04/03/2018).

[115] Crown, “Computer Misuse Act 1990”, in Computer Misuse Act 1990, 2008, p. 16. doi: 10.1016/0267-
3649(90)90080-U. [Online]. Available: http://www.legislation.gov.uk/ukpga/1990/18/pdfs/
ukpga%7B%5C_%7D19900018%7B%5C_%7Den.pdf.

[116] H. M. Jarrett and M. W. Bailie, Prosecuting Computer Crimes. Washington, DC: Office of Legal
Education Executive Office for United States Attorneys, 2010, p. 213.

[117] S. Oh and K. Lee, “The need for specific penalties for hacking in criminal law”, Scientific World
Journal, vol. 2014, 2014, issn: 1537744X. doi: 10.1155/2014/736738.

[118] Harvard University, Regulations Concerning the Use of University Resources. [Online]. Available:
http://static.fas.harvard.edu/registrar/ugrad%7B%5C_%7Dhandbook/current/chapter5/
regulations%7B%5C_%7Duniv%7B%5C_%7Dresources.html (visited on 04/03/2018).

[119] University of Oxford, Statutes and Regulations: Regulations Relating to the use of Information Technol-
ogy Facilities, 2016. [Online]. Available: http://www.admin.ox.ac.uk/statutes/regulations/196-
052.shtml (visited on 04/03/2018).

[120] J. Toit, Active vs. Passive network monitoring: an infographic – Iris Network Systems, 2016. [Online].
Available: https://www.irisns.com/active-vs-passive-network-monitoring-an-infographic/
(visited on 07/11/2018).

[121] C. Robitaille, Network Performance: Active Monitoring? Passive Monitoring? How About Both?! -
Accedian, 2018. [Online]. Available: https://accedian.com/blog/performance-monitoring/network-
performance-active-passive-monitoring/ (visited on 07/11/2018).

[122] N. L. M. V. Adrichem, C. Doerr, and F. A. Kuipers, “OpenNetMon: Network Monitoring in OpenFlow
Software-Defined Networks”, IEEE Network Operations and Management Symposium (NOMS), p. 8,
2014. doi: 10.1109/NOMS.2014.6838228. [Online]. Available: https://ieeexplore.ieee.org/
document/6838228/.

125

http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=CELEX:32002L0058:en:HTML%20http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=CELEX:32002L0058:EN:HTML
http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=CELEX:32002L0058:en:HTML%20http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=CELEX:32002L0058:EN:HTML
http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=CELEX:32002L0058:en:HTML%20http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=CELEX:32002L0058:EN:HTML
http://purl.fdlp.gov/GPO/gpo4088
http://dx.doi.org/10.1109/ICMIRA.2013.24
http://dx.doi.org/10.1109/NCA.2003.1201153
http://dx.doi.org/10.1109/NCA.2003.1201153
https://www.law.cornell.edu/uscode/text/18/1030
https://www.law.cornell.edu/uscode/text/18/1030
http://dx.doi.org/10.1016/0267-3649(90)90080-U
http://dx.doi.org/10.1016/0267-3649(90)90080-U
http://www.legislation.gov.uk/ukpga/1990/18/pdfs/ukpga%7B%5C_%7D19900018%7B%5C_%7Den.pdf
http://www.legislation.gov.uk/ukpga/1990/18/pdfs/ukpga%7B%5C_%7D19900018%7B%5C_%7Den.pdf
http://dx.doi.org/10.1155/2014/736738
http://static.fas.harvard.edu/registrar/ugrad%7B%5C_%7Dhandbook/current/chapter5/regulations%7B%5C_%7Duniv%7B%5C_%7Dresources.html
http://static.fas.harvard.edu/registrar/ugrad%7B%5C_%7Dhandbook/current/chapter5/regulations%7B%5C_%7Duniv%7B%5C_%7Dresources.html
http://www.admin.ox.ac.uk/statutes/regulations/196-052.shtml
http://www.admin.ox.ac.uk/statutes/regulations/196-052.shtml
https://www.irisns.com/active-vs-passive-network-monitoring-an-infographic/
https://accedian.com/blog/performance-monitoring/network-performance-active-passive-monitoring/
https://accedian.com/blog/performance-monitoring/network-performance-active-passive-monitoring/
http://dx.doi.org/10.1109/NOMS.2014.6838228
https://ieeexplore.ieee.org/document/6838228/
https://ieeexplore.ieee.org/document/6838228/

[123] H. T. Work, O. S. Types, S. Ratios, O. Speeds, P. Budgets, L. Loss, and B. Technology, “Understanding
Network TAPs – The First Step to Visibility”, pp. 1–9, 2017.

[124] L. H. Yeo, X. Che, and S. Lakkaraju, “Understanding Modern Intrusion Detection Systems: A Survey”,
2017. arXiv: 1708.07174. [Online]. Available: http://arxiv.org/abs/1708.07174.

[125] M. Sabourin and A. Mitiche, “Optical character recognition by a neural network”, Neural Networks,
vol. 5, no. 5, pp. 843–852, 1992, issn: 08936080. doi: 10.1016/S0893-6080(05)80144-3.

[126] K. Shameer, K. W. Johnson, B. S. Glicksberg, J. T. Dudley, and P. P. Sengupta, “Machine learning in
cardiovascular medicine: are we there yet?”, Heart, heartjnl–2017–311 198, 2018, issn: 1355-6037. doi:
10.1136/heartjnl-2017-311198. [Online]. Available: http://heart.bmj.com/lookup/doi/10.1136/
heartjnl-2017-311198.

[127] M. S. Mahdavinejad, M. Rezvan, M. Barekatain, P. Adibi, P. Barnaghi, and A. P. Sheth, “Machine
learning for Internet of Things data analysis: A survey”, Digital Communications and Networks,
2017, issn: 23528648. doi: 10.1016/j.dcan.2017.10.002. arXiv: 1802.06305. [Online]. Available:
http://linkinghub.elsevier.com/retrieve/pii/S235286481730247X.

[128] S. Devi and T. Neetha, “Machine Learning based traffic congestion prediction in a IoT based Smart
City”, International Research Journal of Engineering and Technology (IRJET), pp. 3442–3445, 2017.

[129] B. Intelligent and S. Aur, Hands-On Machine Learning with Scikit-Learn & TensorFlow, isbn:
9781491962299.

[130] T. M. Mitchell, Machine Learning. 1997, p. 414, isbn: 0070428077.

[131] B. Marr, What Is The Difference Between Artificial Intelligence And Machine Learning?, 2016. [Online].
Available: https://www.forbes.com/sites/bernardmarr/2016/12/06/what-is-the-difference-
between-artificial-intelligence-and-machine-learning/%7B%5C#%7D2936e4b32742%20https:
/ / www . forbes . com / sites / bernardmarr / 2016 / 12 / 06 / what - is - the - difference - between -
artificial-intelligence-and-ma (visited on 03/26/2018).

[132] M. Copeland, The Difference Between AI, Machine Learning, and Deep Learning?, 2016. [Online].
Available: https://www.intel.com/content/www/us/en/analytics/ai-luminary-reza-zadeh-
video.html%20https://blogs.nvidia.com/blog/2016/07/29/whats- difference- artificial-
intelligence-machine-learning-deep-learning-ai/ (visited on 03/26/2018).

[133] Y. Zhang, “Speech Recognition Using Deep Learning Algorithms”, pp. 1–5, 2013.

[134] J. Padmanabhan, M. Jose, and J. Premkumar, “Machine Learning in Automatic Speech Recognition: A
Survey”, IETE Technical Review, no. March, pp. 37–41, 2015. doi: 10.1080/02564602.2015.1010611.

[135] S. Kuiper, “Introduction to Multiple Regression: How Much Is Your Car Worth?”, Journal of Statistics
Education, vol. 16, no. November, p. 19, 2008. doi: 10.1080/10691898.2008.11889579.

[136] R. Sunil, “Essentials of Machine Learning Algorithms (with Python and R Codes)”, 20.08.2015, vol.
20, pp. 1–15, 2016. [Online]. Available: https://www.analyticsvidhya.com/blog/2017/09/common-
machine-learning-algorithms/%20https://www.analyticsvidhya.com/blog/2015/08/common-
machine-learning-algorithms/.

[137] R. Socher, M. Ganjoo, H. Sridhar, O. Bastani, C. D. Manning, and A. Y. Ng, “Zero-Shot Learning
Through Cross-Modal Transfer”, Advances in Neural Information Processing Systems 26, pp. 1–7, 2013.
arXiv: arXiv:1301.3666v2.

[138] MIT Tech Review, This Factory Robot Learns a New Job Overnight, 2016. [Online]. Available: https:
//www.technologyreview.com/s/601045/this-factory-robot-learns-a-new-job-overnight/
(visited on 03/28/2018).

[139] D. C. Hogg, Artificial Intelligence. 1996, pp. 183–227, isbn: 9780121619640. doi: 10.1016/B978-
012161964-0/50009-1. arXiv: arXiv:1011.1669v3. [Online]. Available: http://www.sciencedirect.
com/science/article/pii/B9780121619640500091.

[140] M. Banko and E. Brill, “Scaling to very very large corpora for natural language disambiguation”,
Proceedings of the 39th Annual Meeting on Association for Computational Linguistics - ACL ’01,

126

http://arxiv.org/abs/1708.07174
http://arxiv.org/abs/1708.07174
http://dx.doi.org/10.1016/S0893-6080(05)80144-3
http://dx.doi.org/10.1136/heartjnl-2017-311198
http://heart.bmj.com/lookup/doi/10.1136/heartjnl-2017-311198
http://heart.bmj.com/lookup/doi/10.1136/heartjnl-2017-311198
http://dx.doi.org/10.1016/j.dcan.2017.10.002
http://arxiv.org/abs/1802.06305
http://linkinghub.elsevier.com/retrieve/pii/S235286481730247X
https://www.forbes.com/sites/bernardmarr/2016/12/06/what-is-the-difference-between-artificial-intelligence-and-machine-learning/%7B%5C#%7D2936e4b32742%20https://www.forbes.com/sites/bernardmarr/2016/12/06/what-is-the-difference-between-artificial-intelligence-and-ma
https://www.forbes.com/sites/bernardmarr/2016/12/06/what-is-the-difference-between-artificial-intelligence-and-machine-learning/%7B%5C#%7D2936e4b32742%20https://www.forbes.com/sites/bernardmarr/2016/12/06/what-is-the-difference-between-artificial-intelligence-and-ma
https://www.forbes.com/sites/bernardmarr/2016/12/06/what-is-the-difference-between-artificial-intelligence-and-machine-learning/%7B%5C#%7D2936e4b32742%20https://www.forbes.com/sites/bernardmarr/2016/12/06/what-is-the-difference-between-artificial-intelligence-and-ma
https://www.forbes.com/sites/bernardmarr/2016/12/06/what-is-the-difference-between-artificial-intelligence-and-machine-learning/%7B%5C#%7D2936e4b32742%20https://www.forbes.com/sites/bernardmarr/2016/12/06/what-is-the-difference-between-artificial-intelligence-and-ma
https://www.intel.com/content/www/us/en/analytics/ai-luminary-reza-zadeh-video.html%20https://blogs.nvidia.com/blog/2016/07/29/whats-difference-artificial-intelligence-machine-learning-deep-learning-ai/
https://www.intel.com/content/www/us/en/analytics/ai-luminary-reza-zadeh-video.html%20https://blogs.nvidia.com/blog/2016/07/29/whats-difference-artificial-intelligence-machine-learning-deep-learning-ai/
https://www.intel.com/content/www/us/en/analytics/ai-luminary-reza-zadeh-video.html%20https://blogs.nvidia.com/blog/2016/07/29/whats-difference-artificial-intelligence-machine-learning-deep-learning-ai/
http://dx.doi.org/10.1080/02564602.2015.1010611
http://dx.doi.org/10.1080/10691898.2008.11889579
https://www.analyticsvidhya.com/blog/2017/09/common-machine-learning-algorithms/%20https://www.analyticsvidhya.com/blog/2015/08/common-machine-learning-algorithms/
https://www.analyticsvidhya.com/blog/2017/09/common-machine-learning-algorithms/%20https://www.analyticsvidhya.com/blog/2015/08/common-machine-learning-algorithms/
https://www.analyticsvidhya.com/blog/2017/09/common-machine-learning-algorithms/%20https://www.analyticsvidhya.com/blog/2015/08/common-machine-learning-algorithms/
http://arxiv.org/abs/arXiv:1301.3666v2
https://www.technologyreview.com/s/601045/this-factory-robot-learns-a-new-job-overnight/
https://www.technologyreview.com/s/601045/this-factory-robot-learns-a-new-job-overnight/
http://dx.doi.org/10.1016/B978-012161964-0/50009-1
http://dx.doi.org/10.1016/B978-012161964-0/50009-1
http://arxiv.org/abs/arXiv:1011.1669v3
http://www.sciencedirect.com/science/article/pii/B9780121619640500091
http://www.sciencedirect.com/science/article/pii/B9780121619640500091

pp. 26–33, 2001, issn: 00043702. doi: 10.3115/1073012.1073017. arXiv: arXiv:1011.1669v3. [Online].
Available: http://portal.acm.org/citation.cfm?doid=1073012.1073017.

[141] M. Thoma, “Analysis and Optimization of Convolutional Neural Network Architectures”, PhD thesis,
2017. arXiv: 1707.09725. [Online]. Available: http://arxiv.org/abs/1707.09725.

[142] R. Kaplan, D. Chambers, and R. Glasgow, Big Data and Large Sample Size: A Cautionary Note on
the Potential for Bias, 2014. doi: 10.1111/cts.12178.

[143] D. M. Hawkins, “The Problem of Overfitting”, Journal of Chemical Information and Computer Sciences,
vol. 44, no. 1, pp. 1–12, 2004, issn: 00952338. doi: 10.1021/ci0342472.

[144] T. Dietterich, “Overfitting and undercomputing in machine learning”, ACM Computing Surveys,
vol. 27, no. 3, pp. 326–327, 1995, issn: 03600300. doi: 10.1145/212094.212114. [Online]. Available:
http://portal.acm.org/citation.cfm?doid=212094.212114.

[145] Y. S. Abu-Mostafa, M. Magdon-Ismail, and H.-T. Lin, “Learning From Data”, Learning from Data,
vol. 21, no. 4, pp. 479–481, 2010, issn: 1044-3983. doi: 10.1097/EDE.0b013e3181e13328.

[146] D. H. Wolpert, “The Existence of A Priori Distinctions Between Learning Algorithms”, Neural
Computation, vol. 8, no. 7, pp. 1391–1420, 1996, issn: 0899-7667. doi: 10.1162/neco.1996.8.7.1391.
[Online]. Available: http://www.mitpressjournals.org/doi/10.1162/neco.1996.8.7.1391.

[147] T. M. Gil and M. Poletto, “MULTOPS : a data-structure for bandwidth attack detection”, Proceedings
of the 10 th USENIX Security Symposium, p. 3, 2001.

[148] J. Mirkovic and P. Reiher, “D-WARD: A source-end defense against flooding denial-of-service attacks”,
IEEE Transactions on Dependable and Secure Computing, vol. 2, no. 3, pp. 216–232, 2005, issn:
15455971. doi: 10.1109/TDSC.2005.35.

[149] V. Sekar and N. Duffield, “LADS: Large-scale Automated DDoS Detection System.”, USENIX Annual
Technical Conference, General Track, pp. 171–184, 2006. doi: 10.1.1.128.4626. [Online]. Available:
https://www.usenix.org/event/usenix06/tech/full%7B%5C_%7Dpapers/sekar/sekar%7B%5C_
%7Dhtml/.

[150] I. Petiz, P. Salvador, A. Nogueira, and E. Rocha, “Detecting DDoS attacks at the source using
multiscaling analysis”, 2014 16th International Telecommunications Network Strategy and Planning
Symposium, Networks 2014, 2014. doi: 10.1109/NETWKS.2014.6959267.

[151] M. Zekri, S. E. Kafhali, N. Aboutabit, and Y. Saadi, “DDoS attack detection using machine learning
techniques in cloud computing environments”, 2017 3rd International Conference of Cloud Computing
Technologies and Applications (CloudTech), pp. 1–7, 2017. doi: 10.1109/CloudTech.2017.8284731.
[Online]. Available: http://ieeexplore.ieee.org/document/8284731/.

[152] B. HSSINA, A. MERBOUHA, H. EZZIKOURI, and M. ERRITALI, “A comparative study of decision
tree ID3 and C4.5”, International Journal of Advanced Computer Science and Applications, vol. 4, no.
2, pp. 13–19, 2014, issn: 2158107X. doi: 10.14569/SpecialIssue.2014.040203. [Online]. Available:
http://thesai.org/Publications/ViewPaper?Volume=4%7B%5C&%7DIssue=2%7B%5C&%7DCode=
SpecialIssue%7B%5C&%7DSerialNo=3.

[153] S. Salvatore, hping3 | Penetration Testing Tools, 2014. [Online]. Available: https://tools.kali.org/
information-gathering/hping3 (visited on 08/17/2018).

[154] IT Central Station, “DDoS Buyer’s Guide and Reviews July 2018”, p. 32, 2018.

[155] K. Armistead, Cisco Stealthwatch, 2018.

[156] S. learn, Kernel PCA — scikit-learn 0.19.2 documentation, 2018. [Online]. Available: http://scikit-
learn.org/stable/auto%7B%5C_%7Dexamples/decomposition/plot%7B%5C_%7Dkernel%7B%5C_
%7Dpca.html (visited on 08/14/2018).

[157] L. Name, F. Name, O. Training, P. Training, C. Darin, R. O. Training, M. Kimberly, G. Deepa,
E. Board, E. Principal, I. Primary, F. Systems, E. B. Study, and N. Co-investigator, Introduction to
Machine Learning, 1. 2014, pp. 1–5, isbn: 9780874216561. doi: 10.1007/s13398-014-0173-7.2.

127

http://dx.doi.org/10.3115/1073012.1073017
http://arxiv.org/abs/arXiv:1011.1669v3
http://portal.acm.org/citation.cfm?doid=1073012.1073017
http://arxiv.org/abs/1707.09725
http://arxiv.org/abs/1707.09725
http://dx.doi.org/10.1111/cts.12178
http://dx.doi.org/10.1021/ci0342472
http://dx.doi.org/10.1145/212094.212114
http://portal.acm.org/citation.cfm?doid=212094.212114
http://dx.doi.org/10.1097/EDE.0b013e3181e13328
http://dx.doi.org/10.1162/neco.1996.8.7.1391
http://www.mitpressjournals.org/doi/10.1162/neco.1996.8.7.1391
http://dx.doi.org/10.1109/TDSC.2005.35
http://dx.doi.org/10.1.1.128.4626
https://www.usenix.org/event/usenix06/tech/full%7B%5C_%7Dpapers/sekar/sekar%7B%5C_%7Dhtml/
https://www.usenix.org/event/usenix06/tech/full%7B%5C_%7Dpapers/sekar/sekar%7B%5C_%7Dhtml/
http://dx.doi.org/10.1109/NETWKS.2014.6959267
http://dx.doi.org/10.1109/CloudTech.2017.8284731
http://ieeexplore.ieee.org/document/8284731/
http://dx.doi.org/10.14569/SpecialIssue.2014.040203
http://thesai.org/Publications/ViewPaper?Volume=4%7B%5C&%7DIssue=2%7B%5C&%7DCode=SpecialIssue%7B%5C&%7DSerialNo=3
http://thesai.org/Publications/ViewPaper?Volume=4%7B%5C&%7DIssue=2%7B%5C&%7DCode=SpecialIssue%7B%5C&%7DSerialNo=3
https://tools.kali.org/information-gathering/hping3
https://tools.kali.org/information-gathering/hping3
http://scikit-learn.org/stable/auto%7B%5C_%7Dexamples/decomposition/plot%7B%5C_%7Dkernel%7B%5C_%7Dpca.html
http://scikit-learn.org/stable/auto%7B%5C_%7Dexamples/decomposition/plot%7B%5C_%7Dkernel%7B%5C_%7Dpca.html
http://scikit-learn.org/stable/auto%7B%5C_%7Dexamples/decomposition/plot%7B%5C_%7Dkernel%7B%5C_%7Dpca.html
http://dx.doi.org/10.1007/s13398-014-0173-7.2

[158] M. Learning, “A Complete Tutorial on Tree Based Modeling from Scratch (in R & Python)”, vol. 20,
pp. 1–55, 2016. [Online]. Available: https://www.analyticsvidhya.com/blog/2016/04/complete-
tutorial-tree-based-modeling-scratch-in-python/%7B%5C#%7Dfour.

[159] B. Gorman, A Kaggle Master Explains Gradient Boosting | No Free Hunch, 2017. [Online]. Available:
http://blog.kaggle.com/2017/01/23/a-kaggle-master-explains-gradient-boosting/ (visited
on 08/02/2018).

[160] I. Reinstein, XGBoost, a Top Machine Learning Method on Kaggle, Explained, 2017. [Online]. Avail-
able: https://www.kdnuggets.com/2017/10/xgboost- top- machine- learning- method- kaggle-
explained.html (visited on 08/02/2018).

[161] M. A. Pimentel, D. A. Clifton, L. Clifton, and L. Tarassenko, “A review of novelty detection”, Signal
Processing, vol. 99, pp. 215–249, 2014, issn: 01651684. doi: 10.1016/j.sigpro.2013.12.026. [Online].
Available: http://dx.doi.org/10.1016/j.sigpro.2013.12.026.

[162] S. learn, Receiver Operating Characteristic (ROC) — scikit-learn 0.19.2 documentation, 2018. [On-
line]. Available: http://scikit- learn.org/stable/auto%7B%5C_%7Dexamples/model%7B%5C_
%7Dselection/plot%7B%5C_%7Droc.html (visited on 08/13/2018).

[163] Claudette, 10 Incredibly Effective Tips To Stop Wasting Time At Work - You Work Too Much, 2017.
[Online]. Available: https://youworktoomuch.com/10- incredibly- effective- tips- to- stop-
wasting-time-at-work (visited on 07/18/2018).

[164] S. HEATHFIELD, What Employers Do About Employees Surfing the Web at Work, 2018. [Online].
Available: https://www.thebalancecareers.com/surfing-the-web-at-work-1919261 (visited on
07/18/2018).

[165] M. Prinzlau, 6 security risks of enterprises using cloud storage and file sharing apps | Digital Guardian,
2016. [Online]. Available: https://digitalguardian.com/blog/6-security-risks-enterprises-
using-cloud-storage-and-file-sharing-apps (visited on 09/05/2018).

[166] J. Gamblin, Mirai-Source-Code, 2016. [Online]. Available: https://github.com/jgamblin/Mirai-
Source-Code.

[167] Wireshark, LinkLayerDiscoveryProtocol - The Wireshark Wiki. [Online]. Available: https : / /
wiki . wireshark . org / Development / LibpcapFileFormat % 20http : / / wiki . wireshark . org /
LinkLayerDiscoveryProtocol (visited on 08/22/2018).

[168] C. Lucas, Python network packet dissection frameworks shootout: Scapy vs Construct vs Hachoir vs
Kaitai Struct – Adventures in Python, 2017. [Online]. Available: https://pythonistac.wordpress.com/
2017/03/09/python-network-packet-dissection-frameworks-shootout-scapy-vs-construct-
vs-hachoir-vs-kaitai-struct/ (visited on 08/22/2018).

128

https://www.analyticsvidhya.com/blog/2016/04/complete-tutorial-tree-based-modeling-scratch-in-python/%7B%5C#%7Dfour
https://www.analyticsvidhya.com/blog/2016/04/complete-tutorial-tree-based-modeling-scratch-in-python/%7B%5C#%7Dfour
http://blog.kaggle.com/2017/01/23/a-kaggle-master-explains-gradient-boosting/
https://www.kdnuggets.com/2017/10/xgboost-top-machine-learning-method-kaggle-explained.html
https://www.kdnuggets.com/2017/10/xgboost-top-machine-learning-method-kaggle-explained.html
http://dx.doi.org/10.1016/j.sigpro.2013.12.026
http://dx.doi.org/10.1016/j.sigpro.2013.12.026
http://scikit-learn.org/stable/auto%7B%5C_%7Dexamples/model%7B%5C_%7Dselection/plot%7B%5C_%7Droc.html
http://scikit-learn.org/stable/auto%7B%5C_%7Dexamples/model%7B%5C_%7Dselection/plot%7B%5C_%7Droc.html
https://youworktoomuch.com/10-incredibly-effective-tips-to-stop-wasting-time-at-work
https://youworktoomuch.com/10-incredibly-effective-tips-to-stop-wasting-time-at-work
https://www.thebalancecareers.com/surfing-the-web-at-work-1919261
https://digitalguardian.com/blog/6-security-risks-enterprises-using-cloud-storage-and-file-sharing-apps
https://digitalguardian.com/blog/6-security-risks-enterprises-using-cloud-storage-and-file-sharing-apps
https://github.com/jgamblin/Mirai-Source-Code
https://github.com/jgamblin/Mirai-Source-Code
https://wiki.wireshark.org/Development/LibpcapFileFormat%20http://wiki.wireshark.org/LinkLayerDiscoveryProtocol
https://wiki.wireshark.org/Development/LibpcapFileFormat%20http://wiki.wireshark.org/LinkLayerDiscoveryProtocol
https://wiki.wireshark.org/Development/LibpcapFileFormat%20http://wiki.wireshark.org/LinkLayerDiscoveryProtocol
https://pythonistac.wordpress.com/2017/03/09/python-network-packet-dissection-frameworks-shootout-scapy-vs-construct-vs-hachoir-vs-kaitai-struct/
https://pythonistac.wordpress.com/2017/03/09/python-network-packet-dissection-frameworks-shootout-scapy-vs-construct-vs-hachoir-vs-kaitai-struct/
https://pythonistac.wordpress.com/2017/03/09/python-network-packet-dissection-frameworks-shootout-scapy-vs-construct-vs-hachoir-vs-kaitai-struct/

	Contents
	List of Figures
	List of Tables
	Glossary
	Introduction
	Contextualization and State of Art
	Business Dependence on the Internet
	Denial-of-Service
	Distributed Denial-of-Service (DDoS) attacks
	Attack Motivation
	Internet Characteristics
	DDoS Modus Operandi
	Botnet based DDoS attack architecture
	DDoS attacks categories and vectors
	DDoS attack dynamics

	A glance to the past of DoS and DDoS attacks
	DDoS Defense Challenges
	Taxonomy of DDoS Defense Mechanisms
	Based on Approach
	Based on Defense Infrastructure
	Based on Defense Location
	DDoS Defense Goals

	Source-End Defense
	Generic Modules of a DDoS Source-End Defense System
	Machine Learning (ML) in Detection Methods
	Traditional vs Machine Learning Approach
	Types of Machine Learning Systems
	Main Challenges of Machine Learning

	State of the Art
	Non-commercial solutions
	Commercial solutions

	Methodology for outbound anomalies detection
	Network Data Collection
	Features Engineering
	Packet fields to features
	Generating network observations
	Network modeling
	Features that describe attack behavior
	Features completeness

	High Level Data Overview
	Dataset analysis
	Dataset correlations

	Data Pipeline and Knowledge Extraction
	Data splitting
	Features reduction
	Features scaling
	Labeling approaches
	Outbound anomaly classification

	Knowledge Process Evaluation
	Performance evaluation
	Zero-day tests

	Proof of Concept and Evaluation
	Network Data Generation
	Normal Network Activity
	Abnormal Network Activity

	Parsing packets to metadata
	Feature Extraction
	Dataset Overview
	Classification Methods and Performance
	Neural Networks
	Decision Trees
	Ensemble Methods

	Conclusion and Future Work
	Zero-day Extended Results
	DYN-PW-3
	DYN-PW-3 applied to ADA12 and GDB18

	References

